WO2022145227A1 - Aqueous resin composition, film, method for producing coating film, aqueous resin composition set, and method for protecting metal - Google Patents

Aqueous resin composition, film, method for producing coating film, aqueous resin composition set, and method for protecting metal Download PDF

Info

Publication number
WO2022145227A1
WO2022145227A1 PCT/JP2021/046231 JP2021046231W WO2022145227A1 WO 2022145227 A1 WO2022145227 A1 WO 2022145227A1 JP 2021046231 W JP2021046231 W JP 2021046231W WO 2022145227 A1 WO2022145227 A1 WO 2022145227A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous resin
resin composition
mass
structural unit
compound
Prior art date
Application number
PCT/JP2021/046231
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 葛谷
直樹 村田
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2022572985A priority Critical patent/JPWO2022145227A1/ja
Publication of WO2022145227A1 publication Critical patent/WO2022145227A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/10Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols

Definitions

  • the present invention relates to an aqueous resin composition, a film, a method for producing a coating film, an aqueous resin composition set, a method for protecting a metal, and a method for producing an aqueous resin composition.
  • metal products are surface-treated.
  • metal products used outdoors and metal products that are expected to be exposed to moisture are often surface-coated to prevent the occurrence of rust.
  • Patent Document 1 describes a coating composition for thick coating containing an emulsion composition in which polymer particles are dispersed in an aqueous medium and an aggregate.
  • the polymer particles described in Patent Document 1 are polymerized with an ethylenically unsaturated carboxylic acid monomer, which is a structural unit formed by polymerizing an alkyl (meth) acrylate monomer having an alkyl group having 4 to 14 carbon atoms. It is produced by emulsifying and polymerizing a structural unit made of ethylene and a structural unit obtained by polymerizing other monomers in the presence of a compound having at least two epoxy groups in one molecule and a basic catalyst. Is.
  • Patent Document 2 describes a composition containing an aqueous dispersion of thermoplastic polymer particles that has absorbed a thermosetting compound having an oxylan group. Further, Patent Document 2 describes that the polymer particles have an antiaggregating functional group having a concentration sufficient to stabilize the latex against aggregation.
  • Patent Document 3 an epoxy resin is mixed with water to form an epoxy emulsion, the epoxy emulsion is mixed with an aqueous acrylicate dispersion to form an acrylic / epoxy latex, and the acrylic / epoxy latex is mixed with a curing agent. , Forming an adhesive composition is described.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an aqueous resin composition capable of forming a coating film having high resistance to load and impact and less likely to break due to deformation of the base material. .. Another object of the present invention is to provide a coating film comprising a cured product of the aqueous resin composition of the present invention, which has high resistance to load and impact and is less likely to break due to deformation of the base material. Another object of the present invention is to provide a method for producing a coating film forming a coating film made of a cured product of the aqueous resin composition of the present invention.
  • the configuration of the present invention is as follows.
  • the first aspect of the present invention provides the following aqueous resin composition.
  • the aqueous resin emulsion ( ⁇ ) contains a curing agent ( ⁇ ) and a curing accelerator ( ⁇ ), and the aqueous resin emulsion ( ⁇ ) is a copolymer (X) and a polyepoxy compound (Y). ) And an aqueous medium (Z).
  • the copolymer (X) has a structural unit (a) derived from the (meth) acrylic acid alkyl ester (A) and The structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) and It contains a structural unit (c) derived from the compound (C) having an ethylenically unsaturated bond and an epoxy group.
  • the structural unit (a) includes a structural unit (a1) derived from a hydrophilic (meth) acrylic acid alkyl ester (A1) having 2 or less carbon atoms in a portion other than the (meth) acryloyloxy group.
  • the polyepoxy compound (Y) does not have an ethylenically unsaturated bond, has two or more epoxy groups in one molecule, and is at least one selected from a bisphenol type epoxy compound and a hydrogenated bisphenol type epoxy compound.
  • the content of the structural unit (a) is 20% by mass or more and 98% by mass or less.
  • the content of the structural unit (a1) is 15% by mass or more and 98% by mass or less.
  • the content of the structural unit (b) is 0.10% by mass or more and 10% by mass or less.
  • the content of the structural unit (c) is 1.0% by mass or more and 14% by mass or less.
  • the content of the polyepoxy compound (Y) is 1.0% by mass or more and 50% by mass or less, and the curing agent ( ⁇ ) is composed of a compound having a functional group (F) having reactivity with an epoxy group.
  • the content of the functional group (F) is 0.010 equivalent or more and 3.0 equivalent or less with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ).
  • the curing accelerator ( ⁇ ) is composed of a tertiary amine having no functional group having reactivity with an epoxy group.
  • the content of the curing accelerator ( ⁇ ) is 0.0070 mol or more and 1.5 mol or less with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ).
  • the aqueous resin composition of the first aspect of the present invention preferably has the following characteristics. It is also preferable to combine two or more of the following features.
  • the ethylenically unsaturated carboxylic acid (B) is an ⁇ , ⁇ -unsaturated monocarboxylic acid, ⁇ , ⁇ -unsaturated dicarboxylic acid, a monoalkyl ester of ⁇ , ⁇ -unsaturated dicarboxylic acid, and a carboxy group.
  • the aqueous resin composition according to [1] which comprises at least one of the group consisting of vinyl compounds containing.
  • the structural unit of the copolymer (X) is any one of [1] to [3], which comprises the structural unit (a), the structural unit (b), and the structural unit (c).
  • the glass transition point Tg of the copolymer (X) calculated by the Fox formula based on the glass transition point of the homopolymer of each monomer used for the synthesis of the copolymer (X) is-.
  • the aqueous resin composition according to any one of the following items.
  • the curing accelerator ( ⁇ ) forms a tertiary aliphatic amine, a tertiary alicyclic amine, a tertiary heteroaromatic amine, and a tertiary amine (NR 1 R 2 R 3 ).
  • the aqueous resin composition according to any one of [1] to [8], which is at least one compound selected from the group consisting of a tertiary aromatic amine in which the nitrogen atom is not directly bonded to the phenyl group.
  • the compound from which the structural unit of the copolymer (X) is derived is in the presence of the polyepoxy compound (Y).
  • a second aspect of the present invention provides the following coatings. [11] A coating film comprising a cured product of the aqueous resin composition according to any one of [1] to [10].
  • a third aspect of the present invention provides the following manufacturing method. [12] A coating step of applying the aqueous resin composition according to any one of [1] to [10] to a surface to be coated, and a coating step.
  • a method for producing a coating film which comprises a curing step of drying and curing the aqueous resin composition applied to the surface to be coated to obtain a coating film.
  • a fourth aspect of the present invention provides the following aqueous resin composition set.
  • the components of the aqueous resin composition according to any one of [1] to [10], which include a first liquid and a second liquid, are stored separately in the first liquid and the second liquid.
  • the first liquid contains the aqueous resin emulsion ( ⁇ ) and contains.
  • An aqueous resin composition set in which the second liquid contains the curing agent ( ⁇ ) and the curing accelerator ( ⁇ ).
  • a fifth aspect of the present invention provides the following metal protection methods. [14] A method of protecting a metal with a coating film provided on the surface, wherein the coating film comprises a cured product of the aqueous resin composition according to any one of [1] to [10]. How to protect metal.
  • a sixth aspect of the present invention provides the following method for producing an aqueous resin composition. [15] The first liquid containing the aqueous resin emulsion ( ⁇ ) and A step of preparing a second liquid containing the curing agent ( ⁇ ) and the curing accelerator ( ⁇ ), and A step of mixing the first liquid and the second liquid is included. The method for producing an aqueous resin composition according to any one of [1] to [10].
  • the aqueous resin composition of the present invention it is possible to form a coating film having high resistance to load and impact and less likely to break due to deformation of the base material.
  • the coating film of the present invention comprises a cured product of the aqueous resin composition of the present invention. Therefore, the coating film of the present invention has high resistance to load and impact, and is less likely to break due to deformation of the base material. That is, the coating film of the present invention has excellent strength and can follow the deformation of the base material.
  • a coating film of the present invention it is possible to form a coating film which is made of a cured product of the aqueous resin composition of the present invention, has high resistance to load and impact, and is less likely to break due to deformation of the base material.
  • aqueous resin composition preferred examples of the aqueous resin composition, the coating film, the method for producing a coating film, the aqueous resin composition set, the method for protecting a metal, and the method for producing an aqueous resin composition of the present invention will be described in detail.
  • the present invention is not limited to the embodiments shown below.
  • the present invention can be added, omitted, replaced, changed, or the like with respect to numbers, types, positions, quantities, ratios, materials, configurations, etc., without departing from the spirit of the present invention.
  • (meth) acrylate is meant acrylate or methacrylate.
  • (meth) acrylic means acrylic or methacrylic acid.
  • the "ethylenically unsaturated bond” means a double bond between carbon atoms excluding the carbon atoms forming an aromatic ring.
  • the epoxy group also includes a structure that constitutes a part of a glycidyl group or the like.
  • the "weight average molecular weight” is a standard polystyrene-equivalent value measured by gel permeation chromatography (GPC).
  • the structural unit derived from the compound having a certain ethylenically unsaturated bond is the chemical structure of the portion other than the ethylenically unsaturated bond of the compound and its structure in the polymer. It is assumed that the chemical structure of the part other than the part corresponding to the ethylenically unsaturated bond of the unit is the same.
  • the ethylenically unsaturated bond of the compound having an ethylenically unsaturated bond may be changed to a single bond when forming a polymer.
  • a structural unit derived from methyl methacrylate can be represented in the polymer by —CH 2 -C (CH 3 ) (COOCH 3 ) —.
  • the polymer has an ionic functional group such as a carboxy group and has an ethylenically unsaturated bond, for example, like the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) described later.
  • it has a structural unit derived from the compound having it, it is a structural unit derived from the same compound regardless of whether a part of the functional group is ion-exchanged or not ion-exchanged.
  • a polymer not only the structure represented by -CH 2 -C (CH 3 ) (COOH)-but also the structural unit represented by -CH 2 -C (CH 3 ) (COONa)-is methacrylic. It is a structural unit derived from acid.
  • the “Curing” means that molecules contained in raw materials are bonded to each other by a chemical reaction to form a polymer having a network structure.
  • the “coating film” is a cured product formed by curing a resin component contained in the aqueous resin composition of the present embodiment, and the aqueous resin composition is applied to a surface to be coated to dry the medium. It means a state of being integrated with the surface to be coated, which is obtained by a method or the like.
  • the “film” is a film-like cured product formed by curing a resin component contained in the aqueous resin composition of the present embodiment.
  • the resin component can be obtained by curing it on a substrate and then peeling it from the substrate.
  • Aqueous resin composition contains an aqueous resin emulsion ( ⁇ ), a curing agent ( ⁇ ), and a curing accelerator ( ⁇ ).
  • the aqueous resin composition of the present embodiment is produced by mixing an aqueous resin emulsion ( ⁇ ), a curing agent ( ⁇ ), and a curing accelerator ( ⁇ ), as will be described later.
  • the aqueous resin emulsion ( ⁇ ) has a copolymer (X), a polyepoxy compound (Y), and an aqueous medium (Z).
  • the aqueous resin emulsion ( ⁇ ) is an emulsion in which the compound from which the structural unit of the copolymer (X) is derived is emulsion-polymerized in the presence of the polyepoxy compound (Y) in the aqueous medium (Z). Is preferable. This is because in the aqueous resin composition containing such an aqueous resin emulsion ( ⁇ ), the coating film made of the cured product has high resistance to load and impact, and is less likely to break due to deformation of the substrate. ..
  • Copolymer (X) > The structure other than the functional group and the terminal contained in the structural unit of the copolymer (X) preferably comprises at least one of a hydrocarbon structure, an ester bond, and a carbonyl group, and at least the hydrocarbon structure and the ester bond. It is more preferable to consist of either.
  • the main chain of the copolymer (X) is preferably composed of bonds between carbon atoms, and more preferably composed of single bonds between carbon atoms. That is, the copolymer (X) is more preferably a polymer of a compound having an ethylenically unsaturated bond.
  • the copolymer (X) may have a structure derived from the polymerization initiator and / or chain transfer agent used in the production process at the terminal or the like.
  • the copolymer (X) has a structural unit (a) derived from the (meth) acrylic acid alkyl ester (A) (hereinafter, may be abbreviated as “structural unit (a)”) and an ethylenically unsaturated. Derived from the structural unit (b) derived from the carboxylic acid (B) (hereinafter, may be abbreviated as “structural unit (b)”) and the compound (C) having an ethylenically unsaturated bond and an epoxy group. It includes a structural unit (c) (hereinafter, may be abbreviated as “structural unit (c)”).
  • the copolymer (X) contains only the structural unit (a), the structural unit (b) and the structural unit (c) as the structural unit (hereinafter, may be referred to as “copolymer (X1)”). It may be.
  • the copolymer (X) is derived from the structural unit (a), the structural unit (b), the structural unit (c), and the compound (D) having a benzene ring and an ethylenically unsaturated bond as structural units.
  • a structural unit (d) hereinafter, may be abbreviated as "structural unit (d)" (hereinafter, this copolymer may be referred to as "copolymer (X2)"). There may be.
  • the copolymer (X2) may contain only structural units (a) to (d) as structural units.
  • the copolymer (X) may be a copolymer containing a structural unit (e) that does not correspond to any of the structural units (a) to (d) and the structural units (a) to (d).
  • the compound from which the structural unit (e) is derived is referred to as another compound (E).
  • the content of the copolymer (X) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 50% by mass or more, more preferably 55% by mass or more. , 60% by mass or more, further preferably 70% by mass or more, and particularly preferably 77% by mass or more.
  • the content of the copolymer (X) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 99% by mass or less, more preferably 94% by mass or less. , 90% by mass or less, more preferably 88% by mass or less.
  • the (meth) acrylic acid alkyl ester (A) from which the structural unit (a) is derived is a (meth) acrylic acid alkyl ester having a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms. Is preferable. Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, cyclohexyl (meth) acrylate, and 2-ethylhexyl. Examples thereof include (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, and isoboronyl (meth) acrylate.
  • the structural unit (a) may be a structural unit derived from only one kind selected from these (meth) acrylic acid alkyl esters (A), or may include structural units derived from two or more kinds. good.
  • the content of the structural unit (a) in the copolymer (X) is preferably 40% by mass or more, more preferably 50% by mass or more, still more preferably 60% by mass or more. It is even more preferably 75% by mass or more, and particularly preferably 90% by mass or more. This is because the breaking elongation of the film produced by using the aqueous resin composition can be increased to make it difficult to break. Further, it is possible to lower the water swelling resistance of the coating film made of the cured product of the aqueous resin composition.
  • the content of the structural unit (a) in the copolymer (X) is preferably 99% by mass or less in order to facilitate the securing of the content of the structural unit (b) and the structural unit (c). The content may be, for example, 55 to 95% by mass, 65 to 93% by mass, 70 to 90% by mass, 80 to 85% by mass, or the like, if necessary.
  • the content of the structural unit (a) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 20% by mass or more, preferably 35% by mass or more, and preferably 45% by mass or more. It is more preferably 50% by mass or more, and particularly preferably 60% by mass or more. This is because the dispersion stability (also referred to as dispersibility) between the compound from which the structural unit of the copolymer (X) is derived and the polyepoxy compound (Y) in the production of the aqueous resin emulsion ( ⁇ ) is improved. ..
  • the content of the structural unit (a) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 98% by mass or less, preferably 92% by mass or less, and preferably 87% by mass or less. Is more preferable. This is because the dispersion stability of the aqueous resin emulsion ( ⁇ ) is improved.
  • the content may be, for example, 55 to 95% by mass, 65 to 93% by mass, 70 to 90% by mass, 80 to 85% by mass, or the like, if necessary.
  • the copolymer (X) is a copolymer (X1) containing only the structural unit (a), the structural unit (b), and the structural unit (c) as the structural unit
  • the copolymer (X) and the copolymer (X) are used. From the same viewpoint, the following ratio is preferable. That is, the content of the structural unit (a) with respect to the total amount of the copolymer (X1) and the polyepoxy compound (Y) is preferably 50% by mass or more, and particularly preferably 60% by mass or more. preferable. The preferable upper limit of the content is the same as that of the copolymer (X).
  • the copolymer (X) is a copolymer (X2) containing the structural unit (a), the structural unit (b), the structural unit (c), and the structural unit (d) as the structural unit. From the same viewpoint as the copolymer (X), the following ratio is preferable.
  • the content of the structural unit (a) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 75% by mass or less, and particularly preferably 65% by mass or less. The preferable lower limit of the content is the same as that of the copolymer (X).
  • the structural unit (a) is a structural unit (a1) derived from a hydrophilic (meth) acrylic acid alkyl ester (A1) having 2 or less carbon atoms in a portion other than the (meth) acryloyloxy group (hereinafter, “structural unit (a)”. It may be abbreviated as "a1)”.)
  • the hydrophilic (meth) acrylic acid alkyl ester (A1) from which the structural unit (a1) is derived is a hydrophilic (meth) acrylic acid alkyl ester having 2 or less carbon atoms in a portion other than the (meth) acryloyloxy group. It is preferably at least one selected from the group consisting of methyl (meth) acrylate and ethyl (meth) acrylate, and more preferably at least one of methyl acrylate and methyl methacrylate. This is because the polymerization rate is high and the productivity is improved, and the strength and hardness of the coating film produced by using the aqueous resin composition are improved. Methyl methacrylate is particularly preferable because it improves the strength of the coating film.
  • the content of the structural unit (a1) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 15% by mass or more. This is to moderate the progress of gelation when the aqueous resin emulsion ( ⁇ ) and the curing agent ( ⁇ ) are mixed. In addition, excessive chemical cross-linking derived from the functional group (F) having reactivity with the epoxy group of the curing agent ( ⁇ ) and the epoxy group contained in the polyepoxy compound (Y) and the structural unit (c) is suppressed. This is because the breaking elongation of the coating film obtained by curing the aqueous resin composition is further improved.
  • the content of the structural unit (a1) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 20% by mass or more, preferably 30% by mass or more. Is more preferable. If necessary, it may be 35% by mass or more or 40% by mass or more.
  • the content of the structural unit (a1) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 98% by mass or less, preferably 75% by mass or less, and preferably 60% by mass or less. It is more preferably 50% by mass or less, further preferably 45% by mass or less, and particularly preferably 38% by mass or less. This is because the contents of the structural unit (b) and the structural unit (c) can be easily secured, and the affinity between the copolymer (X) and the polyepoxy compound (Y) is improved.
  • the ethylenically unsaturated carboxylic acid (B) from which the structural unit (b) is derived is a compound having an ethylenically unsaturated bond and a carboxy group.
  • the ethylenically unsaturated carboxylic acid (B) is a monoalkyl ester of ⁇ , ⁇ -unsaturated monocarboxylic acid, ⁇ , ⁇ -unsaturated dicarboxylic acid, ⁇ , ⁇ -unsaturated dicarboxylic acid, and vinyl containing a carboxy group.
  • Examples of the ⁇ , ⁇ -unsaturated monocarboxylic acid or ⁇ , ⁇ -unsaturated dicarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, citraconic acid, itaconic acid, maleic acid, maleic anhydride, fumaric acid and the like. Will be.
  • Examples of the vinyl compound containing a carboxy group include monohydroxyethyl phthalate (meth) acrylate and monohydroxypropyl oxalate (meth) acrylate.
  • the structural unit (b) may be a structural unit derived from only one kind selected from these ethylenically unsaturated carboxylic acids (B), or may contain structural units derived from two or more kinds. ..
  • the ethylenically unsaturated carboxylic acid (B) from which the structural unit (b) is derived preferably contains a compound having a (meth) acryloyl group and a carboxy group among the above, and has a (meth) acryloyl group and a carboxy group. It may be only a compound.
  • the ethylenically unsaturated carboxylic acid (B) preferably contains (meth) acrylic acid, and may be only (meth) acrylic acid.
  • the ethylenically unsaturated carboxylic acid (B) is more preferably composed only of a compound having a (meth) acryloyl group and a carboxy group. This is to reduce the raw material cost, improve the polymerization rate, improve the productivity of the aqueous resin emulsion ( ⁇ ), and reduce the manufacturing cost. It is particularly preferable that the ethylenically unsaturated carboxylic acid (B) is only (meth) acrylic acid. This is because a large number of carboxy groups can be efficiently introduced with respect to the mass occupied by the copolymer (X) of the structural unit (b).
  • the content of the structural unit (b) in the copolymer (X) is preferably 0.20% by mass or more, more preferably 0.50% by mass or more, and 0.80% by mass or more. It is more preferable to have. This is because the dispersibility of the copolymer (X) is improved.
  • the content of the structural unit (b) in the copolymer (X) is preferably 12% by mass or less, more preferably 8.0% by mass or less, and more preferably 5.0% by mass or less. Is more preferable, and 3.0% by mass or less is particularly preferable, and 2.0% by mass or less is most preferable. This is because the high temperature stability of the aqueous resin emulsion ( ⁇ ) is improved.
  • the content may be, for example, 0.50% by mass or more and 2.5% by mass or less, 0.80% by mass or more and 1.80% by mass or less, or 1.00% by mass or more and 1.50% by mass, if necessary. It may be as follows.
  • the content of the structural unit (b) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 0.10% by mass or more, preferably 0.30% by mass or more. It is more preferably 0.50% by mass or more, and further preferably 0.80% by mass or more. This is because the dispersion stability of the copolymer (X) is improved.
  • the content of the structural unit (b) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 10% by mass or less, preferably 7.0% by mass or less. It is more preferably 0% by mass or less, further preferably 3.0% by mass or less, further preferably 2.3% by mass or less, and particularly preferably 1.8% by mass or less. .. This is because the progress of gelation of the copolymer (X) in a high temperature environment is suppressed, and the high temperature stability of the aqueous resin emulsion ( ⁇ ) is improved.
  • the compound (C) having an ethylenically unsaturated bond and an epoxy group from which the structural unit (c) is derived is preferably a (meth) acrylic acid ester having an epoxy group.
  • the (meth) acrylic acid ester having an epoxy group include (meth) acrylic acid ⁇ -methylglycidyl, glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and 3,4-epoxycyclohexylmethyl (3,4-epoxycyclohexylmethyl). Examples thereof include meth) acrylate, 3,4-epoxycyclohexylethyl (meth) acrylate, and 3,4-epoxycyclohexylpropyl (meth) acrylate.
  • the structural unit (c) may be a structural unit derived from only one kind selected from these ethylenically unsaturated bonds and the compound (C) having an epoxy group, or a structural unit derived from two or more kinds. It may be included. Further, among these compounds, in order to reduce the raw material cost, improve the polymerization rate, improve the productivity of the aqueous resin emulsion ( ⁇ ), and reduce the manufacturing cost, the copolymer weight of the structural unit (c) is further increased. Since many epoxy groups can be efficiently introduced with respect to the mass occupied in the coalescence (X), it is preferable to contain glycidyl (meth) acrylate, and it is more preferable to contain glycidyl methacrylate.
  • the content of the structural unit (c) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 1.0% by mass or more, preferably 3.0% by mass or more. It is more preferably 4.0% by mass or more. This is because the strength of the coating film formed by curing the aqueous resin composition is improved.
  • the content of the structural unit (c) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 14% by mass or less, preferably 12% by mass or less, and 10.5% by mass. It is more preferably% or less, and particularly preferably 7.0% by mass or less.
  • the compound (D) having a benzene ring and an ethylenically unsaturated bond from which the structural unit (d) is derived is a (meth) acrylic acid ester (A), an ethylenically unsaturated carboxylic acid (B), or an ethylenically unsaturated bond.
  • Examples of the compound (D) having a benzene ring and an ethylenically unsaturated bond include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2, 4-Diisopropylstyrene, 4-tert-butylstyrene, tert-butoxystyrene, vinyltoluene, divinyltorene, vinylnaphthalene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromostyrene, tribromostyrene, fluorostyrene, styrenesulfonic acid and Examples thereof include the salt thereof, ⁇ -methylstyrene sulfonic acid and its salt, p-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene,
  • the structural unit (d) may be a structural unit derived from only one kind selected from these benzene rings and the compound (D) having an ethylenically unsaturated bond, or a structural unit derived from two or more kinds. It may be included. Further, among these compounds (D), it is more preferable to contain an aromatic vinyl compound, further preferably an aromatic vinyl compound composed of a hydrocarbon, and particularly preferably styrene. This is because the yield strength of the film produced by using the aqueous resin composition can be improved, and the elongation until fracture can be improved.
  • the content of the structural unit (d) in the copolymer (X2) is contained.
  • the ratio is preferably 7.0% by mass or more, more preferably 10% by mass or more, further preferably 14% by mass or more, and further preferably 17% by mass or more. This is because the yield strength of the film produced by using the aqueous resin composition can be improved, and the elongation until fracture can be improved.
  • the content of the structural unit (d) in the copolymer (X2) is preferably 55% by mass or less, more preferably 45% by mass or less, still more preferably 35% by mass or less.
  • the content may be, for example, 10% by mass or more and 40% by mass or less, 15% by mass or more and 35% by mass or less, or 20% by mass or more and 30% by mass or less, if necessary.
  • the content of the structural unit (d) with respect to the total amount of the copolymer (X2) and the polyepoxy compound (Y) is 5.0 mass by mass. % Or more, more preferably 10% by mass or more, and even more preferably 15% by mass or more. This is because the yield strength of the film produced by using the aqueous resin composition can be improved, the elongation until breakage can be improved, and the water resistance of the coating film can be improved.
  • the content of the structural unit (d) with respect to the total amount of the copolymer (X2) and the polyepoxy compound (Y) is 50% by mass or less. It is preferably 40% by mass or less, more preferably 30% by mass or less. This is because the weather resistance of the coating film formed by curing the aqueous resin composition is improved.
  • the content may be, for example, 10% by mass or more and 40% by mass or less, 15% by mass or more and 35% by mass or less, or 20% by mass or more and 30% by mass or less, if necessary.
  • the other compound (E) from which the structural unit (e) is derived has an ethylenically unsaturated bond, but has a (meth) acrylic acid ester (A), an ethylenically unsaturated carboxylic acid (B), and an ethylenically. It is a compound that does not fall under any of the compound (C) having an unsaturated bond and an epoxy group and the compound (D) having a benzene ring and an ethylenically unsaturated bond.
  • the other compound (E) include compounds having a functional group other than the carboxy group and the epoxy group and an ethylenically unsaturated bond.
  • the content of the structural unit (e) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 7.0% by mass or less, and preferably 3.0% by mass or less. It is more preferably 1.0% by mass or less, and even more preferably 1.0% by mass or less. It is particularly preferable that the copolymer (X) does not contain the structural unit (e).
  • the copolymer (X) has a structural unit (b) derived from an ethylenically unsaturated carboxylic acid (B) and a structural unit (c) derived from a compound (C) having an ethylenically unsaturated bond and an epoxy group. It has a carboxy group and an epoxy group because it contains.
  • the carboxy group in the copolymer (X) may partially or wholly form a salt by adjusting the pH of the aqueous resin emulsion ( ⁇ ).
  • the carboxy group in the copolymer (X) reacts with the epoxy group of the copolymer (X) and the epoxy group of the polyepoxy compound (Y) to form a crosslinked structure when the aqueous resin composition is cured. Form. As a result, the strength of the coating film made of the cured product of the aqueous resin composition is improved.
  • the carboxy group content Cx contained in 1 g of the copolymer (X) is not particularly limited, but is, for example, 0.15 ⁇ 10 -4 mol / g or more, and 0.50 ⁇ 10 -4 mol / g or more. It is preferably 1.00 ⁇ 10 -4 mol / g or more, and more preferably 1.20 ⁇ 10 -4 mol / g or more. This is because the dispersion stability of the copolymer (X) is improved.
  • the carboxy group content Cx contained in 1 g of the copolymer (X) is, for example, 10.0 ⁇ 10 -4 mol / g or less, preferably 5.00 ⁇ 10 -4 mol / g or less. , 3.00 ⁇ 10 -4 mol / g or less, and even more preferably 2.00 ⁇ 10 -4 mol / g or less. This is because the progress of gelation of the copolymer (X) in a high temperature environment is suppressed, and the high temperature stability of the aqueous resin emulsion ( ⁇ ) is improved.
  • the carboxy group content Cx may be, for example, 0.80 to 4.00 ⁇ 10 -4 mol / g, 1.00 to 3.00 ⁇ 10 -4 mol / g, or 1.50 to 1.50 as required. It may be 2.50 ⁇ 10 -4 mol / g or the like.
  • the carboxy group in the copolymer (X) a compound having a carboxy group is used as the monomer used for the synthesis of the copolymer (X) (the compound from which the structural unit of the copolymer (X) is derived). May be introduced into the copolymer (X) by polymerizing.
  • the carboxy group in the copolymer (X) in the present embodiment is obtained by using an ethylenically unsaturated carboxylic acid (B) as the compound from which the structural unit (b) contained in the copolymer (X) is derived.
  • B ethylenically unsaturated carboxylic acid
  • Some or all of the carboxy groups in the copolymer (X) were introduced into the copolymer (X) by a method of converting the functional groups in the copolymer into carboxy groups. May be good.
  • Epoxy group content Ex The epoxy group contained in the copolymer (X) reacts with the carboxy group of the copolymer (X) when the aqueous resin composition is cured to form a crosslinked structure. As a result, the cured product of the aqueous resin composition is reinforced, and the strength of the coating film made of the cured product is improved.
  • the epoxy group content Ex contained in 1 g of the copolymer (X) is not particularly limited, but is, for example, 0.50 ⁇ 10 -4 mol / g or more, and 1.00 ⁇ 10 -4 mol / g or more.
  • It is preferably 2.00 ⁇ 10 -4 mol / g or more, and more preferably 3.00 ⁇ 10 -4 mol / g or more. This is because the strength of the coating film made of the cured product of the aqueous resin composition is improved.
  • the epoxy group content Ex contained in 1 g of the copolymer (X) is, for example, 12.0 ⁇ 10 -4 mol / g or less, and preferably 11.0 ⁇ 10 -4 mol / g or less. , 9.00 ⁇ 10 -4 mol / g or less, more preferably. This is because the progress of gelation of the copolymer (X) in a high temperature environment is suppressed, and the high temperature stability of the aqueous resin emulsion ( ⁇ ) is improved. This is also because the elongation of the coating film made of the cured product of the aqueous resin composition is improved.
  • the epoxy group content Cx may be, for example, 3.00 to 10.00 ⁇ 10 -4 mol / g, 4.00 to 9.50 ⁇ 10 -4 mol / g, or 5.00 to 5.00, if necessary. It may be 8.50 ⁇ 10 -4 mol / g, 6.00 to 8.00 ⁇ 10 -4 mol / g, or the like.
  • the epoxy group in the copolymer (X) a compound having an epoxy group is used as the monomer used for the synthesis of the copolymer (X) (the compound from which the structural unit of the copolymer (X) is derived). May be introduced into the copolymer (X) by polymerizing.
  • the epoxy group in the copolymer (X) in the present embodiment is a compound (C) having an ethylenically unsaturated bond and an epoxy group as a compound from which the structural unit (c) contained in the copolymer (X) is derived. ) Was introduced into the copolymer (X). Some or all of the epoxy groups in the copolymer (X) were introduced into the copolymer (X) by a method of converting the functional groups in the copolymer into epoxy groups. It is also good.
  • the content of the carboxy group and the epoxy group in the copolymer (X) is the content of the structure having no carboxy group and the epoxy group after introducing the structure having no carboxy group and the epoxy group into the copolymer. Can be adjusted by the method of diluting to an appropriate range. It is preferable that the structure other than the carboxy group and the epoxy group has a small interaction with the carboxy group and the epoxy group.
  • Preferred such structures are hydrocarbon structures such as alkylene groups and alkyl groups, ester bonds, carbonyl groups and the like.
  • the glass transition point Tg of the copolymer (X) is a homopolymer of the monomer used for the synthesis of the copolymer (X) (the compound (monomer) from which the structural unit of the copolymer (X) is derived). It is calculated by Fox's formula based on the glass transition point.
  • the glass transition point of the homopolymer used for calculating Tg the value described in the publicly known material shall be used. Specifically, the numerical values are listed in "Polymer Handbook” (3rd edition, John Weekly & Sons, Inc., 1989). For the monomers in which a plurality of types of values are described in the Polymer Handbook, the highest value is adopted.
  • the glass transition point Tg of the copolymer (X) is preferably ⁇ 30 ° C. (243K) or higher, more preferably ⁇ 10 ° C. (263K) or higher, and preferably 0 ° C. (273K) or higher. More preferred. This is because the strength of the coating film formed by curing the aqueous resin composition is improved.
  • the glass transition point Tg of the copolymer (X) may be 5 ° C. or higher, or 10 ° C. or higher.
  • the glass transition point Tg of the copolymer (X) is preferably 100 ° C. (373K) or lower, and more preferably 80 ° C. (353K) or lower. This is because the adhesion of the coating film formed by curing the aqueous resin composition to the substrate is improved.
  • the glass transition point Tg of the copolymer (X) is more preferably 60 ° C. (333K) or lower, and particularly preferably 50 ° C. (323K) or lower. This is because the flexibility of the coating film obtained by curing the aqueous resin composition is further improved.
  • the glass transition point Tg of the copolymer (X) may be 40 ° C. or lower, or 30 ° C. or lower.
  • the glass transition point Tg may be, for example, ⁇ 10 to 30 ° C., 0 to 20 ° C., 3 to 15 ° C., or the like, if necessary.
  • the polyepoxy compound (Y) is at least one selected from a bisphenol type epoxy compound and a hydrogenated bisphenol type epoxy compound.
  • the polyepoxy compound (Y) is preferably at least one selected from a bisphenol A type epoxy compound and a hydrogenated bisphenol A type epoxy compound, and more preferably a bisphenol A type epoxy compound. This is because the yield strength of the film produced by using the aqueous resin composition is improved.
  • polyepoxy compound (Y) examples include diglycidyl ether of bisphenol A, diglycidyl ether of hydrogenated bisphenol A, diglycidyl ether of bisphenol F, and diglycidyl ether of hydrogenated bisphenol F.
  • the polyepoxy compound (Y) may contain one of these compounds, or may contain two or more of them.
  • the weight average molecular weight of the polyepoxy compound (Y) is not particularly limited, but is preferably 1000 or less, more preferably 800 or less, and further preferably 500 or less. This is because the compatibility of the polyepoxy compound (Y) with the copolymer (X) is improved, and the aqueous resin emulsion ( ⁇ ) having excellent dispersion stability and storage stability is obtained.
  • the weight average molecular weight of the polyepoxy compound (Y) is preferably 300 or more.
  • the epoxy equivalent of the polyepoxy compound (Y) (mass of the polyepoxy compound (Y) per 1 mol of epoxy group) is preferably 500 g / mol or less, more preferably 350 g / mol or less, and 250 g / mol. It is more preferably less than or equal to, and particularly preferably 200 g / mol or less. This is because the strength of the coating film obtained by curing the aqueous resin composition is increased.
