WO2022255272A1 - Aqueous resin composition, coating film, coating film production method, and aqueous resin composition set - Google Patents

Aqueous resin composition, coating film, coating film production method, and aqueous resin composition set Download PDF

Info

Publication number
WO2022255272A1
WO2022255272A1 PCT/JP2022/021819 JP2022021819W WO2022255272A1 WO 2022255272 A1 WO2022255272 A1 WO 2022255272A1 JP 2022021819 W JP2022021819 W JP 2022021819W WO 2022255272 A1 WO2022255272 A1 WO 2022255272A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous resin
resin composition
mass
copolymer
meth
Prior art date
Application number
PCT/JP2022/021819
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 葛谷
直樹 村田
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN202280038918.8A priority Critical patent/CN117396555A/en
Priority to JP2023525797A priority patent/JPWO2022255272A1/ja
Priority to KR1020237041915A priority patent/KR20240016291A/en
Publication of WO2022255272A1 publication Critical patent/WO2022255272A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/022Emulsions, e.g. oil in water
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1668Vinyl-type polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Definitions

  • the present invention relates to an aqueous resin composition, a coating film, a method for producing the same, and an aqueous resin composition set.
  • metal products In general, the surface of metal products is surface-treated.
  • metal products used outdoors and metal products expected to be exposed to moisture are often surface-coated in order to prevent the generation of rust.
  • Patent Document 1 describes a coating composition for thick coating containing an emulsion composition in which polymer particles are dispersed in an aqueous medium and an aggregate.
  • the polymer particles described in Patent Document 1 are composed of a structural unit obtained by polymerizing an alkyl (meth)acrylate monomer having an alkyl group having 4 to 14 carbon atoms, and an ethylenically unsaturated carboxylic acid monomer. and a structural unit obtained by polymerizing other monomers, in the presence of a compound having at least two epoxy groups in one molecule and a basic catalyst, by emulsion polymerization. is.
  • Patent Document 2 describes a composition comprising an aqueous dispersion of thermoplastic polymer particles imbibed with a thermosetting compound having oxirane groups.
  • US Pat. No. 6,200,001 describes that the polymer particles have a sufficient concentration of anti-aggregating functional groups to stabilize the latex against aggregation.
  • Patent Document 3 describes forming an acrylate resin (acrylic/epoxy latex) that absorbs an epoxy compound by mixing an epoxy emulsion with an emulsion of an acrylate resin.
  • a coating film formed using a paint containing an aqueous resin composition develops water resistance as the curing reaction of the resin contained in the coating progresses. For this reason, after the coating containing the water-based resin composition is applied to the metal product to form a coating film, before it fully cures, moisture due to rainfall etc. will penetrate the metal surface through the uncured coating film. There was a risk of reaching and rusting. For this reason, aqueous resin compositions used for the above applications are required to be hardened by curing at room temperature for a short period of time and capable of forming coating films exhibiting superior initial water resistance.
  • the present invention has been made in view of the above circumstances, and provides a coating film that can be cured at room temperature for a short period of time to form a coating film that has excellent initial water resistance, and that has good wet heat adhesion to metal materials.
  • An object of the present invention is to provide an aqueous resin composition and an aqueous resin composition set to be obtained.
  • Another object of the present invention is to provide a coating film comprising a cured product of the aqueous resin composition of the present invention, and a method for producing the coating film.
  • the present invention provides a composition of the following first aspect.
  • an aqueous resin emulsion ( ⁇ ); a curing agent ( ⁇ ); and a curing accelerator ( ⁇ ) comprises a copolymer (X), a polyepoxy compound (Y) having no ethylenically unsaturated bonds and having two or more epoxy groups in one molecule, and an aqueous medium (Z ), including
  • the content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 1 to 40% by mass
  • the copolymer (X) contains a structural unit derived from (meth)acrylic acid ester (A) and a structural unit derived from ethylenically unsaturated carboxylic acid (B), The content of structural units derived from the (meth)acrylic acid ester (A) with respect to the total amount of the copolymer (X) and the polyepoxy
  • the first aspect of the present invention has the following features. Combinations of two or more of the following features are also preferred.
  • [2] The water-based resin composition according to [1], wherein the (meth)acrylic acid ester (A) comprises a (meth)acrylic acid alkyl ester.
  • the ethylenically unsaturated carboxylic acid (B) is at least one selected from the group consisting of ⁇ , ⁇ -unsaturated monocarboxylic acids, ⁇ , ⁇ -unsaturated dicarboxylic acids, and vinyl compounds containing a carboxy group.
  • the aqueous resin composition according to [1] or [2] which contains seeds.
  • the polyepoxy compound (Y) is selected from bisphenol-type epoxy compounds, hydrogenated bisphenol-type epoxy compounds, diglycidyl ethers, triglycidyl ethers, tetraglycidyl ethers, diglycidyl esters, triglycidyl esters, and tetraglycidyl esters.
  • the aqueous resin composition according to any one of [1] to [3], which is at least one kind.
  • the copolymer (X) comprises a structural unit derived from the (meth)acrylic acid ester (A) and a structural unit derived from the ethylenically unsaturated carboxylic acid (B), [1] to [4 ] The water-based resin composition according to any one of the above.
  • the copolymer (X) includes a structural unit derived from an ethylenically unsaturated aromatic compound (C) having a benzene ring and an ethylenically unsaturated bond, any one of [1] to [4] The aqueous resin composition described. [7] The aqueous resin composition according to [6], wherein the ethylenically unsaturated aromatic compound (C) is an aromatic vinyl compound.
  • a 2 and A 3 each independently represent a 1,2-phenylene group, a 1,3-phenylene group, or a 1,4-phenylene group; n is an integer of 1 to 12; show.
  • the curing accelerator ( ⁇ ) is at least one compound selected from the group consisting of tertiary aliphatic amines, tertiary alicyclic amines, and tertiary heteroaromatic amines, [1 ]
  • the water-based resin composition according to any one of [10].
  • the water-based resin emulsion ( ⁇ ) is obtained by emulsion polymerization of monomers that form the structural units of the copolymer (X) in the aqueous medium (Z) in the presence of the polyepoxy compound (Y).
  • the aqueous resin composition according to any one of [1] to [11], which is an emulsion.
  • a second aspect of the present invention provides a coating film as described below.
  • a coating film comprising a cured product of the aqueous resin composition according to any one of [1] to [14].
  • a third aspect of the present invention provides the manufacturing method described below.
  • the aqueous resin composition according to any one of [1] to [14] is prepared by mixing the aqueous resin emulsion ( ⁇ ), the curing agent ( ⁇ ), and the curing accelerator ( ⁇ ). a mixing step of A method for producing a coating film, comprising a coating step of applying the water-based resin composition to a surface to be coated.
  • the manufacturing method of the third aspect of the present invention preferably has the following features. [17] The method for producing a coating film according to [16], wherein the coating step is completed within 1 hour after the mixing step is completed.
  • a fourth aspect of the present invention provides an aqueous resin composition set described below.
  • the constituent components of the aqueous resin composition according to any one of [1] to [14] are stored separately in a first liquid and a second liquid,
  • the first liquid contains the aqueous resin emulsion ( ⁇ )
  • a water-based resin composition and a water-based resin that can be cured at room temperature for a short period of time to form a coating film having excellent initial water resistance and that can provide a coating film having good wet heat adhesion to metal materials.
  • a composition set can be provided. Further, according to the present invention, it is possible to provide a coating film comprising a cured product of the aqueous resin composition of the present invention and having good initial water resistance and wet heat adhesion to metal materials. Further, according to the present invention, it is possible to provide a method for producing a coating film comprising a cured product of the aqueous resin composition of the present invention.
  • aqueous resin composition Preferred examples of the aqueous resin composition, the coating film, the method for producing the coating film, and the aqueous resin composition set of the present invention are described below in detail.
  • this invention is not limited only to embodiment shown below.
  • the number, type, position, amount, ratio, material, configuration, etc. can be added, omitted, replaced, changed, etc. without departing from the gist of the present invention.
  • (Meth)acrylate means acrylate or methacrylate.
  • (meth)acryl means acryl or methacryl.
  • “Ethylenically unsaturated bond” means a double bond between carbon atoms, excluding carbon atoms forming an aromatic ring.
  • Weight average molecular weight is a standard polystyrene conversion value measured by gel permeation chromatography (GPC).
  • the structural unit derived from the compound having an ethylenically unsaturated bond includes the chemical structure of the portion other than the ethylenically unsaturated bond in the compound, and the It may mean a unit having the same chemical structure as the portion other than the portion corresponding to the ethylenically unsaturated bond of the structural unit in the polymer.
  • the ethylenically unsaturated bonds of the compounds may be converted to single bonds when forming the polymer.
  • the structural unit derived from methyl methacrylate is represented by -CH 2 -C(CH 3 )(COOCH 3 )-.
  • a structural unit (b) derived from an ethylenically unsaturated carboxylic acid (B) described later for structural units having an ionic functional group such as a carboxy group, whether or not part of the functional group is ion-exchanged, the structural unit derived from the same ionic compound may be
  • a structural unit represented by —CH 2 —C(CH 3 )(COONa)— may also be considered as a structural unit derived from methacrylic acid.
  • one or more ethylenically unsaturated bonds may remain inside the structural unit as the structural unit of the polymer of the compound.
  • Multiple independent ethylenically unsaturated bonds may mean multiple ethylenically unsaturated bonds that do not form a conjugated diene with each other.
  • the structural unit derived from divinylbenzene has a structure that does not have an ethylenically unsaturated bond (the portions corresponding to the two ethylenically unsaturated bonds of divinylbenzene are both polymer chains It may be a form incorporated in), or a structure having one ethylenically unsaturated bond (a form in which only the portion corresponding to one ethylenically unsaturated bond is incorporated into the polymer chain).
  • the “Curing” means that the molecules contained in the raw material bond with each other through a chemical reaction to form a polymer with a network structure.
  • the “coating film” is composed of a cured product formed by curing the resin component contained in the aqueous resin composition of the present embodiment, and a method such as applying the aqueous resin composition to the surface to be coated and drying the medium. It is integrated with the surface to be coated obtained by.
  • the "film” is composed of a cured product formed by curing the resin component contained in the aqueous resin composition of the present embodiment, and is peeled off from the substrate after curing on the substrate.
  • the aqueous resin composition of the present embodiment contains an aqueous resin emulsion ( ⁇ ), a curing agent ( ⁇ ), and a curing accelerator ( ⁇ ).
  • the aqueous resin composition of the present embodiment is produced by mixing an aqueous resin emulsion ( ⁇ ), a curing agent ( ⁇ ), and a curing accelerator ( ⁇ ), as described later.
  • the aqueous resin emulsion ( ⁇ ) comprises a copolymer (X), a polyepoxy compound (Y) having no ethylenically unsaturated bonds and having two or more epoxy groups in one molecule, and an aqueous medium (Z).
  • the water-based resin emulsion ( ⁇ ) is an emulsion obtained by emulsion polymerization of monomers that form the structural units of the copolymer (X) in the presence of the polyepoxy compound (Y) in the water-based medium (Z).
  • the water-based resin emulsion ( ⁇ ) is mixed with a curing agent ( ⁇ ) and a curing accelerator ( ⁇ ) described below and cured to form a cured product having high strength and high elongation.
  • copolymer (X) has a structural unit (a) derived from the (meth)acrylic acid ester (A) and a structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B).
  • the structural unit (a) derived from the (meth)acrylate (A) contains the structural unit (a1) derived from the hydrophilic (meth)acrylate (A1).
  • the copolymer (X) may consist of structural units (a) and structural units (b) (referred to as copolymer (X1)).
  • the copolymer (X) comprises a structural unit (a), a structural unit (b), and a structural unit (c) derived from an ethylenically unsaturated aromatic compound (C) having a benzene ring and an ethylenically unsaturated bond. ) and (referred to as a copolymer (X2)).
  • the copolymer (X2) may consist of structural units (a) to (c) only.
  • the copolymer (X) may have a structural unit (d) other than the structural units (a) to (c) (which is assumed to be a structural unit derived from another monomer (D)).
  • the amount of the copolymer (X) contained in the aqueous resin emulsion ( ⁇ ) can be arbitrarily selected. It is more preferably 25% by mass or more, and more preferably 25% by mass or more.
  • the amount of the copolymer (X) contained in the aqueous resin emulsion ( ⁇ ) can be arbitrarily selected, but it is preferably 60% by mass or less, preferably 50% by mass, based on the total amount of the aqueous resin emulsion ( ⁇ ). It is more preferably 40% by mass or less, more preferably 40% by mass or less. However, it is not limited only to these examples.
  • the content of the copolymer (X) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) described later is preferably 50% by mass or more, and preferably 60% by mass or more. More preferably, it is 65% by mass or more.
  • the content of the copolymer (X) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) described later is preferably 99% by mass or less, and preferably 94% by mass or less. More preferably, it is 88% by mass or less.
  • the (meth)acrylic acid ester (A) preferably contains a (meth)acrylic acid alkyl ester, and more preferably consists of a (meth)acrylic acid alkyl ester.
  • a (meth)acrylic acid alkyl ester having a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms is more preferable.
  • Specific examples include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, isobornyl (meth)acrylate, and the like. These may be used alone or in combination of two or more.
  • Examples of the (meth)acrylic acid ester (A) may also include examples of the hydrophilic (meth)acrylic acid ester (A1) described later.
  • a (meth)acrylic acid ester having a carboxy group is not included in the (meth)acrylic acid ester (A), but is included in the ethylenically unsaturated carboxylic acid (B) described below.
  • the (meth)acrylic acid ester (A) preferably contains a compound with low hydrophilicity. This is because the rust prevention property of the coating film made of the cured product of the aqueous resin composition of the present embodiment is improved. For the same reason, the (meth)acrylic acid ester (A) may also contain a (meth)acrylic acid ester having an epoxy group.
  • Examples of (meth)acrylic acid esters having an epoxy group include glycidyl (meth)acrylate, ⁇ -methylglycidyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate glycidyl ether, and 3,4-epoxycyclohexyl.
  • Examples include methyl (meth)acrylate, 3,4-epoxycyclohexylethyl (meth)acrylate, and 3,4-epoxycyclohexylpropyl (meth)acrylate.
  • Structural unit (a) may contain structural units derived from only one of these compounds, or may contain structural units derived from two or more of these compounds. Furthermore, among these compounds, the structural unit (a) preferably contains a structural unit derived from glycidyl (meth)acrylate.
  • the (meth)acrylic acid ester (A) may be a (meth)acrylic acid ester that is neither an alkyl (meth)acrylic acid ester nor a compound having an epoxy group.
  • examples of such (meth)acrylic acid esters include (meth)acrylic acid esters having a hydroxy group.
  • Examples of (meth)acrylic acid esters having a hydroxy group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, polyethylene glycol Mono(meth)acrylic acid esters, mono(meth)acrylic acid esters of polyalkylene glycol such as mono(meth)acrylic acid esters of polypropylene glycol, and the like. These hydroxy group-containing (meth)acrylic acid esters may be used alone, or two or more of them may be used in combination.
  • the content of the structural unit (a) derived from the (meth)acrylic acid ester (A) is 20% by mass or more with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y). This is because the dispersibility of the monomer of the copolymer (X) and the polyepoxy compound (Y) can be improved in the method for producing the aqueous resin emulsion ( ⁇ ) described later. From this point of view, the content of the structural unit (a) derived from the (meth)acrylic acid ester (A) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 35% by mass or more. is preferred, 45% by mass or more is more preferred, and 60% by mass or more is even more preferred.
  • the content of the structural unit derived from the compound contained in the copolymer may mean a value calculated based on the mass of the compound used as the raw material of the copolymer.
  • the content of the structural unit (a) derived from the (meth)acrylic acid ester (A) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is the total It may mean the mass ratio (% by mass) of the (meth)acrylic acid ester (A) used in the production of the copolymer (X) with respect to the amount.
  • the copolymer (X) is composed of the structural unit (a) and the structural unit (b), i.e., when the copolymer (X1) is a copolymer (X1), a monomer to form the copolymer (X1) and a polyepoxy compound From the viewpoint of improving dispersibility with (Y), the following proportions are preferred. That is, the content of the structural unit (a) derived from the (meth)acrylic acid ester (A) with respect to the total amount of the copolymer (X1) and the polyepoxy compound (Y) is 50% by mass or more. More preferably, it is particularly preferably 60% by mass or more.
  • the content of the structural unit (a) derived from the (meth)acrylic acid ester (A) is 98% by mass or less with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y). This is because if the amount exceeds 98% by mass, the dispersibility of the aqueous resin emulsion ( ⁇ ) tends to decrease. From this point of view, the content of the structural unit (a) derived from the (meth)acrylic acid ester (A) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 92% by mass or less. is preferred, and 87% by mass or less is more preferred.
  • the copolymer (X) has the structural unit (a), the structural unit (b), and the structural unit (c), that is, when the copolymer (X) is the copolymer (X2)
  • the aqueous Since the dispersibility of the resin emulsion ( ⁇ ) tends to decrease, the following proportions are preferred.
  • the content of the structural unit (a) derived from the (meth)acrylic acid ester (A) in the copolymer (X2) is more preferably 75% by mass or less, particularly preferably 65% by mass or less.
  • Hydrophilic (meth)acrylic acid ester (A1) The structural unit derived from the (meth)acrylate (A) includes a structural unit derived from the hydrophilic (meth)acrylate (A1).
  • the number of carbon atoms in the moieties other than the acryloyloxy group may be, for example, 1 or 2.
  • hydrophilic (meth)acrylic acid ester (A1) examples include methyl (meth)acrylate, ethyl (meth)acrylate, and 2-hydroxyethyl (meth)acrylate.
  • the hydrophilic (meth)acrylic acid ester (A1) is preferably an alkyl (meth)acrylic acid ester in which the alcohol-derived moiety has 2 or less carbon atoms, more preferably methyl methacrylate.
  • the content of the structural unit (a1) derived from the hydrophilic (meth)acrylic acid ester (A1) is 15% by mass or more with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y).
  • the content of the structural unit (a1) derived from the hydrophilic (meth)acrylic acid ester (A1) is less than 15% by mass, the aqueous resin emulsion ( ⁇ ), the curing agent ( ⁇ ) containing the aromatic polyamine, This is because gelation proceeds rapidly by mixing with the curing accelerator ( ⁇ ).
  • the content of the structural unit (a1) derived from the hydrophilic (meth)acrylic acid ester (A1) relative to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 15% by mass or more, and 20% by mass. It is preferably at least 30% by mass, more preferably at least 40% by mass. This is because the water resistance and rust resistance of the coating film made of the cured product of the aqueous resin composition of the present embodiment are further improved.
  • the content of the structural unit (a1) may be 45% by mass or more or 50% by mass or more.
  • the upper limit of the content of the structural unit (a1) derived from the hydrophilic (meth)acrylate (A1) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is (meth)acrylate Structural unit derived from (A) is the same as the upper limit of the content described in (a). That is, the upper limit is 98% by mass or less, preferably 92% by mass or less, and more preferably 87% by mass or less.
  • the structural unit (a1 ) is preferably 90% by mass or less, more preferably 80% by mass or less, even more preferably 70% by mass or less, and particularly preferably 60% by mass or less. This is to improve the affinity between the copolymer (X) and the polyepoxy compound (Y).
  • Ethylenically unsaturated carboxylic acid (B) is a compound having an ethylenically unsaturated bond and a carboxy group.
  • Ethylenically unsaturated carboxylic acid (B) includes ⁇ , ⁇ -unsaturated monocarboxylic acid, ⁇ , ⁇ -unsaturated dicarboxylic acid, monoalkyl ester of ⁇ , ⁇ -unsaturated dicarboxylic acid, and vinyl containing a carboxy group. It preferably contains at least one of the group consisting of compounds, and at least It is preferred that one species is included.
  • Examples of ⁇ , ⁇ -unsaturated mono- or dicarboxylic acids include acrylic acid, methacrylic acid, crotonic acid, citraconic acid, itaconic acid, maleic acid, maleic anhydride, and fumaric acid.
  • Examples of vinyl compounds containing a carboxy group include monohydroxyethyl phthalate (meth)acrylate and monohydroxypropyl oxalate (meth)acrylate.
  • Structural unit (b) may be a structural unit derived from only one of these compounds, or may contain structural units derived from two or more of these compounds.
  • the ethylenically unsaturated carboxylic acid (B) includes a compound having a (meth)acryloyl group and a carboxy group, or consists only of a compound having a (meth)acryloyl group and a carboxy group. is preferred. It is also preferable that the ethylenically unsaturated carboxylic acid (B) contains (meth)acrylic acid or consists only of (meth)acrylic acid.
  • Structural unit (b) preferably consists of only structural units derived from a compound having a (meth)acryloyl group and a carboxy group, and further preferably contains structural units derived from (meth)acrylic acid.
  • the content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) is 0.1% by mass or more with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y). This is for improving the dispersibility of the aqueous resin emulsion ( ⁇ ).
  • the content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 0.3% by mass or more. It is preferably 0.5% by mass or more, and more preferably 0.5% by mass or more.
  • the content of the structural unit (b) may be 0.8% by mass or more, or 1.0% by mass or more.
  • the content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) is 10% by mass or less with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y). This is for suppressing gelling of the copolymer (X) in a high-temperature environment and improving the high-temperature stability of the aqueous resin emulsion ( ⁇ ).
  • the content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 7% by mass or less. is preferable, and it is more preferably 5% by mass or less.
  • the content of the structural unit (b) may be 4% by mass or less, or 3% by mass or less.
  • the content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) with respect to the total amount of the copolymer (X) is preferably 0.2% by mass or more, and 0.5% by mass. It is more preferably 0.8% by mass or more, and more preferably 0.8% by mass or more.
  • the content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) with respect to the total amount of the copolymer (X) is preferably 12% by mass or less, more preferably 8% by mass or less. It is preferably 5% by mass or less, more preferably 3% by mass or less.
  • the ethylenically unsaturated aromatic compound (C) is neither a (meth)acrylic acid ester (A) nor an ethylenically unsaturated carboxylic acid (B), and has a benzene ring and an ethylenically unsaturated bond. is a compound.
  • the ethylenically unsaturated aromatic compound (C) is preferably an aromatic vinyl compound.
  • aromatic vinyl compound as the ethylenically unsaturated aromatic compound (C) examples include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4-tert-butylstyrene, tert-butoxystyrene, vinyltoluene, divinyltoluene, vinylnaphthalene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromostyrene, tribromostyrene, fluorostyrene, styrene sulfone acids and salts thereof, ⁇ -methylstyrenesulfonic acid and salts thereof, p-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene, p-isoprop
  • Structural unit (c) may be derived from only one of these compounds, or may include structural units derived from two or more of these compounds.
  • the structural unit (c) is more preferably composed of a structural unit derived from a hydrocarbon, and particularly preferably a structural unit derived from styrene.
  • the copolymer (X) contains the structural unit (c) derived from the ethylenically unsaturated aromatic compound (C), i.e. when the copolymer (X) is the copolymer (X2)
  • the copolymer The content of structural unit (c) with respect to the total amount of (X2) and polyepoxy compound (Y) is preferably 5% by mass or more. This is for improving the water resistance of the coating film made of the cured product of the aqueous resin composition of the present embodiment. From this point of view, the content of the structural unit (c) with respect to the total amount of the copolymer (X2) and the polyepoxy compound (Y) is more preferably 10% by mass or more, and more preferably 15% by mass or more. is even more preferred.
  • the content of structural unit (c) may be 18% by mass or more, 20% by mass or more, or 23% by mass or more.
  • the content of the structural unit (c) with respect to the total amount of the copolymer (X2) and the polyepoxy compound (Y) is 50% by mass or less.
  • the content of the structural unit (c) with respect to the total amount of the copolymer (X2) and the polyepoxy compound (Y) is more preferably 40% by mass or less, more preferably 35% by mass or less. is more preferred.
  • the content of structural unit (c) may be 33% by mass or less, 30% by mass or less, or 28% by mass or less.
  • the content of the structural unit (c) with respect to the total amount of the copolymer (X2) is preferably 5% by mass or more, more preferably 15% by mass or more, and further preferably 25% by mass or more. preferable.
  • the content of the structural unit (c) with respect to the total amount of the copolymer (X2) is preferably 55% by mass or less, more preferably 45% by mass or less, and further preferably 35% by mass or less. preferable.
  • the other monomer (D) is none of the (meth)acrylic acid ester (A), the ethylenically unsaturated carboxylic acid (B), and the ethylenically unsaturated aromatic compound (C), and It is a compound having an ethylenically unsaturated bond that can be copolymerized with the compound used for synthesizing the copolymer (X).
  • Other monomers (D) include, for example, conjugated diene compounds, maleimide compounds, vinyl ether compounds, allyl ether compounds, dialkyl esters of unsaturated dicarboxylic acids, and vinyl compounds having a cyano group.
  • conjugated diene compound examples include 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), 2,3-dimethyl-1,3 butadiene, and chloroprene (2-chloro-1,3-butadiene). etc. These conjugated diene compounds may be used alone or in combination of two or more.
  • maleimide compound examples include maleimide, N-methylmaleimide, N-isopropylmaleimide, N-butylmaleimide, N-dodecylmaleimide, N-phenylmaleimide, N-(2-methylphenyl)maleimide, N-(4- methylphenyl)maleimide, N-(2,6-dimethylphenyl)maleimide, N-(2,6-diethylphenyl)maleimide, N-(2-methoxyphenyl)maleimide, N-benzylmaleimide, N-(4-hydroxy phenyl)maleimide, N-naphthylmaleimide, N-cyclohexylmaleimide and the like. These maleimide compounds may be used alone or in combination of two or more.
  • vinyl ether compound examples include alkyl vinyl ethers such as methyl vinyl ether and ethyl vinyl ether, and hydroxyl group-containing alkyl vinyl ethers in which some hydrogen atoms are substituted with hydroxyl groups.
  • allyl ether compounds include allyl alkyl ethers such as allyl methyl ether and allyl ethyl ether, hydroxyl group-containing allyl alkyl ethers in which some hydrogen atoms are substituted with hydroxyl groups, and allyl glycidyl ethers.
  • dialkyl esters of unsaturated dicarboxylic acids include unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, maleic anhydride, itaconic anhydride, citraconic anhydride, and tetrahydrophthalic anhydride. dialkyl esters of These dialkyl esters of unsaturated dicarboxylic acids may be used alone or in combination of two or more.
  • vinyl compounds having a cyano group examples include acrylonitrile, methacrylonitrile, ⁇ -ethylacrylonitrile, ⁇ -isopropylacrylonitrile, ⁇ -chloroacrylonitrile, and ⁇ -fluoroacrylonitrile. These cyano group-containing vinyl monomers may be used alone or in combination of two or more.
  • Polyepoxy compound (Y) is a compound having no ethylenically unsaturated bond and having two or more epoxy groups in one molecule.
  • the polyepoxy compound (Y) is at least one selected from bisphenol-type epoxy compounds, hydrogenated bisphenol-type epoxy compounds, diglycidyl ethers, triglycidyl ethers, tetraglycidyl ethers, diglycidyl esters, triglycidyl esters, and tetraglycidyl esters. Seeds are preferred.
  • Examples of compounds having two or more epoxy groups in one molecule include diglycidyl ether of bisphenol A, diglycidyl ether of hydrogenated bisphenol A, diglycidyl ether of bisphenol F, diglycidyl ether of hydrogenated bisphenol F, and glycerin.
  • the polyepoxy compound (Y) is more preferably a bisphenol type epoxy compound or a hydrogenated bisphenol type epoxy compound, more preferably a bisphenol A type epoxy compound or a hydrogenated bisphenol A type epoxy compound. Epoxy compounds are more preferred. This is because the water resistance and rust resistance of the coating film made of the cured product of the aqueous resin composition of the present embodiment are further improved.
  • the weight average molecular weight of the polyepoxy compound (Y) is not particularly limited, it is preferably 1000 or less, more preferably 800 or less, and still more preferably 500 or less.
  • the compatibility of the polyepoxy compound (Y) with the copolymer (X) is improved, and an aqueous resin emulsion ( ⁇ ) having excellent dispersibility and storage stability can be obtained.
  • the lower limit of the weight-average molecular weight of the polyepoxy compound (Y) can be arbitrarily selected, and may be, for example, 200 or 300, but is not limited to these.
  • the epoxy equivalent of the polyepoxy compound (Y) (mass of the polyepoxy compound (Y) per 1 mol of epoxy group) is preferably 500 g/mol or less, more preferably 350 g/mol or less, and 250 g/mol. It is more preferably 200 g/mol or less, particularly preferably 200 g/mol or less. This is because the strength of the film made of the cured product of the aqueous resin composition of the present embodiment is increased.
  • the lower limit of the epoxy equivalent can be arbitrarily selected, and may be, for example, 70 g/mol or more, or 120 g/mol or more, but is not limited to these examples.
  • the content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 1% by mass or more. This is because a coating film having excellent rust resistance can be obtained by curing the aqueous resin composition. From this point of view, the content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 5% by mass or more, and 8% by mass or more. is more preferable, and 10% by mass or more is even more preferable. If necessary, it may be 12% by mass or more, or 20% by mass or more.
  • the content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 40% by mass or less. This is because a highly dispersible aqueous resin emulsion ( ⁇ ) can be obtained. From this point of view, the content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 35% by mass or less, more preferably 30% by mass or less. is more preferred.
  • the amount of the polyepoxy compound (Y) contained in the aqueous resin emulsion ( ⁇ ) is preferably 1% by mass or more, more preferably 3% by mass or more, relative to the total amount of the aqueous resin emulsion ( ⁇ ). It is preferably 4% by mass or more, and more preferably 4% by mass or more.
  • the amount of the polyepoxy compound (Y) contained in the aqueous resin emulsion ( ⁇ ) is preferably 30% by mass or less, more preferably 20% by mass or less, relative to the total amount of the aqueous resin emulsion ( ⁇ ). It is preferably 15% by mass or less, and more preferably 15% by mass or less.
  • Aqueous medium (Z) > Any aqueous medium (Z) can be selected, and water is preferably used. However, as long as the dispersibility of the copolymer (X) and the polyepoxy compound (Y) is not impaired, for example, water to which a water-soluble solvent has been added may be used as the aqueous medium (Z).
  • the hydrophilic (water-soluble) solvent to be added to water can be arbitrarily selected, and examples thereof include methanol, ethanol, N-methylpyrrolidone, and the like.
  • the amount of the aqueous medium (Z) in the aqueous resin emulsion ( ⁇ ) can be selected as necessary, but it is preferably an amount such that the concentration of non-volatile matter in the aqueous resin emulsion ( ⁇ ) is 20% by mass or more. , more preferably 30% by mass or more, more preferably 40% by mass or more.
  • the amount of the aqueous medium (Z) in the aqueous resin emulsion ( ⁇ ) can be selected as required, but is preferably 80% by mass or less, more preferably 70% by mass or less.
  • the concentration of nonvolatile matter in the aqueous resin emulsion ( ⁇ ) may be 50 to 70% by mass, or 55 to 65% by mass.
  • a method for producing an aqueous resin emulsion ( ⁇ ) comprises a monomer containing a (meth)acrylic acid ester (A) and an ethylenically unsaturated carboxylic acid (B) in the presence of a polyepoxy compound (Y). (That is, the monomers for constituting the copolymer (X)) can be emulsion-polymerized in the aqueous medium (Z).
  • the content of each raw material in the total raw materials used for the production of the aqueous resin emulsion ( ⁇ ) is the same as the content of the structural unit derived from the raw material or the compound corresponding to the raw material in the aqueous resin emulsion ( ⁇ ). .
  • Emulsion polymerization in the method for producing the aqueous resin emulsion ( ⁇ ) of the present embodiment, a method of collectively charging each component including a monomer, a method of polymerizing while continuously supplying each component, and the like can be used. Stirring is preferred during the polymerization reaction.
  • Emulsion polymerization is preferably carried out at an arbitrarily selected temperature, for example, a temperature of 30 to 90°C, more preferably a temperature of 40 to 80°C, and even more preferably a temperature of 40 to 70°C. . This is to prevent the carboxy group contained in the monomer from reacting with the epoxy group contained in the polyepoxy compound (Y).
  • An emulsifier may be used for emulsion polymerization.
  • the emulsifier to be used can be arbitrarily selected, for example, nonionic surfactants such as polyoxyalkylene alkyl ethers, polyoxyalkylene alkylphenol ethers, polyoxyalkylene fatty acid esters, polyoxyalkylene sorbitan fatty acid esters, alkyl sulfate salts, alkyl benzene
  • Anionic surfactants such as sulfonates, alkyl sulfosuccinates, alkyl diphenyl ether disulfonates, polyoxyalkylene alkyl sulfates, and polyoxyalkylene alkyl phosphates are included. These may be used individually by 1 type, and may be used in combination of 2 or more type. Preferred as these emulsifiers are alkylbenzenesulfonates, more preferably sodium dodecylbenzenesulfonate.
  • a polymerization initiator In emulsion polymerization, it is preferable to use a polymerization initiator.
  • the polymerization initiator it is preferable to use, for example, a peroxide.
  • peroxides used as polymerization initiators include persulfates such as potassium persulfate and ammonium persulfate, and hydrogen peroxide.
  • a redox initiator can also be used in combination with a peroxide and a reducing agent.
  • reducing agents include sodium sulfoxylate formaldehyde, ascorbic acid, sulfites, tartaric acid and salts thereof. Alcohols and mercaptans may also be used as chain transfer agents, if necessary.
  • an aqueous resin emulsion ( ⁇ ) in which the polyepoxy compound (Y) is uniformly dispersed in the particles of the copolymer (X) produced is obtained.
  • uniformly dispersed does not necessarily mean that the copolymer (X) and the polyepoxy compound (Y) are compatible with each other. and the surface side, the domains of the polyepoxy compound (Y) should be present evenly.
  • the pH of the aqueous resin emulsion ( ⁇ ) is preferably 2-10, more preferably 5-9. When the pH is within this range, the mechanical stability and chemical stability of the aqueous resin emulsion ( ⁇ ) can be improved.
  • the pH is a value measured at a liquid temperature of 25° C. using a pH meter with a hydrogen ion concentration indicator using a glass electrode as a standard electrode.
  • the pH can be adjusted by adding a basic substance to the aqueous resin emulsion ( ⁇ ) during or after emulsion polymerization. Examples of basic substances used for pH adjustment include ammonia, triethylamine, ethanolamine, caustic soda, and the like. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Non-volatile content concentration of aqueous resin emulsion ( ⁇ ) The non-volatile content concentration of the aqueous resin emulsion ( ⁇ ) is preferably 10 to 65% by mass, more preferably 15 to 60% by mass, and more preferably 20 to 55% by mass. The nonvolatile content concentration may be 30 to 50% by mass, or 35 to 45% by mass.
  • the concentration of non-volatile matter in the water-based resin emulsion ( ⁇ ) is determined in the step of mixing the water-based resin emulsion ( ⁇ ), the curing agent ( ⁇ ), the curing accelerator ( ⁇ ), etc. described later, or in the coating step of the water-based resin composition. It can be determined as appropriate in consideration of workability.
  • the concentration of non-volatile matter in the aqueous resin emulsion ( ⁇ ) can be appropriately adjusted by adjusting the amount of the aqueous medium (Z) added.
  • the non-volatile content concentration of the aqueous resin emulsion ( ⁇ ) was determined by the method shown below. 1 g of the water-based resin emulsion ( ⁇ ) was weighed into an aluminum dish with a diameter of 5 cm, dried at 105° C. for 1 hour at atmospheric pressure in a drier while air was circulated, and then the mass of the resulting residue was measured. . The ratio (% by mass) of the measured mass of the residue to the mass of the water-based resin emulsion ( ⁇ ) before drying was determined as the non-volatile content of the water-based resin emulsion ( ⁇ ).
  • the viscosity of the aqueous resin emulsion ( ⁇ ) is measured at 23°C.
  • the viscosity of the water-based resin emulsion ( ⁇ ) was measured using a Brookfield viscometer at a rotational speed of 60 rpm with a rotor selected according to the viscosity of the water-based resin emulsion.
  • rotor No. Measured using 1.
  • the viscosity may be, for example, 0.1 to 300 mPa ⁇ s, 1 to 100 mPa ⁇ s, 3 to 50 mPa ⁇ s, or 5 to 25 mPa ⁇ s. .
  • the glass transition point Tg of the copolymer (X) is calculated based on the glass transition point of the homopolymer of each monomer used to synthesize the copolymer (X).
  • both Tg and Tg i are calculated using absolute temperature (K) values.
  • 1/Tg ⁇ (X i /Tg i ) (1)
  • the glass transition point of the homopolymer used to calculate the Tg the value described in the publicly known document shall be used. Specifically, numerical values are listed in "Polymer Handbook” (3rd edition, John Wiley & Sons, Inc., 1989). For monomers for which multiple types of values are listed in the above Polymer Handbook, the highest value is adopted.
  • the glass transition point Tg of the copolymer (X) is preferably -30°C (243K) or higher. This is because the strength of the film made of the cured product of the aqueous resin composition of the present embodiment is improved. From this point of view, the glass transition point Tg of the copolymer (X) is preferably ⁇ 10° C. (263 K) or higher, more preferably 0° C. (273 K) or higher. The glass transition point Tg of the copolymer (X) may be 5°C or higher, or 10°C or higher. The glass transition point Tg of the copolymer (X) is preferably 100°C (373K) or lower, more preferably 80°C (353K) or lower.
  • the glass transition point Tg of the copolymer (X) is more preferably 60° C. (333 K) or lower, particularly preferably 50° C. (323 K) or lower. This is because in the case of such a range, the flexibility of the coating film made of the cured product of the aqueous resin composition of the present embodiment can be improved.
  • the glass transition point Tg of the copolymer (X) may be 40°C or lower, or 30°C or lower.
  • Epoxy group content in aqueous resin emulsion ( ⁇ ) The content of epoxy groups in the aqueous resin emulsion ( ⁇ ) is the ratio of the number of moles of epoxy groups contained in 1 g of the aqueous resin emulsion ( ⁇ ).
  • the method for determining the amount N 1 [mol/g] of the epoxy groups contained per 1 g of the aqueous resin emulsion ( ⁇ ) is as described in Examples described later.
  • Epoxy group content in total amount of copolymer (X) and polyepoxy compound (Y) contains an epoxy group.
  • the content of epoxy groups in the total amount of copolymer (X) and polyepoxy compound (Y) is preferably 0.50 ⁇ 10 ⁇ 4 mol/g or more, more preferably 1.0 ⁇ 10 ⁇ 4 It is more preferably at least 4.0 ⁇ 10 ⁇ 4 mol/g, even more preferably at least 6.0 ⁇ 10 ⁇ 4 mol/g. This is because the water resistance, rust resistance, and adhesion to the substrate of the coating film made of the cured product of the water-based resin composition of the present embodiment can be enhanced.
