WO2022155976A1 - 初始接入方法、终端设备和网络设备 - Google Patents

初始接入方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022155976A1
WO2022155976A1 PCT/CN2021/073671 CN2021073671W WO2022155976A1 WO 2022155976 A1 WO2022155976 A1 WO 2022155976A1 CN 2021073671 W CN2021073671 W CN 2021073671W WO 2022155976 A1 WO2022155976 A1 WO 2022155976A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
downlink bwp
ssb
initial
association relationship
Prior art date
Application number
PCT/CN2021/073671
Other languages
English (en)
French (fr)
Inventor
吴作敏
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/073671 priority Critical patent/WO2022155976A1/zh
Priority to CN202180072796.XA priority patent/CN116420419A/zh
Publication of WO2022155976A1 publication Critical patent/WO2022155976A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the embodiments of the present application relate to the field of communications, and more particularly, to an initial access method, a terminal device, and a network device.
  • the fifth-generation mobile communication technology 5-Generation New Radio (5G NR) system defines the deployment scenarios of non-terrestrial networks (NTN) systems including satellite networks.
  • NTN non-terrestrial networks
  • the NTN system can realize the continuity of 5G NR services.
  • how to perform initial access is an urgent problem to be solved.
  • the embodiments of the present application provide an initial access method, terminal equipment, and network equipment, which can avoid too much load on the initial downlink BWP caused by terminal equipment on multiple terrestrial cells all accessing the network through the same initial downlink BWP, This avoids increasing the access delay of the terminal equipment.
  • terminal equipments on multiple terrestrial cells can be supported to initiate random access through different initial uplink BWPs, so as to avoid serious collision of PRACHs on initial uplink BWPs.
  • an initial access method includes:
  • the terminal device performs initial access according to the first association relationship and/or the second association relationship, where the first association relationship includes the association relationship between the initial downlink BWP and the uplink BWP, and the second association relationship includes the association between the common search space set and the downlink BWP relation;
  • the initial downlink BWP is associated with the initial uplink BWP, and/or at least two SSBs on the initial downlink BWP are associated with different uplink BWPs;
  • the set of common search spaces associated with the initial downlink BWP is on the initial downlink BWP, or the set of common search spaces associated with at least one SSB on the initial downlink BWP is not on the initial downlink BWP.
  • an initial access method comprising:
  • the network device sends first information to the terminal device, where the first information is used to determine a first association relationship and/or a second association relationship for initial access by the terminal device, where the first association relationship includes an initial downlink BWP and an uplink BWP. an association relationship, the second association relationship includes the association relationship between the public search space set and the downlink BWP; wherein,
  • the initial downlink BWP is associated with the initial uplink BWP, and/or at least two SSBs on the initial downlink BWP are associated with different uplink BWPs;
  • the set of common search spaces associated with the initial downlink BWP is on the initial downlink BWP, or the set of common search spaces associated with at least one SSB on the initial downlink BWP is not on the initial downlink BWP.
  • a terminal device for executing the method in the above-mentioned first aspect.
  • the terminal device includes functional modules for executing the method in the first aspect.
  • a network device for executing the method in the second aspect.
  • the network device includes functional modules for executing the method in the second aspect above.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect.
  • an apparatus for implementing the method in any one of the above-mentioned first to second aspects.
  • the apparatus includes: a processor for invoking and running a computer program from a memory, so that a device on which the apparatus is installed executes the method in any one of the first to second aspects above.
  • a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method in any one of the first to second aspects above.
  • a computer program product comprising computer program instructions, the computer program instructions causing a computer to perform the method in any one of the first to second aspects above.
  • a computer program which, when run on a computer, causes the computer to perform the method of any one of the above-mentioned first to second aspects.
  • the terminal device can perform initial access according to the first association relationship and/or the second association relationship, so that the initial access caused by the terminal devices on multiple terrestrial cells all accessing the network through the same initial downlink BWP can be avoided.
  • the load on the downlink BWP is too large, so as to avoid increasing the access delay of the terminal equipment.
  • terminal equipments on multiple terrestrial cells can be supported to initiate random access through different initial uplink BWPs, so as to avoid serious collision of PRACHs on initial uplink BWPs.
  • FIGS. 1A-1C are schematic diagrams of an application scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a mapping relationship between an SSB and an RO provided by the present application.
  • FIG. 3 is a schematic diagram of beam distribution of an NTN network provided by the present application.
  • FIG. 4 is a schematic diagram of a beam network of another NTN network provided by the present application.
  • FIG. 5 is a schematic flowchart of an initial access method provided according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a first association relationship provided according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another first association relationship provided according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a second association relationship provided according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another second association relationship provided according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another initial access method provided according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 14 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to a standalone (Standalone, SA) scenario ) network deployment scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, Among them, licensed spectrum can also be considered as non-shared spectrum.
  • the communication system in the embodiments of the present application can be applied to the FR1 frequency band (corresponding to the frequency band range of 410 MHz to 7.125 GHz), can also be applied to the FR2 frequency band (corresponding to the frequency band range of 24.25 GHz to 52.6 GHz), and can also be applied to The new frequency band corresponds, for example, to a high frequency frequency band in the frequency range of 52.6 GHz to 71 GHz.
  • the embodiments of the present application may be applied to a non-terrestrial communication network (Non-Terrestrial Networks, NTN) system, and may also be applied to a terrestrial communication network (Terrestrial Networks, TN) system.
  • NTN non-terrestrial communication network
  • TN terrestrial communication network
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be a station (STATION, ST) in the WLAN, and may be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a Wireless Local Loop (WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal equipment involved in the embodiments of this application may also be referred to as terminal, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, and remote station , remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE proxy or UE device, etc.
  • Terminal devices can also be stationary or mobile.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • FIG. 1A is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system 100 may include a network device 110 , and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area, and may communicate with terminal devices located within the coverage area.
  • FIG. 1A exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices.
  • the present application The embodiment does not limit this.
  • FIG. 1B is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • a terminal device 1101 and a satellite 1102 are included, and wireless communication can be performed between the terminal device 1101 and the satellite 1102 .
  • the network formed between the terminal device 1101 and the satellite 1102 may also be referred to as NTN.
  • the satellite 1102 can function as a base station, and the terminal device 1101 and the satellite 1102 can communicate directly. Under the system architecture, satellite 1102 may be referred to as a network device.
  • the communication system may include multiple network devices 1102, and the coverage of each network device 1102 may include other numbers of terminal devices, which are not limited in this embodiment of the present application.
  • FIG. 1C is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • a terminal device 1201 including a terminal device 1201 , a satellite 1202 and a base station 1203 , the terminal device 1201 and the satellite 1202 can communicate wirelessly, and the satellite 1202 and the base station 1203 can communicate.
  • the network formed between the terminal device 1201, the satellite 1202 and the base station 1203 may also be referred to as NTN.
  • the satellite 1202 may not have the function of the base station, and the communication between the terminal device 1201 and the base station 1203 needs to be relayed by the satellite 1202 .
  • the base station 1203 may be referred to as a network device.
  • the communication system may include multiple network devices 1203, and the coverage of each network device 1203 may include other numbers of terminal devices, which are not limited in this embodiment of the present application.
  • FIG. 1A-FIG. 1C merely illustrate the system to which the present application applies.
  • the methods shown in the embodiments of the present application may also be applied to other systems, such as a 5G communication system, an LTE communication system, etc. , which is not specifically limited in the embodiments of the present application.
  • the wireless communication system shown in FIG. 1A-FIG. 1C may further include other network entities such as a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF). , which is not limited in the embodiments of the present application.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobility management entity, etc., which are not limited in this embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • predefinition may be implemented by pre-saving corresponding codes, forms, or other means that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the implementation method is not limited.
  • predefined may refer to the definition in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which are not limited in this application.
  • NTN generally uses satellite communication to provide communication services to terrestrial users.
  • satellite communication has many unique advantages.
  • satellite communication is not limited by the user's geographical area.
  • general terrestrial communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or cannot be covered due to sparse population.
  • satellite communication due to a single Satellites can cover a large ground, and satellites can orbit around the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • satellite communication has great social value.
  • Satellite communications can be covered at low cost in remote mountainous areas and poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technologies, which is conducive to narrowing the digital divide with developed regions and promoting development in these areas.
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases; finally, the satellite communication has high stability and is not limited by natural disasters.
  • Communication satellites are classified into Low-Earth Orbit (LEO) satellites, Medium-Earth Orbit (MEO) satellites, Geostationary Earth Orbit (GEO) satellites, and highly elliptical orbits according to different orbital altitudes. (High Elliptical Orbit, HEO) satellites, etc.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO High Elliptical Orbit
  • the altitude range of low-orbit satellites is 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the transmit power requirements of the user terminal equipment are not high.
  • Geosynchronous orbit (GEO) satellite with an orbital altitude of 35,786km and a 24-hour rotation period around the earth.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. ground area.
  • the initial access process of the terminal equipment can be completed by detecting a burst set of synchronization signal blocks (Synchronization Signal/PBCH Block, SSB or SS/PBCH block).
  • One SSB burst set may include one or more SSBs, wherein one SSB includes 4 symbols in the time domain.
  • An SSB burst set shall be transmitted within one half frame (5ms).
  • PBCH Physical Broadcast Channel
  • DMRS Demodulation Reference Signal
  • the SSB index has another function, that is, it is used to indicate the Quasi co-location (QCL) relationship between the SSBs.
  • the QCL relationship between signals is used to describe the similarity of their large-scale parameter features. If the relationship between two signals is QCL, it can be considered that the large-scale parameters of the two signals are similar.
  • SSB in the 5G NR system, SSBs carried by different beams form an SSB burst set. Different SSB indexes correspond to different SSB time domain location information in the burst set, and also correspond to specific SSB transmission beam information. .
  • SSBs with the same SSB index can be considered to have a QCL relationship, and the terminal device can assume that the network device uses the same beam to transmit these SSBs; SSBs corresponding to different SSB indexes are not considered to have a QCL relationship, because they may come from Different transmission beams of network equipment experience different channel transmission characteristics.
  • the terminal device During the initial access process, the terminal device attempts to search for the SSB through the pre-defined possible time-frequency positions of the SSB, and obtains time and frequency synchronization, radio frame timing and cell identification (ID) through the detected SSB. Further, the terminal device may also acquire the resource configuration in the random access process according to the received system message of the cell. Random access is a very important process in the initial access process. In addition to establishing Radio Resource Control (RRC) connections, maintaining uplink synchronization, and cell switching, the random access process also undertakes beam management, System message request and other functions.
  • RRC Radio Resource Control
  • the resource configuration in the random access process includes a physical random access channel (Physical Random Access Channel, PRACH) resource configuration, also called a PRACH transmission opportunity (PRACH Occasion, RO).
  • PRACH Physical Random Access Channel
  • PRACH Occasion RO is a time-frequency resource that carries a random access preamble sequence (Preamble).
  • Preamble a random access preamble sequence
  • the resource configuration in the random access process also includes the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) resource configuration, also called PUSCH transmission opportunity (PUSCH Occasion, PO).
  • PUSCH Physical Uplink Shared Channel
  • message A (message A, MsgA) in the two-step random access process includes MsgA Preamble and MsgA PUSCH
  • RO is the time-frequency resource used to carry the MsgA Preamble
  • PO is the time-frequency resource used to carry the MsgA PUSCH.
  • the characteristic of NR system is to support downlink multi-beam.
  • the network device Before the network device communicates with the terminal device, the network device needs to know the beam where the terminal device is located and then set an appropriate beam direction in the subsequent data transmission process. Since the PRACH in the random access process is the first piece of information sent by the terminal device to the network device, the function of reporting the beam where the terminal device is located may be borne by the PRACH. Specifically, it can be determined by the mapping relationship between the SSB and the RO. Among them, in the NR system, the following multiple mapping ratios between SSBs and ROs are supported: 1) one-to-one mapping; 2) many-to-one mapping; 3) one-to-many mapping.
  • Figure 2 shows a schematic diagram of the mapping relationship between the SSB and the RO, wherein the SSB is on the initial bandwidth part (Band Width Part, BWP) of the downlink (that is, the downlink BWP#0), and the RO is on the initial BWP of the uplink (that is, the uplink). BWP#0).
  • BWP Band Width Part
  • the SSB and RO representation of the same pattern have a mapping relationship.
  • the terminal device Before the terminal device initiates random access, the terminal device will measure and evaluate the signal quality of the cell and the signal strength of each SSB in the cell. In the case that the detection strength of the SSB signal exceeds the threshold, determine the SSB with the strongest or stronger signal. For example, after the terminal device determines that SSB#1 is the SSB with the strongest signal, the terminal device determines the SSB# according to the mapping relationship between the SSB and the RO. The PRACH transmission opportunity corresponding to 1 includes RO#1, and the Preamble is sent on the RO#1. If the network device successfully receives the Preamble, the network device can learn the SSB selected by the terminal device based on the resource information of the successful reception of the Preamble. For example, the network device can determine that the Preamble is associated with the SSB#1 according to the association relationship, so that the SSB can be determined according to the SSB #1 Determine the beam information corresponding to the subsequent communication.
  • the four-step random access procedure (Type-1 random access procedure) may include the following steps:
  • the terminal device sends a random access preamble (Preamble, also referred to as Msg 1) to the network device on the PRACH resource on the initial uplink BWP.
  • Preamble also referred to as Msg 1
  • the network device sends a random access wireless network temporary identifier (Random Access to the wireless network) to the terminal device through the resources in the Type (Type) 1-PDCCH Common Search Space (CSS) on the initial downlink BWP.
  • a random access wireless network temporary identifier Random Access to the wireless network
  • SCS Common Search Space
  • RA-RNTI Access Radio Network Temporary Identity
  • PDCCH Physical Downlink Control Channel
  • the PDSCH scheduled by the PDCCH may include the random access response corresponding to the Preamble sent by the terminal device (RAR, also called Msg2).
  • the terminal device uses RA-RNTI on the Type1-PDCCH CSS on the initial downlink BWP to detect the PDCCH, and after detecting the PDCCH, determines whether to include the network according to the Physical Downlink Shared Channel (PDSCH) scheduled by the PDCCH.
  • the RAR may include information such as the uplink grant of the message 3 (Msg3), the timing advance command (TA command), and the Temporary Cell Radio Network Temporary Identity (TC-RNTI).
  • the Type1-PDCCH CSS is configured by the network device through system messages and/or high-level parameters.
  • the terminal device After receiving the RAR, the terminal device sends Msg3 on the uplink resource indicated by the RAR.
  • This step supports hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) retransmission. If the network device does not receive the Msg3 correctly, the network device may schedule the retransmission of the Msg3 using the TC-RNTI scrambled PDCCH.
  • the PDCCH may carry DCI corresponding to downlink control information (Downlink Control Information, DCI) format 0_0.
  • the network device sends a message 4 (Msg4) to the terminal device, which includes a contention resolution message, and this step supports HARQ retransmission.
  • Msg4 message 4
  • the network device may use the TC-RNTI scrambled PDCCH to schedule the retransmission of the Msg4.
  • the PDCCH can carry the DCI corresponding to the DCI format 1_0. If the terminal device correctly receives the Msg4 and determines that the Msg4 is the message of the terminal device, the random access process of the terminal device is successful, otherwise the random access process fails. The terminal device needs to initiate the random access procedure from the first step again.
  • the two-step random access procedure (Type-2 random access procedure) may include the following steps:
  • the terminal device sends a message A (MsgA) to the network device on the RO and PO on the initial uplink BWP, where the MsgA includes the MsgA Preamble and the MsgA PUSCH.
  • MsgA message A
  • the network device sends the MsgB-RNTI scrambled PDCCH to the terminal device through the resources in the Type1-PDCCH common search space (CSS) on the initial downlink BWP, and the PDSCH scheduled by the PDCCH may include this
  • the random access response also referred to as MsgB
  • the network device may only detects the MsgA Preamble but does not receive the MsgA PUSCH, the PDSCH scheduled by the PDCCH may include the fallback RAR corresponding to the MsgA Preamble sent by the terminal device.
  • the terminal device uses MsgB-RNTI on the Type1-PDCCH CSS on the initial downlink BWP to detect the PDCCH, and after detecting the PDCCH, determines whether it includes the successful RAR (successRAR) or Rollback RAR. If the terminal device correctly receives the successful RAR, the terminal device feeds back acknowledgement (Acknowledgement, ACK) information to the network device, and the random access process of the terminal device is successful. Or if the terminal device receives the fallback RAR, after receiving the fallback RAR, the terminal device sends Msg3 on the uplink resource indicated by the fallback RAR, and the two-step random access process falls back to the four-step random access process. Or if the terminal device does not receive any RAR, the random access process fails, and the terminal device needs to initiate the random access process from the first step again.
  • successful RAR successRAR
  • Rollback RAR the terminal device correctly receives the successful RAR
  • the terminal device feeds back acknowledgement (A
  • the beam distribution in the NR-NTN scenario includes the following two situations:
  • Case 1 As shown in Figure 3.
  • One SSB corresponds to one terrestrial cell, or the beam width of SSB transmission is consistent with the beam width of data transmission.
  • One terrestrial cell corresponds to one BWP for data transmission.
  • the network device configures the terminal device with a BWP corresponding to the SSB when the terminal device accesses for data transmission.
  • BWP#0 initial BWP
  • a channel state information reference signal (Channel State Information Reference Signal, CSI-RS) can also be transmitted, and the CSI-RS transmission beam
  • the width and beam direction are consistent with the beam width and beam direction for data transmission.
  • the beam width and beam direction of the CSI-RS on DL BWP #2 of cell #1 are the same as the beam width and beam direction of SSB #1 of cell #1.
  • Case 2 As shown in Figure 4.
  • One SSB corresponds to multiple terrestrial cells, or the beam width of SSB transmission is inconsistent with the beam width of data transmission, or the beam width of SSB transmission is larger than the beam width of data transmission.
  • One terrestrial cell corresponds to one BWP for data transmission.
  • the network device After the terminal device accesses the network through the SSB on the initial BWP (ie, BWP#0), the network device configures the terminal device with a BWP corresponding to the SSB when the terminal device accesses for data transmission.
  • CSI-RS can also be transmitted in DL BWP#1 to DL BWP#3, and the beam width and beam direction of CSI-RS transmission are consistent with the beam width and beam direction of data transmission.
  • the beam of SSB #1 of cell #1 includes beams of CSI-RS on DL BWP #1, CSI-RS on DL BWP #2, and CSI-RS on DL BWP #3 of cell #1.
  • this scenario may also be referred to as an umbrella beam scenario.
  • the above two network deployment scenarios are currently supported.
  • the terminal equipment on multiple terrestrial cells will access the network through the same initial downlink BWP, which may lead to the initial downlink BWP.
  • the load on the device is too large, thereby increasing the access delay of the terminal device.
  • the terminal devices on multiple terrestrial cells all initiate random access through the same initial uplink BWP, the PRACH collision on the initial uplink BWP will also be more serious.
  • This application mainly considers the enhancement of the initial access procedure in the NR-NTN system.
  • the present application proposes a random access scheme, which can avoid the overload on the initial downlink BWP caused by the terminal equipment on multiple terrestrial cells accessing the network through the same initial downlink BWP, thereby avoiding increasing the number of terminals The access delay of the device.
  • terminal equipments on multiple terrestrial cells can be supported to initiate random access through different initial uplink BWPs, so as to avoid serious collision of PRACHs on initial uplink BWPs.
  • FIG. 5 is a schematic flowchart of an initial access method 200 according to an embodiment of the present application. As shown in FIG. 5 , the method 200 may include at least part of the following contents:
  • the terminal device performs initial access according to a first association relationship and/or a second association relationship, where the first association relationship includes an association relationship between an initial downlink BWP and an uplink BWP, and the second association relationship includes a common search space set and a downlink BWP wherein, in the first association relationship, the initial downlink BWP is associated with the initial uplink BWP, and/or at least two SSBs on the initial downlink BWP are associated with different uplink BWPs; in the second association relationship, the initial downlink BWP is associated with The set of common search spaces associated with the downlink BWP is on the initial downlink BWP, or the set of common search spaces associated with at least one SSB on the initial downlink BWP is not on the initial downlink BWP.
  • the embodiments of the present application may be applied to NTN networks.
  • the embodiments of the present application may also be applied to other networks, which are not limited in the present application.
  • the initial downlink BWP in the first association relationship when the initial downlink BWP in the first association relationship is associated with an initial uplink BWP, multiple SSBs on the initial downlink BWP are associated with the same initial uplink BWP, and/or the initial uplink BWP Multiple terrestrial cells corresponding to multiple SSBs on the downlink BWP are associated with the same initial uplink BWP.
  • one BWP includes all Resource Blocks (RBs) included in one carrier.
  • RBs Resource Blocks
  • one BWP includes partial RBs included in one carrier, where the partial RBs are contiguous in the frequency domain.
  • the initial downlink BWP is associated with the initial uplink BWP, wherein,
  • the RO associated with the SSB on the initial downlink BWP is on the initial uplink BWP; and/or,
  • the RO and PO associated with the SSB on the initial downlink BWP are on the initial uplink BWP.
  • SSB#0 on DL BWP#0 is associated with RO#0 on UL BWP#0 (initial uplink BWP)
  • SSB on DL BWP#0 (initial downlink BWP) #1 is associated with RO#1 on UL BWP#0 (initial uplink BWP)
  • SSB#2 on DL BWP#0 (initial downlink BWP) is associated with RO#2 on UL BWP#0 (initial uplink BWP).
  • the initial downlink BWP is associated with the initial uplink BWP, wherein the RO associated with the SSB on the initial downlink BWP is on the initial uplink BWP.
  • the RO associated with the SSB on the initial downlink BWP is on the initial uplink BWP.
  • different SSBs on the initial downlink BWP in the first association relationship are associated with different uplink BWPs, and/or , and multiple terrestrial cells corresponding to multiple SSBs on the initial downlink BWP are associated with different uplink BWPs.
  • At least two SSBs on the initial downlink BWP are associated with different uplink BWPs, including:
  • the first SSB on the initial downlink BWP is associated with the first uplink BWP, wherein the RO associated with the first SSB is on the first uplink BWP, and/or the RO and PO associated with the first SSB are on the first uplink on BWP;
  • the second SSB on the initial downlink BWP is associated with the second uplink BWP, wherein the RO associated with the second SSB is on the second uplink BWP, and/or the RO and PO associated with the second SSB are on the second uplink on BWP.
  • the first uplink BWP and the second uplink BWP are initial uplink BWPs corresponding to different terminal devices respectively. For example, for UE1, its initial uplink BWP is the first uplink BWP; for UE2, its initial uplink BWP It is the second upstream BWP.