  • the lower limit of the epoxy equivalent of the polyepoxy compound (Y) is preferably 70 g / mol or more, and more preferably 120 g / mol or more. This is because when the aqueous resin composition is cured, it can be cured with a smaller amount of curing agent, excessive branching and three-dimensional cross-linking are suppressed, and the elongation is improved.
  • the content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 1.0% by mass or more, preferably 5.0% by mass or more. , 8.0% by mass or more, more preferably 11% by mass or more. This is because a film having excellent yield strength can be obtained by curing the aqueous resin composition.
  • the content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 20% by mass or more. It is preferably 25% by mass or more, and more preferably 25% by mass or more.
  • the content of the polyepoxy compound (Y) may be, for example, 8 to 35% by mass, 10 to 30% by mass, 15 to 20% by mass, or the like, if necessary.
  • the content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 50% by mass or less, preferably 40% by mass or less. This is because an aqueous resin emulsion ( ⁇ ) having high dispersion stability can be obtained.
  • the content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 25% by mass or less. It is preferably 20% by mass or less, and more preferably 20% by mass or less.
  • Epoxy group content Ey in the polyepoxy compound (Y) with respect to the copolymer (X) is not particularly limited, but is, for example, 1.00 ⁇ 10 -4 mol / g or more, and 2.00 ⁇ 10 It is preferably -4 mol / g or more, more preferably 4.00 ⁇ 10 -4 mol / g or more, and further preferably 6.00 ⁇ 10 -4 mol / g or more. This is because a film having excellent yield strength can be obtained by curing the aqueous resin composition.
  • the epoxy group content Ey is preferably 11.0 ⁇ 10 -4 mol / g or more, and 14.0 ⁇ 10 -4 mol / g. The above is more preferable, and 16.0 ⁇ 10 -4 mol / g or more is further preferable.
  • the epoxy group content Ey in the polyepoxy compound (Y) with respect to 1 g of the copolymer (X) is, for example, 50.0 ⁇ 10 -4 mol / g or less, and 35.0 ⁇ 10 -4 mol / g. It is preferably 25.0 ⁇ 10 -4 mol / g or less, and more preferably 25.0 ⁇ 10 -4 mol / g or less. This is to obtain an aqueous resin emulsion ( ⁇ ) having high dispersion stability.
  • the epoxy group content Ey is preferably 16.0 ⁇ 10 -4 mol / g or less, and 14.0 ⁇ 10 -4 mol / g or less.
  • the epoxy group content Ey may be, for example, 3.00 to 30.0 ⁇ 10 -4 mol / g, 5.00 to 25.0 ⁇ 10 -4 mol / g, or 10.0 to 10.0, if necessary. It may be 20.0% by mass or the like.
  • the value Ey / Cx (mol / mol) of the ratio of the epoxy group content Ey in the polyepoxy compound (Y) to the carboxy group content Cx in the copolymer (X) shall be 1.00 or more. Is preferable, 2.00 or more is more preferable, and 3.50 or more is further preferable. This is because a film having excellent yield strength can be obtained by curing the aqueous resin composition.
  • the ratio value Ey / Cx (mol / mol) of the epoxy group content Ey in the polyepoxy compound (Y) to the carboxy group content Cx in the copolymer (X) shall be 25.0 or less. Is preferable, 20.0 or less is more preferable, and 15.0 or less is further preferable. This is because an aqueous resin emulsion ( ⁇ ) having high dispersion stability can be obtained.
  • the ratio may be, for example, 3.00 or more and 18.0 or less, 4.00 or more and 16.0 or less, 5.00 or more and 13.0 or less, 6.00 or more and 10.0 or less, etc., as required. May be.
  • the ratio value Ex / Ey (mol / mol) of the epoxy group content Ex in the copolymer (X) and the epoxy group content Ey in the polyepoxide compound (Y) shall be 0.050 or more. Is more preferable, 0.10 or more is more preferable, 0.20 or more is further preferable, 0.25 or more is further preferable, and 0.35 or more is particularly preferable. This is because a coating film having high toughness can be obtained. This is also because an aqueous resin emulsion ( ⁇ ) having high dispersion stability can be obtained.
  • the ratio value Ex / Ey (mol / mol) of the epoxy group content Ex in the copolymer (X) and the epoxy group content Ey in the polyepoxy compound (Y) shall be 5.00 or less. Is more preferable, 2.50 or less is more preferable, 2.00 or less is further preferable, 1.50 or less is further preferable, and 1.25 or less is particularly preferable. This is because a coating film having high elongation can be obtained.
  • the hydrophilic solvent include methanol, ethanol, N-methylpyrrolidone and the like. Only one kind of hydrophilic solvent may be contained, or two or more kinds may be contained.
  • the content of the aqueous medium (Z) in the aqueous resin emulsion ( ⁇ ) can be selected as needed, and is preferably 20% by mass or more, more preferably 30% by mass or more, and 40% by mass or more. Is more preferable. Productivity and workability in the step of mixing the aqueous resin emulsion ( ⁇ ) with the curing agent ( ⁇ ), the curing accelerator ( ⁇ ), etc., or the step of applying the aqueous resin composition to the surface to be coated (base material). Is to improve.
  • the content of the aqueous medium (Z) in the aqueous resin emulsion ( ⁇ ) is preferably 80% by mass or less, more preferably 70% by mass or less.
  • the aqueous resin emulsion ( ⁇ ) may contain other components that do not fall under any of the copolymer (X), the polyepoxy compound (Y), and the aqueous medium (Z), if necessary.
  • Other components include an emulsifier used in the emulsion polymerization for producing the aqueous resin emulsion ( ⁇ ), a polymerization initiator, a chain transfer agent, and a basic substance used for adjusting the pH of the aqueous resin emulsion ( ⁇ ). Examples include, but are not limited to, polymers other than the copolymer (X), epoxy compounds other than the polyepoxy compound (Y), and the like.
  • the emulsifier examples include nonionic surfactants such as polyoxyalkylene alkyl ether, polyoxyalkylene alkyl phenol ether, polyoxyalkylene fatty acid ester, and polyoxyalkylene sorbitan fatty acid ester, alkyl sulfate ester salts, alkylbenzene sulfonates, and alkyl sulfosuccinates.
  • nonionic surfactants such as polyoxyalkylene alkyl ether, polyoxyalkylene alkyl phenol ether, polyoxyalkylene fatty acid ester, and polyoxyalkylene sorbitan fatty acid ester, alkyl sulfate ester salts, alkylbenzene sulfonates, and alkyl sulfosuccinates.
  • anionic surfactants such as acid salts, alkyldiphenyl ether disulfonates, polyoxyalkylene alkyl sulfates, and polyoxyal
  • the polymerization initiator for example, it is preferable to use a peroxide.
  • the peroxide used as the polymerization initiator include persulfates such as potassium persulfate and ammonium persulfate, hydrogen peroxide and the like.
  • a redox-based initiator in which a peroxide and a reducing agent are used in combination can also be used.
  • the reducing agent include sodium sulfoxylate formaldehyde, ascorbic acid, sulfites, tartaric acid or salts thereof. Only one type of polymerization initiator may be contained, or two or more types may be contained.
  • Examples of the chain transfer agent include mercaptan, alcohol and the like. Only one type of chain transfer agent may be contained, or two or more types may be contained.
  • Examples of the basic substance used for adjusting the pH of the aqueous resin emulsion ( ⁇ ) include ammonia, triethylamine, ethanolamine, caustic soda and the like. Only one kind of basic substance may be contained, or two or more kinds may be contained.
  • the contents of other components that do not correspond to any of the copolymer (X), the polyepoxy compound (Y), and the aqueous medium (Z) are the copolymer (X) and the poly. It is preferably 5.0 parts by mass or less, and more preferably 3.0 parts by mass or less, based on 100 parts by mass of the total amount of (Y) of the epoxy compound.
  • the content may be 2.0 parts by mass or less or 1.0 part by mass or less. This is because the effect of the copolymer (X) and the polyepoxy compound (Y) that contributes to the object of the present invention is increased.
  • the aqueous resin emulsion ( ⁇ ) according to the present embodiment can be produced, for example, by the method shown below.
  • the compound from which the structural unit of the copolymer (X) is derived that is, the (meth) acrylic acid ester (A), the ethylenically unsaturated carboxylic acid (B), and the ethylenically unsaturated A compound (C) having a saturated bond and an epoxy group, a compound (D) having a benzene ring and an ethylenically unsaturated bond and another compound (E) contained as necessary, and used as necessary.
  • the emulsifier, the polymerization initiator, and the chain transfer agent can be produced by a method of emulsifying and polymerizing in the presence of the polyepoxide compound (Y).
  • each component used as a material of the water-based resin emulsion ( ⁇ ) may be collectively charged and emulsion-polymerized, or emulsified while continuously supplying each component. It may be polymerized.
  • the emulsion polymerization reaction is preferably carried out with stirring.
  • the emulsion polymerization can be carried out at an arbitrarily selected temperature, for example, preferably at a temperature of 30 to 90 ° C, more preferably at a temperature of 40 to 80 ° C, and at a temperature of 40 to 70 ° C. It is even more preferable to do so. This is because the reaction between the carboxy group contained in the ethylenically unsaturated carboxylic acid (B) and the epoxy group contained in the polyepoxy compound (Y) can be suppressed.
  • the content (% by mass) of each raw material in the total raw materials used for producing the aqueous resin emulsion ( ⁇ ) is the structure of the copolymer (X) derived from each raw material in the produced aqueous resin emulsion ( ⁇ ). It is the same as the content of the unit (% by mass) and the content of the compound corresponding to the raw material (% by mass).
  • an aqueous resin emulsion ( ⁇ ) in which the polyepoxy compound (Y) is uniformly dispersed in the particles of the copolymer (X) can be obtained.
  • uniformly present does not necessarily mean that the copolymer (X) and the polyepoxy compound (Y) are incompatible with each other, and the center side of the copolymer (X) particles. It is sufficient that the domain of the polyepoxy compound (Y) is evenly present on both the surface side and the surface side.
  • the pH of the aqueous resin emulsion ( ⁇ ) is a value measured at a liquid temperature of 25 ° C. using a pH meter using a hydrogen ion concentration indicator using a glass electrode as a standard electrode.
  • the pH of the aqueous resin emulsion ( ⁇ ) is preferably 2.0 or higher, more preferably 3.5 or higher, and even more preferably 5.0 or higher.
  • the pH of the aqueous resin emulsion ( ⁇ ) is preferably 10.0 or less, more preferably 9.0 or less.
  • the pH may be, for example, 5.0 or more and 9.0 or less, 6.0 or more and 8.5 or less, 7.0 or more and 8.0 or less, if necessary.
  • the pH of the aqueous resin emulsion ( ⁇ ) can be adjusted, for example, by adding a basic substance during or after the synthesis step of the aqueous resin emulsion ( ⁇ ).
  • Non-volatile concentration of aqueous resin emulsion ( ⁇ ) The non-volatile content concentration of the aqueous resin emulsion ( ⁇ ) is a value obtained by the method shown below. Weigh 1 g of the aqueous resin emulsion ( ⁇ ) on an aluminum dish with a diameter of 5 cm, dry it at 105 ° C for 1 hour while circulating air in a dryer at atmospheric pressure, and then measure the mass of the remaining residue. .. The ratio (mass%) of the measured residual mass to the mass of the aqueous resin emulsion ( ⁇ ) before drying is determined as the non-volatile content concentration of the aqueous resin emulsion ( ⁇ ).
  • the non-volatile content concentration in the aqueous resin emulsion ( ⁇ ) can be appropriately adjusted by adjusting the content of the aqueous medium (Z) contained in the aqueous resin emulsion ( ⁇ ).
  • the non-volatile content concentration of the aqueous resin emulsion ( ⁇ ) may be appropriately adjusted according to the specifications and the like, but is preferably 10% by mass or more, more preferably 20% by mass or more, and 30% by mass or more. It is preferable to have.
  • the non-volatile content concentration of the aqueous resin emulsion ( ⁇ ) may be appropriately adjusted according to the specifications and the like, but is preferably 70% by mass or less, more preferably 60% by mass or less, and 50% by mass or less. It is more preferable to have.
  • the non-volatile content concentration of the aqueous resin emulsion ( ⁇ ) may be appropriately adjusted according to the specifications and the like, but is preferably 70% by mass or less, more preferably 60% by mass or less, and 50% by mass or less. It is more preferable to have.
  • Viscosity of aqueous resin emulsion ( ⁇ ) the viscosity of the aqueous resin emulsion ( ⁇ ) is measured at 23 ° C.
  • the viscosity of the aqueous resin emulsion ( ⁇ ) is measured at a rotation speed of 60 rpm using a B-type viscometer.
  • the viscosity is measured by selecting a rotor according to the viscosity of the aqueous resin emulsion ( ⁇ ).
  • the viscosity of the aqueous resin emulsion ( ⁇ ) may be, for example, 0.1 mPa ⁇ s or more, 1 mPa ⁇ s or more, 3 mPa ⁇ s or more, or 5 mPa ⁇ s or more. May be.
  • the viscosity of the aqueous resin emulsion ( ⁇ ) may be, for example, 300 mPa ⁇ s or less, 100 mPa ⁇ s or less, 50 mPa ⁇ s or less, or 25 mPa ⁇ s or less. good.
  • the curing agent ( ⁇ ) consists of a compound having a functional group (F) having reactivity with an epoxy group.
  • the functional group (F) is composed of an unsubstituted amino group (-NH 2 (no substituent)), an amino group having only one substituent (-NHR (R is a substituent)), a carboxy group, and a mercapto group.
  • the type of the functional group (F) having reactivity with the epoxy group contained in the curing agent ( ⁇ ) may be only one type or two types. It may be the above.
  • Examples of the curing agent ( ⁇ ) having an amino group having no substitution or only one substituent include polyamines.
  • a polyamine is a compound having an unsubstituted amino group (-NH 2 ) and / or an amino group having only one substituent (-NHR (R is a substituent)), for example, an aliphatic polyamine, a fat. Examples include cyclic polyamines and aromatic polyamines.
  • Examples of the aliphatic polyamine include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and modified products thereof.
  • Examples of the alicyclic polyamine include isophoronediamine, mentandiamine, N-aminoethylpiperazine, diaminodicyclohexylmethane, and modified products thereof.
  • Examples of the aromatic polyamine include m-xylylenediamine, diaminodiphenylmethane, m-phenylenediamine, diaminodiphenylsulfone, and modified products thereof.
  • the curing agent ( ⁇ ) having a carboxy group a compound having two or more carboxy groups in the molecule is preferable.
  • phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, methylhexahydrophthalic acid, pyromellitic acid, benzophenone tetracarboxylic acid, 1,2,3,4-butanetetracarboxylic acid can be mentioned.
  • the curing agent ( ⁇ ) having a mercapto group a compound having two or more mercapto groups in the molecule is preferable.
  • a condensate of thioglycolic acid and a polyhydric alcohol, polysulfide and the like can be mentioned.
  • These curing agents ( ⁇ ) may be used alone or in combination of two or more.
  • the curing agent ( ⁇ ) a commercially available one may be used.
  • examples of commercially available curing agents include ADEKA HANDNER EH-8051 (polyamine) (manufactured by ADEKA Co., Ltd.); Fujicure FXI-919; tomide TXH-674-B and TXS-53-C (manufactured by T & K TOKA Co., Ltd.); Examples include Jamaicacid BTW (manufactured by Shin Nihon Rika Co., Ltd.); and Karenz MT BD-1 (manufactured by Showa Denko KK).
  • the content of the functional group (F) having reactivity with the epoxy group contained in the curing agent ( ⁇ ) is 0.010 equivalent or more with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ). It is preferably 0.10 equivalent or more, and more preferably 0.20 equivalent or more. This is because the yield strength, the rust preventive property, and the adhesion to the metal material of the film formed by curing the aqueous resin composition are improved.
  • the equivalent of the functional group (F) when the functional group (F) has two active hydrogens such as an unsubstituted amine, the number of the functional groups (F) is counted as two.
  • the content of the functional group (F) having reactivity with the epoxy group contained in the curing agent ( ⁇ ) is 3.0 equivalents or less with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ). It is preferably 2.0 equivalents or less, more preferably 1.5 equivalents or less, further preferably 1.0 equivalents or less, still more preferably 0.80 equivalents or less, and 0.50. It is more preferably equal to or less than the equivalent. This is because the elongation of the coating film formed by curing the aqueous resin composition is improved.
  • the curing accelerator ( ⁇ ) has a function of accelerating the curing of the aqueous resin composition and forming a film having a high film yield strength.
  • the curing accelerator ( ⁇ ) consists of a tertiary amine having no functional group having reactivity with an epoxy group.
  • the tertiary amine in the present embodiment is NR 1 R 2 R 3 (in the formula, R 1 R 2 R 3 is a substituent and may be different from each other, or two or more of the same ones are included. R 1 R 2 R 3 may be bonded to each other to form a ring).
  • the curing accelerator ( ⁇ ) contains nitrogen atoms forming a tertiary aliphatic amine, a tertiary alicyclic amine, a tertiary heteroaromatic amine, and a tertiary amine (NR 1 R 2 R 3 ). It is preferably at least one compound selected from the group consisting of tertiary aromatic amines that are not directly attached to the phenyl group, preferably tertiary aliphatic amines, tertiary alicyclic amines, and tertiary heteros. More preferably, it is at least one compound selected from the group consisting of aromatic amines. This is to enhance the nucleophilicity of the curing accelerator ( ⁇ ) and to promote the curing reaction efficiently.
  • tertiary aliphatic amine examples include triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, tri-sec-butylamine, and tri-n-hexylamine.
  • tertiary alicyclic amine examples include 1,4-diazabicyclo [2.2.2] octane (DABCO), 1,5-diazabicyclo [4.3.0] nona-5-ene, and 1,8. -Diazabicyclo [5.4.0] Undec-7-ene, and the like.
  • a compound having an imidazole skeleton it is preferable to use a compound having an imidazole skeleton, and specific examples thereof include imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole and the like.
  • tertiary aromatic amine having a phenyl group not directly bonded to the nitrogen atom of the tertiary amine examples include dimethylbenzylamine, diethylbenzylamine, tribenzylamine, 2,4. Examples thereof include 6-trisdimethylaminomethylphenol and 2-phenylimidazole.
  • curing accelerators ( ⁇ ) it is particularly preferable to use the following compounds (i) and / or (ii).
  • (I) A tertiary alicyclic amine having a saturated ring structure in which two nitrogen atoms are bonded to each other by three substituents of an amino group without having a functional group (F) having reactivity with an epoxy group. ..
  • (Ii) A tertiary heteroaromatic amine having a heteroaromatic ring structure containing two or more nitrogen atoms without having a functional group (F) reactive with an epoxy group.
  • Examples of the tertiary alicyclic amine include 1,4-diazabicyclo [2.2.2] octane (DABCO).
  • Examples of the tertiary heteroaromatic amine include imidazole.
  • the curing accelerator ( ⁇ ) may be used alone or in combination of two or more.
  • the content of the curing accelerator ( ⁇ ) is 0.0070 mol or more, preferably 0.070 mol or more, preferably 0.18 mol or more, with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ). It is more preferable that the amount is 0.30 mol or more, and it is more preferable that the amount is 0.30 mol or more. This is because a cured product having a high film yield strength can be obtained.
  • the content of the curing accelerator ( ⁇ ) is 1.5 mol or less, preferably 1.0 mol or less, and 0.70 mol or less with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ). It is more preferably 0.44 mol or less, further preferably 0.40 mol or less, and particularly preferably 0.38 mol or less. This is because gelation of the aqueous resin composition in a short time can be suppressed. This is also because a cured product having good rust resistance can be obtained.
  • the aqueous resin composition according to the present embodiment further comprises a pigment, a filler, an organic or inorganic hollow balloon, a dispersant (for example, amino alcohol, polycarboxylate, etc.), a surfactant, and a coupling agent, if necessary.
  • a dispersant for example, amino alcohol, polycarboxylate, etc.
  • a surfactant for example, amino alcohol, polycarboxylate, etc.
  • a coupling agent for example, amino alcohol, polycarboxylate, etc.
  • Defoaming agents eg, biocides, fungicides, fungiicides, algae killing agents, and combinations thereof, etc.
  • fluidizing agents eg, leveling agents, neutralizing agents (eg, hydroxides, amines, etc.) , Ammonia, carbonate, etc.) may be contained.
  • pigment examples include titanium oxide, talc, barium sulfate, carbon black, red ocher, calcium carbonate, silicon oxide, talc, mica, kaolin, clay, ferrite, silica sand and the like.
  • silane coupling agent it is preferable to use a silane coupling agent.
  • the silane coupling agent include epoxy silane compounds. Specific examples include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 2- (3,4-epoxycyclohexi) ethyl. Examples thereof include trimethoxysilane.
  • the amount of the silane coupling agent added can be arbitrarily selected, but is preferably 0.1 to 5 parts by mass, preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the aqueous resin emulsion ( ⁇ ). Is more preferable. This is because the rust preventive property and the adhesion to the metal material of the aqueous resin composition after curing are improved.
  • the aqueous resin composition of the present embodiment can be produced by any method.
  • the aqueous resin emulsion ( ⁇ ), the curing agent ( ⁇ ), the curing accelerator ( ⁇ ), and other components contained as necessary are mixed and stirred. Therefore, it can be preferably produced by a method of dispersing each component.
  • Any method and apparatus can be used as a method for mixing and stirring the aqueous resin emulsion ( ⁇ ), the curing agent ( ⁇ ), the curing accelerator ( ⁇ ), and other components contained as necessary.
  • Robomics manufactured by Primix Corporation
  • Primix Corporation can be used.
  • the stirring time is preferably 5 minutes or more. Further, in order to suppress the curing of the resin component, the stirring time is preferably 1 hour or less.
  • a first liquid containing an aqueous resin emulsion ( ⁇ ) and a second liquid containing a curing agent ( ⁇ ) and a curing accelerator ( ⁇ ) are prepared, and then with the first liquid.
  • the aqueous resin composition of the present embodiment can also be preferably produced by stirring (mixing) the second liquid.
  • the first liquid and the second liquid may each contain other components contained as needed.
  • the aqueous resin composition set of the present embodiment which will be described later, may or may not be used.
  • the film and coating of the present embodiment are made of a cured product of the aqueous resin composition of the present embodiment.
  • the film of the present embodiment may be, if necessary, a film composed of an undercoat layer provided on the lower layer of the film made of the cured product of the aqueous resin composition of the present invention, and / or a film consisting of an upper coat layer provided on the upper layer. It may be provided in a laminated manner. The same applies to the coating film.
  • the aqueous resin composition of the present embodiment is prepared and applied to the surface to be coated after a coating step of applying the aqueous resin composition to the surface to be coated and a coating step. A curing step of drying the aqueous resin composition and curing the surface to be coated is performed.
  • the aqueous resin composition of the present embodiment is applied to the surface to be coated of the object to be coated (base material).
  • the material forming the surface to be coated can be arbitrarily selected, and examples thereof include a metal material.
  • the surface to be coated may be subjected to surface treatment such as a primer and an undercoat in advance. Examples of the method of applying the aqueous resin composition to the surface to be coated include, but are not limited to, a method using a brush, a roller, or the like.
  • the coating step is preferably completed within 1 hour after the step of mixing and stirring each of the above components for producing an aqueous resin composition is completed. This is to prevent the resin component from curing before the coating process is completed.
  • the surface to be coated of the object to be coated to which the aqueous resin composition is applied is dried and cured. This cures the resin component contained in the aqueous resin composition.
  • the curing time depends on the temperature of the curing atmosphere. For example, it is preferably 5 hours or more at 20 ° C, preferably 1 hour or more at 40 ° C, and preferably 5 minutes or more at 60 ° C.
  • the aqueous resin composition of the present embodiment contains an aqueous resin emulsion ( ⁇ ), a curing agent ( ⁇ ), and a curing accelerator ( ⁇ ). Therefore, it is possible to form a coating film made of a cured product, which has high resistance to load and impact and is less likely to break due to deformation of the base material.
  • the coating film of the present embodiment is made of a cured product of the aqueous resin composition of the present embodiment. Therefore, the coating film of the present embodiment has high resistance to load and impact, and is less likely to break due to deformation of the base material.
  • the aqueous resin composition of the present embodiment is applied to a surface to be coated, and the aqueous resin composition applied to the surface to be coated is dried and cured.
  • the aqueous resin composition applied to the surface to be coated is dried and cured.
  • it is made of a cured product of the aqueous resin composition of the present embodiment, has high resistance to load and impact, and is less likely to break due to deformation of a base material using a material such as metal, metal material, or resin.
  • a film can be formed.
  • the metal protection method of the present embodiment is a method in which a coating film is formed on the surface of the metal and the metal is protected by the provided coating film.
  • a cured product of the aqueous resin composition of the present embodiment is used.
  • the metal can be selected as needed, and may mean a material containing a metal or a metal alloy. Since the coating film of the present embodiment, that is, the coating film made of a cured product of the aqueous resin composition has the above-mentioned effect, forming the coating film is a method for protecting the metal, more specifically, the surface of the metal. It is suitable as a protection method.
  • Aqueous resin composition set > The aqueous resin composition set of the present embodiment contains a first liquid and a second liquid, and the constituent components of the aqueous resin composition of the present embodiment are separately stored as the first liquid and the second liquid. be.
  • the first liquid in the aqueous resin composition set of the present embodiment contains an aqueous resin emulsion ( ⁇ ).
  • the second liquid contains a curing agent ( ⁇ ) and a curing accelerator ( ⁇ ).
  • the aqueous resin composition set of the present embodiment is excellent in storage stability because the resin component contained in the aqueous resin emulsion ( ⁇ ) does not react with the curing agent ( ⁇ ) to cure during storage.
  • the coating film of the present embodiment may be produced by using the aqueous resin composition set of the present embodiment.
  • the aqueous resin composition of the present embodiment may be prepared by mixing the first liquid and the second liquid in the aqueous resin composition set of the present embodiment, and the method for producing the coating film may be carried out.
  • the aqueous resin composition set may consist of, for example, only the first liquid and the second liquid, but has two storage portions for storing the first liquid and the second liquid, and / or the storage portion. It may have a container or a device.
  • the accommodating portion may have a supply port, an opening, an openable portion, and / or a lid that can be opened and closed, and the like, if necessary.
  • Examples of the set include a container for containing an aqueous resin composition, a supply device, a forming device, and the like, but the set is not limited to these examples.
  • the two accommodating portions may be provided apart or may be formed in combination.
  • the aqueous resin composition of the present invention is useful in various fields, and is particularly suitable for use as a coating material applied to the surface of a metal product.
  • An article in which a coating film made of a cured product of the aqueous resin composition of the present invention is formed, that is, an object to be applied as an object to be coated of the aqueous resin composition of the present invention can be arbitrarily selected.
  • the applicable objects include various household appliances, home appliances such as refrigerators, play equipment installed in amusement parks and parks, sporting goods, buildings (interior, exterior, etc.), transportation machines, and the like.
  • Various industrial appliances and parts including machine tools, automobile bodies and chassis, body and underfloor equipment of railway vehicles, ships, marine containers, aircraft and the like.
  • aqueous resin emulsion ( ⁇ )> (Aqueous resin emulsion ( ⁇ -1)) 158 parts by mass of ion-exchanged water was placed in a separable flask having a cooling tube, a thermometer, a stirrer, and a dropping funnel, and the temperature was raised to 60 ° C. Nitrogen gas was blown into the contents of the separable flask to deoxidize it.
  • Aqueous resin emulsions ( ⁇ -2) to ( ⁇ -6) and (c ⁇ -1) to (c ⁇ -10)) Use amounts (mass) of each material shown in Table 1 or Table 2 as shown in Table 1 or Table 2.
  • Aqueous resin emulsions ( ⁇ -2) to ( ⁇ -6) and (c ⁇ -1) to (c ⁇ -10) were synthesized in the same manner as the aqueous resin emulsion ( ⁇ -1) except that it was used in (Part). did.
  • the numerical value of “ion-exchanged water” shown in Table 1 or Table 2 is the aqueous resin emulsion. Similar to ( ⁇ -1), the content of ion-exchanged water contained in the synthesized aqueous resin emulsions ( ⁇ -2) to ( ⁇ -6) and (c ⁇ -1) to (c ⁇ -10) is shown. ..
  • Tables 1 and 2 show the amounts (parts by mass) of each material used in the synthesis of the aqueous resin emulsions ( ⁇ -1) to ( ⁇ -6) and (c ⁇ -1) to (c ⁇ -10).
  • the numerical values in parentheses in the contents of the copolymer (X) and the polyepoxy compound (Y) in Tables 1 and 2 are the total amount of the copolymer (X) and the polyepoxy compound (Y) ( The ratio (mass%) of each material to 100%) is shown.
  • aqueous resin emulsions ( ⁇ ) and (c ⁇ ) Amount of functional groups contained in aqueous resin emulsions ( ⁇ ) and (c ⁇ )
  • aqueous resin emulsions ( ⁇ -1) to ( ⁇ -6) when generically referred to, they may be referred to as an aqueous resin emulsion ( ⁇ ).
  • aqueous resin emulsions (c ⁇ -1) to (c ⁇ -10) when the aqueous resin emulsions (c ⁇ -1) to (c ⁇ -10) are generically referred to, they may be described as the aqueous resin emulsion (c ⁇ ).
  • the epoxy group contained in the material used for the synthesis did not react during the synthesis and 100% remained in the aqueous resin emulsion. Further, the aqueous resin emulsions ( ⁇ ) and (c ⁇ ) do not contain components that can react with the carboxy group other than the epoxy group.
  • Epoxy group residual rate The residual ratio of the epoxy groups in the aqueous resin emulsions ( ⁇ ) and (c ⁇ ) is the amount of the epoxy groups contained in the synthesized aqueous resin emulsions ( ⁇ ) and (c ⁇ ) N 1 [mol / g]. It is a ratio to the total amount N2 [mol / g] of the epoxy group contained in the component (including a raw material, an initiator, a solvent, other additives and the like) used for the synthesis of ( ⁇ ) and (c ⁇ ). If the residual ratio of the epoxy group is 100%, neither the epoxy group in the copolymer (X) nor the polyepoxy compound (Y) is consumed during the synthesis, that is, all the epoxy groups contained in the raw material remain. You will be doing.
  • the amount N 1 [mol / g] of the epoxy groups of the aqueous resin emulsions ( ⁇ ) and (c ⁇ ) after the synthesis was measured by the method shown below. Excess hydrogen chloride was added to the total amount of epoxy groups contained in the components (raw materials) used in the synthesis of the aqueous resin emulsions (( ⁇ ) and (c ⁇ )) to react with the epoxy groups. Next, the amount of remaining hydrogen chloride was confirmed by titrating unreacted hydrogen chloride with potassium hydroxide. At this time, potassium hydroxide is consumed by the reaction with acidic components such as carboxylic acid contained in the aqueous resin emulsions ( ⁇ ) and (c ⁇ ). Therefore, the amount of the acidic component was titrated in advance by an empty measurement without using hydrogen chloride, and the result of this measurement was corrected.
  • the specific measurement procedure is as follows (i) to (ii).
  • the equivalence point was defined as the point at which purple color lasted for 30 seconds after the addition of the potassium hydroxide / ethanol solution.
  • the amount of potassium hydroxide / ethanol solution used for titration is defined as VKOH1 [mL].
  • the solution was titrated with stirring with 0.1 M potassium hydroxide / ethanol solution.
  • the equivalence point was defined as the point at which purple color lasted for 30 seconds after the addition of the potassium hydroxide / ethanol solution.
  • the amount of potassium hydroxide / ethanol solution used for titration is defined as VKOH2 [mL].
  • N 1 (0.2 ⁇ V HCl / 1000-0.1 ⁇ V KOH2 / 1000) / W 2 + (0.1 ⁇ V KOH1 / 1000) / W 1 ... (4)
  • the epoxy equivalent EP i [g / mol] it is obtained by the following formula (5).
  • Viscosity> The viscosities of the aqueous resin emulsions ( ⁇ ) and (c ⁇ ) were measured under the following conditions and equipment. Temperature: 23 ° C Measuring equipment: B-type viscometer Rotor: No. 1 Rotation speed: 60 rpm
  • the glass transition point Tg of the copolymer (X) is a value calculated by the above formula (1).
  • Dispersion stability The states of the aqueous resin emulsions ( ⁇ ) and (c ⁇ ) immediately after the synthesis were visually observed and evaluated according to the following criteria. ⁇ (Yes): No aggregation, precipitation, separation, or gelation was observed. X (impossible): At least one of aggregation, precipitation, separation, and gelation was observed.
  • the aqueous resin emulsions ( ⁇ -1) to ( ⁇ -6) and (c ⁇ -1) to (c ⁇ -9) all have residual viscosity, pH, and epoxy groups.
  • the rate there was no big difference between the values before and after standing at 60 ° C. for 7 days, and it was confirmed that the high temperature stability was excellent.
  • Examples 1 to 6 and Comparative Examples 1 to 9 (Preparation of aqueous resin composition)> Ion exchange with 100 parts by mass (nonvolatile content 40% by mass) of the aqueous resin emulsions ( ⁇ -1) to ( ⁇ -6) and (c ⁇ -1) to (c ⁇ -9) shown in Tables 3 and 4. Add 60 parts by mass of water, the curing agent ( ⁇ ) and the curing accelerator ( ⁇ ) shown in Tables 5 and 6 in the amounts (parts by mass) shown in Tables 5 and 6, and stir for 10 minutes. , Examples 1 to 6 and Comparative Examples 1 to 9 were prepared.
  • each curing agent ( ⁇ ) is the reactivity with respect to the epoxy group contained in the curing agent ( ⁇ ) with respect to the epoxy group 1 equivalent contained in the aqueous resin emulsion ( ⁇ ). It is a numerical value which shows the equivalent of the functional group (F) which has.
  • the "equivalent to epoxy group” in each curing accelerator ( ⁇ ) is a numerical value indicating the mol number of the curing accelerator ( ⁇ ) with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ).
  • ADEKA Hardener EH-8051 manufactured by ADEKA Corporation
  • the amine equivalent of the polyamine used as the curing agent ( ⁇ ) is 187 g / mol.
  • the water-based resin composition was applied on a flat plate made of a rectangular polyethylene film having a length of 90 mm and a width of 190 mm placed horizontally by spilling it so as to spread over the whole. This was dried at 23 ° C. for 72 hours and then cured at 50 ° C. for 24 hours to prepare a coating film (cured product) having a thickness of about 300 ⁇ m. The obtained coating film was peeled off from the flat plate to obtain a film. The peeled film was cut into a rectangle having a width of 10 mm and a length of 30 mm, and used as a test piece.
  • the following test was performed with the longitudinal direction of this test piece as the tensile direction.
  • the thickness of the test piece was measured using Quick Micro (registered trademark) MDQ-MX manufactured by Mitutoyo Co., Ltd. The measurement was performed at three locations for each test piece, and the average value of the measurement results at the three locations was defined as the thickness t [mm] of the test piece.
  • the thickness of the test piece was about 300 ⁇ m.
  • the film yield strength test was performed by the method shown below using Autograph AG-X (manufactured by Shimadzu Corporation). The distance between the chucks was set to 10 mm, and both sides of the test piece in the longitudinal direction were gripped by the chucks. The test piece was pulled to break at a speed of 100 mm / min under an atmosphere of a temperature of 23 ° C. and a relative humidity (RH) of 50%.
  • RH relative humidity
  • the strain S is 100. It is calculated by ⁇ ⁇ L / L [%].
  • the load applied to the test piece is F [N]
  • the maximum value of the load until the test piece breaks is F max [N]
  • the following conditions are first met from the start of the test. Let the satisfied point be the yield point Y (Sy, Fy ).
  • the strain S is 2% or more (S y ⁇ 2%).
  • the amount of change in the load F with the increase in the strain S changes from an increase to a decrease.
  • F Fy ⁇ 0.01F max
  • dF / dS ⁇ 0 continues.
  • F F y + 0.05%
  • the films prepared from the coating films made of the cured products of the aqueous resin compositions of Examples 1 to 6 have a yield strength of 20 [N / mm 2 ] or more and high resistance to load. It was a thing. Further, the film prepared from the coating film made of the cured product of the aqueous resin compositions of Examples 1 to 6 has a breaking elongation of 90% or more, a yield point elongation of 19% or more, and deformation of the base material. It was difficult for the breakage to occur.
  • the film prepared from the coating film made of the cured product of the aqueous resin compositions of Examples 1 to 6 has a value of 1/2 ⁇ (yield strength ⁇ yield point elongation) of 260 or more, and is resistant to impact. It was confirmed that the resistance was high.
  • the aqueous resin of Comparative Examples 1, 2, 8 and 9 in which the aqueous resin emulsion ( ⁇ ) does not contain at least one selected from the bisphenol type epoxy compound and the hydrogenated bisphenol type epoxy compound.
  • the film prepared from the coating film made of the cured product of the composition had insufficient yield strength.
  • the yield strength was insufficient.
  • the film prepared from the coating film made of the cured product of the aqueous resin composition of Comparative Example 5 in which the copolymer (X) does not contain the structural unit (c) derived from the compound (C) having an epoxy group is The value of 1/2 ⁇ (yield strength ⁇ yield point elongation) was 260 or less, and the resistance to impact was inferior as compared with Examples 1 to 6.
  • an aqueous resin composition capable of forming a coating film having high resistance to load and impact and less likely to break due to deformation of the base material.