  • the content of epoxy groups in the total amount of copolymer (X) and polyepoxy compound (Y) is preferably 50 ⁇ 10 ⁇ 4 mol/g or less, and 30 ⁇ 10 ⁇ 4 mol/g or less. is more preferably 20 ⁇ 10 ⁇ 4 mol/g or less.
  • the content of epoxy groups in the total amount of the copolymer (X) and the polyepoxy compound (Y) is 15 ⁇ 10 ⁇ 4 mol/g or less, or even if it is 10 ⁇ 10 ⁇ 4 mol/g or less. good.
  • the epoxy group content in the non-volatile matter of the aqueous resin emulsion ( ⁇ ) is preferably 0.50 ⁇ 10 ⁇ 4 mol/g or more, more preferably 3.0 ⁇ 10 ⁇ 4 mol/g or more. More preferably, it is 5.0 ⁇ 10 ⁇ 4 mol/g or more. This is because the water resistance, rust resistance, and adhesion to the substrate of the coating film made of the cured product of the water-based resin composition of the present embodiment can be enhanced.
  • the epoxy group content in the nonvolatile matter of the aqueous resin emulsion ( ⁇ ) may be 1.0 ⁇ 10 ⁇ 4 mol/g or more, or 6.0 ⁇ 10 ⁇ 4 mol/g or more.
  • the epoxy group content in the nonvolatile matter of the aqueous resin emulsion ( ⁇ ) is preferably 50 ⁇ 10 ⁇ 4 mol/g or less, more preferably 30 ⁇ 10 ⁇ 4 mol/g or less, and 20 It is more preferably not more than ⁇ 10 -4 mol/g.
  • the epoxy group content in the nonvolatile matter of the aqueous resin emulsion ( ⁇ ) may be 15 ⁇ 10 ⁇ 4 mol/g or less, or 10 ⁇ 10 ⁇ 4 mol/g or less.
  • Carboxy group content in aqueous resin emulsion ( ⁇ ) The content of carboxy groups in the aqueous resin emulsion ( ⁇ ) is the ratio of the number of moles of carboxy groups contained in 1 g of the aqueous resin emulsion ( ⁇ ).
  • the method for determining the number of moles of carboxyl groups contained per 1 g of the aqueous resin emulsion ( ⁇ ) is as described in the examples below.
  • Carboxy group content in total amount of copolymer (X) and polyepoxy compound (Y) In the present embodiment, one or both of the copolymer (X) and the polyepoxy compound (Y) contained in the aqueous resin emulsion ( ⁇ ) contain a carboxy group, and the copolymer (X) contains a carboxy group. is preferably included.
  • the content of carboxy groups in the total amount of copolymer (X) and polyepoxy compound (Y) is preferably 0.10 ⁇ 10 ⁇ 4 mol/g or more, more preferably 0.50 ⁇ 10 ⁇ 4 mol /g or more, and more preferably 1.0 ⁇ 10 ⁇ 4 mol/g or more. This is because aggregation of the copolymer (X) can be suppressed during storage of the aqueous resin emulsion ( ⁇ ) during and after polymerization.
  • the content of carboxy groups in the total amount of copolymer (X) and polyepoxy compound (Y) is preferably 10 ⁇ 10 ⁇ 4 mol/g or less, more preferably 5.0 ⁇ 10 ⁇ 4 mol/g. g or less is more preferable. It may be 3.0 ⁇ 10 ⁇ 4 mol/g or less, 2.5 ⁇ 10 ⁇ 4 mol/g or less, or 2.0 ⁇ 10 ⁇ 4 mol/g or less.
  • Carboxy group content in non-volatile matter of aqueous resin emulsion ( ⁇ ) is preferably 0.10 ⁇ 10 ⁇ 4 mol/g or more, more preferably 0.50 ⁇ 10 ⁇ 4 mol/g or more. More preferably, it is 1.0 ⁇ 10 ⁇ 4 mol/g or more. This is because aggregation of the copolymer (X) can be suppressed during storage of the aqueous resin emulsion ( ⁇ ) during and after polymerization.
  • the content of carboxy groups in the nonvolatile matter of the aqueous resin emulsion ( ⁇ ) is preferably 10 ⁇ 10 ⁇ 4 mol/g or less, more preferably 5.0 ⁇ 10 ⁇ 4 mol/g or less. . It may be 3.0 ⁇ 10 ⁇ 4 mol/g or less, 2.5 ⁇ 10 ⁇ 4 mol/g or less, or 2.0 ⁇ 10 ⁇ 4 mol/g or less.
  • the carboxy group includes not only —COOH but also a structure in which a cation other than a hydrogen ion is bonded with —COO 2 — .
  • the content of carboxy groups in the non-volatile matter of the water-based resin emulsion ( ⁇ ) is, as shown by the following formula, the content of carboxy groups in the raw materials, the functional groups that react with the carboxy groups in the raw materials, polymerization It is obtained from the value obtained by subtracting the amount of decrease before and after.
  • the raw materials refer to the components used for the synthesis of the aqueous resin emulsion ( ⁇ ).
  • the functional group that reacts with the carboxy group is an epoxy group, and the hydroxy group is not considered as a functional group that reacts with the carboxy group.
  • the method for determining the content R CX [mol/g] of carboxy groups in the nonvolatile matter of the aqueous resin emulsion ( ⁇ ) will be described in detail below.
  • the total amount of carboxyl groups in the raw material (including initiator, solvent, other additives, etc.) is N 3 [mol/g]
  • the total amount of epoxy groups in the raw material (including initiator, solvent, other additives, etc.) is N 2 [mol/g]
  • the amount of epoxy groups contained per 1 g of the aqueous resin emulsion ( ⁇ ) is N 1 [mol/g].
  • the non-volatile content concentration of the aqueous resin emulsion ( ⁇ ) is defined as C S [% by mass].
  • R CX is represented by the formula (3). How to obtain N1 and N2 will be described later in Examples. N2 can be obtained by calculation.
  • R CX [mol/g] ⁇ N 3 ⁇ (N 2 ⁇ N 1 ) ⁇ /(C S /100) (3)
  • the curing agent ( ⁇ ) contains an aromatic polyamine (F) having active hydrogens with reactivity towards epoxy groups.
  • the active hydrogen having reactivity with the epoxy group means that the amino group of the aromatic polyamine (F) forms a bond by nucleophilic attack on the epoxy group, and then can be eliminated from the nitrogen atom. means a hydrogen atom.
  • the amino group of the aromatic polyamine (F) consists of an unsubstituted amino group (--NH 2 (no substituent), an amino group having only one substituent (--NHR (R is a substituent)). Any one selected from the group is preferable.
  • the aromatic polyamine (F) having active hydrogen has a benzene ring and two or more amino groups in one molecule.
  • the aromatic polyamine (F) having active hydrogen may be a compound having only one type of amino group, or a compound having two or more types of amino groups.
  • the curing agent ( ⁇ ) may contain only one type of aromatic polyamine (F) having active hydrogen, or may contain two or more types thereof.
  • Examples of the aromatic polyamine (F) having active hydrogen include m-xylylenediamine (hereinafter sometimes referred to as "MXDA”), diaminodiphenylmethane, m-phenylenediamine, diaminodiphenylsulfone, and these Modified products and the like can be mentioned.
  • the modified product is preferably a compound obtained by an addition reaction in which an atom or atomic group is bonded to the amino group of MXDA.
  • the curing agent ( ⁇ ) contains the aromatic polyamine (F) having the active hydrogen, it cures at room temperature for a short period of time, and exhibits excellent initial water resistance and wet heat adhesion to metal materials. It becomes the water-based resin composition which can form the coating film which has. Therefore, the water-based resin composition of the present embodiment can be suitably used for anti-corrosion coating of metal products such as iron. Although the reason for such an effect is not clear, the curing agent ( ⁇ ) containing the aromatic polyamine (F) having active hydrogen can easily penetrate into the particles of the aqueous resin emulsion ( ⁇ ).
  • the hardening acceleration function of the curing agent ( ⁇ ) with respect to the polyepoxy compound (Y) contained in the aqueous resin emulsion ( ⁇ ) becomes remarkable, and it is considered that the aqueous resin composition cures in a short time. .
  • the aromatic compounds are more hydrophobic. It is presumed that the aromatic polyamine (F) having active hydrogen contained in the curing agent ( ⁇ ) is more hydrophobic than the aqueous resin emulsion ( ⁇ ). For this reason, it is considered that the aromatic polyamine (F) having active hydrogen is less likely to stay in the aqueous layer of the aqueous resin composition and is likely to be distributed inside the particles of the aqueous resin emulsion ( ⁇ ).
  • the aromatic polyamine (F) having active hydrogen is more likely to enter the inside of the particles of the aqueous resin emulsion ( ⁇ ) than, for example, an aliphatic polyamine having a similar molecular weight. It is easy to approach the epoxy group of ( ⁇ ).
  • the aqueous resin composition of the present embodiment containing the aromatic polyamine (F) having the active hydrogen has a higher concentration in the aqueous resin emulsion ( ⁇ ) than the case where the aliphatic polyamine having the same molecular weight is contained. It is considered that the contained polyepoxy compound (Y) is easily cured, and the curing speed of the water-based resin composition is increased.
  • the aromatic polyamine (F) having active hydrogen is an aromatic polyamine (F ), more preferably an aromatic polyamine (F) having 3 or more benzene rings in one molecule.
  • the aromatic polyamine (F) having two or more benzene rings in one molecule is compared with the aromatic polyamine (F) having only one benzene ring in one molecule. As a result, it is even more hydrophobic. Therefore, the aromatic polyamine (F) having two or more benzene rings in one molecule more easily penetrates into the inside of the particles of the aqueous resin emulsion ( ⁇ ), and has only one benzene ring in one molecule.
  • the aromatic polyamine (F) having active hydrogen preferably contains an aromatic polyamine (F) having 13 or less benzene rings in one molecule. It is more preferable to contain the aromatic polyamine (F) having the following benzene rings.
  • Examples of the aromatic polyamine (F) having two or more benzene rings in one molecule include compounds represented by the following general formula (1-1) and compounds represented by the following general formula (1-2). etc.
  • a 2 and A 3 each independently represent a 1,2-phenylene group, a 1,3-phenylene group, or a 1,4-phenylene group; n is an integer of 1 to 12; show.
  • a 1 represents a 1,2-phenylene group, a 1,3-phenylene group, or a 1,4-phenylene group.
  • Each of A 2 and A 3 in formula (1-1) and A 1 in formula (1-2) is a 1,2-phenylene group, a 1,3-phenylene group, or a 1,4-phenylene group.
  • represents A 2 and A 3 in the formula (1-1) and A 1 in the formula (1-2) facilitate the curing reaction of the water-based resin composition.
  • a phenylene group is preferred.
  • a 2 contained in a repeating unit (A 2 described in parentheses) and A 3 not contained in a repeating unit (A 3 described outside the parentheses) may be the same or different. Further, in the compound represented by formula (1-1), when n is 2 to 12, A 2 contained in the repeating unit may all be the same, or different ones may be included. good. Since the compound represented by formula (1-1) can be easily produced, it is preferable that A 2 and A 3 contained in the compound are all the same.
  • n the number of repeating units in parentheses, represents an integer of 1-12.
  • the aromatic polyamine (F) having active hydrogen a plurality of types of compounds having different numbers of repeating units (number of n) in formula (1-1) may be used.
  • the number of n in formula (1-1) is preferably 2 or more from the viewpoint that the curing reaction of the aqueous resin composition proceeds more easily. Further, the number of n in the formula (1-1) is preferably 9 or less because the aromatic polyamine (F) having active hydrogen has good water solubility and is easily available.
  • the number of n in the general formula (1-1) is 1.
  • the content of a certain compound is preferably 10% by mass to 35% by mass, more preferably 15% by mass to 30% by mass, and even more preferably 18% by mass to 25% by mass.
  • the compound represented by general formula (1-1) is more hydrophobic than the compound represented by general formula (1-2). Therefore, the compound represented by general formula (1-1) is more likely to approach the epoxy groups of the polyepoxy compound (Y) contained in the aqueous resin emulsion ( ⁇ ). Therefore, when the aromatic polyamine (F) having active hydrogen contains the compound represented by the general formula (1-1), the water-based resin composition can form a coating film having superior initial water resistance.
  • the aromatic polyamine (F) having active hydrogen contains a compound represented by general formula (1-1) and MXDA.
  • the resulting water-based resin composition can form a coating film having superior initial water resistance. It is presumed that this is due to the synergistic effect of the effect resulting from the high hydrophobicity of the compound represented by the general formula (1-1) and the effect resulting from the small steric hindrance of MXDA.
  • the aromatic polyamine (F) having the active hydrogen is more likely to approach the epoxy groups contained in the aqueous resin emulsion ( ⁇ ), and the polyamine contained in the aqueous resin emulsion ( ⁇ ) It is presumed that the curing of the epoxy compound (Y) is accelerated and the curing speed of the water-based resin composition is increased. Furthermore, when the aromatic polyamine (F) having active hydrogen contains the compound represented by the general formula (1-1) and MXDA, the synergistic effect promotes curing of the aqueous resin composition. Therefore, a cured product having higher film yield strength can be formed.
  • the content of MXDA in the aromatic polyamine (F) having active hydrogen is preferably 10% by mass to 40% by mass, more preferably 20% by mass to 30% by mass, even more preferably 24% by mass to 28% by mass.
  • the compound represented by general formula (1-1) in the aromatic polyamine (F) having active hydrogen is preferably 60% by mass to 90% by mass, more preferably 70% by mass to 80% by mass. is more preferable, and 72% by mass to 76% by mass is even more preferable. This is because the compound represented by the general formula (1-1) and MXDA have a more pronounced synergistic effect.
  • the content of the compound in which the number of n in general formula (1-1) is 1 is based on the total amount of the aromatic polyamine (F) having active hydrogen. It is preferably 10% by mass to 35% by mass, more preferably 15% by mass to 30% by mass, even more preferably 18% by mass to 25% by mass.
  • aromatic polyamine (F) having active hydrogen Commercially available products may be used as the aromatic polyamine (F) having active hydrogen.
  • Commercially available products containing an aromatic polyamine (F) having two or more benzene rings in one molecule include, for example, Gaskamine 328 (trade name, Mitsubishi Gas Chemical Company, Inc.); Gaskamine 240 (trade name, Mitsubishi Gas Chemical Company, Inc.) ) and the like. Both Gaskamine328 and Gaskamine240 are mixtures containing modified MXDA and MXDA.
  • Gaskamine 328 contains a compound represented by general formula (1-1) as a modified MXDA.
  • Gaskamine 240 contains a compound represented by general formula (1-2) as a modified MXDA.
  • Gaskamine 328 contains MXDA and the compound represented by formula (1-1), which is an aromatic polyamine consisting of a reaction product of epichlorohydrin and MXDA.
  • Gaskamine328 is a compound represented by the formula (1-1) (A 2 and A 3 in the formula (1-1) are all 1,3-phenylene groups; n is 1 to 12; ) contains 73.3% by mass.
  • the content of compounds in which n is 1 among the compounds represented by formula (1-1) contained in Gaskamine 328 was 20.9% by mass.
  • Gaskamine328 contains 26.7% by mass of MXDA.
  • Gaskamine 240 contains MXDA and a compound represented by formula (1-2), which is an aromatic polyamine consisting of a reaction product of styrene and MXDA. Specifically, Gaskamine 240 contains 99% by mass or more of the compound represented by formula (1-2) (in formula (1-2), A 1 is a 1,3-phenylene group). Gaskamine 240 also contains less than 1% by weight of MXDA.
  • each component of the curing agent ( ⁇ ) contained in the aqueous resin composition and the content of each component are determined using chromatographic analysis such as gas chromatography (GC) analysis and gel filtration chromatography (GPC) analysis. I can confirm.
  • chromatographic analysis such as gas chromatography (GC) analysis and gel filtration chromatography (GPC) analysis. I can confirm.
  • the content of the aromatic polyamine (F) having active hydrogen contained in the curing agent ( ⁇ ) is contained in the aromatic polyamine (F) with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ).
  • Active hydrogen is 0.10 equivalents or more, preferably 0.20 equivalents or more, and more preferably 0.30 equivalents or more.
  • Initial water resistance and film yield strength are improved by increasing the cross-linking density of the water-based resin composition after curing. This is because adhesion is improved.
  • the content of the aromatic polyamine (F) having active hydrogen contained in the curing agent ( ⁇ ) is contained in the aromatic polyamine (F) with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ).
  • Active hydrogen is 1.50 equivalents or less, preferably 1.3 equivalents or less, more preferably 1.2 equivalents or less. This is because excessive curing shrinkage of the water-based resin composition can be suppressed, and a cured product having good wet-heat adhesion to metal materials can be formed.
  • the curing accelerator ( ⁇ ) has the function of accelerating the curing of the water-based resin composition and forming a film with high film yield strength.
  • Curing accelerators ( ⁇ ) include tertiary amines that do not have active hydrogens that are reactive towards epoxy groups.
  • the tertiary amine in this embodiment is represented by NR 1 R 2 R 3 (wherein R 1 R 2 R 3 is a substituent group, each of which may be different or two or more of which are the same). R 1 R 2 R 3 may combine with each other to form a ring.).
  • the curing accelerator ( ⁇ ) directly binds to nitrogen atoms of tertiary aliphatic amines, tertiary alicyclic amines, tertiary heteroaromatic amines, and tertiary amines (NR 1 R 2 R 3 ).
  • it is at least one compound selected from the group consisting of tertiary aromatic amines having a phenyl group that does not have a phenyl group. This is because the nucleophilicity of the curing accelerator ( ⁇ ) is increased and the curing reaction proceeds efficiently.
  • tertiary aliphatic amines examples include triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, tri-sec-butylamine, and tri-n-hexylamine.
  • Tertiary alicyclic amines include, for example, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,5-diazabicyclo[4.3.0]non-5-ene, 1,8 -diazabicyclo[5.4.0]undec-7-ene, and the like.
  • DABCO 1,4-diazabicyclo[2.2.2]octane
  • 1,5-diazabicyclo[4.3.0]non-5-ene 1,8 -diazabicyclo[5.4.0]undec-7-ene, and the like.
  • a compound having an imidazole skeleton it is preferable to use a compound having an imidazole skeleton, and specific examples include imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, and the like.
  • Tertiary aromatic amines having a phenyl group not directly bonded to the nitrogen atom of the tertiary amine include dimethylbenzylamine, diethylbenzylamine, tribenzylamine, 2,4, 6-trisdimethylaminomethylphenol, 2-phenylimidazole and the like.
  • curing accelerators ( ⁇ ) it is particularly preferable to use the following compounds (i) and/or (ii).
  • Tertiary alicyclic amines include, for example, 1,4-diazabicyclo[2.2.2]octane (DABCO).
  • Tertiary heteroaromatic amines include, for example, imidazole.
  • the curing accelerator ( ⁇ ) may be used singly or in combination of two or more.
  • the content of the curing accelerator ( ⁇ ) is 0.0070 mol or more, preferably 0.070 mol or more, and 0.18 mol or more, relative to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ). more preferably 0.30 mol or more. This is because the film formed of the cured product of the aqueous resin composition of the present embodiment has a high film yield strength.
  • the content of the curing accelerator ( ⁇ ) is 1.5 mol or less, preferably 1.0 mol or less, and 0.70 mol or less with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ). more preferably 0.44 mol or less, still more preferably 0.40 mol or less, and particularly preferably 0.38 mol or less. This is because the cured product of the water-based resin composition of the present embodiment forms a coating film having good wet heat adhesion to metal materials. Further, when the content of the curing accelerator ( ⁇ ) is 1.5 mol or less, gelling of the water-based resin composition in a short time can be suppressed, and a cured product with good rust resistance can be obtained.
  • the aqueous resin composition according to this embodiment may contain a pigment.
  • pigments include titanium oxide, talc, barium sulfate, carbon black, red iron oxide, calcium carbonate, silicon oxide, talc, mica, kaolin, clay, ferrite, and silica sand.
  • the pigment may contain only one compound, or may contain two or more compounds.
  • the pigment content in the aqueous resin composition is preferably 0.1 to 50% by mass, more preferably 1 to 40% by mass. This is for improving the concealability of the coating film.
  • the aqueous resin composition contains a filler, an organic or inorganic hollow balloon, a dispersing agent (e.g., amino alcohol, polycarboxylate, etc.), a surfactant, a coupling agent (e.g., silane coupling agent, etc.), and a defoaming agent.
  • a dispersing agent e.g., amino alcohol, polycarboxylate, etc.
  • a surfactant e.g., silane coupling agent, etc.
  • a coupling agent e.g., silane coupling agent, etc.
  • defoaming agent e.g., silane coupling agent, etc.
  • preservatives e.g., biocides, fungicides, fungicides, algaecides, and combinations thereof, etc.
  • flow agents e.g., leveling agents, neutralizing agents (e.g., hydroxides, amines, ammonia, carbonic acid salt etc.) etc.
  • Silane coupling agents include epoxysilane compounds. Specific examples include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, 2-(3,4-epoxycyclohexy)ethyl trimethoxysilane and the like.
  • the amount of the silane coupling agent added is preferably 0.1 to 5 parts by mass, more preferably 0.3 to 3 parts by mass, per 100 parts by mass of the aqueous resin emulsion. This is because the cured water-based resin composition has improved rust resistance and adhesion to metal materials.
  • the aqueous resin composition of the present embodiment is produced by a method of mixing an aqueous resin emulsion ( ⁇ ), a curing agent ( ⁇ ), a curing accelerator ( ⁇ ), and optionally other components. can.
  • a method for mixing each component contained in the aqueous resin composition of the present embodiment a known method can be used.
  • the aqueous resin composition of this embodiment contains an aqueous resin emulsion ( ⁇ ), a curing agent ( ⁇ ), and a curing accelerator ( ⁇ ). For this reason, it cures at room temperature for a short period of time, and a coating film having good initial water resistance and wet heat adhesion to metal materials can be obtained.
  • the coating film of the present embodiment is composed of a cured product of the aqueous resin composition of the present embodiment.
  • the coating film of the present embodiment is, if necessary, an undercoat layer provided as a lower layer of a coating film made of a cured product of the aqueous resin composition of the present invention, and / or a topcoat layer provided as an upper layer. It may be provided in a layered manner with the film.
  • a method for producing a coating film composed of a cured product of the aqueous resin composition of the present embodiment will be described in detail.
  • an aqueous resin emulsion ( ⁇ ), a curing agent ( ⁇ ), a curing accelerator ( ⁇ ), and optionally other components are mixed.
  • the aqueous resin composition of the present embodiment is prepared (mixing step).
  • the aqueous resin composition obtained in the mixing step is applied to the surface to be coated (application step).
  • the aqueous resin emulsion ( ⁇ ), the curing agent ( ⁇ ), the curing accelerator ( ⁇ ), and optionally other components are mixed and stirred by a known method.
  • an aqueous resin composition in which each component is dispersed is obtained.
  • Stirring in the mixing step can be performed, for example, by Robomics (manufactured by Primix Co., Ltd.).
  • stirring in the mixing step is preferably performed for 5 minutes or longer.
  • the stirring time is preferably within 1 hour.
  • the aqueous resin composition is applied to the surface of the article to be coated.
  • materials forming the surface to be coated include metallic materials such as iron.
  • the surface to be coated may be previously subjected to a surface treatment such as a primer or an undercoat.
  • a method for applying the aqueous resin composition a known method can be used, and examples thereof include, but are not limited to, methods using a brush, a roller, and the like.
  • the coating process is preferably completed within 1 hour after the mixing process is completed, and the coating process is completed within 30 minutes. It is more preferable to complete within
  • the method for producing a coating film of the present embodiment it is preferable to perform a curing step of curing the coating film obtained by coating the surface to be coated after the coating step.
  • the surface of the object coated with the aqueous resin composition is dried and cured to cure the resin component contained in the aqueous resin composition.
  • Curing time varies depending on the temperature of the curing atmosphere. For example, at normal temperature (20° C.), the time is preferably 5 hours or more, at 40° C. it is preferably 1 hour or more, and at 60° C. it is preferably 5 minutes or more.
  • the coating film of the present embodiment is composed of a cured product of the aqueous resin composition of the present embodiment. Therefore, the initial water resistance and wet heat adhesion to metal materials are good. Further, in the method for producing a coating film of the present embodiment, the aqueous resin composition is prepared by mixing the aqueous resin emulsion ( ⁇ ), the curing agent ( ⁇ ), and the curing accelerator ( ⁇ ), and Apply to surface to be coated. Therefore, the coating film of this embodiment can be formed from the cured product of the aqueous resin composition of this embodiment.
  • aqueous resin composition set of this embodiment the constituent components of the aqueous resin composition of the present embodiment are stored separately into the first liquid and the second liquid.
  • the first liquid in the aqueous resin composition set of the present embodiment contains the aqueous resin emulsion ( ⁇ ).
  • the second liquid contains a curing agent ( ⁇ ) and a curing accelerator ( ⁇ ).
  • the coating film of this embodiment may be produced using the aqueous resin composition set of this embodiment. That is, the aqueous resin composition of the present embodiment is prepared by mixing the first liquid and the second liquid in the aqueous resin composition set of the present embodiment (mixing step). Thereafter, the water-based resin composition is applied to the surface to be coated in the same manner as in the method for producing a coating film described above (coating step).
  • the aqueous resin composition set of the present embodiment is divided into a first liquid containing the aqueous resin emulsion ( ⁇ ), a curing agent ( ⁇ ), and a second liquid containing the curing accelerator ( ⁇ ) and stored. . Therefore, the aqueous resin composition set of the present embodiment is excellent in storage stability because the resin component contained in the aqueous resin emulsion ( ⁇ ) does not react with the curing agent ( ⁇ ) during storage and is cured.
  • the first liquid and the second liquid may be stored in separate containers or the like. The shape and material of the container can be arbitrarily selected.
  • the container containing the first liquid and the container containing the second liquid may be separated from each other or may be in contact with each other.
  • a coating film having good initial water resistance and wet heat adhesion to metal materials can be obtained. .
  • the aqueous resin composition of the present invention is useful in various fields.
  • the water-based resin composition of the present invention is particularly suitable for use as an anticorrosive paint to be applied to the surfaces of metal products used outdoors such as steel towers, bridges, ships, port facilities and the like.
  • An article on which a coating film comprising a cured product of the aqueous resin composition of the present invention is formed, that is, an object to be coated with the aqueous resin composition of the present invention can be selected arbitrarily.
  • Specific examples of applicable objects include steel towers, bridges, ships, metal products used outdoors such as port facilities, various household goods, home appliances such as refrigerators, and installations in amusement parks and parks. playground equipment, sporting goods, buildings (interior, exterior, etc.), various industrial goods and their parts including transportation machinery and machine tools, automobile bodies and chassis, railway vehicle bodies and underfloor equipment, ships, marine containers, aircraft etc.
  • aqueous resin emulsion ( ⁇ )> (Aqueous resin emulsion ( ⁇ -1))
  • An emulsion comprising the amounts (parts by mass) shown in Table 1 of methyl methacrylate, 2-ethylhexyl acrylate, methacrylic acid, hydrogenated bisphenol A type epoxy, sodium dodecylbenzenesulfonate as an emulsifier, and 356 parts by mass of deionized water. was added dropwise over 3 hours.
  • 1.2 parts by mass of potassium persulfate as an oxidizing agent dissolved in 41 parts by mass of ion-exchanged water and 0.4 parts by mass of sodium bisulfite as a reducing agent were dissolved in 21 parts by mass of ion-exchanged water. was added dropwise at 60° C. over 3.3 hours to polymerize. After completion of dropping, the mixture was aged for 1.5 hours. After cooling, 0.8 parts by mass of aqueous ammonia as a basic substance was added to obtain an aqueous resin emulsion ( ⁇ -1).
  • Table 1 shows the amount (parts by mass) of each material used in the synthesis of the aqueous resin emulsion ( ⁇ -1).
  • the numerical value of "ion-exchanged water” shown in Table 1 indicates the content of ion-exchanged water contained in the synthesized aqueous resin emulsion ( ⁇ -1).
  • the values in parentheses for the contents of the copolymer (X) and the polyepoxy compound (Y) are the total amount (100%) of the copolymer (X) and the polyepoxy compound (Y). Shows the ratio (mass%) of each material to
  • polyepoxy compound (Y) shown in Table 1 the following compounds were used. Hydrogenated bisphenol A epoxy (epoxy equivalent: 215 g/mol; manufactured by Kyoei Chemical Co., Ltd.; Epolite 4000) Bisphenol A type epoxy (epoxy equivalent: 190 g/mol; manufactured by Mitsubishi Chemical Corporation; JER828) 1,6-hexanediol diglycidyl ether (epoxy equivalent 160 g/mol; manufactured by Kyoei Chemical Co., Ltd.; Epolite 1600)
  • Hydrogenated bisphenol A epoxy epoxy equivalent: 215 g/mol; manufactured by Kyoei Chemical Co., Ltd.; Epolite 4000
  • Bisphenol A type epoxy epoxy equivalent: 190 g/mol; manufactured by Mitsubishi Chemical Corporation; JER828) 1,6-hexanediol diglycidyl ether (epoxy equivalent 160 g/mol; manufactured by Kyoei Chemical Co., Ltd.; Epolite 1600)
  • Aqueous resin emulsion ( ⁇ -2) to ( ⁇ -6) Aqueous resin emulsions ( ⁇ -2) to ( ⁇ -6) were prepared in the same manner as the aqueous resin emulsion ( ⁇ -1) except that each material shown in Table 1 was used in the amount (parts by mass) shown in Table 1. ) was synthesized.
  • the numerical value of "ion-exchanged water" shown in Table 1 is the same as the synthesized aqueous resin emulsion ( ⁇ -1).
  • the contents of ion-exchanged water contained in aqueous resin emulsions ( ⁇ -2) to ( ⁇ -6) are shown.
  • aqueous resin emulsion ( ⁇ ) > The following items were evaluated for each of the aqueous resin emulsions ( ⁇ -1) to ( ⁇ -6). Table 2 shows the results.
  • the water-based resin emulsion ( ⁇ -6) having an excessive content of the polyepoxy compound (Y) was not evaluated because it aggregated during synthesis.
  • the aqueous resin emulsions ( ⁇ -1) to ( ⁇ -6) may be collectively referred to as the aqueous resin emulsion ( ⁇ ).
  • the residual ratio of epoxy groups in the water-based resin emulsion ( ⁇ ) is the amount N 1 [mol/g] of the epoxy groups contained in the water-based resin emulsion ( ⁇ ) after synthesis. It is the ratio to the total amount N 2 [mol/g] of epoxy groups contained in components (including raw materials, initiators, solvents, other additives, etc.).
  • the amount N 1 [mol/g] of epoxy groups in the aqueous resin emulsion ( ⁇ ) after synthesis was measured by the following method. An excess amount of hydrogen chloride was added to the total amount of epoxy groups contained in the components (raw materials) used in the synthesis of the aqueous resin emulsion ( ⁇ ) to react with the epoxy groups. Next, the amount of remaining hydrogen chloride was confirmed by titrating unreacted hydrogen chloride with potassium hydroxide. At this time, potassium hydroxide is consumed by reaction with acidic components such as carboxylic acid contained in the aqueous resin emulsion ( ⁇ ). Therefore, the amount of acidic components was titrated in advance by blank measurement without using hydrogen chloride, and the result of this measurement was corrected. Specific measurement procedures are as follows (i) to (ii).
  • the amount of the potassium hydroxide/ethanol solution used for titration is defined as V KOH1 [mL].
  • the solution was titrated with a 0.1 M potassium hydroxide/ethanol solution while stirring. After the potassium hydroxide/ethanol solution was added dropwise, the point at which the purple color persisted for 30 seconds was taken as the equivalence point.
  • the amount of potassium hydroxide/ethanol solution used for titration is defined as V KOH2 [mL].
  • N 1 (0.2 ⁇ V HCl /1000 ⁇ 0.1 ⁇ V KOH2 /1000)/W 2 +(0.1 ⁇ V KOH1 /1000)/W 1 (4)
  • the components used for the synthesis of the aqueous resin emulsion ( ⁇ ) mean all the components listed in Table 1 as raw materials for the aqueous resin emulsion ( ⁇ ).
  • N 2 ⁇ (m i /EP i )/ ⁇ m i (5)
  • 1/EP i 0 for compounds that do not contain an epoxy group, such as methyl methacrylate and ion-exchanged water. From the amount of epoxy groups determined in this way, the residual rate of epoxy groups in the aqueous resin emulsion ( ⁇ ) is expressed as 100 ⁇ N 1 /N 2 [mol %].
  • the epoxy group content R EP [mol/g] in the non-volatile matter was obtained based on the above-described formula (2).
  • R EP N 1 /(C S /100) (2)
  • N 3 ⁇ (m i /CX i )/ ⁇ m i (6) From the N3 obtained here, the content rate R CX [mol/g] of carboxy groups in the nonvolatile matter of the aqueous resin emulsion ( ⁇ ) was obtained based on the above-described formula (3).
  • R CX ⁇ N 3 -(N 2 -N 1 ) ⁇ /(C S /100) (3)
  • the glass transition point Tg of copolymer (X) is a value calculated by the above formula (1).
  • the high-temperature stability of the aqueous resin emulsion ( ⁇ ) was evaluated as follows. First, the water-based resin emulsion ( ⁇ ) was put into a 70 ml glass bottle, and the bottle was sealed and allowed to stand at 60° C. for 7 days. After that, the state of the aqueous resin emulsion ( ⁇ ) in the glass bottle was visually observed and evaluated according to the following criteria. ⁇ (Possible): Aggregation, thickening, precipitation, separation, and gelation were not observed. ⁇ (improper): At least one of aggregation, thickening, precipitation, separation, and gelation was observed.
  • Examples 1 to 10 and Comparative Examples 1 to 15 (Preparation of aqueous resin composition)> 100 parts by mass of the aqueous resin emulsion ( ⁇ ) shown in Tables 3 to 5 (nonvolatile content of 40% by mass), 60 parts by mass of ion-exchanged water, and the curing agent ( ⁇ ) shown in Tables 3 to 5 A curing accelerator ( ⁇ ) was added in the amounts (parts by mass) shown in Tables 3 to 5 and stirred for 10 minutes to prepare aqueous resin compositions of Examples 1 to 10 and Comparative Examples 1 to 15. .
  • the "active hydrogen equivalent to epoxy group" in each curing agent ( ⁇ ) is the active hydrogen contained in the curing agent ( ⁇ ) with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ). It is a numerical value indicating the equivalent of active hydrogen contained in the aromatic polyamine (F) having The "number of moles per epoxy group” in the curing accelerator ( ⁇ ) is a numerical value indicating the number of moles of the curing accelerator ( ⁇ ) per equivalent of epoxy groups contained in the aqueous resin emulsion ( ⁇ ).
  • "MXDA content [% by mass]” is a numerical value indicating the content of MXDA in the aromatic polyamine (F) having active hydrogen contained in the curing agent ( ⁇ ).
  • Gaskamine 328 (Mitsubishi Gas Chemical Company, Inc.) or m-xylylenediamine (MXDA) (Mitsubishi Gas Chemical Company, Inc.) was used as the aromatic polyamine (F) shown in Tables 3 to 5.
  • the equivalent weight of active hydrogen contained in MXDA is 34 g/mol.
  • the equivalent of active hydrogen contained in Gaskamine 328 is 55 g/mol.
  • Gaskamine 328 is a mixture containing modified MXDA and MXDA.
  • Gaskamine 328 contains 73.3% by mass of the compound represented by general formula (1-1), which is a modified MXDA.
  • Gaskamine 328 contains 26.7% by weight of MXDA.
  • EH-8051 (trade name; ADEKA HARDNER EH-8051, manufactured by ADEKA Corporation) or ED-600 (trade name; JEFFAMINE ED-600, Huntsman Japan Co., Ltd.) company) was used.
  • the equivalent weight of active hydrogen contained in ADEKA HARDNER EH-8051 is 180 g/mol.
  • the equivalent weight of active hydrogen contained in JEFFAMINE ED-600 is 132 g/mol.
  • the water-based resin composition was applied by drooling so as to spread over the entire surface of a horizontally placed rectangular polyethylene film having a length of 90 mm and a width of 190 mm. After drying this at 23° C. for 72 hours, it was cured at 50° C. for 24 hours to prepare a coating film having a thickness of about 300 ⁇ m. The resulting coating film was peeled off from the plate. A film obtained by peeling the coating film from the flat plate was cut into a rectangle having a width of 10 mm and a length of 30 mm to obtain a test piece.
  • the following tests were performed with the longitudinal direction of this test piece as the tensile direction.
  • the thickness of the test piece was measured using Quick Micro (registered trademark) MDQ-MX manufactured by Mitutoyo Corporation. Each test piece was measured at three locations, and the average value of the measurement results at the three locations was taken as the thickness t [mm] of the test piece.
  • the thickness of the specimen was about 300 ⁇ m.
  • the coating yield strength test was performed using Autograph AG-X (manufactured by Shimadzu Corporation) according to the method shown below. With the chuck-to-chuck distance set to 10 mm, both longitudinal sides of the test piece were gripped by chucks. The test piece was pulled at a speed of 100 mm/min in an atmosphere with a temperature of 23° C. and a relative humidity (RH) of 50%.
  • RH relative humidity
  • the strain S is 100 It is calculated by ⁇ L/L [%].
  • the load applied to the test piece is F [N]
  • the maximum value of the load until the test piece breaks is F max [N]
  • the following conditions are initially applied from the start of the test. Let the point that satisfies the conditions be the yield point Y (S y , F y ).
  • the coating yield strength which is the stress ⁇ y applied to the test piece at the yield point Y, is calculated by the following formula.
  • ⁇ y [N/mm 2 ] F y /(W ⁇ t) (W in the formula is the width [mm] of the test piece, and t is the thickness [mm] of the test piece.)
  • the water-based resin composition was applied to the surface of a cold-rolled steel plate (thickness: 800 ⁇ m) using a brush so as to have a basis weight of 50 g/m 2 , and dried at 23° C. for 1 day (24 hours). As a result, a rectangular test piece having a coating film on the surface and measuring 70 mm long and 150 mm wide was formed. The thickness of the coating film on the specimen was about 100 ⁇ m.
  • test piece thus prepared was immersed in deionized water, sealed, and stored at 23° C. for 7 days. After that, the test piece was taken out from the ion-exchanged water. For the test piece taken out, the rusted area in the test region (area%) and the blistered area in the test region (area%) were measured by the method described below.
  • the test area was a rectangular area of 45 mm long and 125 mm wide in the coating film of the test piece.
  • the appearance of the test piece was visually observed, and the area where the surface of the coating film turned brown or black due to storage was defined as the area where rust occurred.
  • the dimensions of each rusted area within the test area were measured using a ruler, and the total area of the rusted areas within the test area was calculated. Using the results, the ratio of the rusted area (%) to the area of the test region was determined.
  • the appearance of the test piece was visually observed and evaluated by finger touch, and the presence or absence of an area where the surface of the coating film had blister due to storage was examined. As a result, the planar shape of each bulging region was substantially circular.
  • each bulging region was assumed to be a perfect circle, and the maximum straight distance connecting the contour lines of the bulging region was measured with a ruler, and the result was taken as the diameter. Then, using the diameter of each swollen region, the total area of swollen regions in the test region was calculated, and the ratio of the swollen area (%) to the area of the test region was determined.
  • the water-based resin composition was applied to the surface of a cold-rolled steel plate (thickness: 800 ⁇ m) using a brush so as to have a basis weight of 50 g/m 2 , and dried at 23° C. for 7 days. As a result, a rectangular test piece having a coating film on the surface and measuring 70 mm long and 150 mm wide was formed. The test area was a rectangular area of 45 mm long and 125 mm wide in the coating film of the test piece. The thickness of the coating film on the specimen was about 100 ⁇ m.
  • the test piece thus prepared was stored in a constant temperature bath at 40°C and 98% relative humidity (RH) for 3 days. After that, according to JIS K-5400 (1990) "8.5.2 Cross-cut tape method", a cutter was used to cut a cross-cut at 1 mm intervals so as to penetrate the coating film formed in the test area of the test piece. A cut (100 squares) was made, and Sellotape (registered trademark) was pasted. One hour after lamination, the sellotape (registered trademark) was peeled off, and the number of squares remaining without peeling of the coating film from the steel plate was counted. Then, the wet heat adhesion of the coating film to the metal material was evaluated based on the number of squares remaining without being peeled off.
  • the coating films made of the cured products of the resin compositions of Examples 1 to 10 cured by curing at room temperature all had a wet heat adhesion result to metal materials of 100/100, and the wet heat adhesion to metal materials was 100/100. It was good.
  • the films made of the cured products of the aqueous resin compositions of Comparative Examples 1 to 15 all had a film yield strength of 10 [N/mm 2 ] or more, and the film yield strength was was high.
  • Comparative Examples 1 to 6, 8 to 10, 12 to 14 using an aliphatic polyamine as the curing agent ( ⁇ ) Comparative Examples 7 and 11 containing 1.5 equivalents or more of the curing agent ( ⁇ ) which is an aromatic polyamine
  • the coating film made of the cured product of the aqueous resin composition of Comparative Example 15 containing 1.5 mol or more of the curing accelerator ( ⁇ ) with respect to 1 equivalent of the epoxy group, all of the aqueous resin compositions of Examples 1 to 10 Compared with a coating film made of a cured product, the result of wet heat adhesion to metal materials was inferior.
  • a water-based resin composition and a water-based resin that can be cured at room temperature for a short period of time to form a coating film having excellent initial water resistance and that can provide a coating film having good wet heat adhesion to metal materials.
  • a composition set can be provided.