  • SSB#0 on DL BWP#0 is associated with RO#0 on UL BWP#1
  • SSB#1 on DL BWP#0 is associated with UL BWP RO#1 on #2
  • SSB#2 on DL BWP#0 is associated with RO#2 on UL BWP#3. That is, different SSBs on the initial downlink BWP are associated with different uplink BWPs.
  • the association between the SSB and the RO is determined according to at least one of the SSB index, the RO resource, and the antenna polarization mode.
  • the antenna polarization mode includes at least one of Right Hand Circular Polarization (RHCP), Left Hand Circular Polarization (LHCP), and Linear Polarization (LP). .
  • RHCP and LHCO can also be called circular polarization.
  • the SSB index has an associated relationship with the antenna polarization mode.
  • the association relationship may be predefined, or determined based on at least one of system messages sent by the network device, RRC signaling, MAC CE and DCI.
  • the SSB corresponding to the even index is associated with the RHCP mode
  • the SSB corresponding to the odd index is associated with the LHCP mode
  • all SSBs sent by the network device are associated with the LP mode.
  • RO resources are associated with antenna polarization modes.
  • the association relationship may be predefined, or determined based on at least one of system messages sent by the network device, RRC signaling, MAC CE and DCI.
  • a part of RO resources is associated with RHCP mode
  • another part of RO resources is associated with LHCP mode
  • another part of RO resources is associated with LP mode.
  • a part of the RO resources is associated with the RHCP mode, and another part of the RO resources is associated with the LHCP mode.
  • the network device is configured with a linearly polarized antenna or not configured with a circularly polarized antenna, all RO resources are associated with the LP mode.
  • the SSB index, RO resource and antenna polarization mode have an associated relationship.
  • the association relationship may be predefined, or determined based on at least one of system messages sent by the network device, RRC signaling, MAC CE and DCI.
  • the SSB index has an associated relationship with the antenna polarization mode, and accordingly, the RO resource associated with the SSB index also has an associated relationship with the antenna polarization mode.
  • the terminal device may measure and evaluate the signal quality of the cell and the signal strength of each SSB in the cell.
  • the SSB corresponding to the odd index is associated with the RHCP mode
  • the SSB corresponding to the even index is associated with the LHCP mode.
  • the terminal device may measure and evaluate the signal quality of the cell and the signal strength of each SSB in the cell. In the case that the detection strength of the SSB signal exceeds the threshold, determine the SSB with the strongest or stronger signal. For example, after the terminal equipment determines that SSB#1 on the initial downlink BWP is the SSB with the strongest signal, the terminal equipment determines the SSB with the strongest signal according to the first association relationship.
  • the mapping relationship between ROs determines that the PRACH transmission opportunity corresponding to the SSB#1 includes RO#1 and RO#1' on the initial uplink BWP, where RO#1 corresponds to the RHCP mode, and RO#1' corresponds to the LHCP mode. Since the terminal device supports the LHCP mode, the terminal device can send the PRACH to the network device through the resources in RO#1'.
  • the antenna polarization mode is indicated to the terminal device by the network device.
  • the network device indicates to the terminal device the antenna polarization mode corresponding to SSB transmission, or the antenna polarization mode corresponding to the physical signal or physical channel transmission on the DL BWP, or instructs the terminal device to perform the physical signal or physical channel on the UL BWP The corresponding antenna polarization mode during transmission.
  • the antenna polarization mode is reported by the terminal device to the network device.
  • the terminal device reports the antenna polarization mode supported by the terminal device to the network device.
  • the first association relationship is predefined, or the first association relationship is determined based on first configuration information sent by the network device, wherein the first configuration information At least one of Resource Control, RRC) signaling, Media Access Control Control Element (Media Access Control Control Element, MAC CE) and Downlink Control Information (Downlink Control Information, DCI) is transmitted.
  • RRC Resource Control
  • Media Access Control Control Element Media Access Control Control Element, MAC CE
  • DCI Downlink Control Information
  • the first configuration information includes random access configuration information, wherein the random access configuration information includes uplink BWP information associated with the random access configuration, and/or, the random access configuration associated SSB index.
  • the random access configuration information includes configuration information of an uplink BWP associated with the random access configuration, wherein the configuration information of the uplink BWP includes at least one of the following: an identifier (ID) of the uplink BWP, an identifier of the uplink BWP Starting position, the frequency domain range corresponding to the uplink BWP (or the number of frequency domain RBs included in the uplink BWP), the subcarrier spacing (SCS) or cyclic prefix (CP) type corresponding to the uplink BWP .
  • ID identifier
  • SCS subcarrier spacing
  • CP cyclic prefix
  • the terminal device In the initial access stage, the terminal device has not yet established an RRC connection with the network device, and the terminal device is not configured with a user-specific control channel, but needs to receive the public control information in the cell through the common control channel on the initial downlink BWP, so as to complete the The subsequent initial access process.
  • the terminal device receives the common control channel through a common search space (Common Search Space, CSS), where the common search space is configured through system messages or RRC signaling.
  • a common search space Common Search Space, CSS
  • the public search space related to initial access mainly includes the following:
  • Type0-PDCCH CSS type0-PDCCH is used to indicate the scheduling information of the PDSCH carrying the System Information Block (System Information Block, SIB) 1, and its search space is configured by the PDCCH SIB1 in the Master Information Block (Master Information Block, MIB) information ( pdcch-ConfigSIB1) information field indication, or configured through RRC signaling, the cyclic redundancy check (Cyclical Redundancy Check, CRC) of its DCI format is through System Information-Radio Network Temporary Identity (System Information Radio Network Temporary Identity, SI- RNTI) scrambling.
  • SIB System Information Block
  • Type0A-PDCCH CSS type0A-PDCCH is used to indicate the scheduling information of PDSCH carrying other system information (Other System Information, OSI), its search space is configured by RRC signaling, and its CRC in DCI format is scrambled by SI-RNTI.
  • OSI System Information
  • Type1-PDCCH CSS type1-PDCCH is used to indicate the scheduling information of PDSCH carrying RAR, its search space is configured by RRC signaling, and the CRC of its DCI format is determined by Random Access Radio Network Temporary Identity, RA-RNTI), message B-radio network temporary identity (MsgB Radio Network Temporary Identity, MsgB-RNTI), or temporary cell-radio network temporary identity (Temporary Cell Radio Network Temporary Identity, TC-RNTI) scrambling.
  • RA-RNTI Random Access Radio Network Temporary Identity
  • MsgB Radio Network Temporary Identity MsgB-RNTI
  • Temporary Cell Radio Network Temporary Identity Temporary Identity
  • Type2-PDCCH CSS type2-PDCCH is used to indicate the scheduling information of PDSCH carrying paging messages, its search space is configured through RRC signaling, and the CRC of its DCI format is through Paging Radio Network Temporary Identity (Paging Radio Network Temporary Identity, P-RNTI) scrambling.
  • Paging Radio Network Temporary Identity Paging Radio Network Temporary Identity, P-RNTI
  • the terminal device can detect the PDCCH according to the control channel resource set of the PDCCH at the corresponding PDCCH monitoring timing.
  • the set of common search spaces includes, but is not limited to, at least one of the following:
  • Type0-PDCCH CSS set Type0A-PDCCH CSS set, Type1-PDCCH CSS set, Type2-PDCCH CSS set.
  • the CSSs respectively associated with the multiple SSBs on the initial downlink BWP are in the initial downlink on BWP.
  • the CSSs respectively associated with SSB#0, SSB#1 and SSB#2 on DL BWP#0 are on the DL BWP#0 (initial downlink BWP).
  • the CSSs respectively associated with SSB#0, SSB#1 and SSB#2 are the set of common search spaces associated with the DL BWP#0.
  • the common search space set associated with at least one SSB on the initial downlink BWP is not on the initial downlink BWP, including:
  • the first SSB on the initial downlink BWP is associated with the first downlink BWP, wherein the set of common search spaces associated with the first SSB is on the first downlink BWP, and the first downlink BWP is different from the initial downlink BWP downlink BWP.
  • different downlink BWPs may refer to: different BWP identifiers (IDs), or different frequency domain resources corresponding to BWPs, or different subcarrier intervals corresponding to BWPs.
  • IDs BWP identifiers
  • different frequency domain resources corresponding to BWPs or different subcarrier intervals corresponding to BWPs.
  • the CSS associated with one SSB on the initial downlink BWP is in the on the downlink BWP associated with the SSB.
  • the CSS associated with SSB#0 on DL BWP#0 is on DL BWP#1 associated with this SSB#0
  • the SSB on DL BWP#0 (initial downlink BWP)
  • the CSS associated with #1 is on the DL BWP#2 associated with the SSB#1
  • the CSS associated with the SSB#2 on the DL BWP#0 is on the DL BWP#3 associated with the SSB#2.
  • the CSSs respectively associated with SSB#0, SSB#1 and SSB#2 are the set of common search spaces associated with the DL BWP#0.
  • the second association relationship is predefined, or the second association relationship is determined based on second configuration information sent by the network device, wherein the second configuration information is obtained through system messages, RRC signaling, MAC At least one of CE and DCI is transmitted.
  • the second configuration information includes PDCCH common configuration information
  • the PDCCH common configuration information includes downlink BWP information corresponding to the PDCCH common configuration, and/or an SSB index corresponding to the PDCCH common configuration, wherein the PDCCH
  • the public configuration includes the configuration of the set of public search spaces.
  • the initial downlink BWP is associated with the initial uplink BWP, and the above S210 may specifically include:
  • the terminal device sends the first PRACH corresponding to message 1 (Msg1) through the first RO on the initial uplink BWP, where the first RO is associated with the first SSB, and the first RO is associated with the first SSB.
  • SSB is the SSB detected by the terminal device on the initial downlink BWP; or,
  • the terminal device sends the first PRACH corresponding to the message A (MsgA) through the first RO on the initial uplink BWP, and sends the message A (MsgA) through the first PO on the initial uplink BWP ) corresponding first PUSCH, wherein the first RO is associated with the first SSB, the first PO is associated with the first RO, and the first SSB is the SSB detected by the terminal device on the initial downlink BWP; or ,
  • the terminal device sends the first PRACH corresponding to message A (MsgA) through the first RO on the initial uplink BWP, where the first RO is associated with the first SSB, and the first RO is associated with the first SSB.
  • the SSB is the SSB detected by the terminal device on the initial downlink BWP.
  • at least two SSBs on the initial downlink BWP are associated with different uplink BWPs, including: the first SSB on the initial downlink BWP is associated with a first uplink BWP, wherein the The first SSB is the SSB detected by the terminal device on the initial downlink BWP; the above S210 may specifically include:
  • the terminal device sends the first PRACH corresponding to message 1 (Msg1) through the first RO on the first uplink BWP; or,
  • the terminal device sends the first PRACH corresponding to the message A (MsgA) through the first RO on the first uplink BWP, and sends the message A through the first PO on the first uplink BWP (MsgA) the corresponding first PUSCH, wherein the first PO is associated with the first RO; or,
  • the terminal device sends the first PRACH corresponding to the message A (MsgA) through the first RO on the first uplink BWP.
  • the first SSB on the initial downlink BWP is associated with the first uplink BWP
  • the first RO on the first uplink BWP is associated with the first SSB on the initial downlink BWP.
  • At least two SSBs on the initial downlink BWP are associated with different uplink BWPs, including: the first SSB on the initial downlink BWP is associated with a first uplink BWP, wherein the The first SSB is the SSB detected by the terminal device on the initial downlink BWP; the above S210 may specifically include:
  • the terminal device sends the first PUSCH corresponding to message 3 (Msg3) through the first PUSCH resource on the first uplink BWP, where the first PUSCH resource is message 2 (Msg2) Indicated by the uplink grant information in the corresponding RAR; or,
  • the terminal device sends the first PUCCH corresponding to the message B (MsgB) through the first physical uplink control channel (Physical Uplink Control Channel, PUCCH) resource on the first uplink BWP, wherein, The first PUCCH includes response information corresponding to the message B (MsgB); or,
  • the terminal device sends the first PUSCH corresponding to the message B (MsgB) through the first PUSCH resource on the first uplink BWP, where the first PUSCH resource is the message B (MsgB) ) is indicated by the uplink grant information in the corresponding fallback RAR.
  • the initial access downlink bandwidth such as the initial downlink BWP
  • the initial access uplink bandwidth such as the initial uplink BWP
  • the above S210 may specifically include:
  • the terminal device sends PRACH through the PRACH resource on the initial access uplink bandwidth; and/or,
  • the terminal device sends the PUSCH corresponding to Msg3 through the PUSCH resource on the initial access uplink bandwidth; and/or,
  • the terminal device sends the PUSCH corresponding to the MsgB through the PUSCH resource on the initial access uplink bandwidth; and/or,
  • the terminal device sends the PUCCH corresponding to the MsgB through the PUCCH resource on the initial access uplink bandwidth.
  • the synchronization signal on the initial access downlink bandwidth such as the first SSB on the initial downlink BWP
  • the first uplink bandwidth such as the first uplink BWP
  • the above S210 may specifically include:
  • the terminal device sends PRACH through the PRACH resource on the first uplink bandwidth; and/or,
  • the terminal device sends the PUSCH corresponding to Msg3 through the PUSCH resource on the first uplink bandwidth; and/or,
  • the terminal device sends the PUSCH corresponding to the MsgB through the PUSCH resource on the first uplink bandwidth; and/or,
  • the terminal device sends the PUCCH corresponding to the MsgB through the PUCCH resource on the first uplink bandwidth.
  • the initial access downlink bandwidth such as the set of public search spaces associated with the initial downlink BWP, is on the initial access downlink bandwidth, and the above S210 may specifically include:
  • the terminal device detects PDCCH candidates in the CSS set on the initial access downlink bandwidth.
  • the initial access downlink bandwidth such as the common search space associated with the initial downlink BWP
  • the initial access downlink bandwidth and the first downlink bandwidth are different (for example, at least one of the parameters corresponding to the initial access downlink bandwidth and the parameters corresponding to the first downlink bandwidth are different)
  • the above S210 may specifically include:
  • the terminal device detects PDCCH candidates in the CSS set on the first downlink bandwidth.
  • the set of common search spaces associated with the initial downlink BWP is on the initial downlink BWP, and the foregoing S210 may specifically include at least one of the following situations:
  • the common search space set includes a Type0-PDCCH CSS set, and the terminal device uses the SI-RNTI to detect PDCCH candidates in the Type0-PDCCH CSS set on the initial downlink BWP;
  • the common search space set includes a Type0A-PDCCH CSS set, and the terminal device uses the SI-RNTI to detect PDCCH candidates in the Type0A-PDCCH CSS set on the initial downlink BWP;
  • the common search space set includes a Type1-PDCCH CSS set, and the terminal device uses RA-RNTI, MsgB-RNTI, or TC-RNTI to detect PDCCH candidates in the Type1-PDCCH CSS set on the initial downlink BWP;
  • the common search space set includes a Type2-PDCCH CSS set, and the terminal device uses the P-RNTI to detect PDCCH candidates in the Type2-PDCCH CSS set on the initial downlink BWP.
  • the set of common search spaces associated with at least one SSB on the initial downlink BWP is not on the initial downlink BWP, including: a common search space associated with the first SSB on the initial downlink BWP
  • the search space is set in the first downlink BWP, the first downlink BWP and the initial downlink BWP are different downlink BWPs, wherein the first SSB is the SSB detected by the terminal device on the initial downlink BWP; the above S210 Specifically, it may include at least one of the following situations:
  • the common search space set includes a Type0-PDCCH CSS set, and the terminal device uses the SI-RNTI to detect PDCCH candidates in the Type0-PDCCH CSS set on the first downlink BWP;
  • the common search space set includes a Type0A-PDCCH CSS set, and the terminal device uses the SI-RNTI to detect PDCCH candidates in the Type0A-PDCCH CSS set on the first downlink BWP;
  • the common search space set includes a Type1-PDCCH CSS set, and the terminal device uses RA-RNTI, MsgB-RNTI, or TC-RNTI to detect PDCCH candidates in the Type1-PDCCH CSS set on the first downlink BWP;
  • the common search space set includes a Type2-PDCCH CSS set, and the terminal device uses the P-RNTI to detect PDCCH candidates in the Type2-PDCCH CSS set on the first downlink BWP.
  • the network device is sending the PDCCH, for example, the network device sends the SI-RNTI scrambled PDCCH through the resources in the Type0-PDCCH CSS set on the initial downlink BWP.
  • the terminal equipment since the terminal equipment is blindly detected, it may or may not be detected. Therefore, the terminal equipment detects a PDCCH candidate.
  • the terminal equipment uses the SI-RNTI on the Type0-PDCCH on the first downlink BWP. PDCCH candidates are detected in the CSS set.
  • the initial downlink BWP is associated with the initial uplink BWP, and specifically, the RO associated with the SSB on the initial downlink BWP is on the initial uplink BWP; and/or, the initial downlink BWP
  • the RO and PO associated with the SSB are on the initial uplink BWP; in the second association relationship, the common search space set associated with at least one SSB on the initial downlink BWP is not on the initial downlink BWP.
  • the random access procedure is taken as an example for description.
  • the terminal device before the terminal device initiates random access, the terminal device will measure and evaluate the signal quality of the cell and the signal strength of each SSB in the cell. In the case that the detection strength of the SSB signal exceeds the threshold, determine the SSB with the strongest or stronger signal. For example, after the terminal equipment determines that SSB#1 on the initial downlink BWP is the SSB with the strongest signal, the terminal equipment determines the SSB with the strongest signal according to the first association relationship. The mapping relationship between ROs determines that the PRACH transmission opportunity corresponding to the SSB#1 includes RO#1 on the initial uplink BWP.
  • the four-step random access procedure may include the following steps:
  • the terminal device sends a random access preamble sequence (Preamble, also referred to as Msg1) to the network device on the PRACH resource corresponding to RO#1 on the initial uplink BWP.
  • Preamble also referred to as Msg1
  • the network device sends RA-RNTI scrambling to the terminal device through the resources in the Type1-PDCCH CSS on the downlink BWP#2 (in the second association relationship, the downlink BWP associated with SSB#1)
  • the PDSCH scheduled by the PDCCH may include a random access response (RAR, also referred to as Msg2) corresponding to the Preamble sent by the terminal device.
  • RAR random access response
  • the terminal device uses the RA-RNTI on the Type1-PDCCH CSS on the downlink BWP#2 to detect the PDCCH candidates, and after detecting the PDCCH, determines whether to include the RAR sent by the network device to itself according to the PDSCH scheduled by the PDCCH.
  • the RAR may include the uplink grant of message 3 (Msg3), timing advance command (TA command), TC-RNTI and other information.
  • the Type1-PDCCH CSS is configured by the network device through system messages and/or high-level parameters.
  • the terminal device After receiving the RAR, the terminal device sends Msg3 on the uplink resource indicated by the RAR.
  • the uplink resource may be located on the initial uplink BWP or on the uplink BWP associated with the SSB#1.
  • This step supports HARQ retransmission. If the network device does not receive the Msg3 correctly, the network device may schedule the retransmission of the Msg3 using the TC-RNTI scrambled PDCCH.
  • the PDCCH may carry DCI format 0_0.
  • the TC-RNTI scrambled PDCCH is transmitted through the Type1-PDCCH CSS on the downlink BWP#2.
  • the network device sends a message 4 (Msg4) to the terminal device through the resources in the Type1-PDCCH CSS on the downlink BWP#2, which includes a contention resolution message, and this step supports HARQ retransmission.
  • Msg4 message 4
  • the network device may use the TC-RNTI scrambled PDCCH to schedule the retransmission of the Msg4.
  • the PDCCH may carry DCI format 1_0.
  • the TC-RNTI scrambled PDCCH is transmitted through the Type1-PDCCH CSS on the downlink BWP#2.
  • the terminal device If the terminal device correctly receives the Msg4 and determines that the Msg4 is the message of the terminal device, the random access process of the terminal device is successful, otherwise the random access process fails.
  • the terminal device needs to initiate a four-step random access procedure (Type-1 random access procedure) from the first step again.
  • the two-step random access procedure (Type-2 random access procedure) may include the following steps:
  • the terminal device sends a message A (MsgA) to the network device on the RO corresponding to RO#1 on the initial uplink BWP and its associated PO, wherein the MsgA includes the MsgA Preamble and the MsgA PUSCH.
  • MsgA message A
  • the network device sends the PDCCH scrambled by MsgB-RNTI to the terminal device through the resources in the Type1-PDCCH CSS on the downlink BWP#2.
  • the PDSCH scheduled by the PDCCH may include the data sent by the terminal device.
  • the random access response corresponding to MsgA also called MsgB. If the network device only detects the MsgA Preamble but does not receive the MsgA PUSCH, the PDSCH scheduled by the PDCCH may include the fallback RAR corresponding to the MsgA Preamble sent by the terminal device.
  • the terminal device uses MsgB-RNTI on the Type1-PDCCH CSS on the downlink BWP#2 to detect the PDCCH, and after detecting the PDCCH, determines whether the successful RAR (success RAR) sent by the network device to itself is included according to the PDSCH scheduled by the PDCCH. Or fallback to RAR. If the terminal device correctly receives the successful RAR, the terminal device feeds back ACK information to the network device, where the ACK information can be transmitted through the initial uplink BWP or through the uplink BWP associated with the SSB#1, the random access process of the terminal device success.
  • the terminal equipment receives the fallback RAR, after receiving the fallback RAR, the terminal equipment sends Msg3 on the uplink resource indicated by the fallback RAR, where the uplink resource may be located in the initial uplink BWP or located in the same area as the SSB#1.
  • the two-step random access procedure (Type-2 random access procedure) falls back to a four-step random access procedure (Type-1 random access procedure).
  • the random access procedure fails, and the terminal device needs to initiate a two-step random access procedure (Type-2 random access procedure) from the first step again.
  • the set of common search spaces associated with the initial downlink BWP is on the initial downlink BWP .
  • the random access procedure is taken as an example for description.
  • the terminal device before the terminal device initiates random access, the terminal device will measure and evaluate the signal quality of the cell and the signal strength of each SSB in the cell. In the case that the detection strength of the SSB signal exceeds the threshold, determine the SSB with the strongest or stronger signal. For example, after the terminal equipment determines that SSB#1 on the initial downlink BWP is the SSB with the strongest signal, the terminal equipment determines the SSB with the strongest signal according to the first association relationship.
  • the mapping relationship between ROs determines that the PRACH transmission opportunity corresponding to SSB#1 includes RO#1 on the uplink BWP associated with SSB#1 (eg, the initial uplink BWP associated with SSB#1).