Abstract

An aqueous resin composition which contains: an aqueous resin emulsion that comprises a copolymer, a polyepoxy compound and an aqueous medium; a curing agent; and a curing accelerator. With respect to this aqueous resin composition, the copolymer comprises a predetermined amount of a structural unit (a) which is derived from a (meth)acrylic acid alkyl ester, a predetermined amount of a structural unit (b) which is derived from an ethylenically unsaturated carboxylic acid, and a predetermined amount of a structural unit (c) which is derived from a compound having an epoxy group; the structural unit (a) comprises a predetermined amount of a structural unit (a1) which is derived from a hydrophilic (meth)acrylic acid alkyl ester; the polyepoxy compound (Y) comprises a predetermined amount of at least one compound that is selected from among bisphenol type epoxy compounds and hydrogenated bisphenol type epoxy compounds; the curing agent comprises a predetermined amount of a compound which has a functional group that is reactive with an epoxy group; and the curing accelerator comprises a predetermined amount of a tertiary amine.

Description

水性樹脂組成物、皮膜、塗膜の製造方法、水性樹脂組成物セット、および金属の保護方法Water-based resin composition, film, coating film manufacturing method, water-based resin composition set, and metal protection method
 本発明は、水性樹脂組成物、皮膜、塗膜の製造方法、水性樹脂組成物セット、金属の保護方法、および水性樹脂組成物の製造方法に関する。
 本願は、2020年12月28日に、日本に出願された特願2020-219216号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an aqueous resin composition, a film, a method for producing a coating film, an aqueous resin composition set, a method for protecting a metal, and a method for producing an aqueous resin composition.
This application claims priority based on Japanese Patent Application No. 2020-21216 filed in Japan on December 28, 2020, the contents of which are incorporated herein by reference.
 一般に、金属製品の表面には、表面処理がなされている。特に、屋外で使用される金属製品、および水分への暴露が想定される金属製品においては、錆の発生を防ぐために表面塗装が行われることが多い。 Generally, the surface of metal products is surface-treated. In particular, metal products used outdoors and metal products that are expected to be exposed to moisture are often surface-coated to prevent the occurrence of rust.
 従来、金属製品の表面塗装には、有機溶剤を含有する塗料が用いられていた。しかし、有機溶剤を含有する塗料を金属製品の表面に塗布する場合、作業者および周辺環境に対する揮発性有機化合物(VOC)対策が必要となる。そのため、金属製品の表面塗装に用いられる塗料において、有機溶剤を含む塗料に代えて水系塗料を用いる動きが活発となっている。 Conventionally, a paint containing an organic solvent has been used for surface coating of metal products. However, when a paint containing an organic solvent is applied to the surface of a metal product, it is necessary to take measures against volatile organic compounds (VOCs) for workers and the surrounding environment. Therefore, in the paints used for the surface coating of metal products, there is an active movement to use water-based paints instead of paints containing organic solvents.
 特許文献1には、重合体粒子が水性媒体中に分散されてなるエマルジョン組成物及び骨材を含有する、厚塗り用塗料組成物が記載されている。特許文献1に記載された重合体粒子は、炭素数4~14のアルキル基を有するアルキル(メタ)アクリレート単量体が重合してなる構成単位、エチレン性不飽和カルボン酸単量体が重合してなる構成単位、及び他の単量体が重合してなる構成単位を、1分子中に少なくとも2個のエポキシ基を有する化合物及び塩基性触媒の存在下で、乳化重合して製造されたものである。 Patent Document 1 describes a coating composition for thick coating containing an emulsion composition in which polymer particles are dispersed in an aqueous medium and an aggregate. The polymer particles described in Patent Document 1 are polymerized with an ethylenically unsaturated carboxylic acid monomer, which is a structural unit formed by polymerizing an alkyl (meth) acrylate monomer having an alkyl group having 4 to 14 carbon atoms. It is produced by emulsifying and polymerizing a structural unit made of ethylene and a structural unit obtained by polymerizing other monomers in the presence of a compound having at least two epoxy groups in one molecule and a basic catalyst. Is.
 特許文献2には、オキシラン基を有する熱硬化性化合物を吸収した、熱可塑性ポリマー粒子の水性分散物を含む組成物が記載されている。また、特許文献2には、ポリマー粒子が、凝集に対してラテックスを安定化するのに充分な濃度の抗凝集性官能基を有することが記載されている。 Patent Document 2 describes a composition containing an aqueous dispersion of thermoplastic polymer particles that has absorbed a thermosetting compound having an oxylan group. Further, Patent Document 2 describes that the polymer particles have an antiaggregating functional group having a concentration sufficient to stabilize the latex against aggregation.
 特許文献3には、エポキシ樹脂を水と混合してエポキシエマルションを形成し、エポキシエマルションを水性アクリラート分散体と混合してアクリル/エポキシラテックスを形成し、アクリル/エポキシラテックスを硬化剤と混合して、接着剤組成物を形成することとが記載されている。 In Patent Document 3, an epoxy resin is mixed with water to form an epoxy emulsion, the epoxy emulsion is mixed with an aqueous acrylicate dispersion to form an acrylic / epoxy latex, and the acrylic / epoxy latex is mixed with a curing agent. , Forming an adhesive composition is described.
特開2011-89092号公報Japanese Unexamined Patent Publication No. 2011-89092 特開2014-65914号公報Japanese Unexamined Patent Publication No. 2014-65514 国際公開第2017/112018号International Publication No. 2017/11028
 しかしながら、従来の水性樹脂組成物の硬化物からなる塗膜においては、荷重及び衝撃に対する耐性を向上させるとともに、基材の変形に伴う破断を生じにくくすることが要求されている。 However, in a coating film made of a cured product of a conventional aqueous resin composition, it is required to improve resistance to load and impact and to prevent breakage due to deformation of the base material.
 本発明は、上記事情を鑑みてなされたものであり、荷重及び衝撃に対する耐性が高く、基材の変形に伴う破断が生じにくい塗膜を形成できる水性樹脂組成物を提供することを目的とする。
 また、本発明は、本発明の水性樹脂組成物の硬化物からなり、荷重及び衝撃に対する耐性が高く、基材の変形に伴う破断が生じにくい塗膜を提供することを目的とする。
 また、本発明は、本発明の水性樹脂組成物の硬化物からなる塗膜を形成する塗膜の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an aqueous resin composition capable of forming a coating film having high resistance to load and impact and less likely to break due to deformation of the base material. ..
Another object of the present invention is to provide a coating film comprising a cured product of the aqueous resin composition of the present invention, which has high resistance to load and impact and is less likely to break due to deformation of the base material.
Another object of the present invention is to provide a method for producing a coating film forming a coating film made of a cured product of the aqueous resin composition of the present invention.
 本発明の構成は以下の通りである。
 本発明の第一の態様は、以下の水性樹脂組成物を提供する。
The configuration of the present invention is as follows.
The first aspect of the present invention provides the following aqueous resin composition.
[1] 水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを含み、 前記水性樹脂エマルジョン(α)は、共重合体(X)と、ポリエポキシ化合物(Y)と、水性媒体(Z)とを有し、
 前記共重合体(X)は、(メタ)アクリル酸アルキルエステル(A)に由来する構造単位(a)と、
 エチレン性不飽和カルボン酸(B)に由来する構造単位(b)と、
 エチレン性不飽和結合及びエポキシ基を有する化合物(C)に由来する構造単位(c)とを含み、
 前記構造単位(a)は、(メタ)アクリロイルオキシ基以外の部分の炭素原子数が2以下である親水性(メタ)アクリル酸アルキルエステル(A1)由来の構造単位(a1)を含み、
 前記ポリエポキシ化合物(Y)は、エチレン性不飽和結合を有さず1分子中に2個以上のエポキシ基を有し、かつビスフェノール型エポキシ化合物及び水添ビスフェノール型エポキシ化合物から選ばれる少なくとも1種であり、
 前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対して、
 前記構造単位(a)の含有率が20質量%以上98質量%以下、
 前記構造単位(a1)の含有率が15質量%以上98質量%以下、
 前記構造単位(b)の含有率が0.10質量%以上10質量%以下、
 前記構造単位(c)の含有率が、1.0質量%以上14質量%以下、
 前記ポリエポキシ化合物(Y)の含有率が1.0質量%以上50質量%以下であり、 前記硬化剤(β)は、エポキシ基に対する反応性を有する官能基(F)を有する化合物からなり、
 前記官能基(F)の含有量は、前記水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、0.010当量以上3.0当量以下であり、
 前記硬化促進剤(γ)は、エポキシ基に対する反応性を有する官能基を有さない第三級アミンからなり、
 前記硬化促進剤(γ)の含有量は、前記水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、0.0070mol以上1.5mol以下である、水性樹脂組成物。
[1] The aqueous resin emulsion (α) contains a curing agent (β) and a curing accelerator (γ), and the aqueous resin emulsion (α) is a copolymer (X) and a polyepoxy compound (Y). ) And an aqueous medium (Z).
The copolymer (X) has a structural unit (a) derived from the (meth) acrylic acid alkyl ester (A) and
The structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) and
It contains a structural unit (c) derived from the compound (C) having an ethylenically unsaturated bond and an epoxy group.
The structural unit (a) includes a structural unit (a1) derived from a hydrophilic (meth) acrylic acid alkyl ester (A1) having 2 or less carbon atoms in a portion other than the (meth) acryloyloxy group.
The polyepoxy compound (Y) does not have an ethylenically unsaturated bond, has two or more epoxy groups in one molecule, and is at least one selected from a bisphenol type epoxy compound and a hydrogenated bisphenol type epoxy compound. And
With respect to the total amount of the copolymer (X) and the polyepoxy compound (Y)
The content of the structural unit (a) is 20% by mass or more and 98% by mass or less.
The content of the structural unit (a1) is 15% by mass or more and 98% by mass or less.
The content of the structural unit (b) is 0.10% by mass or more and 10% by mass or less.
The content of the structural unit (c) is 1.0% by mass or more and 14% by mass or less.
The content of the polyepoxy compound (Y) is 1.0% by mass or more and 50% by mass or less, and the curing agent (β) is composed of a compound having a functional group (F) having reactivity with an epoxy group.
The content of the functional group (F) is 0.010 equivalent or more and 3.0 equivalent or less with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion (α).
The curing accelerator (γ) is composed of a tertiary amine having no functional group having reactivity with an epoxy group.
The content of the curing accelerator (γ) is 0.0070 mol or more and 1.5 mol or less with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion (α).
 本発明の第一の態様の水性樹脂組成物は、以下の特徴を有することが好ましい。以下の特徴は2つ以上を組み合わせることも好ましい。
[2] 前記エチレン性不飽和カルボン酸(B)は、α,β-不飽和モノカルボン酸、α,β-不飽和ジカルボン酸、α,β-不飽和ジカルボン酸のモノアルキルエステル、及びカルボキシ基を含有するビニル化合物からなる群のうち、少なくとも1種を含む、[1]に記載の水性樹脂組成物。
[3] 前記ポリエポキシ化合物(Y)は、ビスフェノールA型エポキシ化合物及び水添ビスフェノールA型エポキシ化合物から選ばれる少なくとも1種である、[1]または[2]に記載の水性樹脂組成物。
[4] 前記共重合体(X)の構造単位が、前記構造単位(a)、前記構造単位(b)、及び前記構造単位(c)からなる、[1]~[3]のいずれかに記載の水性樹脂組成物。
The aqueous resin composition of the first aspect of the present invention preferably has the following characteristics. It is also preferable to combine two or more of the following features.
[2] The ethylenically unsaturated carboxylic acid (B) is an α, β-unsaturated monocarboxylic acid, α, β-unsaturated dicarboxylic acid, a monoalkyl ester of α, β-unsaturated dicarboxylic acid, and a carboxy group. The aqueous resin composition according to [1], which comprises at least one of the group consisting of vinyl compounds containing.
[3] The aqueous resin composition according to [1] or [2], wherein the polyepoxy compound (Y) is at least one selected from a bisphenol A type epoxy compound and a hydrogenated bisphenol A type epoxy compound.
[4] The structural unit of the copolymer (X) is any one of [1] to [3], which comprises the structural unit (a), the structural unit (b), and the structural unit (c). The aqueous resin composition according to the above.
[5] 前記共重合体(X)は、ベンゼン環及びエチレン性不飽和結合を有する化合物(D)に由来する構造単位(d)を含む、[1]~[3]のいずれかに記載の水性樹脂組成物。
[6] 前記ベンゼン環及びエチレン性不飽和結合を有する化合物(D)は、芳香族ビニル化合物である、[5]に記載の水性樹脂組成物。
[5] The above-mentioned one of [1] to [3], wherein the copolymer (X) contains a structural unit (d) derived from a compound (D) having a benzene ring and an ethylenically unsaturated bond. Aqueous resin composition.
[6] The aqueous resin composition according to [5], wherein the compound (D) having a benzene ring and an ethylenically unsaturated bond is an aromatic vinyl compound.
[7] 前記共重合体(X)の合成に用いた各モノマーのホモポリマーのガラス転移点に基づいて、Foxの式により算出される前記共重合体(X)のガラス転移点Tgが、-30℃以上100℃以下である、[1]~[6]のいずれかに記載の水性樹脂組成物。
[8] 前記官能基(F)は、無置換または1つのみ置換基を有するアミノ基、カルボキシ基、メルカプト基からなる群より選択される少なくともいずれかを含む、[1]~[7]のいずれか1項に記載の水性樹脂組成物。
[7] The glass transition point Tg of the copolymer (X) calculated by the Fox formula based on the glass transition point of the homopolymer of each monomer used for the synthesis of the copolymer (X) is-. The aqueous resin composition according to any one of [1] to [6], which has a temperature of 30 ° C. or higher and 100 ° C. or lower.
[8] The functional group (F) according to [1] to [7], which comprises at least one selected from the group consisting of an amino group, a carboxy group, and a mercapto group which are unsubstituted or have only one substituent. The aqueous resin composition according to any one of the following items.
[9] 前記硬化促進剤(γ)は、第三級脂肪族アミン、第三級脂環式アミン、第三級ヘテロ芳香族アミン、及び第三級アミン(NR)を形成する窒素原子がフェニル基に直接結合していない第三級芳香族アミンからなる群より選択される少なくとも1つの化合物である、[1]~[8]のいずれかに記載の水性樹脂組成物。
[10] 前記水性樹脂エマルジョン(α)は、前記水性媒体(Z)中で、前記共重合体(X)の構造単位の由来となる化合物が、前記ポリエポキシ化合物(Y)の存在下で、乳化重合されたエマルジョンである、[1]~[9]のいずれかに記載の水性樹脂組成物。
[9] The curing accelerator (γ) forms a tertiary aliphatic amine, a tertiary alicyclic amine, a tertiary heteroaromatic amine, and a tertiary amine (NR 1 R 2 R 3 ). The aqueous resin composition according to any one of [1] to [8], which is at least one compound selected from the group consisting of a tertiary aromatic amine in which the nitrogen atom is not directly bonded to the phenyl group.
[10] In the aqueous resin emulsion (α), in the aqueous medium (Z), the compound from which the structural unit of the copolymer (X) is derived is in the presence of the polyepoxy compound (Y). The aqueous resin composition according to any one of [1] to [9], which is an emulsion polymerized by emulsion.
 本発明の第二の態様は、以下の皮膜を提供する。
[11] [1]~[10]のいずれかに記載の水性樹脂組成物の硬化物からなる、塗膜。
 本発明の第三の態様は、以下の製造方法を提供する。
[12] [1]~[10]のいずれかに記載の水性樹脂組成物を、被塗装面に塗布する塗布工程と、
 前記被塗装面に塗布された水性樹脂組成物を乾燥及び硬化させて塗膜を得る硬化工程とを含む、塗膜の製造方法。
A second aspect of the present invention provides the following coatings.
[11] A coating film comprising a cured product of the aqueous resin composition according to any one of [1] to [10].
A third aspect of the present invention provides the following manufacturing method.
[12] A coating step of applying the aqueous resin composition according to any one of [1] to [10] to a surface to be coated, and a coating step.
A method for producing a coating film, which comprises a curing step of drying and curing the aqueous resin composition applied to the surface to be coated to obtain a coating film.
 本発明の第四の態様は、以下の水性樹脂組成物セットを提供する。
[13] 第1液と第2液とを含み、[1]~[10]のいずれかに記載の水性樹脂組成物の構成成分が、前記第1液と前記第2液とに分けて保存される、水性樹脂組成物セットであって、
 前記第1液が、前記水性樹脂エマルジョン(α)を含み、
 前記第2液が、前記硬化剤(β)と、前記硬化促進剤(γ)とを含む、水性樹脂組成物セット。
A fourth aspect of the present invention provides the following aqueous resin composition set.
[13] The components of the aqueous resin composition according to any one of [1] to [10], which include a first liquid and a second liquid, are stored separately in the first liquid and the second liquid. A set of aqueous resin compositions to be prepared.
The first liquid contains the aqueous resin emulsion (α) and contains.
An aqueous resin composition set in which the second liquid contains the curing agent (β) and the curing accelerator (γ).
 本発明の第五の態様は、以下の金属の保護方法を提供する。
[14] 表面に設けられた塗膜によって金属を保護する方法であり、前記塗膜が[1]~[10]のいずれかに記載の水性樹脂組成物の硬化物からなる、
金属の保護方法。
 本発明の第六の態様は、以下の水性樹脂組成物の製造方法を提供する。
[15] 前記水性樹脂エマルジョン(α)を含む第1液と、
 前記硬化剤(β)と、前記硬化促進剤(γ)とを含む第2液を用意する工程と、
 前記第1液と前記第2液を混合する工程を含む、
 [1]~[10]のいずれかに記載の水性樹脂組成物の製造方法。
A fifth aspect of the present invention provides the following metal protection methods.
[14] A method of protecting a metal with a coating film provided on the surface, wherein the coating film comprises a cured product of the aqueous resin composition according to any one of [1] to [10].
How to protect metal.
A sixth aspect of the present invention provides the following method for producing an aqueous resin composition.
[15] The first liquid containing the aqueous resin emulsion (α) and
A step of preparing a second liquid containing the curing agent (β) and the curing accelerator (γ), and
A step of mixing the first liquid and the second liquid is included.
The method for producing an aqueous resin composition according to any one of [1] to [10].
 本発明の水性樹脂組成物によれば、荷重及び衝撃に対する耐性が高く、基材の変形に伴う破断が生じにくい塗膜を形成できる。
 本発明の塗膜は、本発明の水性樹脂組成物の硬化物からなる。したがって、本発明の塗膜は、荷重及び衝撃に対する耐性が高く、基材の変形に伴う破断が生じにくい。すなわち、本発明の塗膜は、優れた強度を有し、かつ基材の変形に追従可能である。
 本発明の塗膜の製造方法によれば、本発明の水性樹脂組成物の硬化物からなり、荷重及び衝撃に対する耐性が高く、基材の変形に伴う破断が生じにくい塗膜を形成できる。
According to the aqueous resin composition of the present invention, it is possible to form a coating film having high resistance to load and impact and less likely to break due to deformation of the base material.
The coating film of the present invention comprises a cured product of the aqueous resin composition of the present invention. Therefore, the coating film of the present invention has high resistance to load and impact, and is less likely to break due to deformation of the base material. That is, the coating film of the present invention has excellent strength and can follow the deformation of the base material.
According to the method for producing a coating film of the present invention, it is possible to form a coating film which is made of a cured product of the aqueous resin composition of the present invention, has high resistance to load and impact, and is less likely to break due to deformation of the base material.
 以下、本発明の水性樹脂組成物、塗膜、塗膜の製造方法、水性樹脂組成物セット、金属の保護方法、および水性樹脂組成物の製造方法の好ましい例について詳細に説明する。
 なお、本発明は、以下に示す実施形態のみに限定されるものではない。本発明は、例えば、本発明の趣旨を逸脱しない範囲で、数、種類、位置、量、比率、材料、構成などについて、付加、省略、置換、変更などが可能である。
Hereinafter, preferred examples of the aqueous resin composition, the coating film, the method for producing a coating film, the aqueous resin composition set, the method for protecting a metal, and the method for producing an aqueous resin composition of the present invention will be described in detail.
The present invention is not limited to the embodiments shown below. The present invention can be added, omitted, replaced, changed, or the like with respect to numbers, types, positions, quantities, ratios, materials, configurations, etc., without departing from the spirit of the present invention.
 ここで、本明細書において使用する下記の語句について説明する。
「(メタ)アクリレート」とは、アクリレートまたはメタクリレートを意味する。また、「(メタ)アクリル」とは、アクリルまたはメタクリルを意味する。
「エチレン性不飽和結合」とは、芳香環を形成する炭素原子を除く、炭素原子間の二重結合を意味する。
 エポキシ基は、グリシジル基等の一部を構成している構造も含まれる。
Here, the following terms and phrases used in the present specification will be described.
By "(meth) acrylate" is meant acrylate or methacrylate. Further, "(meth) acrylic" means acrylic or methacrylic acid.
The "ethylenically unsaturated bond" means a double bond between carbon atoms excluding the carbon atoms forming an aromatic ring.
The epoxy group also includes a structure that constitutes a part of a glycidyl group or the like.
「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC:gel permeation chromatography)によって測定される標準ポリスチレン換算値とする。 The "weight average molecular weight" is a standard polystyrene-equivalent value measured by gel permeation chromatography (GPC).
 エチレン性不飽和結合を有する化合物の重合体において、あるエチレン性不飽和結合を有する化合物に由来する構造単位は、その化合物のエチレン性不飽和結合以外の部分の化学構造と、重合体におけるその構造単位のエチレン性不飽和結合に対応する部分以外の部分の化学構造とが同じであるとする。エチレン性不飽和結合を有する化合物の有するエチレン性不飽和結合は、重合体を形成する際に単結合へと変化してもよい。例えば、メチルメタクリレートの重合体において、メチルメタクリレート由来の構造単位は、重合体において-CH-C(CH)(COOCH)-によって表されることができる。 In the polymer of a compound having an ethylenically unsaturated bond, the structural unit derived from the compound having a certain ethylenically unsaturated bond is the chemical structure of the portion other than the ethylenically unsaturated bond of the compound and its structure in the polymer. It is assumed that the chemical structure of the part other than the part corresponding to the ethylenically unsaturated bond of the unit is the same. The ethylenically unsaturated bond of the compound having an ethylenically unsaturated bond may be changed to a single bond when forming a polymer. For example, in a polymer of methyl methacrylate, a structural unit derived from methyl methacrylate can be represented in the polymer by —CH 2 -C (CH 3 ) (COOCH 3 ) —.
 重合体が、例えば、後述するエチレン性不飽和カルボン酸(B)に由来する構造単位(b)のように、カルボキシ基のようなイオン性の官能基を有し、かつエチレン性不飽和結合を有する化合物に由来する構造単位を有する場合、その官能基の一部が、イオン交換されていても、またはイオン交換されていなくても、同じ化合物に由来する構造単位とする。例えば、重合体において、-CH-C(CH)(COOH)-で表される構造だけでなく、-CH-C(CH)(COONa)-で表される構造単位も、メタクリル酸に由来する構造単位とする。 The polymer has an ionic functional group such as a carboxy group and has an ethylenically unsaturated bond, for example, like the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) described later. When it has a structural unit derived from the compound having it, it is a structural unit derived from the same compound regardless of whether a part of the functional group is ion-exchanged or not ion-exchanged. For example, in a polymer, not only the structure represented by -CH 2 -C (CH 3 ) (COOH)-but also the structural unit represented by -CH 2 -C (CH 3 ) (COONa)-is methacrylic. It is a structural unit derived from acid.
 「硬化」とは、原料に含まれる分子どうしが化学反応により結合し、網目構造の高分子を形成することを言う。
 「塗膜」とは、本実施形態の水性樹脂組成物に含まれる樹脂成分を硬化させて形成された硬化物からなり、かつ、水性樹脂組成物を被塗装面に塗布し、媒体を乾燥させる方法などにより得られた、前記被塗装面と一体化されている状態のものを意味する。
 「皮膜」とは、特に断りがなければ、本実施形態の水性樹脂組成物に含まれる樹脂成分を硬化させて形成された膜状の硬化物である。例えば前記樹脂成分を基材上で硬化させた後、基材から剥離して得ることができる。
"Curing" means that molecules contained in raw materials are bonded to each other by a chemical reaction to form a polymer having a network structure.
The "coating film" is a cured product formed by curing a resin component contained in the aqueous resin composition of the present embodiment, and the aqueous resin composition is applied to a surface to be coated to dry the medium. It means a state of being integrated with the surface to be coated, which is obtained by a method or the like.
Unless otherwise specified, the "film" is a film-like cured product formed by curing a resin component contained in the aqueous resin composition of the present embodiment. For example, the resin component can be obtained by curing it on a substrate and then peeling it from the substrate.
<1.水性樹脂組成物>
 本実施形態の水性樹脂組成物は、水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを含む。本実施形態の水性樹脂組成物は、後述するように、水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを混合することにより製造される。
<1. Aqueous resin composition>
The aqueous resin composition of the present embodiment contains an aqueous resin emulsion (α), a curing agent (β), and a curing accelerator (γ). The aqueous resin composition of the present embodiment is produced by mixing an aqueous resin emulsion (α), a curing agent (β), and a curing accelerator (γ), as will be described later.
[1-1.水性樹脂エマルジョン(α)]
 水性樹脂エマルジョン(α)は、共重合体(X)と、ポリエポキシ化合物(Y)と、水性媒体(Z)とを有する。水性樹脂エマルジョン(α)は、水性媒体(Z)中で、共重合体(X)の構造単位の由来となる化合物が、ポリエポキシ化合物(Y)の存在下で、乳化重合されたエマルジョンであることが好ましい。このような水性樹脂エマルジョン(α)を含む水性樹脂組成物は、その硬化物からなる塗膜が、荷重及び衝撃に対する耐性が高く、基材の変形に伴う破断が生じにくいものとなるためである。
[1-1. Aqueous resin emulsion (α)]
The aqueous resin emulsion (α) has a copolymer (X), a polyepoxy compound (Y), and an aqueous medium (Z). The aqueous resin emulsion (α) is an emulsion in which the compound from which the structural unit of the copolymer (X) is derived is emulsion-polymerized in the presence of the polyepoxy compound (Y) in the aqueous medium (Z). Is preferable. This is because in the aqueous resin composition containing such an aqueous resin emulsion (α), the coating film made of the cured product has high resistance to load and impact, and is less likely to break due to deformation of the substrate. ..
<1-1-1.共重合体(X)>
 共重合体(X)の構造単位に含まれる官能基及び末端以外の構造は、炭化水素構造、エステル結合、カルボニル基のうち、少なくともいずれかからなることが好ましく、炭化水素構造及びエステル結合の少なくともいずれかからなることがより好ましい。
 共重合体(X)の主鎖は、炭素原子同士の結合からなることが好ましく、炭素原子同士の単結合からなることがより好ましい。すなわち、共重合体(X)は、エチレン性不飽和結合を有する化合物の重合体であることがより好ましい。
 共重合体(X)は、その製造工程で用いられた重合開始剤および/または連鎖移動剤に由来する構造を末端等に有していてもよい。
<1-1-1. Copolymer (X)>
The structure other than the functional group and the terminal contained in the structural unit of the copolymer (X) preferably comprises at least one of a hydrocarbon structure, an ester bond, and a carbonyl group, and at least the hydrocarbon structure and the ester bond. It is more preferable to consist of either.
The main chain of the copolymer (X) is preferably composed of bonds between carbon atoms, and more preferably composed of single bonds between carbon atoms. That is, the copolymer (X) is more preferably a polymer of a compound having an ethylenically unsaturated bond.
The copolymer (X) may have a structure derived from the polymerization initiator and / or chain transfer agent used in the production process at the terminal or the like.
 共重合体(X)は、(メタ)アクリル酸アルキルエステル(A)に由来する構造単位(a)(以下、「構造単位(a)」と略記する場合がある。)と、エチレン性不飽和カルボン酸(B)に由来する構造単位(b)(以下、「構造単位(b)」と略記する場合がある。)と、エチレン性不飽和結合及びエポキシ基を有する化合物(C)に由来する構造単位(c)(以下、「構造単位(c)」と略記する場合がある。)とを含む。 The copolymer (X) has a structural unit (a) derived from the (meth) acrylic acid alkyl ester (A) (hereinafter, may be abbreviated as “structural unit (a)”) and an ethylenically unsaturated. Derived from the structural unit (b) derived from the carboxylic acid (B) (hereinafter, may be abbreviated as "structural unit (b)") and the compound (C) having an ethylenically unsaturated bond and an epoxy group. It includes a structural unit (c) (hereinafter, may be abbreviated as “structural unit (c)”).
 共重合体(X)は、構造単位として、構造単位(a)、構造単位(b)及び構造単位(c)のみを含むもの(以下、「共重合体(X1)」という場合がある。)であってもよい。
 共重合体(X)は、構造単位として、構造単位(a)と、構造単位(b)と、構造単位(c)と、ベンゼン環及びエチレン性不飽和結合を有する化合物(D)に由来する構造単位(d)(以下、「構造単位(d)」と略記する場合がある。)とを含むもの(以下、この共重合体を「共重合体(X2)」という場合がある。)であってもよい。共重合体(X2)は、構造単位として、構造単位(a)~(d)のみを含むものであってもよい。
 共重合体(X)は、構造単位(a)~(d)、および構造単位(a)~(d)のいずれにも該当しない構造単位(e)を含む共重合体であってもよい。ここで、構造単位(e)の由来となる化合物を他の化合物(E)とする。
The copolymer (X) contains only the structural unit (a), the structural unit (b) and the structural unit (c) as the structural unit (hereinafter, may be referred to as “copolymer (X1)”). It may be.
The copolymer (X) is derived from the structural unit (a), the structural unit (b), the structural unit (c), and the compound (D) having a benzene ring and an ethylenically unsaturated bond as structural units. A structural unit (d) (hereinafter, may be abbreviated as "structural unit (d)") (hereinafter, this copolymer may be referred to as "copolymer (X2)"). There may be. The copolymer (X2) may contain only structural units (a) to (d) as structural units.
The copolymer (X) may be a copolymer containing a structural unit (e) that does not correspond to any of the structural units (a) to (d) and the structural units (a) to (d). Here, the compound from which the structural unit (e) is derived is referred to as another compound (E).
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、共重合体(X)の含有率は、50質量%以上であることが好ましく、55質量%以上であることがより好ましく、60質量%以上であることがさらに好ましく、70質量%以上であることがさらに一層好ましく、77質量%以上であることが特に好ましい。
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、共重合体(X)の含有率は、99質量%以下であることが好ましく、94質量%以下であることがより好ましく、90質量%以下であることがさらに好ましく、88質量%以下であることが特に好ましい。
The content of the copolymer (X) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 50% by mass or more, more preferably 55% by mass or more. , 60% by mass or more, further preferably 70% by mass or more, and particularly preferably 77% by mass or more.
The content of the copolymer (X) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 99% by mass or less, more preferably 94% by mass or less. , 90% by mass or less, more preferably 88% by mass or less.
〔(メタ)アクリル酸アルキルエステル(A)に由来する構造単位(a)〕
 構造単位(a)の由来となる(メタ)アクリル酸アルキルエステル(A)は、炭素数1~18の直鎖状、分岐鎖状または環状のアルキル基を有する(メタ)アクリル酸アルキルエステルであることが好ましい。具体的な例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、及び、イソボロニル(メタ)アクリレート等が挙げられる。
[Structural unit (a) derived from (meth) acrylic acid alkyl ester (A)]
The (meth) acrylic acid alkyl ester (A) from which the structural unit (a) is derived is a (meth) acrylic acid alkyl ester having a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms. Is preferable. Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, cyclohexyl (meth) acrylate, and 2-ethylhexyl. Examples thereof include (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, and isoboronyl (meth) acrylate.
 構造単位(a)は、これらの(メタ)アクリル酸アルキルエステル(A)から選ばれる1種のみに由来する構造単位であってもよいし、2種以上に由来する構造単位を含んでいてもよい。 The structural unit (a) may be a structural unit derived from only one kind selected from these (meth) acrylic acid alkyl esters (A), or may include structural units derived from two or more kinds. good.
 共重合体(X)中の構造単位(a)の含有率は、40質量%以上であることが好ましく、50質量%以上であることがより好ましく、60質量%以上であることがさらに好ましく、75質量%以上であることがさらに一層好ましく、90質量%以上であることが特に好ましい。水性樹脂組成物を用いて作製された皮膜の破断伸度を大きくして、破断しにくくすることができるためである。また、水性樹脂組成物の硬化物からなる塗膜の耐水膨潤率をより低くできるためである。共重合体(X)中の構造単位(a)の含有率は、構造単位(b)および構造単位(c)の含有率を確保しやすくするため、99質量%以下であることが好ましい。前記含有率は、必要に応じて例えば、55~95質量%や、65~93質量%や、70~90質量%や、80~85質量%などであってもよい。 The content of the structural unit (a) in the copolymer (X) is preferably 40% by mass or more, more preferably 50% by mass or more, still more preferably 60% by mass or more. It is even more preferably 75% by mass or more, and particularly preferably 90% by mass or more. This is because the breaking elongation of the film produced by using the aqueous resin composition can be increased to make it difficult to break. Further, it is possible to lower the water swelling resistance of the coating film made of the cured product of the aqueous resin composition. The content of the structural unit (a) in the copolymer (X) is preferably 99% by mass or less in order to facilitate the securing of the content of the structural unit (b) and the structural unit (c). The content may be, for example, 55 to 95% by mass, 65 to 93% by mass, 70 to 90% by mass, 80 to 85% by mass, or the like, if necessary.
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、構造単位(a)の含有率は、20質量%以上であり、35質量%以上であることが好ましく、45質量%以上であることがより好ましく、50質量%以上であることがさらに好ましく、60質量%以上であることが特に好ましい。水性樹脂エマルジョン(α)を製造する際における、共重合体(X)の構造単位の由来となる化合物とポリエポキシ化合物(Y)との分散安定性(分散性ともいう)が向上するためである。
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、構造単位(a)の含有率は、98質量%以下であり、92質量%以下であることが好ましく、87質量%以下であることがより好ましい。水性樹脂エマルジョン(α)の分散安定性が向上するためである。前記含有率は、必要に応じて例えば、55~95質量%や、65~93質量%や、70~90質量%や、80~85質量%などであってもよい。
The content of the structural unit (a) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 20% by mass or more, preferably 35% by mass or more, and preferably 45% by mass or more. It is more preferably 50% by mass or more, and particularly preferably 60% by mass or more. This is because the dispersion stability (also referred to as dispersibility) between the compound from which the structural unit of the copolymer (X) is derived and the polyepoxy compound (Y) in the production of the aqueous resin emulsion (α) is improved. ..
The content of the structural unit (a) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 98% by mass or less, preferably 92% by mass or less, and preferably 87% by mass or less. Is more preferable. This is because the dispersion stability of the aqueous resin emulsion (α) is improved. The content may be, for example, 55 to 95% by mass, 65 to 93% by mass, 70 to 90% by mass, 80 to 85% by mass, or the like, if necessary.
 共重合体(X)が、構造単位として、構造単位(a)、構造単位(b)、及び構造単位(c)のみを含む共重合体(X1)である場合、共重合体(X)と同様の観点で、以下の割合であることが好ましい。すなわち、共重合体(X1)とポリエポキシ化合物(Y)との合計量に対する、構造単位(a)の含有率は、50質量%以上であることが好ましく、60質量%以上であることが特に好ましい。同含有率の好ましい上限は、共重合体(X)と同様である。 When the copolymer (X) is a copolymer (X1) containing only the structural unit (a), the structural unit (b), and the structural unit (c) as the structural unit, the copolymer (X) and the copolymer (X) are used. From the same viewpoint, the following ratio is preferable. That is, the content of the structural unit (a) with respect to the total amount of the copolymer (X1) and the polyepoxy compound (Y) is preferably 50% by mass or more, and particularly preferably 60% by mass or more. preferable. The preferable upper limit of the content is the same as that of the copolymer (X).
 さらに、共重合体(X)が、構造単位として、構造単位(a)、構造単位(b)、構造単位(c)、及び構造単位(d)を含む共重合体(X2)である場合、共重合体(X)と同様の観点で、以下の割合であることが好ましい。共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、構造単位(a)の含有率は、75質量%以下であることが好ましく、65質量%以下であることが特に好ましい。同含有率の好ましい下限は、共重合体(X)と同様である。 Further, when the copolymer (X) is a copolymer (X2) containing the structural unit (a), the structural unit (b), the structural unit (c), and the structural unit (d) as the structural unit. From the same viewpoint as the copolymer (X), the following ratio is preferable. The content of the structural unit (a) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 75% by mass or less, and particularly preferably 65% by mass or less. The preferable lower limit of the content is the same as that of the copolymer (X).
 構造単位(a)は、(メタ)アクリロイルオキシ基以外の部分の炭素原子数が2以下である親水性(メタ)アクリル酸アルキルエステル(A1)由来の構造単位(a1)(以下「構造単位(a1)」と略記する場合がある。)を含む。 The structural unit (a) is a structural unit (a1) derived from a hydrophilic (meth) acrylic acid alkyl ester (A1) having 2 or less carbon atoms in a portion other than the (meth) acryloyloxy group (hereinafter, “structural unit (a)”. It may be abbreviated as "a1)".)
[親水性(メタ)アクリル酸アルキルエステル(A1)由来の構造単位(a1)]
 構造単位(a1)の由来となる親水性(メタ)アクリル酸アルキルエステル(A1)は、(メタ)アクリロイルオキシ基以外の部分の炭素原子数が2以下である親水性(メタ)アクリル酸アルキルエステルであり、メチル(メタ)アクリレート及びエチル(メタ)アクリレートからなる群より選ばれる少なくともいずれかであることが好ましく、メチルアクリレート及びメチルメタクリレートのうち少なくともいずれかであることがより好ましい。重合速度が速く生産性が向上するとともに、水性樹脂組成物を用いて作製された塗膜の強度及び硬さが向上するためである。塗膜の強度が向上するため、特にメチルメタクリレートであることが好ましい。
[Structural unit (a1) derived from hydrophilic (meth) acrylic acid alkyl ester (A1)]
The hydrophilic (meth) acrylic acid alkyl ester (A1) from which the structural unit (a1) is derived is a hydrophilic (meth) acrylic acid alkyl ester having 2 or less carbon atoms in a portion other than the (meth) acryloyloxy group. It is preferably at least one selected from the group consisting of methyl (meth) acrylate and ethyl (meth) acrylate, and more preferably at least one of methyl acrylate and methyl methacrylate. This is because the polymerization rate is high and the productivity is improved, and the strength and hardness of the coating film produced by using the aqueous resin composition are improved. Methyl methacrylate is particularly preferable because it improves the strength of the coating film.
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、構造単位(a1)の含有率は、15質量%以上である。水性樹脂エマルジョン(α)と硬化剤(β)とを混合したときのゲル化の進行を穏やかにするためである。また、硬化剤(β)の有するエポキシ基に対する反応性を有する官能基(F)と、ポリエポキシ化合物(Y)および構造単位(c)に含まれるエポキシ基とに由来する過度な化学架橋が抑制されて、水性樹脂組成物を硬化させてなる塗膜の破断伸度がより向上するためである。この効果は、硬化剤(β)の有するエポキシ基に対する反応性を有する官能基(F)がポリアミンである場合に、より顕著となる。同様の理由で共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、構造単位(a1)の含有率は、20質量%以上であることが好ましく、30質量%以上であることがより好ましい。必要に応じて、35質量%以上や、40質量%以上であってもよい。 The content of the structural unit (a1) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 15% by mass or more. This is to moderate the progress of gelation when the aqueous resin emulsion (α) and the curing agent (β) are mixed. In addition, excessive chemical cross-linking derived from the functional group (F) having reactivity with the epoxy group of the curing agent (β) and the epoxy group contained in the polyepoxy compound (Y) and the structural unit (c) is suppressed. This is because the breaking elongation of the coating film obtained by curing the aqueous resin composition is further improved. This effect becomes more remarkable when the functional group (F) having reactivity with the epoxy group of the curing agent (β) is a polyamine. For the same reason, the content of the structural unit (a1) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 20% by mass or more, preferably 30% by mass or more. Is more preferable. If necessary, it may be 35% by mass or more or 40% by mass or more.