Abstract

An aqueous resin composition comprising an aqueous resin emulsion (α), a curing agent (β), and a curing accelerator (γ), wherein the aqueous resin emulsion (α) contains a copolymer (X), a polyepoxy compound (Y), and an aqueous medium (Z), the copolymer (X) includes structural units derived from a (meth)acrylic acid ester (A) and structural units derived from an ethylenically unsaturated carboxylic acid (B), the structural units derived from the (meth)acrylic acid ester (A) include a structural unit derived from a hydrophilic (meth)acrylic acid ester (A1), one or both of the copolymer (X) and the polyepoxy compound (Y) include a carboxy group, the curing agent (β) contains an aromatic polyamine (F) having active hydrogen, and the curing accelerator (γ) contains a tertiary amine not having active hydrogen.

Description

水性樹脂組成物、塗膜、塗膜の製造方法、水性樹脂組成物セットAqueous resin composition, coating film, method for producing coating film, aqueous resin composition set
 本発明は、水性樹脂組成物、塗膜およびその製造方法、水性樹脂組成物セットに関する。
本願は、2021年6月2日に、日本に出願された特願2021-092839号に基づき優先権を主張し、その内容をここに援用する。
TECHNICAL FIELD The present invention relates to an aqueous resin composition, a coating film, a method for producing the same, and an aqueous resin composition set.
This application claims priority based on Japanese Patent Application No. 2021-092839 filed in Japan on June 2, 2021, the content of which is incorporated herein.
 一般に、金属製品の表面には、表面処理がなされている。特に、屋外で使用される金属製品、および水分への暴露が想定される金属製品においては、錆の発生を防ぐために表面塗装が行われることが多い。 In general, the surface of metal products is surface-treated. In particular, metal products used outdoors and metal products expected to be exposed to moisture are often surface-coated in order to prevent the generation of rust.
 従来、金属製品の表面塗装には、有機溶剤を含有する塗料が用いられていた。しかし、有機溶剤を含有する塗料を金属製品の表面に塗布する場合、作業者および周辺環境に対する揮発性有機化合物(VOC)対策が必要となる。そのため、金属製品の表面塗装に用いられる塗料において、有機溶剤を含む塗料に代えて水系塗料を用いる動きが活発となっている。 Conventionally, paints containing organic solvents were used for surface coating of metal products. However, when a paint containing an organic solvent is applied to the surface of metal products, it is necessary to take measures against volatile organic compounds (VOC) for workers and the surrounding environment. Therefore, in paints used for surface coating of metal products, there is a growing movement to use water-based paints instead of paints containing organic solvents.
 特許文献1には、重合体粒子が水性媒体中に分散されてなるエマルジョン組成物及び骨材を含有する、厚塗り用塗料組成物が記載されている。特許文献1に記載された重合体粒子は、炭素数4~14のアルキル基を有するアルキル(メタ)アクリレート単量体が重合してなる構成単位、エチレン性不飽和カルボン酸単量体が重合してなる構成単位、及び他の単量体が重合してなる構成単位を、1分子中に少なくとも2個のエポキシ基を有する化合物及び塩基性触媒の存在下で、乳化重合して製造されたものである。 Patent Document 1 describes a coating composition for thick coating containing an emulsion composition in which polymer particles are dispersed in an aqueous medium and an aggregate. The polymer particles described in Patent Document 1 are composed of a structural unit obtained by polymerizing an alkyl (meth)acrylate monomer having an alkyl group having 4 to 14 carbon atoms, and an ethylenically unsaturated carboxylic acid monomer. and a structural unit obtained by polymerizing other monomers, in the presence of a compound having at least two epoxy groups in one molecule and a basic catalyst, by emulsion polymerization. is.
 特許文献2には、オキシラン基を有する熱硬化性化合物を吸収した、熱可塑性ポリマー粒子の水性分散物を含む組成物が記載されている。また、特許文献2には、ポリマー粒子が、凝集に対してラテックスを安定化するのに十分な濃度の抗凝集性官能基を有することが記載されている。 Patent Document 2 describes a composition comprising an aqueous dispersion of thermoplastic polymer particles imbibed with a thermosetting compound having oxirane groups. In addition, US Pat. No. 6,200,001 describes that the polymer particles have a sufficient concentration of anti-aggregating functional groups to stabilize the latex against aggregation.
 特許文献3には、アクリレート樹脂の乳化物にエポキシエマルジョンを混合することで、エポキシ化合物を吸収したアクリレート樹脂(アクリル/エポキシラテックス)を形成させることが記載されている。 Patent Document 3 describes forming an acrylate resin (acrylic/epoxy latex) that absorbs an epoxy compound by mixing an epoxy emulsion with an emulsion of an acrylate resin.
特開2011-89092号公報JP 2011-89092 A 特開2014-65914号公報JP 2014-65914 A 国際公開第2017/112018号WO2017/112018
 しかしながら、金属製品の表面塗装に用いられる水性樹脂組成物においては、それを硬化させてなる塗膜の初期耐水性および金属材料への湿熱密着性について、さらなる改善の余地が残されている。特に、鉄塔、橋梁、船舶、港湾施設等の屋外で使用される金属製品の防食塗装に用いられる水性樹脂組成物においては、以下に示す理由により、それを硬化させてなる塗膜の初期耐水性を向上させることが要求されている。 However, in the aqueous resin composition used for surface coating of metal products, there is still room for further improvement in terms of the initial water resistance of the coating film obtained by curing it and the wet heat adhesion to metal materials. In particular, in water-based resin compositions used for anti-corrosion coating of metal products used outdoors such as steel towers, bridges, ships, and harbor facilities, the initial water resistance of the coating film obtained by curing it for the following reasons is required to be improved.
 すなわち、水性樹脂組成物を含む塗料を用いて形成した塗膜は、塗膜中に含まれる樹脂の硬化反応が進行することによって耐水性を発現する。このため、水性樹脂組成物を含む塗料を金属製品に塗布して塗膜を形成した後、十分に硬化する前までの間に、降雨等による水分が、未硬化の塗膜を介して金属表面に到達し、発錆する恐れがあった。このことから、上記用途に使用される水性樹脂組成物においては、常温短時間の養生で硬化し、より優れた初期耐水性を発現する塗膜を形成できるものが要求されている。 That is, a coating film formed using a paint containing an aqueous resin composition develops water resistance as the curing reaction of the resin contained in the coating progresses. For this reason, after the coating containing the water-based resin composition is applied to the metal product to form a coating film, before it fully cures, moisture due to rainfall etc. will penetrate the metal surface through the uncured coating film. There was a risk of reaching and rusting. For this reason, aqueous resin compositions used for the above applications are required to be hardened by curing at room temperature for a short period of time and capable of forming coating films exhibiting superior initial water resistance.
 本発明は、上記事情を鑑みてなされたものであり、常温短時間の養生で硬化して初期耐水性に優れた塗膜を形成でき、かつ金属材料への湿熱密着性が良好な塗膜が得られる水性樹脂組成物および水性樹脂組成物セットを提供することを目的とする。
 また、本発明は、本発明の水性樹脂組成物の硬化物からなる塗膜、および塗膜の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a coating film that can be cured at room temperature for a short period of time to form a coating film that has excellent initial water resistance, and that has good wet heat adhesion to metal materials. An object of the present invention is to provide an aqueous resin composition and an aqueous resin composition set to be obtained.
Another object of the present invention is to provide a coating film comprising a cured product of the aqueous resin composition of the present invention, and a method for producing the coating film.
 上記目的を達成するための本発明の構成は以下の[1]~[18]の通りである。 The configuration of the present invention for achieving the above object is as follows [1] to [18].
 本発明は以下の第一の態様の組成物を提供する。
[1] 水性樹脂エマルジョン(α)と、
 硬化剤(β)と、
 硬化促進剤(γ)とを含み、
 前記水性樹脂エマルジョン(α)は、共重合体(X)と、エチレン性不飽和結合を有さず1分子中に2個以上のエポキシ基を有するポリエポキシ化合物(Y)と、水性媒体(Z)と、を含み、
 前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対する、前記ポリエポキシ化合物(Y)の含有率は、1~40質量%であり、
 前記共重合体(X)は、(メタ)アクリル酸エステル(A)由来の構造単位と、エチレン性不飽和カルボン酸(B)由来の構造単位と、を含み、
 前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対する、前記(メタ)アクリル酸エステル(A)由来の構造単位の含有率は、20~98質量%であり、
 前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対する、前記エチレン性不飽和カルボン酸(B)由来の構造単位の含有率は、0.1~10質量%であり、 前記(メタ)アクリル酸エステル(A)由来の構造単位は、アルコール由来の部分の炭素原子数が2以下である親水性(メタ)アクリル酸エステル(A1)由来の構造単位を含み、
 前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対する、前記親水性(メタ)アクリル酸エステル(A1)由来の構造単位の含有率は、15~98質量%であり、
 前記共重合体(X)と前記ポリエポキシ化合物(Y)の一方または両方が、カルボキシ基を含み、
 前記硬化剤(β)は、エポキシ基に対する反応性を有する活性水素を有する芳香族ポリアミン(F)を含み、
 前記硬化剤(β)に含まれる前記芳香族ポリアミン(F)の含有量は、前記水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、前記芳香族ポリアミン(F)に含まれる活性水素が0.10当量以上1.50当量以下であり、
 前記硬化促進剤(γ)は、エポキシ基に対する反応性を有する活性水素を有さない第三級アミンを含み、
 前記硬化促進剤(γ)の含有量は、前記水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、0.0070mol以上1.5mol以下である、水性樹脂組成物。
The present invention provides a composition of the following first aspect.
[1] an aqueous resin emulsion (α);
a curing agent (β);
and a curing accelerator (γ),
The aqueous resin emulsion (α) comprises a copolymer (X), a polyepoxy compound (Y) having no ethylenically unsaturated bonds and having two or more epoxy groups in one molecule, and an aqueous medium (Z ), including
The content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 1 to 40% by mass,
The copolymer (X) contains a structural unit derived from (meth)acrylic acid ester (A) and a structural unit derived from ethylenically unsaturated carboxylic acid (B),
The content of structural units derived from the (meth)acrylic acid ester (A) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 20 to 98% by mass,
The content of structural units derived from the ethylenically unsaturated carboxylic acid (B) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 0.1 to 10% by mass, The (meth)acrylic acid ester (A)-derived structural unit includes a hydrophilic (meth)acrylic acid ester (A1)-derived structural unit in which the number of carbon atoms in the alcohol-derived portion is 2 or less,
The content of the structural unit derived from the hydrophilic (meth)acrylic acid ester (A1) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 15 to 98% by mass,
one or both of the copolymer (X) and the polyepoxy compound (Y) contain a carboxy group,
The curing agent (β) contains an aromatic polyamine (F) having active hydrogen reactive with epoxy groups,
The content of the aromatic polyamine (F) contained in the curing agent (β) is the active Hydrogen is 0.10 equivalents or more and 1.50 equivalents or less,
The curing accelerator (γ) contains a tertiary amine that does not have an active hydrogen reactive with an epoxy group,
The aqueous resin composition, wherein the content of the curing accelerator (γ) is 0.0070 mol or more and 1.5 mol or less with respect to 1 equivalent of epoxy groups contained in the aqueous resin emulsion (α).
 本発明の第一の態様は以下の特徴を有することが好ましい。以下の特徴は2つ以上を組み合わせることも好ましい。
[2] 前記(メタ)アクリル酸エステル(A)は、(メタ)アクリル酸アルキルエステルからなる、[1]に記載の水性樹脂組成物。
[3] 前記エチレン性不飽和カルボン酸(B)は、α,β-不飽和モノカルボン酸、α,β-不飽和ジカルボン酸、及びカルボキシ基を含有するビニル化合物からなる群のうち、少なくとも1種を含む、[1]または[2]に記載の水性樹脂組成物。
[4] 前記ポリエポキシ化合物(Y)は、ビスフェノール型エポキシ化合物、水添ビスフェノール型エポキシ化合物、ジグリシジルエーテル、トリグリシジルエーテル、テトラグリシジルエーテル、ジグリシジルエステル、トリグリシジルエステル、及びテトラグリシジルエステルから選ばれる少なくとも1種である、[1]~[3]のいずれかに記載の水性樹脂組成物。
Preferably, the first aspect of the present invention has the following features. Combinations of two or more of the following features are also preferred.
[2] The water-based resin composition according to [1], wherein the (meth)acrylic acid ester (A) comprises a (meth)acrylic acid alkyl ester.
[3] The ethylenically unsaturated carboxylic acid (B) is at least one selected from the group consisting of α,β-unsaturated monocarboxylic acids, α,β-unsaturated dicarboxylic acids, and vinyl compounds containing a carboxy group. The aqueous resin composition according to [1] or [2], which contains seeds.
[4] The polyepoxy compound (Y) is selected from bisphenol-type epoxy compounds, hydrogenated bisphenol-type epoxy compounds, diglycidyl ethers, triglycidyl ethers, tetraglycidyl ethers, diglycidyl esters, triglycidyl esters, and tetraglycidyl esters. The aqueous resin composition according to any one of [1] to [3], which is at least one kind.
[5] 前記共重合体(X)は、前記(メタ)アクリル酸エステル(A)由来の構造単位及び前記エチレン性不飽和カルボン酸(B)由来の構造単位からなる、[1]~[4]のいずれかに記載の水性樹脂組成物。
[6] 前記共重合体(X)は、ベンゼン環及びエチレン性不飽和結合を有するエチレン性不飽和芳香族化合物(C)由来の構造単位を含む、[1]~[4]のいずれかに記載の水性樹脂組成物。
[7] 前記エチレン性不飽和芳香族化合物(C)は、芳香族ビニル化合物である[6]に記載の水性樹脂組成物。
[5] The copolymer (X) comprises a structural unit derived from the (meth)acrylic acid ester (A) and a structural unit derived from the ethylenically unsaturated carboxylic acid (B), [1] to [4 ] The water-based resin composition according to any one of the above.
[6] The copolymer (X) includes a structural unit derived from an ethylenically unsaturated aromatic compound (C) having a benzene ring and an ethylenically unsaturated bond, any one of [1] to [4] The aqueous resin composition described.
[7] The aqueous resin composition according to [6], wherein the ethylenically unsaturated aromatic compound (C) is an aromatic vinyl compound.
[8] 前記芳香族ポリアミン(F)は、1分子中に2個以上のベンゼン環を有する芳香族ポリアミンを含む、[1]~[7]のいずれかに記載の水性樹脂組成物。
[9] 前記芳香族ポリアミン(F)は、下記一般式(1-1)で表される化合物を含む、[1]~[8]のいずれかに記載の水性樹脂組成物。
[8] The aqueous resin composition according to any one of [1] to [7], wherein the aromatic polyamine (F) contains an aromatic polyamine having two or more benzene rings in one molecule.
[9] The aqueous resin composition according to any one of [1] to [8], wherein the aromatic polyamine (F) contains a compound represented by the following general formula (1-1).
Figure JPOXMLDOC01-appb-C000002

(式(1-1)中、A、Aはそれぞれ独立に1,2-フェニレン基、1,3-フェニレン基、または1,4-フェニレン基を表す。nは1~12の整数を表す。)
Figure JPOXMLDOC01-appb-C000002