  • the four-step random access procedure may include the following steps:
  • the terminal device sends a random access preamble (Preamble, also referred to as Msg1) to the network device on the PRACH resource corresponding to RO#1 on the uplink BWP associated with SSB#1.
  • Preamble also referred to as Msg1
  • the network device sends the RA-RNTI scrambled message to the terminal device through the resources in the Type1-PDCCH CSS on the initial downlink BWP (in the second association relationship, the downlink BWP associated with SSB#1).
  • PDCCH, the PDSCH scheduled by the PDCCH may include a random access response (RAR, also referred to as Msg2) corresponding to the Preamble sent by the terminal device.
  • RAR random access response
  • the terminal device uses the RA-RNTI on the Type1-PDCCH CSS on the initial downlink BWP to detect the PDCCH candidates, and after detecting the PDCCH, determines whether to include the RAR sent by the network device to itself according to the PDSCH scheduled by the PDCCH.
  • the RAR may include the uplink grant of message 3 (Msg3), timing advance command (TA command), temporary RNTI (TC-RNTI) and other information.
  • the Type1-PDCCH CSS is configured by the network device through system messages and/or high-level parameters.
  • the terminal device After receiving the RAR, the terminal device sends Msg3 on the uplink resource indicated by the RAR.
  • the uplink resource may be located on the uplink BWP associated with the SSB#1.
  • This step supports HARQ retransmission. If the network device does not receive the Msg3 correctly, the network device may schedule the retransmission of the Msg3 using the TC-RNTI scrambled PDCCH. Wherein, the PDCCH may carry DCI format 0_0.
  • the TC-RNTI scrambled PDCCH is transmitted through the Type1-PDCCH CSS on the initial downlink BWP.
  • the network device sends a message 4 (Msg4) to the terminal device through the resources in the Type1-PDCCH CSS on the initial downlink BWP, which includes a contention resolution message, and this step supports HARQ retransmission.
  • Msg4 message 4
  • the network device may use the TC-RNTI scrambled PDCCH to schedule the retransmission of the Msg4.
  • the PDCCH may carry DCI format 1_0.
  • the TC-RNTI scrambled PDCCH is transmitted through the Type1-PDCCH CSS on the initial downlink BWP.
  • the terminal device If the terminal device correctly receives the Msg4 and determines that the Msg4 is the message of the terminal device, the random access process of the terminal device is successful, otherwise the random access process fails.
  • the terminal device needs to initiate a four-step random access procedure (Type-1 random access procedure) from the first step again.
  • the two-step random access procedure (Type-2 random access procedure) may include the following steps:
  • the terminal device sends a message A (MsgA) to the network device on the RO corresponding to the RO#1 on the upstream BWP associated with the SSB#1 and its associated PO, where the MsgA includes the MsgA Preamble and the MsgA PUSCH.
  • MsgA message A
  • the network device sends the MsgB-RNTI scrambled PDCCH to the terminal device through the resources in the Type1-PDCCH common search space (CSS) on the initial downlink BWP, and the PDSCH scheduled by the PDCCH may include this
  • the random access response also referred to as MsgB
  • the network device may only detects the MsgA Preamble but does not receive the MsgA PUSCH, the PDSCH scheduled by the PDCCH may include the fallback RAR corresponding to the MsgA Preamble sent by the terminal device.
  • the terminal device uses MsgB-RNTI on the Type1-PDCCH CSS on the initial downlink BWP to detect the PDCCH, and after detecting the PDCCH, determines whether it includes the successful RAR (successRAR) or Rollback RAR. If the terminal device correctly receives the successful RAR, the terminal device feeds back ACK information to the network device, where the ACK information can be transmitted through the uplink BWP associated with the SSB#1, and the random access process of the terminal device is successful.
  • successful RAR successRAR
  • Rollback RAR the terminal device feeds back ACK information to the network device, where the ACK information can be transmitted through the uplink BWP associated with the SSB#1, and the random access process of the terminal device is successful.
  • the terminal device receives the fallback RAR, after receiving the fallback RAR, the terminal device sends Msg3 on the uplink resource indicated by the fallback RAR, where the uplink resource may be located on the uplink BWP associated with the SSB#1 , the two-step random access procedure (Type-2 random access procedure) falls back to a four-step random access procedure (Type-1 random access procedure). Or if the terminal device does not receive any RAR, the random access procedure fails, and the terminal device needs to initiate a two-step random access procedure (Type-2 random access procedure) from the first step again.
  • Type-2 random access procedure the two-step random access procedure
  • Embodiment 3 in the first association relationship, at least two SSBs on the initial downlink BWP are associated with different upstream BWPs; in the second association relationship, the set of common search spaces associated with at least one SSB on the initial downlink BWP is not in this On the initial downlink BWP.
  • the random access procedure is taken as an example for description.
  • the terminal device before the terminal device initiates random access, the terminal device will measure and evaluate the signal quality of the cell and the signal strength of each SSB in the cell. In the case that the detection strength of the SSB signal exceeds the threshold, determine the SSB with the strongest or stronger signal. For example, after the terminal equipment determines that SSB#1 on the initial downlink BWP is the SSB with the strongest signal, the terminal equipment determines the SSB with the strongest signal according to the first association relationship.
  • the mapping relationship between ROs determines that the PRACH transmission opportunity corresponding to SSB#1 includes RO#1 on the uplink BWP associated with SSB#1 (eg, the initial uplink BWP associated with SSB#1).
  • the four-step random access procedure may include the following steps:
  • the terminal device sends a random access preamble (Preamble, also referred to as Msg1) to the network device on the PRACH resource corresponding to RO#1 on the uplink BWP associated with SSB#1.
  • Preamble also referred to as Msg1
  • the network device sends the resource in the Type1-PDCCH common search space (CSS) on the downlink BWP#2 (in the second association relationship, the downlink BWP associated with SSB#1) to the terminal device.
  • the PDCCH scrambled by the RA-RNTI, the PDSCH scheduled by the PDCCH may include a random access response (RAR, also referred to as Msg2) corresponding to the Preamble sent by the terminal device.
  • RAR random access response
  • the terminal device uses the RA-RNTI on the Type1-PDCCH CSS on the downlink BWP#2 to detect the PDCCH candidates, and after detecting the PDCCH, determines whether to include the RAR sent by the network device to itself according to the PDSCH scheduled by the PDCCH.
  • the RAR may include the uplink grant of message 3 (Msg3), timing advance command (TA command), temporary RNTI (TC-RNTI) and other information.
  • the Type1-PDCCH CSS is configured by the network device through system messages and/or high-level parameters.
  • the terminal device After receiving the RAR, the terminal device sends Msg3 on the uplink resource indicated by the RAR.
  • the uplink resource may be located on the uplink BWP associated with the SSB#1.
  • This step supports HARQ retransmission. If the network device does not receive the Msg3 correctly, the network device may schedule the retransmission of the Msg3 using the TC-RNTI scrambled PDCCH. Wherein, the PDCCH may carry DCI format 0_0.
  • the TC-RNTI scrambled PDCCH is transmitted through the Type1-PDCCH CSS on the downlink BWP#2.
  • the network device sends a message 4 (Msg4) to the terminal device through the resources in the Type1-PDCCH CSS on the downlink BWP#2, which includes a contention resolution message, and this step supports HARQ retransmission.
  • Msg4 message 4
  • the network device may use the TC-RNTI scrambled PDCCH to schedule the retransmission of the Msg4.
  • the PDCCH may carry DCI format 1_0.
  • the TC-RNTI scrambled PDCCH is transmitted through the Type1-PDCCH CSS on the downlink BWP#2.
  • the terminal device If the terminal device correctly receives the Msg4 and determines that the Msg4 is the message of the terminal device, the random access process of the terminal device is successful, otherwise the random access process fails.
  • the terminal device needs to initiate a four-step random access procedure (Type-1 random access procedure) from the first step again.
  • the two-step random access procedure (Type-2 random access procedure) may include the following steps:
  • the terminal device sends a message A (MsgA) to the network device on the RO corresponding to the RO#1 on the upstream BWP associated with the SSB#1 and its associated PO, where the MsgA includes the MsgA Preamble and the MsgA PUSCH.
  • MsgA message A
  • the network device sends the PDCCH scrambled by MsgB-RNTI to the terminal device through the resources in the Type1-PDCCH common search space (CSS) on the downlink BWP#2.
  • the PDSCH scheduled by the PDCCH may include The random access response (also referred to as MsgB) corresponding to the MsgA sent by the terminal device. If the network device only detects the MsgA Preamble but does not receive the MsgA PUSCH, the PDSCH scheduled by the PDCCH may include the fallback RAR corresponding to the MsgA Preamble sent by the terminal device.
  • the terminal device uses MsgB-RNTI on the Type1-PDCCH CSS on the downlink BWP#2 to detect the PDCCH, and after detecting the PDCCH, determines whether the successful RAR (success RAR) sent by the network device to itself is included according to the PDSCH scheduled by the PDCCH. Or fallback to RAR. If the terminal device correctly receives the successful RAR, the terminal device feeds back ACK information to the network device, where the ACK information can be transmitted through the uplink BWP associated with the SSB#1, and the random access process of the terminal device is successful.
  • successful RAR uccess RAR
  • the terminal device receives the fallback RAR, after receiving the fallback RAR, the terminal device sends Msg3 on the uplink resource indicated by the fallback RAR, where the uplink resource may be located on the uplink BWP associated with the SSB#1 , the two-step random access procedure (Type-2 random access procedure) falls back to a four-step random access procedure (Type-1 random access procedure). Or if the terminal device does not receive any RAR, the random access procedure fails, and the terminal device needs to initiate a two-step random access procedure (Type-2 random access procedure) from the first step again.
  • Type-2 random access procedure the two-step random access procedure
  • the terminal device can perform initial access according to the first association relationship and/or the second association relationship, so that it can be avoided that the terminal devices on multiple terrestrial cells all access through the same initial downlink BWP
  • the load on the initial downlink BWP caused by the network is too large, so as to avoid increasing the access delay of the terminal device.
  • terminal equipments on multiple terrestrial cells can be supported to initiate random access through different initial uplink BWPs, so as to avoid serious collision of PRACHs on initial uplink BWPs.
  • terminal-side embodiments of the present application are described in detail above with reference to FIG. 5 to FIG. 9 , and the network-side embodiments of the present application are described in detail below with reference to FIG. 10 . It should be understood that the network-side embodiments and the terminal-side embodiments correspond to each other. For similar descriptions, reference may be made to the terminal-side embodiments.
  • FIG. 10 is a schematic flowchart of an initial access method 300 according to an embodiment of the present application. As shown in FIG. 10 , the method 300 may include at least part of the following contents:
  • the network device sends first information to the terminal device, where the first information is used to determine a first association relationship and/or a second association relationship for initial access by the terminal device, where the first association relationship includes an initial downlink BWP and an uplink
  • the association relationship of the BWP includes the association relationship between the public search space set and the downlink BWP; wherein, in the first association relationship, the initial downlink BWP is associated with the initial uplink BWP, and/or, at least one of the initial downlink BWPs is associated with Two SSBs are associated with different uplink BWPs; in the second association relationship, the set of common search spaces associated with the initial downlink BWP is on the initial downlink BWP, or the set of common search spaces associated with at least one SSB on the initial downlink BWP is not This initial downlink BWP.
  • the initial downlink BWP is associated with the initial uplink BWP, wherein,
  • the RO associated with the SSB on the initial downlink BWP is on the initial uplink BWP; and/or,
  • the RO and PO associated with the SSB on the initial downlink BWP are on the initial uplink BWP.
  • At least two SSBs on the initial downlink BWP are associated with different uplink BWPs, including:
  • the first SSB on the initial downlink BWP is associated with the first uplink BWP, wherein the RO associated with the first SSB is on the first uplink BWP, and/or the RO and PO associated with the first SSB are on the first uplink on BWP;
  • the second SSB on the initial downlink BWP is associated with the second uplink BWP, wherein the RO associated with the second SSB is on the second uplink BWP, and/or the RO and PO associated with the second SSB are on the second uplink on BWP.
  • the common search space set associated with at least one SSB on the initial downlink BWP is not on the initial downlink BWP, including:
  • the first SSB on the initial downlink BWP is associated with the first downlink BWP, wherein the set of common search spaces associated with the first SSB is on the first downlink BWP, and the first downlink BWP is different from the initial downlink BWP downlink BWP.
  • the set of common search spaces includes at least one of the following:
  • Type0-PDCCH CSS set Type0A-PDCCH CSS set, Type1-PDCCH CSS set, Type2-PDCCH CSS set.
  • the first information is transmitted through at least one of system messages, RRC signaling, MAC CE, and DCI.
  • the first information includes first configuration information, and the first association relationship is determined based on the first configuration information.
  • the first configuration information includes random access configuration information, wherein the random access configuration information includes uplink BWP information associated with the random access configuration, and/or, the random access configuration associated SSB index.
  • the first information includes second configuration information
  • the second association relationship is determined based on the second configuration information
  • the second configuration information includes PDCCH common configuration information
  • the PDCCH common configuration information includes downlink BWP information corresponding to the PDCCH common configuration, and/or an SSB index corresponding to the PDCCH common configuration, wherein the PDCCH
  • the public configuration includes the configuration of the set of public search spaces.
  • the initial downlink BWP is associated with the initial uplink BWP, and the network device may perform at least one of the following situations:
  • the network device detects the first PRACH corresponding to message 1 (Msg1) through the first RO on the initial uplink BWP, where the first RO is associated with the first SSB, and the first RO is associated with the first SSB.
  • SSB is the SSB sent by the network device on the initial downlink BWP;
  • the network device detects the first PRACH corresponding to the message A (MsgA) through the first RO on the initial uplink BWP, and detects the message A (MsgA) through the first PO on the initial uplink BWP. ) corresponding first PUSCH, wherein the first RO is associated with the first SSB, the first PO is associated with the first RO, and the first SSB is the SSB sent by the network device on the initial downlink BWP;
  • the network device detects the first PRACH corresponding to message A (MsgA) through the first RO on the initial uplink BWP, where the first RO is associated with the first SSB, and the first RO is associated with the first SSB.
  • the SSB is the SSB sent by the network device on the initial downlink BWP.
  • At least two SSBs on the initial downlink BWP are associated with different uplink BWPs, including: the first SSB on the initial downlink BWP is associated with a first uplink BWP, wherein the The first SSB is the SSB sent by the network device on the initial downlink BWP; the network device may perform at least one of the following situations:
  • the network device detects the first PRACH corresponding to message 1 (Msg1) through the first RO on the first uplink BWP;
  • the network device detects the first PRACH corresponding to the message A through the first RO on the first upstream BWP, and detects the message A (MsgA) through the first PO on the first upstream BWP. a corresponding first PUSCH, wherein the first PO is associated with the first RO;
  • the network device detects the first PRACH corresponding to the message A (MsgA) through the first RO on the first uplink BWP.
  • At least two SSBs on the initial downlink BWP are associated with different uplink BWPs, including: the first SSB on the initial downlink BWP is associated with a first uplink BWP, wherein the The first SSB is the SSB sent by the network device on the initial downlink BWP; the network device may perform at least one of the following situations:
  • the network device receives the first PUSCH corresponding to the message 3 (Msg3) through the first PUSCH resource on the first uplink BWP, where the first PUSCH resource is the network device through the message 2 (Msg2) indicated by the uplink grant information in the RAR corresponding to;
  • the network device receives the first PUCCH corresponding to message B (MsgB) through the first physical uplink control channel PUCCH resource on the first uplink BWP, where the first PUCCH resource is the The network device is indicated by the RAR corresponding to the message B (MsgB);
  • the network device receives the first PUSCH corresponding to message B (MsgB) through the first PUSCH resource on the first uplink BWP, where the first PUSCH resource is the first PUSCH resource that the network device uses through the Indicated by the uplink grant information in the fallback RAR corresponding to message B (MsgB).
  • the set of common search spaces associated with the initial downlink BWP is on the initial downlink BWP, and the network device may perform at least one of the following situations:
  • the common search space set includes a Type0-PDCCH CSS set, and the network device sends the SI-RNTI scrambled PDCCH through the resources in the Type0-PDCCH CSS set on the initial downlink BWP;
  • the common search space set includes a Type0A-PDCCH CSS set, and the network device sends the SI-RNTI scrambled PDCCH through the resources in the Type0A-PDCCH CSS set on the initial downlink BWP;
  • the common search space set includes a Type1-PDCCH CSS set, and the network device sends RA-RNTI, MsgB-RNTI, or TC-RNTI scrambled PDCCH through resources in the Type1-PDCCH CSS set on the initial downlink BWP;
  • the common search space set includes a Type2-PDCCH CSS set, and the network device sends the P-RNTI scrambled PDCCH through resources in the Type2-PDCCH CSS set on the initial downlink BWP.
  • the set of common search spaces associated with at least one SSB on the initial downlink BWP is not on the initial downlink BWP, including: a common search space associated with the first SSB on the initial downlink BWP
  • the search space is set in the first downlink BWP, the first downlink BWP and the initial downlink BWP are different downlink BWPs, wherein the first SSB is the SSB sent by the network device on the initial downlink BWP; the network device At least one of the following can be done:
  • the common search space set includes a Type0-PDCCH CSS set, and the network device sends the SI-RNTI scrambled PDCCH through resources in the Type0-PDCCH CSS set on the first downlink BWP;
  • the common search space set includes a Type0A-PDCCH CSS set, and the network device sends the SI-RNTI scrambled PDCCH through the resources in the Type0A-PDCCH CSS set on the first downlink BWP;
  • the common search space set includes a Type1-PDCCH CSS set, and the network device sends RA-RNTI, MsgB-RNTI, or TC-RNTI scrambled PDCCH through resources in the Type1-PDCCH CSS set on the first downlink BWP ;
  • the common search space set includes a Type2-PDCCH CSS set, and the network device sends the P-RNTI scrambled PDCCH through resources in the Type2-PDCCH CSS set on the first downlink BWP.
  • the network device may indicate the first association relationship and/or the second association relationship to the terminal device, and the terminal device may perform initial access according to the first association relationship and/or the second association relationship, thereby , it can avoid too much load on the initial downlink BWP caused by the terminal equipment on multiple terrestrial cells accessing the network through the same initial downlink BWP, thereby avoiding increasing the access delay of the terminal equipment.
  • terminal equipments on multiple terrestrial cells can be supported to initiate random access through different initial uplink BWPs, so as to avoid serious collision of PRACHs on initial uplink BWPs.
  • FIG. 11 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the processing unit 410 is configured to perform initial access according to a first association relationship and/or a second association relationship, the first association relationship includes the association relationship between the initial downlink bandwidth part BWP and the uplink BWP, and the second association relationship includes a common search space The association relationship between the set and the downlink BWP; among them,
  • the initial downlink BWP is associated with the initial uplink BWP, and/or at least two synchronization signal blocks SSB on the initial downlink BWP are associated with different uplink BWPs;
  • the set of common search spaces associated with the initial downlink BWP is on the initial downlink BWP, or the set of common search spaces associated with at least one SSB on the initial downlink BWP is not on the initial downlink BWP.
  • the initial downlink BWP is associated with the initial uplink BWP, wherein,
  • the random access transmission opportunity RO associated with the SSB on the initial downlink BWP is on the initial uplink BWP; and/or,
  • the SSB-associated RO and the physical uplink shared channel transmission opportunity PO on the initial downlink BWP are on the initial uplink BWP.
  • At least two SSBs on the initial downlink BWP are associated with different uplink BWPs, including:
  • the first SSB on the initial downlink BWP is associated with the first uplink BWP, wherein the RO associated with the first SSB is on the first uplink BWP, and/or the RO and PO associated with the first SSB are on the first uplink on BWP;
  • the second SSB on the initial downlink BWP is associated with the second uplink BWP, wherein the RO associated with the second SSB is on the second uplink BWP, and/or the RO and PO associated with the second SSB are on the second uplink on BWP.
  • the common search space set associated with at least one SSB on the initial downlink BWP is not on the initial downlink BWP, including:
  • the first SSB on the initial downlink BWP is associated with the first downlink BWP, wherein the set of common search spaces associated with the first SSB is on the first downlink BWP, and the first downlink BWP is different from the initial downlink BWP downlink BWP.
  • the set of common search spaces includes at least one of the following:
  • Type 0 physical downlink control channel common search space Type0-PDCCH CSS set, Type0A-PDCCH CSS set, Type1-PDCCH CSS set, Type2-PDCCH CSS set.
  • the first association relationship is predefined, or the first association relationship is determined based on first configuration information sent by the network device, where the first configuration information At least one of command, medium access control control element MAC CE and downlink control information DCI is transmitted.
  • the first configuration information includes random access configuration information, wherein the random access configuration information includes uplink BWP information associated with the random access configuration, and/or, the random access configuration associated SSB index.
  • the second association relationship is predefined, or the second association relationship is determined based on second configuration information sent by the network device, wherein the second configuration information is obtained through system messages, RRC signaling, MAC At least one of CE and DCI is transmitted.
  • the second configuration information includes PDCCH common configuration information
  • the PDCCH common configuration information includes downlink BWP information corresponding to the PDCCH common configuration, and/or an SSB index corresponding to the PDCCH common configuration, wherein the PDCCH
  • the public configuration includes the configuration of the set of public search spaces.
  • the initial downlink BWP is associated with the initial uplink BWP
  • the processing unit 410 is specifically used for:
  • the first physical random access channel PRACH corresponding to message 1 is sent through the first RO on the initial uplink BWP, where the first RO is associated with the first SSB, and the first physical random access channel PRACH is sent through the first RO on the initial uplink BWP.
  • SSB is the SSB detected by the terminal device on the initial downlink BWP; or,
  • the first PRACH corresponding to the message A is sent through the first RO on the initial uplink BWP, and the first PUSCH corresponding to the message A is sent through the first PO on the initial uplink BWP, wherein,
  • the first RO is associated with the first SSB
  • the first PO is associated with the first RO
  • the first SSB is the SSB detected by the terminal device on the initial downlink BWP;
  • the first PRACH corresponding to the message A is sent through the first RO on the initial uplink BWP, where the first RO is associated with the first SSB, and the first SSB is the terminal device in the SSB detected on this initial downlink BWP.
  • At least two SSBs on the initial downlink BWP are associated with different uplink BWPs, including: the first SSB on the initial downlink BWP is associated with a first uplink BWP, wherein the The first SSB is the SSB detected by the terminal device on the initial downlink BWP;
  • the processing unit 410 is specifically used for:
  • the first physical random access channel PRACH corresponding to message 1 is sent through the first RO on the first uplink BWP; or,
  • the first PRACH corresponding to the message A is sent through the first RO on the first uplink BWP, and the first PUSCH corresponding to the message A is sent through the first PO on the first uplink BWP, wherein, the first PO is associated with the first RO; or,
  • the first PRACH corresponding to the message A is sent through the first RO on the first uplink BWP.