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、構造単位(a1)の含有率は、98質量%以下であり、75質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることがさらに好ましく、45質量%以下であることがさらに一層好ましく、38質量%以下であることが特に好ましい。構造単位(b)および構造単位(c)の含有率を確保しやすくなり、共重合体(X)と、ポリエポキシ化合物(Y)との親和性が向上するためである。 The content of the structural unit (a1) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 98% by mass or less, preferably 75% by mass or less, and preferably 60% by mass or less. It is more preferably 50% by mass or less, further preferably 45% by mass or less, and particularly preferably 38% by mass or less. This is because the contents of the structural unit (b) and the structural unit (c) can be easily secured, and the affinity between the copolymer (X) and the polyepoxy compound (Y) is improved.
〔エチレン性不飽和カルボン酸(B)に由来する構造単位(b)〕
 構造単位(b)の由来となるエチレン性不飽和カルボン酸(B)は、エチレン性不飽和結合及びカルボキシ基を有する化合物である。エチレン性不飽和カルボン酸(B)は、α,β-不飽和モノカルボン酸、α,β-不飽和ジカルボン酸、α,β-不飽和ジカルボン酸のモノアルキルエステル、及びカルボキシ基を含有するビニル化合物からなる群のうち、少なくとも1種を含むことが好ましく、α,β-不飽和モノカルボン酸、α,β-不飽和ジカルボン酸、及びカルボキシ基を含有するビニル化合物からなる群のうち、少なくとも1種を含むことがさらに好ましい。
[Structural unit (b) derived from ethylenically unsaturated carboxylic acid (B)]
The ethylenically unsaturated carboxylic acid (B) from which the structural unit (b) is derived is a compound having an ethylenically unsaturated bond and a carboxy group. The ethylenically unsaturated carboxylic acid (B) is a monoalkyl ester of α, β-unsaturated monocarboxylic acid, α, β-unsaturated dicarboxylic acid, α, β-unsaturated dicarboxylic acid, and vinyl containing a carboxy group. It is preferable to include at least one of the group consisting of compounds, and at least one of the group consisting of α, β-unsaturated monocarboxylic acid, α, β-unsaturated dicarboxylic acid, and a vinyl compound containing a carboxy group. It is more preferable to include one type.
 α,β-不飽和モノカルボン酸またはα,β-不飽和ジカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、シトラコン酸、イタコン酸、マレイン酸、無水マレイン酸、フマル酸等が挙げられる。
 カルボキシ基を含有するビニル化合物としては、例えば、フタル酸モノヒドロキシエチル(メタ)アクリレート、シュウ酸モノヒドロキシプロピル(メタ)アクリレート等が挙げられる。
Examples of the α, β-unsaturated monocarboxylic acid or α, β-unsaturated dicarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, citraconic acid, itaconic acid, maleic acid, maleic anhydride, fumaric acid and the like. Will be.
Examples of the vinyl compound containing a carboxy group include monohydroxyethyl phthalate (meth) acrylate and monohydroxypropyl oxalate (meth) acrylate.
 構造単位(b)は、これらのエチレン性不飽和カルボン酸(B)から選ばれる1種のみに由来する構造単位であってもよいし、2種以上に由来する構造単位を含んでいてもよい。構造単位(b)の由来となるエチレン性不飽和カルボン酸(B)は、上記の中でも(メタ)アクリロイル基及びカルボキシ基を有する化合物を含むことが好ましく、(メタ)アクリロイル基及びカルボキシ基を有する化合物のみであってもよい。さらに、エチレン性不飽和カルボン酸(B)は、(メタ)アクリル酸を含むことが好ましく、(メタ)アクリル酸のみであってもよい。エチレン性不飽和カルボン酸(B)は、(メタ)アクリロイル基及びカルボキシ基を有する化合物のみからなることがより好ましい。原料コストを低減するとともに、重合速度を向上させて水性樹脂エマルジョン(α)の生産性を向上し、製造コストを下げるためである。エチレン性不飽和カルボン酸(B)は、(メタ)アクリル酸のみであることが特に好ましい。構造単位(b)の共重合体(X)に占める質量に対して、効率的に多くのカルボキシ基を導入できるためである。 The structural unit (b) may be a structural unit derived from only one kind selected from these ethylenically unsaturated carboxylic acids (B), or may contain structural units derived from two or more kinds. .. The ethylenically unsaturated carboxylic acid (B) from which the structural unit (b) is derived preferably contains a compound having a (meth) acryloyl group and a carboxy group among the above, and has a (meth) acryloyl group and a carboxy group. It may be only a compound. Further, the ethylenically unsaturated carboxylic acid (B) preferably contains (meth) acrylic acid, and may be only (meth) acrylic acid. The ethylenically unsaturated carboxylic acid (B) is more preferably composed only of a compound having a (meth) acryloyl group and a carboxy group. This is to reduce the raw material cost, improve the polymerization rate, improve the productivity of the aqueous resin emulsion (α), and reduce the manufacturing cost. It is particularly preferable that the ethylenically unsaturated carboxylic acid (B) is only (meth) acrylic acid. This is because a large number of carboxy groups can be efficiently introduced with respect to the mass occupied by the copolymer (X) of the structural unit (b).
 共重合体(X)中の構造単位(b)の含有率は、0.20質量%以上であることが好ましく、0.50質量%以上であることがより好ましく、0.80質量%以上であることがさらに好ましい。共重合体(X)の分散性が向上するためである。
 共重合体(X)中の構造単位(b)の含有率は、12質量%以下であることが好ましく、8.0質量%以下であることがより好ましく、5.0質量%以下であることがさらに好ましく、3.0質量%以下であることが特に好ましく、2.0質量%以下であることが最も好ましい。水性樹脂エマルジョン(α)の高温安定性が向上するためである。前記含有率は、必要に応じて例えば、0.50質量%以上2.5質量%以下や、0.80質量%以上1.80質量%以下や、1.00質量%以上1.50質量%以下であってもよい。
The content of the structural unit (b) in the copolymer (X) is preferably 0.20% by mass or more, more preferably 0.50% by mass or more, and 0.80% by mass or more. It is more preferable to have. This is because the dispersibility of the copolymer (X) is improved.
The content of the structural unit (b) in the copolymer (X) is preferably 12% by mass or less, more preferably 8.0% by mass or less, and more preferably 5.0% by mass or less. Is more preferable, and 3.0% by mass or less is particularly preferable, and 2.0% by mass or less is most preferable. This is because the high temperature stability of the aqueous resin emulsion (α) is improved. The content may be, for example, 0.50% by mass or more and 2.5% by mass or less, 0.80% by mass or more and 1.80% by mass or less, or 1.00% by mass or more and 1.50% by mass, if necessary. It may be as follows.
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、構造単位(b)の含有率は、0.10質量%以上であり、0.30質量%以上であることが好ましく、0.50質量%以上であることがより好ましく、0.80質量%以上であることがさらに好ましい。共重合体(X)の分散安定性が向上するためである。 The content of the structural unit (b) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 0.10% by mass or more, preferably 0.30% by mass or more. It is more preferably 0.50% by mass or more, and further preferably 0.80% by mass or more. This is because the dispersion stability of the copolymer (X) is improved.
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、構造単位(b)の含有率は、10質量%以下であり、7.0質量%以下であることが好ましく、5.0質量%以下であることがより好ましく、3.0質量%以下であることがさらに好ましく、2.3質量%以下であることがさらに一層好ましく、1.8質量%以下であることが特に好ましい。高温環境下での共重合体(X)のゲル化の進行が抑制され、水性樹脂エマルジョン(α)の高温安定性が向上するためである。 5. The content of the structural unit (b) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 10% by mass or less, preferably 7.0% by mass or less. It is more preferably 0% by mass or less, further preferably 3.0% by mass or less, further preferably 2.3% by mass or less, and particularly preferably 1.8% by mass or less. .. This is because the progress of gelation of the copolymer (X) in a high temperature environment is suppressed, and the high temperature stability of the aqueous resin emulsion (α) is improved.
〔エチレン性不飽和結合及びエポキシ基を有する化合物(C)に由来する構造単位(c)〕
 構造単位(c)の由来となる、エチレン性不飽和結合及びエポキシ基を有する化合物(C)は、エポキシ基を有する(メタ)アクリル酸エステルであることが好ましい。エポキシ基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸β-メチルグリシジル、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3,4-エポキシシクロヘキシルエチル(メタ)アクリレート、及び、3,4-エポキシシクロヘキシルプロピル(メタ)アクリレート等が挙げられる。
[Structural unit (c) derived from compound (C) having an ethylenically unsaturated bond and an epoxy group]
The compound (C) having an ethylenically unsaturated bond and an epoxy group from which the structural unit (c) is derived is preferably a (meth) acrylic acid ester having an epoxy group. Examples of the (meth) acrylic acid ester having an epoxy group include (meth) acrylic acid β-methylglycidyl, glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and 3,4-epoxycyclohexylmethyl (3,4-epoxycyclohexylmethyl). Examples thereof include meth) acrylate, 3,4-epoxycyclohexylethyl (meth) acrylate, and 3,4-epoxycyclohexylpropyl (meth) acrylate.
 構造単位(c)は、これらのエチレン性不飽和結合及びエポキシ基を有する化合物(C)から選ばれる1種のみに由来する構造単位であってもよいし、2種以上に由来する構造単位を含んでいてもよい。さらに、これらの化合物の中でも、原料コストを低減するとともに、重合速度を向上させて水性樹脂エマルジョン(α)の生産性を向上し、製造コストを下げるため、さらに、構造単位(c)の共重合体(X)に占める質量に対して、効率的に多くのエポキシ基を導入できるため、グリシジル(メタ)アクリレートを含むことが好ましく、グリシジルメタクリレートを含むことがより好ましい。 The structural unit (c) may be a structural unit derived from only one kind selected from these ethylenically unsaturated bonds and the compound (C) having an epoxy group, or a structural unit derived from two or more kinds. It may be included. Further, among these compounds, in order to reduce the raw material cost, improve the polymerization rate, improve the productivity of the aqueous resin emulsion (α), and reduce the manufacturing cost, the copolymer weight of the structural unit (c) is further increased. Since many epoxy groups can be efficiently introduced with respect to the mass occupied in the coalescence (X), it is preferable to contain glycidyl (meth) acrylate, and it is more preferable to contain glycidyl methacrylate.
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、構造単位(c)の含有率は、1.0質量%以上であり、3.0質量%以上であることが好ましく、4.0質量%以上であることがより好ましい。水性樹脂組成物を硬化させてなる塗膜の強度が向上するためである。
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、構造単位(c)の含有率は、14質量%以下であり、12質量%以下であることが好ましく、10.5質量%以下であることがより好ましく、7.0質量%以下であることが特に好ましい。高温環境下での共重合体(X)のゲル化の進行が抑制され、水性樹脂エマルジョン(α)の高温安定性が向上するためである。また、水性樹脂組成物を硬化させてなる塗膜の伸度が向上するためである。
The content of the structural unit (c) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 1.0% by mass or more, preferably 3.0% by mass or more. It is more preferably 4.0% by mass or more. This is because the strength of the coating film formed by curing the aqueous resin composition is improved.
The content of the structural unit (c) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 14% by mass or less, preferably 12% by mass or less, and 10.5% by mass. It is more preferably% or less, and particularly preferably 7.0% by mass or less. This is because the progress of gelation of the copolymer (X) in a high temperature environment is suppressed, and the high temperature stability of the aqueous resin emulsion (α) is improved. This is also because the elongation of the coating film formed by curing the aqueous resin composition is improved.
〔ベンゼン環及びエチレン性不飽和結合を有する化合物(D)に由来する構造単位(d)〕
 構造単位(d)の由来となるベンゼン環及びエチレン性不飽和結合を有する化合物(D)は、(メタ)アクリル酸エステル(A)、エチレン性不飽和カルボン酸(B)、エチレン性不飽和結合及びエポキシ基を有する化合物(C)のいずれにも該当せず、かつベンゼン環及びエチレン性不飽和結合を有する化合物である。
[Structural unit (d) derived from compound (D) having a benzene ring and an ethylenically unsaturated bond]
The compound (D) having a benzene ring and an ethylenically unsaturated bond from which the structural unit (d) is derived is a (meth) acrylic acid ester (A), an ethylenically unsaturated carboxylic acid (B), or an ethylenically unsaturated bond. And the compound (C) having an epoxy group, and having a benzene ring and an ethylenically unsaturated bond.
 ベンゼン環及びエチレン性不飽和結合を有する化合物(D)としては、例えば、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-tert-ブチルスチレン、tert-ブトキシスチレン、ビニルトルエン、ジビニルトルエン、ビニルナフタレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、ジブロモスチレン、トリブロモスチレン、フルオロスチレン、スチレンスルホン酸及びその塩、α-メチルスチレンスルホン酸及びその塩、p-ヒドロキシスチレン、m-ヒドロキシスチレン、o-ヒドロキシスチレン、p-イソプロペニルフェノール、m-イソプロペニルフェノール、及びo-イソプロペニルフェノール等が挙げられる。 Examples of the compound (D) having a benzene ring and an ethylenically unsaturated bond include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, α-methylstyrene, 2,4-dimethylstyrene, 2, 4-Diisopropylstyrene, 4-tert-butylstyrene, tert-butoxystyrene, vinyltoluene, divinyltorene, vinylnaphthalene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromostyrene, tribromostyrene, fluorostyrene, styrenesulfonic acid and Examples thereof include the salt thereof, α-methylstyrene sulfonic acid and its salt, p-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene, p-isopropenylphenol, m-isopropenylphenol, o-isopropenylphenol and the like. ..
 構造単位(d)は、これらのベンゼン環及びエチレン性不飽和結合を有する化合物(D)から選ばれる1種のみに由来する構造単位であってもよいし、2種以上に由来する構造単位を含んでいてもよい。さらに、これらの化合物(D)の中でも、芳香族ビニル化合物を含むことがより好ましく、炭化水素からなる芳香族ビニル化合物であることがさらに好ましく、スチレンであることが特に好ましい。水性樹脂組成物を用いて作製された皮膜の降伏強度を向上しつつ、破断に至るまでの伸度を向上できるためである。 The structural unit (d) may be a structural unit derived from only one kind selected from these benzene rings and the compound (D) having an ethylenically unsaturated bond, or a structural unit derived from two or more kinds. It may be included. Further, among these compounds (D), it is more preferable to contain an aromatic vinyl compound, further preferably an aromatic vinyl compound composed of a hydrocarbon, and particularly preferably styrene. This is because the yield strength of the film produced by using the aqueous resin composition can be improved, and the elongation until fracture can be improved.
 共重合体(X)が、構造単位(d)を含む場合、すなわち共重合体(X)が共重合体(X2)である場合、共重合体(X2)中の構造単位(d)の含有率は、7.0質量%以上であることが好ましく、10質量%以上であることがより好ましく、14質量%以上であることがより一層好ましく、17質量%以上であることがさらに好ましい。水性樹脂組成物を用いて作製された皮膜の降伏強度を向上しつつ、破断に至るまでの伸度を向上できるためである。
 共重合体(X2)中の構造単位(d)の含有率は、55質量%以下であることが好ましく、45質量%以下であることがより好ましく、35質量%以下であることがさらに好ましく、30質量%以下であることが特に好ましい。共重合体(X)の粒子中でポリエポキシ化合物(Y)に由来するドメインをより内部に内包でき、水性樹脂エマルジョン(α)の分散安定性が向上するためである。前記含有率は、必要に応じて例えば、10質量%以上40質量%以下や、15質量%以上35質量%以下や、20質量%以上30質量%以下であってもよい。
When the copolymer (X) contains the structural unit (d), that is, when the copolymer (X) is the copolymer (X2), the content of the structural unit (d) in the copolymer (X2) is contained. The ratio is preferably 7.0% by mass or more, more preferably 10% by mass or more, further preferably 14% by mass or more, and further preferably 17% by mass or more. This is because the yield strength of the film produced by using the aqueous resin composition can be improved, and the elongation until fracture can be improved.
The content of the structural unit (d) in the copolymer (X2) is preferably 55% by mass or less, more preferably 45% by mass or less, still more preferably 35% by mass or less. It is particularly preferably 30% by mass or less. This is because the domain derived from the polyepoxy compound (Y) can be further contained in the particles of the copolymer (X), and the dispersion stability of the aqueous resin emulsion (α) is improved. The content may be, for example, 10% by mass or more and 40% by mass or less, 15% by mass or more and 35% by mass or less, or 20% by mass or more and 30% by mass or less, if necessary.
 共重合体(X)が共重合体(X2)である場合、共重合体(X2)とポリエポキシ化合物(Y)との合計量に対する、構造単位(d)の含有率は、5.0質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることがさらにより好ましい。水性樹脂組成物を用いて作製された皮膜の降伏強度を向上しつつ、破断に至るまでの伸度を向上できるとともに、塗膜の耐水性が向上するためである。
 共重合体(X)が共重合体(X2)である場合、共重合体(X2)とポリエポキシ化合物(Y)との合計量に対する構造単位(d)の含有率は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましい。水性樹脂組成物を硬化させてなる塗膜の耐候性が向上するためである。前記含有率は、必要に応じて例えば、10質量%以上40質量%以下や、15質量%以上35質量%以下や、20質量%以上30質量%以下であってもよい。
When the copolymer (X) is a copolymer (X2), the content of the structural unit (d) with respect to the total amount of the copolymer (X2) and the polyepoxy compound (Y) is 5.0 mass by mass. % Or more, more preferably 10% by mass or more, and even more preferably 15% by mass or more. This is because the yield strength of the film produced by using the aqueous resin composition can be improved, the elongation until breakage can be improved, and the water resistance of the coating film can be improved.
When the copolymer (X) is a copolymer (X2), the content of the structural unit (d) with respect to the total amount of the copolymer (X2) and the polyepoxy compound (Y) is 50% by mass or less. It is preferably 40% by mass or less, more preferably 30% by mass or less. This is because the weather resistance of the coating film formed by curing the aqueous resin composition is improved. The content may be, for example, 10% by mass or more and 40% by mass or less, 15% by mass or more and 35% by mass or less, or 20% by mass or more and 30% by mass or less, if necessary.
〔構造単位(a)~(d)のいずれにも該当しない構造単位(e)〕
 構造単位(e)の由来となる他の化合物(E)は、エチレン性不飽和結合を有するが、(メタ)アクリル酸エステル(A)と、エチレン性不飽和カルボン酸(B)と、エチレン性不飽和結合及びエポキシ基を有する化合物(C)と、ベンゼン環及びエチレン性不飽和結合を有する化合物(D)のいずれにも該当しない化合物である。他の化合物(E)としては、例えば、カルボキシ基及びエポキシ基以外の官能基とエチレン性不飽和結合とを有する化合物が挙げられる。
[Structural unit (e) that does not fall under any of the structural units (a) to (d)]
The other compound (E) from which the structural unit (e) is derived has an ethylenically unsaturated bond, but has a (meth) acrylic acid ester (A), an ethylenically unsaturated carboxylic acid (B), and an ethylenically. It is a compound that does not fall under any of the compound (C) having an unsaturated bond and an epoxy group and the compound (D) having a benzene ring and an ethylenically unsaturated bond. Examples of the other compound (E) include compounds having a functional group other than the carboxy group and the epoxy group and an ethylenically unsaturated bond.
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する構造単位(e)の含有率は、7.0質量%以下であることが好ましく、3.0質量%以下であることがより好ましく、1.0質量%以下であることがさらに好ましい。共重合体(X)は構造単位(e)を含まないことが特に好ましい。 The content of the structural unit (e) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 7.0% by mass or less, and preferably 3.0% by mass or less. It is more preferably 1.0% by mass or less, and even more preferably 1.0% by mass or less. It is particularly preferable that the copolymer (X) does not contain the structural unit (e).
 共重合体(X)は、エチレン性不飽和カルボン酸(B)に由来する構造単位(b)と、エチレン性不飽和結合及びエポキシ基を有する化合物(C)に由来する構造単位(c)とを含むため、カルボキシ基とエポキシ基とを有する。共重合体(X)中のカルボキシ基は、水性樹脂エマルジョン(α)のpH調整を行ったことによって、一部または全部が塩を形成していてもよい。 The copolymer (X) has a structural unit (b) derived from an ethylenically unsaturated carboxylic acid (B) and a structural unit (c) derived from a compound (C) having an ethylenically unsaturated bond and an epoxy group. It has a carboxy group and an epoxy group because it contains. The carboxy group in the copolymer (X) may partially or wholly form a salt by adjusting the pH of the aqueous resin emulsion (α).
[カルボキシ基含有量Cx]
 共重合体(X)中のカルボキシ基は、水性樹脂組成物が硬化する際に、共重合体(X)の有するエポキシ基及びポリエポキシ化合物(Y)の有するエポキシ基と反応して架橋構造を形成する。それにより、水性樹脂組成物の硬化物からなる塗膜の強度が向上する。 共重合体(X)1gあたりに含まれるカルボキシ基含有量Cxは、特に限定されないが、一例として0.15×10-4mol/g以上であり、0.50×10-4mol/g以上であることが好ましく、1.00×10-4mol/g以上であることがより好ましく、1.20×10-4mol/g以上であることがさらに好ましい。共重合体(X)の分散安定性が向上するためである。
[Carboxy group content Cx]
The carboxy group in the copolymer (X) reacts with the epoxy group of the copolymer (X) and the epoxy group of the polyepoxy compound (Y) to form a crosslinked structure when the aqueous resin composition is cured. Form. As a result, the strength of the coating film made of the cured product of the aqueous resin composition is improved. The carboxy group content Cx contained in 1 g of the copolymer (X) is not particularly limited, but is, for example, 0.15 × 10 -4 mol / g or more, and 0.50 × 10 -4 mol / g or more. It is preferably 1.00 × 10 -4 mol / g or more, and more preferably 1.20 × 10 -4 mol / g or more. This is because the dispersion stability of the copolymer (X) is improved.
 共重合体(X)1gあたりに含まれるカルボキシ基含有量Cxは、一例として10.0×10-4mol/g以下であり、5.00×10-4mol/g以下であることが好ましく、3.00×10-4mol/g以下であることがより好ましく、2.00×10-4mol/g以下であることがさらに好ましい。高温環境下における共重合体(X)のゲル化の進行を抑制し、水性樹脂エマルジョン(α)の高温安定性が向上するためである。前記カルボキシ基含有量Cxは、必要に応じて例えば、0.80~4.00×10-4mol/gや、1.00~3.00×10-4mol/gや、1.50~2.50×10-4mol/gなどであってもよい。 The carboxy group content Cx contained in 1 g of the copolymer (X) is, for example, 10.0 × 10 -4 mol / g or less, preferably 5.00 × 10 -4 mol / g or less. , 3.00 × 10 -4 mol / g or less, and even more preferably 2.00 × 10 -4 mol / g or less. This is because the progress of gelation of the copolymer (X) in a high temperature environment is suppressed, and the high temperature stability of the aqueous resin emulsion (α) is improved. The carboxy group content Cx may be, for example, 0.80 to 4.00 × 10 -4 mol / g, 1.00 to 3.00 × 10 -4 mol / g, or 1.50 to 1.50 as required. It may be 2.50 × 10 -4 mol / g or the like.
 共重合体(X)中のカルボキシ基は、共重合体(X)の合成に用いるモノマー(共重合体(X)の構造単位の由来となる化合物)として、カルボキシ基を有する化合物を用い、これを重合することにより、共重合体(X)中に導入されたものであってもよい。本実施形態における共重合体(X)中のカルボキシ基は、共重合体(X)に含まれる構造単位(b)の由来となる化合物として、エチレン性不飽和カルボン酸(B)を用いることにより、共重合体(X)中に導入されたものである。共重合体(X)中のカルボキシ基のうち、一部または全部が、共重合体中の官能基をカルボキシ基に変換する方法により、共重合体(X)中に導入されたものであってもよい。 As the carboxy group in the copolymer (X), a compound having a carboxy group is used as the monomer used for the synthesis of the copolymer (X) (the compound from which the structural unit of the copolymer (X) is derived). May be introduced into the copolymer (X) by polymerizing. The carboxy group in the copolymer (X) in the present embodiment is obtained by using an ethylenically unsaturated carboxylic acid (B) as the compound from which the structural unit (b) contained in the copolymer (X) is derived. , Introduced into the copolymer (X). Some or all of the carboxy groups in the copolymer (X) were introduced into the copolymer (X) by a method of converting the functional groups in the copolymer into carboxy groups. May be good.
[エポキシ基含有量Ex]
 共重合体(X)に含まれるエポキシ基は、水性樹脂組成物が硬化する際に、共重合体(X)の有するカルボキシ基と反応して架橋構造を形成する。それにより、水性樹脂組成物の硬化物が補強され、硬化物からなる塗膜の強度が向上する。
 共重合体(X)1gあたりに含まれるエポキシ基含有量Exは、特に限定されないが、一例として0.50×10-4mol/g以上であり、1.00×10-4mol/g以上であることが好ましく、2.00×10-4mol/g以上であることがより好ましく、3.00×10-4mol/g以上であることがさらに好ましい。水性樹脂組成物の硬化物からなる塗膜の強度が向上するためである。
[Epoxy group content Ex]
The epoxy group contained in the copolymer (X) reacts with the carboxy group of the copolymer (X) when the aqueous resin composition is cured to form a crosslinked structure. As a result, the cured product of the aqueous resin composition is reinforced, and the strength of the coating film made of the cured product is improved.
The epoxy group content Ex contained in 1 g of the copolymer (X) is not particularly limited, but is, for example, 0.50 × 10 -4 mol / g or more, and 1.00 × 10 -4 mol / g or more. It is preferably 2.00 × 10 -4 mol / g or more, and more preferably 3.00 × 10 -4 mol / g or more. This is because the strength of the coating film made of the cured product of the aqueous resin composition is improved.
 共重合体(X)1gあたりに含まれるエポキシ基含有量Exは、一例として12.0×10-4mol/g以下であり、11.0×10-4mol/g以下であることが好ましく、9.00×10-4mol/g以下であることがより好ましい。高温環境下における共重合体(X)のゲル化の進行が抑制され、水性樹脂エマルジョン(α)の高温安定性が向上するためである。また、水性樹脂組成物の硬化物からなる塗膜の伸度が向上するためである。前記エポキシ基含有量Cxは、必要に応じて例えば、3.00~10.00×10-4mol/gや、4.00~9.50×10-4mol/gや、5.00~8.50×10-4mol/gや、6.00~8.00×10-4mol/gなどであってもよい。 The epoxy group content Ex contained in 1 g of the copolymer (X) is, for example, 12.0 × 10 -4 mol / g or less, and preferably 11.0 × 10 -4 mol / g or less. , 9.00 × 10 -4 mol / g or less, more preferably. This is because the progress of gelation of the copolymer (X) in a high temperature environment is suppressed, and the high temperature stability of the aqueous resin emulsion (α) is improved. This is also because the elongation of the coating film made of the cured product of the aqueous resin composition is improved. The epoxy group content Cx may be, for example, 3.00 to 10.00 × 10 -4 mol / g, 4.00 to 9.50 × 10 -4 mol / g, or 5.00 to 5.00, if necessary. It may be 8.50 × 10 -4 mol / g, 6.00 to 8.00 × 10 -4 mol / g, or the like.
 共重合体(X)中のエポキシ基は、共重合体(X)の合成に用いるモノマー(共重合体(X)の構造単位の由来となる化合物)として、エポキシ基を有する化合物を用い、これを重合することにより、共重合体(X)中に導入されたものであってもよい。本実施形態における共重合体(X)中のエポキシ基は、共重合体(X)に含まれる構造単位(c)の由来となる化合物として、エチレン性不飽和結合及びエポキシ基を有する化合物(C)を用いることにより、共重合体(X)中に導入されたものである。共重合体(X)中のエポキシ基のうち、一部または全部が、共重合体中の官能基をエポキシ基に変換する方法により、共重合体(X)中に導入されたものであってもよい。 As the epoxy group in the copolymer (X), a compound having an epoxy group is used as the monomer used for the synthesis of the copolymer (X) (the compound from which the structural unit of the copolymer (X) is derived). May be introduced into the copolymer (X) by polymerizing. The epoxy group in the copolymer (X) in the present embodiment is a compound (C) having an ethylenically unsaturated bond and an epoxy group as a compound from which the structural unit (c) contained in the copolymer (X) is derived. ) Was introduced into the copolymer (X). Some or all of the epoxy groups in the copolymer (X) were introduced into the copolymer (X) by a method of converting the functional groups in the copolymer into epoxy groups. It is also good.
 共重合体(X)におけるカルボキシ基及びエポキシ基の含有率は、共重合体中にカルボキシ基及びエポキシ基を有さない構造を導入した後、カルボキシ基及びエポキシ基を有さない構造の含有率を、適正な範囲に希釈する方法により調整できる。カルボキシ基及びエポキシ基以外の構造は、カルボキシ基及びエポキシ基との相互作用が小さいことが好ましい。そのような構造として好ましいのは、アルキレン基、アルキル基等の炭化水素構造、エステル結合、カルボニル基等である。 The content of the carboxy group and the epoxy group in the copolymer (X) is the content of the structure having no carboxy group and the epoxy group after introducing the structure having no carboxy group and the epoxy group into the copolymer. Can be adjusted by the method of diluting to an appropriate range. It is preferable that the structure other than the carboxy group and the epoxy group has a small interaction with the carboxy group and the epoxy group. Preferred such structures are hydrocarbon structures such as alkylene groups and alkyl groups, ester bonds, carbonyl groups and the like.
[共重合体(X)のガラス転移点]
 共重合体(X)のガラス転移点Tgは、共重合体(X)の合成に用いたモノマー(共重合体(X)の構造単位の由来となる化合物(単量体))のホモポリマーのガラス転移点に基づいてFoxの式により算出される。共重合体(X)のガラス転移点Tgの具体的な算出方法は、原料として用いる単量体M(i=1,2,3...,)のホモポリマーのガラス転移点Tgと、全単量体中の単量体iの質量分率X(ΣX(全単量体)=1)とから、下記式(1)によって算出される。式(1)において、Tg及びTgは、いずれも絶対温度(K)の値で計算する。
 1/Tg=Σ(X/Tg)…(1)
[Glass transition point of copolymer (X)]
The glass transition point Tg of the copolymer (X) is a homopolymer of the monomer used for the synthesis of the copolymer (X) (the compound (monomer) from which the structural unit of the copolymer (X) is derived). It is calculated by Fox's formula based on the glass transition point. The specific method for calculating the glass transition point Tg of the copolymer (X) is the glass transition point Tg i of the homopolymer of the monomer Mi ( i = 1, 2, 3 ...,) used as a raw material. , It is calculated by the following formula (1) from the mass fraction X i (ΣX i (all monomers) = 1) of the monomer i in all the monomers. In the formula (1), both Tg and Tg i are calculated by the value of absolute temperature (K).
1 / Tg = Σ (X i / Tg i ) ... (1)
 Tgの算出に使用するホモポリマーのガラス転移点としては、公知資料に記載の値を用いるものとする。具体的には、「Polymer Handbook」(第3版、John Wiley&Sons,Inc.,1989年)に数値が挙げられている。上記Polymer Handbookに複数種類の値が記載されているモノマーについては、最も高い値を採用する。 As the glass transition point of the homopolymer used for calculating Tg, the value described in the publicly known material shall be used. Specifically, the numerical values are listed in "Polymer Handbook" (3rd edition, John Weekly & Sons, Inc., 1989). For the monomers in which a plurality of types of values are described in the Polymer Handbook, the highest value is adopted.
 共重合体(X)のガラス転移点Tgは、-30℃(243K)以上であることが好ましく、-10℃(263K)以上であることがより好ましく、0℃(273K)以上であることがさらに好ましい。水性樹脂組成物を硬化させてなる塗膜の強度が向上するためである。共重合体(X)のガラス転移点Tgは、5℃以上、あるいは10℃以上であってもよい。 The glass transition point Tg of the copolymer (X) is preferably −30 ° C. (243K) or higher, more preferably −10 ° C. (263K) or higher, and preferably 0 ° C. (273K) or higher. More preferred. This is because the strength of the coating film formed by curing the aqueous resin composition is improved. The glass transition point Tg of the copolymer (X) may be 5 ° C. or higher, or 10 ° C. or higher.
 共重合体(X)のガラス転移点Tgは、100℃(373K)以下であることが好ましく、80℃(353K)以下であることがより好ましい。水性樹脂組成物を硬化させてなる塗膜の基材への密着性が向上するためである。共重合体(X)のガラス転移点Tgは、60℃(333K)以下であることがさらに好ましく、50℃(323K)以下であることが特に好ましい。水性樹脂組成物を硬化させてなる塗膜の柔軟性がより向上するためである。共重合体(X)のガラス転移点Tgは、40℃以下、あるいは30℃以下であってもよい。前記ガラス転移点Tgは、必要に応じて例えば、-10~30℃や、0~20℃や、3~15℃などであってもよい。 The glass transition point Tg of the copolymer (X) is preferably 100 ° C. (373K) or lower, and more preferably 80 ° C. (353K) or lower. This is because the adhesion of the coating film formed by curing the aqueous resin composition to the substrate is improved. The glass transition point Tg of the copolymer (X) is more preferably 60 ° C. (333K) or lower, and particularly preferably 50 ° C. (323K) or lower. This is because the flexibility of the coating film obtained by curing the aqueous resin composition is further improved. The glass transition point Tg of the copolymer (X) may be 40 ° C. or lower, or 30 ° C. or lower. The glass transition point Tg may be, for example, −10 to 30 ° C., 0 to 20 ° C., 3 to 15 ° C., or the like, if necessary.
<1-1-2.ポリエポキシ化合物(Y)>
 ポリエポキシ化合物(Y)は、エチレン性不飽和結合を有さず、かつ1分子中に2個以上のエポキシ基を有する。ポリエポキシ化合物(Y)は、ビスフェノール型エポキシ化合物及び水添ビスフェノール型エポキシ化合物から選ばれる少なくとも1種である。ポリエポキシ化合物(Y)は、ビスフェノールA型エポキシ化合物及び水添ビスフェノールA型エポキシ化合物から選ばれる少なくとも1種であることが好ましく、ビスフェノールA型エポキシ化合物であることがさらに好ましい。水性樹脂組成物を用いて作製された皮膜の降伏強度が向上するためである。
<1-1-2. Polyepoxy compound (Y)>
The polyepoxy compound (Y) does not have an ethylenically unsaturated bond and has two or more epoxy groups in one molecule. The polyepoxy compound (Y) is at least one selected from a bisphenol type epoxy compound and a hydrogenated bisphenol type epoxy compound. The polyepoxy compound (Y) is preferably at least one selected from a bisphenol A type epoxy compound and a hydrogenated bisphenol A type epoxy compound, and more preferably a bisphenol A type epoxy compound. This is because the yield strength of the film produced by using the aqueous resin composition is improved.
 ポリエポキシ化合物(Y)としては、ビスフェノールAのジグリシジルエーテル、水添ビスフェノールAのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテル、水添ビスフェノールFのジグリシジルエーテル等が挙げられる。ポリエポキシ化合物(Y)は、これらの化合物のうち1種類を含むものでもよいし、2種以上含むものであってもよい。 Examples of the polyepoxy compound (Y) include diglycidyl ether of bisphenol A, diglycidyl ether of hydrogenated bisphenol A, diglycidyl ether of bisphenol F, and diglycidyl ether of hydrogenated bisphenol F. The polyepoxy compound (Y) may contain one of these compounds, or may contain two or more of them.
 ポリエポキシ化合物(Y)の重量平均分子量は、特に限定されないが、好ましくは、1000以下であり、より好ましくは800以下であり、更に好ましくは500以下である。ポリエポキシ化合物(Y)の共重合体(X)への相溶性が向上し、分散安定性及び貯蔵安定性に優れた水性樹脂エマルジョン(α)となるためである。ポリエポキシ化合物(Y)の重量平均分子量は、300以上であることが好ましい。 The weight average molecular weight of the polyepoxy compound (Y) is not particularly limited, but is preferably 1000 or less, more preferably 800 or less, and further preferably 500 or less. This is because the compatibility of the polyepoxy compound (Y) with the copolymer (X) is improved, and the aqueous resin emulsion (α) having excellent dispersion stability and storage stability is obtained. The weight average molecular weight of the polyepoxy compound (Y) is preferably 300 or more.
 ポリエポキシ化合物(Y)のエポキシ当量(エポキシ基1mol当たりのポリエポキシ化合物(Y)の質量)は、500g/mol以下であることが好ましく、350g/mol以下であることがより好ましく、250g/mol以下であることがさらに好ましく、200g/mol以下であることが特に好ましい。水性樹脂組成物を硬化させた塗膜の強度が高くなるためである。
 ポリエポキシ化合物(Y)のエポキシ当量の下限値は、70g/mol以上であることが好ましく、120g/mol以上であることがより好ましい。水性樹脂組成物の硬化時に、より少ない硬化剤量で硬化させることができ、過剰な分岐および3次元架橋が抑制されて伸度が向上するためである。
The epoxy equivalent of the polyepoxy compound (Y) (mass of the polyepoxy compound (Y) per 1 mol of epoxy group) is preferably 500 g / mol or less, more preferably 350 g / mol or less, and 250 g / mol. It is more preferably less than or equal to, and particularly preferably 200 g / mol or less. This is because the strength of the coating film obtained by curing the aqueous resin composition is increased.
The lower limit of the epoxy equivalent of the polyepoxy compound (Y) is preferably 70 g / mol or more, and more preferably 120 g / mol or more. This is because when the aqueous resin composition is cured, it can be cured with a smaller amount of curing agent, excessive branching and three-dimensional cross-linking are suppressed, and the elongation is improved.
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、ポリエポキシ化合物(Y)の含有率は、1.0質量%以上であり、5.0質量%以上であることが好ましく、8.0質量%以上であることがより好ましく、11質量%以上であることがさらに好ましい。水性樹脂組成物を硬化させることにより、優れた降伏強度を有する皮膜が得られるためである。なお、形成される皮膜の強度をより高くする場合は、共重合体(X)とポリエポキシ化合物(Y)との合計量に対するポリエポキシ化合物(Y)の含有率は、20質量%以上であることが好ましく、25質量%以上であることがより好ましい。
 前記ポリエポキシ化合物(Y)の含有率は、必要に応じて例えば、8~35質量%や、10~30質量%や、15~20質量%などであってもよい。
The content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 1.0% by mass or more, preferably 5.0% by mass or more. , 8.0% by mass or more, more preferably 11% by mass or more. This is because a film having excellent yield strength can be obtained by curing the aqueous resin composition. When the strength of the formed film is to be increased, the content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 20% by mass or more. It is preferably 25% by mass or more, and more preferably 25% by mass or more.
The content of the polyepoxy compound (Y) may be, for example, 8 to 35% by mass, 10 to 30% by mass, 15 to 20% by mass, or the like, if necessary.
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対するポリエポキシ化合物(Y)の含有率は、50質量%以下であり、40質量%以下であることが好ましい。分散安定性の高い水性樹脂エマルジョン(α)が得られるためである。なお、形成される塗膜の伸度をより高くする場合は、共重合体(X)とポリエポキシ化合物(Y)との合計量に対するポリエポキシ化合物(Y)の含有率は、25質量%以下とすることが好ましく、20質量%以下とすることがより好ましい。 The content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 50% by mass or less, preferably 40% by mass or less. This is because an aqueous resin emulsion (α) having high dispersion stability can be obtained. When the elongation of the formed coating film is to be higher, the content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 25% by mass or less. It is preferably 20% by mass or less, and more preferably 20% by mass or less.
[共重合体(X)に対する、ポリエポキシ化合物(Y)中のエポキシ基含有量Ey]
 共重合体(X)1gに対する、ポリエポキシ化合物(Y)中のエポキシ基含有量Eyは、特に限定されないが、一例として1.00×10-4mol/g以上であり、2.00×10-4mol/g以上であることが好ましく、4.00×10-4mol/g以上であることがより好ましく、6.00×10-4mol/g以上であることがさらに好ましい。水性樹脂組成物を硬化させることにより、優れた降伏強度を有する皮膜が得られるためである。なお、形成される皮膜の強度をより高くする場合は、上記エポキシ基含有量Eyは、11.0×10-4mol/g以上であることが好ましく、14.0×10-4mol/g以上であることがより好ましく、16.0×10-4mol/g以上であることがさらに好ましい。
[Epoxy group content Ey in the polyepoxy compound (Y) with respect to the copolymer (X)]
The epoxy group content Ey in the polyepoxy compound (Y) with respect to 1 g of the copolymer (X) is not particularly limited, but is, for example, 1.00 × 10 -4 mol / g or more, and 2.00 × 10 It is preferably -4 mol / g or more, more preferably 4.00 × 10 -4 mol / g or more, and further preferably 6.00 × 10 -4 mol / g or more. This is because a film having excellent yield strength can be obtained by curing the aqueous resin composition. In order to increase the strength of the formed film, the epoxy group content Ey is preferably 11.0 × 10 -4 mol / g or more, and 14.0 × 10 -4 mol / g. The above is more preferable, and 16.0 × 10 -4 mol / g or more is further preferable.
 共重合体(X)1gに対する、ポリエポキシ化合物(Y)中のエポキシ基含有量Eyは、一例として50.0×10-4mol/g以下であり、35.0×10-4mol/g以下であることが好ましく、25.0×10-4mol/g以下であることがより好ましい。分散安定性の高い水性樹脂エマルジョン(α)を得るためである。なお、形成される塗膜の伸度をより高くする場合は、上記エポキシ基含有量Eyは、16.0×10-4mol/g以下であることが好ましく、14.0×10-4mol/g以下であることがより好ましく、11.0×10-4mol/g以下であることがさらに好ましい。