(In formula (1-1), A 2 and A 3 each independently represent a 1,2-phenylene group, a 1,3-phenylene group, or a 1,4-phenylene group; n is an integer of 1 to 12; show.)
[10] 前記芳香族ポリアミン(F)は、前記一般式(1-1)で表される化合物と、m-キシリレンジアミンとを含む、[9]に記載の水性樹脂組成物。 [10] The aqueous resin composition according to [9], wherein the aromatic polyamine (F) contains the compound represented by the general formula (1-1) and m-xylylenediamine.
[11] 前記硬化促進剤(γ)は、第三級脂肪族アミン、第三級脂環式アミン、第三級ヘテロ芳香族アミンからなる群より選択される少なくとも1つの化合物である、[1]~[10]のいずれかに記載の水性樹脂組成物。
[12] 前記水性樹脂エマルジョン(α)は、前記水性媒体(Z)中で、前記共重合体(X)の構造単位となるモノマーが、前記ポリエポキシ化合物(Y)の存在下で、乳化重合されたエマルジョンである、[1]~[11]のいずれかに記載の水性樹脂組成物。
[11] The curing accelerator (γ) is at least one compound selected from the group consisting of tertiary aliphatic amines, tertiary alicyclic amines, and tertiary heteroaromatic amines, [1 ] The water-based resin composition according to any one of [10].
[12] The water-based resin emulsion (α) is obtained by emulsion polymerization of monomers that form the structural units of the copolymer (X) in the aqueous medium (Z) in the presence of the polyepoxy compound (Y). The aqueous resin composition according to any one of [1] to [11], which is an emulsion.
[13] 前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量中におけるカルボキシ基の含有率が、0.10×10-4mol/g以上である[1]~[12]のいずれかに記載の水性樹脂組成物。
[14] 前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量中におけるエポキシ基の含有率が、0.50×10-4mol/g以上である[1]~[13]のいずれかに記載の水性樹脂組成物。
[13] [1] to [12] wherein the content of carboxy groups in the total amount of the copolymer (X) and the polyepoxy compound (Y) is 0.10×10 −4 mol/g or more ] The water-based resin composition according to any one of the above.
[14] The epoxy group content in the total amount of the copolymer (X) and the polyepoxy compound (Y) is 0.50×10 −4 mol/g or more [1] to [13] ] The water-based resin composition according to any one of the above.
 本発明の第二の態様は以下に述べる塗膜を提供する。
[15] [1]~[14]のいずれか1項に記載の水性樹脂組成物の硬化物からなる、塗膜。
 本発明の第三の態様は以下に述べる製造方法を提供する。
[16] 水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを混合することにより、[1]~[14]のいずれかに記載の水性樹脂組成物を調製する混合工程と、
 前記水性樹脂組成物を、被塗装面に塗布する塗布工程とを含む、塗膜の製造方法。
 本発明の第三の態様の製造方法は以下の特徴を有することが好ましい。
[17] 前記塗布工程を、前記混合工程の終了後1時間以内に完了する、[16]に記載の塗膜の製造方法。
A second aspect of the present invention provides a coating film as described below.
[15] A coating film comprising a cured product of the aqueous resin composition according to any one of [1] to [14].
A third aspect of the present invention provides the manufacturing method described below.
[16] The aqueous resin composition according to any one of [1] to [14] is prepared by mixing the aqueous resin emulsion (α), the curing agent (β), and the curing accelerator (γ). a mixing step of
A method for producing a coating film, comprising a coating step of applying the water-based resin composition to a surface to be coated.
The manufacturing method of the third aspect of the present invention preferably has the following features.
[17] The method for producing a coating film according to [16], wherein the coating step is completed within 1 hour after the mixing step is completed.
 本発明の第四の態様は以下に述べる水性樹脂組成物セットを提供する。
[18] [1]~[14]のいずれか一項に記載の水性樹脂組成物の構成成分が第1液と第2液とに分けて保存され、
 前記第1液が、前記水性樹脂エマルジョン(α)を含み、
 前記第2液が、前記硬化剤(β)と、前記硬化促進剤(γ)とを含む、水性樹脂組成物セット。
A fourth aspect of the present invention provides an aqueous resin composition set described below.
[18] The constituent components of the aqueous resin composition according to any one of [1] to [14] are stored separately in a first liquid and a second liquid,
The first liquid contains the aqueous resin emulsion (α),
An aqueous resin composition set, wherein the second liquid contains the curing agent (β) and the curing accelerator (γ).
 本発明によれば、常温短時間の養生で硬化して初期耐水性に優れた塗膜を形成でき、かつ金属材料への湿熱密着性が良好な塗膜が得られる水性樹脂組成物および水性樹脂組成物セットを提供できる。
 また、本発明によれば、本発明の水性樹脂組成物の硬化物からなり、初期耐水性ならびに金属材料に対する湿熱密着性が良好な塗膜を提供できる。
 また、本発明によれば、本発明の水性樹脂組成物の硬化物からなる塗膜を形成する塗膜の製造方法を提供できる。
According to the present invention, a water-based resin composition and a water-based resin that can be cured at room temperature for a short period of time to form a coating film having excellent initial water resistance and that can provide a coating film having good wet heat adhesion to metal materials. A composition set can be provided.
Further, according to the present invention, it is possible to provide a coating film comprising a cured product of the aqueous resin composition of the present invention and having good initial water resistance and wet heat adhesion to metal materials.
Further, according to the present invention, it is possible to provide a method for producing a coating film comprising a cured product of the aqueous resin composition of the present invention.
 以下、本発明の水性樹脂組成物、塗膜、塗膜の製造方法、水性樹脂組成物セットの好ましい例について詳細に説明する。
 なお、本発明は、以下に示す実施形態のみに限定されるものではない。本発明は、例えば、本発明の趣旨を逸脱しない範囲で、数、種類、位置、量、比率、材料、構成などについて、付加、省略、置換、変更などが可能である。
Preferred examples of the aqueous resin composition, the coating film, the method for producing the coating film, and the aqueous resin composition set of the present invention are described below in detail.
In addition, this invention is not limited only to embodiment shown below. In the present invention, for example, the number, type, position, amount, ratio, material, configuration, etc. can be added, omitted, replaced, changed, etc. without departing from the gist of the present invention.
 ここで、本明細書において使用する下記の語句について説明する。
「(メタ)アクリレート」とは、アクリレートまたはメタクリレートを意味する。また、「(メタ)アクリル」とは、アクリルまたはメタクリルを意味する。
「エチレン性不飽和結合」とは、芳香環を形成する炭素原子を除く、炭素原子間の二重結合を意味する。
「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC:gel permeation chromatography)によって測定される標準ポリスチレン換算値とする。
Here, the following terms used in this specification will be explained.
"(Meth)acrylate" means acrylate or methacrylate. Moreover, "(meth)acryl" means acryl or methacryl.
"Ethylenically unsaturated bond" means a double bond between carbon atoms, excluding carbon atoms forming an aromatic ring.
"Weight average molecular weight" is a standard polystyrene conversion value measured by gel permeation chromatography (GPC).
 エチレン性不飽和結合を有する化合物を用いた重合体において、前記エチレン性不飽和結合を有する化合物に由来する構造単位とは、その化合物中のエチレン性不飽和結合以外の部分の化学構造と、前記重合体中における、前記構造単位のエチレン性不飽和結合に対応する部分以外の部分の化学構造とが、同じである単位を意味してよい。前記化合物のエチレン性不飽和結合は、重合体を形成する際に、単結合へと変化してもよい。例えば、メチルメタクリレートの重合体において、メチルメタクリレート由来の構造単位は、-CH-C(CH)(COOCH)-によって表される。 In a polymer using a compound having an ethylenically unsaturated bond, the structural unit derived from the compound having an ethylenically unsaturated bond includes the chemical structure of the portion other than the ethylenically unsaturated bond in the compound, and the It may mean a unit having the same chemical structure as the portion other than the portion corresponding to the ethylenically unsaturated bond of the structural unit in the polymer. The ethylenically unsaturated bonds of the compounds may be converted to single bonds when forming the polymer. For example, in a polymer of methyl methacrylate, the structural unit derived from methyl methacrylate is represented by -CH 2 -C(CH 3 )(COOCH 3 )-.
 なお、イオン性の官能基を有し、かつエチレン性不飽和結合を有する化合物の重合体の場合、例えば、後述するエチレン性不飽和カルボン酸(B)に由来する構造単位(b)のように、カルボキシ基のようなイオン性の官能基を有する構造単位については、前記官能基の一部がイオン交換されていても、またはイオン交換されていなくても、同じイオン性化合物に由来する構造単位としてよい。例えば、-CH-C(CH)(COONa)-で表される構造単位も、メタクリル酸由来の構造単位と考えてよい。 In the case of a polymer of a compound having an ionic functional group and an ethylenically unsaturated bond, for example, a structural unit (b) derived from an ethylenically unsaturated carboxylic acid (B) described later , for structural units having an ionic functional group such as a carboxy group, whether or not part of the functional group is ion-exchanged, the structural unit derived from the same ionic compound may be For example, a structural unit represented by —CH 2 —C(CH 3 )(COONa)— may also be considered as a structural unit derived from methacrylic acid.
 また、独立した複数のエチレン性不飽和結合を有する化合物については、前記化合物の重合体の構造単位として、構造単位内部に1つ以上のエチレン性不飽和結合が残っていてもよい。独立した複数のエチレン性不飽和結合とは、互いに共役ジエンを形成しない複数のエチレン性不飽和結合を意味してよい。例えば、ジビニルベンゼンの重合体の場合、ジビニルベンゼン由来の構造単位は、エチレン性不飽和結合を有さない構造(ジビニルベンゼンの2つのエチレン性不飽和結合に対応する部分が両方とも重合体の鎖に取り込まれた形態)であってもよく、1個のエチレン性不飽和結合を有する構造(一方のエチレン性不飽和結合に対応する部分のみが重合体の鎖に取り込まれた形態)でもよい。 In addition, for compounds having multiple independent ethylenically unsaturated bonds, one or more ethylenically unsaturated bonds may remain inside the structural unit as the structural unit of the polymer of the compound. Multiple independent ethylenically unsaturated bonds may mean multiple ethylenically unsaturated bonds that do not form a conjugated diene with each other. For example, in the case of a polymer of divinylbenzene, the structural unit derived from divinylbenzene has a structure that does not have an ethylenically unsaturated bond (the portions corresponding to the two ethylenically unsaturated bonds of divinylbenzene are both polymer chains It may be a form incorporated in), or a structure having one ethylenically unsaturated bond (a form in which only the portion corresponding to one ethylenically unsaturated bond is incorporated into the polymer chain).
「硬化」とは、原料に含まれる分子どうしが化学反応により結合し、網目構造の高分子を形成することを言う。
「塗膜」とは、本実施形態の水性樹脂組成物に含まれる樹脂成分を硬化させて形成された硬化物からなり、水性樹脂組成物を被塗装面に塗布し、媒体を乾燥させる方法などにより得られた被塗装面と一体化されているものである。
「皮膜」とは、本実施形態の水性樹脂組成物に含まれる樹脂成分を硬化させて形成された硬化物からなり、基材上で硬化させた後、基材から剥離されたものである。
"Curing" means that the molecules contained in the raw material bond with each other through a chemical reaction to form a polymer with a network structure.
The "coating film" is composed of a cured product formed by curing the resin component contained in the aqueous resin composition of the present embodiment, and a method such as applying the aqueous resin composition to the surface to be coated and drying the medium. It is integrated with the surface to be coated obtained by.
The "film" is composed of a cured product formed by curing the resin component contained in the aqueous resin composition of the present embodiment, and is peeled off from the substrate after curing on the substrate.
<水性樹脂組成物>
 本実施形態の水性樹脂組成物は、水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを含む。本実施形態の水性樹脂組成物は、後述するように、水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを混合することにより製造される。
<Aqueous resin composition>
The aqueous resin composition of the present embodiment contains an aqueous resin emulsion (α), a curing agent (β), and a curing accelerator (γ). The aqueous resin composition of the present embodiment is produced by mixing an aqueous resin emulsion (α), a curing agent (β), and a curing accelerator (γ), as described later.
[1-1.水性樹脂エマルジョン(α)]
 水性樹脂エマルジョン(α)は、共重合体(X)と、エチレン性不飽和結合を有さず1分子中に2個以上のエポキシ基を有するポリエポキシ化合物(Y)と、水性媒体(Z)とを含む。水性樹脂エマルジョン(α)は、水性媒体(Z)中で、共重合体(X)の構造単位となるモノマーを、ポリエポキシ化合物(Y)の存在下で、乳化重合してなるエマルジョンである。水性樹脂エマルジョン(α)は、後述する硬化剤(β)および硬化促進剤(γ)と混合して硬化させることにより、高い強度を有し、伸び率の大きな硬化物を形成する。
[1-1. Aqueous resin emulsion (α)]
The aqueous resin emulsion (α) comprises a copolymer (X), a polyepoxy compound (Y) having no ethylenically unsaturated bonds and having two or more epoxy groups in one molecule, and an aqueous medium (Z). including. The water-based resin emulsion (α) is an emulsion obtained by emulsion polymerization of monomers that form the structural units of the copolymer (X) in the presence of the polyepoxy compound (Y) in the water-based medium (Z). The water-based resin emulsion (α) is mixed with a curing agent (β) and a curing accelerator (γ) described below and cured to form a cured product having high strength and high elongation.
<1-1-1.共重合体(X)>
 共重合体(X)は、(メタ)アクリル酸エステル(A)由来の構造単位(a)、及びエチレン性不飽和カルボン酸(B)由来の構造単位(b)を有する。(メタ)アクリル酸エステル(A)由来の構造単位(a)は、親水性(メタ)アクリル酸エステル(A1)由来の構造単位(a1)を含む。
<1-1-1. Copolymer (X)>
The copolymer (X) has a structural unit (a) derived from the (meth)acrylic acid ester (A) and a structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B). The structural unit (a) derived from the (meth)acrylate (A) contains the structural unit (a1) derived from the hydrophilic (meth)acrylate (A1).
 共重合体(X)は、構造単位(a)及び構造単位(b)からなるもの(共重合体(X1)とする)でもよい。共重合体(X)は、構造単位(a)と、構造単位(b)と、さらに、ベンゼン環及びエチレン性不飽和結合を有するエチレン性不飽和芳香族化合物(C)由来の構造単位(c)と、を有するもの(共重合体(X2)とする)でもよい。共重合体(X2)は、構造単位(a)~(c)のみからなるものであってもよい。共重合体(X)は、構造単位(a)~(c)以外の構造単位(d)(他の単量体(D)由来の構造単位とする)を有していてもよい。 The copolymer (X) may consist of structural units (a) and structural units (b) (referred to as copolymer (X1)). The copolymer (X) comprises a structural unit (a), a structural unit (b), and a structural unit (c) derived from an ethylenically unsaturated aromatic compound (C) having a benzene ring and an ethylenically unsaturated bond. ) and (referred to as a copolymer (X2)). The copolymer (X2) may consist of structural units (a) to (c) only. The copolymer (X) may have a structural unit (d) other than the structural units (a) to (c) (which is assumed to be a structural unit derived from another monomer (D)).
 水性樹脂エマルジョン(α)に含まれる共重合体(X)の量は、任意に選択できるが、水性樹脂エマルジョン(α)の総量に対して、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることがさらに好ましい。水性樹脂エマルジョン(α)に含まれる共重合体(X)の量は、任意に選択できるが、水性樹脂エマルジョン(α)の総量に対して、60質量%以下であることが好ましく、50質量%以下であることがより好ましく、40質量%以下であることがさらに好ましい。ただしこれら例のみに限定されない。 The amount of the copolymer (X) contained in the aqueous resin emulsion (α) can be arbitrarily selected. It is more preferably 25% by mass or more, and more preferably 25% by mass or more. The amount of the copolymer (X) contained in the aqueous resin emulsion (α) can be arbitrarily selected, but it is preferably 60% by mass or less, preferably 50% by mass, based on the total amount of the aqueous resin emulsion (α). It is more preferably 40% by mass or less, more preferably 40% by mass or less. However, it is not limited only to these examples.
 共重合体(X)と後述するポリエポキシ化合物(Y)との合計量に対する、共重合体(X)の含有率は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、65質量%以上であることがさらに好ましい。共重合体(X)と後述するポリエポキシ化合物(Y)との合計量に対する、共重合体(X)の含有率は、99質量%以下であることが好ましく、94質量%以下であることがより好ましく、88質量%以下であることがさらに好ましい。 The content of the copolymer (X) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) described later is preferably 50% by mass or more, and preferably 60% by mass or more. More preferably, it is 65% by mass or more. The content of the copolymer (X) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) described later is preferably 99% by mass or less, and preferably 94% by mass or less. More preferably, it is 88% by mass or less.
[(メタ)アクリル酸エステル(A)]
 (メタ)アクリル酸エステル(A)としては、(メタ)アクリル酸アルキルエステルを含むことが好ましく、(メタ)アクリル酸アルキルエステルからなることがより好ましい。(メタ)アクリル酸アルキルエステルの例としては、炭素数1~18の直鎖状、分岐鎖状または環状の、アルキル基を有する(メタ)アクリル酸アルキルエステルであることがより好ましい。具体的な例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、及び、イソボロニル(メタ)アクリレート等が挙げられる。これらは1種のみ使用されてもよいし、2種以上を組み合わせて使用されてもよい。
[(Meth) acrylic acid ester (A)]
The (meth)acrylic acid ester (A) preferably contains a (meth)acrylic acid alkyl ester, and more preferably consists of a (meth)acrylic acid alkyl ester. As an example of the (meth)acrylic acid alkyl ester, a (meth)acrylic acid alkyl ester having a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms is more preferable. Specific examples include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, isobornyl (meth)acrylate, and the like. These may be used alone or in combination of two or more.
 (メタ)アクリル酸エステル(A)の例には、後述する親水性(メタ)アクリル酸エステル(A1)の例も含まれ得る。
 カルボキシ基を有する(メタ)アクリル酸エステルは、(メタ)アクリル酸エステル(A)には含まれず、後述するエチレン性不飽和カルボン酸(B)に含まれる。
Examples of the (meth)acrylic acid ester (A) may also include examples of the hydrophilic (meth)acrylic acid ester (A1) described later.
A (meth)acrylic acid ester having a carboxy group is not included in the (meth)acrylic acid ester (A), but is included in the ethylenically unsaturated carboxylic acid (B) described below.
 (メタ)アクリル酸エステル(A)としては、親水性の低い化合物が含まれることが好ましい。本実施形態の水性樹脂組成物の硬化物からなる塗膜の防錆性が向上するためである。同様の理由から、(メタ)アクリル酸エステル(A)として、エポキシ基を有する(メタ)アクリル酸エステルを含んでもよい。 The (meth)acrylic acid ester (A) preferably contains a compound with low hydrophilicity. This is because the rust prevention property of the coating film made of the cured product of the aqueous resin composition of the present embodiment is improved. For the same reason, the (meth)acrylic acid ester (A) may also contain a (meth)acrylic acid ester having an epoxy group.
 前記エポキシ基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸グリシジル、(メタ)アクリル酸β-メチルグリシジル、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3,4-エポキシシクロヘキシルエチル(メタ)アクリレート、及び、3,4-エポキシシクロヘキシルプロピル(メタ)アクリレート等が挙げられる。 Examples of (meth)acrylic acid esters having an epoxy group include glycidyl (meth)acrylate, β-methylglycidyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate glycidyl ether, and 3,4-epoxycyclohexyl. Examples include methyl (meth)acrylate, 3,4-epoxycyclohexylethyl (meth)acrylate, and 3,4-epoxycyclohexylpropyl (meth)acrylate.
 構造単位(a)は、これらの化合物の、1種のみに由来する構造単位を含むものであってもよいし、2種以上に由来する構造単位を含むものであってもよい。さらに、これらの化合物の中でも、構造単位(a)は、(メタ)アクリル酸グリシジルに由来する構造単位を含むことが好ましい。 Structural unit (a) may contain structural units derived from only one of these compounds, or may contain structural units derived from two or more of these compounds. Furthermore, among these compounds, the structural unit (a) preferably contains a structural unit derived from glycidyl (meth)acrylate.
 さらに、(メタ)アクリル酸エステル(A)は、(メタ)アクリル酸アルキルエステル及びエポキシ基を有する化合物のいずれでもない、(メタ)アクリル酸エステルであってもよい。このような(メタ)アクリル酸エステルとしては、ヒドロキシ基を有する(メタ)アクリル酸エステル等が挙げられる。 Furthermore, the (meth)acrylic acid ester (A) may be a (meth)acrylic acid ester that is neither an alkyl (meth)acrylic acid ester nor a compound having an epoxy group. Examples of such (meth)acrylic acid esters include (meth)acrylic acid esters having a hydroxy group.
 前記ヒドロキシ基を有する(メタ)アクリル酸エステルの例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレート、ポリエチレングリコールのモノ(メタ)アクリル酸エステル、及びポリプロピレングリコールのモノ(メタ)アクリル酸エステル等のポリアルキレングリコールのモノ(メタ)アクリル酸エステル等が挙げられる。これらのヒドロキシ基を有する(メタ)アクリル酸エステルは、1種のみ用いてもよく、2種以上を併用することもできる。 Examples of (meth)acrylic acid esters having a hydroxy group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, polyethylene glycol Mono(meth)acrylic acid esters, mono(meth)acrylic acid esters of polyalkylene glycol such as mono(meth)acrylic acid esters of polypropylene glycol, and the like. These hydroxy group-containing (meth)acrylic acid esters may be used alone, or two or more of them may be used in combination.
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、(メタ)アクリル酸エステル(A)由来の構造単位(a)の含有率は、20質量%以上である。後述する水性樹脂エマルジョン(α)の製造方法において、共重合体(X)のモノマーとポリエポキシ化合物(Y)との分散性を向上させることができるためである。この観点から、共重合体(X)とポリエポキシ化合物(Y)との合計量に対する(メタ)アクリル酸エステル(A)由来の構造単位(a)の含有率は、35質量%以上であることが好ましく、45質量%以上であることがより好ましく、60質量%以上であることがさらに好ましい。 The content of the structural unit (a) derived from the (meth)acrylic acid ester (A) is 20% by mass or more with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y). This is because the dispersibility of the monomer of the copolymer (X) and the polyepoxy compound (Y) can be improved in the method for producing the aqueous resin emulsion (α) described later. From this point of view, the content of the structural unit (a) derived from the (meth)acrylic acid ester (A) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 35% by mass or more. is preferred, 45% by mass or more is more preferred, and 60% by mass or more is even more preferred.
 本実施形態において、共重合体に含まれる化合物由来の構造単位の含有率は、共重合体の原料として使用した前記化合物の質量に基づいて算出した値を意味してよい。具体的には、例えば、共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、(メタ)アクリル酸エステル(A)由来の構造単位(a)の含有率とは、前記合計量に対する、共重合体(X)の製造に使用した(メタ)アクリル酸エステル(A)の質量の割合(質量%)を意味してよい。 In the present embodiment, the content of the structural unit derived from the compound contained in the copolymer may mean a value calculated based on the mass of the compound used as the raw material of the copolymer. Specifically, for example, the content of the structural unit (a) derived from the (meth)acrylic acid ester (A) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is the total It may mean the mass ratio (% by mass) of the (meth)acrylic acid ester (A) used in the production of the copolymer (X) with respect to the amount.
 共重合体(X)が、構造単位(a)及び構造単位(b)からなるものである場合、すなわち共重合体(X1)である場合、共重合体(X1)となるモノマーとポリエポキシ化合物(Y)との分散性の向上の観点で、以下の割合であることが好ましい。すなわち、共重合体(X1)とポリエポキシ化合物(Y)との合計量に対する、(メタ)アクリル酸エステル(A)由来の構造単位(a)の含有率は、50質量%以上であることがさらに好ましく、60質量%以上であることが特に好ましい。 When the copolymer (X) is composed of the structural unit (a) and the structural unit (b), i.e., when the copolymer (X1) is a copolymer (X1), a monomer to form the copolymer (X1) and a polyepoxy compound From the viewpoint of improving dispersibility with (Y), the following proportions are preferred. That is, the content of the structural unit (a) derived from the (meth)acrylic acid ester (A) with respect to the total amount of the copolymer (X1) and the polyepoxy compound (Y) is 50% by mass or more. More preferably, it is particularly preferably 60% by mass or more.
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、(メタ)アクリル酸エステル(A)由来の構造単位(a)の含有率は、98質量%以下である。98質量%を超えると、水性樹脂エマルジョン(α)の分散性が低下する傾向があるためである。この観点から、共重合体(X)とポリエポキシ化合物(Y)との合計量に対する(メタ)アクリル酸エステル(A)由来の構造単位(a)の含有率は、92質量%以下であることが好ましく、87質量%以下であることがより好ましい。 The content of the structural unit (a) derived from the (meth)acrylic acid ester (A) is 98% by mass or less with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y). This is because if the amount exceeds 98% by mass, the dispersibility of the aqueous resin emulsion (α) tends to decrease. From this point of view, the content of the structural unit (a) derived from the (meth)acrylic acid ester (A) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 92% by mass or less. is preferred, and 87% by mass or less is more preferred.
 共重合体(X)が、構造単位(a)、構造単位(b)、及び構造単位(c)を有する場合、すなわち、共重合体(X)が共重合体(X2)である場合、水性樹脂エマルジョン(α)の分散性が低下する傾向があるため、以下の割合であることが好ましい。共重合体(X2)における(メタ)アクリル酸エステル(A)由来の構造単位(a)の含有率は、75質量%以下であることがさらに好ましく、65質量%以下であることが特に好ましい。 When the copolymer (X) has the structural unit (a), the structural unit (b), and the structural unit (c), that is, when the copolymer (X) is the copolymer (X2), the aqueous Since the dispersibility of the resin emulsion (α) tends to decrease, the following proportions are preferred. The content of the structural unit (a) derived from the (meth)acrylic acid ester (A) in the copolymer (X2) is more preferably 75% by mass or less, particularly preferably 65% by mass or less.
[親水性(メタ)アクリル酸エステル(A1)]
 前記(メタ)アクリル酸エステル(A)由来の構造単位は、親水性(メタ)アクリル酸エステル(A1)由来の構造単位を含む。
 親水性(メタ)アクリル酸エステル(A1)は、(メタ)アクリロイルオキシ基(CH=CR-COO-、Rは水素又はメチル基を示す。)を有し、アルコール由来の部分、すなわち(メタ)アクリロイルオキシ基以外の部分における炭素原子数が2以下である、(メタ)アクリル酸エステルである。アクリロイルオキシ基以外の部分の前記炭素原子数は、例えば、1または2であって良い。
[Hydrophilic (meth)acrylic acid ester (A1)]
The structural unit derived from the (meth)acrylate (A) includes a structural unit derived from the hydrophilic (meth)acrylate (A1).
Hydrophilic (meth)acrylic acid ester (A1) has a (meth)acryloyloxy group (CH 2 =CR-COO-, R represents hydrogen or a methyl group), and has an alcohol-derived moiety, namely (meth ) A (meth)acrylic acid ester in which the number of carbon atoms in the portion other than the acryloyloxy group is 2 or less. The number of carbon atoms in the moieties other than the acryloyloxy group may be, for example, 1 or 2.
 親水性(メタ)アクリル酸エステル(A1)としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、(メタ)アクリル酸-2-ヒドロキシエチル等が挙げられる。親水性(メタ)アクリル酸エステル(A1)は、アルコール由来の部分の炭素原子数が2以下の(メタ)アクリル酸アルキルエステルであることが好ましく、メチルメタクリレートであることがより好ましい。 Examples of the hydrophilic (meth)acrylic acid ester (A1) include methyl (meth)acrylate, ethyl (meth)acrylate, and 2-hydroxyethyl (meth)acrylate. The hydrophilic (meth)acrylic acid ester (A1) is preferably an alkyl (meth)acrylic acid ester in which the alcohol-derived moiety has 2 or less carbon atoms, more preferably methyl methacrylate.
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、親水性(メタ)アクリル酸エステル(A1)由来の構造単位(a1)の含有率は、15質量%以上である。親水性(メタ)アクリル酸エステル(A1)由来の構造単位(a1)の含有率が15質量%未満であると、水性樹脂エマルジョン(α)と、芳香族ポリアミンを含む硬化剤(β)と、硬化促進剤(γ)とを混合することにより、急速にゲル化が進行するためである。 The content of the structural unit (a1) derived from the hydrophilic (meth)acrylic acid ester (A1) is 15% by mass or more with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y). When the content of the structural unit (a1) derived from the hydrophilic (meth)acrylic acid ester (A1) is less than 15% by mass, the aqueous resin emulsion (α), the curing agent (β) containing the aromatic polyamine, This is because gelation proceeds rapidly by mixing with the curing accelerator (γ).
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、親水性(メタ)アクリル酸エステル(A1)由来の構造単位(a1)の含有率は、15質量%以上であり、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。本実施形態の水性樹脂組成物の硬化物からなる塗膜の耐水性及び防錆性がより向上するためである。構造単位(a1)の含有率は、45質量%以上または50質量%以上であっても良い。 The content of the structural unit (a1) derived from the hydrophilic (meth)acrylic acid ester (A1) relative to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 15% by mass or more, and 20% by mass. It is preferably at least 30% by mass, more preferably at least 40% by mass. This is because the water resistance and rust resistance of the coating film made of the cured product of the aqueous resin composition of the present embodiment are further improved. The content of the structural unit (a1) may be 45% by mass or more or 50% by mass or more.
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、親水性(メタ)アクリル酸エステル(A1)由来の構造単位(a1)の含有率の上限は、(メタ)アクリル酸エステル(A)由来の構造単位(a)に記載の含有率の上限と同様である。すなわち、前記上限は、98質量%以下であり、92質量%以下であることが好ましく、87質量%以下であることがより好ましい。
 ただし、後述するポリエポキシ化合物(Y)が、ビスフェノール型エポキシ化合物、水添ビスフェノール型エポキシ化合物、フェノールノボラック型エポキシ化合物等の疎水性の化合物である場合、構造単位(a)に占める構造単位(a1)の割合は、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましく、60質量%以下であることが特に好ましい。共重合体(X)と、ポリエポキシ化合物(Y)との親和性を向上させるためである。
The upper limit of the content of the structural unit (a1) derived from the hydrophilic (meth)acrylate (A1) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is (meth)acrylate Structural unit derived from (A) is the same as the upper limit of the content described in (a). That is, the upper limit is 98% by mass or less, preferably 92% by mass or less, and more preferably 87% by mass or less.
However, when the polyepoxy compound (Y) described later is a hydrophobic compound such as a bisphenol type epoxy compound, a hydrogenated bisphenol type epoxy compound, or a phenol novolac type epoxy compound, the structural unit (a1 ) is preferably 90% by mass or less, more preferably 80% by mass or less, even more preferably 70% by mass or less, and particularly preferably 60% by mass or less. This is to improve the affinity between the copolymer (X) and the polyepoxy compound (Y).
[エチレン性不飽和カルボン酸(B)]
 エチレン性不飽和カルボン酸(B)は、エチレン性不飽和結合及びカルボキシ基を有する化合物である。エチレン性不飽和カルボン酸(B)は、α,β-不飽和モノカルボン酸、α,β-不飽和ジカルボン酸、α,β-不飽和ジカルボン酸のモノアルキルエステル、及びカルボキシ基を含有するビニル化合物からなる群のうち、少なくとも1種を含むことが好ましく、α,β-不飽和モノカルボン酸、α,β-不飽和ジカルボン酸、及びカルボキシ基を含有するビニル化合物からなる群のうち、少なくとも1種を含むことが好ましい。α,β-不飽和モノまたはジカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、シトラコン酸、イタコン酸、マレイン酸、無水マレイン酸、フマル酸等が挙げられる。カルボキシ基を含有するビニル化合物としては、例えば、フタル酸モノヒドロキシエチル(メタ)アクリレート、シュウ酸モノヒドロキシプロピル(メタ)アクリレート等が挙げられる。
[Ethylenically unsaturated carboxylic acid (B)]
Ethylenically unsaturated carboxylic acid (B) is a compound having an ethylenically unsaturated bond and a carboxy group. Ethylenically unsaturated carboxylic acid (B) includes α,β-unsaturated monocarboxylic acid, α,β-unsaturated dicarboxylic acid, monoalkyl ester of α,β-unsaturated dicarboxylic acid, and vinyl containing a carboxy group. It preferably contains at least one of the group consisting of compounds, and at least It is preferred that one species is included. Examples of α,β-unsaturated mono- or dicarboxylic acids include acrylic acid, methacrylic acid, crotonic acid, citraconic acid, itaconic acid, maleic acid, maleic anhydride, and fumaric acid. Examples of vinyl compounds containing a carboxy group include monohydroxyethyl phthalate (meth)acrylate and monohydroxypropyl oxalate (meth)acrylate.
 構造単位(b)は、これらの化合物の、1種のみに由来する構成単位であってもよく、2種以上に由来する構造単位を含んでいてもよい。これらの化合物の中でも、エチレン性不飽和カルボン酸(B)としては、(メタ)アクリロイル基及びカルボキシ基を有する化合物を含むこと、または、(メタ)アクリロイル基及びカルボキシ基を有する化合物のみからなることが好ましい。エチレン性不飽和カルボン酸(B)としては、(メタ)アクリル酸を含むこと、または(メタ)アクリル酸のみからなることも、好ましい。構造単位(b)は、(メタ)アクリロイル基及びカルボキシ基を有する化合物に由来する構造単位のみからなることが好ましく、さらに(メタ)アクリル酸に由来する構造単位を含むことも好ましい。 Structural unit (b) may be a structural unit derived from only one of these compounds, or may contain structural units derived from two or more of these compounds. Among these compounds, the ethylenically unsaturated carboxylic acid (B) includes a compound having a (meth)acryloyl group and a carboxy group, or consists only of a compound having a (meth)acryloyl group and a carboxy group. is preferred. It is also preferable that the ethylenically unsaturated carboxylic acid (B) contains (meth)acrylic acid or consists only of (meth)acrylic acid. Structural unit (b) preferably consists of only structural units derived from a compound having a (meth)acryloyl group and a carboxy group, and further preferably contains structural units derived from (meth)acrylic acid.
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、エチレン性不飽和カルボン酸(B)由来の構造単位(b)の含有率は、0.1質量%以上である。水性樹脂エマルジョン(α)の分散性を向上させるためである。この観点から、共重合体(X)とポリエポキシ化合物(Y)との合計量に対するエチレン性不飽和カルボン酸(B)由来の構造単位(b)の含有率は、0.3質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。構造単位(b)の含有率は、0.8質量%以上、あるいは1.0質量%以上であっても良い。 The content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) is 0.1% by mass or more with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y). This is for improving the dispersibility of the aqueous resin emulsion (α). From this point of view, the content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 0.3% by mass or more. It is preferably 0.5% by mass or more, and more preferably 0.5% by mass or more. The content of the structural unit (b) may be 0.8% by mass or more, or 1.0% by mass or more.
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、エチレン性不飽和カルボン酸(B)由来の構造単位(b)の含有率は、10質量%以下である。高温環境下で共重合体(X)がゲル状になることを抑制し、水性樹脂エマルジョン(α)の高温安定性を向上させるためである。この観点から、共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、エチレン性不飽和カルボン酸(B)由来の構造単位(b)の含有率は、7質量%以下であることが好ましく、5質量%以下であることがより好ましい。構造単位(b)の含有率は、4質量%以下、あるいは3質量%以下であっても良い。 The content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) is 10% by mass or less with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y). This is for suppressing gelling of the copolymer (X) in a high-temperature environment and improving the high-temperature stability of the aqueous resin emulsion (α). From this point of view, the content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 7% by mass or less. is preferable, and it is more preferably 5% by mass or less. The content of the structural unit (b) may be 4% by mass or less, or 3% by mass or less.
 なお、共重合体(X)の総量に対する、エチレン性不飽和カルボン酸(B)由来の構造単位(b)の含有率は、0.2質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、0.8質量%以上であることがさらに好ましい。共重合体(X)の総量に対する、エチレン性不飽和カルボン酸(B)由来の構造単位(b)の含有率は、12質量%以下であることが好ましく、8質量%以下であることがより好ましく、5質量%以下であることがさらに好ましく、3質量%以下であることが特に好ましい。 The content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) with respect to the total amount of the copolymer (X) is preferably 0.2% by mass or more, and 0.5% by mass. It is more preferably 0.8% by mass or more, and more preferably 0.8% by mass or more. The content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) with respect to the total amount of the copolymer (X) is preferably 12% by mass or less, more preferably 8% by mass or less. It is preferably 5% by mass or less, more preferably 3% by mass or less.
[エチレン性不飽和芳香族化合物(C)]
 エチレン性不飽和芳香族化合物(C)は、(メタ)アクリル酸エステル(A)及びエチレン性不飽和カルボン酸(B)のいずれにも該当せず、かつベンゼン環及びエチレン性不飽和結合を有する化合物である。エチレン性不飽和芳香族化合物(C)は、芳香族ビニル化合物であることが好ましい。
[Ethylenically unsaturated aromatic compound (C)]
The ethylenically unsaturated aromatic compound (C) is neither a (meth)acrylic acid ester (A) nor an ethylenically unsaturated carboxylic acid (B), and has a benzene ring and an ethylenically unsaturated bond. is a compound. The ethylenically unsaturated aromatic compound (C) is preferably an aromatic vinyl compound.
 エチレン性不飽和芳香族化合物(C)としての芳香族ビニル化合物としては、例えば、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-tert-ブチルスチレン、tert-ブトキシスチレン、ビニルトルエン、ジビニルトルエン、ビニルナフタレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、ジブロモスチレン、トリブロモスチレン、フルオロスチレン、スチレンスルホン酸及びその塩、α-メチルスチレンスルホン酸及びその塩、p-ヒドロキシスチレン、m-ヒドロキシスチレン、o-ヒドロキシスチレン、p-イソプロペニルフェノール、m-イソプロペニルフェノール、及びo-イソプロペニルフェノール等が挙げられる。構造単位(c)は、これらの化合物の、1種のみに由来するものでもよく、2種以上に由来する構造単位を含めてもよい。これらの中でも、構造単位(c)は、炭化水素に由来する構造単位からなることがより好ましく、スチレンに由来する構造単位であることが特に好ましい。 Examples of the aromatic vinyl compound as the ethylenically unsaturated aromatic compound (C) include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, α-methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4-tert-butylstyrene, tert-butoxystyrene, vinyltoluene, divinyltoluene, vinylnaphthalene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromostyrene, tribromostyrene, fluorostyrene, styrene sulfone acids and salts thereof, α-methylstyrenesulfonic acid and salts thereof, p-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene, p-isopropenylphenol, m-isopropenylphenol, o-isopropenylphenol and the like. mentioned. Structural unit (c) may be derived from only one of these compounds, or may include structural units derived from two or more of these compounds. Among these, the structural unit (c) is more preferably composed of a structural unit derived from a hydrocarbon, and particularly preferably a structural unit derived from styrene.
 共重合体(X)が、エチレン性不飽和芳香族化合物(C)由来の構造単位(c)を含む場合、すなわち共重合体(X)が共重合体(X2)である場合、共重合体(X2)とポリエポキシ化合物(Y)との合計量に対する、構造単位(c)の含有率は、5質量%以上であることが好ましい。本実施形態の水性樹脂組成物の硬化物からなる塗膜の耐水性を向上させるためである。この観点から、共重合体(X2)とポリエポキシ化合物(Y)との合計量に対する、構造単位(c)の含有率は、10質量%以上であることがより好ましく、15質量%以上であることがさらにより好ましい。構造単位(c)の含有率は、18質量%以上、20質量%以上、あるいは23質量%以上であってもよい。 When the copolymer (X) contains the structural unit (c) derived from the ethylenically unsaturated aromatic compound (C), i.e. when the copolymer (X) is the copolymer (X2), the copolymer The content of structural unit (c) with respect to the total amount of (X2) and polyepoxy compound (Y) is preferably 5% by mass or more. This is for improving the water resistance of the coating film made of the cured product of the aqueous resin composition of the present embodiment. From this point of view, the content of the structural unit (c) with respect to the total amount of the copolymer (X2) and the polyepoxy compound (Y) is more preferably 10% by mass or more, and more preferably 15% by mass or more. is even more preferred. The content of structural unit (c) may be 18% by mass or more, 20% by mass or more, or 23% by mass or more.
 共重合体(X)が共重合体(X2)である場合、共重合体(X2)とポリエポキシ化合物(Y)との合計量に対する構造単位(c)の含有率は、50質量%以下であることが好ましい。本実施形態の水性樹脂組成物の硬化物からなる塗膜の耐候性が向上するためである。この観点から、共重合体(X2)とポリエポキシ化合物(Y)との合計量に対する構造単位(c)の含有率は、40質量%以下であることがより好ましく、35質量%以下であることがさらに好ましい。構造単位(c)の含有率は、33質量%以下、30質量%以下、あるいは28質量%以下であってもよい。 When the copolymer (X) is the copolymer (X2), the content of the structural unit (c) with respect to the total amount of the copolymer (X2) and the polyepoxy compound (Y) is 50% by mass or less. Preferably. This is because the weather resistance of the coating film made of the cured product of the aqueous resin composition of the present embodiment is improved. From this point of view, the content of the structural unit (c) with respect to the total amount of the copolymer (X2) and the polyepoxy compound (Y) is more preferably 40% by mass or less, more preferably 35% by mass or less. is more preferred. The content of structural unit (c) may be 33% by mass or less, 30% by mass or less, or 28% by mass or less.
 共重合体(X2)の総量に対する、構造単位(c)の含有率は、5質量%以上であることが好ましく、15質量%以上であることがより好ましく、25質量%以上であることがさらに好ましい。共重合体(X2)の総量に対する、構造単位(c)の含有率は、55質量%以下であることが好ましく、45質量%以下であることがより好ましく、35質量%以下であることがさらに好ましい。 The content of the structural unit (c) with respect to the total amount of the copolymer (X2) is preferably 5% by mass or more, more preferably 15% by mass or more, and further preferably 25% by mass or more. preferable. The content of the structural unit (c) with respect to the total amount of the copolymer (X2) is preferably 55% by mass or less, more preferably 45% by mass or less, and further preferably 35% by mass or less. preferable.
[他の単量体(D)]
 他の単量体(D)は、(メタ)アクリル酸エステル(A)、エチレン性不飽和カルボン酸(B)、及びエチレン性不飽和芳香族化合物(C)のいずれにも該当せず、かつ共重合体(X)の合成に用いられる化合物と共重合が可能なエチレン性不飽和結合を有する化合物である。
 他の単量体(D)としては、例えば、共役ジエン化合物、マレイミド化合物、ビニルエーテル化合物、アリルエーテル化合物、不飽和ジカルボン酸のジアルキルエステル、シアノ基を有するビニル化合物等が挙げられる。
[Other monomer (D)]
The other monomer (D) is none of the (meth)acrylic acid ester (A), the ethylenically unsaturated carboxylic acid (B), and the ethylenically unsaturated aromatic compound (C), and It is a compound having an ethylenically unsaturated bond that can be copolymerized with the compound used for synthesizing the copolymer (X).
Other monomers (D) include, for example, conjugated diene compounds, maleimide compounds, vinyl ether compounds, allyl ether compounds, dialkyl esters of unsaturated dicarboxylic acids, and vinyl compounds having a cyano group.
 前記共役ジエン化合物としては、例えば1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)、2,3-ジメチル-1,3ブタジエン、クロロプレン(2-クロロ-1,3-ブタジエン)等が挙げられる。これらの共役ジエン化合物は、1種のみ用いてもよく、2種以上を併用することもできる。 Examples of the conjugated diene compound include 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), 2,3-dimethyl-1,3 butadiene, and chloroprene (2-chloro-1,3-butadiene). etc. These conjugated diene compounds may be used alone or in combination of two or more.
 前記マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-イソプロピルマレイミド、N-ブチルマレイミド、N-ドデシルマレイミド、N-フェニルマレイミド、N-(2-メチルフェニル)マレイミド、N-(4-メチルフェニル)マレイミド、N-(2、6-ジメチルフェニル)マレイミド、N-(2、6-ジエチルフェニル)マレイミド、N-(2-メトキシフェニル)マレイミド、N-ベンジルマレイミド、N-(4-ヒドロキシフェニル)マレイミド、N-ナフチルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。これらのマレイミド系化合物は、1種のみ用いてもよく、2種以上を併用することもできる。 Examples of the maleimide compound include maleimide, N-methylmaleimide, N-isopropylmaleimide, N-butylmaleimide, N-dodecylmaleimide, N-phenylmaleimide, N-(2-methylphenyl)maleimide, N-(4- methylphenyl)maleimide, N-(2,6-dimethylphenyl)maleimide, N-(2,6-diethylphenyl)maleimide, N-(2-methoxyphenyl)maleimide, N-benzylmaleimide, N-(4-hydroxy phenyl)maleimide, N-naphthylmaleimide, N-cyclohexylmaleimide and the like. These maleimide compounds may be used alone or in combination of two or more.