  • At least two SSBs on the initial downlink BWP are associated with different uplink BWPs, including: the first SSB on the initial downlink BWP is associated with a first uplink BWP, wherein the The first SSB is the SSB detected by the terminal device on the initial downlink BWP;
  • the processing unit 410 is specifically used for:
  • the first PUSCH corresponding to message 3 is sent through the first PUSCH resource on the first uplink BWP, where the first PUSCH resource is the random access response RAR corresponding to message 2. Indicated by the uplink authorization information; or,
  • the first PUCCH corresponding to the message B is sent through the first physical uplink control channel PUCCH resource on the first uplink BWP, where the first PUCCH includes response information corresponding to the message B ;or,
  • the first PUSCH corresponding to the message B is sent through the first PUSCH resource on the first uplink BWP, where the first PUSCH resource is the uplink in the fallback RAR corresponding to the message B as indicated by the authorization information.
  • the set of common search spaces associated with the initial downlink BWP is on the initial downlink BWP
  • the processing unit 410 performs initial access according to the first association relationship and/or the second association relationship, including at least one of the following situations:
  • the common search space set includes a Type0-PDCCH CSS set, and the processing unit 410 detects PDCCH candidates in the Type0-PDCCH CSS set on the initial downlink BWP using the system message-wireless network temporary identifier SI-RNTI;
  • the common search space set includes a Type0A-PDCCH CSS set, and the processing unit 410 uses the SI-RNTI to detect PDCCH candidates in the Type0A-PDCCH CSS set on the initial downlink BWP;
  • the common search space set includes a Type1-PDCCH CSS set, and the processing unit 410 uses random access-radio network temporary identifier RA-RNTI, message B-radio network temporary identifier MsgB-RNTI, or temporary cell-radio network temporary identifier TC- RNTI detects PDCCH candidates in the Type1-PDCCH CSS set on the initial downlink BWP;
  • RA-RNTI random access-radio network temporary identifier
  • MsgB-RNTI message B-radio network temporary identifier
  • TC- RNTI temporary cell-radio network temporary identifier
  • the common search space set includes a Type2-PDCCH CSS set, and the processing unit 410 detects PDCCH candidates in the Type2-PDCCH CSS set on the initial downlink BWP using the paging-radio network temporary identifier P-RNTI.
  • the set of common search spaces associated with at least one SSB on the initial downlink BWP is not on the initial downlink BWP, including: a common search space associated with the first SSB on the initial downlink BWP
  • the search space is set in the first downlink BWP, the first downlink BWP and the initial downlink BWP are different downlink BWPs, and the first SSB is the SSB detected by the terminal device on the initial downlink BWP;
  • the processing unit 410 performs initial access according to the first association relationship and/or the second association relationship, including at least one of the following situations:
  • the common search space set includes a Type0-PDCCH CSS set, and the processing unit 410 uses the SI-RNTI to detect PDCCH candidates in the Type0-PDCCH CSS set on the first downlink BWP;
  • the common search space set includes a Type0A-PDCCH CSS set, and the processing unit 410 uses the SI-RNTI to detect PDCCH candidates in the Type0A-PDCCH CSS set on the first downlink BWP;
  • the common search space set includes a Type1-PDCCH CSS set, and the processing unit 410 uses RA-RNTI, MsgB-RNTI, or TC-RNTI to detect PDCCH candidates in the Type1-PDCCH CSS set on the first downlink BWP;
  • the common search space set includes a Type2-PDCCH CSS set, and the processing unit 410 uses the P-RNTI to detect PDCCH candidates in the Type2-PDCCH CSS set on the first downlink BWP.
  • the aforementioned processing units may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are respectively for realizing the method shown in FIG. 5 .
  • the corresponding process of the terminal device in 200 is not repeated here for brevity.
  • FIG. 12 shows a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 includes:
  • a communication unit 510 configured to send first information to a terminal device, where the first information is used to determine a first association relationship and/or a second association relationship for initial access by the terminal device, where the first association relationship includes an initial downlink bandwidth
  • the initial downlink BWP is associated with the initial uplink BWP, and/or at least two synchronization signal blocks SSB on the initial downlink BWP are associated with different uplink BWPs;
  • the set of common search spaces associated with the initial downlink BWP is on the initial downlink BWP, or the set of common search spaces associated with at least one SSB on the initial downlink BWP is not on the initial downlink BWP.
  • the initial downlink BWP is associated with the initial uplink BWP, wherein,
  • the random access transmission opportunity RO associated with the SSB on the initial downlink BWP is on the initial uplink BWP; and/or,
  • the SSB-associated RO and the physical uplink shared channel transmission opportunity PO on the initial downlink BWP are on the initial uplink BWP.
  • At least two SSBs on the initial downlink BWP are associated with different uplink BWPs, including:
  • the first SSB on the initial downlink BWP is associated with the first uplink BWP, wherein the RO associated with the first SSB is on the first uplink BWP, and/or the RO and PO associated with the first SSB are on the first uplink on BWP;
  • the second SSB on the initial downlink BWP is associated with the second uplink BWP, wherein the RO associated with the second SSB is on the second uplink BWP, and/or the RO and PO associated with the second SSB are on the second uplink on BWP.
  • the common search space set associated with at least one SSB on the initial downlink BWP is not on the initial downlink BWP, including:
  • the first SSB on the initial downlink BWP is associated with the first downlink BWP, wherein the set of common search spaces associated with the first SSB is on the first downlink BWP, and the first downlink BWP is different from the initial downlink BWP downlink BWP.
  • the set of common search spaces includes at least one of the following:
  • Type 0 physical downlink control channel common search space Type0-PDCCH CSS set, Type0A-PDCCH CSS set, Type1-PDCCH CSS set, Type2-PDCCH CSS set.
  • the first information is transmitted through at least one of system messages, radio resource control RRC signaling, medium access control control elements MAC CE, and downlink control information DCI.
  • the first information includes first configuration information, and the first association relationship is determined based on the first configuration information.
  • the first configuration information includes random access configuration information, wherein the random access configuration information includes uplink BWP information associated with the random access configuration, and/or, the random access configuration associated SSB index.
  • the first information includes second configuration information
  • the second association relationship is determined based on the second configuration information
  • the second configuration information includes PDCCH common configuration information
  • the PDCCH common configuration information includes downlink BWP information corresponding to the PDCCH common configuration, and/or an SSB index corresponding to the PDCCH common configuration, wherein the PDCCH
  • the public configuration includes the configuration of the set of public search spaces.
  • the initial downlink BWP is associated with the initial uplink BWP
  • the network device further includes a processing unit 520, wherein the processing unit 520 is configured to perform at least one of the following situations:
  • the processing unit 520 detects the first physical random access channel PRACH corresponding to message 1 through the first RO on the initial uplink BWP, where the first RO is associated with the first SSB , the first SSB is the SSB sent by the network device on the initial downlink BWP; or,
  • the processing unit 520 detects the first PRACH corresponding to the message A through the first RO on the initial uplink BWP, and detects the first PRACH corresponding to the message A through the first PO on the initial uplink BWP.
  • PUSCH where the first RO is associated with the first SSB, the first PO is associated with the first RO, and the first SSB is the SSB sent by the network device on the initial downlink BWP; or,
  • the processing unit 520 detects the first PRACH corresponding to the message A through the first RO on the initial uplink BWP, where the first RO is associated with the first SSB, and the first SSB is The SSB sent by the network device on the initial downlink BWP.
  • At least two SSBs on the initial downlink BWP are associated with different uplink BWPs, including: the first SSB on the initial downlink BWP is associated with a first uplink BWP, wherein the The first SSB is the SSB sent by the network device on the initial downlink BWP;
  • the network device further includes a processing unit 520, wherein the processing unit 520 is configured to perform at least one of the following situations:
  • the processing unit 520 detects the first physical random access channel PRACH corresponding to message 1 through the first RO on the first uplink BWP;
  • the processing unit 520 detects the first PRACH corresponding to the message A through the first RO on the first uplink BWP, and detects the first PRACH corresponding to the message A through the first PO on the first uplink BWP.
  • a first PUSCH wherein the first PO is associated with the first RO;
  • the processing unit 520 detects the first PRACH corresponding to the message A through the first RO on the first uplink BWP.
  • At least two SSBs on the initial downlink BWP are associated with different uplink BWPs, including: the first SSB on the initial downlink BWP is associated with a first uplink BWP, wherein the The first SSB is the SSB sent by the network device on the initial downlink BWP;
  • the network device further includes a processing unit 520, wherein the processing unit 520 is configured to perform at least one of the following situations:
  • the processing unit 520 receives the first PUSCH corresponding to message 3 through the first PUSCH resource on the first uplink BWP, where the first PUSCH resource is the network device corresponding to the message 2 through the first PUSCH resource Indicated by the uplink grant information in the RAR of the random access response;
  • the processing unit 520 receives the first PUCCH corresponding to message B through the first physical uplink control channel PUCCH resource on the first uplink BWP, where the first PUCCH resource is the network device indicated by the RAR corresponding to the message B;
  • the processing unit 520 receives the first PUSCH corresponding to the message B through the first PUSCH resource on the first uplink BWP, where the first PUSCH resource is the network device through the message B Indicated by the uplink grant information in the corresponding fallback RAR.
  • the set of common search spaces associated with the initial downlink BWP is on the initial downlink BWP
  • the network device further includes a processing unit 520, wherein the processing unit 520 is configured to perform at least one of the following situations:
  • the common search space set includes a Type0-PDCCH CSS set, and the processing unit 520 sends the PDCCH scrambled by the system message-wireless network temporary identifier SI-RNTI through the resources in the Type0-PDCCH CSS set on the initial downlink BWP;
  • the common search space set includes a Type0A-PDCCH CSS set, and the processing unit 520 sends the SI-RNTI scrambled PDCCH through the resources in the Type0A-PDCCH CSS set on the initial downlink BWP;
  • the common search space set includes a Type1-PDCCH CSS set, and the processing unit 520 sends random access-radio network temporary identifier RA-RNTI, message B-radio network through the resources in the Type1-PDCCH CSS set on the initial downlink BWP Temporary identifier MsgB-RNTI, or temporary cell-wireless network temporary identifier TC-RNTI scrambled PDCCH;
  • the common search space set includes the Type2-PDCCH CSS set, and the processing unit 520 sends the PDCCH scrambled by the P-Radio Network Temporary Identity P-RNTI through the resources in the Type2-PDCCH CSS set on the initial downlink BWP.
  • the set of common search spaces associated with at least one SSB on the initial downlink BWP is not on the initial downlink BWP, including: a common search space associated with the first SSB on the initial downlink BWP
  • the search space is set in the first downlink BWP, the first downlink BWP and the initial downlink BWP are different downlink BWPs, and the first SSB is the SSB sent by the network device on the initial downlink BWP;
  • the network device further includes a processing unit 520, wherein the processing unit 520 is configured to perform at least one of the following situations:
  • the common search space set includes a Type0-PDCCH CSS set, and the processing unit 520 sends the SI-RNTI scrambled PDCCH through the resources in the Type0-PDCCH CSS set on the first downlink BWP;
  • the common search space set includes a Type0A-PDCCH CSS set, and the processing unit 520 sends the SI-RNTI scrambled PDCCH through the resources in the Type0A-PDCCH CSS set on the first downlink BWP;
  • the common search space set includes a Type1-PDCCH CSS set, and the processing unit 520 sends RA-RNTI, MsgB-RNTI, or TC-RNTI scrambled through resources in the Type1-PDCCH CSS set on the first downlink BWP PDCCH;
  • the common search space set includes a Type2-PDCCH CSS set, and the processing unit 520 sends the P-RNTI scrambled PDCCH through resources in the Type2-PDCCH CSS set on the first downlink BWP.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are respectively for realizing the method shown in FIG. 10 .
  • the corresponding process of the network device in 300 is not repeated here for brevity.
  • FIG. 13 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 13 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may also include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or Receive information or data sent by other devices.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 600 may specifically be the network device of the embodiments of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the communication device 600 may specifically be the terminal device of the embodiments of the present application, and the communication device 600 may implement the corresponding processes implemented by the terminal device in each method of the embodiments of the present application. Repeat.
  • FIG. 14 is a schematic structural diagram of an apparatus according to an embodiment of the present application.
  • the apparatus 700 shown in FIG. 14 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the apparatus 700 may also include a memory 720 .
  • the processor 710 may call and run a computer program from the memory 720 to implement the methods in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the apparatus 700 may also include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the apparatus 700 may also include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the apparatus may be applied to the network equipment in the embodiments of the present application, and the apparatus may implement the corresponding processes implemented by the network equipment in each method of the embodiments of the present application, which is not repeated here for brevity.
  • the apparatus can be applied to the terminal equipment in the embodiments of the present application, and the apparatus can implement the corresponding processes implemented by the terminal equipment in each method of the embodiments of the present application, which is not repeated here for brevity.
  • the devices mentioned in the embodiments of the present application may also be chips.
  • it can be a system-on-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 15 is a schematic block diagram of a communication system 800 provided by an embodiment of the present application. As shown in FIG. 15 , the communication system 800 includes a terminal device 810 and a network device 820 .
  • the terminal device 810 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium may be applied to the network device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For brevity, It is not repeated here.
  • the computer-readable storage medium may be applied to the terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the terminal device in each method of the embodiments of the present application. For brevity, It is not repeated here.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application.
  • the computer program product may be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in each method of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in each method of the embodiments of the present application.
  • the embodiments of the present application also provide a computer program.
  • the computer program may be applied to the network device in the embodiments of the present application, and when the computer program runs on the computer, the computer executes the corresponding processes implemented by the network device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the computer program may be applied to the terminal device in the embodiments of the present application, and when the computer program runs on the computer, the computer executes the corresponding processes implemented by the terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种初始接入方法、终端设备和网络设备,可以避免终端设备的接入时延,以及避免初始上行BWP上的PRACH碰撞。该初始接入方法包括:终端设备根据第一关联关系和/或第二关联关系进行初始接入,该第一关联关系包括初始下行BWP与上行BWP的关联关系,该第二关联关系包括公共搜索空间集合与下行BWP的关联关系;其中,在该第一关联关系中,初始下行BWP关联初始上行BWP,和/或,初始下行BWP上的至少两个SSB关联不同的上行BWP;在该第二关联关系中,初始下行BWP关联的公共搜索空间集合在该初始下行BWP上,或者,初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上。

Description

初始接入方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种初始接入方法、终端设备和网络设备。
背景技术
第五代移动通信技术新空口(5-Generation New Radio,5G NR)***定义了包括卫星网络在内的非地面网络(Non-terrestrial networks,NTN)***部署场景,借助卫星的广域覆盖能力,NTN***可以实现5G NR业务的连续性。然而,在NTN场景中,如何进行初始接入,是一个亟待解决的问题。
发明内容
本申请实施例提供了一种初始接入方法、终端设备和网络设备,可以避免多个地面小区上的终端设备都通过相同的初始下行BWP接入网络导致的初始下行BWP上的负载太大,从而避免增加终端设备的接入时延。另外,可以支持多个地面小区上的终端设备通过不同的初始上行BWP发起随机接入,从而避免初始上行BWP上的PRACH严重碰撞。
第一方面,提供了一种初始接入方法,该方法包括:
终端设备根据第一关联关系和/或第二关联关系进行初始接入,该第一关联关系包括初始下行BWP与上行BWP的关联关系,该第二关联关系包括公共搜索空间集合与下行BWP的关联关系;
其中,
在该第一关联关系中,初始下行BWP关联初始上行BWP,和/或,初始下行BWP上的至少两个SSB关联不同的上行BWP;
在该第二关联关系中,初始下行BWP关联的公共搜索空间集合在该初始下行BWP上,或者,初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上。
第二方面,提供了一种初始接入方法,该方法包括:
网络设备向终端设备发送第一信息,该第一信息用于确定该终端设备进行初始接入的第一关联关系和/或第二关联关系,该第一关联关系包括初始下行BWP与上行BWP的关联关系,该第二关联关系包括公共搜索空间集合与下行BWP的关联关系;其中,
在该第一关联关系中,初始下行BWP关联初始上行BWP,和/或,初始下行BWP上的至少两个SSB关联不同的上行BWP;
在该第二关联关系中,初始下行BWP关联的公共搜索空间集合在该初始下行BWP上,或者,初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上。
第三方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面中的方法。
具体地,该网络设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
通过上述技术方案,终端设备可以根据第一关联关系和/或第二关联关系进行初始接入,从而,可以避免多个地面小区上的终端设备都通过相同的初始下行BWP接入网络导致的初始下行BWP上的负载太大,从而避免增加终端设备的接入时延。另外,可以支持多个地面小区上的终端设备通过不同的初始上行BWP发起随机接入,从而避免初始上行BWP上的PRACH严重碰撞。
附图说明
图1A-图1C是本申请实施例提供的一种应用场景的示意性图。
图2是本申请提供的一种SSB与RO的映射关系的示意性图。
图3是本申请提供的一种NTN网络的波束布网的示意性图。
图4是本申请提供的另一种NTN网络的波束布网的示意性图。
图5是根据本申请实施例提供的一种初始接入方法的示意性流程图。
图6是根据本申请实施例提供的一种第一关联关系的示意性图。
图7是根据本申请实施例提供的另一种第一关联关系的示意性图。
图8是根据本申请实施例提供的一种第二关联关系的示意性图。
图9是根据本申请实施例提供的另一种第二关联关系的示意性图。
图10是根据本申请实施例提供的另一种初始接入方法的示意性流程图。
图11是根据本申请实施例提供的一种终端设备的示意性框图。
图12是根据本申请实施例提供的一种网络设备的示意性框图。
图13是根据本申请实施例提供的一种通信设备的示意性框图。
图14是根据本申请实施例提供的一种装置的示意性框图。
图15是根据本申请实施例提供的一种通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新空口(New Radio,NR)***、NR***的演进***、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)***、非地面通信网络(Non-Terrestrial Networks,NTN)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信***。
在一些实施例中,本申请实施例中的通信***可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
在一些实施例中,本申请实施例中的通信***可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信***也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
在一些实施例中,本申请实施例中的通信***可以应用于FR1频段(对应频段范围410MHz到7.125GHz),也可以应用于FR2频段(对应频段范围24.25GHz到52.6GHz),还可以应用于新的频段例如对应52.6GHz到71GHz频段范围的高频频段。
在一些实施例中,本申请实施例可应用于非地面通信网络(Non-Terrestrial Networks,NTN)***,也可应用于地面通信网络(Terrestrial Networks,TN)***。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信***例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。本申请实施例所涉及的终端设备还可以称为终端、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,图1A为本申请实施例提供的一种通信***的架构示意图。如图1A所示,通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1A示例性地示出了一个网络设备和两个终端设备,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
示例性的,图1B为本申请实施例提供的另一种通信***的架构示意图。请参见图1B,包括终端设备1101和卫星1102,终端设备1101和卫星1102之间可以进行无线通信。终端设备1101和卫星1102之间所形成的网络还可以称为NTN。在图1B所示的通信***的架构中,卫星1102可以具有基站的功能,终端设备1101和卫星1102之间可以直接通信。在***架构下,可以将卫星1102称为网络设备。可选地,通信***中可以包括多个网络设备1102,并且每个网络设备1102的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
示例性的,图1C为本申请实施例提供的另一种通信***的架构示意图。请参见图1C,包括终端设备1201、卫星1202和基站1203,终端设备1201和卫星1202之间可以进行无线通信,卫星1202与基站1203之间可以通信。终端设备1201、卫星1202和基站1203之间所形成的网络还可以称为NTN。在图1C所示的通信***的架构中,卫星1202可以不具有基站的功能,终端设备1201和基站1203之间的通信需要通过卫星1202的中转。在该种***架构下,可以将基站1203称为网络设备。可选地,通信***中可以包括多个网络设备1203,并且每个网络设备1203的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1A-图1C只是以示例的形式示意本申请所适用的***,当然,本申请实施例所示的方法还可以适用于其它***,例如,5G通信***、LTE通信***等,本申请实施例对此不作具体限定。
可选地,图1A-图1C所示的无线通信***还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1A示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信***中的相关协议,本申请对此不做限定。
为便于更好的理解本申请实施例,对本申请相关的NTN进行说明。
NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。
低轨道卫星(LEO)高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端设备的发射功率要求不高。
地球同步轨道(GEO)卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信***的***容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
为便于更好的理解本申请实施例,对本申请相关的NR***中的初始接入过程进行说明。
在NR***中,终端设备的初始接入过程可以通过检测同步信号块(Synchronization Signal/PBCH Block,SSB或SS/PBCH block)突发集合来完成。一个SSB突发集合中可以包括一个或多个SSB,其中一个SSB在时域上包括4个符号。一个SSB突发集合应在一个半帧(5ms)内完成传输。
对于频率范围1(Frequency range 1,FR1)频段,一个SSB突发集合中最多有8个SSB,最多需要3比特(bit)指示这8个SSB的索引,这3bit通过物理广播信道(Physical Broadcast Channel,PBCH)的解调参考信号(Demodulation Reference Signal,DMRS)序列隐式承载,共有8个不同的PBCH的DMRS序列,分别对应8个不同的SSB索引。对于频率范围2(Frequency range 2,FR2)频段,最多可配置64个SSB,需要用6bit指示这64个SSB的索引,这6bit中的低3bit还是通过PBCH的DMRS序列承载的,额外的高3bit是通过PBCH的负载内容直接指示的。
SSB索引的一项主要功能是让UE获取***时序信息,除此之外,SSB索引还有另外一项功能,即用于指示SSB之间的准共址(Quasi co-location,QCL)关系。信号之间的QCL关系用于描述其大尺度参数特征相似程度,如果两个信号之间是QCL的关系,则可认为这两个信号的大尺度参数相似。具体到SSB来说,在5G NR***中不同波束承载的SSB构成一个SSB突发集合,不同SSB索引对应了突发集合内不同SSB时域位置信息的同时,也对应了特定的SSB传输波束信息。具有相同SSB索引的SSB之间可认为具有QCL关系,终端设备可假设网络设备采用了相同的波束用于传输这些SSB;不同SSB索引对应的SSB之间不认为存在QCL关系,因为它们可能来自于网络设备的不同的传输波束,经历了不同的信道传输特征。
终端设备在初始接入过程中,通过预定义的SSB可能的时频位置,尝试搜索SSB,通过检测到的SSB获得时间和频率同步、无线帧定时以及小区标识(ID)。进一步终端设备还可根据收到的小区的***消息获取随机接入过程中的资源配置。随机接入是初始接入过程中非常重要的过程,随机接入过程除了要完成建立无线资源控制(Radio Resource Control,RRC)连接、维护上行同步、小区切换等功能之外,还承担波束管理、***消息的请求等功能。
随机接入过程中的资源配置包括物理随机接入信道(Physical Random Access Channel,PRACH)资源配置,也称为PRACH传输机会(PRACH Occasion,RO)。RO是承载随机接入前导序列(Preamble)的时频资源。如果支持两步随机接入过程传输,随机接入过程中的资源配置还包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源配置,也称为PUSCH传输机会(PUSCH Occasion,PO)。其中,两步随机接入过程中的消息A(message A,MsgA)包括MsgA Preamble和MsgA PUSCH,RO是用于承载MsgA Preamble的时频资源,PO是用于承载MsgA PUSCH的时频资源。
NR***的特点是支持下行多波束。在网络设备与终端设备通信之前,网络设备需要知道终端设备所在的波束进而在后续的数据传输过程中设定合适的波束方向。由于随机接入过程中的PRACH是终端设备向网络设备发送的第一条信息,因此上报所述终端设备所在的波束的功能可以由PRACH承载。具体地,可以通过SSB与RO之间的映射关系来确定。其中,在NR***中,支持以下多种SSB与RO之间映射的比例关系:1)一对一映射;2)多对一映射;3)一对多映射。图2给出了SSB与RO之间的映射关系的示意图,其中,SSB在下行的初始带宽部分(Band Width Part,BWP)(即下行BWP#0)上,RO在上行的初始BWP(即上行BWP#0)上。相同图案的SSB与RO表示具有映射关系。
在终端设备发起随机接入之前,终端设备对小区的信号质量以及小区中的各个SSB的信号强度会进行测量评估。在SSB信号检测强度超过门限的情况下,确定信号最强或较强的SSB例如终端设备确定SSB#1为信号最强的SSB后,终端设备根据SSB与RO之间的映射关系确定该SSB#1对应的PRACH传输机会包括RO#1,并在该RO#1上发送Preamble。若网络设备成功接收该Preamble,则网络设备基于成功接收该Preamble的资源信息可以获知该终端设备选择的SSB,例如网络设备根据关联关系可以确定该Preamble与该SSB#1关联,从而可以根据该SSB#1确定后续通信对应的波束信息。
四步随机接入过程(Type-1随机接入过程)可以包括如下步骤:
第一步,终端设备在初始上行BWP上的PRACH资源上向网络设备发送随机接入前导序列(Preamble,也称为Msg 1)。
第二步,网络设备在检测到Msg1后通过初始下行BWP上的类型(Type)1-PDCCH公共搜索空间(Common Search Space,CSS)中的资源向终端设备发送随机接入无线网络临时标识(Random Access Radio Network Temporary Identity,RA-RNTI)加扰的物理下行控制信道(Physical Downlink Control Channel,PDCCH),该PDCCH调度的PDSCH中可以包括该终端设备发送的Preamble对应的随机接入响应(RAR,也称为Msg2)。相应地,终端设备在初始下行BWP上的Type1-PDCCH CSS上使用RA-RNTI检测PDCCH,并在检测到PDCCH后根据该PDCCH调度的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)判定是否包括网络设备发送给自己的随机接入响应(Random Access Response,RAR)。RAR中可以包括消息3(Msg3)的上行授权、定时提前命令(TA command)、临时小区无线网络临时标识(Temporary Cell Radio Network Temporary Identity,TC-RNTI)等信息。其中,Type1-PDCCH CSS是网络设备通过***消息和/或高层参数配置的。
第三步,终端设备在接收到RAR后,在RAR指示的上行资源上发送Msg3。该步骤支持混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)重传。如果网络设备没有正确接收Msg3,则网络设备可以使用TC-RNTI扰码的PDCCH来调度Msg3的重传。其中,该PDCCH中可以承载对应下行控制信息(Downlink Control Information,DCI)格式0_0的DCI。
第四步,网络设备向终端设备发送消息4(Msg4),其中包括竞争解决消息,该步骤支持HARQ重传。如果终端设备没有正确接收Msg4,则网络设备可以使用TC-RNTI扰码的PDCCH来调度Msg4的重传。其中,该PDCCH中可 以承载对应DCI格式1_0的DCI。如果终端设备正确接收Msg4,且确定该Msg4是该终端设备的消息,则该终端设备的随机接入过程成功,否则随机接入过程失败。终端设备需要再次从第一步开始发起随机接入过程。
两步随机接入过程(Type-2随机接入过程)可以包括如下步骤:
第一步,终端设备在初始上行BWP上的RO和PO上向网络设备发送消息A(MsgA),其中,MsgA包括MsgA Preamble和MsgA PUSCH。
第二步,网络设备在检测到MsgA后通过初始下行BWP上的Type1-PDCCH公共搜索空间(CSS)中的资源向终端设备发送MsgB-RNTI加扰的PDCCH,该PDCCH调度的PDSCH中可以包括该终端设备发送的MsgA对应的随机接入响应(也称为MsgB)。如果网络设备只检测到MsgA Preamble,没有收到MsgA PUSCH,则该PDCCH调度的PDSCH中可以包括该终端设备发送的MsgA Preamble对应的回退RAR。相应地,终端设备在初始下行BWP上的Type1-PDCCH CSS上使用MsgB-RNTI检测PDCCH,并在检测到PDCCH后根据该PDCCH调度的PDSCH判定是否包括网络设备发送给自己的成功RAR(successRAR)或回退RAR。如果终端设备正确接收成功RAR,则该终端设备向网络设备反馈肯定应答(Acknowledgement,ACK)信息,该终端设备的随机接入过程成功。或者如果终端设备接收到回退RAR,则终端设备在接收到回退RAR后,在回退RAR指示的上行资源上发送Msg3,两步随机接入过程回退到四步随机接入过程。或者如果终端设备没有收到任何RAR,则随机接入过程失败,终端设备需要再次从第一步开始发起随机接入过程。
为便于更好的理解本申请实施例,对本申请相关的NR-NTN下的波束布网场景进行说明。
NR-NTN场景下的波束布网包括以下两种情况:
情况1:如图3所示。一个SSB对应一个地面小区,或者,SSB传输的波束宽度和数据传输的波束宽度一致。一个地面小区对应一个用于数据传输的BWP。终端设备通过初始BWP(即BWP#0)上的SSB接入网络后,网络设备会为该终端设备配置与该终端设备接入时的SSB对应的BWP用于数据传输。此外,如图3所示,在下行(downlink,DL)BWP#1至DL BWP#3中还可以传输信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),CSI-RS传输的波束宽度和波束方向与数据传输的波束宽度和波束方向一致。作为示例,小区#1的DL BWP#2上的CSI-RS的波束宽度和波束方向与小区#1的SSB#1的波束宽度和波束方向相同。
情况2:如图4所示。一个SSB对应多个地面小区,或者,SSB传输的波束宽度和数据传输的波束宽度不一致,或者,SSB传输的波束宽度大于数据传输的波束宽度。一个地面小区对应一个用于数据传输的BWP。终端设备通过初始BWP(即BWP#0)上的SSB接入网络后,网络设备会为该终端设备配置与该终端设备接入时的SSB对应的BWP用于数据传输。此外,如图4所示,在DL BWP#1至DL BWP#3中还可以传输CSI-RS,CSI-RS传输的波束宽度和波束方向与数据传输的波束宽度和波束方向一致。作为示例,小区#1的SSB#1的波束包括小区#1的DL BWP#1上的CSI-RS、DL BWP#2上的CSI-RS和DL BWP#3上的CSI-RS的波束。在一些情况下,这种场景也可以称为是伞状波束场景。