  前記エポキシ基含有量Eyは、必要に応じて例えば、3.00~30.0×10-4mol/gや、5.00~25.0×10-4mol/gや、10.0~20.0質量%などであってもよい。
The epoxy group content Ey in the polyepoxy compound (Y) with respect to 1 g of the copolymer (X) is, for example, 50.0 × 10 -4 mol / g or less, and 35.0 × 10 -4 mol / g. It is preferably 25.0 × 10 -4 mol / g or less, and more preferably 25.0 × 10 -4 mol / g or less. This is to obtain an aqueous resin emulsion (α) having high dispersion stability. When the elongation of the formed coating film is to be higher, the epoxy group content Ey is preferably 16.0 × 10 -4 mol / g or less, and 14.0 × 10 -4 mol / g or less. It is more preferably 11.0 × 10 -4 mol / g or less, and further preferably 11.0 × 10 -4 mol / g or less.
The epoxy group content Ey may be, for example, 3.00 to 30.0 × 10 -4 mol / g, 5.00 to 25.0 × 10 -4 mol / g, or 10.0 to 10.0, if necessary. It may be 20.0% by mass or the like.
[ポリエポキシ化合物(Y)中のエポキシ基含有量Eyと、共重合体(X)中のカルボキシ基含有量Cxとの比Ey/Cx]
 ポリエポキシ化合物(Y)中のエポキシ基含有量Eyと、共重合体(X)中のカルボキシ基含有量Cxとの比の値Ey/Cx(mol/mol)は、1.00以上であることが好ましく、2.00以上であることがより好ましく、3.50以上であることがさらに好ましい。水性樹脂組成物を硬化させることにより、優れた降伏強度を有する皮膜が得られるためである。
 ポリエポキシ化合物(Y)中のエポキシ基含有量Eyと、共重合体(X)中のカルボキシ基含有量Cxとの比の値Ey/Cx(mol/mol)は、25.0以下であることが好ましく、20.0以下であることがより好ましく、15.0以下であることがさらに好ましい。分散安定性の高い水性樹脂エマルジョン(α)が得られるためである。
 前記比は、必要に応じて例えば、3.00以上18.0以下や、4.00以上16.0以下や、5.00以上13.0以下や、6.00以上10.0以下やなどであってよい。
[Ratio of epoxy group content Ey in the polyepoxy compound (Y) to carboxy group content Cx in the copolymer (X) Ey / Cx]
The value Ey / Cx (mol / mol) of the ratio of the epoxy group content Ey in the polyepoxy compound (Y) to the carboxy group content Cx in the copolymer (X) shall be 1.00 or more. Is preferable, 2.00 or more is more preferable, and 3.50 or more is further preferable. This is because a film having excellent yield strength can be obtained by curing the aqueous resin composition.
The ratio value Ey / Cx (mol / mol) of the epoxy group content Ey in the polyepoxy compound (Y) to the carboxy group content Cx in the copolymer (X) shall be 25.0 or less. Is preferable, 20.0 or less is more preferable, and 15.0 or less is further preferable. This is because an aqueous resin emulsion (α) having high dispersion stability can be obtained.
The ratio may be, for example, 3.00 or more and 18.0 or less, 4.00 or more and 16.0 or less, 5.00 or more and 13.0 or less, 6.00 or more and 10.0 or less, etc., as required. May be.
[共重合体(X)中のエポキシ基含有量Exと、ポリエポキシ化合物(Y)中のエポキシ基含有量Eyとの比の値Ex/Ey]
 共重合体(X)中のエポキシ基含有量Exと、ポリエポキシ化合物(Y)中のエポキシ基含有量Eyとの比の値Ex/Ey(mol/mol)は、0.050以上であることが好ましく、0.10以上であることがより好ましく、0.20以上であることがさらに好ましく、0.25以上であることがさらに一層好ましく、0.35以上であることが特に好ましい。靭性の高い塗膜が得られるためである。また、分散安定性の高い水性樹脂エマルジョン(α)が得られるためである。
 共重合体(X)中のエポキシ基含有量Exと、ポリエポキシ化合物(Y)中のエポキシ基含有量Eyとの比の値Ex/Ey(mol/mol)は、5.00以下であることが好ましく、2.50以下であることがより好ましく、2.00以下であることがさらに好ましく、1.50以下であることがさらに一層好ましく、1.25以下であることが特に好ましい。伸度の高い塗膜が得られるためである。
[Ratio value Ex / Ey of the epoxy group content Ex in the copolymer (X) and the epoxy group content Ey in the polyepoxy compound (Y)]
The ratio value Ex / Ey (mol / mol) of the epoxy group content Ex in the copolymer (X) and the epoxy group content Ey in the polyepoxide compound (Y) shall be 0.050 or more. Is more preferable, 0.10 or more is more preferable, 0.20 or more is further preferable, 0.25 or more is further preferable, and 0.35 or more is particularly preferable. This is because a coating film having high toughness can be obtained. This is also because an aqueous resin emulsion (α) having high dispersion stability can be obtained.
The ratio value Ex / Ey (mol / mol) of the epoxy group content Ex in the copolymer (X) and the epoxy group content Ey in the polyepoxy compound (Y) shall be 5.00 or less. Is more preferable, 2.50 or less is more preferable, 2.00 or less is further preferable, 1.50 or less is further preferable, and 1.25 or less is particularly preferable. This is because a coating film having high elongation can be obtained.
<1-1-3.水性媒体(Z)>
 水性媒体(Z)としては、任意に選択できるが、水を用いることが好ましく、水と親水性溶媒とを含むものであっても良い。親水性溶媒としては、例えば、メタノール、エタノール及びN-メチルピロリドン等が挙げられる。親水性溶媒は、1種類のみ含まれていてもよいし、2種以上含まれていてもよい。
<1-1-3. Aqueous medium (Z)>
The aqueous medium (Z) can be arbitrarily selected, but it is preferable to use water, and water and a hydrophilic solvent may be contained. Examples of the hydrophilic solvent include methanol, ethanol, N-methylpyrrolidone and the like. Only one kind of hydrophilic solvent may be contained, or two or more kinds may be contained.
 水性樹脂エマルジョン(α)中の水性媒体(Z)の含有量は、必要に応じて選択でき、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。水性樹脂エマルジョン(α)と、硬化剤(β)及び硬化促進剤(γ)等とを混合する工程、あるいは水性樹脂組成物を被塗装面(基材)に塗布する工程における生産性及び作業性が向上するためである。
 水性樹脂エマルジョン(α)中の水性媒体(Z)の含有量は、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。水性樹脂エマルジョン(α)の管理及び輸送のためのコストを削減できるとともに、これを含む水性樹脂組成物からなる塗膜を形成する工程において、乾燥時間を短縮できるためである。
The content of the aqueous medium (Z) in the aqueous resin emulsion (α) can be selected as needed, and is preferably 20% by mass or more, more preferably 30% by mass or more, and 40% by mass or more. Is more preferable. Productivity and workability in the step of mixing the aqueous resin emulsion (α) with the curing agent (β), the curing accelerator (γ), etc., or the step of applying the aqueous resin composition to the surface to be coated (base material). Is to improve.
The content of the aqueous medium (Z) in the aqueous resin emulsion (α) is preferably 80% by mass or less, more preferably 70% by mass or less. This is because the cost for managing and transporting the aqueous resin emulsion (α) can be reduced, and the drying time can be shortened in the step of forming the coating film composed of the aqueous resin composition containing the aqueous resin emulsion (α).
 水性樹脂エマルジョン(α)は、必要に応じて、共重合体(X)、ポリエポキシ化合物(Y)、及び水性媒体(Z)のいずれにも該当しないその他の成分を含んでもよい。その他の成分としては、水性樹脂エマルジョン(α)を製造するための乳化重合の際に用いた乳化剤、重合開始剤、連鎖移動剤、水性樹脂エマルジョン(α)のpH調整に使用した塩基性物質、共重合体(X)以外の重合体、ポリエポキシ化合物(Y)以外のエポキシ化合物等が挙げられるが、これらに限られない。 The aqueous resin emulsion (α) may contain other components that do not fall under any of the copolymer (X), the polyepoxy compound (Y), and the aqueous medium (Z), if necessary. Other components include an emulsifier used in the emulsion polymerization for producing the aqueous resin emulsion (α), a polymerization initiator, a chain transfer agent, and a basic substance used for adjusting the pH of the aqueous resin emulsion (α). Examples include, but are not limited to, polymers other than the copolymer (X), epoxy compounds other than the polyepoxy compound (Y), and the like.
 乳化剤としては、例えば、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェノールエーテル、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステルなどのノニオン性界面活性剤、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキルジフェニルエーテルジスルホン酸塩、ポリオキシアルキレンアルキル硫酸塩、ポリオキシアルキレンアルキルリン酸エステルなどのアニオン性界面活性剤が挙げられる。これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの乳化剤として好ましいのは、アルキルベンゼンスルホン酸塩であり、ドデシルベンゼンスルホン酸ナトリウムを用いることがより好ましい。 Examples of the emulsifier include nonionic surfactants such as polyoxyalkylene alkyl ether, polyoxyalkylene alkyl phenol ether, polyoxyalkylene fatty acid ester, and polyoxyalkylene sorbitan fatty acid ester, alkyl sulfate ester salts, alkylbenzene sulfonates, and alkyl sulfosuccinates. Examples thereof include anionic surfactants such as acid salts, alkyldiphenyl ether disulfonates, polyoxyalkylene alkyl sulfates, and polyoxyalkylene alkyl phosphate esters. These may be used alone or in combination of two or more. Alkylbenzene sulfonate is preferable as these emulsifiers, and it is more preferable to use sodium dodecylbenzene sulfonate.
 重合開始剤としては、例えば、過酸化物を用いることが好ましい。重合開始剤として用いられる過酸化物としては、例えば、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、過酸化水素等が挙げられる。また、重合開始剤として、過酸化物と還元剤とを併用するレドックス系開始剤を使用することもできる。還元剤としては、ナトリウムスルホキシレートホルムアルデヒド、アスコルビン酸、亜硫酸塩、酒石酸またはその塩等が挙げられる。重合開始剤は、1種類のみ含まれていてもよいし、2種類以上含まれていてもよい。 As the polymerization initiator, for example, it is preferable to use a peroxide. Examples of the peroxide used as the polymerization initiator include persulfates such as potassium persulfate and ammonium persulfate, hydrogen peroxide and the like. Further, as the polymerization initiator, a redox-based initiator in which a peroxide and a reducing agent are used in combination can also be used. Examples of the reducing agent include sodium sulfoxylate formaldehyde, ascorbic acid, sulfites, tartaric acid or salts thereof. Only one type of polymerization initiator may be contained, or two or more types may be contained.
 連鎖移動剤としては、例えば、メルカプタン、アルコール等が挙げられる。連鎖移動剤は、1種類のみ含まれていてもよいし、2種類以上含まれていてもよい。
 水性樹脂エマルジョン(α)のpH調整に使用する塩基性物質としては、アンモニア、トリエチルアミン、エタノールアミン、苛性ソーダ等が挙げられる。塩基性物質は、1種類のみ含まれていてもよいし、2種類以上含まれていてもよい。
Examples of the chain transfer agent include mercaptan, alcohol and the like. Only one type of chain transfer agent may be contained, or two or more types may be contained.
Examples of the basic substance used for adjusting the pH of the aqueous resin emulsion (α) include ammonia, triethylamine, ethanolamine, caustic soda and the like. Only one kind of basic substance may be contained, or two or more kinds may be contained.
 水性樹脂エマルジョン(α)において、共重合体(X)、ポリエポキシ化合物(Y)、及び水性媒体(Z)のいずれにも該当しないその他の成分の含有量は、共重合体(X)及びポリエポキシ化合物の(Y)の合計量100質量部に対して、5.0質量部以下であることが好ましく、3.0質量部以下であることがより好ましい。前記含有量は、2.0質量部以下や、1.0質量部以下であってもよい。共重合体(X)及びポリエポキシ化合物(Y)による、本発明の目的に寄与する効果が大きくなるためである。 In the aqueous resin emulsion (α), the contents of other components that do not correspond to any of the copolymer (X), the polyepoxy compound (Y), and the aqueous medium (Z) are the copolymer (X) and the poly. It is preferably 5.0 parts by mass or less, and more preferably 3.0 parts by mass or less, based on 100 parts by mass of the total amount of (Y) of the epoxy compound. The content may be 2.0 parts by mass or less or 1.0 part by mass or less. This is because the effect of the copolymer (X) and the polyepoxy compound (Y) that contributes to the object of the present invention is increased.
<1-1-4.水性樹脂エマルジョン(α)の製造方法>
 本実施形態にかかる水性樹脂エマルジョン(α)は、例えば、以下に示す方法により製造できる。
 水性媒体(Z)中で、共重合体(X)の構造単位の由来となる化合物(すなわち、(メタ)アクリル酸エステル(A)と、エチレン性不飽和カルボン酸(B)と、エチレン性不飽和結合及びエポキシ基を有する化合物(C)と、必要に応じて含有されるベンゼン環及びエチレン性不飽和結合を有する化合物(D)および他の化合物(E))と、必要に応じて使用される乳化剤と、重合開始剤、連鎖移動剤とを、ポリエポキシ化合物(Y)の存在下で、乳化重合する方法により製造できる。
<1-1-4. Manufacturing method of aqueous resin emulsion (α)>
The aqueous resin emulsion (α) according to the present embodiment can be produced, for example, by the method shown below.
In the aqueous medium (Z), the compound from which the structural unit of the copolymer (X) is derived (that is, the (meth) acrylic acid ester (A), the ethylenically unsaturated carboxylic acid (B), and the ethylenically unsaturated A compound (C) having a saturated bond and an epoxy group, a compound (D) having a benzene ring and an ethylenically unsaturated bond and another compound (E) contained as necessary, and used as necessary. The emulsifier, the polymerization initiator, and the chain transfer agent can be produced by a method of emulsifying and polymerizing in the presence of the polyepoxide compound (Y).
 水性樹脂エマルジョン(α)を製造する際には、例えば、水性樹脂エマルジョン(α)の材料として使用する各成分を一括して仕込んで乳化重合してもよいし、各成分を連続供給しながら乳化重合してもよい。乳化重合反応は、攪拌しながら行うことが好ましい。 When producing the water-based resin emulsion (α), for example, each component used as a material of the water-based resin emulsion (α) may be collectively charged and emulsion-polymerized, or emulsified while continuously supplying each component. It may be polymerized. The emulsion polymerization reaction is preferably carried out with stirring.
 乳化重合は、任意に選択される温度で行うことができ、例えば、30~90℃の温度で行うことが好ましく、40~80℃の温度で行うことがより好ましく、40~70℃の温度で行うことがさらに好ましい。エチレン性不飽和カルボン酸(B)に含まれるカルボキシ基と、ポリエポキシ化合物(Y)に含まれるエポキシ基との反応を抑制できるためである。 The emulsion polymerization can be carried out at an arbitrarily selected temperature, for example, preferably at a temperature of 30 to 90 ° C, more preferably at a temperature of 40 to 80 ° C, and at a temperature of 40 to 70 ° C. It is even more preferable to do so. This is because the reaction between the carboxy group contained in the ethylenically unsaturated carboxylic acid (B) and the epoxy group contained in the polyepoxy compound (Y) can be suppressed.
 水性樹脂エマルジョン(α)の製造に用いる原料全体に占める、各原料の含有率(質量%)は、生成した水性樹脂エマルジョン(α)に占める、各原料に由来する共重合体(X)の構造単位の含有率(質量%)および原料に対応する化合物の含有率(質量%)と同じである。 The content (% by mass) of each raw material in the total raw materials used for producing the aqueous resin emulsion (α) is the structure of the copolymer (X) derived from each raw material in the produced aqueous resin emulsion (α). It is the same as the content of the unit (% by mass) and the content of the compound corresponding to the raw material (% by mass).
 上記製造方法によれば、共重合体(X)の粒子中にポリエポキシ化合物(Y)が均一に分散した水性樹脂エマルジョン(α)が得られる。ここで、「均一に存在している」とは、必ずしも、共重合体(X)とポリエポキシ化合物(Y)とが相溶している必要はなく、共重合体(X)粒子の中心側及び表面側のいずれにおいても、ポリエポキシ化合物(Y)のドメインが偏りなく存在していればよい。 According to the above production method, an aqueous resin emulsion (α) in which the polyepoxy compound (Y) is uniformly dispersed in the particles of the copolymer (X) can be obtained. Here, "uniformly present" does not necessarily mean that the copolymer (X) and the polyepoxy compound (Y) are incompatible with each other, and the center side of the copolymer (X) particles. It is sufficient that the domain of the polyepoxy compound (Y) is evenly present on both the surface side and the surface side.
<1-1-5.水性樹脂エマルジョン(α)の特性>
[水性樹脂エマルジョン(α)のpH]
 水性樹脂エマルジョン(α)のpHは、ガラス電極を標準電極とした水素イオン濃度指示計によるpHメーターを用いて、液温25℃において測定した値である。
 水性樹脂エマルジョン(α)のpHは、2.0以上であることが好ましく、3.5以上であることがより好ましく、5.0以上であることがさらに好ましい。水性樹脂エマルジョン(α)のpHは、10.0以下であることが好ましく、9.0以下であることがより好ましい。水性樹脂エマルジョン(α)の機械的安定性、化学的安定性が向上するためである。前記pHは、必要に応じて例えば、5.0以上9.0以下や、6.0以上8.5以下や、7.0以上8.0以下などであってもよい。
 水性樹脂エマルジョン(α)のpHは、例えば、水性樹脂エマルジョン(α)の合成工程中または合成後に塩基性物質を加えることにより調整できる。
<1-1-5. Characteristics of water-based resin emulsion (α)>
[PH of aqueous resin emulsion (α)]
The pH of the aqueous resin emulsion (α) is a value measured at a liquid temperature of 25 ° C. using a pH meter using a hydrogen ion concentration indicator using a glass electrode as a standard electrode.
The pH of the aqueous resin emulsion (α) is preferably 2.0 or higher, more preferably 3.5 or higher, and even more preferably 5.0 or higher. The pH of the aqueous resin emulsion (α) is preferably 10.0 or less, more preferably 9.0 or less. This is because the mechanical stability and the chemical stability of the aqueous resin emulsion (α) are improved. The pH may be, for example, 5.0 or more and 9.0 or less, 6.0 or more and 8.5 or less, 7.0 or more and 8.0 or less, if necessary.
The pH of the aqueous resin emulsion (α) can be adjusted, for example, by adding a basic substance during or after the synthesis step of the aqueous resin emulsion (α).
[水性樹脂エマルジョン(α)の不揮発分濃度]
 水性樹脂エマルジョン(α)の不揮発分濃度は、以下に示す方法により求められる値である。直径5cmのアルミ皿に、水性樹脂エマルジョン(α)を1g秤量し、大気圧、乾燥器内で、空気を循環させながら105℃で1時間乾燥させた後、得られる残分の質量を測定する。測定された残分の質量の、乾燥前の水性樹脂エマルジョン(α)の質量に対する割合(質量%)を、水性樹脂エマルジョン(α)の不揮発分濃度として求める。
[Non-volatile concentration of aqueous resin emulsion (α)]
The non-volatile content concentration of the aqueous resin emulsion (α) is a value obtained by the method shown below. Weigh 1 g of the aqueous resin emulsion (α) on an aluminum dish with a diameter of 5 cm, dry it at 105 ° C for 1 hour while circulating air in a dryer at atmospheric pressure, and then measure the mass of the remaining residue. .. The ratio (mass%) of the measured residual mass to the mass of the aqueous resin emulsion (α) before drying is determined as the non-volatile content concentration of the aqueous resin emulsion (α).
 水性樹脂エマルジョン(α)における不揮発分濃度は、水性樹脂エマルジョン(α)中に含まれる水性媒体(Z)の含有量を調整することにより、適宜調節可能である。
 水性樹脂エマルジョン(α)の不揮発分濃度は、仕様等に応じて適宜調整すればよいが、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが好ましい。有効成分に対する水性媒体(Z)の含有量を少なくすることで、水性樹脂エマルジョン(α)の管理及び輸送のためのコストを削減できるとともに、塗膜の形成工程において、乾燥時間を短縮して生産性を向上できるためである。
The non-volatile content concentration in the aqueous resin emulsion (α) can be appropriately adjusted by adjusting the content of the aqueous medium (Z) contained in the aqueous resin emulsion (α).
The non-volatile content concentration of the aqueous resin emulsion (α) may be appropriately adjusted according to the specifications and the like, but is preferably 10% by mass or more, more preferably 20% by mass or more, and 30% by mass or more. It is preferable to have. By reducing the content of the aqueous medium (Z) with respect to the active ingredient, the cost for managing and transporting the aqueous resin emulsion (α) can be reduced, and the drying time is shortened in the coating film forming process. This is because the sex can be improved.
 水性樹脂エマルジョン(α)の不揮発分濃度は、仕様等に応じて適宜調整すればよいが、70質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることがさらに好ましい。水性樹脂エマルジョン(α)と、硬化剤(β)及び硬化促進剤(γ)等とを混合する工程、あるいは水性樹脂組成物を被塗装面に塗布する工程における生産性及び作業性が向上するためである。 The non-volatile content concentration of the aqueous resin emulsion (α) may be appropriately adjusted according to the specifications and the like, but is preferably 70% by mass or less, more preferably 60% by mass or less, and 50% by mass or less. It is more preferable to have. To improve productivity and workability in the step of mixing the aqueous resin emulsion (α) with the curing agent (β), the curing accelerator (γ), etc., or the step of applying the aqueous resin composition to the surface to be coated. Is.
[水性樹脂エマルジョン(α)の粘度]
 本実施形態において水性樹脂エマルジョン(α)の粘度は、23℃で測定される。水性樹脂エマルジョン(α)の粘度の測定は、B型粘度計を用いて、回転数60rpmで行われる。粘度の測定は、水性樹脂エマルジョン(α)の粘度に応じたロータを選択して測定された値である。水性樹脂エマルジョン(α)の粘度が3mPa・s~300mPa・s程度である場合は、ロータNo.1を用いて測定する。
[Viscosity of aqueous resin emulsion (α)]
In this embodiment, the viscosity of the aqueous resin emulsion (α) is measured at 23 ° C. The viscosity of the aqueous resin emulsion (α) is measured at a rotation speed of 60 rpm using a B-type viscometer. The viscosity is measured by selecting a rotor according to the viscosity of the aqueous resin emulsion (α). When the viscosity of the aqueous resin emulsion (α) is about 3 mPa · s to 300 mPa · s, the rotor No. Measure using 1.
 水性樹脂エマルジョン(α)の粘度は、例えば、0.1mPa・s以上であってもよく、1mPa・s以上であってもよく、3mPa・s以上であってもよく、5mPa・s以上であってもよい。水性樹脂エマルジョン(α)の粘度は、例えば、300mPa・s以下であってもよく、100mPa・s以下であってもよく、50mPa・s以下であってもよく、25mPa・s以下であってもよい。 The viscosity of the aqueous resin emulsion (α) may be, for example, 0.1 mPa · s or more, 1 mPa · s or more, 3 mPa · s or more, or 5 mPa · s or more. May be. The viscosity of the aqueous resin emulsion (α) may be, for example, 300 mPa · s or less, 100 mPa · s or less, 50 mPa · s or less, or 25 mPa · s or less. good.
[1-2.硬化剤(β)]
 硬化剤(β)は、エポキシ基に対する反応性を有する官能基(F)を有する化合物からなる。官能基(F)は、無置換のアミノ基(-NH(置換基なし)、1つのみ置換基を有するアミノ基(-NHR(Rは置換基である))、カルボキシ基、メルカプト基からなる群より選択されるいずれかであることが好ましい。硬化剤(β)に含まれるエポキシ基に対する反応性を有する官能基(F)の種類は、1種類のみであってもよいし、2種類以上であってもよい。
[1-2. Hardener (β)]
The curing agent (β) consists of a compound having a functional group (F) having reactivity with an epoxy group. The functional group (F) is composed of an unsubstituted amino group (-NH 2 (no substituent)), an amino group having only one substituent (-NHR (R is a substituent)), a carboxy group, and a mercapto group. The type of the functional group (F) having reactivity with the epoxy group contained in the curing agent (β) may be only one type or two types. It may be the above.
 無置換または1つのみ置換基を有するアミノ基を有する硬化剤(β)としては、ポリアミンが挙げられる。ポリアミンは、無置換のアミノ基(-NH)および/または1つのみ置換基を有するアミノ基(-NHR(Rは置換基である))を有する化合物であり、例えば、脂肪族ポリアミン、脂環族ポリアミン、芳香族ポリアミンが挙げられる。 Examples of the curing agent (β) having an amino group having no substitution or only one substituent include polyamines. A polyamine is a compound having an unsubstituted amino group (-NH 2 ) and / or an amino group having only one substituent (-NHR (R is a substituent)), for example, an aliphatic polyamine, a fat. Examples include cyclic polyamines and aromatic polyamines.
 脂肪族ポリアミンとしては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、これらの変性品等が挙げられる。脂環族ポリアミンとしては、例えば、イソホロンジアミン、メンタンジアミン、N-アミノエチルピペラジン、ジアミノジシクロヘキシルメタン、これらの変性品等が挙げられる。芳香族ポリアミンとしては、例えば、m-キシリレンジアミン、ジアミノジフェニルメタン、m-フェニレンジアミン、ジアミノジフェニルスルホン、及びこれらの変性品等が挙げられる。 Examples of the aliphatic polyamine include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and modified products thereof. Examples of the alicyclic polyamine include isophoronediamine, mentandiamine, N-aminoethylpiperazine, diaminodicyclohexylmethane, and modified products thereof. Examples of the aromatic polyamine include m-xylylenediamine, diaminodiphenylmethane, m-phenylenediamine, diaminodiphenylsulfone, and modified products thereof.
 カルボキシ基を有する硬化剤(β)としては、分子内に2個以上のカルボキシ基を有する化合物が好ましい。例えば、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、メチルヘキサヒドロフタル酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸が挙げられる。 As the curing agent (β) having a carboxy group, a compound having two or more carboxy groups in the molecule is preferable. For example, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, methylhexahydrophthalic acid, pyromellitic acid, benzophenone tetracarboxylic acid, 1,2,3,4-butanetetracarboxylic acid can be mentioned.
 メルカプト基を有する硬化剤(β)としては、分子内に2個以上のメルカプト基を有する化合物が好ましい。例えば、チオグリコール酸と多価アルコールとの縮合物、ポリサルファイド等が挙げられる。
 これらの硬化剤(β)は、1種または2種以上組み合わせて用いてもよい。硬化剤(β)としては、ポリアミン系硬化剤を用いることが好ましい。
As the curing agent (β) having a mercapto group, a compound having two or more mercapto groups in the molecule is preferable. For example, a condensate of thioglycolic acid and a polyhydric alcohol, polysulfide and the like can be mentioned.
These curing agents (β) may be used alone or in combination of two or more. As the curing agent (β), it is preferable to use a polyamine-based curing agent.
 硬化剤(β)としては、市販のものを用いてもよい。市販の硬化剤の例としては、アデカハードナーEH-8051(ポリアミン)(株式会社ADEKA製);フジキュアーFXI-919;トーマイドTXH-674-BおよびTXS-53-C(株式会社T&K TOKA社製);リカシッドBTW(新日本理化株式会社製);ならびにカレンズMT BD-1(昭和電工株式会社製)などが挙げられる。 As the curing agent (β), a commercially available one may be used. Examples of commercially available curing agents include ADEKA HANDNER EH-8051 (polyamine) (manufactured by ADEKA Co., Ltd.); Fujicure FXI-919; tomide TXH-674-B and TXS-53-C (manufactured by T & K TOKA Co., Ltd.); Examples include Ricacid BTW (manufactured by Shin Nihon Rika Co., Ltd.); and Karenz MT BD-1 (manufactured by Showa Denko KK).
 硬化剤(β)に含まれるエポキシ基に対する反応性を有する官能基(F)の含有量は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、0.010当量以上であり、0.10当量以上であることが好ましく、0.20当量以上であることがさらに好ましい。水性樹脂組成物を硬化させてなる皮膜の降伏強度、防錆性及び金属材料への密着性が向上するためである。官能基(F)の当量の算出において、官能基(F)が無置換アミンのように活性水素を2個有する場合、官能基(F)の数は2個と数える。 The content of the functional group (F) having reactivity with the epoxy group contained in the curing agent (β) is 0.010 equivalent or more with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion (α). It is preferably 0.10 equivalent or more, and more preferably 0.20 equivalent or more. This is because the yield strength, the rust preventive property, and the adhesion to the metal material of the film formed by curing the aqueous resin composition are improved. In the calculation of the equivalent of the functional group (F), when the functional group (F) has two active hydrogens such as an unsubstituted amine, the number of the functional groups (F) is counted as two.
 硬化剤(β)に含まれるエポキシ基に対する反応性を有する官能基(F)の含有量は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、3.0当量以下であり、2.0当量以下であることが好ましく、1.5当量以下であることがより好ましく、1.0当量以下であることがさらに好ましく、0.80当量以下であることがさらに好ましく、0.50当量以下であることがさらに好ましい。水性樹脂組成物を硬化させてなる塗膜の伸度が向上するためである。 The content of the functional group (F) having reactivity with the epoxy group contained in the curing agent (β) is 3.0 equivalents or less with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion (α). It is preferably 2.0 equivalents or less, more preferably 1.5 equivalents or less, further preferably 1.0 equivalents or less, still more preferably 0.80 equivalents or less, and 0.50. It is more preferably equal to or less than the equivalent. This is because the elongation of the coating film formed by curing the aqueous resin composition is improved.
[1-3.硬化促進剤(γ)]
 硬化促進剤(γ)は、水性樹脂組成物の硬化を促進し、皮膜降伏強度の高い皮膜を形成する機能を有する。硬化促進剤(γ)は、エポキシ基に対する反応性を有する官能基を有さない第三級アミンからなる。本実施形態における第三級アミンは、NR(式中、Rは、置換基であり、それぞれ異なっていてもよいし、2つ以上同じものが含まれていてもよい。Rは、互いに結合して環を形成していてもよい。)で示される化合物である。
[1-3. Curing accelerator (γ)]
The curing accelerator (γ) has a function of accelerating the curing of the aqueous resin composition and forming a film having a high film yield strength. The curing accelerator (γ) consists of a tertiary amine having no functional group having reactivity with an epoxy group. The tertiary amine in the present embodiment is NR 1 R 2 R 3 (in the formula, R 1 R 2 R 3 is a substituent and may be different from each other, or two or more of the same ones are included. R 1 R 2 R 3 may be bonded to each other to form a ring).
 硬化促進剤(γ)は、第三級脂肪族アミン、第三級脂環式アミン、第三級ヘテロ芳香族アミン、及び第三級アミン(NR)を形成する窒素原子がフェニル基に直接結合していない第三級芳香族アミンからなる群より選択される少なくとも1つの化合物であることが好ましく、第三級脂肪族アミン、第三級脂環式アミン、第三級ヘテロ芳香族アミンからなる群より選択される少なくとも1つの化合物であることがより好ましい。硬化促進剤(γ)の求核性を高め、効率的に硬化反応を進めるためである。 The curing accelerator (γ) contains nitrogen atoms forming a tertiary aliphatic amine, a tertiary alicyclic amine, a tertiary heteroaromatic amine, and a tertiary amine (NR 1 R 2 R 3 ). It is preferably at least one compound selected from the group consisting of tertiary aromatic amines that are not directly attached to the phenyl group, preferably tertiary aliphatic amines, tertiary alicyclic amines, and tertiary heteros. More preferably, it is at least one compound selected from the group consisting of aromatic amines. This is to enhance the nucleophilicity of the curing accelerator (γ) and to promote the curing reaction efficiently.
 第三級脂肪族アミンとしては、例えば、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリ-sec-ブチルアミン、トリ-n-ヘキシルアミンなどが挙げられる。 Examples of the tertiary aliphatic amine include triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, tri-sec-butylamine, and tri-n-hexylamine.
 第三級脂環式アミンとしては、例えば、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、などが挙げられる。 Examples of the tertiary alicyclic amine include 1,4-diazabicyclo [2.2.2] octane (DABCO), 1,5-diazabicyclo [4.3.0] nona-5-ene, and 1,8. -Diazabicyclo [5.4.0] Undec-7-ene, and the like.
 第三級ヘテロ芳香族アミンとしては、イミダゾール骨格を有する化合物を用いることが好ましく、具体的には、例えば、イミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾールなどが挙げられる。 As the tertiary heteroaromatic amine, it is preferable to use a compound having an imidazole skeleton, and specific examples thereof include imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole and the like.
 第三級アミン(NR)の窒素原子に直接結合していないフェニル基を有する第三級芳香族アミンとしては、ジメチルベンジルアミン、ジエチルベンジルアミン、トリベンジルアミン、2,4,6-トリスジメチルアミノメチルフェノール、2-フェニルイミダゾールなどが挙げられる。 Examples of the tertiary aromatic amine having a phenyl group not directly bonded to the nitrogen atom of the tertiary amine (NR 1 R 2 R 3 ) include dimethylbenzylamine, diethylbenzylamine, tribenzylamine, 2,4. Examples thereof include 6-trisdimethylaminomethylphenol and 2-phenylimidazole.
 これらの硬化促進剤(γ)の中でも特に、下記(i)および/または(ii)の化合物を用いることが好ましい。
(i)エポキシ基に対する反応性を有する官能基(F)を有さず、アミノ基の3つの置換基によって、2つの窒素原子同士が結合された飽和環構造を有する第三級脂環式アミン。(ii)エポキシ基に対する反応性を有する官能基(F)を有さず、2つ以上の窒素原子を含むヘテロ芳香環構造を有する第三級ヘテロ芳香族アミン。
Among these curing accelerators (γ), it is particularly preferable to use the following compounds (i) and / or (ii).
(I) A tertiary alicyclic amine having a saturated ring structure in which two nitrogen atoms are bonded to each other by three substituents of an amino group without having a functional group (F) having reactivity with an epoxy group. .. (Ii) A tertiary heteroaromatic amine having a heteroaromatic ring structure containing two or more nitrogen atoms without having a functional group (F) reactive with an epoxy group.
 (i)第三級脂環式アミンとしては、例えば、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)が挙げられる。(ii)第三級ヘテロ芳香族アミンとしては、例えば、イミダゾールが挙げられる。
 硬化促進剤(γ)は、1種または2種以上組み合わせて用いてもよい。
(I) Examples of the tertiary alicyclic amine include 1,4-diazabicyclo [2.2.2] octane (DABCO). (Ii) Examples of the tertiary heteroaromatic amine include imidazole.
The curing accelerator (γ) may be used alone or in combination of two or more.
 硬化促進剤(γ)の含有量は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、0.0070mol以上であり、0.070mol以上であることが好ましく、0.18mol以上であることがより好ましく、0.30mol以上であることがさらに好ましい。皮膜降伏強度の高い硬化物が得られるためである。 The content of the curing accelerator (γ) is 0.0070 mol or more, preferably 0.070 mol or more, preferably 0.18 mol or more, with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion (α). It is more preferable that the amount is 0.30 mol or more, and it is more preferable that the amount is 0.30 mol or more. This is because a cured product having a high film yield strength can be obtained.
 硬化促進剤(γ)の含有量は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、1.5mol以下であり、1.0mol以下であることが好ましく、0.70mol以下であることがより好ましく、0.44mol以下であることがさらに好ましく、0.40mol以下であることがさらに好ましく、0.38mol以下であることが特に好ましい。水性樹脂組成物の短時間でのゲル化を抑制できるためである。また、防錆性の良好な硬化物が得られるためである。 The content of the curing accelerator (γ) is 1.5 mol or less, preferably 1.0 mol or less, and 0.70 mol or less with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion (α). It is more preferably 0.44 mol or less, further preferably 0.40 mol or less, and particularly preferably 0.38 mol or less. This is because gelation of the aqueous resin composition in a short time can be suppressed. This is also because a cured product having good rust resistance can be obtained.
[1-4.その他の成分]
 本実施形態にかかる水性樹脂組成物は、必要に応じてさらに、顔料、充填剤、有機質または無機質の中空バルーン、分散剤(例えば、アミノアルコール、ポリカルボキシラート等)、界面活性剤、カップリング剤、脱泡剤、防腐剤(例えば、殺生物剤、殺カビ剤、殺真菌剤、殺藻剤、及びこれらの組み合わせ等)、流動剤、レベリング剤、中和剤(例えば、水酸化物、アミン、アンモニア、炭酸塩等)等のその他の成分を含んでもよい。
[1-4. Other ingredients]
The aqueous resin composition according to the present embodiment further comprises a pigment, a filler, an organic or inorganic hollow balloon, a dispersant (for example, amino alcohol, polycarboxylate, etc.), a surfactant, and a coupling agent, if necessary. , Defoaming agents, preservatives (eg, biocides, fungicides, fungiicides, algae killing agents, and combinations thereof, etc.), fluidizing agents, leveling agents, neutralizing agents (eg, hydroxides, amines, etc.) , Ammonia, carbonate, etc.) may be contained.
 顔料としては、例えば、酸化チタン、タルク、硫酸バリウム、カーボンブラック、ベンガラ、炭酸カルシウム、酸化珪素、タルク、マイカ、カオリン、クレー、フェライト、珪砂等が挙げられる。 Examples of the pigment include titanium oxide, talc, barium sulfate, carbon black, red ocher, calcium carbonate, silicon oxide, talc, mica, kaolin, clay, ferrite, silica sand and the like.
 カップリング剤としては、シランカップリング剤を用いることが好ましい。シランカップリング剤としては、エポキシシラン化合物が挙げられる。具体的な例としては、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシ)エチルトリメトキシシラン等が挙げられる。 As the coupling agent, it is preferable to use a silane coupling agent. Examples of the silane coupling agent include epoxy silane compounds. Specific examples include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 2- (3,4-epoxycyclohexi) ethyl. Examples thereof include trimethoxysilane.
 シランカップリング剤の添加量は、任意に選択できるが、水性樹脂エマルジョン(α)100質量部に対して0.1~5質量部であることが好ましく、0.3~3質量部であることがより好ましい。硬化後の水性樹脂組成物の防錆性及び金属材料への密着性が向上するためである。 The amount of the silane coupling agent added can be arbitrarily selected, but is preferably 0.1 to 5 parts by mass, preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the aqueous resin emulsion (α). Is more preferable. This is because the rust preventive property and the adhesion to the metal material of the aqueous resin composition after curing are improved.
[1-5.水性樹脂組成物の製造方法]
  本実施形態の水性樹脂組成物は、任意の方法で製造することができる。
 本実施形態にかかる水性樹脂組成物は、水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)と、必要に応じて含有されるその他の成分とを混合、攪拌して、各成分を分散させる方法により好ましく製造できる。
 水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)と、必要に応じて含有されるその他の成分とを混合し、攪拌する方法としては、任意の方法および装置を用いて行うことができ、例えば、ロボミクス(プライミクス株式会社製)などを用いることができる。各成分を十分に分散させるために、攪拌時間は、5分以上とすることが好ましい。また、樹脂成分が硬化することを抑制するため、攪拌時間は1時間以内とすることが好ましい。
  本実施形態では、例えば、水性樹脂エマルジョン(α)を含む第1液と、硬化剤(β)と硬化促進剤(γ)とを含む第2液を用意して、その後、前記第1液と前記第2液を攪拌(混合)することでも、本実施形態の水性樹脂組成物を好ましく製造することができる。第1液と第2液は、それぞれ必要に応じて含有されるその他の成分を含んでも良い。この時、後述する、本実施形態の水性樹脂組成物セットを使用しても、あるいは、使用しなくてもよい。
[1-5. Method for manufacturing aqueous resin composition]
The aqueous resin composition of the present embodiment can be produced by any method.
In the aqueous resin composition according to the present embodiment, the aqueous resin emulsion (α), the curing agent (β), the curing accelerator (γ), and other components contained as necessary are mixed and stirred. Therefore, it can be preferably produced by a method of dispersing each component.
Any method and apparatus can be used as a method for mixing and stirring the aqueous resin emulsion (α), the curing agent (β), the curing accelerator (γ), and other components contained as necessary. For example, Robomics (manufactured by Primix Corporation) can be used. In order to sufficiently disperse each component, the stirring time is preferably 5 minutes or more. Further, in order to suppress the curing of the resin component, the stirring time is preferably 1 hour or less.
In the present embodiment, for example, a first liquid containing an aqueous resin emulsion (α) and a second liquid containing a curing agent (β) and a curing accelerator (γ) are prepared, and then with the first liquid. The aqueous resin composition of the present embodiment can also be preferably produced by stirring (mixing) the second liquid. The first liquid and the second liquid may each contain other components contained as needed. At this time, the aqueous resin composition set of the present embodiment, which will be described later, may or may not be used.
<2.皮膜(塗膜)>
 本実施形態の皮膜(film)及び塗膜(coating)は、本実施形態の水性樹脂組成物の硬化物からなる。
 本実施形態の皮膜は、必要に応じて、本発明の水性樹脂組成物の硬化物からなる皮膜の下層に設けられた下塗り層、および/または上層に設けられた上塗り層などからなる皮膜と、積層して設けられていてもよい。塗膜についても同様である。
<2. Film (coating film)>
The film and coating of the present embodiment are made of a cured product of the aqueous resin composition of the present embodiment.
The film of the present embodiment may be, if necessary, a film composed of an undercoat layer provided on the lower layer of the film made of the cured product of the aqueous resin composition of the present invention, and / or a film consisting of an upper coat layer provided on the upper layer. It may be provided in a laminated manner. The same applies to the coating film.
<3.塗膜の製造方法>
 本実施形態の塗膜の製造方法では、本実施形態の水性樹脂組成物を用意し、水性樹脂組成物を被塗装面に塗布する塗布工程と、塗布工程の後、被塗装面に塗布された水性樹脂組成物を乾燥及び、被塗装面を硬化させる硬化工程とを行う。
<3. Coating film manufacturing method>
In the method for producing a coating film of the present embodiment, the aqueous resin composition of the present embodiment is prepared and applied to the surface to be coated after a coating step of applying the aqueous resin composition to the surface to be coated and a coating step. A curing step of drying the aqueous resin composition and curing the surface to be coated is performed.