 前記ビニルエーテル化合物としては、例えば、メチルビニルエーテルあるいはエチルビニルエーテル等のアルキルビニルエーテル、一部の水素原子が水酸基で置換された水酸基含有アルキルビニルエーテル等が挙げられる。 Examples of the vinyl ether compound include alkyl vinyl ethers such as methyl vinyl ether and ethyl vinyl ether, and hydroxyl group-containing alkyl vinyl ethers in which some hydrogen atoms are substituted with hydroxyl groups.
 前記アリルエーテル化合物としては、例えば、アリルメチルエーテルあるいはアリルエチルエーテル等のアリルアルキルエーテル、一部の水素原子が水酸基で置換された水酸基含有アリルアルキルエーテル、アリルグリシジルエーテル等が挙げられる。 Examples of the allyl ether compounds include allyl alkyl ethers such as allyl methyl ether and allyl ethyl ether, hydroxyl group-containing allyl alkyl ethers in which some hydrogen atoms are substituted with hydroxyl groups, and allyl glycidyl ethers.
 前記不飽和ジカルボン酸のジアルキルエステルとしては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水テトラヒドロフタル酸等の不飽和ジカルボン酸のジアルキルエステルが挙げられる。これらの不飽和ジカルボン酸のジアルキルエステルは、1種のみ用いてもよいし、2種以上を併用することもできる。 Examples of dialkyl esters of unsaturated dicarboxylic acids include unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, maleic anhydride, itaconic anhydride, citraconic anhydride, and tetrahydrophthalic anhydride. dialkyl esters of These dialkyl esters of unsaturated dicarboxylic acids may be used alone or in combination of two or more.
 前記シアノ基を有するビニル化合物としては、アクリロニトリル、メタクリロニトリル、α-エチルアクリロニトリル、α-イソプロピルアクリロニトリル、α-クロロアクリロニトリル、及びα-フルオロアクリロニトリル等が挙げられる。これらのシアノ基含有ビニル単量体は、1種のみ用いてもよく、2種以上を併用することもできる。 Examples of vinyl compounds having a cyano group include acrylonitrile, methacrylonitrile, α-ethylacrylonitrile, α-isopropylacrylonitrile, α-chloroacrylonitrile, and α-fluoroacrylonitrile. These cyano group-containing vinyl monomers may be used alone or in combination of two or more.
<1-1-2.ポリエポキシ化合物(Y)>
 ポリエポキシ化合物(Y)は、エチレン性不飽和結合を有さず、かつ1分子中に2個以上のエポキシ基を有する化合物である。
 ポリエポキシ化合物(Y)は、ビスフェノール型エポキシ化合物、水添ビスフェノール型エポキシ化合物、ジグリシジルエーテル、トリグリシジルエーテル、テトラグリシジルエーテル、ジグリシジルエステル、トリグリシジルエステル、及びテトラグリシジルエステルから選ばれる、少なくとも1種であることが好ましい。
<1-1-2. Polyepoxy compound (Y)>
Polyepoxy compound (Y) is a compound having no ethylenically unsaturated bond and having two or more epoxy groups in one molecule.
The polyepoxy compound (Y) is at least one selected from bisphenol-type epoxy compounds, hydrogenated bisphenol-type epoxy compounds, diglycidyl ethers, triglycidyl ethers, tetraglycidyl ethers, diglycidyl esters, triglycidyl esters, and tetraglycidyl esters. Seeds are preferred.
 1分子中に2個以上のエポキシ基を有する化合物の例として、ビスフェノールAのジグリシジルエーテル、水添ビスフェノールAのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテル、水添ビスフェノールFのジグリシジルエーテル、グリセリンポリグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、フタル酸のジグリシジルエステル、1,4-シクロヘキサンジメタノールジグリシジルエーテル、1,3-シクロヘキサンジメタノールジグリシジルエーテル、及びヘキサヒドロフタル酸のジグリシジルエステル等が挙げられる。これらの化合物のうち1種類を含むものでもよく2種以上含むものでもよい。 Examples of compounds having two or more epoxy groups in one molecule include diglycidyl ether of bisphenol A, diglycidyl ether of hydrogenated bisphenol A, diglycidyl ether of bisphenol F, diglycidyl ether of hydrogenated bisphenol F, and glycerin. Polyglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, diglycidyl ester of phthalic acid, 1,4-cyclohexanedimethanol diglycidyl ether, 1,3-cyclohexanedimethanol diglycidyl ether Examples thereof include glycidyl ether and diglycidyl ester of hexahydrophthalic acid. One of these compounds may be contained, or two or more may be contained.
 前記ポリエポキシ化合物(Y)は、ビスフェノール型エポキシ化合物、水添ビスフェノール型エポキシ化合物であることがより好ましく、ビスフェノールA型エポキシ化合物、水添ビスフェノールA型エポキシ化合物であることがさらに好ましく、ビスフェノールA型エポキシ化合物であることがさらに好ましい。本実施形態の水性樹脂組成物の硬化物からなる塗膜の耐水性及び防錆性がより向上するためである。 The polyepoxy compound (Y) is more preferably a bisphenol type epoxy compound or a hydrogenated bisphenol type epoxy compound, more preferably a bisphenol A type epoxy compound or a hydrogenated bisphenol A type epoxy compound. Epoxy compounds are more preferred. This is because the water resistance and rust resistance of the coating film made of the cured product of the aqueous resin composition of the present embodiment are further improved.
 ポリエポキシ化合物(Y)の重量平均分子量は特に限定されないが、好ましくは、1000以下であり、より好ましくは800以下であり、更に好ましくは500以下である。ポリエポキシ化合物(Y)の共重合体(X)への相溶性が向上し、分散性及び貯蔵安定性に優れた水性樹脂エマルジョン(α)とすることができる。ポリエポキシ化合物(Y)の重量平均分子量の下限値は、任意に選択でき、例えば、200または300であっても良いが、これらに限定されない。 Although the weight average molecular weight of the polyepoxy compound (Y) is not particularly limited, it is preferably 1000 or less, more preferably 800 or less, and still more preferably 500 or less. The compatibility of the polyepoxy compound (Y) with the copolymer (X) is improved, and an aqueous resin emulsion (α) having excellent dispersibility and storage stability can be obtained. The lower limit of the weight-average molecular weight of the polyepoxy compound (Y) can be arbitrarily selected, and may be, for example, 200 or 300, but is not limited to these.
 ポリエポキシ化合物(Y)のエポキシ当量(エポキシ基1mol当たりのポリエポキシ化合物(Y)の質量)は、500g/mol以下であることが好ましく、350g/mol以下であることがより好ましく、250g/mol以下であることがさらに好ましく、200g/mol以下であることが特に好ましい。本実施形態の水性樹脂組成物の硬化物からなる皮膜の強度が高くなるためである。
 前記エポキシ当量の下限値は、任意に選択でき、例えば、70g/mol以上であってもよく、120g/mol以上であってもよいが、これらの例に限定されない。
The epoxy equivalent of the polyepoxy compound (Y) (mass of the polyepoxy compound (Y) per 1 mol of epoxy group) is preferably 500 g/mol or less, more preferably 350 g/mol or less, and 250 g/mol. It is more preferably 200 g/mol or less, particularly preferably 200 g/mol or less. This is because the strength of the film made of the cured product of the aqueous resin composition of the present embodiment is increased.
The lower limit of the epoxy equivalent can be arbitrarily selected, and may be, for example, 70 g/mol or more, or 120 g/mol or more, but is not limited to these examples.
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、ポリエポキシ化合物(Y)の含有率は、1質量%以上である。水性樹脂組成物を硬化させることにより、優れた防錆性を有する塗膜が得られるためである。この観点から、共重合体(X)とポリエポキシ化合物(Y)との合計量に対するポリエポキシ化合物(Y)の含有率は、5質量%以上であることが好ましく、8質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。必要に応じて、12質量%以上、あるいは20質量%以上であっても良い。
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対するポリエポキシ化合物(Y)の含有率は、40質量%以下である。分散性の高い水性樹脂エマルジョン(α)が得られるためである。この観点から、共重合体(X)とポリエポキシ化合物(Y)との合計量に対するポリエポキシ化合物(Y)の含有率は、35質量%以下であることが好ましく、30質量%以下であることがより好ましい。
The content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 1% by mass or more. This is because a coating film having excellent rust resistance can be obtained by curing the aqueous resin composition. From this point of view, the content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 5% by mass or more, and 8% by mass or more. is more preferable, and 10% by mass or more is even more preferable. If necessary, it may be 12% by mass or more, or 20% by mass or more.
The content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 40% by mass or less. This is because a highly dispersible aqueous resin emulsion (α) can be obtained. From this point of view, the content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 35% by mass or less, more preferably 30% by mass or less. is more preferred.
 水性樹脂エマルジョン(α)に含まれるポリエポキシ化合物(Y)の量は、水性樹脂エマルジョン(α)の総量に対して、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、4質量%以上であることがさらに好ましい。水性樹脂エマルジョン(α)に含まれるポリエポキシ化合物(Y)の量は、水性樹脂エマルジョン(α)の総量に対して、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることがさらに好ましい。 The amount of the polyepoxy compound (Y) contained in the aqueous resin emulsion (α) is preferably 1% by mass or more, more preferably 3% by mass or more, relative to the total amount of the aqueous resin emulsion (α). It is preferably 4% by mass or more, and more preferably 4% by mass or more. The amount of the polyepoxy compound (Y) contained in the aqueous resin emulsion (α) is preferably 30% by mass or less, more preferably 20% by mass or less, relative to the total amount of the aqueous resin emulsion (α). It is preferably 15% by mass or less, and more preferably 15% by mass or less.
<1-1-3.水性媒体(Z)>
 水性媒体(Z)としては、任意に選択でき、水を用いることが好ましい。しかしながら、共重合体(X)及びポリエポキシ化合物(Y)の分散性が損なわれない限り、例えば、水に水溶性の溶媒を添加したものを、水性媒体(Z)として用いてもよい。水に添加する親水性(水溶性)の溶媒としては、任意に選択でき、例えば、メタノール、エタノール及びN-メチルピロリドン等が挙げられる。
<1-1-3. Aqueous medium (Z)>
Any aqueous medium (Z) can be selected, and water is preferably used. However, as long as the dispersibility of the copolymer (X) and the polyepoxy compound (Y) is not impaired, for example, water to which a water-soluble solvent has been added may be used as the aqueous medium (Z). The hydrophilic (water-soluble) solvent to be added to water can be arbitrarily selected, and examples thereof include methanol, ethanol, N-methylpyrrolidone, and the like.
 水性樹脂エマルジョン(α)中の水性媒体(Z)の量は、必要に応じて選択できるが、水性樹脂エマルジョン(α)中の不揮発分濃度が、20質量%以上となる量であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。水性樹脂エマルジョン(α)中の水性媒体(Z)の量は、必要に応じて選択できるが、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。水性樹脂エマルジョン(α)中の不揮発分濃度は、50~70質量%や、55~65質量%であってもよい。 The amount of the aqueous medium (Z) in the aqueous resin emulsion (α) can be selected as necessary, but it is preferably an amount such that the concentration of non-volatile matter in the aqueous resin emulsion (α) is 20% by mass or more. , more preferably 30% by mass or more, more preferably 40% by mass or more. The amount of the aqueous medium (Z) in the aqueous resin emulsion (α) can be selected as required, but is preferably 80% by mass or less, more preferably 70% by mass or less. The concentration of nonvolatile matter in the aqueous resin emulsion (α) may be 50 to 70% by mass, or 55 to 65% by mass.
<1-1-4.水性樹脂エマルジョン(α)の製造方法>
 本実施形態にかかる水性樹脂エマルジョン(α)の製造方法は、ポリエポキシ化合物(Y)の存在下、(メタ)アクリル酸エステル(A)と、エチレン性不飽和カルボン酸(B)とを含むモノマー(すなわち、共重合体(X)を構成するためのモノマー)を、水性媒体(Z)中で、乳化重合する方法により行うことができる。
<1-1-4. Method for producing aqueous resin emulsion (α)>
A method for producing an aqueous resin emulsion (α) according to the present embodiment comprises a monomer containing a (meth)acrylic acid ester (A) and an ethylenically unsaturated carboxylic acid (B) in the presence of a polyepoxy compound (Y). (That is, the monomers for constituting the copolymer (X)) can be emulsion-polymerized in the aqueous medium (Z).
 水性樹脂エマルジョン(α)の製造に用いる原料全体に占める、各原料の含有率は、水性樹脂エマルジョン(α)に占める、原料に由来する構造単位または原料に対応する化合物の含有率と同じである。 The content of each raw material in the total raw materials used for the production of the aqueous resin emulsion (α) is the same as the content of the structural unit derived from the raw material or the compound corresponding to the raw material in the aqueous resin emulsion (α). .
 本実施形態の水性樹脂エマルジョン(α)の製造方法における乳化重合の方法としては、モノマーを含む各成分を一括して仕込む方法、各成分を連続供給しながら重合する方法などを用いることができる。重合反応中は攪拌することが好ましい。
 乳化重合は、任意に選択される温度、例えば、30~90℃の温度で行うことが好ましく、40~80℃の温度で行うことがより好ましく、40~70℃の温度で行うことがさらに好ましい。モノマーに含まれるカルボキシ基が、ポリエポキシ化合物(Y)に含まれるエポキシ基と反応することを抑制するためである。
As the method of emulsion polymerization in the method for producing the aqueous resin emulsion (α) of the present embodiment, a method of collectively charging each component including a monomer, a method of polymerizing while continuously supplying each component, and the like can be used. Stirring is preferred during the polymerization reaction.
Emulsion polymerization is preferably carried out at an arbitrarily selected temperature, for example, a temperature of 30 to 90°C, more preferably a temperature of 40 to 80°C, and even more preferably a temperature of 40 to 70°C. . This is to prevent the carboxy group contained in the monomer from reacting with the epoxy group contained in the polyepoxy compound (Y).
 乳化重合には、乳化剤を使用してもよい。使用する乳化剤は、任意に選択でき、例えば、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェノールエーテル、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステルなどのノニオン性界面活性剤、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキルジフェニルエーテルジスルホン酸塩、ポリオキシアルキレンアルキル硫酸塩、ポリオキシアルキレンアルキルリン酸エステルなどのアニオン性界面活性剤が挙げられる。これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの乳化剤として好ましいのは、アルキルベンゼンスルホン酸塩であり、ドデシルベンゼンスルホン酸ナトリウムを用いることがより好ましい。 An emulsifier may be used for emulsion polymerization. The emulsifier to be used can be arbitrarily selected, for example, nonionic surfactants such as polyoxyalkylene alkyl ethers, polyoxyalkylene alkylphenol ethers, polyoxyalkylene fatty acid esters, polyoxyalkylene sorbitan fatty acid esters, alkyl sulfate salts, alkyl benzene Anionic surfactants such as sulfonates, alkyl sulfosuccinates, alkyl diphenyl ether disulfonates, polyoxyalkylene alkyl sulfates, and polyoxyalkylene alkyl phosphates are included. These may be used individually by 1 type, and may be used in combination of 2 or more type. Preferred as these emulsifiers are alkylbenzenesulfonates, more preferably sodium dodecylbenzenesulfonate.
 乳化重合においては、重合開始剤を使用することが好ましい。重合開始剤としては、例えば、過酸化物を用いることが好ましい。重合開始剤として用いられる過酸化物として、例えば、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、過酸化水素等が挙げられる。また、過酸化物と還元剤との併用によるレドックス系開始剤を使用することもできる。還元剤としては、ナトリウムスルホキシレートホルムアルデヒド、アスコルビン酸、亜硫酸塩、酒石酸またはその塩等が挙げられる。また、必要に応じてアルコール、メルカプタン類を連鎖移動剤として用いてもよい。 In emulsion polymerization, it is preferable to use a polymerization initiator. As the polymerization initiator, it is preferable to use, for example, a peroxide. Examples of peroxides used as polymerization initiators include persulfates such as potassium persulfate and ammonium persulfate, and hydrogen peroxide. A redox initiator can also be used in combination with a peroxide and a reducing agent. Examples of reducing agents include sodium sulfoxylate formaldehyde, ascorbic acid, sulfites, tartaric acid and salts thereof. Alcohols and mercaptans may also be used as chain transfer agents, if necessary.
 本実施形態の水性樹脂エマルジョン(α)の製造方法によれば、生成した共重合体(X)の粒子中にポリエポキシ化合物(Y)が均一に分散した水性樹脂エマルジョン(α)が得られる、と考えられる。
 ここで、「均一に分散している」とは、必ずしも、共重合体(X)とポリエポキシ化合物(Y)とが相溶している必要はなく、共重合体(X)粒子の中心側及び表面側のいずれにおいても、ポリエポキシ化合物(Y)のドメインが偏りなく存在していればよい。
According to the method for producing an aqueous resin emulsion (α) of the present embodiment, an aqueous resin emulsion (α) in which the polyepoxy compound (Y) is uniformly dispersed in the particles of the copolymer (X) produced is obtained. it is conceivable that.
Here, "uniformly dispersed" does not necessarily mean that the copolymer (X) and the polyepoxy compound (Y) are compatible with each other. and the surface side, the domains of the polyepoxy compound (Y) should be present evenly.
<1-1-5.水性樹脂エマルジョン(α)の特性>
[水性樹脂エマルジョン(α)のpH]
 水性樹脂エマルジョン(α)のpHは、2~10であることが好ましく、5~9であることがより好ましい。pHがこの範囲であると、水性樹脂エマルジョン(α)の機械的安定性、化学的安定性を向上させることができる。pHは、ガラス電極を標準電極とした水素イオン濃度指示計によるpHメーターを用いて、液温25℃において測定した値である。例えば、乳化重合中または乳化重合終了後に、水性樹脂エマルジョン(α)に塩基性物質を加えることにより、pHを調整できる。pHの調整に使用される塩基性物質の例としては、アンモニア、トリエチルアミン、エタノールアミン、苛性ソーダ等が挙げられる。これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
<1-1-5. Properties of aqueous resin emulsion (α)>
[pH of aqueous resin emulsion (α)]
The pH of the aqueous resin emulsion (α) is preferably 2-10, more preferably 5-9. When the pH is within this range, the mechanical stability and chemical stability of the aqueous resin emulsion (α) can be improved. The pH is a value measured at a liquid temperature of 25° C. using a pH meter with a hydrogen ion concentration indicator using a glass electrode as a standard electrode. For example, the pH can be adjusted by adding a basic substance to the aqueous resin emulsion (α) during or after emulsion polymerization. Examples of basic substances used for pH adjustment include ammonia, triethylamine, ethanolamine, caustic soda, and the like. These may be used individually by 1 type, and may be used in combination of 2 or more type.
[水性樹脂エマルジョン(α)の不揮発分濃度]
 水性樹脂エマルジョン(α)の不揮発分濃度は、10~65質量%であることが好ましく、15~60質量%であることがより好ましく、20~55質量%であることがより好ましい。前記不揮発分濃度は、30~50質量%、あるいは35~45質量%であってもよい。水性樹脂エマルジョン(α)における不揮発分濃度は、後述する水性樹脂エマルジョン(α)と、硬化剤(β)及び硬化促進剤(γ)等との混合工程、あるいは水性樹脂組成物の塗工工程における作業性を考慮して、適宜決定できる。水性樹脂エマルジョン(α)における不揮発分濃度は、水性媒体(Z)の添加量を調整することで、適宜調節可能である。
[Non-volatile content concentration of aqueous resin emulsion (α)]
The non-volatile content concentration of the aqueous resin emulsion (α) is preferably 10 to 65% by mass, more preferably 15 to 60% by mass, and more preferably 20 to 55% by mass. The nonvolatile content concentration may be 30 to 50% by mass, or 35 to 45% by mass. The concentration of non-volatile matter in the water-based resin emulsion (α) is determined in the step of mixing the water-based resin emulsion (α), the curing agent (β), the curing accelerator (γ), etc. described later, or in the coating step of the water-based resin composition. It can be determined as appropriate in consideration of workability. The concentration of non-volatile matter in the aqueous resin emulsion (α) can be appropriately adjusted by adjusting the amount of the aqueous medium (Z) added.
 なお、水性樹脂エマルジョン(α)の不揮発分濃度は、以下に示す方法により求めた。直径5cmのアルミ皿に、水性樹脂エマルジョン(α)を1g秤量し、大気圧、乾燥器内で、空気を循環させながら105℃で1時間乾燥させた後、得られる残分の質量を測定した。測定された残分の質量の、乾燥前の水性樹脂エマルジョン(α)の質量に対する割合(質量%)を、水性樹脂エマルジョン(α)の不揮発分濃度として求めた。 The non-volatile content concentration of the aqueous resin emulsion (α) was determined by the method shown below. 1 g of the water-based resin emulsion (α) was weighed into an aluminum dish with a diameter of 5 cm, dried at 105° C. for 1 hour at atmospheric pressure in a drier while air was circulated, and then the mass of the resulting residue was measured. . The ratio (% by mass) of the measured mass of the residue to the mass of the water-based resin emulsion (α) before drying was determined as the non-volatile content of the water-based resin emulsion (α).
[水性樹脂エマルジョン(α)の粘度]
 本実施形態において水性樹脂エマルジョン(α)の粘度は、23℃で測定される。水性樹脂エマルジョン(α)の粘度の測定は、B型粘度計を用いて行われ、回転数60rpmで、水性樹脂エマルジョンの粘度に応じたロータを選択して測定された値である。例えば、水性樹脂エマルジョン(α)の粘度が数mPa・s~数百mPa・s程度である場合は、ロータNo.1を用いて測定する。粘度は、例えば、0.1~300mPa・sであってもよく、1~100mPa・sであってもよく、3~50mPa・sであってもよく、5~25mPa・sであってもよい。
[Viscosity of aqueous resin emulsion (α)]
In this embodiment, the viscosity of the aqueous resin emulsion (α) is measured at 23°C. The viscosity of the water-based resin emulsion (α) was measured using a Brookfield viscometer at a rotational speed of 60 rpm with a rotor selected according to the viscosity of the water-based resin emulsion. For example, when the viscosity of the aqueous resin emulsion (α) is several mPa·s to several hundred mPa·s, rotor No. Measured using 1. The viscosity may be, for example, 0.1 to 300 mPa·s, 1 to 100 mPa·s, 3 to 50 mPa·s, or 5 to 25 mPa·s. .
[共重合体(X)のガラス転移点]
 共重合体(X)のガラス転移点Tgは、共重合体(X)の合成に用いた各モノマーのホモポリマーのガラス転移点に基づいて算出される。共重合体(X)のガラス転移点Tgの具体的な算出方法は、原料として用いる単量体M(i=1,2,3...,)のホモポリマーのガラス転移点Tgと、全単量体中の単量体iの質量分率X(ΣX(全単量体)=1)とから、下記式(1)によって算出される。式(1)において、Tg及びTgは、いずれも絶対温度(K)の値で計算する。
 1/Tg=Σ(X/Tg)…(1)
[Glass transition point of copolymer (X)]
The glass transition point Tg of the copolymer (X) is calculated based on the glass transition point of the homopolymer of each monomer used to synthesize the copolymer (X). A specific method for calculating the glass transition point Tg of the copolymer (X) is the glass transition point Tg i of the homopolymer of the monomer M i (i=1, 2, 3, . , the mass fraction X i of monomer i in all monomers (ΣX i (total monomers)=1), and the following formula (1). In Equation (1), both Tg and Tg i are calculated using absolute temperature (K) values.
1/Tg=Σ(X i /Tg i ) (1)
 Tgの算出に使用するホモポリマーのガラス転移点としては、公知資料に記載の値を用いるものとする。具体的には、「Polymer Handbook」(第3版、John Wiley&Sons,Inc.,1989年)に数値が挙げられている。上記Polymer Handbookに複数種類の値が記載されているモノマーについては、最も高い値を採用する。 As the glass transition point of the homopolymer used to calculate the Tg, the value described in the publicly known document shall be used. Specifically, numerical values are listed in "Polymer Handbook" (3rd edition, John Wiley & Sons, Inc., 1989). For monomers for which multiple types of values are listed in the above Polymer Handbook, the highest value is adopted.
 共重合体(X)のガラス転移点Tgは、-30℃(243K)以上であることが好ましい。本実施形態の水性樹脂組成物の硬化物からなる皮膜の強度が向上するためである。この観点から、共重合体(X)のガラス転移点Tgは-10℃(263K)以上であることがより好ましく、0℃(273K)以上であることがさらに好ましい。共重合体(X)のガラス転移点Tgは、5℃以上、あるいは10℃以上であってもよい。共重合体(X)のガラス転移点Tgは、100℃(373K)以下であることが好ましく、80℃(353K)以下であることがより好ましい。本実施形態の水性樹脂組成物の硬化物からなる塗膜の基材への密着性が向上するためである。この観点から、共重合体(X)のガラス転移点Tgは、60℃(333K)以下であることがさらに好ましく、50℃(323K)以下であることが特に好ましい。このような範囲の場合、本実施形態の水性樹脂組成物の硬化物からなる塗膜の柔軟性を向上させることができるためである。共重合体(X)のガラス転移点Tgは、40℃以下、あるいは30℃以下であってもよい。 The glass transition point Tg of the copolymer (X) is preferably -30°C (243K) or higher. This is because the strength of the film made of the cured product of the aqueous resin composition of the present embodiment is improved. From this point of view, the glass transition point Tg of the copolymer (X) is preferably −10° C. (263 K) or higher, more preferably 0° C. (273 K) or higher. The glass transition point Tg of the copolymer (X) may be 5°C or higher, or 10°C or higher. The glass transition point Tg of the copolymer (X) is preferably 100°C (373K) or lower, more preferably 80°C (353K) or lower. This is because the adhesion of the coating film made of the cured product of the aqueous resin composition of the present embodiment to the substrate is improved. From this point of view, the glass transition point Tg of the copolymer (X) is more preferably 60° C. (333 K) or lower, particularly preferably 50° C. (323 K) or lower. This is because in the case of such a range, the flexibility of the coating film made of the cured product of the aqueous resin composition of the present embodiment can be improved. The glass transition point Tg of the copolymer (X) may be 40°C or lower, or 30°C or lower.
[水性樹脂エマルジョン(α)中のエポキシ基の含有率]
 水性樹脂エマルジョン(α)中のエポキシ基の含有率は、水性樹脂エマルジョン(α)1g中に含まれるエポキシ基のモル数の割合である。水性樹脂エマルジョン(α)1gあたりに含まれるエポキシ基の量N[mol/g]の求め方は、後述する実施例において説明する通りである。
[Epoxy group content in aqueous resin emulsion (α)]
The content of epoxy groups in the aqueous resin emulsion (α) is the ratio of the number of moles of epoxy groups contained in 1 g of the aqueous resin emulsion (α). The method for determining the amount N 1 [mol/g] of the epoxy groups contained per 1 g of the aqueous resin emulsion (α) is as described in Examples described later.
[共重合体(X)とポリエポキシ化合物(Y)との合計量中におけるエポキシ基の含有率]
 本実施形態における水性樹脂エマルジョン(α)に含まれるポリエポキシ化合物(Y)には、エポキシ基が含まれる。共重合体(X)とポリエポキシ化合物(Y)との合計量中におけるエポキシ基の含有率は、0.50×10-4mol/g以上であることが好ましく、1.0×10-4mol/g以上であることがより好ましく、4.0×10-4mol/g以上であることがさらに好ましく、6.0×10-4mol/g以上であることがさらに好ましい。本実施形態の水性樹脂組成物の硬化物からなる塗膜の耐水性、防錆性、基材への密着力を高めることができるためである。
[Epoxy group content in total amount of copolymer (X) and polyepoxy compound (Y)]
The polyepoxy compound (Y) contained in the aqueous resin emulsion (α) in the present embodiment contains an epoxy group. The content of epoxy groups in the total amount of copolymer (X) and polyepoxy compound (Y) is preferably 0.50×10 −4 mol/g or more, more preferably 1.0×10 −4 It is more preferably at least 4.0×10 −4 mol/g, even more preferably at least 6.0×10 −4 mol/g. This is because the water resistance, rust resistance, and adhesion to the substrate of the coating film made of the cured product of the water-based resin composition of the present embodiment can be enhanced.
 共重合体(X)とポリエポキシ化合物(Y)との合計量中におけるエポキシ基の含有率は、50×10-4mol/g以下であることが好ましく、30×10-4mol/g以下であることがより好ましく、20×10-4mol/g以下であることがさらに好ましい。共重合体(X)とポリエポキシ化合物(Y)との合計量中におけるエポキシ基の含有率は、15×10-4mol/g以下、あるいは10×10-4mol/g以下であってもよい。 The content of epoxy groups in the total amount of copolymer (X) and polyepoxy compound (Y) is preferably 50×10 −4 mol/g or less, and 30×10 −4 mol/g or less. is more preferably 20×10 −4 mol/g or less. The content of epoxy groups in the total amount of the copolymer (X) and the polyepoxy compound (Y) is 15×10 −4 mol/g or less, or even if it is 10×10 −4 mol/g or less. good.
[水性樹脂エマルジョン(α)の不揮発分中のエポキシ基の含有率]
 水性樹脂エマルジョン(α)の不揮発分中のエポキシ基の含有率は、0.50×10-4mol/g以上であることが好ましく、3.0×10-4mol/g以上であることがより好ましく、5.0×10-4mol/g以上であることがさらに好ましい。本実施形態の水性樹脂組成物の硬化物からなる塗膜の耐水性、防錆性、基材への密着力を高めることができるためである。水性樹脂エマルジョン(α)の不揮発分中のエポキシ基の含有率は、1.0×10-4mol/g以上、あるいは6.0×10-4mol/g以上であってもよい。
[Content of epoxy group in non-volatile matter of aqueous resin emulsion (α)]
The epoxy group content in the non-volatile matter of the aqueous resin emulsion (α) is preferably 0.50×10 −4 mol/g or more, more preferably 3.0×10 −4 mol/g or more. More preferably, it is 5.0×10 −4 mol/g or more. This is because the water resistance, rust resistance, and adhesion to the substrate of the coating film made of the cured product of the water-based resin composition of the present embodiment can be enhanced. The epoxy group content in the nonvolatile matter of the aqueous resin emulsion (α) may be 1.0×10 −4 mol/g or more, or 6.0×10 −4 mol/g or more.
 水性樹脂エマルジョン(α)の不揮発分中のエポキシ基の含有率は、50×10-4mol/g以下であることが好ましく、30×10-4mol/g以下であることがより好ましく、20×10-4mol/g以下であることがさらに好ましい。水性樹脂エマルジョン(α)の不揮発分中のエポキシ基の含有率は、15×10-4mol/g以下、あるいは10×10-4mol/g以下であってもよい。 The epoxy group content in the nonvolatile matter of the aqueous resin emulsion (α) is preferably 50×10 −4 mol/g or less, more preferably 30×10 −4 mol/g or less, and 20 It is more preferably not more than ×10 -4 mol/g. The epoxy group content in the nonvolatile matter of the aqueous resin emulsion (α) may be 15×10 −4 mol/g or less, or 10×10 −4 mol/g or less.
 水性樹脂エマルジョン中(α)の不揮発分中のエポキシ基の含有率REP[mol/g]は、次のように求められた値である。水性樹脂エマルジョン(α)の不揮発分濃度をC[質量%]、水性樹脂エマルジョン(α)1gあたりに含まれるエポキシ基の量N[mol/g]とすると、エポキシ基の含有率REPは、式(2)のように表される。Nの求め方は、実施例において後述する通りである。
 REP[mol/g]=N/(C/100)…(2)
The epoxy group content R EP [mol/g] in the non-volatile matter (α) in the aqueous resin emulsion is a value obtained as follows. If the non-volatile content of the aqueous resin emulsion (α) is C S [mass %] and the amount of epoxy groups contained per 1 g of the aqueous resin emulsion (α) is N 1 [mol/g], then the epoxy group content R EP is expressed as in Equation (2). The method for obtaining N1 is as described later in Examples.
R EP [mol/g]=N 1 /(C S /100) (2)
[水性樹脂エマルジョン(α)中のカルボキシ基の含有率]
 水性樹脂エマルジョン(α)中のカルボキシ基の含有率は、水性樹脂エマルジョン(α)1g中に含まれるカルボキシ基のモル数の割合である。水性樹脂エマルジョン(α)1gあたりに含まれるカルボキシ基のモル数の求め方は、後述する実施例において説明する通りである。
[Carboxy group content in aqueous resin emulsion (α)]
The content of carboxy groups in the aqueous resin emulsion (α) is the ratio of the number of moles of carboxy groups contained in 1 g of the aqueous resin emulsion (α). The method for determining the number of moles of carboxyl groups contained per 1 g of the aqueous resin emulsion (α) is as described in the examples below.
[共重合体(X)とポリエポキシ化合物(Y)との合計量中におけるカルボキシ基の含有率]
 本実施形態においては、水性樹脂エマルジョン(α)に含まれる共重合体(X)とポリエポキシ化合物(Y)の一方または両方が、カルボキシ基を含んでおり、共重合体(X)がカルボキシ基を含むことが好ましい。共重合体(X)とポリエポキシ化合物(Y)との合計量中におけるカルボキシ基の含有率は0.10×10-4mol/g以上であることが好ましく、0.50×10-4mol/g以上であることがより好ましく、1.0×10-4mol/g以上であることがさらに好ましい。重合中及び重合後の水性樹脂エマルジョン(α)の保管の際に、共重合体(X)の凝集を抑制できるためである。
[Carboxy group content in total amount of copolymer (X) and polyepoxy compound (Y)]
In the present embodiment, one or both of the copolymer (X) and the polyepoxy compound (Y) contained in the aqueous resin emulsion (α) contain a carboxy group, and the copolymer (X) contains a carboxy group. is preferably included. The content of carboxy groups in the total amount of copolymer (X) and polyepoxy compound (Y) is preferably 0.10×10 −4 mol/g or more, more preferably 0.50×10 −4 mol /g or more, and more preferably 1.0×10 −4 mol/g or more. This is because aggregation of the copolymer (X) can be suppressed during storage of the aqueous resin emulsion (α) during and after polymerization.
 共重合体(X)とポリエポキシ化合物(Y)との合計量中におけるカルボキシ基の含有率は、10×10-4mol/g以下であることが好ましく、5.0×10-4mol/g以下であることがより好ましい。3.0×10-4mol/g以下であってもよいし、2.5×10-4mol/g以下、あるいは2.0×10-4mol/g以下であってもよい。 The content of carboxy groups in the total amount of copolymer (X) and polyepoxy compound (Y) is preferably 10×10 −4 mol/g or less, more preferably 5.0×10 −4 mol/g. g or less is more preferable. It may be 3.0×10 −4 mol/g or less, 2.5×10 −4 mol/g or less, or 2.0×10 −4 mol/g or less.
[水性樹脂エマルジョン(α)の不揮発分中のカルボキシ基の含有率]
 水性樹脂エマルジョン(α)の不揮発分中のカルボキシ基の含有率は、0.10×10-4mol/g以上であることが好ましく、0.50×10-4mol/g以上であることがより好ましく、1.0×10-4mol/g以上であることがさらに好ましい。重合中及び重合後の水性樹脂エマルジョン(α)の保管の際に、共重合体(X)の凝集を抑制できるためである。
[Carboxy group content in non-volatile matter of aqueous resin emulsion (α)]
The content of carboxy groups in the non-volatile matter of the aqueous resin emulsion (α) is preferably 0.10×10 −4 mol/g or more, more preferably 0.50×10 −4 mol/g or more. More preferably, it is 1.0×10 −4 mol/g or more. This is because aggregation of the copolymer (X) can be suppressed during storage of the aqueous resin emulsion (α) during and after polymerization.
 水性樹脂エマルジョン(α)の不揮発分中のカルボキシ基の含有率は、10×10-4mol/g以下であることが好ましく、5.0×10-4mol/g以下であることがより好ましい。3.0×10-4mol/g以下であってもよいし、2.5×10-4mol/g以下、あるいは2.0×10-4mol/g以下であってもよい。 The content of carboxy groups in the nonvolatile matter of the aqueous resin emulsion (α) is preferably 10×10 −4 mol/g or less, more preferably 5.0×10 −4 mol/g or less. . It may be 3.0×10 −4 mol/g or less, 2.5×10 −4 mol/g or less, or 2.0×10 −4 mol/g or less.
 ここで上記カルボキシ基とは、-COOHだけでなく、水素イオン以外の陽イオンと-COOとが結合した構造も含む。水性樹脂エマルジョン(α)の不揮発分中のカルボキシ基の含有量とは、下記の式で示すように、原料中のカルボキシ基の含有量から、原料中のカルボキシ基と反応する官能基の、重合前後での減少量を引いた値から求められる。前記原料とは、水性樹脂エマルジョン(α)の合成に用いた成分のことを指す。また、カルボキシ基と反応する官能基とは、本発明においては、エポキシ基であり、ヒドロキシ基はカルボキシ基と反応する官能基とは考えない。 Here, the carboxy group includes not only —COOH but also a structure in which a cation other than a hydrogen ion is bonded with —COO 2 — . The content of carboxy groups in the non-volatile matter of the water-based resin emulsion (α) is, as shown by the following formula, the content of carboxy groups in the raw materials, the functional groups that react with the carboxy groups in the raw materials, polymerization It is obtained from the value obtained by subtracting the amount of decrease before and after. The raw materials refer to the components used for the synthesis of the aqueous resin emulsion (α). In the present invention, the functional group that reacts with the carboxy group is an epoxy group, and the hydroxy group is not considered as a functional group that reacts with the carboxy group.
 以下、水性樹脂エマルジョン(α)の不揮発分中のカルボキシ基の含有率RCX[mol/g]の求め方を、詳しく説明する。原料(開始剤、溶媒、その他添加剤等も含む)中のカルボキシ基の総量をN[mol/g]とし、原料(開始剤、溶媒、その他添加剤等も含む)中のエポキシ基の総量をN[mol/g]とし、水性樹脂エマルジョン(α)1gあたりに含まれるエポキシ基の量をN[mol/g]とする。水性樹脂エマルジョン(α)の不揮発分濃度を、C[質量%]とする。この時、カルボキシ基の含有率RCXは、式(3)のように表される。N及びNの求め方は、実施例において後述する。Nは計算によって得ることができる。
 RCX[mol/g]={N-(N-N)}/(C/100)…(3)
The method for determining the content R CX [mol/g] of carboxy groups in the nonvolatile matter of the aqueous resin emulsion (α) will be described in detail below. The total amount of carboxyl groups in the raw material (including initiator, solvent, other additives, etc.) is N 3 [mol/g], and the total amount of epoxy groups in the raw material (including initiator, solvent, other additives, etc.) is N 2 [mol/g], and the amount of epoxy groups contained per 1 g of the aqueous resin emulsion (α) is N 1 [mol/g]. The non-volatile content concentration of the aqueous resin emulsion (α) is defined as C S [% by mass]. At this time, the carboxy group content R CX is represented by the formula (3). How to obtain N1 and N2 will be described later in Examples. N2 can be obtained by calculation.
R CX [mol/g]={N 3 −(N 2 −N 1 )}/(C S /100) (3)
[1-2.硬化剤(β)]
 硬化剤(β)は、エポキシ基に対する反応性を有する活性水素を有する芳香族ポリアミン(F)を含む。ここで、エポキシ基に対する反応性を有する活性水素とは、芳香族ポリアミン(F)の有するアミノ基が、エポキシ基に対して求核攻撃して結合を形成したのちに、窒素原子から脱離できる水素原子を意味する。
[1-2. Curing agent (β)]
The curing agent (β) contains an aromatic polyamine (F) having active hydrogens with reactivity towards epoxy groups. Here, the active hydrogen having reactivity with the epoxy group means that the amino group of the aromatic polyamine (F) forms a bond by nucleophilic attack on the epoxy group, and then can be eliminated from the nitrogen atom. means a hydrogen atom.
 芳香族ポリアミン(F)の有するアミノ基は、無置換のアミノ基(-NH(置換基なし)、1つのみ置換基を有するアミノ基(-NHR(Rは置換基である))からなる群より選択されるいずれかであることが好ましい。
 上記活性水素を有する芳香族ポリアミン(F)は、1分子中にベンゼン環と2個以上のアミノ基を有する。活性水素を有する芳香族ポリアミン(F)は、アミノ基を1種類のみ有する化合物であってもよいし、2種類以上有する化合物であってもよい。
 硬化剤(β)は、上記活性水素を有する芳香族ポリアミン(F)を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。
The amino group of the aromatic polyamine (F) consists of an unsubstituted amino group (--NH 2 (no substituent), an amino group having only one substituent (--NHR (R is a substituent)). Any one selected from the group is preferable.
The aromatic polyamine (F) having active hydrogen has a benzene ring and two or more amino groups in one molecule. The aromatic polyamine (F) having active hydrogen may be a compound having only one type of amino group, or a compound having two or more types of amino groups.
The curing agent (β) may contain only one type of aromatic polyamine (F) having active hydrogen, or may contain two or more types thereof.
 上記活性水素を有する芳香族ポリアミン(F)としては、例えば、m-キシリレンジアミン(以下、「MXDA」と記載する場合がある。)、ジアミノジフェニルメタン、m-フェニレンジアミン、ジアミノジフェニルスルホン、これらの変性物等が挙げられる。前記変性物は、MXDAのアミノ基に、原子または原子団が結合する付加反応によって得られた化合物であることが好ましい。 Examples of the aromatic polyamine (F) having active hydrogen include m-xylylenediamine (hereinafter sometimes referred to as "MXDA"), diaminodiphenylmethane, m-phenylenediamine, diaminodiphenylsulfone, and these Modified products and the like can be mentioned. The modified product is preferably a compound obtained by an addition reaction in which an atom or atomic group is bonded to the amino group of MXDA.
 本実施形態においては、硬化剤(β)が上記活性水素を有する芳香族ポリアミン(F)を含むため、常温短時間の養生で硬化し、優れた初期耐水性および金属材料への湿熱密着性を有する塗膜を形成できる水性樹脂組成物となる。したがって、本実施形態の水性樹脂組成物は、鉄等の金属製品の防食塗装に好適に用いることができる。
 このような効果を奏する理由は定かではないが、上記活性水素を有する芳香族ポリアミン(F)を含む硬化剤(β)は、水性樹脂エマルジョン(α)の粒子内に容易に侵入できる。このことにより、硬化剤(β)による水性樹脂エマルジョン(α)に含まれるポリエポキシ化合物(Y)に対する硬化促進機能が顕著となり、水性樹脂組成物が短時間で硬化することによるものと考察される。
In the present embodiment, since the curing agent (β) contains the aromatic polyamine (F) having the active hydrogen, it cures at room temperature for a short period of time, and exhibits excellent initial water resistance and wet heat adhesion to metal materials. It becomes the water-based resin composition which can form the coating film which has. Therefore, the water-based resin composition of the present embodiment can be suitably used for anti-corrosion coating of metal products such as iron.
Although the reason for such an effect is not clear, the curing agent (β) containing the aromatic polyamine (F) having active hydrogen can easily penetrate into the particles of the aqueous resin emulsion (α). As a result, the hardening acceleration function of the curing agent (β) with respect to the polyepoxy compound (Y) contained in the aqueous resin emulsion (α) becomes remarkable, and it is considered that the aqueous resin composition cures in a short time. .
 一般に、分子量が同程度である芳香族化合物と脂肪族化合物とを比較すると、芳香族化合物の方が、疎水性が高い。硬化剤(β)に含まれる上記活性水素を有する芳香族ポリアミン(F)は、水性樹脂エマルジョン(α)よりも疎水性が高いと推定される。このため、上記活性水素を有する芳香族ポリアミン(F)は、水性樹脂組成物中の水層に留まりにくく、水性樹脂エマルジョン(α)の粒子内部へ分配されやすいと考察される。このことにより、上記活性水素を有する芳香族ポリアミン(F)は、例えば、分子量が同程度である脂肪族ポリアミンと比較して、水性樹脂エマルジョン(α)の粒子内部に侵入しやすく、水性樹脂エマルジョン(α)の有するエポキシ基に接近しやすい。その結果、上記活性水素を有する芳香族ポリアミン(F)を含む本実施形態の水性樹脂組成物は、分子量が同程度である脂肪族ポリアミンを含む場合と比較して、水性樹脂エマルジョン(α)に含まれるポリエポキシ化合物(Y)の硬化が促進されやすく、水性樹脂組成物の硬化速度が速くなるものと考察される。 In general, when aromatic compounds and aliphatic compounds with similar molecular weights are compared, the aromatic compounds are more hydrophobic. It is presumed that the aromatic polyamine (F) having active hydrogen contained in the curing agent (β) is more hydrophobic than the aqueous resin emulsion (α). For this reason, it is considered that the aromatic polyamine (F) having active hydrogen is less likely to stay in the aqueous layer of the aqueous resin composition and is likely to be distributed inside the particles of the aqueous resin emulsion (α). As a result, the aromatic polyamine (F) having active hydrogen is more likely to enter the inside of the particles of the aqueous resin emulsion (α) than, for example, an aliphatic polyamine having a similar molecular weight. It is easy to approach the epoxy group of (α). As a result, the aqueous resin composition of the present embodiment containing the aromatic polyamine (F) having the active hydrogen has a higher concentration in the aqueous resin emulsion (α) than the case where the aliphatic polyamine having the same molecular weight is contained. It is considered that the contained polyepoxy compound (Y) is easily cured, and the curing speed of the water-based resin composition is increased.
 上記活性水素を有する芳香族ポリアミン(F)としては、水性樹脂組成物の硬化反応がより進行しやすいものとなるという観点から、1分子中に2個以上のベンゼン環を有する芳香族ポリアミン(F)を含むことが好ましく、1分子中に3個以上のベンゼン環を有する芳香族ポリアミン(F)を含むことがより好ましい。この効果を奏する理由は定かではないが、1分子中に2個以上のベンゼン環を有する芳香族ポリアミン(F)は、1分子中に1個のみベンゼン環を有する芳香族ポリアミン(F)と比較して、より一層疎水性が高い。このため、1分子中に2個以上のベンゼン環を有する芳香族ポリアミン(F)は、水性樹脂エマルジョン(α)の粒子内部に、より一層侵入しやすく、1分子中に1個のみベンゼン環を有する芳香族ポリアミン(F)と比較して、水性樹脂エマルジョン(α)に含まれるポリエポキシ化合物(Y)の有するエポキシ基により接近しやすい。このことにより、硬化剤(β)によるポリエポキシ化合物(Y)の硬化促進機能がより効果的に得られ、水性樹脂組成物の硬化速度が速くなるものと推定される。 The aromatic polyamine (F) having active hydrogen is an aromatic polyamine (F ), more preferably an aromatic polyamine (F) having 3 or more benzene rings in one molecule. Although the reason for this effect is not clear, the aromatic polyamine (F) having two or more benzene rings in one molecule is compared with the aromatic polyamine (F) having only one benzene ring in one molecule. As a result, it is even more hydrophobic. Therefore, the aromatic polyamine (F) having two or more benzene rings in one molecule more easily penetrates into the inside of the particles of the aqueous resin emulsion (α), and has only one benzene ring in one molecule. It is easier to approach the epoxy groups of the polyepoxy compound (Y) contained in the aqueous resin emulsion (α) than with the aromatic polyamine (F). As a result, it is presumed that the function of accelerating the curing of the polyepoxy compound (Y) by the curing agent (β) is obtained more effectively, and the curing speed of the water-based resin composition is increased.
 上記活性水素を有する芳香族ポリアミン(F)としては、水溶性および入手容易性の観点から、1分子中に13個以下のベンゼン環を有する芳香族ポリアミン(F)を含むことが好ましく、10個以下のベンゼン環を有する芳香族ポリアミン(F)を含むことがより好ましい。 From the viewpoint of water solubility and availability, the aromatic polyamine (F) having active hydrogen preferably contains an aromatic polyamine (F) having 13 or less benzene rings in one molecule. It is more preferable to contain the aromatic polyamine (F) having the following benzene rings.
 1分子中に2個以上のベンゼン環を有する芳香族ポリアミン(F)としては、例えば、下記一般式(1-1)で表される化合物、下記一般式(1-2)で表される化合物などが挙げられる。 Examples of the aromatic polyamine (F) having two or more benzene rings in one molecule include compounds represented by the following general formula (1-1) and compounds represented by the following general formula (1-2). etc.
Figure JPOXMLDOC01-appb-C000003