在NR-NTN***中,目前支持上述两种布网场景。然而,在上述布网场景下,终端设备如果还延用现有技术中的初始接入过程,多个地面小区上的终端设备都会通过相同的初始下行BWP接入网络,可能会导致初始下行BWP上的负载太大,从而增加终端设备的接入时延。另外,如果多个地面小区上的终端设备都通过相同的初始上行BWP发起随机接入,也会导致初始上行BWP上的PRACH碰撞更为严重。本申请主要考虑NR-NTN***中的初始接入过程的增强。
基于上述问题,本申请提出了一种随机接入方案,可以避免多个地面小区上的终端设备都通过相同的初始下行BWP接入网络导致的初始下行BWP上的负载太大,从而避免增加终端设备的接入时延。另外,可以支持多个地面小区上的终端设备通过不同的初始上行BWP发起随机接入,从而避免初始上行BWP上的PRACH严重碰撞。
以下通过具体实施例详述本申请的技术方案。
图5是根据本申请实施例的初始接入方法200的示意性流程图,如图5所示,该方法200可以包括如下内容中的至少部分内容:
S210,终端设备根据第一关联关系和/或第二关联关系进行初始接入,该第一关联关系包括初始下行BWP与上行BWP的关联关系,该第二关联关系包括公共搜索空间集合与下行BWP的关联关系;其中,在该第一关联关系中,初始下行BWP关联初始上行BWP,和/或,初始下行BWP上的至少两个SSB关联不同的上行BWP;在该第二关联关系中,初始下行BWP关联的公共搜索空间集合在该初始下行BWP上,或者,初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上。
在一些实施例中,本申请实施例可以应用于NTN网络。当然,本申请实施例也可以应用于其他网络,本申请对此并不限定。
在一些实施例中,在该第一关联关系中的该初始下行BWP关联初始上行BWP的情况下,该该初始下行BWP上的多个SSB关联相同的初始上行BWP,和/或,该该初始下行BWP上的多个SSB对应的多个地面小区关联相同的初始上行BWP。
在一些实施例中,一个BWP包括一个载波内包括的全部资源块(Resource Block,RB)。
在一些实施例中,一个BWP包括一个载波内包括的部分RB,其中该部分RB在频域上连续。
在一些实施例中,在该第一关联关系中,该初始下行BWP关联初始上行BWP,其中,
该初始下行BWP上的SSB关联的RO在该初始上行BWP上;和/或,
该初始下行BWP上的SSB关联的RO和PO在该初始上行BWP上。
例如,如图6所示,DL BWP#0(初始下行BWP)上的SSB#0关联UL BWP#0(初始上行BWP)上的RO#0,DL BWP#0(初始下行BWP)上的SSB#1关联UL BWP#0(初始上行BWP)上的RO#1,DL BWP#0(初始下行BWP)上的SSB#2关联UL BWP#0(初始上行BWP)上的RO#2。也即,初始下行BWP关联初始上行BWP,其中该初始下行BWP上的SSB关联的RO在该初始上行BWP上。在一些实施例中,在该第一关联关系中的该初始下行BWP上的至少两个SSB关联不同的上行BWP的情况下,该初始下行BWP上不同的SSB关联不同的上行BWP,和/或,该初 始下行BWP上的多个SSB对应的多个地面小区关联不同的上行BWP。
在一些实施例中,在该第一关联关系中,该初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:
该初始下行BWP上的第一SSB关联第一上行BWP,其中,该第一SSB关联的RO在该第一上行BWP上,和/或,该第一SSB关联的RO和PO在该第一上行BWP上;
该初始下行BWP上的第二SSB关联第二上行BWP,其中,该第二SSB关联的RO在该第二上行BWP上,和/或,该第二SSB关联的RO和PO在该第二上行BWP上。
在一些实施例中,该第一上行BWP和该第二上行BWP是分别对应不同终端设备的初始上行BWP,例如,对于UE1,其初始上行BWP为第一上行BWP;对于UE2,其初始上行BWP为第二上行BWP。
例如,如图7所示,DL BWP#0(初始下行BWP)上的SSB#0关联UL BWP#1上的RO#0,DL BWP#0(初始下行BWP)上的SSB#1关联UL BWP#2上的RO#1,DL BWP#0(初始下行BWP)上的SSB#2关联UL BWP#3上的RO#2。也即,该初始下行BWP上不同的SSB关联不同的上行BWP。
在一些实施例中,SSB和RO的关联关系是根据SSB索引、RO资源和天线极化模式中的至少一项确定的。
在一些实施例中,天线极化模式包括右旋极化(Right Hand Circular Polarization,RHCP)、左旋极化(Left Hand Circular Polarization,LHCP)和线性极化(Linear Polarization,LP)中的至少一种。其中,RHCP和LHCO也可以称为圆极化。
在一些实施例中,SSB索引与天线极化模式具有关联关系。该关联关系可以是预定义的,或者是基于网络设备发送的***消息,RRC信令,MAC CE和DCI中的至少一个确定的。
作为示例,在网络设备配置圆极化天线的情况下,偶数索引对应的SSB关联RHCP模式,奇数索引对应的SSB关联LHCP模式。
作为示例,在网络设备配置线性极化天线或未配置圆极化天线的情况下,该网络设备发送的所有SSB关联LP模式。
在一些实施例中,RO资源与天线极化模式具有关联关系。该关联关系可以是预定义的,或者是基于网络设备发送的***消息,RRC信令,MAC CE和DCI中的至少一个确定的。
作为示例,一部分RO资源关联RHCP模式,另一部分RO资源关联LHCP模式,再一部分RO资源关联LP模式。
作为示例,在网络设备配置圆极化天线的情况下,一部分RO资源关联RHCP模式,另一部分RO资源关联LHCP模式。
作为示例,在网络设备配置线性极化天线或未配置圆极化天线的情况下,所有RO资源关联LP模式。
在一些实施例中,SSB索引、RO资源与天线极化模式具有关联关系。该关联关系可以是预定义的,或者是基于网络设备发送的***消息,RRC信令,MAC CE和DCI中的至少一个确定的。
作为示例,SSB索引与天线极化模式具有关联关系,相应地,与SSB索引具有关联关系的RO资源也与天线极化模式具有关联关系。
作为示例,在初始接入过程中,终端设备对小区的信号质量以及小区中的各个SSB的信号强度会进行测量评估。其中,奇数索引对应的SSB关联RHCP模式,偶数索引对应的SSB关联LHCP模式。在检测到SSB后,例如假设终端设备检测到SSB信号强度超过门限的SSB#1,则终端设备可以确定网络设备在传输SSB#1时对应的天线模式为RHCP模式。
作为示例,在终端设备发起随机接入之前,终端设备对小区的信号质量以及小区中的各个SSB的信号强度会进行测量评估。在SSB信号检测强度超过门限的情况下,确定信号最强或较强的SSB例如终端设备确定初始下行BWP上的SSB#1为信号最强的SSB后,终端设备根据第一关联关系中SSB与RO之间的映射关系确定该SSB#1对应的PRACH传输机会包括初始上行BWP上的RO#1和RO#1’,其中,RO#1对应RHCP模式,RO#1’对应LHCP模式。由于终端设备支持LHCP模式,因此该终端设备可以通过RO#1’中的资源向网络设备发送PRACH。
在一些实施例中,天线极化模式是网络设备指示给终端设备的。例如,网络设备向终端设备指示SSB传输对应的天线极化模式,或DL BWP上的物理信号或物理信道传输对应的天线极化模式,或指示终端设备在进行UL BWP上的物理信号或物理信道传输时对应的天线极化模式。
在一些实施例中,天线极化模式是终端设备上报给网络设备的。例如,终端设备向网络设备上报该终端设备支持的天线极化模式。
在一些实施例中,该第一关联关系是预定义的,或者,该第一关联关系基于网络设备发送的第一配置信息确定,其中,该第一配置信息通过***消息、无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制控制元素(Media Access Control Control Element,MAC CE)和下行控制信息(Downlink Control Information,DCI)中的至少一种传输。
在一些实施例中,该第一配置信息包括随机接入配置信息,其中,该随机接入配置信息中包括该随机接入配置关联的上行BWP信息,和/或,该随机接入配置关联的SSB索引。
作为示例,随机接入配置信息中包括该随机接入配置关联的上行BWP的配置信息,其中,该上行BWP的配置信息包括以下至少一种:该上行BWP的标识(ID),该上行BWP的起始位置,该上行BWP对应的频域范围(或该上行BWP包括的频域RB个数),该上行BWP对应的子载波间隔(Subcarrier spacing,SCS)或循环前缀(Cyclic Prefix,CP)类型。
在初始接入阶段,终端设备还未与网络设备建立RRC连接,终端设备未被配置用户特定的控制信道,而是需要通过初始下行BWP上的公共控制信道接收小区内的公共控制信息,从而完成后续的初始接入过程。终端设备通过公共搜索空间(Common Search Space,CSS)接收公共控制信道,其中该公共搜索空间是通过***消息或RRC信令配置的。
其中,与初始接入相关的公共搜索空间主要包括以下几种:
Type0-PDCCH CSS:type0-PDCCH用于指示承载***信息块(System Information Block,SIB)1的PDSCH的调 度信息,其搜索空间通过主信息块(Master Information Block,MIB)信息中的PDCCH SIB1配置(pdcch-ConfigSIB1)信息域指示,或者通过RRC信令配置,其DCI格式的循环冗余码校验(Cyclical Redundancy Check,CRC)通过***信息-无线网络临时标识(System Information Radio Network Temporary Identity,SI-RNTI)加扰。
Type0A-PDCCH CSS:type0A-PDCCH用于指示承载其他***信息(Other System Information,OSI)的PDSCH的调度信息,其搜索空间通过RRC信令配置,其DCI格式的CRC通过SI-RNTI加扰。
Type1-PDCCH CSS:type1-PDCCH用于指示承载RAR的PDSCH的调度信息,其搜索空间通过RRC信令配置,其DCI格式的CRC通过随机接入-无线网络临时标识(Random Access Radio Network Temporary Identity,RA-RNTI),消息B-无线网络临时标识(MsgB Radio Network Temporary Identity,MsgB-RNTI),或者临时小区-无线网络临时标识(Temporary Cell Radio Network Temporary Identity,TC-RNTI)加扰。
Type2-PDCCH CSS:type2-PDCCH用于指示承载寻呼消息的PDSCH的调度信息,其搜索空间通过RRC信令配置,其DCI格式的CRC通过寻呼-无线网络临时标识(Paging Radio Network Temporary Identity,P-RNTI)加扰。
通过不同的CSS,终端设备可以在相应的PDCCH监听时机,根据PDCCH的控制信道资源集合检测PDCCH。
在一些实施例中,该公共搜索空间集合包括但不限于以下至少一种:
Type0-PDCCH CSS集合、Type0A-PDCCH CSS集合、Type1-PDCCH CSS集合、Type2-PDCCH CSS集合。
在一些实施例中,在该第二关联关系中的初始下行BWP关联的公共搜索空间集合在该初始下行BWP上的情况下,该初始下行BWP上的多个SSB分别关联的CSS在该初始下行BWP上。例如,如图8所示,DL BWP#0(初始下行BWP)上的SSB#0、SSB#1和SSB#2分别关联的CSS在该DL BWP#0(初始下行BWP)上。SSB#0、SSB#1和SSB#2分别关联的CSS为该DL BWP#0关联的公共搜索空间集合。
在一些实施例中,在该第二关联关系中,该初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上,包括:
该初始下行BWP上的第一SSB关联第一下行BWP,其中,该第一SSB关联的公共搜索空间集合在该第一下行BWP上,该第一下行BWP与该初始下行BWP是不同的下行BWP。
需要说明的是,不同的下行BWP,可以指:BWP标识(ID)不同,或BWP对应的频域资源不同,或BWP对应的子载波间隔不同。
在一些实施例中,在该第二关联关系中的初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上的情况下,该初始下行BWP上的一个SSB关联的CSS在该SSB关联的下行BWP上。例如,如图9所示,DL BWP#0(初始下行BWP)上的SSB#0关联的CSS在该SSB#0关联的DL BWP#1上,DL BWP#0(初始下行BWP)上的SSB#1关联的CSS在该SSB#1关联的DL BWP#2上,DL BWP#0(初始下行BWP)上的SSB#2关联的CSS在该SSB#2关联的DL BWP#3上。SSB#0、SSB#1和SSB#2分别关联的CSS为该DL BWP#0关联的公共搜索空间集合。
在一些实施例中,该第二关联关系是预定义的,或者,该第二关联关系基于网络设备发送的第二配置信息确定,其中,该第二配置信息通过***消息、RRC信令、MAC CE和DCI中的至少一种传输。
在一些实施例中,该第二配置信息包括PDCCH公共配置信息,该PDCCH公共配置信息包括该PDCCH公共配置对应的下行BWP信息,和/或,该PDCCH公共配置对应的SSB索引,其中,该PDCCH公共配置包括该公共搜索空间集合的配置。在一些实施例中,在该第一关联关系中,该初始下行BWP关联初始上行BWP,上述S210具体可以包括:
在Type-1随机接入过程中,该终端设备通过该初始上行BWP上的第一RO发送消息1(Msg1)对应的第一PRACH,其中,该第一RO与第一SSB关联,该第一SSB是该终端设备在该初始下行BWP上检测到的SSB;或者,
在Type-2随机接入过程中,该终端设备通过该初始上行BWP上的第一RO发送消息A(MsgA)对应的第一PRACH,通过该初始上行BWP上的第一PO发送消息A(MsgA)对应的第一PUSCH,其中,该第一RO与第一SSB关联,该第一PO与该第一RO关联,该第一SSB是该终端设备在该初始下行BWP上检测到的SSB;或者,
在Type-2随机接入过程中,该终端设备通过该初始上行BWP上的第一RO发送消息A(MsgA)对应的第一PRACH,其中,该第一RO与第一SSB关联,该第一SSB是该终端设备在该初始下行BWP上检测到的SSB。在一些实施例中,在该第一关联关系中,该初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:该初始下行BWP上的第一SSB关联第一上行BWP,其中,该第一SSB是该终端设备在该初始下行BWP上检测到的SSB;上述S210具体可以包括:
在Type-1随机接入过程中,该终端设备通过该第一上行BWP上的第一RO发送消息1(Msg1)对应的第一PRACH;或者,
在Type-2随机接入过程中,该终端设备通过该第一上行BWP上的第一RO发送消息A(MsgA)对应的第一PRACH,通过该第一上行BWP上的第一PO发送消息A(MsgA)对应的第一PUSCH,其中,该第一PO与该第一RO关联;或者,
在Type-2随机接入过程中,该终端设备通过该第一上行BWP上的第一RO发送消息A(MsgA)对应的第一PRACH。
在一些实施例中,该初始下行BWP上的第一SSB关联第一上行BWP,则该第一上行BWP上的该第一RO与该初始下行BWP上的该第一SSB关联。
在一些实施例中,在该第一关联关系中,该初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:该初始下行BWP上的第一SSB关联第一上行BWP,其中,该第一SSB是该终端设备在该初始下行BWP上检测到的SSB;上述S210具体可以包括:
在Type-1随机接入过程中,该终端设备通过该第一上行BWP上的第一PUSCH资源发送消息3(Msg3)对应的第一PUSCH,其中,该第一PUSCH资源是消息2(Msg2)对应的RAR中的上行授权信息指示的;或者,
在Type-2随机接入过程中,该终端设备通过该第一上行BWP上的第一物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源发送消息B(MsgB)对应的第一PUCCH,其中,该第一PUCCH中包括该消息B(MsgB) 对应的应答信息;或者,
在Type-2随机接入过程中,该终端设备通过该第一上行BWP上的第一PUSCH资源发送消息B(MsgB)对应的第一PUSCH,其中,该第一PUSCH资源是该消息B(MsgB)对应的回退RAR中的上行授权信息指示的。
在一些实施例中,在该第一关联关系中,初始接入下行带宽例如该初始下行BWP关联初始接入上行带宽例如该初始上行BWP,上述S210具体可以包括:
该终端设备通过该初始接入上行带宽上的PRACH资源发送PRACH;和/或,
该终端设备通过该初始接入上行带宽上的PUSCH资源发送Msg3对应的PUSCH;和/或,
该终端设备通过该初始接入上行带宽上的PUSCH资源发送MsgB对应的PUSCH;和/或,
该终端设备通过该初始接入上行带宽上的PUCCH资源发送MsgB对应的PUCCH。
在一些实施例中,在该第一关联关系中,初始接入下行带宽上的同步信号例如该初始下行BWP上的第一SSB关联第一上行带宽例如第一上行BWP,上述S210具体可以包括:
该终端设备通过该第一上行带宽上的PRACH资源发送PRACH;和/或,
该终端设备通过该第一上行带宽上的PUSCH资源发送Msg3对应的PUSCH;和/或,
该终端设备通过该第一上行带宽上的PUSCH资源发送MsgB对应的PUSCH;和/或,
该终端设备通过该第一上行带宽上的PUCCH资源发送MsgB对应的PUCCH。
在一些实施例中,在该第二关联关系中,初始接入下行带宽例如该初始下行BWP关联的公共搜索空间集合在该初始接入下行带宽上,上述S210具体可以包括:
该终端设备在该初始接入下行带宽上的CSS集合中检测PDCCH候选。
在一些实施例中,在该第二关联关系中,初始接入下行带宽例如该初始下行BWP关联的公共搜索空间集合在第一下行带宽上,其中,初始接入下行带宽和第一下行带宽不同(例如初始接入下行带宽对应的参数和第一下行带宽对应的参数至少有一项不同),上述S210具体可以包括:
该终端设备在该第一下行带宽上的CSS集合中检测PDCCH候选。
在一些实施例中,在该第二关联关系中,该初始下行BWP关联的公共搜索空间集合在该初始下行BWP上,上述S210具体可以包括以下情况中的至少一种:
该公共搜索空间集合包括Type0-PDCCH CSS集合,该终端设备使用SI-RNTI在该初始下行BWP上的该Type0-PDCCH CSS集合中检测PDCCH候选;
该公共搜索空间集合包括Type0A-PDCCH CSS集合,该终端设备使用SI-RNTI在该初始下行BWP上的该Type0A-PDCCH CSS集合中检测PDCCH候选;
该公共搜索空间集合包括Type1-PDCCH CSS集合,该终端设备使用RA-RNTI、MsgB-RNTI、或TC-RNTI在该初始下行BWP上的该Type1-PDCCH CSS集合中检测PDCCH候选;
该公共搜索空间集合包括Type2-PDCCH CSS集合,该终端设备使用P-RNTI在该初始下行BWP上的该Type2-PDCCH CSS集合中检测PDCCH候选。
在一些实施例中,在该第二关联关系中,该初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上,包括:该初始下行BWP上的第一SSB关联的公共搜索空间集合在第一下行BWP,该第一下行BWP和该初始下行BWP是不同的下行BWP,其中,该第一SSB是该终端设备在该初始下行BWP上检测到的SSB;上述S210具体可以包括以下情况中的至少一种:
该公共搜索空间集合包括Type0-PDCCH CSS集合,该终端设备使用SI-RNTI在该第一下行BWP上的该Type0-PDCCH CSS集合中检测PDCCH候选;
该公共搜索空间集合包括Type0A-PDCCH CSS集合,该终端设备使用SI-RNTI在该第一下行BWP上的该Type0A-PDCCH CSS集合中检测PDCCH候选;
该公共搜索空间集合包括Type1-PDCCH CSS集合,该终端设备使用RA-RNTI、MsgB-RNTI、或TC-RNTI在该第一下行BWP上的该Type1-PDCCH CSS集合中检测PDCCH候选;
该公共搜索空间集合包括Type2-PDCCH CSS集合,该终端设备使用P-RNTI在该第一下行BWP上的该Type2-PDCCH CSS集合中检测PDCCH候选。
需要说明的是,对于PDCCH,网络设备是在发送PDCCH,例如,网络设备通过初始下行BWP上的Type0-PDCCH CSS集合中的资源发送SI-RNTI加扰的PDCCH。对于PDCCH,由于终端设备是盲检测,可能检测到,也可以检测不到,因此,终端设备检测的是一个PDCCH候选,例如,终端设备使用SI-RNTI在第一下行BWP上的Type0-PDCCH CSS集合中检测PDCCH候选。
作为实施例1,在第一关联关系中,初始下行BWP关联初始上行BWP,具体的,该初始下行BWP上的SSB关联的RO在该初始上行BWP上;和/或,该初始下行BWP上的SSB关联的RO和PO在该初始上行BWP上;在第二关联关系中,初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上。以随机接入过程为例进行说明。
在实施例1中,在终端设备发起随机接入之前,终端设备对小区的信号质量以及小区中的各个SSB的信号强度会进行测量评估。在SSB信号检测强度超过门限的情况下,确定信号最强或较强的SSB例如终端设备确定初始下行BWP上的SSB#1为信号最强的SSB后,终端设备根据第一关联关系中SSB与RO之间的映射关系确定该SSB#1对应的PRACH传输机会包括初始上行BWP上的RO#1。
在实施例1中,四步随机接入过程(Type-1随机接入过程)可以包括如下步骤:
第一步,终端设备在初始上行BWP上的对应RO#1的PRACH资源上向网络设备发送随机接入前导序列(Preamble,也称为Msg1)。
第二步,网络设备在检测到Msg1后通过下行BWP#2(在第二关联关系中,SSB#1关联的下行BWP)上的Type1-PDCCH CSS中的资源向终端设备发送RA-RNTI加扰的PDCCH,该PDCCH调度的PDSCH中可以包括该终端 设备发送的Preamble对应的随机接入响应(RAR,也称为Msg2)。相应地,终端设备在下行BWP#2上的Type1-PDCCH CSS上使用RA-RNTI检测PDCCH候选,并在检测到PDCCH后根据该PDCCH调度的PDSCH判定是否包括网络设备发送给自己的RAR。RAR中可以包括消息3(Msg3)的上行授权、定时提前命令(TA command)、TC-RNTI等信息。其中,Type1-PDCCH CSS是网络设备通过***消息和/或高层参数配置的。
第三步,终端设备在接收到RAR后,在RAR指示的上行资源上发送Msg3。其中,该上行资源可以位于初始上行BWP或位于与该SSB#1关联的上行BWP上。该步骤支持HARQ重传。如果网络设备没有正确接收Msg3,则网络设备可以使用TC-RNTI扰码的PDCCH来调度Msg3的重传。其中,该PDCCH中可以承载DCI格式0_0。该TC-RNTI扰码的PDCCH通过下行BWP#2上的Type1-PDCCH CSS传输。
第四步,网络设备通过下行BWP#2上的Type1-PDCCH CSS中的资源向终端设备发送消息4(Msg4),其中包括竞争解决消息,该步骤支持HARQ重传。如果终端设备没有正确接收Msg4,则网络设备可以使用TC-RNTI扰码的PDCCH来调度Msg4的重传。其中,该PDCCH中可以承载DCI格式1_0。该TC-RNTI扰码的PDCCH通过下行BWP#2上的Type1-PDCCH CSS传输。如果终端设备正确接收Msg4,且确定该Msg4是该终端设备的消息,则该终端设备的随机接入过程成功,否则随机接入过程失败。终端设备需要再次从第一步开始发起四步随机接入过程(Type-1随机接入过程)。
在实施例1中,两步随机接入过程(Type-2随机接入过程)可以包括如下步骤:
第一步,终端设备在初始上行BWP上的对应RO#1的RO及其关联的PO上向网络设备发送消息A(MsgA),其中,MsgA包括MsgA Preamble和MsgA PUSCH。
第二步,网络设备在检测到MsgA后通过下行BWP#2上的Type1-PDCCH CSS中的资源向终端设备发送MsgB-RNTI加扰的PDCCH,该PDCCH调度的PDSCH中可以包括该终端设备发送的MsgA对应的随机接入响应(也称为MsgB)。如果网络设备只检测到MsgA Preamble,没有收到MsgA PUSCH,则该PDCCH调度的PDSCH中可以包括该终端设备发送的MsgA Preamble对应的回退RAR。相应地,终端设备在下行BWP#2上的Type1-PDCCH CSS上使用MsgB-RNTI检测PDCCH,并在检测到PDCCH后根据该PDCCH调度的PDSCH判定是否包括网络设备发送给自己的成功RAR(successRAR)或回退RAR。如果终端设备正确接收成功RAR,则该终端设备向网络设备反馈ACK信息,其中,该ACK信息可以通过初始上行BWP或通过与该SSB#1关联的上行BWP传输,该终端设备的随机接入过程成功。或者如果终端设备接收到回退RAR,则终端设备在接收到回退RAR后,在回退RAR指示的上行资源上发送Msg3,其中,该上行资源可以位于初始上行BWP或位于与该SSB#1关联的上行BWP上,两步随机接入过程(Type-2随机接入过程)回退到四步随机接入过程(Type-1随机接入过程)。或者如果终端设备没有收到任何RAR,则随机接入过程失败,终端设备需要再次从第一步开始发起两步随机接入过程(Type-2随机接入过程)。
作为实施例2,在第一关联关系中,初始下行BWP上的至少两个SSB关联不同的上行BWP;在第二关联关系中,初始下行BWP关联的公共搜索空间集合在所述初始下行BWP上。以随机接入过程为例进行说明。
在实施例2中,在终端设备发起随机接入之前,终端设备对小区的信号质量以及小区中的各个SSB的信号强度会进行测量评估。在SSB信号检测强度超过门限的情况下,确定信号最强或较强的SSB例如终端设备确定初始下行BWP上的SSB#1为信号最强的SSB后,终端设备根据第一关联关系中SSB与RO之间的映射关系确定该SSB#1对应的PRACH传输机会包括与SSB#1关联的上行BWP(例如与SSB#1关联的初始上行BWP)上的RO#1。
在实施例2中,四步随机接入过程(Type-1随机接入过程)可以包括如下步骤:
第一步,终端设备在与SSB#1关联的上行BWP上的对应RO#1的PRACH资源上向网络设备发送随机接入前导序列(Preamble,也称为Msg1)。
第二步,网络设备在检测到Msg1后通过初始下行BWP(在第二关联关系中,SSB#1关联的下行BWP)上的Type1-PDCCH CSS中的资源向终端设备发送RA-RNTI加扰的PDCCH,该PDCCH调度的PDSCH中可以包括该终端设备发送的Preamble对应的随机接入响应(RAR,也称为Msg2)。相应地,终端设备在初始下行BWP上的Type1-PDCCH CSS上使用RA-RNTI检测PDCCH候选,并在检测到PDCCH后根据该PDCCH调度的PDSCH判定是否包括网络设备发送给自己的RAR。RAR中可以包括消息3(Msg3)的上行授权、定时提前命令(TA command)、临时RNTI(TC-RNTI)等信息。其中,Type1-PDCCH CSS是网络设备通过***消息和/或高层参数配置的。
第三步,终端设备在接收到RAR后,在RAR指示的上行资源上发送Msg3。其中,该上行资源可以位于与该SSB#1关联的上行BWP上。该步骤支持HARQ重传。如果网络设备没有正确接收Msg3,则网络设备可以使用TC-RNTI扰码的PDCCH来调度Msg3的重传。其中,该PDCCH中可以承载DCI格式0_0。该TC-RNTI扰码的PDCCH通过初始下行BWP上的Type1-PDCCH CSS传输。
第四步,网络设备通过初始下行BWP上的Type1-PDCCH CSS中的资源向终端设备发送消息4(Msg4),其中包括竞争解决消息,该步骤支持HARQ重传。如果终端设备没有正确接收Msg4,则网络设备可以使用TC-RNTI扰码的PDCCH来调度Msg4的重传。其中,该PDCCH中可以承载DCI格式1_0。该TC-RNTI扰码的PDCCH通过初始下行BWP上的Type1-PDCCH CSS传输。如果终端设备正确接收Msg4,且确定该Msg4是该终端设备的消息,则该终端设备的随机接入过程成功,否则随机接入过程失败。终端设备需要再次从第一步开始发起四步随机接入过程(Type-1随机接入过程)。
在实施例2中,两步随机接入过程(Type-2随机接入过程)可以包括如下步骤:
第一步,终端设备在与SSB#1关联的上行BWP上的对应RO#1的RO及其关联的PO上向网络设备发送消息A(MsgA),其中,MsgA包括MsgA Preamble和MsgA PUSCH。
第二步,网络设备在检测到MsgA后通过初始下行BWP上的Type1-PDCCH公共搜索空间(CSS)中的资源向终端设备发送MsgB-RNTI加扰的PDCCH,该PDCCH调度的PDSCH中可以包括该终端设备发送的MsgA对应的随机接入响应(也称为MsgB)。如果网络设备只检测到MsgA Preamble,没有收到MsgA PUSCH,则该PDCCH调度的PDSCH中可以包括该终端设备发送的MsgA Preamble对应的回退RAR。相应地,终端设备在初始下行BWP上的Type1-PDCCH CSS上使用MsgB-RNTI检测PDCCH,并在检测到PDCCH后根据该PDCCH调度的PDSCH判定是否 包括网络设备发送给自己的成功RAR(successRAR)或回退RAR。如果终端设备正确接收成功RAR,则该终端设备向网络设备反馈ACK信息,其中,该ACK信息可以通过与该SSB#1关联的上行BWP传输,该终端设备的随机接入过程成功。或者如果终端设备接收到回退RAR,则终端设备在接收到回退RAR后,在回退RAR指示的上行资源上发送Msg3,其中,该上行资源可以位于与该SSB#1关联的上行BWP上,两步随机接入过程(Type-2随机接入过程)回退到四步随机接入过程(Type-1随机接入过程)。或者如果终端设备没有收到任何RAR,则随机接入过程失败,终端设备需要再次从第一步开始发起两步随机接入过程(Type-2随机接入过程)。
作为实施例3,在第一关联关系中,初始下行BWP上的至少两个SSB关联不同的上行BWP;在第二关联关系中,初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上。以随机接入过程为例进行说明。
在实施例3中,在终端设备发起随机接入之前,终端设备对小区的信号质量以及小区中的各个SSB的信号强度会进行测量评估。在SSB信号检测强度超过门限的情况下,确定信号最强或较强的SSB例如终端设备确定初始下行BWP上的SSB#1为信号最强的SSB后,终端设备根据第一关联关系中SSB与RO之间的映射关系确定该SSB#1对应的PRACH传输机会包括与SSB#1关联的上行BWP(例如与SSB#1关联的初始上行BWP)上的RO#1。
在实施例3中,四步随机接入过程(Type-1随机接入过程)可以包括如下步骤:
第一步,终端设备在与SSB#1关联的上行BWP上的对应RO#1的PRACH资源上向网络设备发送随机接入前导序列(Preamble,也称为Msg1)。
第二步,网络设备在检测到Msg1后通过下行BWP#2(在第二关联关系中,SSB#1关联的下行BWP)上的Type1-PDCCH公共搜索空间(CSS)中的资源向终端设备发送RA-RNTI加扰的PDCCH,该PDCCH调度的PDSCH中可以包括该终端设备发送的Preamble对应的随机接入响应(RAR,也称为Msg2)。相应地,终端设备在下行BWP#2上的Type1-PDCCH CSS上使用RA-RNTI检测PDCCH候选,并在检测到PDCCH后根据该PDCCH调度的PDSCH判定是否包括网络设备发送给自己的RAR。RAR中可以包括消息3(Msg3)的上行授权、定时提前命令(TA command)、临时RNTI(TC-RNTI)等信息。其中,Type1-PDCCH CSS是网络设备通过***消息和/或高层参数配置的。
第三步,终端设备在接收到RAR后,在RAR指示的上行资源上发送Msg3。其中,该上行资源可以位于与该SSB#1关联的上行BWP上。该步骤支持HARQ重传。如果网络设备没有正确接收Msg3,则网络设备可以使用TC-RNTI扰码的PDCCH来调度Msg3的重传。其中,该PDCCH中可以承载DCI格式0_0。该TC-RNTI扰码的PDCCH通过下行BWP#2上的Type1-PDCCH CSS传输。
第四步,网络设备通过下行BWP#2上的Type1-PDCCH CSS中的资源向终端设备发送消息4(Msg4),其中包括竞争解决消息,该步骤支持HARQ重传。如果终端设备没有正确接收Msg4,则网络设备可以使用TC-RNTI扰码的PDCCH来调度Msg4的重传。其中,该PDCCH中可以承载DCI格式1_0。该TC-RNTI扰码的PDCCH通过下行BWP#2上的Type1-PDCCH CSS传输。如果终端设备正确接收Msg4,且确定该Msg4是该终端设备的消息,则该终端设备的随机接入过程成功,否则随机接入过程失败。终端设备需要再次从第一步开始发起四步随机接入过程(Type-1随机接入过程)。
在实施例3中,两步随机接入过程(Type-2随机接入过程)可以包括如下步骤:
第一步,终端设备在与SSB#1关联的上行BWP上的对应RO#1的RO及其关联的PO上向网络设备发送消息A(MsgA),其中,MsgA包括MsgA Preamble和MsgA PUSCH。
第二步,网络设备在检测到MsgA后通过下行BWP#2上的Type1-PDCCH公共搜索空间(CSS)中的资源向终端设备发送MsgB-RNTI加扰的PDCCH,该PDCCH调度的PDSCH中可以包括该终端设备发送的MsgA对应的随机接入响应(也称为MsgB)。如果网络设备只检测到MsgA Preamble,没有收到MsgA PUSCH,则该PDCCH调度的PDSCH中可以包括该终端设备发送的MsgA Preamble对应的回退RAR。相应地,终端设备在下行BWP#2上的Type1-PDCCH CSS上使用MsgB-RNTI检测PDCCH,并在检测到PDCCH后根据该PDCCH调度的PDSCH判定是否包括网络设备发送给自己的成功RAR(successRAR)或回退RAR。如果终端设备正确接收成功RAR,则该终端设备向网络设备反馈ACK信息,其中,该ACK信息可以通过与该SSB#1关联的上行BWP传输,该终端设备的随机接入过程成功。或者如果终端设备接收到回退RAR,则终端设备在接收到回退RAR后,在回退RAR指示的上行资源上发送Msg3,其中,该上行资源可以位于与该SSB#1关联的上行BWP上,两步随机接入过程(Type-2随机接入过程)回退到四步随机接入过程(Type-1随机接入过程)。或者如果终端设备没有收到任何RAR,则随机接入过程失败,终端设备需要再次从第一步开始发起两步随机接入过程(Type-2随机接入过程)。
因此,在本申请实施例中,终端设备可以根据第一关联关系和/或第二关联关系进行初始接入,从而,可以避免多个地面小区上的终端设备都通过相同的初始下行BWP接入网络导致的初始下行BWP上的负载太大,从而避免增加终端设备的接入时延。另外,可以支持多个地面小区上的终端设备通过不同的初始上行BWP发起随机接入,从而避免初始上行BWP上的PRACH严重碰撞。
上文结合图5至图9,详细描述了本申请的终端侧实施例,下文结合图10,详细描述本申请的网络侧实施例,应理解,网络侧实施例与终端侧实施例相互对应,类似的描述可以参照终端侧实施例。
图10是根据本申请实施例的初始接入方法300的示意性流程图,如图10所示,该方法300可以包括如下内容中的至少部分内容:
S310,网络设备向终端设备发送第一信息,该第一信息用于确定该终端设备进行初始接入的第一关联关系和/或第二关联关系,该第一关联关系包括初始下行BWP与上行BWP的关联关系,该第二关联关系包括公共搜索空间集合与下行BWP的关联关系;其中,在该第一关联关系中,初始下行BWP关联初始上行BWP,和/或,初始下行BWP上的至少两个SSB关联不同的上行BWP;在该第二关联关系中,初始下行BWP关联的公共搜索空间集合在该初始下行BWP上,或者,初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上。
在一些实施例中,在该第一关联关系中,该初始下行BWP关联初始上行BWP,其中,
该初始下行BWP上的SSB关联的RO在该初始上行BWP上;和/或,
该初始下行BWP上的SSB关联的RO和PO在该初始上行BWP上。
在一些实施例中,在该第一关联关系中,该初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:
该初始下行BWP上的第一SSB关联第一上行BWP,其中,该第一SSB关联的RO在该第一上行BWP上,和/或,该第一SSB关联的RO和PO在该第一上行BWP上;
该初始下行BWP上的第二SSB关联第二上行BWP,其中,该第二SSB关联的RO在该第二上行BWP上,和/或,该第二SSB关联的RO和PO在该第二上行BWP上。
在一些实施例中,在该第二关联关系中,该初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上,包括:
该初始下行BWP上的第一SSB关联第一下行BWP,其中,该第一SSB关联的公共搜索空间集合在该第一下行BWP上,该第一下行BWP与该初始下行BWP是不同的下行BWP。
在一些实施例中,该公共搜索空间集合包括以下至少一种:
Type0-PDCCH CSS集合、Type0A-PDCCH CSS集合、Type1-PDCCH CSS集合、Type2-PDCCH CSS集合。
在一些实施例中,该第一信息通过***消息、RRC信令、MAC CE和DCI中的至少一种传输。
在一些实施例中,该第一信息包括第一配置信息,该第一关联关系基于该第一配置信息确定。
在一些实施例中,该第一配置信息包括随机接入配置信息,其中,该随机接入配置信息中包括该随机接入配置关联的上行BWP信息,和/或,该随机接入配置关联的SSB索引。
在一些实施例中,该第一信息包括第二配置信息,该第二关联关系基于该第二配置信息确定。
在一些实施例中,该第二配置信息包括PDCCH公共配置信息,该PDCCH公共配置信息包括该PDCCH公共配置对应的下行BWP信息,和/或,该PDCCH公共配置对应的SSB索引,其中,该PDCCH公共配置包括该公共搜索空间集合的配置。
在一些实施例中,在该第一关联关系中,该初始下行BWP关联初始上行BWP,该网络设备可以执行以下情况中的至少一种:
在Type-1随机接入过程中,该网络设备通过该初始上行BWP上的第一RO检测消息1(Msg1)对应的第一PRACH,其中,该第一RO与第一SSB关联,该第一SSB是该网络设备在该初始下行BWP上发送的SSB;
在Type-2随机接入过程中,该网络设备通过该初始上行BWP上的第一RO检测消息A(MsgA)对应的第一PRACH,通过该初始上行BWP上的第一PO检测消息A(MsgA)对应的第一PUSCH,其中,该第一RO与第一SSB关联,该第一PO与该第一RO关联,该第一SSB是该网络设备在该初始下行BWP上发送的SSB;
在Type-2随机接入过程中,该网络设备通过该初始上行BWP上的第一RO检测消息A(MsgA)对应的第一PRACH,其中,该第一RO与第一SSB关联,该第一SSB是该网络设备在该初始下行BWP上发送的SSB。
在一些实施例中,在该第一关联关系中,该初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:该初始下行BWP上的第一SSB关联第一上行BWP,其中,该第一SSB是该网络设备在该初始下行BWP上发送的SSB;该网络设备可以执行以下情况中的至少一种:
在Type-1随机接入过程中,该网络设备通过该第一上行BWP上的第一RO检测消息1(Msg1)对应的第一PRACH;
在Type-2随机接入过程中,该网络设备通过该第一上行BWP上的第一RO检测消息A对应的第一PRACH,通过该第一上行BWP上的第一PO检测消息A(MsgA)对应的第一PUSCH,其中,该第一PO与该第一RO关联;
在Type-2随机接入过程中,该网络设备通过该第一上行BWP上的第一RO检测消息A(MsgA)对应的第一PRACH。
在一些实施例中,在该第一关联关系中,该初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:该初始下行BWP上的第一SSB关联第一上行BWP,其中,该第一SSB是该网络设备在该初始下行BWP上发送的SSB;该网络设备可以执行以下情况中的至少一种:
在Type-1随机接入过程中,该网络设备通过该第一上行BWP上的第一PUSCH资源接收消息3(Msg3)对应的第一PUSCH,其中,该第一PUSCH资源是该网络设备通过消息2(Msg2)对应的RAR中的上行授权信息指示的;
在Type-2随机接入过程中,该网络设备通过该第一上行BWP上的第一物理上行控制信道PUCCH资源接收消息B(MsgB)对应的第一PUCCH,其中,该第一PUCCH资源是该网络设备通过该消息B(MsgB)对应的RAR指示的;
在Type-2随机接入过程中,该网络设备通过该第一上行BWP上的第一PUSCH资源接收消息B(MsgB)对应的第一PUSCH,其中,该第一PUSCH资源是该网络设备通过该消息B(MsgB)对应的回退RAR中的上行授权信息指示的。
在一些实施例中,在该第二关联关系中,该初始下行BWP关联的公共搜索空间集合在该初始下行BWP上,该网络设备可以执行以下情况中的至少一种:
该公共搜索空间集合包括Type0-PDCCH CSS集合,该网络设备通过该初始下行BWP上的该Type0-PDCCH CSS集合中的资源发送SI-RNTI加扰的PDCCH;
该公共搜索空间集合包括Type0A-PDCCH CSS集合,该网络设备通过该初始下行BWP上的该Type0A-PDCCH CSS集合中的资源发送SI-RNTI加扰的PDCCH;
该公共搜索空间集合包括Type1-PDCCH CSS集合,该网络设备通过该初始下行BWP上的该Type1-PDCCH CSS集合中的资源发送RA-RNTI、MsgB-RNTI、或TC-RNTI加扰的PDCCH;
该公共搜索空间集合包括Type2-PDCCH CSS集合,该网络设备通过该初始下行BWP上的该Type2-PDCCH CSS集合中的资源发送P-RNTI加扰的PDCCH。
在一些实施例中,在该第二关联关系中,该初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上,包括:该初始下行BWP上的第一SSB关联的公共搜索空间集合在第一下行BWP,该第一下行BWP和该初始下行BWP是不同的下行BWP,其中,该第一SSB是该网络设备在该初始下行BWP上发送的SSB;该网络设备可以执行以下情况中的至少一种:
该公共搜索空间集合包括Type0-PDCCH CSS集合,该网络设备通过该第一下行BWP上的该Type0-PDCCH CSS集合中的资源发送SI-RNTI加扰的PDCCH;
该公共搜索空间集合包括Type0A-PDCCH CSS集合,该网络设备通过该第一下行BWP上的该Type0A-PDCCH CSS集合中的资源发送SI-RNTI加扰的PDCCH;
该公共搜索空间集合包括Type1-PDCCH CSS集合,该网络设备通过该第一下行BWP上的该Type1-PDCCH CSS集合中的资源发送RA-RNTI、MsgB-RNTI、或TC-RNTI加扰的PDCCH;
该公共搜索空间集合包括Type2-PDCCH CSS集合,该网络设备通过该第一下行BWP上的该Type2-PDCCH CSS集合中的资源发送P-RNTI加扰的PDCCH。
因此,在本申请实施例中,网络设备可以向终端设备指示第一关联关系和/或第二关联关系,以及终端设备可以根据第一关联关系和/或第二关联关系进行初始接入,从而,可以避免多个地面小区上的终端设备都通过相同的初始下行BWP接入网络导致的初始下行BWP上的负载太大,从而避免增加终端设备的接入时延。另外,可以支持多个地面小区上的终端设备通过不同的初始上行BWP发起随机接入,从而避免初始上行BWP上的PRACH严重碰撞。
上文结合图5至图10,详细描述了本申请的方法实施例,下文结合图11至图15,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图11示出了根据本申请实施例的终端设备400的示意性框图。如图11所示,该终端设备400包括:
处理单元410,用于根据第一关联关系和/或第二关联关系进行初始接入,该第一关联关系包括初始下行带宽部分BWP与上行BWP的关联关系,该第二关联关系包括公共搜索空间集合与下行BWP的关联关系;其中,
在该第一关联关系中,初始下行BWP关联初始上行BWP,和/或,初始下行BWP上的至少两个同步信号块SSB关联不同的上行BWP;
在该第二关联关系中,初始下行BWP关联的公共搜索空间集合在该初始下行BWP上,或者,初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上。
在一些实施例中,在该第一关联关系中,该初始下行BWP关联初始上行BWP,其中,
该初始下行BWP上的SSB关联的随机接入传输机会RO在该初始上行BWP上;和/或,
该初始下行BWP上的SSB关联的RO和物理上行共享信道传输机会PO在该初始上行BWP上。
在一些实施例中,在该第一关联关系中,该初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:
该初始下行BWP上的第一SSB关联第一上行BWP,其中,该第一SSB关联的RO在该第一上行BWP上,和/或,该第一SSB关联的RO和PO在该第一上行BWP上;
该初始下行BWP上的第二SSB关联第二上行BWP,其中,该第二SSB关联的RO在该第二上行BWP上,和/或,该第二SSB关联的RO和PO在该第二上行BWP上。
在一些实施例中,在该第二关联关系中,该初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上,包括:
该初始下行BWP上的第一SSB关联第一下行BWP,其中,该第一SSB关联的公共搜索空间集合在该第一下行BWP上,该第一下行BWP与该初始下行BWP是不同的下行BWP。
在一些实施例中,该公共搜索空间集合包括以下至少一种:
类型0的物理下行控制信道公共搜索空间Type0-PDCCH CSS集合、Type0A-PDCCH CSS集合、Type1-PDCCH CSS集合、Type2-PDCCH CSS集合。
在一些实施例中,该第一关联关系是预定义的,或者,该第一关联关系基于网络设备发送的第一配置信息确定,其中,该第一配置信息通过***消息、无线资源控制RRC信令、媒体接入控制控制元素MAC CE和下行控制信息DCI中的至少一种传输。
在一些实施例中,该第一配置信息包括随机接入配置信息,其中,该随机接入配置信息中包括该随机接入配置关联的上行BWP信息,和/或,该随机接入配置关联的SSB索引。
在一些实施例中,该第二关联关系是预定义的,或者,该第二关联关系基于网络设备发送的第二配置信息确定,其中,该第二配置信息通过***消息、RRC信令、MAC CE和DCI中的至少一种传输。
在一些实施例中,该第二配置信息包括PDCCH公共配置信息,该PDCCH公共配置信息包括该PDCCH公共配置对应的下行BWP信息,和/或,该PDCCH公共配置对应的SSB索引,其中,该PDCCH公共配置包括该公共搜索空间集合的配置。
在一些实施例中,在该第一关联关系中,该初始下行BWP关联初始上行BWP,
该处理单元410具体用于:
在类型Type-1随机接入过程中,通过该初始上行BWP上的第一RO发送消息1对应的第一物理随机接入信道PRACH,其中,该第一RO与第一SSB关联,该第一SSB是该终端设备在该初始下行BWP上检测到的SSB;或者,
在Type-2随机接入过程中,通过该初始上行BWP上的第一RO发送消息A对应的第一PRACH,通过该初始上行BWP上的第一PO发送消息A对应的第一PUSCH,其中,该第一RO与第一SSB关联,该第一PO与该第一RO关联,该第一SSB是该终端设备在该初始下行BWP上检测到的SSB;或者,
在Type-2随机接入过程中,通过该初始上行BWP上的第一RO发送消息A对应的第一PRACH,其中,该第一RO与第一SSB关联,该第一SSB是该终端设备在该初始下行BWP上检测到的SSB。
在一些实施例中,在该第一关联关系中,该初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:该初始下行BWP上的第一SSB关联第一上行BWP,其中,该第一SSB是该终端设备在该初始下行BWP上检测到的SSB;
该处理单元410具体用于:
在Type-1随机接入过程中,通过该第一上行BWP上的第一RO发送消息1对应的第一物理随机接入信道PRACH;或者,
在Type-2随机接入过程中,通过该第一上行BWP上的第一RO发送消息A对应的第一PRACH,通过该第一上行BWP上的第一PO发送消息A对应的第一PUSCH,其中,该第一PO与该第一RO关联;或者,
在Type-2随机接入过程中,通过该第一上行BWP上的第一RO发送消息A对应的第一PRACH。
在一些实施例中,在该第一关联关系中,该初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:该初始下行BWP上的第一SSB关联第一上行BWP,其中,该第一SSB是该终端设备在该初始下行BWP上检测到的SSB;
该处理单元410具体用于:
在Type-1随机接入过程中,通过该第一上行BWP上的第一PUSCH资源发送消息3对应的第一PUSCH,其中,该第一PUSCH资源是消息2对应的随机接入响应RAR中的上行授权信息指示的;或者,
在Type-2随机接入过程中,通过该第一上行BWP上的第一物理上行控制信道PUCCH资源发送消息B对应的第一PUCCH,其中,该第一PUCCH中包括该消息B对应的应答信息;或者,
在Type-2随机接入过程中,通过该第一上行BWP上的第一PUSCH资源发送消息B对应的第一PUSCH,其中,该第一PUSCH资源是该消息B对应的回退RAR中的上行授权信息指示的。
在一些实施例中,在该第二关联关系中,该初始下行BWP关联的公共搜索空间集合在该初始下行BWP上,
该处理单元410根据第一关联关系和/或第二关联关系进行初始接入,包括以下情况中的至少一种:
该公共搜索空间集合包括Type0-PDCCH CSS集合,该处理单元410使用***消息-无线网络临时标识SI-RNTI在该初始下行BWP上的该Type0-PDCCH CSS集合中检测PDCCH候选;
该公共搜索空间集合包括Type0A-PDCCH CSS集合,该处理单元410使用SI-RNTI在该初始下行BWP上的该Type0A-PDCCH CSS集合中检测PDCCH候选;
该公共搜索空间集合包括Type1-PDCCH CSS集合,该处理单元410使用随机接入-无线网络临时标识RA-RNTI、消息B-无线网络临时标识MsgB-RNTI、或临时小区-无线网络临时标识TC-RNTI在该初始下行BWP上的该Type1-PDCCH CSS集合中检测PDCCH候选;
该公共搜索空间集合包括Type2-PDCCH CSS集合,该处理单元410使用寻呼-无线网络临时标识P-RNTI在该初始下行BWP上的该Type2-PDCCH CSS集合中检测PDCCH候选。
在一些实施例中,在该第二关联关系中,该初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上,包括:该初始下行BWP上的第一SSB关联的公共搜索空间集合在第一下行BWP,该第一下行BWP和该初始下行BWP是不同的下行BWP,其中,该第一SSB是该终端设备在该初始下行BWP上检测到的SSB;
该处理单元410根据第一关联关系和/或第二关联关系进行初始接入,包括以下情况中的至少一种:
该公共搜索空间集合包括Type0-PDCCH CSS集合,该处理单元410使用SI-RNTI在该第一下行BWP上的该Type0-PDCCH CSS集合中检测PDCCH候选;
该公共搜索空间集合包括Type0A-PDCCH CSS集合,该处理单元410使用SI-RNTI在该第一下行BWP上的该Type0A-PDCCH CSS集合中检测PDCCH候选;
该公共搜索空间集合包括Type1-PDCCH CSS集合,该处理单元410使用RA-RNTI、MsgB-RNTI、或TC-RNTI在该第一下行BWP上的该Type1-PDCCH CSS集合中检测PDCCH候选;
该公共搜索空间集合包括Type2-PDCCH CSS集合,该处理单元410使用P-RNTI在该第一下行BWP上的该Type2-PDCCH CSS集合中检测PDCCH候选。
在一些实施例中,上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图5所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图12示出了根据本申请实施例的网络设备500的示意性框图。如图12所示,该网络设备500包括:
通信单元510,用于向终端设备发送第一信息,该第一信息用于确定该终端设备进行初始接入的第一关联关系和/或第二关联关系,该第一关联关系包括初始下行带宽部分BWP与上行BWP的关联关系,该第二关联关系包括公共搜索空间集合与下行BWP的关联关系;其中,
在该第一关联关系中,初始下行BWP关联初始上行BWP,和/或,初始下行BWP上的至少两个同步信号块SSB关联不同的上行BWP;
在该第二关联关系中,初始下行BWP关联的公共搜索空间集合在该初始下行BWP上,或者,初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上。
在一些实施例中,在该第一关联关系中,该初始下行BWP关联初始上行BWP,其中,
该初始下行BWP上的SSB关联的随机接入传输机会RO在该初始上行BWP上;和/或,
该初始下行BWP上的SSB关联的RO和物理上行共享信道传输机会PO在该初始上行BWP上。
在一些实施例中,在该第一关联关系中,该初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:
该初始下行BWP上的第一SSB关联第一上行BWP,其中,该第一SSB关联的RO在该第一上行BWP上,和/或,该第一SSB关联的RO和PO在该第一上行BWP上;
该初始下行BWP上的第二SSB关联第二上行BWP,其中,该第二SSB关联的RO在该第二上行BWP上,和/或,该第二SSB关联的RO和PO在该第二上行BWP上。
在一些实施例中,在该第二关联关系中,该初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上,包括:
该初始下行BWP上的第一SSB关联第一下行BWP,其中,该第一SSB关联的公共搜索空间集合在该第一下行BWP上,该第一下行BWP与该初始下行BWP是不同的下行BWP。
在一些实施例中,该公共搜索空间集合包括以下至少一种:
类型0的物理下行控制信道公共搜索空间Type0-PDCCH CSS集合、Type0A-PDCCH CSS集合、Type1-PDCCH CSS集合、Type2-PDCCH CSS集合。
在一些实施例中,该第一信息通过***消息、无线资源控制RRC信令、媒体接入控制控制元素MAC CE和下行控制信息DCI中的至少一种传输。
在一些实施例中,该第一信息包括第一配置信息,该第一关联关系基于该第一配置信息确定。
在一些实施例中,该第一配置信息包括随机接入配置信息,其中,该随机接入配置信息中包括该随机接入配置关联的上行BWP信息,和/或,该随机接入配置关联的SSB索引。
在一些实施例中,该第一信息包括第二配置信息,该第二关联关系基于该第二配置信息确定。
在一些实施例中,该第二配置信息包括PDCCH公共配置信息,该PDCCH公共配置信息包括该PDCCH公共配置对应的下行BWP信息,和/或,该PDCCH公共配置对应的SSB索引,其中,该PDCCH公共配置包括该公共搜索空间集合的配置。
在一些实施例中,在该第一关联关系中,该初始下行BWP关联初始上行BWP,
该网络设备还包括处理单元520,其中该处理单元520用于执行以下情况中的至少一种:
在类型Type-1随机接入过程中,该处理单元520通过该初始上行BWP上的第一RO检测消息1对应的第一物理随机接入信道PRACH,其中,该第一RO与第一SSB关联,该第一SSB是该网络设备在该初始下行BWP上发送的SSB;或者,
在Type-2随机接入过程中,该处理单元520通过该初始上行BWP上的第一RO检测消息A对应的第一PRACH,通过该初始上行BWP上的第一PO检测消息A对应的第一PUSCH,其中,该第一RO与第一SSB关联,该第一PO与该第一RO关联,该第一SSB是该网络设备在该初始下行BWP上发送的SSB;或者,
在Type-2随机接入过程中,该处理单元520通过该初始上行BWP上的第一RO检测消息A对应的第一PRACH,其中,该第一RO与第一SSB关联,该第一SSB是该网络设备在该初始下行BWP上发送的SSB。
在一些实施例中,在该第一关联关系中,该初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:该初始下行BWP上的第一SSB关联第一上行BWP,其中,该第一SSB是该网络设备在该初始下行BWP上发送的SSB;
该网络设备还包括处理单元520,其中该处理单元520用于执行以下情况中的至少一种:
在Type-1随机接入过程中,该处理单元520通过该第一上行BWP上的第一RO检测消息1对应的第一物理随机接入信道PRACH;
在Type-2随机接入过程中,该处理单元520通过该第一上行BWP上的第一RO检测消息A对应的第一PRACH,通过该第一上行BWP上的第一PO检测消息A对应的第一PUSCH,其中,该第一PO与该第一RO关联;
在Type-2随机接入过程中,该处理单元520通过该第一上行BWP上的第一RO检测消息A对应的第一PRACH。
在一些实施例中,在该第一关联关系中,该初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:该初始下行BWP上的第一SSB关联第一上行BWP,其中,该第一SSB是该网络设备在该初始下行BWP上发送的SSB;
该网络设备还包括处理单元520,其中该处理单元520用于执行以下情况中的至少一种:
在Type-1随机接入过程中,该处理单元520通过该第一上行BWP上的第一PUSCH资源接收消息3对应的第一PUSCH,其中,该第一PUSCH资源是该网络设备通过消息2对应的随机接入响应RAR中的上行授权信息指示的;
在Type-2随机接入过程中,该处理单元520通过该第一上行BWP上的第一物理上行控制信道PUCCH资源接收消息B对应的第一PUCCH,其中,该第一PUCCH资源是该网络设备通过该消息B对应的RAR指示的;
在Type-2随机接入过程中,该处理单元520通过该第一上行BWP上的第一PUSCH资源接收消息B对应的第一PUSCH,其中,该第一PUSCH资源是该网络设备通过该消息B对应的回退RAR中的上行授权信息指示的。
在一些实施例中,在该第二关联关系中,该初始下行BWP关联的公共搜索空间集合在该初始下行BWP上,
该网络设备还包括处理单元520,其中该处理单元520用于执行以下情况中的至少一种:
该公共搜索空间集合包括Type0-PDCCH CSS集合,该处理单元520通过该初始下行BWP上的该Type0-PDCCH CSS集合中的资源发送***消息-无线网络临时标识SI-RNTI加扰的PDCCH;
该公共搜索空间集合包括Type0A-PDCCH CSS集合,该处理单元520通过该初始下行BWP上的该Type0A-PDCCH CSS集合中的资源发送SI-RNTI加扰的PDCCH;
该公共搜索空间集合包括Type1-PDCCH CSS集合,该处理单元520通过该初始下行BWP上的该Type1-PDCCH CSS集合中的资源发送随机接入-无线网络临时标识RA-RNTI、消息B-无线网络临时标识MsgB-RNTI、或临时小区-无线网络临时标识TC-RNTI加扰的PDCCH;
该公共搜索空间集合包括Type2-PDCCH CSS集合,该处理单元520通过该初始下行BWP上的该Type2-PDCCH CSS集合中的资源发送寻呼-无线网络临时标识P-RNTI加扰的PDCCH。
在一些实施例中,在该第二关联关系中,该初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在该初始下行BWP上,包括:该初始下行BWP上的第一SSB关联的公共搜索空间集合在第一下行BWP,该第一下行BWP和该初始下行BWP是不同的下行BWP,其中,该第一SSB是该网络设备在该初始下行BWP上发送的SSB;
该网络设备还包括处理单元520,其中该处理单元520用于执行以下情况中的至少一种:
该公共搜索空间集合包括Type0-PDCCH CSS集合,该处理单元520通过该第一下行BWP上的该Type0-PDCCH CSS集合中的资源发送SI-RNTI加扰的PDCCH;
该公共搜索空间集合包括Type0A-PDCCH CSS集合,该处理单元520通过该第一下行BWP上的该Type0A-PDCCH CSS集合中的资源发送SI-RNTI加扰的PDCCH;
该公共搜索空间集合包括Type1-PDCCH CSS集合,该处理单元520通过该第一下行BWP上的该Type1-PDCCH CSS集合中的资源发送RA-RNTI、MsgB-RNTI、或TC-RNTI加扰的PDCCH;
该公共搜索空间集合包括Type2-PDCCH CSS集合,该处理单元520通过该第一下行BWP上的该Type2-PDCCH CSS集合中的资源发送P-RNTI加扰的PDCCH。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图10所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例提供的一种通信设备600示意性结构图。图13所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图13所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
在一些实施例中,如图13所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备600具体可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图14是本申请实施例的装置的示意性结构图。图14所示的装置700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图14所示,装置700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
在一些实施例中,该装置700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是***级芯片,***芯片,芯片***或片上***芯片等。
图15是本申请实施例提供的一种通信***800的示意性框图。如图15所示,该通信***800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (41)

  1. 一种初始接入方法,其特征在于,包括:
    终端设备根据第一关联关系和/或第二关联关系进行初始接入,所述第一关联关系包括初始下行带宽部分BWP与上行BWP的关联关系,所述第二关联关系包括公共搜索空间集合与下行BWP的关联关系;其中,
    在所述第一关联关系中,初始下行BWP关联初始上行BWP,和/或,初始下行BWP上的至少两个同步信号块SSB关联不同的上行BWP;
    在所述第二关联关系中,初始下行BWP关联的公共搜索空间集合在所述初始下行BWP上,或者,初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在所述初始下行BWP上。
  2. 如权利要求1所述的方法,其特征在于,在所述第一关联关系中,所述初始下行BWP关联初始上行BWP,其中,
    所述初始下行BWP上的SSB关联的随机接入传输机会RO在所述初始上行BWP上;和/或,
    所述初始下行BWP上的SSB关联的RO和物理上行共享信道传输机会PO在所述初始上行BWP上。
  3. 如权利要求1所述的方法,其特征在于,在所述第一关联关系中,所述初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:
    所述初始下行BWP上的第一SSB关联第一上行BWP,其中,所述第一SSB关联的RO在所述第一上行BWP上,和/或,所述第一SSB关联的RO和PO在所述第一上行BWP上;
    所述初始下行BWP上的第二SSB关联第二上行BWP,其中,所述第二SSB关联的RO在所述第二上行BWP上,和/或,所述第二SSB关联的RO和PO在所述第二上行BWP上。
  4. 如权利要求1所述的方法,其特征在于,在所述第二关联关系中,所述初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在所述初始下行BWP上,包括:
    所述初始下行BWP上的第一SSB关联第一下行BWP,其中,所述第一SSB关联的公共搜索空间集合在所述第一下行BWP上,所述第一下行BWP与所述初始下行BWP是不同的下行BWP。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述公共搜索空间集合包括以下至少一种:
    类型0的物理下行控制信道公共搜索空间Type0-PDCCH CSS集合、Type0A-PDCCH CSS集合、Type1-PDCCH CSS集合、Type2-PDCCH CSS集合。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述第一关联关系是预定义的,或者,所述第一关联关系基于网络设备发送的第一配置信息确定,其中,所述第一配置信息通过***消息、无线资源控制RRC信令、媒体接入控制控制元素MAC CE和下行控制信息DCI中的至少一种传输。
  7. 如权利要求6所述的方法,其特征在于,所述第一配置信息包括随机接入配置信息,其中,所述随机接入配置信息中包括所述随机接入配置关联的上行BWP信息,和/或,所述随机接入配置关联的SSB索引。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述第二关联关系是预定义的,或者,所述第二关联关系基于网络设备发送的第二配置信息确定,其中,所述第二配置信息通过***消息、RRC信令、MAC CE和DCI中的至少一种传输。
  9. 如权利要求8所述的方法,其特征在于,所述第二配置信息包括PDCCH公共配置信息,所述PDCCH公共配置信息包括所述PDCCH公共配置对应的下行BWP信息,和/或,所述PDCCH公共配置对应的SSB索引,其中,所述PDCCH公共配置包括所述公共搜索空间集合的配置。
  10. 如权利要求1至9中任一项所述的方法,其特征在于,在所述第一关联关系中,所述初始下行BWP关联初始上行BWP,
    所述终端设备根据第一关联关系和/或第二关联关系进行初始接入,包括:
    在类型Type-1随机接入过程中,所述终端设备通过所述初始上行BWP上的第一RO发送消息1对应的第一物理随机接入信道PRACH,其中,所述第一RO与第一SSB关联,所述第一SSB是所述终端设备在所述初始下行BWP上检测到的SSB;或者,
    在Type-2随机接入过程中,所述终端设备通过所述初始上行BWP上的第一RO发送消息A对应的第一PRACH,通过所述初始上行BWP上的第一PO发送消息A对应的第一PUSCH,其中,所述第一RO与第一SSB关联,所述第一PO与所述第一RO关联,所述第一SSB是所述终端设备在所述初始下行BWP上检测到的SSB;或者,
    在Type-2随机接入过程中,所述终端设备通过所述初始上行BWP上的第一RO发送消息A对应的第一PRACH,其中,所述第一RO与第一SSB关联,所述第一SSB是所述终端设备在所述初始下行BWP上检测到的SSB。
  11. 如权利要求1至9中任一项所述的方法,其特征在于,在所述第一关联关系中,所述初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:所述初始下行BWP上的第一SSB关联第一上行BWP,其中,所述第一SSB是所述终端设备在所述初始下行BWP上检测到的SSB;
    所述终端设备根据第一关联关系和/或第二关联关系进行初始接入,包括:
    在Type-1随机接入过程中,所述终端设备通过所述第一上行BWP上的第一RO发送消息1对应的第一物理随机接入信道PRACH;或者,
    在Type-2随机接入过程中,所述终端设备通过所述第一上行BWP上的第一RO发送消息A对应的第一PRACH,通过所述第一上行BWP上的第一PO发送消息A对应的第一PUSCH,其中,所述第一PO与所述第一RO关联;或者,
    在Type-2随机接入过程中,所述终端设备通过所述第一上行BWP上的第一RO发送消息A对应的第一PRACH。
  12. 如权利要求1至11中任一项所述的方法,其特征在于,在所述第一关联关系中,所述初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:所述初始下行BWP上的第一SSB关联第一上行BWP,其中,所述第一SSB是所述终端设备在所述初始下行BWP上检测到的SSB;
    所述终端设备根据第一关联关系和/或第二关联关系进行初始接入,包括:
    在Type-1随机接入过程中,所述终端设备通过所述第一上行BWP上的第一PUSCH资源发送消息3对应的第一PUSCH,其中,所述第一PUSCH资源是消息2对应的随机接入响应RAR中的上行授权信息指示的;或者,
    在Type-2随机接入过程中,所述终端设备通过所述第一上行BWP上的第一物理上行控制信道PUCCH资源发送消息B对应的第一PUCCH,其中,所述第一PUCCH中包括所述消息B对应的应答信息;或者,
    在Type-2随机接入过程中,所述终端设备通过所述第一上行BWP上的第一PUSCH资源发送消息B对应的第一PUSCH,其中,所述第一PUSCH资源是所述消息B对应的回退RAR中的上行授权信息指示的。
  13. 如权利要求1至12中任一项所述的方法,其特征在于,在所述第二关联关系中,所述初始下行BWP关联的公共搜索空间集合在所述初始下行BWP上,
    所述终端设备根据第一关联关系和/或第二关联关系进行初始接入,包括以下情况中的至少一种:
    所述公共搜索空间集合包括Type0-PDCCH CSS集合,所述终端设备使用***消息-无线网络临时标识SI-RNTI在所述初始下行BWP上的所述Type0-PDCCH CSS集合中检测PDCCH候选;
    所述公共搜索空间集合包括Type0A-PDCCH CSS集合,所述终端设备使用SI-RNTI在所述初始下行BWP上的所述Type0A-PDCCH CSS集合中检测PDCCH候选;
    所述公共搜索空间集合包括Type1-PDCCH CSS集合,所述终端设备使用随机接入-无线网络临时标识RA-RNTI、消息B-无线网络临时标识MsgB-RNTI、或临时小区-无线网络临时标识TC-RNTI在所述初始下行BWP上的所述Type1-PDCCH CSS集合中检测PDCCH候选;
    所述公共搜索空间集合包括Type2-PDCCH CSS集合,所述终端设备使用寻呼-无线网络临时标识P-RNTI在所述初始下行BWP上的所述Type2-PDCCH CSS集合中检测PDCCH候选。
  14. 如权利要求1至12中任一项所述的方法,其特征在于,在所述第二关联关系中,所述初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在所述初始下行BWP上,包括:所述初始下行BWP上的第一SSB关联的公共搜索空间集合在第一下行BWP,所述第一下行BWP和所述初始下行BWP是不同的下行BWP,其中,所述第一SSB是所述终端设备在所述初始下行BWP上检测到的SSB;
    所述终端设备根据第一关联关系和/或第二关联关系进行初始接入,包括以下情况中的至少一种:
    所述公共搜索空间集合包括Type0-PDCCH CSS集合,所述终端设备使用SI-RNTI在所述第一下行BWP上的所述Type0-PDCCH CSS集合中检测PDCCH候选;
    所述公共搜索空间集合包括Type0A-PDCCH CSS集合,所述终端设备使用SI-RNTI在所述第一下行BWP上的所述Type0A-PDCCH CSS集合中检测PDCCH候选;
    所述公共搜索空间集合包括Type1-PDCCH CSS集合,所述终端设备使用RA-RNTI、MsgB-RNTI、或TC-RNTI在所述第一下行BWP上的所述Type1-PDCCH CSS集合中检测PDCCH候选;
    所述公共搜索空间集合包括Type2-PDCCH CSS集合,所述终端设备使用P-RNTI在所述第一下行BWP上的所述Type2-PDCCH CSS集合中检测PDCCH候选。
  15. 一种初始接入方法,其特征在于,包括:
    网络设备向终端设备发送第一信息,所述第一信息用于确定所述终端设备进行初始接入的第一关联关系和/或第二关联关系,所述第一关联关系包括初始下行带宽部分BWP与上行BWP的关联关系,所述第二关联关系包括公共搜索空间集合与下行BWP的关联关系;其中,
    在所述第一关联关系中,初始下行BWP关联初始上行BWP,和/或,初始下行BWP上的至少两个同步信号块SSB关联不同的上行BWP;
    在所述第二关联关系中,初始下行BWP关联的公共搜索空间集合在所述初始下行BWP上,或者,初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在所述初始下行BWP上。
  16. 如权利要求15所述的方法,其特征在于,在所述第一关联关系中,所述初始下行BWP关联初始上行BWP,其中,
    所述初始下行BWP上的SSB关联的随机接入传输机会RO在所述初始上行BWP上;和/或,
    所述初始下行BWP上的SSB关联的RO和物理上行共享信道传输机会PO在所述初始上行BWP上。
  17. 如权利要求15所述的方法,其特征在于,在所述第一关联关系中,所述初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:
    所述初始下行BWP上的第一SSB关联第一上行BWP,其中,所述第一SSB关联的RO在所述第一上行BWP上,和/或,所述第一SSB关联的RO和PO在所述第一上行BWP上;
    所述初始下行BWP上的第二SSB关联第二上行BWP,其中,所述第二SSB关联的RO在所述第二上行BWP上,和/或,所述第二SSB关联的RO和PO在所述第二上行BWP上。
  18. 如权利要求15所述的方法,其特征在于,在所述第二关联关系中,所述初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在所述初始下行BWP上,包括:
    所述初始下行BWP上的第一SSB关联第一下行BWP,其中,所述第一SSB关联的公共搜索空间集合在所述第一下行BWP上,所述第一下行BWP与所述初始下行BWP是不同的下行BWP。
  19. 如权利要求15至18中任一项所述的方法,其特征在于,所述公共搜索空间集合包括以下至少一种:
    类型0的物理下行控制信道公共搜索空间Type0-PDCCH CSS集合、Type0A-PDCCH CSS集合、Type1-PDCCH CSS集合、Type2-PDCCH CSS集合。
  20. 如权利要求15至19中任一项所述的方法,其特征在于,所述第一信息通过***消息、无线资源控制RRC信令、媒体接入控制控制元素MAC CE和下行控制信息DCI中的至少一种传输。
  21. 如权利要求15至20中任一项所述的方法,其特征在于,
    所述第一信息包括第一配置信息,所述第一关联关系基于所述第一配置信息确定。
  22. 如权利要求21所述的方法,其特征在于,所述第一配置信息包括随机接入配置信息,其中,所述随机接入配 置信息中包括所述随机接入配置关联的上行BWP信息,和/或,所述随机接入配置关联的SSB索引。
  23. 如权利要求15至22中任一项所述的方法,其特征在于,所述第一信息包括第二配置信息,所述第二关联关系基于所述第二配置信息确定。
  24. 如权利要求23所述的方法,其特征在于,所述第二配置信息包括PDCCH公共配置信息,所述PDCCH公共配置信息包括所述PDCCH公共配置对应的下行BWP信息,和/或,所述PDCCH公共配置对应的SSB索引,其中,所述PDCCH公共配置包括所述公共搜索空间集合的配置。
  25. 如权利要求15至24中任一项所述的方法,其特征在于,在所述第一关联关系中,所述初始下行BWP关联初始上行BWP,
    所述方法还包括以下情况中的至少一种:
    在类型Type-1随机接入过程中,所述网络设备通过所述初始上行BWP上的第一RO检测消息1对应的第一物理随机接入信道PRACH,其中,所述第一RO与第一SSB关联,所述第一SSB是所述网络设备在所述初始下行BWP上发送的SSB;
    在Type-2随机接入过程中,所述网络设备通过所述初始上行BWP上的第一RO检测消息A对应的第一PRACH,通过所述初始上行BWP上的第一PO检测消息A对应的第一PUSCH,其中,所述第一RO与第一SSB关联,所述第一PO与所述第一RO关联,所述第一SSB是所述网络设备在所述初始下行BWP上发送的SSB;
    在Type-2随机接入过程中,所述网络设备通过所述初始上行BWP上的第一RO检测消息A对应的第一PRACH,其中,所述第一RO与第一SSB关联,所述第一SSB是所述网络设备在所述初始下行BWP上发送的SSB。
  26. 如权利要求15至24中任一项所述的方法,其特征在于,在所述第一关联关系中,所述初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:所述初始下行BWP上的第一SSB关联第一上行BWP,其中,所述第一SSB是所述网络设备在所述初始下行BWP上发送的SSB;
    所述方法还包括以下情况中的至少一种:
    在Type-1随机接入过程中,所述网络设备通过所述第一上行BWP上的第一RO检测消息1对应的第一物理随机接入信道PRACH;
    在Type-2随机接入过程中,所述网络设备通过所述第一上行BWP上的第一RO检测消息A对应的第一PRACH,通过所述第一上行BWP上的第一PO检测消息A对应的第一PUSCH,其中,所述第一PO与所述第一RO关联;
    在Type-2随机接入过程中,所述网络设备通过所述第一上行BWP上的第一RO检测消息A对应的第一PRACH。
  27. 如权利要求15至26中任一项所述的方法,其特征在于,在所述第一关联关系中,所述初始下行BWP上的至少两个SSB关联不同的上行BWP,包括:所述初始下行BWP上的第一SSB关联第一上行BWP,其中,所述第一SSB是所述网络设备在所述初始下行BWP上发送的SSB;
    所述方法还包括以下情况中的至少一种:
    在Type-1随机接入过程中,所述网络设备通过所述第一上行BWP上的第一PUSCH资源接收消息3对应的第一PUSCH,其中,所述第一PUSCH资源是所述网络设备通过消息2对应的随机接入响应RAR中的上行授权信息指示的;或者,
    在Type-2随机接入过程中,所述网络设备通过所述第一上行BWP上的第一物理上行控制信道PUCCH资源接收消息B对应的第一PUCCH,其中,所述第一PUCCH资源是所述网络设备通过所述消息B对应的RAR指示的;或者,
    在Type-2随机接入过程中,所述网络设备通过所述第一上行BWP上的第一PUSCH资源接收消息B对应的第一PUSCH,其中,所述第一PUSCH资源是所述网络设备通过所述消息B对应的回退RAR中的上行授权信息指示的。
  28. 如权利要求15至27中任一项所述的方法,其特征在于,在所述第二关联关系中,所述初始下行BWP关联的公共搜索空间集合在所述初始下行BWP上,
    所述方法还包括以下情况中的至少一种:
    所述公共搜索空间集合包括Type0-PDCCH CSS集合,所述网络设备通过所述初始下行BWP上的所述Type0-PDCCH CSS集合中的资源发送***消息-无线网络临时标识SI-RNTI加扰的PDCCH;
    所述公共搜索空间集合包括Type0A-PDCCH CSS集合,所述网络设备通过所述初始下行BWP上的所述Type0A-PDCCH CSS集合中的资源发送SI-RNTI加扰的PDCCH;
    所述公共搜索空间集合包括Type1-PDCCH CSS集合,所述网络设备通过所述初始下行BWP上的所述Type1-PDCCH CSS集合中的资源发送随机接入-无线网络临时标识RA-RNTI、消息B-无线网络临时标识MsgB-RNTI、或临时小区-无线网络临时标识TC-RNTI加扰的PDCCH;
    所述公共搜索空间集合包括Type2-PDCCH CSS集合,所述网络设备通过所述初始下行BWP上的所述Type2-PDCCH CSS集合中的资源发送寻呼-无线网络临时标识P-RNTI加扰的PDCCH。
  29. 如权利要求15至27中任一项所述的方法,其特征在于,在所述第二关联关系中,所述初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在所述初始下行BWP上,包括:所述初始下行BWP上的第一SSB关联的公共搜索空间集合在第一下行BWP,所述第一下行BWP和所述初始下行BWP是不同的下行BWP,其中,所述第一SSB是所述网络设备在所述初始下行BWP上发送的SSB;
    所述方法还包括以下情况中的至少一种:
    所述公共搜索空间集合包括Type0-PDCCH CSS集合,所述网络设备通过所述第一下行BWP上的所述Type0-PDCCH CSS集合中的资源发送SI-RNTI加扰的PDCCH;
    所述公共搜索空间集合包括Type0A-PDCCH CSS集合,所述网络设备通过所述第一下行BWP上的所述Type0A-PDCCH CSS集合中的资源发送SI-RNTI加扰的PDCCH;
    所述公共搜索空间集合包括Type1-PDCCH CSS集合,所述网络设备通过所述第一下行BWP上的所述Type1-PDCCH CSS集合中的资源发送RA-RNTI、MsgB-RNTI、或TC-RNTI加扰的PDCCH;
    所述公共搜索空间集合包括Type2-PDCCH CSS集合,所述网络设备通过所述第一下行BWP上的所述 Type2-PDCCH CSS集合中的资源发送P-RNTI加扰的PDCCH。
  30. 一种终端设备,其特征在于,包括:
    处理单元,用于根据第一关联关系和/或第二关联关系进行初始接入,所述第一关联关系包括初始下行带宽部分BWP与上行BWP的关联关系,所述第二关联关系包括公共搜索空间集合与下行BWP的关联关系;其中,
    在所述第一关联关系中,初始下行BWP关联初始上行BWP,和/或,初始下行BWP上的至少两个同步信号块SSB关联不同的上行BWP;
    在所述第二关联关系中,初始下行BWP关联的公共搜索空间集合在所述初始下行BWP上,或者,初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在所述初始下行BWP上。
  31. 一种网络设备,其特征在于,包括:
    通信单元,用于向终端设备发送第一信息,所述第一信息用于确定所述终端设备进行初始接入的第一关联关系和/或第二关联关系,所述第一关联关系包括初始下行带宽部分BWP与上行BWP的关联关系,所述第二关联关系包括公共搜索空间集合与下行BWP的关联关系;其中,
    在所述第一关联关系中,初始下行BWP关联初始上行BWP,和/或,初始下行BWP上的至少两个同步信号块SSB关联不同的上行BWP;
    在所述第二关联关系中,初始下行BWP关联的公共搜索空间集合在所述初始下行BWP上,或者,初始下行BWP上的至少一个SSB关联的公共搜索空间集合不在所述初始下行BWP上。
  32. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至14中任一项所述的方法。
  33. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求15至29中任一项所述的方法。
  34. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至14中任一项所述的方法。
  35. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求15至29中任一项所述的方法。
  36. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求15至29中任一项所述的方法。
  38. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至14中任一项所述的方法。
  39. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求15至29中任一项所述的方法。
  40. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法。
  41. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求15至29中任一项所述的方法。
PCT/CN2021/073671 2021-01-25 2021-01-25 初始接入方法、终端设备和网络设备 WO2022155976A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/073671 WO2022155976A1 (zh) 2021-01-25 2021-01-25 初始接入方法、终端设备和网络设备
CN202180072796.XA CN116420419A (zh) 2021-01-25 2021-01-25 初始接入方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073671 WO2022155976A1 (zh) 2021-01-25 2021-01-25 初始接入方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2022155976A1 true WO2022155976A1 (zh) 2022-07-28

Family

ID=82549224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073671 WO2022155976A1 (zh) 2021-01-25 2021-01-25 初始接入方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN116420419A (zh)
WO (1) WO2022155976A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565830A (zh) * 2017-06-16 2019-04-02 Lg 电子株式会社 用于收发下行链路信道的方法及其装置
US20190261425A1 (en) * 2018-02-17 2019-08-22 Kyungmin Park Bandwidth Part Configuration Information
CN111212449A (zh) * 2018-11-22 2020-05-29 ***通信有限公司研究院 一种随机接入方法、终端及网络侧设备
CN111971925A (zh) * 2018-04-06 2020-11-20 联想(新加坡)私人有限公司 配置带宽部分

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565830A (zh) * 2017-06-16 2019-04-02 Lg 电子株式会社 用于收发下行链路信道的方法及其装置
US20190261425A1 (en) * 2018-02-17 2019-08-22 Kyungmin Park Bandwidth Part Configuration Information
CN111971925A (zh) * 2018-04-06 2020-11-20 联想(新加坡)私人有限公司 配置带宽部分
CN111212449A (zh) * 2018-11-22 2020-05-29 ***通信有限公司研究院 一种随机接入方法、终端及网络侧设备

Also Published As

Publication number Publication date
CN116420419A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US20220159732A1 (en) Random access method and device
WO2022016376A1 (zh) 随机接入信息的处理方法、终端和网络设备
EP4207873A1 (en) Network slicing information processing method, terminal device, and network device
WO2022017118A1 (zh) 一种用于随机接入的方法及通信装置
US20230328707A1 (en) Resource determination method, terminal device, and network device
WO2021196232A1 (zh) 物理信道的资源映射方法、终端设备和网络设备
US20230156804A1 (en) Rach procedures for non-terrestrial networks for user equipment
WO2022027387A1 (en) Rach procedures for non-terrestrial networks for base station
WO2022067519A1 (zh) 随机接入方法和终端设备
US20230231661A1 (en) Channel transmission method, terminal device and network device
US20240040627A1 (en) Wireless comminication method, and electronic device
US20230042104A1 (en) Wireless communication method, terminal device, and network device
EP4271108A1 (en) Method for transmitting data channel, terminal device and network device
WO2022155976A1 (zh) 初始接入方法、终端设备和网络设备
WO2022040867A1 (zh) 随机接入的方法、终端设备和网络设备
WO2022067614A1 (zh) 无线通信方法、终端设备和网络设备
CN117859407A (zh) 无线通信的方法、终端设备和网络设备
WO2023077456A1 (zh) 随机接入的方法、终端设备和网络设备
WO2023130467A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023050335A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024036538A1 (zh) 重复传输方法、终端设备和网络设备
WO2022236965A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024119317A1 (zh) 无线通信的方法和终端设备
WO2023151508A1 (zh) 通信方法与装置、终端设备和网络设备
WO2022246588A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920368

Country of ref document: EP

Kind code of ref document: A1