 塗布工程では、本実施形態の水性樹脂組成物を被塗装物(基材)の被塗装面に塗布する。被塗装面を形成している材料としては、任意に選択できるが、例えば、金属材料が挙げられる。被塗装面には、プライマー、下塗り等の表面処理が予め施されていてもよい。
 水性樹脂組成物を被塗装面に塗布する方法としては、刷毛、ローラー等を用いる方法が挙げられるが、これに限られない。
 塗布工程は、水性樹脂組成物を製造するために上記各成分を混合、攪拌する工程が終了してから1時間以内に完了することが好ましい。塗布工程が完了する前に樹脂成分が硬化することを抑制するためである。
In the coating step, the aqueous resin composition of the present embodiment is applied to the surface to be coated of the object to be coated (base material). The material forming the surface to be coated can be arbitrarily selected, and examples thereof include a metal material. The surface to be coated may be subjected to surface treatment such as a primer and an undercoat in advance.
Examples of the method of applying the aqueous resin composition to the surface to be coated include, but are not limited to, a method using a brush, a roller, or the like.
The coating step is preferably completed within 1 hour after the step of mixing and stirring each of the above components for producing an aqueous resin composition is completed. This is to prevent the resin component from curing before the coating process is completed.
 硬化工程では、例えば、水性樹脂組成物の塗布された被塗装物の被塗装面を、乾燥し、養生する。このことにより、水性樹脂組成物に含まれる樹脂成分を硬化させる。養生する時間は、養生する雰囲気の温度によって異なる。例えば、20℃では5時間以上であることが好ましく、40℃では1時間以上であることが好ましく、60℃では5分以上であることが好ましい。 In the curing step, for example, the surface to be coated of the object to be coated to which the aqueous resin composition is applied is dried and cured. This cures the resin component contained in the aqueous resin composition. The curing time depends on the temperature of the curing atmosphere. For example, it is preferably 5 hours or more at 20 ° C, preferably 1 hour or more at 40 ° C, and preferably 5 minutes or more at 60 ° C.
 本実施形態の水性樹脂組成物は、水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを含む。このため、荷重及び衝撃に対する耐性が高く、基材の変形に伴う破断が生じにくい硬化物からなる塗膜を形成できる。
 本実施形態の塗膜は、本実施形態の水性樹脂組成物の硬化物からなる。したがって、本実施形態の塗膜は、荷重及び衝撃に対する耐性が高く、基材の変形に伴う破断が生じにくい。
 本実施形態の塗膜の製造方法、すなわち塗膜の形成方法では、本実施形態の水性樹脂組成物を、被塗装面に塗布し、被塗装面に塗布された水性樹脂組成物を乾燥及び硬化させる。このことにより、本実施形態の水性樹脂組成物の硬化物からなり、荷重及び衝撃に対する耐性が高く、金属や金属材料や樹脂などの材料を用いた基材の変形に伴う破断が生じにくい、塗膜を形成できる。
The aqueous resin composition of the present embodiment contains an aqueous resin emulsion (α), a curing agent (β), and a curing accelerator (γ). Therefore, it is possible to form a coating film made of a cured product, which has high resistance to load and impact and is less likely to break due to deformation of the base material.
The coating film of the present embodiment is made of a cured product of the aqueous resin composition of the present embodiment. Therefore, the coating film of the present embodiment has high resistance to load and impact, and is less likely to break due to deformation of the base material.
In the method for producing a coating film of the present embodiment, that is, the method for forming a coating film, the aqueous resin composition of the present embodiment is applied to a surface to be coated, and the aqueous resin composition applied to the surface to be coated is dried and cured. Let me. As a result, it is made of a cured product of the aqueous resin composition of the present embodiment, has high resistance to load and impact, and is less likely to break due to deformation of a base material using a material such as metal, metal material, or resin. A film can be formed.
<4.金属の保護方法>
 本実施形態の金属の保護方法は、金属の表面に塗膜を形成し、設けられた塗膜によって金属を保護する方法である。塗膜としては、本実施形態の水性樹脂組成物の硬化物からなるものを用いる。前記金属は、必要に応じて選択でき、金属を含む材料や金属合金を意味しても良い。
 本実施形態の塗膜、すなわち水性樹脂組成物の硬化物からなる塗膜は、上記効果を奏するため、前記塗膜を形成することは、金属の保護方法として、より具体的には金属の表面の保護方法として好適である。
<4. Metal protection method>
The metal protection method of the present embodiment is a method in which a coating film is formed on the surface of the metal and the metal is protected by the provided coating film. As the coating film, a cured product of the aqueous resin composition of the present embodiment is used. The metal can be selected as needed, and may mean a material containing a metal or a metal alloy.
Since the coating film of the present embodiment, that is, the coating film made of a cured product of the aqueous resin composition has the above-mentioned effect, forming the coating film is a method for protecting the metal, more specifically, the surface of the metal. It is suitable as a protection method.
<5.水性樹脂組成物セット>
 本実施形態の水性樹脂組成物セットは、第1液と第2液とを含み、本実施形態の水性樹脂組成物の構成成分が第1液と第2液とに分けて保存されるものである。本実施形態の水性樹脂組成物セットにおける第1液は、水性樹脂エマルジョン(α)を含む。第2液は、硬化剤(β)と、硬化促進剤(γ)と、を含む。本実施形態の水性樹脂組成物セットは、保存中に水性樹脂エマルジョン(α)に含まれる樹脂成分が硬化剤(β)と反応して硬化することがなく、保存安定性に優れる。
 本実施形態の塗膜は、本実施形態の水性樹脂組成物セットを用いて製造してもよい。すなわち、本実施形態の水性樹脂組成物セットにおける第1液と第2液とを混合することにより、本実施形態の水性樹脂組成物を調製し、上記塗膜の製造方法を行ってもよい。
 水性樹脂組成物セットとしては、例えば、第1液と第2液のみからなっても良いが、第1液と第2液をそれぞれ収納する2つの収納部、及び/又は、前記収容部を有する容器や装置を有しても良い。前記収容部は、必要に応じて、供給口、開口部、開口可能部、及び/又は開閉可能な蓋等を有してもよい。前記セットとしては、水性樹脂組成物の収容容器や供給装置や形成装置などが例として挙げられるが、これら例のみに限定されない。前記2つの収容部は、離れて設けられても、結合して形成されてもよい。
<5. Aqueous resin composition set >
The aqueous resin composition set of the present embodiment contains a first liquid and a second liquid, and the constituent components of the aqueous resin composition of the present embodiment are separately stored as the first liquid and the second liquid. be. The first liquid in the aqueous resin composition set of the present embodiment contains an aqueous resin emulsion (α). The second liquid contains a curing agent (β) and a curing accelerator (γ). The aqueous resin composition set of the present embodiment is excellent in storage stability because the resin component contained in the aqueous resin emulsion (α) does not react with the curing agent (β) to cure during storage.
The coating film of the present embodiment may be produced by using the aqueous resin composition set of the present embodiment. That is, the aqueous resin composition of the present embodiment may be prepared by mixing the first liquid and the second liquid in the aqueous resin composition set of the present embodiment, and the method for producing the coating film may be carried out.
The aqueous resin composition set may consist of, for example, only the first liquid and the second liquid, but has two storage portions for storing the first liquid and the second liquid, and / or the storage portion. It may have a container or a device. The accommodating portion may have a supply port, an opening, an openable portion, and / or a lid that can be opened and closed, and the like, if necessary. Examples of the set include a container for containing an aqueous resin composition, a supply device, a forming device, and the like, but the set is not limited to these examples. The two accommodating portions may be provided apart or may be formed in combination.
<6.適用分野>
 本発明の水性樹脂組成物は、様々な分野において有用であり、特に金属製品の表面に塗布される塗料としての用途に好適である。本発明の水性樹脂組成物の硬化物からなる塗膜が形成される物品、すなわち本発明の水性樹脂組成物の被塗装物とされる適用対象物は、任意に選択できる。適用対象物としては、具体的には、例えば、様々な家庭用品、冷蔵庫などの家電製品、遊園地・公園などに設置される遊具、スポーツ用品、建築物(インテリア、エクステリアなど)、輸送機械・工作機械を含む様々な工業用品およびその部品、自動車のボディーおよびシャシー、鉄道車両の車体および床下機器、船舶、海上コンテナ、航空機などが挙げられる。
<6. Field of application >
The aqueous resin composition of the present invention is useful in various fields, and is particularly suitable for use as a coating material applied to the surface of a metal product. An article in which a coating film made of a cured product of the aqueous resin composition of the present invention is formed, that is, an object to be applied as an object to be coated of the aqueous resin composition of the present invention can be arbitrarily selected. Specifically, the applicable objects include various household appliances, home appliances such as refrigerators, play equipment installed in amusement parks and parks, sporting goods, buildings (interior, exterior, etc.), transportation machines, and the like. Various industrial appliances and parts including machine tools, automobile bodies and chassis, body and underfloor equipment of railway vehicles, ships, marine containers, aircraft and the like.
 以下、実施例を用いて本発明を詳細に説明する。なお、下記の実施例は、本発明の全てを制限するものではなく、本記載の内容を逸脱しない範囲で実施したものは、全て本発明の技術範囲に含まれる。 Hereinafter, the present invention will be described in detail with reference to examples. It should be noted that the following examples do not limit all of the present invention, and all the examples carried out within the range not deviating from the contents of the present invention are included in the technical scope of the present invention.
<1.水性樹脂エマルジョン(α)の合成>
(水性樹脂エマルジョン(α-1))
 冷却管、温度計、攪拌機、滴下ロートを有するセパラブルフラスコに、イオン交換水158質量部を仕込み、60℃に昇温した。セパラブルフラスコの内容物に窒素ガスを吹き込み、脱酸素した。
 ここに表1に示す量(質量部、空欄は0質量部)のメチルメタクリレート、2-エチルヘキシルアクリレート、メタクリル酸、グリシジルメタクリレート、水添ビスフェノールA型エポキシ、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム、およびイオン交換水356質量部からなる乳化物を、3時間かけて滴下した。乳化物と同時に、酸化剤としての過硫酸カリウム1.2質量部をイオン交換水41質量部に溶解したものと、還元剤としての亜硫酸水素ナトリウム0.4質量部をイオン交換水21質量部に溶解したものを、3.3時間かけて、60℃で滴下し、重合した。
 滴下終了後、60℃で1.5時間熟成した。その後、冷却し、塩基性物質としてのアンモニア水0.8質量部を添加し、水性樹脂エマルジョン(α-1)を得た。
 表1に示す「イオン交換水」の数値は、合成された水性樹脂エマルジョン(α-1)中に含まれるイオン交換水の含有量を示す。
<1. Synthesis of aqueous resin emulsion (α)>
(Aqueous resin emulsion (α-1))
158 parts by mass of ion-exchanged water was placed in a separable flask having a cooling tube, a thermometer, a stirrer, and a dropping funnel, and the temperature was raised to 60 ° C. Nitrogen gas was blown into the contents of the separable flask to deoxidize it.
Here, the amounts shown in Table 1 (parts by mass, blank is 0 parts by mass) of methyl methacrylate, 2-ethylhexyl acrylate, methacrylic acid, glycidyl methacrylate, hydrogenated bisphenol A type epoxy, sodium dodecylbenzene sulfonate as an emulsifier, and ions. An emulsion consisting of 356 parts by mass of exchanged water was added dropwise over 3 hours. At the same time as the emulsion, 1.2 parts by mass of potassium persulfate as an oxidizing agent was dissolved in 41 parts by mass of ion-exchanged water, and 0.4 parts by mass of sodium hydrogen sulfite as a reducing agent was added to 21 parts by mass of ion-exchanged water. The dissolved product was added dropwise at 60 ° C. over 3.3 hours to polymerize.
After completion of the dropping, the mixture was aged at 60 ° C. for 1.5 hours. Then, the mixture was cooled and 0.8 parts by mass of aqueous ammonia as a basic substance was added to obtain an aqueous resin emulsion (α-1).
The numerical value of "ion-exchanged water" shown in Table 1 indicates the content of ion-exchanged water contained in the synthesized aqueous resin emulsion (α-1).
(水性樹脂エマルジョン(α-2)~(α-6)及び(cα-1)~(cα-10)) 表1または表2に示す各材料を、表1または表2に示す使用量(質量部)で使用したこと以外は、水性樹脂エマルジョン(α-1)と同様にして、水性樹脂エマルジョン(α-2)~(α-6)及び(cα-1)~(cα-10)を合成した。
 なお、水性樹脂エマルジョン(α-2)~(α-6)及び(cα-1)~(cα-10)においても、表1または表2に示す「イオン交換水」の数値は、水性樹脂エマルジョン(α-1)と同様に、合成された水性樹脂エマルジョン(α-2)~(α-6)及び(cα-1)~(cα-10)中に含まれるイオン交換水の含有量を示す。
(Aqueous resin emulsions (α-2) to (α-6) and (cα-1) to (cα-10)) Use amounts (mass) of each material shown in Table 1 or Table 2 as shown in Table 1 or Table 2. Aqueous resin emulsions (α-2) to (α-6) and (cα-1) to (cα-10) were synthesized in the same manner as the aqueous resin emulsion (α-1) except that it was used in (Part). did.
In the aqueous resin emulsions (α-2) to (α-6) and (cα-1) to (cα-10), the numerical value of “ion-exchanged water” shown in Table 1 or Table 2 is the aqueous resin emulsion. Similar to (α-1), the content of ion-exchanged water contained in the synthesized aqueous resin emulsions (α-2) to (α-6) and (cα-1) to (cα-10) is shown. ..
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 水性樹脂エマルジョン(α-1)~(α-6)及び(cα-1)~(cα-10)の合成に用いた各材料の使用量(質量部)を、表1、表2に示す。また、表1、表2中における共重合体(X)およびポリエポキシ化合物(Y)の含有率における括弧内の数値は、共重合体(X)とポリエポキシ化合物(Y)との合計量(100%)に対する各材料の割合(質量%)を示す。 Tables 1 and 2 show the amounts (parts by mass) of each material used in the synthesis of the aqueous resin emulsions (α-1) to (α-6) and (cα-1) to (cα-10). In addition, the numerical values in parentheses in the contents of the copolymer (X) and the polyepoxy compound (Y) in Tables 1 and 2 are the total amount of the copolymer (X) and the polyepoxy compound (Y) ( The ratio (mass%) of each material to 100%) is shown.
 表1、表2に示すポリエポキシ化合物(Y)としては、下記のものを用いた。
水添ビスフェノールA型エポキシ(水添ビスフェノールA型ジグリシジルエーテル)(エポキシ当量215g/mol;共栄化学株式会社製;エポライト4000)
ビスフェノールA型エポキシ(ビスフェノールAとエピクロルヒドリンとの縮合体で、両末端にエポキシ基を有する、重量平均分子量370)(エポキシ当量190g/mol;三菱ケミカル株式会社製;jER(登録商標)828)
グリセリンポリグリシジルエーテル(エポキシ当量143g/mol;坂本薬品工業株式会社製;SR-GLG)
1,6-ヘキサンジオールジグリシジルエーテル(エポキシ当量160g/mol;共栄化学株式会社製;エポライト1600)
As the polyepoxy compound (Y) shown in Tables 1 and 2, the following compounds were used.
Hydrogenated bisphenol A type epoxy (hydrogenated bisphenol A type diglycidyl ether) (epoxy equivalent 215 g / mol; manufactured by Kyoei Kagaku Co., Ltd .; Epolite 4000)
Bisphenol A type epoxy (a condensate of bisphenol A and epichlorohydrin, having epoxy groups at both ends, weight average molecular weight 370) (epoxy equivalent 190 g / mol; manufactured by Mitsubishi Chemical Corporation; jER® 828)
Glycerin polyglycidyl ether (epoxy equivalent 143 g / mol; manufactured by Sakamoto Yakuhin Kogyo Co., Ltd .; SR-GLG)
1,6-Hexanediol diglycidyl ether (epoxy equivalent 160 g / mol; manufactured by Kyoei Kagaku Co., Ltd .; Epolite 1600)
(水性樹脂エマルジョン(α)及び(cα)に含まれる官能基量)
 以下の説明において、水性樹脂エマルジョン(α-1)~(α-6)を総称する場合、水性樹脂エマルジョン(α)と記載する場合がある。また、水性樹脂エマルジョン(cα-1)~(cα-10)を総称する場合、水性樹脂エマルジョン(cα)と記載する場合がある。
(Amount of functional groups contained in aqueous resin emulsions (α) and (cα))
In the following description, when the aqueous resin emulsions (α-1) to (α-6) are generically referred to, they may be referred to as an aqueous resin emulsion (α). Further, when the aqueous resin emulsions (cα-1) to (cα-10) are generically referred to, they may be described as the aqueous resin emulsion (cα).
 水性樹脂エマルジョン(α)及び(cα)それぞれの合成に用いた各材料の使用量(質量部)に基づいて、「共重合体(X)中のカルボキシ基含有量Cx」「共重合体(X)中のエポキシ基含有量Ex」「共重合体(X)に対する、ポリエポキシ化合物(Y)中のエポキシ基含有量Ey」を算出し、[ポリエポキシ化合物(Y)中のエポキシ基含有量Eyと、共重合体(X)中のカルボキシ基含有量Cxとの比Ey/Cx]と[共重合体(X)中のエポキシ基含有量Exと、ポリエポキシ化合物(Y)中のエポキシ基含有量Eyとの比の値Ex/Ey]とを求めた。その結果を表3、表4に示す。 Based on the amount (parts by mass) of each material used in the synthesis of the aqueous resin emulsions (α) and (cα), "carboxy group content Cx in the copolymer (X)" and "copolymer (X)". ) "Epoxide group content Ex in the polyepoxide compound (X)" and "Epoxide group content Ey in the polyepoxide compound (Y) with respect to the copolymer (X)" were calculated, and [Epoxide group content Ey in the polyepoxide compound (Y). And [Ratio Ey / Cx with the carboxy group content Cx in the copolymer (X)] and [Epoxide group content Ex in the copolymer (X) and the epoxy group in the polyepoxide compound (Y). The value of the ratio to the amount Ey Ex / Ey] was obtained. The results are shown in Tables 3 and 4.
 水性樹脂エマルジョン(α)及び(cα)においては、いずれも合成に用いた材料に含まれるエポキシ基が、合成中に反応せず水性樹脂エマルジョン中に100%残存している。また、水性樹脂エマルジョン(α)及び(cα)には、エポキシ基以外にカルボキシ基と反応可能な成分は含まれない。 In both the aqueous resin emulsions (α) and (cα), the epoxy group contained in the material used for the synthesis did not react during the synthesis and 100% remained in the aqueous resin emulsion. Further, the aqueous resin emulsions (α) and (cα) do not contain components that can react with the carboxy group other than the epoxy group.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<2.水性樹脂エマルジョン(α)及び(cα)の評価>
 水性樹脂エマルジョン(α-1)~(α-6)及び(cα-1)~(cα-9)について、それぞれ以下の項目の評価を行った。その結果を表3、表4に示す。なお、水性樹脂エマルジョン(cα-10)については、合成中に凝集したため、評価していない。
<2. Evaluation of water-based resin emulsions (α) and (cα)>
The following items were evaluated for each of the aqueous resin emulsions (α-1) to (α-6) and (cα-1) to (cα-9). The results are shown in Tables 3 and 4. The aqueous resin emulsion (cα-10) was not evaluated because it aggregated during synthesis.
<2-1.不揮発分濃度>
 直径5cmのアルミ皿に、水性樹脂エマルジョン(α)、(cα)を1g秤量し、大気圧、乾燥器内で、空気を循環させながら105℃で1時間乾燥させた。乾燥後に得られた残分の質量を測定し、乾燥前の水性樹脂エマルジョン(α)、(cα)の質量に対する、乾燥後の質量の割合(質量%)を求めた。
<2-1. Non-volatile concentration>
1 g of the aqueous resin emulsions (α) and (cα) were weighed on an aluminum dish having a diameter of 5 cm, and dried at 105 ° C. for 1 hour in a dryer at atmospheric pressure while circulating air. The mass of the residue obtained after drying was measured, and the ratio (mass%) of the mass after drying to the mass of the aqueous resin emulsions (α) and (cα) before drying was determined.
<2-2.エポキシ基の残存率>
 水性樹脂エマルジョン(α)、(cα)のエポキシ基の残存率は、合成後の水性樹脂エマルジョン(α)、(cα)に含まれるエポキシ基の量N[mol/g]の、水性樹脂エマルジョン(α)、(cα)の合成に用いた成分(原料、開始剤、溶媒、その他添加剤等も含む)に含まれるエポキシ基の総量N[mol/g]に対する割合である。エポキシ基の残存率が100%であれば、共重合体(X)及びポリエポキシ化合物(Y)のいずれにおけるエポキシ基も合成中に消費されていない、すなわち、原料に含まれるエポキシ基が全て残存していることになる。
<2-2. Epoxy group residual rate>
The residual ratio of the epoxy groups in the aqueous resin emulsions (α) and (cα) is the amount of the epoxy groups contained in the synthesized aqueous resin emulsions (α) and (cα) N 1 [mol / g]. It is a ratio to the total amount N2 [mol / g] of the epoxy group contained in the component (including a raw material, an initiator, a solvent, other additives and the like) used for the synthesis of (α) and (cα). If the residual ratio of the epoxy group is 100%, neither the epoxy group in the copolymer (X) nor the polyepoxy compound (Y) is consumed during the synthesis, that is, all the epoxy groups contained in the raw material remain. You will be doing.
 合成後の水性樹脂エマルジョン(α)、(cα)のエポキシ基の量N[mol/g]の測定は、以下に示す方法により行った。水性樹脂エマルジョン((α)及び(cα))の合成に用いた成分(原料)に含まれるエポキシ基の総量に対して、過剰の塩化水素を加えてエポキシ基と反応させた。次に、未反応の塩化水素を水酸化カリウムで滴定することで、残った塩化水素の量を確認した。このとき水性樹脂エマルジョン(α)、(cα)中に含まれるカルボン酸をはじめとする酸性成分との反応により、水酸化カリウムが消費される。このため、予め塩化水素を用いない空測定によって酸性成分の量を滴定し、本測定の結果を補正した。具体的な測定手順は以下の(i)~(ii)の通りである。 The amount N 1 [mol / g] of the epoxy groups of the aqueous resin emulsions (α) and (cα) after the synthesis was measured by the method shown below. Excess hydrogen chloride was added to the total amount of epoxy groups contained in the components (raw materials) used in the synthesis of the aqueous resin emulsions ((α) and (cα)) to react with the epoxy groups. Next, the amount of remaining hydrogen chloride was confirmed by titrating unreacted hydrogen chloride with potassium hydroxide. At this time, potassium hydroxide is consumed by the reaction with acidic components such as carboxylic acid contained in the aqueous resin emulsions (α) and (cα). Therefore, the amount of the acidic component was titrated in advance by an empty measurement without using hydrogen chloride, and the result of this measurement was corrected. The specific measurement procedure is as follows (i) to (ii).
(i)空測定(酸性成分量の確認)
 水性樹脂エマルジョン(α)、(cα)をW[g](本実施例及び比較例では5g)の量で、100mL三角フラスコに量り取り、テトラヒドロフラン(THF)25gを加えてマグネチックスターラーで撹拌し、均一な溶液とした。この溶液に指示薬として0.1質量%のクレゾールレッド水溶液を0.15mL加えた。0.1Mの水酸化カリウム/エタノール溶液で、前記溶液を攪拌しながら、滴定した。水酸化カリウム/エタノール溶液の滴下後、紫色が30秒間持続する点を当量点とした。ここで滴定に用いた水酸化カリウム/エタノール溶液の量をVKOH1[mL]とする。
(I) Empty measurement (confirmation of acidic component amount)
Weigh the aqueous resin emulsions (α) and (cα) in the amount of W 1 [g] (5 g in this example and comparative example) in a 100 mL Erlenmeyer flask, add 25 g of tetrahydrofuran (THF), and stir with a magnetic stirrer. And made a uniform solution. To this solution was added 0.15 mL of a 0.1 mass% cresol red aqueous solution as an indicator. Titration was performed with 0.1 M potassium hydroxide / ethanol solution while stirring the solution. The equivalence point was defined as the point at which purple color lasted for 30 seconds after the addition of the potassium hydroxide / ethanol solution. Here, the amount of potassium hydroxide / ethanol solution used for titration is defined as VKOH1 [mL].
(ii)本測定
 水性樹脂エマルジョン(α)、(cα)をW[g](本実施例及び比較例では5g)の量で、100mL三角フラスコに量り取り、THF25gを加えてマグネチックスターラーで撹拌し溶解させた。これに0.2Mの塩化水素/ジオキサン溶液を加え、1時間撹拌し均一な溶液とした。ここで加えられた塩化水素/ジオキサン溶液の量をVHCl[mL](本実施例及び比較例では25mL)とする。この溶液に指示薬として0.1質量%のクレゾールレッド水溶液を0.15mL加えた。0.1Mの水酸化カリウム/エタノール溶液で、溶液を攪拌しながら滴定した。水酸化カリウム/エタノール溶液の滴下後、紫色が30秒間持続する点を当量点とした。ここで滴定に用いた水酸化カリウム/エタノール溶液の量をVKOH2[mL]とする。
(Ii) This measurement Weigh the aqueous resin emulsions (α) and (cα) in the amount of W 2 [g] (5 g in this example and comparative example) in a 100 mL Erlenmeyer flask, add 25 g of THF, and use a magnetic stirrer. It was stirred and dissolved. A 0.2 M hydrogen chloride / dioxane solution was added thereto, and the mixture was stirred for 1 hour to obtain a uniform solution. The amount of hydrogen chloride / dioxane solution added here is V HCl [mL] (25 mL in this example and comparative example). To this solution was added 0.15 mL of a 0.1 mass% cresol red aqueous solution as an indicator. The solution was titrated with stirring with 0.1 M potassium hydroxide / ethanol solution. The equivalence point was defined as the point at which purple color lasted for 30 seconds after the addition of the potassium hydroxide / ethanol solution. Here, the amount of potassium hydroxide / ethanol solution used for titration is defined as VKOH2 [mL].
 (i)及び(ii)で得られた各々の数値から、水性樹脂エマルジョン(α)、(cα)1gあたりのエポキシ基の量N[mol/g]を、以下の式(4)によって算出した。 N=(0.2×VHCl/1000-0.1×VKOH2/1000)/W+(0.1×VKOH1/1000)/W …(4) From each of the numerical values obtained in (i) and (ii), the amount of epoxy group N 1 [mol / g] per 1 g of the aqueous resin emulsion (α) and (cα) was calculated by the following formula (4). did. N 1 = (0.2 × V HCl / 1000-0.1 × V KOH2 / 1000) / W 2 + (0.1 × V KOH1 / 1000) / W 1 … (4)
 水性樹脂エマルジョン(α)、(cα)の合成に用いた成分(原料)に含まれるエポキシ基の総量N[mol/g]は、各成分の質量m[質量部](i=1,2,3,・・・)と、エポキシ当量EP[g/mol]とから、以下の式(5)によって求められる。ここで水性樹脂エマルジョン(α)、(cα)の合成に用いた成分とは、表1、表2に水性樹脂エマルジョン(α)、(cα)の原料として記載されているすべての成分を意味する。 N=Σ(m/EP)/Σm…(5) The total amount of epoxy groups N 2 [mol / g] contained in the components (raw materials) used for the synthesis of the aqueous resin emulsions (α) and (cα) is the mass mi [mass part] ( i = 1, part) of each component. 2,3, ...) And the epoxy equivalent EP i [g / mol], it is obtained by the following formula (5). Here, the components used for the synthesis of the aqueous resin emulsions (α) and (cα) mean all the components described as raw materials for the aqueous resin emulsions (α) and (cα) in Tables 1 and 2. .. N 2 = Σ (mi / EP i ) / Σ mi … (5)
 なお、メチルメタクリレート、イオン交換水等のエポキシ基を含まない化合物については、1/EP=0となる。
 このように求められたエポキシ基の量から、水性樹脂エマルジョン(α)、(cα)のエポキシ基の残存率は、100×N/N[mol%]で表される。
For compounds that do not contain epoxy groups, such as methyl methacrylate and ion-exchanged water, 1 / EP i = 0.
From the amount of epoxy groups thus determined, the residual ratio of epoxy groups in the aqueous resin emulsions (α) and (cα) is expressed as 100 × N 1 / N 2 [mol%].
<2-5.pH>
 pHメーター(東亜ディーケーケー株式会社製、ガラス電極式水素イオン濃度指示計HM-30G)を用いて測定した。
<2-5. pH>
The measurement was performed using a pH meter (glass electrode type hydrogen ion concentration indicator HM-30G manufactured by DKK-TOA CORPORATION).
<2-6.粘度>
 水性樹脂エマルジョン(α)、(cα)の粘度を以下の条件及び装置で測定した。
 温度:23℃
 測定機器:B型粘度計
 ロータ:No.1
 回転数:60rpm
<2-6. Viscosity>
The viscosities of the aqueous resin emulsions (α) and (cα) were measured under the following conditions and equipment.
Temperature: 23 ° C
Measuring equipment: B-type viscometer Rotor: No. 1
Rotation speed: 60 rpm
<2-7.ガラス転移点>
 共重合体(X)のガラス転移点Tgは、上記の式(1)によって算出した値である。
<2-7. Glass transition point>
The glass transition point Tg of the copolymer (X) is a value calculated by the above formula (1).
<2-8.分散安定性>
 合成直後の水性樹脂エマルジョン(α)、(cα)の状態を目視にて観察し、下記の基準により評価した。
 ○(可):凝集、沈殿、分離、及びゲル化のいずれも見られなかった。
 ×(不可):凝集、沈殿、分離、及びゲル化のうち少なくともいずれかが見られた。
<2-8. Dispersion stability>
The states of the aqueous resin emulsions (α) and (cα) immediately after the synthesis were visually observed and evaluated according to the following criteria.
○ (Yes): No aggregation, precipitation, separation, or gelation was observed.
X (impossible): At least one of aggregation, precipitation, separation, and gelation was observed.
<2-9.高温安定性>
 70mlのガラス瓶に水性樹脂エマルジョン(α)及び(cα)をそれぞれ投入して密栓し、60℃で7日間静置した。その後、それぞれのサンプルについて、上で述べた方法と同様の方法にて粘度、pH、及びエポキシ基の残存率を測定した。
<2-9. High temperature stability>
Aqueous resin emulsions (α) and (cα) were put into a 70 ml glass bottle, sealed tightly, and allowed to stand at 60 ° C. for 7 days. Then, for each sample, the viscosity, pH, and residual rate of epoxy groups were measured by the same method as described above.
 表3及び表4に示されるように、水性樹脂エマルジョン(α-1)~(α-6)及び(cα-1)~(cα-9)はいずれも、粘度、pH、及びエポキシ基の残存率について、60℃で7日間静置する前と後の値に大きな差がなく、高温安定性に優れていることが確認できた。 As shown in Tables 3 and 4, the aqueous resin emulsions (α-1) to (α-6) and (cα-1) to (cα-9) all have residual viscosity, pH, and epoxy groups. Regarding the rate, there was no big difference between the values before and after standing at 60 ° C. for 7 days, and it was confirmed that the high temperature stability was excellent.
<3.実施例1~6及び比較例1~9(水性樹脂組成物の作製)>
 表3及び表4に示される水性樹脂エマルジョン(α-1)~(α-6)及び(cα-1)~(cα-9)100質量部(不揮発分40質量%のもの)に、イオン交換水60質量部と、表5及び表6に示される硬化剤(β)と硬化促進剤(γ)とを、表5及び表6に示される量(質量部)で添加して10分間撹拌し、実施例1~6及び比較例1~9の水性樹脂組成物を作製した。
<3. Examples 1 to 6 and Comparative Examples 1 to 9 (Preparation of aqueous resin composition)>
Ion exchange with 100 parts by mass (nonvolatile content 40% by mass) of the aqueous resin emulsions (α-1) to (α-6) and (cα-1) to (cα-9) shown in Tables 3 and 4. Add 60 parts by mass of water, the curing agent (β) and the curing accelerator (γ) shown in Tables 5 and 6 in the amounts (parts by mass) shown in Tables 5 and 6, and stir for 10 minutes. , Examples 1 to 6 and Comparative Examples 1 to 9 were prepared.
 表5及び表6において、各硬化剤(β)における「エポキシ基に対する当量」は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対する、硬化剤(β)に含まれるエポキシ基に対する反応性を有する官能基(F)の当量を示す数値である。
 各硬化促進剤(γ)における「エポキシ基に対する当量」は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対する、硬化促進剤(γ)のmol数を示す数値である。
 表5及び表6に示す、ポリアミンとしては、アデカハードナーEH-8051(株式会社ADEKA製)を用いた。硬化剤(β)として用いたポリアミンのアミン当量は、187g/molである。
In Tables 5 and 6, the "epoxy group equivalent" in each curing agent (β) is the reactivity with respect to the epoxy group contained in the curing agent (β) with respect to the epoxy group 1 equivalent contained in the aqueous resin emulsion (α). It is a numerical value which shows the equivalent of the functional group (F) which has.
The "equivalent to epoxy group" in each curing accelerator (γ) is a numerical value indicating the mol number of the curing accelerator (γ) with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion (α).
As the polyamines shown in Tables 5 and 6, ADEKA Hardener EH-8051 (manufactured by ADEKA Corporation) was used. The amine equivalent of the polyamine used as the curing agent (β) is 187 g / mol.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<4.塗膜の評価>
 実施例1~6及び比較例1~9の水性樹脂組成物をそれぞれ用いて、以下に示す方法により塗膜を形成し、試験片となる皮膜を作製したうえで以下の項目について評価した。その結果を表5及び表6に示す。
<4. Evaluation of coating film>
Using the aqueous resin compositions of Examples 1 to 6 and Comparative Examples 1 to 9, a coating film was formed by the methods shown below, a film to be a test piece was prepared, and the following items were evaluated. The results are shown in Tables 5 and 6.
<4-1.皮膜降伏強度の測定方法>
 水性樹脂組成物を、水平に置いた縦90mm、横190mmの長方形のポリエチレンフィルムからなる平板上に、全体に行き渡るように流涎することにより塗布した。これを23℃で72時間乾燥した後、50℃で24時間養生することにより、厚さ約300μmの塗膜(硬化物)を作製した。得られた塗膜を平板から剥離し、皮膜を得た。剥離した皮膜を幅10mm、長さ30mmの長方形に切り出し、試験片とした。
<4-1. Method for measuring film yield strength>
The water-based resin composition was applied on a flat plate made of a rectangular polyethylene film having a length of 90 mm and a width of 190 mm placed horizontally by spilling it so as to spread over the whole. This was dried at 23 ° C. for 72 hours and then cured at 50 ° C. for 24 hours to prepare a coating film (cured product) having a thickness of about 300 μm. The obtained coating film was peeled off from the flat plate to obtain a film. The peeled film was cut into a rectangle having a width of 10 mm and a length of 30 mm, and used as a test piece.
 この試験片の長手方向を引張方向として以下の試験を行った。
 試験片の厚さは、株式会社ミツトヨ製 クイックマイクロ(登録商標) MDQ-MXを用いて測定した。測定は、各試験片について3か所ずつ行い、3か所の測定結果の平均値を試験片の厚さt[mm]とした。試験片の厚さは約300μmであった。
The following test was performed with the longitudinal direction of this test piece as the tensile direction.
The thickness of the test piece was measured using Quick Micro (registered trademark) MDQ-MX manufactured by Mitutoyo Co., Ltd. The measurement was performed at three locations for each test piece, and the average value of the measurement results at the three locations was defined as the thickness t [mm] of the test piece. The thickness of the test piece was about 300 μm.
 皮膜降伏強度の試験は、オートグラフAG-X(島津製作所製)を用いて以下に示す方法により行った。チャック間距離を10mmとして、試験片の長手方向の両側をチャックで掴んだ。温度23℃、相対湿度(RH)50%の雰囲気下、100mm/minの速度で、試験片を破断に至るまで引っ張った。 The film yield strength test was performed by the method shown below using Autograph AG-X (manufactured by Shimadzu Corporation). The distance between the chucks was set to 10 mm, and both sides of the test piece in the longitudinal direction were gripped by the chucks. The test piece was pulled to break at a speed of 100 mm / min under an atmosphere of a temperature of 23 ° C. and a relative humidity (RH) of 50%.
 チャック間距離をL[mm]、試験片の長さの変化(試験中のチャック間の距離と、試験前のチャック間の距離との差)をΔL[mm]とすると、ひずみSは、100×ΔL/L[%]で算出される。また、試験片にかかった荷重(測定された荷重)をF[N]とし、試験片の破断に至るまでの荷重の最大値をFmax[N]とし、試験開始から最初に以下の条件を満たした点を降伏点Y(S,F)とする。 Assuming that the distance between the chucks is L [mm] and the change in the length of the test piece (the difference between the distance between the chucks during the test and the distance between the chucks before the test) is ΔL [mm], the strain S is 100. It is calculated by × ΔL / L [%]. In addition, the load applied to the test piece (measured load) is F [N], the maximum value of the load until the test piece breaks is F max [N], and the following conditions are first met from the start of the test. Let the satisfied point be the yield point Y (Sy, Fy ).
(降伏点の条件)
 ひずみSが2%以上(S≧2%)である。
 ひずみSの増加に伴う荷重Fの変化量が、増加から減少に転ずる。
 F=F-0.01Fmaxとなるまでの間、dF/dS<0が続く。 S≦S+0.05%において、F>Fとなる点が存在しない。
(Conditions for yield point)
The strain S is 2% or more (S y ≧ 2%).
The amount of change in the load F with the increase in the strain S changes from an increase to a decrease.
Until F = Fy −0.01F max , dF / dS <0 continues. At S ≦ S y + 0.05%, there is no point where F> F y .
 降伏点Yにおいて試験片にかかる応力σである皮膜降伏強度は、以下に示す式により算出される。
 σ[N/mm]=F/(W×t)
(式中のWは試験片の幅[mm]であり、tは試験片の厚さ[mm]である。)
The film yield strength, which is the stress σ y applied to the test piece at the yield point Y, is calculated by the following formula.
σ y [N / mm 2 ] = F y / (W × t)
(W in the formula is the width [mm] of the test piece, and t is the thickness [mm] of the test piece.)
<4-2.破断伸度>
 上記試験において、試験片の破断に至った時点でのひずみS[%]の値を破断伸度とした。
<4-3.降伏点伸度>
 上記試験における上記降伏点でのひずみS[%]の値を降伏点伸度とした。
<4-2. Elongation at break>
In the above test, the value of the strain S [%] at the time when the test piece was broken was defined as the breaking elongation.
<4-3. Yield strength>
The value of the strain S [%] at the yield point in the above test was defined as the yield point elongation.
<4-4.降伏点までのエネルギー吸収量>
 上記の方法により求めた降伏強度と降伏点伸度とを用いて、下記の式により、降伏点までのエネルギー吸収量を算出した。
降伏点までのエネルギー吸収量=1/2×(降伏強度×降伏点伸度)
<4-4. Energy absorption up to the yield point>
Using the yield strength and the yield point elongation obtained by the above method, the amount of energy absorbed up to the yield point was calculated by the following formula.
Energy absorption up to the yield point = 1/2 x (yield strength x yield point elongation)
 表5に示すように、実施例1~6の水性樹脂組成物の硬化物からなる塗膜から作製された皮膜は、降伏強度が20[N/mm]以上であり、荷重に対する耐性が高いものであった。また、実施例1~6の水性樹脂組成物の硬化物からなる塗膜から作製された皮膜は、破断伸度が90%以上で、降伏点伸度が19%以上であり、基材の変形に伴う破断が生じにくいものであった。さらに、実施例1~6の水性樹脂組成物の硬化物からなる塗膜から作製された皮膜は、1/2×(降伏強度×降伏点伸度)の値が、260以上であり、衝撃に対する耐性が高いことが確認できた。 As shown in Table 5, the films prepared from the coating films made of the cured products of the aqueous resin compositions of Examples 1 to 6 have a yield strength of 20 [N / mm 2 ] or more and high resistance to load. It was a thing. Further, the film prepared from the coating film made of the cured product of the aqueous resin compositions of Examples 1 to 6 has a breaking elongation of 90% or more, a yield point elongation of 19% or more, and deformation of the base material. It was difficult for the breakage to occur. Further, the film prepared from the coating film made of the cured product of the aqueous resin compositions of Examples 1 to 6 has a value of 1/2 × (yield strength × yield point elongation) of 260 or more, and is resistant to impact. It was confirmed that the resistance was high.
 これに対し、表6に示すように、水性樹脂エマルジョン(α)がビスフェノール型エポキシ化合物及び水添ビスフェノール型エポキシ化合物から選ばれる少なくとも1種を含まない比較例1、2、8、9の水性樹脂組成物の硬化物からなる塗膜から作製された皮膜は、降伏強度が不十分であった。
 また、共重合体(X)がエポキシ基を有する化合物(C)に由来する構造単位(c)を含まない比較例3、7の水性樹脂組成物の硬化物からなる塗膜から作製された皮膜も、降伏強度が不十分であった。
 一方、共重合体(X)がエポキシ基を有する化合物(C)に由来する構造単位(c)(共重合体(X)中のエポキシ基含有量Ex)を多く含む比較例4、6の水性樹脂組成物の硬化物からなる塗膜から作製された皮膜は、破断伸度が不十分であった。
 また、共重合体(X)がエポキシ基を有する化合物(C)に由来する構造単位(c)を含まない比較例5の水性樹脂組成物の硬化物からなる塗膜から作製された皮膜は、1/2×(降伏強度×降伏点伸度)の値が260以下であり、実施例1~6と比較して、衝撃に対する耐性が劣るものであった。
On the other hand, as shown in Table 6, the aqueous resin of Comparative Examples 1, 2, 8 and 9 in which the aqueous resin emulsion (α) does not contain at least one selected from the bisphenol type epoxy compound and the hydrogenated bisphenol type epoxy compound. The film prepared from the coating film made of the cured product of the composition had insufficient yield strength.
Further, a film prepared from a coating film made of a cured product of the aqueous resin compositions of Comparative Examples 3 and 7 in which the copolymer (X) does not contain the structural unit (c) derived from the compound (C) having an epoxy group. However, the yield strength was insufficient.
On the other hand, the aqueous solution of Comparative Examples 4 and 6 in which the copolymer (X) contains a large amount of the structural unit (c) (epoxy group content Ex in the copolymer (X)) derived from the compound (C) having an epoxy group. The film prepared from the coating film made of the cured product of the resin composition had insufficient elongation at break.
Further, the film prepared from the coating film made of the cured product of the aqueous resin composition of Comparative Example 5 in which the copolymer (X) does not contain the structural unit (c) derived from the compound (C) having an epoxy group is The value of 1/2 × (yield strength × yield point elongation) was 260 or less, and the resistance to impact was inferior as compared with Examples 1 to 6.
 荷重及び衝撃に対する耐性が高く、基材の変形に伴う破断が生じにくい塗膜を形成できる水性樹脂組成物を提供する。 Provided is an aqueous resin composition capable of forming a coating film having high resistance to load and impact and less likely to break due to deformation of the base material.

Claims (15)

  1.  水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを含み、
     前記水性樹脂エマルジョン(α)は、共重合体(X)と、ポリエポキシ化合物(Y)と、水性媒体(Z)とを有し、
     前記共重合体(X)は、
     (メタ)アクリル酸アルキルエステル(A)に由来する構造単位(a)と、
     エチレン性不飽和カルボン酸(B)に由来する構造単位(b)と、
     エチレン性不飽和結合及びエポキシ基を有する化合物(C)に由来する構造単位(c)とを含み、
     前記構造単位(a)は、(メタ)アクリロイルオキシ基以外の部分の炭素原子数が2以下である親水性(メタ)アクリル酸アルキルエステル(A1)由来の構造単位(a1)を含み、
     前記ポリエポキシ化合物(Y)は、エチレン性不飽和結合を有さず1分子中に2個以上のエポキシ基を有し、かつビスフェノール型エポキシ化合物及び水添ビスフェノール型エポキシ化合物から選ばれる少なくとも1種であり、
     前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対して、
     前記構造単位(a)の含有率が20質量%以上98質量%以下、
     前記構造単位(a1)の含有率が15質量%以上98質量%以下、
     前記構造単位(b)の含有率が0.10質量%以上10質量%以下、
     前記構造単位(c)の含有率が、1.0質量%以上14質量%以下、
     前記ポリエポキシ化合物(Y)の含有率が1.0質量%以上50質量%以下であり、
     前記硬化剤(β)は、エポキシ基に対する反応性を有する官能基(F)を有する化合物からなり、
     前記官能基(F)の含有量は、前記水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、0.010当量以上3.0当量以下であり、
     前記硬化促進剤(γ)は、エポキシ基に対する反応性を有する官能基を有さない第三級アミンからなり、
     前記硬化促進剤(γ)の含有量は、前記水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、0.0070mol以上1.5mol以下である、水性樹脂組成物。
    It contains an aqueous resin emulsion (α), a curing agent (β), and a curing accelerator (γ).
    The aqueous resin emulsion (α) has a copolymer (X), a polyepoxy compound (Y), and an aqueous medium (Z).
    The copolymer (X) is
    The structural unit (a) derived from the (meth) acrylic acid alkyl ester (A) and
    The structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) and
    It contains a structural unit (c) derived from the compound (C) having an ethylenically unsaturated bond and an epoxy group.
    The structural unit (a) includes a structural unit (a1) derived from a hydrophilic (meth) acrylic acid alkyl ester (A1) having 2 or less carbon atoms in a portion other than the (meth) acryloyloxy group.
    The polyepoxy compound (Y) does not have an ethylenically unsaturated bond, has two or more epoxy groups in one molecule, and is at least one selected from a bisphenol type epoxy compound and a hydrogenated bisphenol type epoxy compound. And
    With respect to the total amount of the copolymer (X) and the polyepoxy compound (Y)
    The content of the structural unit (a) is 20% by mass or more and 98% by mass or less.
    The content of the structural unit (a1) is 15% by mass or more and 98% by mass or less.
    The content of the structural unit (b) is 0.10% by mass or more and 10% by mass or less.
    The content of the structural unit (c) is 1.0% by mass or more and 14% by mass or less.
    The content of the polyepoxy compound (Y) is 1.0% by mass or more and 50% by mass or less.
    The curing agent (β) is composed of a compound having a functional group (F) having reactivity with an epoxy group.
    The content of the functional group (F) is 0.010 equivalent or more and 3.0 equivalent or less with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion (α).
    The curing accelerator (γ) is composed of a tertiary amine having no functional group having reactivity with an epoxy group.
    The content of the curing accelerator (γ) is 0.0070 mol or more and 1.5 mol or less with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion (α).
  2.  前記エチレン性不飽和カルボン酸(B)は、α,β-不飽和モノカルボン酸、α,β-不飽和ジカルボン酸、α,β-不飽和ジカルボン酸のモノアルキルエステル、及びカルボキシ基を含有するビニル化合物からなる群のうち、少なくとも1種を含む、請求項1に記載の水性樹脂組成物。 The ethylenically unsaturated carboxylic acid (B) contains an α, β-unsaturated monocarboxylic acid, an α, β-unsaturated dicarboxylic acid, a monoalkyl ester of an α, β-unsaturated dicarboxylic acid, and a carboxy group. The aqueous resin composition according to claim 1, which comprises at least one of the group consisting of vinyl compounds.
  3.  前記ポリエポキシ化合物(Y)は、ビスフェノールA型エポキシ化合物及び水添ビスフェノールA型エポキシ化合物から選ばれる少なくとも1種である、請求項1または請求項2に記載の水性樹脂組成物。 The aqueous resin composition according to claim 1 or 2, wherein the polyepoxy compound (Y) is at least one selected from a bisphenol A type epoxy compound and a hydrogenated bisphenol A type epoxy compound.
  4.  前記共重合体(X)構造単位が、前記構造単位(a)、前記構造単位(b)、及び前記構造単位(c)からなる、請求項1~請求項3のいずれか1項に記載の水性樹脂組成物。 The invention according to any one of claims 1 to 3, wherein the copolymer (X) structural unit comprises the structural unit (a), the structural unit (b), and the structural unit (c). Aqueous resin composition.
  5.  前記共重合体(X)は、ベンゼン環及びエチレン性不飽和結合を有する化合物(D)に由来する構造単位(d)を含む、請求項1~請求項3のいずれか1項に記載の水性樹脂組成物。 The aqueous solution according to any one of claims 1 to 3, wherein the copolymer (X) contains a structural unit (d) derived from a compound (D) having a benzene ring and an ethylenically unsaturated bond. Resin composition.
  6.  前記ベンゼン環及びエチレン性不飽和結合を有する化合物(D)は、芳香族ビニル化合物である、請求項5に記載の水性樹脂組成物。 The aqueous resin composition according to claim 5, wherein the compound (D) having a benzene ring and an ethylenically unsaturated bond is an aromatic vinyl compound.
  7.  前記共重合体(X)の合成に用いた各モノマーのホモポリマーのガラス転移点に基づいて、Foxの式により算出される前記共重合体(X)のガラス転移点Tgが、-30℃以上100℃以下である、請求項1~請求項6のいずれか1項に記載の水性樹脂組成物。 The glass transition point Tg of the copolymer (X) calculated by the Fox formula based on the glass transition point of the homopolymer of each monomer used for the synthesis of the copolymer (X) is −30 ° C. or higher. The aqueous resin composition according to any one of claims 1 to 6, wherein the temperature is 100 ° C. or lower.
  8.  前記官能基(F)は、無置換または1つのみ置換基を有するアミノ基、カルボキシ基、メルカプト基からなる群より選択される少なくともいずれかを含む、請求項1~請求項7のいずれか1項に記載の水性樹脂組成物。 One of claims 1 to 7, wherein the functional group (F) contains at least one selected from the group consisting of an amino group, a carboxy group, and a mercapto group having no substituent or only one substituent. The aqueous resin composition according to the section.
  9.  前記硬化促進剤(γ)は、第三級脂肪族アミン、第三級脂環式アミン、第三級ヘテロ芳香族アミン、及び第三級アミン(NR)を形成する窒素原子がフェニル基に直接結合していない第三級芳香族アミンからなる群より選択される少なくとも1つの化合物である、請求項1~請求項8のいずれか1項に記載の水性樹脂組成物。 The curing accelerator (γ) is a nitrogen atom forming a tertiary aliphatic amine, a tertiary alicyclic amine, a tertiary heteroaromatic amine, and a tertiary amine (NR 1 R 2 R 3 ). The aqueous resin composition according to any one of claims 1 to 8, wherein is at least one compound selected from the group consisting of a tertiary aromatic amine in which is not directly bonded to a phenyl group.
  10.  前記水性樹脂エマルジョン(α)は、前記水性媒体(Z)中で、前記共重合体(X)の構造単位の由来となる化合物が、前記ポリエポキシ化合物(Y)の存在下で、乳化重合されたエマルジョンである、請求項1~請求項9のいずれか1項に記載の水性樹脂組成物。 In the aqueous resin emulsion (α), the compound from which the structural unit of the copolymer (X) is derived is emulsion-polymerized in the aqueous medium (Z) in the presence of the polyepoxy compound (Y). The aqueous resin composition according to any one of claims 1 to 9, which is an emulsion.
  11.  請求項1~請求項10のいずれか1項に記載の水性樹脂組成物の硬化物からなる、皮膜。 A film comprising a cured product of the aqueous resin composition according to any one of claims 1 to 10.
  12.  請求項1~請求項10のいずれか1項に記載の水性樹脂組成物を、被塗装面に塗布する塗布工程と、
     前記被塗装面に塗布された水性樹脂組成物を乾燥及び硬化させて塗膜を得る硬化工程とを含む、塗膜の製造方法。
    A coating step of applying the aqueous resin composition according to any one of claims 1 to 10 to a surface to be coated, and a coating step.
    A method for producing a coating film, which comprises a curing step of drying and curing the aqueous resin composition applied to the surface to be coated to obtain a coating film.
  13.  第1液と第2液とを含み、請求項1~請求項10のいずれか1項に記載の水性樹脂組成物の構成成分が、前記第1液と前記第2液とに分けて保存される、水性樹脂組成物セットであって、
     前記第1液が、前記水性樹脂エマルジョン(α)を含み、
     前記第2液が、前記硬化剤(β)と、前記硬化促進剤(γ)とを含む、水性樹脂組成物セット。
    The constituent components of the aqueous resin composition according to any one of claims 1 to 10, which include a first liquid and a second liquid, are stored separately in the first liquid and the second liquid. A water-based resin composition set
    The first liquid contains the aqueous resin emulsion (α) and contains.
    An aqueous resin composition set in which the second liquid contains the curing agent (β) and the curing accelerator (γ).
  14.  表面に設けられた塗膜によって金属を保護する方法であり、前記塗膜が請求項1~請求項10のいずれか1項に記載の水性樹脂組成物の硬化物からなる、
    金属の保護方法。
    A method of protecting a metal with a coating film provided on the surface, wherein the coating film comprises a cured product of the aqueous resin composition according to any one of claims 1 to 10.
    How to protect metal.
  15.  前記水性樹脂エマルジョン(α)を含む第1液と、
     前記硬化剤(β)と、前記硬化促進剤(γ)とを含む第2液を用意する工程と、
     前記第1液と前記第2液を混合する工程を含む、
     請求項1~請求項10のいずれか1項に記載の水性樹脂組成物の製造方法。
    The first liquid containing the aqueous resin emulsion (α) and
    A step of preparing a second liquid containing the curing agent (β) and the curing accelerator (γ), and
    A step of mixing the first liquid and the second liquid is included.
    The method for producing an aqueous resin composition according to any one of claims 1 to 10.
PCT/JP2021/046231 2020-12-28 2021-12-15 Aqueous resin composition, film, method for producing coating film, aqueous resin composition set, and method for protecting metal WO2022145227A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022572985A JPWO2022145227A1 (en) 2020-12-28 2021-12-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-219216 2020-12-28
JP2020219216 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022145227A1 true WO2022145227A1 (en) 2022-07-07

Family

ID=82260696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046231 WO2022145227A1 (en) 2020-12-28 2021-12-15 Aqueous resin composition, film, method for producing coating film, aqueous resin composition set, and method for protecting metal

Country Status (2)

Country Link
JP (1) JPWO2022145227A1 (en)
WO (1) WO2022145227A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188605A (en) * 1995-01-11 1996-07-23 Asahi Chem Ind Co Ltd Production of aqueous resin dispersion
JPH08231616A (en) * 1994-12-27 1996-09-10 Asahi Chem Ind Co Ltd Curable water-based resin composition
WO2020100790A1 (en) * 2018-11-13 2020-05-22 昭和電工株式会社 Aqueous resin emulsion, method for producing same, and aqueous resin composition
WO2021112042A1 (en) * 2019-12-02 2021-06-10 昭和電工株式会社 Aqueous resin composition, coating film, and method for forming coating film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231616A (en) * 1994-12-27 1996-09-10 Asahi Chem Ind Co Ltd Curable water-based resin composition
JPH08188605A (en) * 1995-01-11 1996-07-23 Asahi Chem Ind Co Ltd Production of aqueous resin dispersion
WO2020100790A1 (en) * 2018-11-13 2020-05-22 昭和電工株式会社 Aqueous resin emulsion, method for producing same, and aqueous resin composition
WO2021112042A1 (en) * 2019-12-02 2021-06-10 昭和電工株式会社 Aqueous resin composition, coating film, and method for forming coating film

Also Published As

Publication number Publication date
JPWO2022145227A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
JP6937942B2 (en) Aqueous resin emulsion and its production method, and aqueous resin composition
JP7380709B2 (en) Water-based resin composition, film, and film forming method
EP2495281B2 (en) Epoxy resin imbibed polymer particles
US8658742B2 (en) Epoxy resin imbibed polymer particles
EP2966135B1 (en) Anticorrosive coating composition, anticorrosive coating film, and method for preventing corrosion of base material
CN104271691B (en) The composition epoxy resin with maintenance finish is safeguarded for the ship with the recoatability for improving
CN105492550B (en) The anti-corrosion method of anticorrosive coating composition, anticorrosion film and base material
CN104411765B (en) The composition epoxy resin with maintenance finish is safeguarded for the ship with improved recoatability
JP2017527641A (en) Epoxy resin-epoxy curing system with latent thickening tendency
JP4776323B2 (en) Emulsifier composition
CN102191000B (en) Binder composition
WO2022145227A1 (en) Aqueous resin composition, film, method for producing coating film, aqueous resin composition set, and method for protecting metal
WO2022145228A1 (en) Aqueous resin composition, film, method for producing coating film, aqueous resin composition set, and method for protecting metal
JP2015533385A (en) Polymer particle dispersion using epoxy curing agent
WO2022255272A1 (en) Aqueous resin composition, coating film, coating film production method, and aqueous resin composition set
WO2023119850A1 (en) Aqueous resin composition, method for producing coating film, aqueous resin composition set
CN115552069B (en) Fiber treatment agent, fiber treatment composition, fiber processed product, and method for producing fiber treatment agent
JPS5925835A (en) Epoxy resin composition
JPH01193319A (en) Curable resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915088

Country of ref document: EP

Kind code of ref document: A1