(式(1-1)中、A、Aはそれぞれ独立に1,2-フェニレン基、1,3-フェニレン基、または1,4-フェニレン基を表す。nは1~12の整数を表す。)
Figure JPOXMLDOC01-appb-C000003

(In formula (1-1), A 2 and A 3 each independently represent a 1,2-phenylene group, a 1,3-phenylene group, or a 1,4-phenylene group; n is an integer of 1 to 12; show.)
Figure JPOXMLDOC01-appb-C000004

(式(1-2)中、Aは1,2-フェニレン基、1,3-フェニレン基、または1,4-フェニレン基を表す。)
Figure JPOXMLDOC01-appb-C000004

(In formula (1-2), A 1 represents a 1,2-phenylene group, a 1,3-phenylene group, or a 1,4-phenylene group.)
 式(1-1)中のA、A、および式(1-2)中のAは、いずれも1,2-フェニレン基、1,3-フェニレン基、または1,4-フェニレン基を表す。式(1-1)中のA、A、および式(1-2)中のAは、いずれも水性樹脂組成物の硬化反応がより進行しやすいものとなるため、1,3-フェニレン基であることが好ましい。 Each of A 2 and A 3 in formula (1-1) and A 1 in formula (1-2) is a 1,2-phenylene group, a 1,3-phenylene group, or a 1,4-phenylene group. represents A 2 and A 3 in the formula (1-1) and A 1 in the formula (1-2) facilitate the curing reaction of the water-based resin composition. A phenylene group is preferred.
 式(1-1)で表される化合物において、繰り返し単位に含まれるA(括弧内に記載されたA)と、繰り返し単位に含まれないA(括弧外に記載されたA)とは、同じであってもよいし、異なっていてもよい。また、式(1-1)で表される化合物において、nが2~12である場合、繰り返し単位に含まれるAは、全て同じであってもよいし、異なるものが含まれていてもよい。式(1-1)で表される化合物は、容易に製造できるため、化合物中に含まれるA、Aが全て同じであることが好ましい。 In the compound represented by formula (1-1), A 2 contained in a repeating unit (A 2 described in parentheses) and A 3 not contained in a repeating unit (A 3 described outside the parentheses) may be the same or different. Further, in the compound represented by formula (1-1), when n is 2 to 12, A 2 contained in the repeating unit may all be the same, or different ones may be included. good. Since the compound represented by formula (1-1) can be easily produced, it is preferable that A 2 and A 3 contained in the compound are all the same.
 式(1-1)中、括弧内に記載された繰り返し単位の数であるnは、1~12の整数を表す。上記活性水素を有する芳香族ポリアミン(F)としては、式(1-1)中の繰り返し単位の数(nの数)の異なる複数種の化合物を用いてもよい。式(1-1)中のnの数は、水性樹脂組成物の硬化反応がより進行しやすいものとなるという観点から、2以上であることが好ましい。また、式(1-1)中のnの数は、上記活性水素を有する芳香族ポリアミン(F)の水溶性および入手容易性が良好であるため、9以下であることが好ましい。 In formula (1-1), n, the number of repeating units in parentheses, represents an integer of 1-12. As the aromatic polyamine (F) having active hydrogen, a plurality of types of compounds having different numbers of repeating units (number of n) in formula (1-1) may be used. The number of n in formula (1-1) is preferably 2 or more from the viewpoint that the curing reaction of the aqueous resin composition proceeds more easily. Further, the number of n in the formula (1-1) is preferably 9 or less because the aromatic polyamine (F) having active hydrogen has good water solubility and is easily available.
 上記活性水素を有する芳香族ポリアミン(F)として、より優れた初期耐水性を有する塗膜を形成できる水性樹脂組成物となる観点から、一般式(1-1)中のnの数が1である化合物の含有量は、10質量%~35質量%であることが好ましく、15質量%~30質量%であることがより好ましく、18質量%~25質量%であることがさらに好ましい。 From the viewpoint of becoming an aqueous resin composition capable of forming a coating film having superior initial water resistance as the aromatic polyamine (F) having an active hydrogen, the number of n in the general formula (1-1) is 1. The content of a certain compound is preferably 10% by mass to 35% by mass, more preferably 15% by mass to 30% by mass, and even more preferably 18% by mass to 25% by mass.
 一般式(1-1)で表される化合物は、一般式(1-2)で表される化合物と比較して、疎水性が高い。このため、一般式(1-1)で表される化合物は、水性樹脂エマルジョン(α)に含まれるポリエポキシ化合物(Y)の有するエポキシ基に、より接近しやすい。よって、上記活性水素を有する芳香族ポリアミン(F)が一般式(1-1)で表される化合物を含む場合、より優れた初期耐水性を有する塗膜を形成できる水性樹脂組成物となる。 The compound represented by general formula (1-1) is more hydrophobic than the compound represented by general formula (1-2). Therefore, the compound represented by general formula (1-1) is more likely to approach the epoxy groups of the polyepoxy compound (Y) contained in the aqueous resin emulsion (α). Therefore, when the aromatic polyamine (F) having active hydrogen contains the compound represented by the general formula (1-1), the water-based resin composition can form a coating film having superior initial water resistance.
 上記活性水素を有する芳香族ポリアミン(F)は、一般式(1-1)で表される化合物と、MXDAとを含むことがさらに好ましい。この場合、より優れた初期耐水性を有する塗膜を形成できる水性樹脂組成物となる。それは、一般式(1-1)で表される化合物の疎水性が高いことに起因する効果と、MXDAの立体障害が小さいことに起因する効果との相乗効果によるものと推定される。すなわち、上記相乗効果によって、上記活性水素を有する芳香族ポリアミン(F)が、水性樹脂エマルジョン(α)に含まれるエポキシ基に、より一層接近しやすくなり、水性樹脂エマルジョン(α)に含まれるポリエポキシ化合物(Y)の硬化がより促進され、水性樹脂組成物の硬化速度が速くなるものと推定される。さらに、上記活性水素を有する芳香族ポリアミン(F)が、一般式(1-1)で表される化合物と、MXDAとを含む場合、上記相乗効果によって、水性樹脂組成物の硬化が促進されるため、より高い皮膜降伏強度を有する硬化物を形成できる。 It is more preferable that the aromatic polyamine (F) having active hydrogen contains a compound represented by general formula (1-1) and MXDA. In this case, the resulting water-based resin composition can form a coating film having superior initial water resistance. It is presumed that this is due to the synergistic effect of the effect resulting from the high hydrophobicity of the compound represented by the general formula (1-1) and the effect resulting from the small steric hindrance of MXDA. That is, due to the synergistic effect, the aromatic polyamine (F) having the active hydrogen is more likely to approach the epoxy groups contained in the aqueous resin emulsion (α), and the polyamine contained in the aqueous resin emulsion (α) It is presumed that the curing of the epoxy compound (Y) is accelerated and the curing speed of the water-based resin composition is increased. Furthermore, when the aromatic polyamine (F) having active hydrogen contains the compound represented by the general formula (1-1) and MXDA, the synergistic effect promotes curing of the aqueous resin composition. Therefore, a cured product having higher film yield strength can be formed.
 上記活性水素を有する芳香族ポリアミン(F)が、一般式(1-1)で表される化合物と、MXDAとを含む場合、上記活性水素を有する芳香族ポリアミン(F)中のMXDAの含有量は、10質量%~40質量%であることが好ましく、20質量%~30質量%であることがより好ましく、24質量%~28質量%であることがさらに好ましい。また上記活性水素を有する芳香族ポリアミン(F)中の一般式(1-1)で表される化合物は、60質量%~90質量%であることが好ましく、70質量%~80質量%であることがより好ましく、72質量%~76質量%であることがさらに好ましい。一般式(1-1)で表される化合物と、MXDAとを含むことによる相乗効果がより顕著となるためである。 When the aromatic polyamine (F) having active hydrogen contains a compound represented by general formula (1-1) and MXDA, the content of MXDA in the aromatic polyamine (F) having active hydrogen is preferably 10% by mass to 40% by mass, more preferably 20% by mass to 30% by mass, even more preferably 24% by mass to 28% by mass. The compound represented by general formula (1-1) in the aromatic polyamine (F) having active hydrogen is preferably 60% by mass to 90% by mass, more preferably 70% by mass to 80% by mass. is more preferable, and 72% by mass to 76% by mass is even more preferable. This is because the compound represented by the general formula (1-1) and MXDA have a more pronounced synergistic effect.
 上記活性水素を有する芳香族ポリアミン(F)として、一般式(1-1)中のnの数が1である化合物の含有量は、上記活性水素を有する芳香族ポリアミン(F)の総量に対して、10質量%~35質量%であることが好ましく、15質量%~30質量%であることがより好ましく、18質量%~25質量%であることがさらに好ましい。 As the aromatic polyamine (F) having active hydrogen, the content of the compound in which the number of n in general formula (1-1) is 1 is based on the total amount of the aromatic polyamine (F) having active hydrogen. It is preferably 10% by mass to 35% by mass, more preferably 15% by mass to 30% by mass, even more preferably 18% by mass to 25% by mass.
 上記活性水素を有する芳香族ポリアミン(F)としては、市販のものを用いてもよい。1分子中に2個以上のベンゼン環を有する芳香族ポリアミン(F)を含む市販品しては、例えば、Gaskamine328(商品名、三菱ガス化学株式会社);Gaskamine240(商品名、三菱ガス化学株式会社)などが挙げられる。Gaskamine328およびGaskamine240は、いずれもMXDAの変性物と、MXDAとを含む混合物である。Gaskamine328は、MXDAの変性物として一般式(1-1)で表される化合物を含む。Gaskamine240は、MXDAの変性物として一般式(1-2)で表される化合物を含む。 Commercially available products may be used as the aromatic polyamine (F) having active hydrogen. Commercially available products containing an aromatic polyamine (F) having two or more benzene rings in one molecule include, for example, Gaskamine 328 (trade name, Mitsubishi Gas Chemical Company, Inc.); Gaskamine 240 (trade name, Mitsubishi Gas Chemical Company, Inc.) ) and the like. Both Gaskamine328 and Gaskamine240 are mixtures containing modified MXDA and MXDA. Gaskamine 328 contains a compound represented by general formula (1-1) as a modified MXDA. Gaskamine 240 contains a compound represented by general formula (1-2) as a modified MXDA.
 より詳細には、Gaskamine328は、エピクロロヒドリンとMXDAとの反応物からなる芳香族ポリアミンである式(1-1)で表される化合物と、MXDAとを含む。具体的には、Gaskamine328は、式(1-1)で表される化合物(式(1-1)中のAおよびAは全て1,3-フェニレン基である。nは1~12である。)を73.3質量%含む。Gaskamine328に含まれる式(1-1)で表される化合物中のnが1である化合物の含有量は20.9質量%である。また、Gaskamine328は、MXDAを26.7質量%含む。 More specifically, Gaskamine 328 contains MXDA and the compound represented by formula (1-1), which is an aromatic polyamine consisting of a reaction product of epichlorohydrin and MXDA. Specifically, Gaskamine328 is a compound represented by the formula (1-1) (A 2 and A 3 in the formula (1-1) are all 1,3-phenylene groups; n is 1 to 12; ) contains 73.3% by mass. The content of compounds in which n is 1 among the compounds represented by formula (1-1) contained in Gaskamine 328 was 20.9% by mass. Moreover, Gaskamine328 contains 26.7% by mass of MXDA.
 Gaskamine240は、スチレンとMXDAとの反応物からなる芳香族ポリアミンである式(1-2)で表される化合物と、MXDAとを含む。具体的には、Gaskamine240は、式(1-2)で示される化合物(式(1-2)中、Aは1,3-フェニレン基である。)を99質量%以上含む。また、Gaskamine240は、MXDAを1質量%未満含む。
 なお、水性樹脂組成物中に含まれる硬化剤(β)の各成分及び各成分の含有量は、ガスクロマトグラフィー(GC)分析、ゲルろ過クロマトグラフィー(GPC)分析等のクロマトグラフ分析を用いて確認できる。
Gaskamine 240 contains MXDA and a compound represented by formula (1-2), which is an aromatic polyamine consisting of a reaction product of styrene and MXDA. Specifically, Gaskamine 240 contains 99% by mass or more of the compound represented by formula (1-2) (in formula (1-2), A 1 is a 1,3-phenylene group). Gaskamine 240 also contains less than 1% by weight of MXDA.
In addition, each component of the curing agent (β) contained in the aqueous resin composition and the content of each component are determined using chromatographic analysis such as gas chromatography (GC) analysis and gel filtration chromatography (GPC) analysis. I can confirm.
 硬化剤(β)に含まれる上記活性水素を有する芳香族ポリアミン(F)の含有量は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、芳香族ポリアミン(F)に含まれる活性水素が0.10当量以上であり、0.20当量以上であることが好ましく、0.30当量以上であることがさらに好ましい。硬化後の水性樹脂組成物の架橋密度が増加することで初期耐水性および皮膜降伏強度が向上するとともに、水性樹脂エマルジョン(α)に含まれるエポキシ基の反応率が高まることで金属材料への湿熱密着性が向上するためである。 The content of the aromatic polyamine (F) having active hydrogen contained in the curing agent (β) is contained in the aromatic polyamine (F) with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion (α). Active hydrogen is 0.10 equivalents or more, preferably 0.20 equivalents or more, and more preferably 0.30 equivalents or more. Initial water resistance and film yield strength are improved by increasing the cross-linking density of the water-based resin composition after curing. This is because adhesion is improved.
 硬化剤(β)に含まれる上記活性水素を有する芳香族ポリアミン(F)の含有量は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、芳香族ポリアミン(F)に含まれる活性水素が1.50当量以下であり、1.3当量以下であることが好ましく、1.2当量以下であることがより好ましい。水性樹脂組成物の過剰な硬化収縮を抑制することができ、金属材料に対する湿熱密着性の良好な硬化物を形成できるためである。 The content of the aromatic polyamine (F) having active hydrogen contained in the curing agent (β) is contained in the aromatic polyamine (F) with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion (α). Active hydrogen is 1.50 equivalents or less, preferably 1.3 equivalents or less, more preferably 1.2 equivalents or less. This is because excessive curing shrinkage of the water-based resin composition can be suppressed, and a cured product having good wet-heat adhesion to metal materials can be formed.
[1-3.硬化促進剤(γ)]
 硬化促進剤(γ)は、水性樹脂組成物の硬化を促進し、皮膜降伏強度の高い皮膜を形成する機能を有する。硬化促進剤(γ)は、エポキシ基に対する反応性を有する活性水素を有さない第三級アミンを含む。本実施形態における第三級アミンは、NR(式中、Rは、置換基であり、それぞれ異なっていてもよいし、2つ以上同じものが含まれていてもよい。Rは、互いに結合して環を形成していてもよい。)で示される化合物である。
[1-3. Curing accelerator (γ)]
The curing accelerator (γ) has the function of accelerating the curing of the water-based resin composition and forming a film with high film yield strength. Curing accelerators (γ) include tertiary amines that do not have active hydrogens that are reactive towards epoxy groups. The tertiary amine in this embodiment is represented by NR 1 R 2 R 3 (wherein R 1 R 2 R 3 is a substituent group, each of which may be different or two or more of which are the same). R 1 R 2 R 3 may combine with each other to form a ring.).
 硬化促進剤(γ)は、第三級脂肪族アミン、第三級脂環式アミン、第三級ヘテロ芳香族アミン、第三級アミン(NR)の窒素原子に直接結合していないフェニル基を有する第三級芳香族アミンからなる群より選択される少なくとも1つの化合物であることが好ましい。硬化促進剤(γ)の求核性を高め、効率的に硬化反応を進めるためである。 The curing accelerator (γ) directly binds to nitrogen atoms of tertiary aliphatic amines, tertiary alicyclic amines, tertiary heteroaromatic amines, and tertiary amines (NR 1 R 2 R 3 ). Preferably, it is at least one compound selected from the group consisting of tertiary aromatic amines having a phenyl group that does not have a phenyl group. This is because the nucleophilicity of the curing accelerator (γ) is increased and the curing reaction proceeds efficiently.
 第三級脂肪族アミンとしては、例えば、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリ-sec-ブチルアミン、トリ-n-ヘキシルアミンなどが挙げられる。 Examples of tertiary aliphatic amines include triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, tri-sec-butylamine, and tri-n-hexylamine.
 第三級脂環式アミンとしては、例えば、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、などが挙げられる。 Tertiary alicyclic amines include, for example, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,5-diazabicyclo[4.3.0]non-5-ene, 1,8 -diazabicyclo[5.4.0]undec-7-ene, and the like.
 第三級ヘテロ芳香族アミンとしては、イミダゾール骨格を有する化合物を用いることが好ましく、具体的には、例えば、イミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾールなどが挙げられる。 As the tertiary heteroaromatic amine, it is preferable to use a compound having an imidazole skeleton, and specific examples include imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, and the like.
 第三級アミン(NR)の窒素原子に直接結合していないフェニル基を有する第三級芳香族アミンとしては、ジメチルベンジルアミン、ジエチルベンジルアミン、トリベンジルアミン、2,4,6-トリスジメチルアミノメチルフェノール、2-フェニルイミダゾールなどが挙げられる。 Tertiary aromatic amines having a phenyl group not directly bonded to the nitrogen atom of the tertiary amine (NR 1 R 2 R 3 ) include dimethylbenzylamine, diethylbenzylamine, tribenzylamine, 2,4, 6-trisdimethylaminomethylphenol, 2-phenylimidazole and the like.
 これらの硬化促進剤(γ)の中でも特に、下記(i)および/または(ii)の化合物を用いることが好ましい。
(i)エポキシ基に対する活性水素を有さず、アミノ基の3つの置換基によって、2つの窒素原子同士が結合された飽和環構造を有する第三級脂環式アミン。
(ii)エポキシ基に対する活性水素を有さず、2つ以上の窒素原子を含むヘテロ芳香環構造を有する第三級ヘテロ芳香族アミン。
Among these curing accelerators (γ), it is particularly preferable to use the following compounds (i) and/or (ii).
(i) A tertiary alicyclic amine which has no active hydrogen for an epoxy group and has a saturated ring structure in which two nitrogen atoms are bound together by three substituents of the amino group.
(ii) tertiary heteroaromatic amines having a heteroaromatic ring structure containing two or more nitrogen atoms and having no active hydrogens for epoxy groups;
 (i)第三級脂環式アミンとしては、例えば、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)が挙げられる。(ii)第三級ヘテロ芳香族アミンとしては、例えば、イミダゾールが挙げられる。
 硬化促進剤(γ)は、1種または2種以上組み合わせて用いてもよい。
(i) Tertiary alicyclic amines include, for example, 1,4-diazabicyclo[2.2.2]octane (DABCO). (ii) Tertiary heteroaromatic amines include, for example, imidazole.
The curing accelerator (γ) may be used singly or in combination of two or more.
 硬化促進剤(γ)の含有量は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、0.0070mol以上であり、0.070mol以上であることが好ましく、0.18mol以上であることがより好ましく、0.30mol以上であることがさらに好ましい。本実施形態の水性樹脂組成物の硬化物からなる皮膜が、高い皮膜降伏強度を有するものとなるためである。 The content of the curing accelerator (γ) is 0.0070 mol or more, preferably 0.070 mol or more, and 0.18 mol or more, relative to 1 equivalent of the epoxy group contained in the aqueous resin emulsion (α). more preferably 0.30 mol or more. This is because the film formed of the cured product of the aqueous resin composition of the present embodiment has a high film yield strength.
 硬化促進剤(γ)の含有量は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、1.5mol以下であり、1.0mol以下であることが好ましく、0.70mol以下であることがより好ましく、0.44mol以下であることがさらに好ましく、0.40mol以下であることがさらに好ましく、0.38mol以下であることが特に好ましい。本実施形態の水性樹脂組成物の硬化物が、金属材料に対する湿熱密着性の良好な塗膜となるためである。また、硬化促進剤(γ)の含有量が1.5mol以下であると、水性樹脂組成物の短時間でのゲル化を抑制できるとともに、防錆性の良好な硬化物が得られる。 The content of the curing accelerator (γ) is 1.5 mol or less, preferably 1.0 mol or less, and 0.70 mol or less with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion (α). more preferably 0.44 mol or less, still more preferably 0.40 mol or less, and particularly preferably 0.38 mol or less. This is because the cured product of the water-based resin composition of the present embodiment forms a coating film having good wet heat adhesion to metal materials. Further, when the content of the curing accelerator (γ) is 1.5 mol or less, gelling of the water-based resin composition in a short time can be suppressed, and a cured product with good rust resistance can be obtained.
[1-4.その他の成分]
 本実施形態にかかる水性樹脂組成物は、顔料を含んでもよい。顔料としては、例えば酸化チタン、タルク、硫酸バリウム、カーボンブラック、ベンガラ、炭酸カルシウム、酸化珪素、タルク、マイカ、カオリン、クレー、フェライト、珪砂等が挙げられる。顔料は1種類の化合物のみ含んでもよく、2種類以上の化合物を含んでもよい。顔料は、水性樹脂組成物中に0.1~50質量%含まれることが好ましく、1~40質量%含まれることがより好ましい。塗膜の隠蔽性を向上させるためである。
[1-4. Other ingredients]
The aqueous resin composition according to this embodiment may contain a pigment. Examples of pigments include titanium oxide, talc, barium sulfate, carbon black, red iron oxide, calcium carbonate, silicon oxide, talc, mica, kaolin, clay, ferrite, and silica sand. The pigment may contain only one compound, or may contain two or more compounds. The pigment content in the aqueous resin composition is preferably 0.1 to 50% by mass, more preferably 1 to 40% by mass. This is for improving the concealability of the coating film.
 水性樹脂組成物は、充填剤、有機質または無機質の中空バルーン、分散剤(例えば、アミノアルコール、ポリカルボキシラート等)、界面活性剤、カップリング剤(例えば、シランカップリング剤等)、脱泡剤、防腐剤(例えば、殺生物剤、殺カビ剤、殺真菌剤、殺藻剤、及びこれらの組み合わせ等)、流動剤、レベリング剤、中和剤(例えば、水酸化物、アミン、アンモニア、炭酸塩等)等の添加剤を含んでもよい。 The aqueous resin composition contains a filler, an organic or inorganic hollow balloon, a dispersing agent (e.g., amino alcohol, polycarboxylate, etc.), a surfactant, a coupling agent (e.g., silane coupling agent, etc.), and a defoaming agent. , preservatives (e.g., biocides, fungicides, fungicides, algaecides, and combinations thereof, etc.), flow agents, leveling agents, neutralizing agents (e.g., hydroxides, amines, ammonia, carbonic acid salt etc.) etc. may also be included.
 カップリング剤としては、シランカップリング剤を用いることが好ましい。シランカップリング剤としては、エポキシシラン化合物が挙げられる。具体的な例としては、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシ)エチルトリメトキシシラン等が挙げられる。 A silane coupling agent is preferably used as the coupling agent. Silane coupling agents include epoxysilane compounds. Specific examples include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, 2-(3,4-epoxycyclohexy)ethyl trimethoxysilane and the like.
 シランカップリング剤の添加量は、水性樹脂エマルジョン100質量部に対して0.1~5質量部であることが好ましく、0.3~3質量部であることがより好ましい。硬化後の水性樹脂組成物の防錆性及び金属材料への密着性が向上するためである。 The amount of the silane coupling agent added is preferably 0.1 to 5 parts by mass, more preferably 0.3 to 3 parts by mass, per 100 parts by mass of the aqueous resin emulsion. This is because the cured water-based resin composition has improved rust resistance and adhesion to metal materials.
<水性樹脂組成物の製造方法>
 本実施形態の水性樹脂組成物は、水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)と、必要に応じて含有されるその他の成分とを混合する方法により製造できる。本実施形態の水性樹脂組成物に含まれる各成分を混合する方法としては、公知の方法を用いることができる。
<Method for producing aqueous resin composition>
The aqueous resin composition of the present embodiment is produced by a method of mixing an aqueous resin emulsion (α), a curing agent (β), a curing accelerator (γ), and optionally other components. can. As a method for mixing each component contained in the aqueous resin composition of the present embodiment, a known method can be used.
 本実施形態の水性樹脂組成物は、水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを含む。このため、常温短時間の養生で硬化し、初期耐水性ならびに金属材料に対する湿熱密着性が良好である塗膜が得られるものとなる。 The aqueous resin composition of this embodiment contains an aqueous resin emulsion (α), a curing agent (β), and a curing accelerator (γ). For this reason, it cures at room temperature for a short period of time, and a coating film having good initial water resistance and wet heat adhesion to metal materials can be obtained.
<塗膜>
 本実施形態の塗膜は、本実施形態の水性樹脂組成物の硬化物からなる。
 本実施形態の塗膜は、必要に応じて、本発明の水性樹脂組成物の硬化物からなる塗膜の下層に設けられた下塗り層、および/または上層に設けられた上塗り層などからなる塗膜と、積層して設けられていてもよい。
<Coating film>
The coating film of the present embodiment is composed of a cured product of the aqueous resin composition of the present embodiment.
The coating film of the present embodiment is, if necessary, an undercoat layer provided as a lower layer of a coating film made of a cured product of the aqueous resin composition of the present invention, and / or a topcoat layer provided as an upper layer. It may be provided in a layered manner with the film.
<塗膜の製造方法>
 次に、本実施形態の水性樹脂組成物の硬化物からなる塗膜の製造方法について、詳細に説明する。
 本実施形態の塗膜の製造方法では、まず、水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)と、必要に応じて含有されるその他の成分とを混合する。このことにより、本実施形態の水性樹脂組成物を調製する(混合工程)。次に、混合工程により得られた水性樹脂組成物を、被塗装面に塗布する(塗布工程)。
<Method for producing coating film>
Next, a method for producing a coating film composed of a cured product of the aqueous resin composition of the present embodiment will be described in detail.
In the method for producing a coating film of the present embodiment, first, an aqueous resin emulsion (α), a curing agent (β), a curing accelerator (γ), and optionally other components are mixed. . Thus, the aqueous resin composition of the present embodiment is prepared (mixing step). Next, the aqueous resin composition obtained in the mixing step is applied to the surface to be coated (application step).
 混合工程では、水性樹脂エマルジョン(α)と硬化剤(β)と硬化促進剤(γ)と必要に応じて含有されるその他の成分とを、公知の方法により混合し、攪拌する。このことにより、各成分が分散された水性樹脂組成物が得られる。混合工程における攪拌は、例えば、ロボミクス(プライミクス株式会社製)などにより行うことができる。本実施形態の水性樹脂組成物に含まれる各成分を十分に分散させるために、混合工程における攪拌は、5分以上行うことが好ましい。また、水性樹脂組成物に含まれる樹脂成分が硬化することを抑制するため、攪拌時間は1時間以内とすることが好ましい。 In the mixing step, the aqueous resin emulsion (α), the curing agent (β), the curing accelerator (γ), and optionally other components are mixed and stirred by a known method. As a result, an aqueous resin composition in which each component is dispersed is obtained. Stirring in the mixing step can be performed, for example, by Robomics (manufactured by Primix Co., Ltd.). In order to sufficiently disperse each component contained in the aqueous resin composition of the present embodiment, stirring in the mixing step is preferably performed for 5 minutes or longer. Moreover, in order to suppress hardening of the resin component contained in the water-based resin composition, the stirring time is preferably within 1 hour.
 塗布工程では、水性樹脂組成物を被塗物の被塗装面に塗布する。被塗装面を形成している材料としては、例えば、鉄などの金属材料が挙げられる。被塗装面には、プライマー、下塗り等の表面処理が予め施されていてもよい。
 水性樹脂組成物を塗布する方法としては、公知の方法を用いることができ、例えば、刷毛、ローラー等を用いる方法が挙げられるが、これに限られない。また、塗布工程が完了する前に、水性樹脂組成物に含まれる樹脂成分が硬化することを抑制するために、塗布工程は、混合工程の終了後1時間以内に完了することが好ましく、30分以内に完了することがより好ましい。
In the application step, the aqueous resin composition is applied to the surface of the article to be coated. Examples of materials forming the surface to be coated include metallic materials such as iron. The surface to be coated may be previously subjected to a surface treatment such as a primer or an undercoat.
As a method for applying the aqueous resin composition, a known method can be used, and examples thereof include, but are not limited to, methods using a brush, a roller, and the like. In addition, in order to suppress the curing of the resin component contained in the aqueous resin composition before the coating process is completed, the coating process is preferably completed within 1 hour after the mixing process is completed, and the coating process is completed within 30 minutes. It is more preferable to complete within
 本実施形態の塗膜の製造方法では、塗布工程の後、被塗装面に塗布することにより得られた塗膜を硬化させる硬化工程を行うことが好ましい。
 硬化工程では、水性樹脂組成物が塗布された被塗物の被塗装面を、乾燥し、養生することにより、水性樹脂組成物に含まれる樹脂成分を硬化させる。養生する時間は、養生する雰囲気の温度によって異なる。例えば、常温(20℃)では5時間以上であることが好ましく、40℃では1時間以上であることが好ましく、60℃では5分以上であることが好ましい。
In the method for producing a coating film of the present embodiment, it is preferable to perform a curing step of curing the coating film obtained by coating the surface to be coated after the coating step.
In the curing step, the surface of the object coated with the aqueous resin composition is dried and cured to cure the resin component contained in the aqueous resin composition. Curing time varies depending on the temperature of the curing atmosphere. For example, at normal temperature (20° C.), the time is preferably 5 hours or more, at 40° C. it is preferably 1 hour or more, and at 60° C. it is preferably 5 minutes or more.
 本実施形態の塗膜は、本実施形態の水性樹脂組成物の硬化物からなる。このため、初期耐水性ならびに金属材料に対する湿熱密着性が良好である。
 また、本実施形態の塗膜の製造方法では、水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを混合することにより水性樹脂組成物を調製し、これを被塗装面に塗布する。したがって、本実施形態の水性樹脂組成物の硬化物からなる本実施形態の塗膜を形成できる。
The coating film of the present embodiment is composed of a cured product of the aqueous resin composition of the present embodiment. Therefore, the initial water resistance and wet heat adhesion to metal materials are good.
Further, in the method for producing a coating film of the present embodiment, the aqueous resin composition is prepared by mixing the aqueous resin emulsion (α), the curing agent (β), and the curing accelerator (γ), and Apply to surface to be coated. Therefore, the coating film of this embodiment can be formed from the cured product of the aqueous resin composition of this embodiment.
<水性樹脂組成物セット>
 次に、本実施形態の水性樹脂組成物セットについて、詳細に説明する。
 本実施形態の水性樹脂組成物セットは、本実施形態の水性樹脂組成物の構成成分が第1液と第2液とに分けて保存されるものである。本実施形態の水性樹脂組成物セットにおける第1液は、水性樹脂エマルジョン(α)を含む。第2液は、硬化剤(β)と、硬化促進剤(γ)と、を含む。
<Aqueous resin composition set>
Next, the aqueous resin composition set of this embodiment will be described in detail.
In the aqueous resin composition set of the present embodiment, the constituent components of the aqueous resin composition of the present embodiment are stored separately into the first liquid and the second liquid. The first liquid in the aqueous resin composition set of the present embodiment contains the aqueous resin emulsion (α). The second liquid contains a curing agent (β) and a curing accelerator (γ).
 本実施形態の塗膜は、本実施形態の水性樹脂組成物セットを用いて製造してもよい。すなわち、本実施形態の水性樹脂組成物セットにおける第1液と第2液とを混合することにより、本実施形態の水性樹脂組成物を調製する(混合工程)。その後、上述した塗膜の製造方法と同様にして、水性樹脂組成物を被塗装面に塗布する(塗布工程)。 The coating film of this embodiment may be produced using the aqueous resin composition set of this embodiment. That is, the aqueous resin composition of the present embodiment is prepared by mixing the first liquid and the second liquid in the aqueous resin composition set of the present embodiment (mixing step). Thereafter, the water-based resin composition is applied to the surface to be coated in the same manner as in the method for producing a coating film described above (coating step).
 本実施形態の水性樹脂組成物セットは、水性樹脂エマルジョン(α)を含む第1液と、硬化剤(β)と、硬化促進剤(γ)とを含む第2液とに分けて保存される。このため、本実施形態の水性樹脂組成物セットは、保存中に水性樹脂エマルジョン(α)に含まれる樹脂成分が硬化剤(β)と反応して硬化することがなく、保存安定性に優れる。なお前記第1液と、前記第2液は、それぞれ別の容器等に保管されていてもよい。前記容器の形や素材は任意に選択できる。前記第1液を含む容器と、前記第2液を含む容器は、互いに離れていてもよく、あるいは互いに接触していてもよい。
 また、本実施形態の水性樹脂組成物セットを用いることにより、本実施形態の水性樹脂組成物を用いた場合と同様に、初期耐水性ならびに金属材料に対する湿熱密着性が良好な塗膜が得られる。
The aqueous resin composition set of the present embodiment is divided into a first liquid containing the aqueous resin emulsion (α), a curing agent (β), and a second liquid containing the curing accelerator (γ) and stored. . Therefore, the aqueous resin composition set of the present embodiment is excellent in storage stability because the resin component contained in the aqueous resin emulsion (α) does not react with the curing agent (β) during storage and is cured. The first liquid and the second liquid may be stored in separate containers or the like. The shape and material of the container can be arbitrarily selected. The container containing the first liquid and the container containing the second liquid may be separated from each other or may be in contact with each other.
In addition, by using the aqueous resin composition set of the present embodiment, as in the case of using the aqueous resin composition of the present embodiment, a coating film having good initial water resistance and wet heat adhesion to metal materials can be obtained. .
<適用分野>
 本発明の水性樹脂組成物は、様々な分野において有用である。本発明の水性樹脂組成物は、特に、鉄塔、橋梁、船舶、港湾施設等の屋外で使用される金属製品の表面に塗布される防食塗料としての用途に好適である。
 本発明の水性樹脂組成物の硬化物からなる塗膜が形成される物品、すなわち本発明の水性樹脂組成物の被塗物とされる適用対象物は、任意に選択できる。適用対象物としては、具体的には、例えば、鉄塔、橋梁、船舶、港湾施設等の屋外で使用される金属製品、様々な家庭用品、冷蔵庫などの家電製品、遊園地・公園などに設置される遊具、スポーツ用品、建築物(インテリア、エクステリアなど)、輸送機械・工作機械を含む様々な工業用品およびその部品、自動車のボディーおよびシャシー、鉄道車両の車体および床下機器、船舶、海上コンテナ、航空機などが挙げられる。
<Application field>
The aqueous resin composition of the present invention is useful in various fields. The water-based resin composition of the present invention is particularly suitable for use as an anticorrosive paint to be applied to the surfaces of metal products used outdoors such as steel towers, bridges, ships, port facilities and the like.
An article on which a coating film comprising a cured product of the aqueous resin composition of the present invention is formed, that is, an object to be coated with the aqueous resin composition of the present invention can be selected arbitrarily. Specific examples of applicable objects include steel towers, bridges, ships, metal products used outdoors such as port facilities, various household goods, home appliances such as refrigerators, and installations in amusement parks and parks. playground equipment, sporting goods, buildings (interior, exterior, etc.), various industrial goods and their parts including transportation machinery and machine tools, automobile bodies and chassis, railway vehicle bodies and underfloor equipment, ships, marine containers, aircraft etc.
 以下、実施例を用いて本発明を詳細に説明する。なお、下記の実施例は、本発明の全てを制限するものではなく、本記載の内容を逸脱しない範囲で実施したものは、全て本発明の技術範囲に含まれる。 The present invention will be described in detail below using examples. It should be noted that the following examples do not limit the present invention at all, and all implementations that do not deviate from the content of the present description are included in the technical scope of the present invention.
<1.水性樹脂エマルジョン(α)の合成>
(水性樹脂エマルジョン(α-1))
 冷却管、温度計、攪拌機、滴下ロートを有するセパラブルフラスコに、イオン交換水158部を仕込み、60℃に昇温した。セパラブルフラスコの内容物に窒素ガスを吹き込み、脱酸素した。ここに表1に示す量(質量部)のメチルメタクリレート、2-エチルヘキシルアクリレート、メタクリル酸、水添ビスフェノールA型エポキシ、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム、およびイオン交換水356質量部からなる乳化物を、3時間かけて滴下した。乳化物と同時に、酸化剤として過硫酸カリウム1.2質量部をイオン交換水41質量部に溶解したものと、還元剤として亜硫酸水素ナトリウム0.4質量部をイオン交換水21質量部に溶解したものを、3.3時間かけて、60℃で滴下し、重合した。滴下終了後、1.5時間熟成した。その後、冷却し、塩基性物質としてのアンモニア水0.8質量部を添加し、水性樹脂エマルジョン(α-1)を得た。
<1. Synthesis of aqueous resin emulsion (α)>
(Aqueous resin emulsion (α-1))
A separable flask equipped with a cooling tube, a thermometer, a stirrer and a dropping funnel was charged with 158 parts of ion-exchanged water and heated to 60°C. Nitrogen gas was blown into the contents of the separable flask to deoxygenate the contents. An emulsion comprising the amounts (parts by mass) shown in Table 1 of methyl methacrylate, 2-ethylhexyl acrylate, methacrylic acid, hydrogenated bisphenol A type epoxy, sodium dodecylbenzenesulfonate as an emulsifier, and 356 parts by mass of deionized water. was added dropwise over 3 hours. At the same time as the emulsion, 1.2 parts by mass of potassium persulfate as an oxidizing agent dissolved in 41 parts by mass of ion-exchanged water and 0.4 parts by mass of sodium bisulfite as a reducing agent were dissolved in 21 parts by mass of ion-exchanged water. was added dropwise at 60° C. over 3.3 hours to polymerize. After completion of dropping, the mixture was aged for 1.5 hours. After cooling, 0.8 parts by mass of aqueous ammonia as a basic substance was added to obtain an aqueous resin emulsion (α-1).
 水性樹脂エマルジョン(α-1)の合成に用いた各材料の使用量(質量部)を、表1に示す。表1に示す「イオン交換水」の数値は、合成された水性樹脂エマルジョン(α-1)中に含まれるイオン交換水の含有量を示す。また、表1中における共重合体(X)およびポリエポキシ化合物(Y)の含有率における括弧内の数値は、共重合体(X)とポリエポキシ化合物(Y)との合計量(100%)に対する各材料の割合(質量%)を示す。 Table 1 shows the amount (parts by mass) of each material used in the synthesis of the aqueous resin emulsion (α-1). The numerical value of "ion-exchanged water" shown in Table 1 indicates the content of ion-exchanged water contained in the synthesized aqueous resin emulsion (α-1). In Table 1, the values in parentheses for the contents of the copolymer (X) and the polyepoxy compound (Y) are the total amount (100%) of the copolymer (X) and the polyepoxy compound (Y). Shows the ratio (mass%) of each material to
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に示すポリエポキシ化合物(Y)としては、下記のものを用いた。
水添ビスフェノールA型エポキシ(エポキシ当量215g/mol;共栄化学株式会社製;エポライト4000)
ビスフェノールA型エポキシ(エポキシ当量190g/mol;三菱ケミカル株式会社製;JER828)
1,6-ヘキサンジオールジグリシジルエーテル(エポキシ当量160g/mol;共栄化学株式会社製;エポライト1600)
As the polyepoxy compound (Y) shown in Table 1, the following compounds were used.
Hydrogenated bisphenol A epoxy (epoxy equivalent: 215 g/mol; manufactured by Kyoei Chemical Co., Ltd.; Epolite 4000)
Bisphenol A type epoxy (epoxy equivalent: 190 g/mol; manufactured by Mitsubishi Chemical Corporation; JER828)
1,6-hexanediol diglycidyl ether (epoxy equivalent 160 g/mol; manufactured by Kyoei Chemical Co., Ltd.; Epolite 1600)
(水性樹脂エマルジョン(α-2)~(α-6))
 表1に示す各材料を表1に示す使用量(質量部)で使用したこと以外は、水性樹脂エマルジョン(α-1)と同様にして、水性樹脂エマルジョン(α-2)~(α-6)を合成した。なお、水性樹脂エマルジョン(α-2)~(α-6)においても、表1に示す「イオン交換水」の数値は、合成された水性樹脂エマルジョン(α-1)と同様に、合成された水性樹脂エマルジョン(α-2)~(α-6)中に含まれるイオン交換水の含有量を示す。
(Aqueous resin emulsion (α-2) to (α-6))
Aqueous resin emulsions (α-2) to (α-6) were prepared in the same manner as the aqueous resin emulsion (α-1) except that each material shown in Table 1 was used in the amount (parts by mass) shown in Table 1. ) was synthesized. In addition, in the aqueous resin emulsions (α-2) to (α-6), the numerical value of "ion-exchanged water" shown in Table 1 is the same as the synthesized aqueous resin emulsion (α-1). The contents of ion-exchanged water contained in aqueous resin emulsions (α-2) to (α-6) are shown.
<2.水性樹脂エマルジョン(α)の評価>
 水性樹脂エマルジョン(α-1)~(α-6)について、それぞれ以下の項目の評価を行った。その結果を表2に示す。なお、ポリエポキシ化合物(Y)の含有率が過剰である水性樹脂エマルジョン(α-6)については、合成中に凝集したため、評価していない。 以下の説明において、水性樹脂エマルジョン(α-1)~(α-6)を総称する場合、水性樹脂エマルジョン(α)と記載する場合がある。
<2. Evaluation of aqueous resin emulsion (α)>
The following items were evaluated for each of the aqueous resin emulsions (α-1) to (α-6). Table 2 shows the results. The water-based resin emulsion (α-6) having an excessive content of the polyepoxy compound (Y) was not evaluated because it aggregated during synthesis. In the following description, the aqueous resin emulsions (α-1) to (α-6) may be collectively referred to as the aqueous resin emulsion (α).
<2-1.不揮発分濃度>
 直径5cmのアルミ皿に、水性樹脂エマルジョン(α)を1g秤量し、大気圧、乾燥器内で、空気を循環させながら105℃で1時間乾燥させた。乾燥後に得られた残分の質量を測定し、乾燥前の水性樹脂エマルジョン(α)の質量に対する、乾燥後の質量の割合(質量%)を求めた。
<2-1. Non-volatile content>
1 g of the water-based resin emulsion (α) was weighed into an aluminum dish with a diameter of 5 cm, and dried at 105°C for 1 hour at atmospheric pressure in a drier while air was circulated. The mass of the residue obtained after drying was measured, and the ratio (% by mass) of the mass after drying to the mass of the water-based resin emulsion (α) before drying was determined.
<2-2.エポキシ基の残存率>
 水性樹脂エマルジョン(α)のエポキシ基の残存率は、合成後の水性樹脂エマルジョン(α)に含まれるエポキシ基の量N[mol/g]の、水性樹脂エマルジョン(α)の合成に用いた成分(原料、開始剤、溶媒、その他添加剤等も含む)に含まれるエポキシ基の総量N[mol/g]に対する割合である。
<2-2. Percentage of Remaining Epoxy Groups>
The residual ratio of epoxy groups in the water-based resin emulsion (α) is the amount N 1 [mol/g] of the epoxy groups contained in the water-based resin emulsion (α) after synthesis. It is the ratio to the total amount N 2 [mol/g] of epoxy groups contained in components (including raw materials, initiators, solvents, other additives, etc.).
 合成後の水性樹脂エマルジョン(α)のエポキシ基の量N[mol/g]の測定は、以下に示す方法により行った。水性樹脂エマルジョン(α)の合成に用いた成分(原料)に含まれるエポキシ基の総量に対して、過剰の塩化水素を加えてエポキシ基と反応させた。次に、未反応の塩化水素を水酸化カリウムで滴定することで、残った塩化水素の量を確認した。このとき水性樹脂エマルジョン(α)中に含まれるカルボン酸をはじめとする酸性成分との反応により、水酸化カリウムが消費される。このため、予め塩化水素を用いない空測定によって酸性成分の量を滴定し、本測定の結果を補正した。具体的な測定手順は以下の(i)~(ii)の通りである。 The amount N 1 [mol/g] of epoxy groups in the aqueous resin emulsion (α) after synthesis was measured by the following method. An excess amount of hydrogen chloride was added to the total amount of epoxy groups contained in the components (raw materials) used in the synthesis of the aqueous resin emulsion (α) to react with the epoxy groups. Next, the amount of remaining hydrogen chloride was confirmed by titrating unreacted hydrogen chloride with potassium hydroxide. At this time, potassium hydroxide is consumed by reaction with acidic components such as carboxylic acid contained in the aqueous resin emulsion (α). Therefore, the amount of acidic components was titrated in advance by blank measurement without using hydrogen chloride, and the result of this measurement was corrected. Specific measurement procedures are as follows (i) to (ii).
(i)空測定(酸性成分量の確認)
 水性樹脂エマルジョン(α)をW[g](本実施例及び比較例では5g)の量で、100mL三角フラスコに量り取り、テトラヒドロフラン(THF)25gを加えてマグネチックスターラーで撹拌し、均一な溶液とした。この溶液に指示薬として0.1質量%のクレゾールレッド水溶液を0.15mL加えた。0.1Mの水酸化カリウム/エタノール溶液で、前記溶液を攪拌しながら、滴定した。水酸化カリウム/エタノール溶液の滴下後、紫色が30秒間持続する点を当量点とした。ここで滴定に用いた水酸化カリウム/エタノール溶液の量をVKOH1[mL]とする。
(i) Blank measurement (confirmation of amount of acidic component)
An amount of W 1 [g] (5 g in this example and comparative example) of the aqueous resin emulsion (α) was weighed into a 100 mL Erlenmeyer flask, 25 g of tetrahydrofuran (THF) was added, and the mixture was stirred with a magnetic stirrer to obtain a uniform mixture. solution. 0.15 mL of a 0.1% by mass cresol red aqueous solution was added to this solution as an indicator. The solution was titrated with a 0.1 M potassium hydroxide/ethanol solution while stirring. After the potassium hydroxide/ethanol solution was added dropwise, the point at which the purple color persisted for 30 seconds was taken as the equivalence point. Here, the amount of the potassium hydroxide/ethanol solution used for titration is defined as V KOH1 [mL].
(ii)本測定
 水性樹脂エマルジョン(α)をW[g](本実施例及び比較例では5g)の量で、100mL三角フラスコに量り取り、THF25gを加えてマグネチックスターラーで撹拌し溶解させた。これに0.2Mの塩化水素/ジオキサン溶液を加え、1時間撹拌し均一な溶液とした。ここで加えられた塩化水素/ジオキサン溶液の量をVHCl[mL](本実施例及び比較例では25mL)とする。この溶液に指示薬として0.1質量%のクレゾールレッド水溶液を0.15mL加えた。0.1Mの水酸化カリウム/エタノール溶液で、溶液を攪拌しながら滴定した。水酸化カリウム/エタノール溶液の滴下後、紫色が30秒間持続する点を当量点とした。ここで滴定に用いた水酸化カリウム/エタノール溶液の量をVKOH2[mL]とする。
(ii) Main measurement The amount of W 2 [g] (5 g in this example and comparative example) of the water-based resin emulsion (α) is weighed into a 100 mL Erlenmeyer flask, 25 g of THF is added and dissolved by stirring with a magnetic stirrer. rice field. A 0.2M hydrogen chloride/dioxane solution was added thereto, and the mixture was stirred for 1 hour to form a uniform solution. Let the amount of the hydrogen chloride/dioxane solution added here be V HCl [mL] (25 mL in this example and comparative example). 0.15 mL of a 0.1% by mass cresol red aqueous solution was added to this solution as an indicator. The solution was titrated with a 0.1 M potassium hydroxide/ethanol solution while stirring. After the potassium hydroxide/ethanol solution was added dropwise, the point at which the purple color persisted for 30 seconds was taken as the equivalence point. Here, the amount of potassium hydroxide/ethanol solution used for titration is defined as V KOH2 [mL].
 (i)及び(ii)で得られた各々の数値から、水性樹脂エマルジョン(α)1gあたりのエポキシ基の量N[mol/g]を、以下の式(4)によって算出した。
 N=(0.2×VHCl/1000-0.1×VKOH2/1000)/W+(0.1×VKOH1/1000)/W …(4)
From the numerical values obtained in (i) and (ii), the amount N 1 [mol/g] of epoxy groups per 1 g of the aqueous resin emulsion (α) was calculated by the following formula (4).
N 1 = (0.2×V HCl /1000−0.1×V KOH2 /1000)/W 2 +(0.1×V KOH1 /1000)/W 1 (4)
 水性樹脂エマルジョン(α)の合成に用いた成分(原料)に含まれるエポキシ基の総量N[mol/g]は、各成分の質量m[質量部](i=1,2,3,・・・)と、エポキシ当量EP[g/mol]とから、以下の式(5)によって求められる。ここで水性樹脂エマルジョン(α)の合成に用いた成分とは、表1に水性樹脂エマルジョン(α)の原料として記載されているすべての成分を意味する。
 N=Σ(m/EP)/Σm…(5)
The total amount N 2 [mol/g] of epoxy groups contained in the components (raw materials) used to synthesize the water-based resin emulsion (α) is the mass of each component m i [parts by mass] (i = 1, 2, 3, ...) and the epoxy equivalent EP i [g/mol], it is obtained by the following formula (5). Here, the components used for the synthesis of the aqueous resin emulsion (α) mean all the components listed in Table 1 as raw materials for the aqueous resin emulsion (α).
N 2 =Σ(m i /EP i )/Σm i (5)
 なお、メチルメタクリレート、イオン交換水等のエポキシ基を含まない化合物については、1/EP=0となる。
 このように求められたエポキシ基の量から、水性樹脂エマルジョン(α)のエポキシ基の残存率は、100×N/N[mol%]で表される。
Note that 1/EP i =0 for compounds that do not contain an epoxy group, such as methyl methacrylate and ion-exchanged water.
From the amount of epoxy groups determined in this way, the residual rate of epoxy groups in the aqueous resin emulsion (α) is expressed as 100×N 1 /N 2 [mol %].
<2-3.不揮発分中のエポキシ基の含有率、成分(X)+(Y)中のエポキシ基の含有率>
 上記の方法で求めた、不揮発分濃度C[質量%]、水性樹脂エマルジョン(α)中のエポキシ基含有量N、原料中のエポキシ基の総量Nから、水性樹脂エマルジョン(α)の不揮発分中のエポキシ基の含有率REP[mol/g]を、上記で説明した式(2)に基づいて求めた。
EP=N/(C/100)…(2)
<2-3. Epoxy Group Content in Non-Volatile Content, Epoxy Group Content in Components (X) + (Y)>
From the non-volatile content concentration CS [mass%], the epoxy group content N 1 in the aqueous resin emulsion (α), and the total epoxy group amount N 2 in the raw material, obtained by the above method, the content of the aqueous resin emulsion (α) The epoxy group content R EP [mol/g] in the non-volatile matter was obtained based on the above-described formula (2).
R EP =N 1 /(C S /100) (2)
 また、上記の方法で求めた水性樹脂エマルジョン(α)中のエポキシ基含有量Nと、水性樹脂エマルジョン(α)の合成に用いた全成分(原料)の合計質量α[g]、共重合体(X)に用いた原料の質量X[g]、ポリエポキシ化合物(Y)に用いた原料の質量Y[g]を用い、以下の式に基づいて成分(X)+(Y)中のエポキシ基の含有率REP[mol/g]を算出した。
(X)+(Y)中のREP=N/{(X+Y)/α}
In addition, the epoxy group content N 1 in the aqueous resin emulsion (α) obtained by the above method, the total mass α [g] of all the components (raw materials) used in the synthesis of the aqueous resin emulsion (α), and the copolymerization Using the mass X [g] of the raw material used for coalescence (X) and the mass Y [g] of the raw material used for polyepoxy compound (Y), based on the following formula, component (X) + in component (Y) The epoxy group content R EP [mol/g] was calculated.
R EP in (X)+(Y)=N 1 /{(X+Y)/α}
<2-4.不揮発分中のカルボキシ基の含有率、成分(X)+(Y)中のカルボキシ基の含有率>
 水性樹脂エマルジョン(α)の合成に用いた成分(原料)に含まれるカルボキシ基の総量N[mol/g]は、各成分の質量m[質量部](i=1,2,3,・・・)と、カルボキシ当量CX[g/mol]とから、以下の式(6)によって求められる。ここで水性樹脂エマルジョン(α)の合成に用いた成分とは、表1に水性樹脂エマルジョン(α)の原料として記載されているすべての成分を意味する。
 N=Σ(m/CX)/Σm…(6)
 ここで求めたNから、水性樹脂エマルジョン(α)の不揮発分中のカルボキシ基の含有率RCX[mol/g]を、上記で説明した式(3)に基づいて求めた。
CX={N-(N-N)}/(C/100)…(3)
<2-4. Carboxy group content in non-volatile matter, content of carboxy group in component (X) + (Y)>
The total amount N 3 [mol/g] of carboxy groups contained in the components (raw materials) used in the synthesis of the water-based resin emulsion (α) is determined by the mass m i [parts by mass] of each component (i = 1, 2, 3, ...) and the carboxy equivalent CX i [g/mol], it is obtained by the following formula (6). Here, the components used for the synthesis of the aqueous resin emulsion (α) mean all the components listed in Table 1 as raw materials for the aqueous resin emulsion (α).
N 3 =Σ(m i /CX i )/Σm i (6)
From the N3 obtained here, the content rate R CX [mol/g] of carboxy groups in the nonvolatile matter of the aqueous resin emulsion (α) was obtained based on the above-described formula (3).
R CX ={N 3 -(N 2 -N 1 )}/(C S /100) (3)
 また、上記の方法で求めた水性樹脂エマルジョン(α)中のエポキシ基含有量N、原料中のエポキシ基の総量N、水性樹脂エマルジョン(α)の合成に用いた成分(原料)に含まれるカルボキシ基の総量Nと、水性樹脂エマルジョン(α)の合成に用いた全成分(原料)の合計質量α[g]、共重合体(X)に用いた原料の質量X[g]、ポリエポキシ化合物(Y)に用いた原料の質量Y[g]を用いて、以下の式に基づいて成分(X)+(Y)中のカルボキシ基の含有率RCX[mol/g]を算出した。
(X)+(Y)中のRCX={N-(N-N)}/{(X+Y)/α}
In addition, the epoxy group content N 1 in the aqueous resin emulsion (α) determined by the above method, the total amount N 2 of epoxy groups in the raw material, and the components (raw materials) used in the synthesis of the aqueous resin emulsion (α) The total amount of carboxy groups N 3 , the total mass α [g] of all components (raw materials) used in the synthesis of the aqueous resin emulsion (α), the mass X [g] of the raw materials used in the copolymer (X), Using the mass Y [g] of the raw material used for the polyepoxy compound (Y), the carboxy group content R CX [mol/g] in the component (X) + (Y) is calculated based on the following formula. did.
R CX in (X)+(Y)={N 3 −(N 2 −N 1 )}/{(X+Y)/α}
<2-5.pH>
 pHメーター(東亜ディーケーケー株式会社製 ガラス電極式水素イオン濃度指示計HM-30G)を用いて、23℃におけるpHを測定した。
<2-5. pH>
The pH at 23° C. was measured using a pH meter (Glass electrode type hydrogen ion concentration indicator HM-30G manufactured by Toa DKK Co., Ltd.).
<2-6.粘度>
 水性樹脂エマルジョン(α)の粘度を以下の条件及び装置で測定した。
 温度:23℃
 測定機器:B型粘度計
 ロータ:No.1
 回転数:60rpm
<2-6. Viscosity>
The viscosity of the aqueous resin emulsion (α) was measured using the following conditions and equipment.
Temperature: 23°C
Measuring equipment: B-type viscometer Rotor: No. 1
Rotation speed: 60rpm
<2-7.ガラス転移点>
 共重合体(X)のガラス転移点Tgは、上記の式(1)によって算出した値である。
<2-7. Glass transition point>
The glass transition point Tg of copolymer (X) is a value calculated by the above formula (1).
<2-8.分散性>
 合成直後の水性樹脂エマルジョン(α)の状態を目視にて観察し、下記の基準により評価した。
 ○(可):凝集、沈殿、分離、及びゲル化のいずれも見られなかった。
 ×(不可):凝集、沈殿、分離、及びゲル化のうち少なくともいずれかが見られた。
<2-8. Dispersibility>
The state of the aqueous resin emulsion (α) immediately after synthesis was visually observed and evaluated according to the following criteria.
◯ (Possible): Aggregation, precipitation, separation, and gelation were not observed.
x (impossible): At least one of aggregation, precipitation, separation, and gelation was observed.
<2-9.高温安定性>
 次の通り水性樹脂エマルジョン(α)の高温安定性を評価した。まず、70mlのガラス瓶に水性樹脂エマルジョン(α)を投入して密栓し、60℃で7日間静置した。その後、ガラス瓶中の水性樹脂エマルジョン(α)の状態を目視にて観察し、下記の基準により評価した。
 ○(可):凝集、増粘、沈殿、分離、及びゲル化のいずれも見られなかった。
 ×(不可):凝集、増粘、沈殿、分離、及びゲル化のうち少なくともいずれかが見られた。
<2-9. High temperature stability>
The high-temperature stability of the aqueous resin emulsion (α) was evaluated as follows. First, the water-based resin emulsion (α) was put into a 70 ml glass bottle, and the bottle was sealed and allowed to stand at 60° C. for 7 days. After that, the state of the aqueous resin emulsion (α) in the glass bottle was visually observed and evaluated according to the following criteria.
○ (Possible): Aggregation, thickening, precipitation, separation, and gelation were not observed.
× (improper): At least one of aggregation, thickening, precipitation, separation, and gelation was observed.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<2-10.評価結果>
 表2に示すように、水性樹脂エマルジョン(α-1)~(α-5)は、いずれも分散性および高温安定性が良好であった。これに対し、ポリエポキシ化合物(Y)の含有率が過剰である水性樹脂エマルジョン(α-6)は、分散性が不十分であった。
 これらのことから、共重合体(X)に用いた原料(モノマー)とポリエポキシ化合物(Y)との合計量に対する、(メタ)アクリル酸エステル(A)の添加量が20~98質量%であり、エチレン性不飽和カルボン酸(B)の添加量が0.1~10質量%であり、ポリエポキシ化合物(Y)の添加量が1~40質量%である水性樹脂エマルジョン(α)は、分散性および高温安定性に優れることが分かった。
<2-10. Evaluation result>
As shown in Table 2, all of the aqueous resin emulsions (α-1) to (α-5) had good dispersibility and high-temperature stability. On the other hand, the water-based resin emulsion (α-6) having an excessive content of the polyepoxy compound (Y) had insufficient dispersibility.
From these facts, the amount of the (meth)acrylic acid ester (A) added is 20 to 98% by mass with respect to the total amount of the raw material (monomer) and the polyepoxy compound (Y) used in the copolymer (X). A water-based resin emulsion (α) in which the amount of the ethylenically unsaturated carboxylic acid (B) added is 0.1 to 10% by mass and the amount of the polyepoxy compound (Y) added is 1 to 40% by mass, It was found to be excellent in dispersibility and high temperature stability.
<3.実施例1~10及び比較例1~15(水性樹脂組成物の作製)>
 表3~表5に示される水性樹脂エマルジョン(α)100質量部(不揮発分40質量%のもの)に、イオン交換水60質量部と、表3~表5に示される硬化剤(β)と硬化促進剤(γ)とを、表3~表5に示される量(質量部)で添加して10分間撹拌し、実施例1~10及び比較例1~15の水性樹脂組成物を作製した。
<3. Examples 1 to 10 and Comparative Examples 1 to 15 (Preparation of aqueous resin composition)>
100 parts by mass of the aqueous resin emulsion (α) shown in Tables 3 to 5 (nonvolatile content of 40% by mass), 60 parts by mass of ion-exchanged water, and the curing agent (β) shown in Tables 3 to 5 A curing accelerator (γ) was added in the amounts (parts by mass) shown in Tables 3 to 5 and stirred for 10 minutes to prepare aqueous resin compositions of Examples 1 to 10 and Comparative Examples 1 to 15. .
 表3~表5において、各硬化剤(β)における「エポキシ基に対する活性水素当量」は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対する、硬化剤(β)に含まれる活性水素を有する芳香族ポリアミン(F)に含まれる活性水素の当量を示す数値である。
 硬化促進剤(γ)における「エポキシ基に対するmol数」は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対する、硬化促進剤(γ)のmol数を示す数値である。
 表3において、「MXDAの含有量[質量%]」とは、硬化剤(β)に含まれる活性水素を有する芳香族ポリアミン(F)中のMXDAの含有量を示す数値である。
In Tables 3 to 5, the "active hydrogen equivalent to epoxy group" in each curing agent (β) is the active hydrogen contained in the curing agent (β) with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion (α). It is a numerical value indicating the equivalent of active hydrogen contained in the aromatic polyamine (F) having
The "number of moles per epoxy group" in the curing accelerator (γ) is a numerical value indicating the number of moles of the curing accelerator (γ) per equivalent of epoxy groups contained in the aqueous resin emulsion (α).
In Table 3, "MXDA content [% by mass]" is a numerical value indicating the content of MXDA in the aromatic polyamine (F) having active hydrogen contained in the curing agent (β).
 表3~表5に示す、芳香族ポリアミン(F)としては、Gaskamine328(三菱ガス化学株式会社)、またはm-キシリレンジアミン(MXDA)(三菱ガス化学株式会社)を用いた。
 MXDAに含まれる活性水素の当量は、34g/molである。
 Gaskamine328に含まれる活性水素の当量は、55g/molである。Gaskamine328は、MXDAの変性物と、MXDAとを含む混合物である。Gaskamine328は、MXDAの変性物である一般式(1-1)で表される化合物を73.3質量%含む。Gaskamine328は、MXDAを26.7質量%含む。
Gaskamine 328 (Mitsubishi Gas Chemical Company, Inc.) or m-xylylenediamine (MXDA) (Mitsubishi Gas Chemical Company, Inc.) was used as the aromatic polyamine (F) shown in Tables 3 to 5.
The equivalent weight of active hydrogen contained in MXDA is 34 g/mol.
The equivalent of active hydrogen contained in Gaskamine 328 is 55 g/mol. Gaskamine 328 is a mixture containing modified MXDA and MXDA. Gaskamine 328 contains 73.3% by mass of the compound represented by general formula (1-1), which is a modified MXDA. Gaskamine 328 contains 26.7% by weight of MXDA.
 表3~表5に示す、脂肪族ポリアミンとしては、EH-8051(商品名;アデカハードナーEH-8051、株式会社ADEKA社製)、またはED-600(商品名;JEFFAMINE ED-600、ハンツマンジャパン株式会社製)を用いた。
 アデカハードナーEH-8051に含まれる活性水素の当量は、180g/molである。
 JEFFAMINE ED-600に含まれる活性水素の当量は、132g/molである。
As the aliphatic polyamine shown in Tables 3 to 5, EH-8051 (trade name; ADEKA HARDNER EH-8051, manufactured by ADEKA Corporation) or ED-600 (trade name; JEFFAMINE ED-600, Huntsman Japan Co., Ltd.) company) was used.
The equivalent weight of active hydrogen contained in ADEKA HARDNER EH-8051 is 180 g/mol.
The equivalent weight of active hydrogen contained in JEFFAMINE ED-600 is 132 g/mol.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<4.塗膜および皮膜の評価>
 実施例1~10及び比較例1~15の水性樹脂組成物をそれぞれ用いて、以下に示す方法により塗膜および皮膜を形成し、以下の項目について評価した。その結果を表3~表5示す。実施例1~10及び比較例1~15の塗膜および皮膜は、水性樹脂組成物を調製してから1時間以内に、水性樹脂組成物を被塗装面に塗布し(混合工程の終了後1時間以内に塗布完了)、形成した。
<4. Evaluation of coating film and film>
Using the aqueous resin compositions of Examples 1 to 10 and Comparative Examples 1 to 15, respectively, coating films and films were formed by the methods shown below, and the following items were evaluated. Tables 3 to 5 show the results. The coating films and films of Examples 1 to 10 and Comparative Examples 1 to 15 were obtained by applying the aqueous resin composition to the surface to be coated within 1 hour after the preparation of the aqueous resin composition (1 The coating was completed within hours) and formed.
<4-1.皮膜降伏強度の測定方法>
 水性樹脂組成物を、水平に置いた縦90mm、横190mmの長方形のポリエチレンフィルムからなる平板上の全体に行き渡るように、流涎することにより塗布した。これを23℃で72時間乾燥した後、50℃で24時間養生することにより、厚さ約300μmの塗膜を作製した。得られた塗膜を平板から剥離した。塗膜を平板から剥離したことで得られた皮膜を幅10mm、長さ30mmの長方形に切り出し、試験片とした。
<4-1. Method for measuring film yield strength>
The water-based resin composition was applied by drooling so as to spread over the entire surface of a horizontally placed rectangular polyethylene film having a length of 90 mm and a width of 190 mm. After drying this at 23° C. for 72 hours, it was cured at 50° C. for 24 hours to prepare a coating film having a thickness of about 300 μm. The resulting coating film was peeled off from the plate. A film obtained by peeling the coating film from the flat plate was cut into a rectangle having a width of 10 mm and a length of 30 mm to obtain a test piece.
 この試験片の長手方向を引張方向として以下の試験を行った。試験片の厚さは、株式会社ミツトヨ製 クイックマイクロ(登録商標) MDQ-MXを用いて測定した。測定は、各試験片について3か所ずつ行い、3か所の測定結果の平均値を試験片の厚さt[mm]とした。試験片の厚さは約300μmであった。 The following tests were performed with the longitudinal direction of this test piece as the tensile direction. The thickness of the test piece was measured using Quick Micro (registered trademark) MDQ-MX manufactured by Mitutoyo Corporation. Each test piece was measured at three locations, and the average value of the measurement results at the three locations was taken as the thickness t [mm] of the test piece. The thickness of the specimen was about 300 μm.
 皮膜降伏強度の試験は、オートグラフAG-X(島津製作所製)を用いて以下に示す方法により行った。チャック間距離を10mmとして、試験片の長手方向の両側をチャックで掴んだ。温度23℃、相対湿度(RH)50%の雰囲気下、100mm/minの速度で、試験片を引っ張った。 The coating yield strength test was performed using Autograph AG-X (manufactured by Shimadzu Corporation) according to the method shown below. With the chuck-to-chuck distance set to 10 mm, both longitudinal sides of the test piece were gripped by chucks. The test piece was pulled at a speed of 100 mm/min in an atmosphere with a temperature of 23° C. and a relative humidity (RH) of 50%.
 チャック間距離をL[mm]、試験片の長さの変化(試験中のチャック間の距離と、試験前のチャック間の距離との差)をΔL[mm]とすると、ひずみSは、100×ΔL/L[%]で算出される。また、試験片にかかった荷重(測定された荷重)をF[N]とし、試験片の破断に至るまでの荷重の最大値をFmax[N]とし、試験開始から最初に以下の条件を満たした点を降伏点Y(S,F)とする。 Assuming that the distance between chucks is L [mm] and the change in the length of the test piece (the difference between the distance between the chucks during the test and the distance between the chucks before the test) is ΔL [mm], the strain S is 100 It is calculated by ×ΔL/L [%]. In addition, the load applied to the test piece (measured load) is F [N], the maximum value of the load until the test piece breaks is F max [N], and the following conditions are initially applied from the start of the test. Let the point that satisfies the conditions be the yield point Y (S y , F y ).
(降伏点の条件)
 ひずみSが2%以上(S≧2%)である。
 ひずみSの増加に伴う荷重Fの変化量が、増加から減少に転ずる。
 F=F-0.01Fmaxとなるまでの間、dF/dS<0が続く。
 S≦S+0.05%において、F>Fとなる点が存在しない。
(Conditions for yield point)
Strain S is 2% or more (S y ≧2%).
As the strain S increases, the amount of change in the load F changes from increasing to decreasing.
dF/dS<0 continues until F=F y −0.01F max .
In S≦S y +0.05%, there is no point where F>F y .
 降伏点Yにおいて試験片にかかる応力σである皮膜降伏強度は、以下に示す式により算出される。
 σ[N/mm]=F/(W×t)
(式中のWは試験片の幅[mm]であり、tは試験片の厚さ[mm]である。)
The coating yield strength, which is the stress σy applied to the test piece at the yield point Y, is calculated by the following formula.
σ y [N/mm 2 ]=F y /(W×t)
(W in the formula is the width [mm] of the test piece, and t is the thickness [mm] of the test piece.)
<4-2.初期耐水性>
 冷間圧延鋼板(厚さ800μm)の表面に水性樹脂組成物を、目付量が50g/mとなるように刷毛を用いて塗布し、23℃で1日間(24時間)乾燥させた。このことにより、表面に塗膜を有する縦70mm、横150mmの矩形の試験片を形成した。試験片の塗膜の厚さは約100μmであった。
<4-2. Initial water resistance>
The water-based resin composition was applied to the surface of a cold-rolled steel plate (thickness: 800 μm) using a brush so as to have a basis weight of 50 g/m 2 , and dried at 23° C. for 1 day (24 hours). As a result, a rectangular test piece having a coating film on the surface and measuring 70 mm long and 150 mm wide was formed. The thickness of the coating film on the specimen was about 100 μm.
 このように作製した試験片を、イオン交換水に浸漬して密閉し、23℃で7日間保管した。その後、試験片をイオン交換水から取り出した。
 取り出した試験片について、以下に示す方法により、試験領域中の錆が発生した面積「面積%」と、試験領域中の膨れが生じた面積「面積%」を測定した。試験領域は、試験片の塗膜における縦45mm、横125mmの矩形の領域とした。
The test piece thus prepared was immersed in deionized water, sealed, and stored at 23° C. for 7 days. After that, the test piece was taken out from the ion-exchanged water.
For the test piece taken out, the rusted area in the test region (area%) and the blistered area in the test region (area%) were measured by the method described below. The test area was a rectangular area of 45 mm long and 125 mm wide in the coating film of the test piece.
 試験片の外観を目視で観察し、保管により塗膜表面が褐色または黒色等に変色した領域を錆が発生した領域とした。試験領域内の錆が発生した各領域について、それぞれ定規を用いて寸法を測定し、試験領域内における錆が発生した領域の合計面積を算出した。その結果を用いて、試験領域の面積に対する錆が発生した面積(%)の割合を求めた。
 試験片の外観を目視で観察するとともに指触により評価して、保管により塗膜表面に膨れが生じた領域の有無を調べた。その結果、膨れが生じた領域は、いずれも平面形状が略円形であった。このため、膨れが生じた各領域について、平面形状が真円であるとみなして、膨れが生じた領域の輪郭線間をつなぐ最大直線距離を定規で測定し、その結果を直径とした。そして、膨れが生じた各領域の直径を用いて、試験領域内における膨れが生じた領域の合計面積を算出し、試験領域の面積に対する膨れが生じた面積(%)の割合を求めた。
The appearance of the test piece was visually observed, and the area where the surface of the coating film turned brown or black due to storage was defined as the area where rust occurred. The dimensions of each rusted area within the test area were measured using a ruler, and the total area of the rusted areas within the test area was calculated. Using the results, the ratio of the rusted area (%) to the area of the test region was determined.
The appearance of the test piece was visually observed and evaluated by finger touch, and the presence or absence of an area where the surface of the coating film had blister due to storage was examined. As a result, the planar shape of each bulging region was substantially circular. For this reason, the planar shape of each bulging region was assumed to be a perfect circle, and the maximum straight distance connecting the contour lines of the bulging region was measured with a ruler, and the result was taken as the diameter. Then, using the diameter of each swollen region, the total area of swollen regions in the test region was calculated, and the ratio of the swollen area (%) to the area of the test region was determined.
<4-3.金属材料に対する塗膜の湿熱密着性>
 冷間圧延鋼板(厚さ800μm)の表面に水性樹脂組成物を、目付量が50g/mとなるように刷毛を用いて塗布し、23℃で7日間乾燥させた。このことにより、表面に塗膜を有する縦70mm、横150mmの矩形の試験片を形成した。試験領域は、試験片の塗膜における縦45mm、横125mmの矩形の領域とした。試験片の塗膜の厚さは約100μmであった。
<4-3. Wet heat adhesion of coating film to metal material>
The water-based resin composition was applied to the surface of a cold-rolled steel plate (thickness: 800 μm) using a brush so as to have a basis weight of 50 g/m 2 , and dried at 23° C. for 7 days. As a result, a rectangular test piece having a coating film on the surface and measuring 70 mm long and 150 mm wide was formed. The test area was a rectangular area of 45 mm long and 125 mm wide in the coating film of the test piece. The thickness of the coating film on the specimen was about 100 μm.
 このように作製した試験片を、40℃、相対湿度(RH)98%の恒温槽中で3日間保管した。その後、JIS K-5400(1990)「8.5.2項 碁盤目テープ法」に準じ、試験片の試験領域に形成されている塗膜を貫通するように、カッターで1mm間隔の碁盤目の切れ込み(100マス)を入れ、セロテープ(登録商標)を貼合した。貼合してから1時間後に、セロテープ(登録商標)を剥離して、塗膜が鋼板から剥離せずに残ったマスの数を数えた。そして、剥離せずに残ったマスの数により、金属材料に対する塗膜の湿熱密着性を評価した。 The test piece thus prepared was stored in a constant temperature bath at 40°C and 98% relative humidity (RH) for 3 days. After that, according to JIS K-5400 (1990) "8.5.2 Cross-cut tape method", a cutter was used to cut a cross-cut at 1 mm intervals so as to penetrate the coating film formed in the test area of the test piece. A cut (100 squares) was made, and Sellotape (registered trademark) was pasted. One hour after lamination, the sellotape (registered trademark) was peeled off, and the number of squares remaining without peeling of the coating film from the steel plate was counted. Then, the wet heat adhesion of the coating film to the metal material was evaluated based on the number of squares remaining without being peeled off.
<4-4.評価結果>
 表3に示すように、水性樹脂エマルジョン(α-1)~(α-5)と、芳香族ポリアミンである硬化剤(β)とを含む実施例1~10の樹脂組成物の硬化物からなる皮膜は、いずれも皮膜降伏強度が10[N/mm]以上であり、皮膜降伏強度が高いものであった。
 また、常温短時間(23℃で1日間(24時間))の養生で硬化した実施例1~10の樹脂組成物の硬化物からなる塗膜は、いずれも初期耐水性の評価における膨れが生じた面積が30%以下であり、かつ錆が発生した面積が15%以下であり、初期耐水性が良好であった。
 また、常温の養生で硬化した実施例1~10の樹脂組成物の硬化物からなる塗膜は、いずれも金属材料に対する湿熱密着性の結果が100/100であり、金属材料に対する湿熱密着性が良好であった。
<4-4. Evaluation result>
As shown in Table 3, cured products of the resin compositions of Examples 1 to 10 containing aqueous resin emulsions (α-1) to (α-5) and a curing agent (β) that is an aromatic polyamine. All of the films had a film yield strength of 10 [N/mm 2 ] or more, indicating that the film yield strength was high.
In addition, the coating films made of the cured products of the resin compositions of Examples 1 to 10 cured by curing at room temperature for a short time (1 day (24 hours) at 23 ° C.) all caused swelling in the initial water resistance evaluation. The rusted area was 30% or less, and the rusted area was 15% or less, indicating good initial water resistance.
In addition, the coating films made of the cured products of the resin compositions of Examples 1 to 10 cured by curing at room temperature all had a wet heat adhesion result to metal materials of 100/100, and the wet heat adhesion to metal materials was 100/100. It was good.
 また、表4および表5に示すように、比較例1~15の水性樹脂組成物の硬化物からなる皮膜は、いずれも皮膜降伏強度が10[N/mm]以上であり、皮膜降伏強度が高いものであった。
 しかし、硬化剤(β)として脂肪族ポリアミンを用いた比較例1~6、8~10、12~14、芳香族ポリアミンである硬化剤(β)を1.5当量以上含む比較例7、11、硬化促進剤(γ)をエポキシ基1当量に対して1.5mol以上含む比較例15の水性樹脂組成物の硬化物からなる塗膜は、いずれも実施例1~10の水性樹脂組成物の硬化物からなる塗膜と比較して、金属材料に対する湿熱密着性の結果が劣るものであった。
In addition, as shown in Tables 4 and 5, the films made of the cured products of the aqueous resin compositions of Comparative Examples 1 to 15 all had a film yield strength of 10 [N/mm 2 ] or more, and the film yield strength was was high.
However, Comparative Examples 1 to 6, 8 to 10, 12 to 14 using an aliphatic polyamine as the curing agent (β), Comparative Examples 7 and 11 containing 1.5 equivalents or more of the curing agent (β) which is an aromatic polyamine , The coating film made of the cured product of the aqueous resin composition of Comparative Example 15 containing 1.5 mol or more of the curing accelerator (γ) with respect to 1 equivalent of the epoxy group, all of the aqueous resin compositions of Examples 1 to 10 Compared with a coating film made of a cured product, the result of wet heat adhesion to metal materials was inferior.
 本発明によれば、常温短時間の養生で硬化して初期耐水性に優れた塗膜を形成でき、かつ金属材料への湿熱密着性が良好な塗膜が得られる水性樹脂組成物および水性樹脂組成物セットを提供できる。 According to the present invention, a water-based resin composition and a water-based resin that can be cured at room temperature for a short period of time to form a coating film having excellent initial water resistance and that can provide a coating film having good wet heat adhesion to metal materials. A composition set can be provided.

Claims (18)

  1.  水性樹脂エマルジョン(α)と、
     硬化剤(β)と、
     硬化促進剤(γ)とを含み、
     前記水性樹脂エマルジョン(α)は、共重合体(X)と、エチレン性不飽和結合を有さず1分子中に2個以上のエポキシ基を有するポリエポキシ化合物(Y)と、水性媒体(Z)と、を含み、
     前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対する、前記ポリエポキシ化合物(Y)の含有率は、1~40質量%であり、
     前記共重合体(X)は、(メタ)アクリル酸エステル(A)由来の構造単位と、エチレン性不飽和カルボン酸(B)由来の構造単位と、を含み、
     前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対する、前記(メタ)アクリル酸エステル(A)由来の構造単位の含有率は、20~98質量%であり、
     前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対する、前記エチレン性不飽和カルボン酸(B)由来の構造単位の含有率は、0.1~10質量%であり、 前記(メタ)アクリル酸エステル(A)由来の構造単位は、アルコール由来の部分の炭素原子数が2以下である親水性(メタ)アクリル酸エステル(A1)由来の構造単位を含み、
     前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対する、前記親水性(メタ)アクリル酸エステル(A1)由来の構造単位の含有率は、15~98質量%であり、
     前記共重合体(X)と前記ポリエポキシ化合物(Y)の一方または両方が、カルボキシ基を含み、
     前記硬化剤(β)は、エポキシ基に対する反応性を有する活性水素を有する芳香族ポリアミン(F)を含み、
     前記硬化剤(β)に含まれる前記芳香族ポリアミン(F)の含有量は、前記水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、前記芳香族ポリアミン(F)に含まれる活性水素が0.10当量以上1.50当量以下であり、
     前記硬化促進剤(γ)は、エポキシ基に対する反応性を有する活性水素を有さない第三級アミンを含み、
     前記硬化促進剤(γ)の含有量は、前記水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、0.0070mol以上1.5mol以下である、水性樹脂組成物。
    an aqueous resin emulsion (α);
    a curing agent (β);
    and a curing accelerator (γ),
    The aqueous resin emulsion (α) comprises a copolymer (X), a polyepoxy compound (Y) having no ethylenically unsaturated bonds and having two or more epoxy groups in one molecule, and an aqueous medium (Z ), including
    The content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 1 to 40% by mass,
    The copolymer (X) contains a structural unit derived from (meth)acrylic acid ester (A) and a structural unit derived from ethylenically unsaturated carboxylic acid (B),
    The content of structural units derived from the (meth)acrylic acid ester (A) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 20 to 98% by mass,
    The content of structural units derived from the ethylenically unsaturated carboxylic acid (B) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 0.1 to 10% by mass, The (meth)acrylic acid ester (A)-derived structural unit includes a hydrophilic (meth)acrylic acid ester (A1)-derived structural unit in which the number of carbon atoms in the alcohol-derived portion is 2 or less,
    The content of the structural unit derived from the hydrophilic (meth)acrylic acid ester (A1) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 15 to 98% by mass,
    one or both of the copolymer (X) and the polyepoxy compound (Y) contain a carboxy group,
    The curing agent (β) contains an aromatic polyamine (F) having active hydrogen reactive with epoxy groups,
    The content of the aromatic polyamine (F) contained in the curing agent (β) is the active Hydrogen is 0.10 equivalents or more and 1.50 equivalents or less,
    The curing accelerator (γ) contains a tertiary amine that does not have an active hydrogen reactive with an epoxy group,
    The aqueous resin composition, wherein the content of the curing accelerator (γ) is 0.0070 mol or more and 1.5 mol or less with respect to 1 equivalent of epoxy groups contained in the aqueous resin emulsion (α).
  2.  前記(メタ)アクリル酸エステル(A)は、(メタ)アクリル酸アルキルエステルからなる、請求項1に記載の水性樹脂組成物。 The aqueous resin composition according to claim 1, wherein the (meth)acrylic acid ester (A) comprises a (meth)acrylic acid alkyl ester.
  3.  前記エチレン性不飽和カルボン酸(B)は、α,β-不飽和モノカルボン酸、α,β-不飽和ジカルボン酸、及びカルボキシ基を含有するビニル化合物からなる群のうち、少なくとも1種を含む、請求項1または請求項2に記載の水性樹脂組成物。 The ethylenically unsaturated carboxylic acid (B) includes at least one selected from the group consisting of α,β-unsaturated monocarboxylic acids, α,β-unsaturated dicarboxylic acids, and vinyl compounds containing a carboxy group. , The aqueous resin composition according to claim 1 or 2.
  4.  前記ポリエポキシ化合物(Y)は、ビスフェノール型エポキシ化合物、水添ビスフェノール型エポキシ化合物、ジグリシジルエーテル、トリグリシジルエーテル、テトラグリシジルエーテル、ジグリシジルエステル、トリグリシジルエステル、及びテトラグリシジルエステルから選ばれる少なくとも1種である、請求項1または請求項2に記載の水性樹脂組成物。 The polyepoxy compound (Y) is at least one selected from bisphenol-type epoxy compounds, hydrogenated bisphenol-type epoxy compounds, diglycidyl ethers, triglycidyl ethers, tetraglycidyl ethers, diglycidyl esters, triglycidyl esters, and tetraglycidyl esters. 3. The aqueous resin composition according to claim 1, which is a seed.
  5.  前記共重合体(X)は、前記(メタ)アクリル酸エステル(A)由来の構造単位及び前記エチレン性不飽和カルボン酸(B)由来の構造単位からなる、請求項1または請求項2に記載の水性樹脂組成物。 3. The copolymer (X) according to claim 1 or 2, comprising a structural unit derived from the (meth)acrylic acid ester (A) and a structural unit derived from the ethylenically unsaturated carboxylic acid (B). water-based resin composition.
  6.  前記共重合体(X)は、ベンゼン環及びエチレン性不飽和結合を有するエチレン性不飽和芳香族化合物(C)由来の構造単位を含む、請求項1または請求項2に記載の水性樹脂組成物。 The aqueous resin composition according to claim 1 or 2, wherein the copolymer (X) contains a structural unit derived from an ethylenically unsaturated aromatic compound (C) having a benzene ring and an ethylenically unsaturated bond. .
  7.  前記エチレン性不飽和芳香族化合物(C)は、芳香族ビニル化合物である請求項6に記載の水性樹脂組成物。 The aqueous resin composition according to claim 6, wherein the ethylenically unsaturated aromatic compound (C) is an aromatic vinyl compound.
  8.  前記芳香族ポリアミン(F)は、1分子中に2個以上のベンゼン環を有する芳香族ポリアミンを含む、請求項1または請求項2に記載の水性樹脂組成物。 The aqueous resin composition according to claim 1 or claim 2, wherein the aromatic polyamine (F) contains an aromatic polyamine having two or more benzene rings in one molecule.
  9.  前記芳香族ポリアミン(F)は、下記一般式(1-1)で表される化合物を含む、請求項1または請求項2に記載の水性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式(1-1)中、A、Aはそれぞれ独立に1,2-フェニレン基、1,3-フェニレン基、または1,4-フェニレン基を表す。nは1~12の整数を表す。)
    3. The aqueous resin composition according to claim 1, wherein the aromatic polyamine (F) contains a compound represented by the following general formula (1-1).
    Figure JPOXMLDOC01-appb-C000001

    (In formula (1-1), A 2 and A 3 each independently represent a 1,2-phenylene group, a 1,3-phenylene group, or a 1,4-phenylene group; n is an integer of 1 to 12; show.)
  10.  前記芳香族ポリアミン(F)は、前記一般式(1-1)で表される化合物と、m-キシリレンジアミンとを含む、請求項9に記載の水性樹脂組成物。 The aqueous resin composition according to claim 9, wherein the aromatic polyamine (F) contains the compound represented by the general formula (1-1) and m-xylylenediamine.
  11.  前記硬化促進剤(γ)は、第三級脂肪族アミン、第三級脂環式アミン、第三級ヘテロ芳香族アミンからなる群より選択される少なくとも1つの化合物である、請求項1または請求項2に記載の水性樹脂組成物。 The curing accelerator (γ) is at least one compound selected from the group consisting of tertiary aliphatic amines, tertiary alicyclic amines, and tertiary heteroaromatic amines. 3. The aqueous resin composition according to item 2.
  12.  前記水性樹脂エマルジョン(α)は、前記水性媒体(Z)中で、前記共重合体(X)の構造単位となるモノマーが、前記ポリエポキシ化合物(Y)の存在下で、乳化重合されたエマルジョンである、請求項1または請求項2に記載の水性樹脂組成物。 The water-based resin emulsion (α) is an emulsion obtained by emulsion polymerization of monomers that form the structural units of the copolymer (X) in the presence of the polyepoxy compound (Y) in the water-based medium (Z). The aqueous resin composition according to claim 1 or 2, wherein
  13.  前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量中におけるカルボキシ基の含有率が、0.10×10-4mol/g以上である請求項1または請求項2に記載の水性樹脂組成物。 3. The content of carboxy groups in the total amount of the copolymer (X) and the polyepoxy compound (Y) is 0.10×10 −4 mol/g or more according to claim 1 or 2. water-based resin composition.
  14.  前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量中におけるエポキシ基の含有率が、0.50×10-4mol/g以上である請求項1または請求項2に記載の水性樹脂組成物。 3. The content of epoxy groups in the total amount of the copolymer (X) and the polyepoxy compound (Y) is 0.50×10 −4 mol/g or more according to claim 1 or 2. water-based resin composition.
  15.  請求項1に記載の水性樹脂組成物の硬化物からなる、塗膜。 A coating film made of a cured product of the aqueous resin composition according to claim 1.
  16.  水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを混合することにより、請求項1に記載の水性樹脂組成物を調製する混合工程と、
     前記水性樹脂組成物を、被塗装面に塗布する塗布工程とを含む、塗膜の製造方法。
    A mixing step of preparing the aqueous resin composition according to claim 1 by mixing the aqueous resin emulsion (α), the curing agent (β), and the curing accelerator (γ);
    A method for producing a coating film, comprising a coating step of applying the water-based resin composition to a surface to be coated.
  17.  前記塗布工程を、前記混合工程の終了後1時間以内に完了する、請求項16に記載の塗膜の製造方法。 The method for producing a coating film according to claim 16, wherein the coating step is completed within 1 hour after the mixing step is completed.
  18.  請求項1に記載の水性樹脂組成物の構成成分が第1液と第2液とに分けて保存され、
     前記第1液が、前記水性樹脂エマルジョン(α)を含み、
     前記第2液が、前記硬化剤(β)と、前記硬化促進剤(γ)とを含む、水性樹脂組成物セット。
    The constituent components of the aqueous resin composition according to claim 1 are stored separately in a first liquid and a second liquid,
    The first liquid contains the aqueous resin emulsion (α),
    An aqueous resin composition set, wherein the second liquid contains the curing agent (β) and the curing accelerator (γ).
PCT/JP2022/021819 2021-06-02 2022-05-27 Aqueous resin composition, coating film, coating film production method, and aqueous resin composition set WO2022255272A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280038918.8A CN117396555A (en) 2021-06-02 2022-05-27 Aqueous resin composition, coating film, method for producing coating film, and aqueous resin composition set
JP2023525797A JPWO2022255272A1 (en) 2021-06-02 2022-05-27
KR1020237041915A KR20240016291A (en) 2021-06-02 2022-05-27 Water-based resin composition, coating film, coating film manufacturing method, water-based resin composition set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021092839 2021-06-02
JP2021-092839 2021-06-02

Publications (1)

Publication Number Publication Date
WO2022255272A1 true WO2022255272A1 (en) 2022-12-08

Family

ID=84324181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021819 WO2022255272A1 (en) 2021-06-02 2022-05-27 Aqueous resin composition, coating film, coating film production method, and aqueous resin composition set

Country Status (4)

Country Link
JP (1) JPWO2022255272A1 (en)
KR (1) KR20240016291A (en)
CN (1) CN117396555A (en)
WO (1) WO2022255272A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188605A (en) * 1995-01-11 1996-07-23 Asahi Chem Ind Co Ltd Production of aqueous resin dispersion
JPH08231616A (en) * 1994-12-27 1996-09-10 Asahi Chem Ind Co Ltd Curable water-based resin composition
WO2020100790A1 (en) * 2018-11-13 2020-05-22 昭和電工株式会社 Aqueous resin emulsion, method for producing same, and aqueous resin composition
WO2021112042A1 (en) * 2019-12-02 2021-06-10 昭和電工株式会社 Aqueous resin composition, coating film, and method for forming coating film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333152B2 (en) 2009-10-26 2013-11-06 東亞合成株式会社 Thick coating composition
JP5443526B2 (en) 2011-03-01 2014-03-19 ローム アンド ハース カンパニー Epoxy resin absorbent polymer particles
US11261356B2 (en) 2015-12-22 2022-03-01 Dow Global Technologies Llc Acrylic/epoxy hybrid materials for laminating adhesive applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231616A (en) * 1994-12-27 1996-09-10 Asahi Chem Ind Co Ltd Curable water-based resin composition
JPH08188605A (en) * 1995-01-11 1996-07-23 Asahi Chem Ind Co Ltd Production of aqueous resin dispersion
WO2020100790A1 (en) * 2018-11-13 2020-05-22 昭和電工株式会社 Aqueous resin emulsion, method for producing same, and aqueous resin composition
WO2021112042A1 (en) * 2019-12-02 2021-06-10 昭和電工株式会社 Aqueous resin composition, coating film, and method for forming coating film

Also Published As

Publication number Publication date
CN117396555A (en) 2024-01-12
JPWO2022255272A1 (en) 2022-12-08
KR20240016291A (en) 2024-02-06

Similar Documents

Publication Publication Date Title
JP6937942B2 (en) Aqueous resin emulsion and its production method, and aqueous resin composition
JP7380709B2 (en) Water-based resin composition, film, and film forming method
EP2495281B2 (en) Epoxy resin imbibed polymer particles
CN100549074C (en) Corrosion resistant films based on ethylenically unsaturated monomer modified epoxy emulsion
US8658742B2 (en) Epoxy resin imbibed polymer particles
US9790397B2 (en) Anticorrosive coating composition, anticorrosive coating film, and method for preventing corrosion of substrate
CN109071920B (en) Curable composition and adhesive
TWI429719B (en) Waterborne resin compositions for paints and waterborne coatings
WO2010035641A1 (en) Aqueous coating composition
CN105705585A (en) Additives to resin compositions for improved impact strength and flexibility
JP6106311B2 (en) Natural dry water-based paint composition
CN109983090A (en) Coating composition
JP5428700B2 (en) One-part curable emulsion composition and method for producing the same
WO2022255272A1 (en) Aqueous resin composition, coating film, coating film production method, and aqueous resin composition set
WO2023119850A1 (en) Aqueous resin composition, method for producing coating film, aqueous resin composition set
WO2022145227A1 (en) Aqueous resin composition, film, method for producing coating film, aqueous resin composition set, and method for protecting metal
WO2022145228A1 (en) Aqueous resin composition, film, method for producing coating film, aqueous resin composition set, and method for protecting metal
US11958938B2 (en) Curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816020

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525797

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE