WO2022253295A1 - 基于lcd多晶元板的图像生成方法、装置、设备和存储介质 - Google Patents

基于lcd多晶元板的图像生成方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2022253295A1
WO2022253295A1 PCT/CN2022/096755 CN2022096755W WO2022253295A1 WO 2022253295 A1 WO2022253295 A1 WO 2022253295A1 CN 2022096755 W CN2022096755 W CN 2022096755W WO 2022253295 A1 WO2022253295 A1 WO 2022253295A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lcd multi
image
lcd
panel
Prior art date
Application number
PCT/CN2022/096755
Other languages
English (en)
French (fr)
Inventor
简伟明
皮爱平
黄飞鹰
梁华贵
陈吉宏
黄伟涛
郑则润
陈秋榕
Original Assignee
简伟明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 简伟明 filed Critical 简伟明
Publication of WO2022253295A1 publication Critical patent/WO2022253295A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the embodiments of the present application relate to the field of images, and in particular to an image generation method, device, device and storage medium based on an LCD multi-chip panel.
  • the image sensor is the main component of the camera. Since the image sensor is a very precise photosensitive component, strong light will accelerate the aging of the image sensor and seriously affect the service life of the camera; when the excessively strong light is higher than the wide dynamic range of the camera When the picture taken by the camera is too white or the color is too light, the image quality will be affected; when the ambient light is too dark and lower than the wide dynamic range of the camera, the picture taken by the camera will be too dark or the color is too dark, and the image quality will be affected. ; There are various kinds of external light, and a single-depth light filter cannot meet the actual needs; in the field of face recognition, a binocular camera with visible light and near-infrared stereo vision is an existing technical form.
  • the camera can be switched to visible light with the IR-CUT function, and its stereoscopic vision can realize the VR camera function, which greatly expands the existing functions of the mobile phone.
  • the thickness of the mobile phone is usually only 1 cm, and the purpose of miniaturization cannot be achieved if the mechanical IR-CUT is used.
  • Embodiments of the present invention provide an image generation method, device, device, and storage medium based on an LCD multi-chip panel, which realizes the dynamic adjustment of the brightness and darkness of the captured image, expands the shooting function, and can obtain images with better effects. And easy to install.
  • an embodiment of the present invention provides an image generation method based on an LCD multi-chip panel, including a camera and an LCD multi-chip panel associated with the camera, and the LCD multi-chip panel is arranged on the camera Between the lens of the camera and the image sensor or the lens of the camera is arranged between the LCD multi-crystal element board and the image sensor, the image display method includes:
  • the LCD multi-crystal element panel is controlled to control the intensity of the passing light, so that the adjusted light is sensed by the image sensor to generate an image.
  • the illumination adjustment strategy includes a strong light shielding strategy
  • controlling the LCD multi-chip panel to control the passing light intensity according to the illumination adjustment strategy includes:
  • the illumination adjustment strategy includes a strong light shielding strategy
  • controlling the LCD multi-chip panel to control the passing light intensity according to the illumination adjustment strategy includes:
  • the illumination adjustment strategy includes a backlight photographing strategy
  • controlling the LCD multi-chip panel to control the intensity of passing light according to the illumination adjustment strategy includes:
  • a strong light area related to the attention area is determined, and the light passing rate of the strong light area is reduced through the LCD multi-crystal element panel.
  • the determining the region of interest in the current shooting picture includes:
  • the focused image area in the current shooting picture is determined.
  • the determining the region of interest in the current shooting picture includes:
  • the image area of interest in the current shooting frame is determined.
  • the determining the image area of interest in the current shooting frame according to the detected control instruction includes:
  • the image area concerned in the current shooting frame is determined according to the target position instruction generated by the automatic control system.
  • controlling the intensity of light passing through the LCD multi-chip panel includes:
  • the light passing rate of the corresponding crystal elements in the LCD multi-crystal element panel is controlled, so as to realize the control of the light intensity of the passing light.
  • controlling the light transmission rate of the corresponding wafer in the LCD multi-chip panel includes:
  • the determining the adjusted voltage or current of the corresponding wafer according to the light transmission rate includes:
  • the adjustment voltage or current of the corresponding wafer is determined.
  • the method further includes:
  • the corresponding mask information is output through the control of the light passing through the LCD multi-crystal element panel.
  • the mask information is an array containing the light transmission rate information of the wafer, It also includes information such as starting position, length, width, data size, and overall transparency.
  • the described method for generating an image based on an LCD multi-crystal panel is characterized in that it also includes:
  • the LCD multi-crystal element panel is controlled to control the passing light intensity according to the light passing rate and/or mask information manually set by the user.
  • controlling the LCD multi-element panel to control the passing light intensity according to the light passing rate and/or mask information manually set by the user includes:
  • Receive light transmission rate control determine the overall light intensity of the current shooting picture, and reduce the overall light transmission rate through the LCD multi-crystal element board, so that the adjusted light passes through the image sensor to generate an image.
  • the received light transmission rate control is used to determine the overall light intensity of the current shooting picture, and it is characterized in that it also includes:
  • the optical filter is a double-pass cut-off filter for visible light and near-infrared, and the light transmission rate manually set by the user is 0%, a near-infrared image is generated.
  • controlling the LCD multi-chip panel to control the passing light intensity according to the light passing rate and/or mask information manually set by the user further includes:
  • Receive the mask information sent by the external system adjust the overall light intensity based on the grayscale parameters in the mask information, and determine the overall light transmittance, size and position of the mask based on the mask parameters in the mask information , shape and one or more of light transmission rate.
  • controlling the LCD multi-element panel to control the passing light intensity according to the light passing rate and/or mask information manually set by the user includes:
  • Receive the mask information control determine the light transmission rate of each crystal element of the LCD multi-chip panel corresponding to the mask information, and pass the light transmission rate of each crystal element of the LCD multi-chip panel, so that the adjusted light passes through the image sensor Generate an image.
  • the embodiment of the present invention also provides an image generation device based on an LCD multi-chip panel, including a camera and an LCD multi-chip panel associated with the camera, specifically including:
  • An illumination strategy determination module configured to determine a corresponding illumination adjustment strategy in the current image generation scene
  • the multi-chip panel adjustment module is configured to control the LCD multi-chip panel to control the intensity of the passing light according to the illumination adjustment strategy, so that the adjusted light passes through the induction of the image sensor to generate an image.
  • the embodiment of the present invention also provides an image generation device based on an LCD multi-chip panel, the device comprising:
  • processors one or more processors
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the image generation method based on the LCD multi-chip panel described in the embodiment of the present invention.
  • the embodiment of the present invention also provides a storage medium containing computer-executable instructions, and the computer-executable instructions are used to execute the LCD multi-crystalline unit based on the embodiment of the present invention when executed by a computer processor.
  • Plate image generation method In the fourth aspect, the embodiment of the present invention also provides a storage medium containing computer-executable instructions, and the computer-executable instructions are used to execute the LCD multi-crystalline unit based on the embodiment of the present invention when executed by a computer processor. Plate image generation method.
  • the LCD multi-chip panel is controlled according to the illumination adjustment strategy to control the passing light intensity, so that the adjusted light passes through the image sensor.
  • Sensing to generate images realizes the dynamic adjustment of the brightness of the captured image, expands the shooting function, can obtain better images, and is easy to install.
  • it can control the different light transmission rates of the specified wafers, and can realize the functions of controlling the overall light brightness and partial shading for various lighting modes such as direct sunlight, high beam, and backlight, so that the image generation device can adapt to various lighting environments.
  • Fig. 1 is a flow chart of an image generation method based on an LCD multi-chip panel provided by an embodiment of the present invention
  • FIG. 2 is a schematic schematic diagram of an exemplary LCD screen
  • FIG. 3 is an exemplary flip effect diagram of liquid crystal molecules
  • FIG. 4 is a schematic diagram of an exemplary liquid crystal polarization characteristic
  • FIG. 4a is a schematic diagram of another exemplary liquid crystal screen
  • Fig. 4b is a schematic diagram of another exemplary liquid crystal screen principle
  • Fig. 5 is the schematic diagram of a kind of LCD multi-crystal panel provided by the present invention.
  • FIG. 6 is a schematic diagram of the positional relationship between an LCD multi-chip panel, a camera lens, and an image sensor provided by an embodiment of this solution;
  • FIG. 7 is a schematic diagram of the positional relationship between another LCD multi-chip panel, a camera lens and an image sensor provided by the embodiment of this solution;
  • Fig. 8 is a schematic diagram of the light transmittance curves of the on state and the off state under different wavelengths provided by the embodiment of the solution;
  • FIG. 9 is a flow chart of another method for generating an image based on an LCD multi-crystal panel provided by an embodiment of the present invention.
  • FIG. 10 is a flow chart of another method for generating an image based on an LCD multi-crystal panel provided by an embodiment of the present invention.
  • FIG. 11 is a flow chart of another method for generating an image based on an LCD multi-crystal panel provided by an embodiment of the present invention.
  • FIG. 12 is a flowchart of an image generation method based on an LCD multi-chip panel provided by an embodiment of the present invention.
  • FIG. 13 is a flowchart of an image generation method based on an LCD multi-chip panel provided by an embodiment of the present invention.
  • FIG. 14 is a structural block diagram of an image generating device based on an LCD multi-chip panel provided by an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of an image generation device based on an LCD multi-chip panel provided by an embodiment of the present invention.
  • Fig. 16 is a schematic diagram of ambient light of a scene provided by an embodiment of the present invention.
  • Fig. 17 is a schematic diagram of controlling the light passing rate of the scene in Fig. 16 to 50% according to an embodiment of the present invention
  • FIG. 18 is a schematic diagram of the distribution of each crystal unit of the LCD multi-chip device provided by the embodiment of the present invention and the control of the light transmission rate of each wafer in FIG. 16;
  • Fig. 19 is a schematic diagram of the effect of the captured image in Fig. 18 provided by the embodiment of the present invention.
  • FIG. 20 is a schematic diagram of the light transmission rate of each wafer in the sun-shading area of FIG. 18 provided by an embodiment of the present invention.
  • Fig. 1 is a flow chart of an image generation method based on an LCD multi-chip panel provided by an embodiment of the present invention. This embodiment is applicable to image generation, and the method can be implemented by an image generation device such as a mobile phone, a smart camera, etc. Specifically include the following steps:
  • Step S101 Determine the corresponding illumination adjustment strategy in the current image generation scene.
  • image scenes are differentiated.
  • the image generation scene refers to a specific scene determined by identifying or previewing a currently captured image. Exemplarily, if it is recognized that there is a strong light area in the preview image, the corresponding image generation scene is a strong light scene, and the corresponding illumination adjustment strategy is a strong light occlusion strategy; if it is recognized that there is a backlight in the preview image, then the corresponding The image generation scene is a backlight scene, and the corresponding illumination adjustment strategy is the backlight photography strategy.
  • Step S102 controlling the LCD multi-chip panel to control the intensity of passing light according to the illumination adjustment strategy, so that the adjusted light is sensed by the image sensor to generate an image.
  • the intensity of the passing light is controlled by controlling the LCD multi-crystal panel to realize the adjustment of the light, so that the adjusted light passes through the sensing of the image sensor to Generate an image.
  • the control method may be, taking the strong light shielding strategy as an example, including: determining a strong light area in the current shooting picture, and reducing the light passing rate of the strong light area through the LCD multi-chip panel.
  • the control method includes: determining the shooting target in the current shooting picture; determining the strong light area corresponding to the shooting target, and reducing the light passing rate of the strong light area through the LCD multi-chip panel.
  • FIG. 2 is a schematic schematic diagram of an exemplary liquid crystal screen.
  • the LCD liquid crystal screen takes TN-type liquid crystal as an example.
  • the TN-type liquid crystal is connected in series along the direction of the long axis, and the long axes are arranged parallel to each other.
  • the liquid crystal molecules When contacting the surface of the groove, the liquid crystal molecules will be arranged in the groove along the direction of the groove.
  • the arrangement of the liquid crystal molecules is: the upper surface molecules: along the a direction; the lower surface molecules: along the b direction; between the upper and lower surfaces Molecule: produces the effect of rotation.
  • FIG. 3 is an exemplary flipping effect diagram of liquid crystal molecules.
  • the liquid crystal is evenly distributed under the action of voltage, that is, when a voltage is applied between the upper and lower surfaces, the liquid crystal molecules will be arranged along the direction of the electric field, forming a phenomenon of vertical arrangement. At this time, the incident light is not affected by the liquid crystal molecules, and straightly shoots out of the lower surface.
  • FIG. 4 is a schematic diagram of an exemplary polarization characteristic of liquid crystal.
  • LCD liquid crystal panels have the characteristics of polarizers. As shown in Figure 4 (above), non-polarized light (ordinary light) is filtered into polarized light. When non-polarized light passes through the polarizer in the a direction, the light is filtered into a Parallel linear polarized light, the linear polarized light continues to advance, and the light passes through the second polarizer; as shown in Figure 4 (below), the linear polarized light continues to advance, and the light is completely blocked when passing through the second polarizer.
  • the upper and lower polarizers are perpendicular to each other, that is, the angle is 90 degrees, if no voltage is applied, the light can pass through, and when the voltage is applied, the light will be blocked accordingly.
  • the current passes through the transistor to generate an electric field change, causing the liquid crystal molecules to deflect, thereby changing the polarity of the light, and then blocking/passing the passing light through the set polarizer to achieve different light and dark state.
  • Fig. 4a is a schematic diagram of another exemplary liquid crystal screen.
  • Fig. 4b is a schematic diagram of another exemplary liquid crystal screen.
  • the biggest difference from that shown in FIG. 2 is that no polarizer is required, and the inner wall of the liquid crystal container is not provided with a groove-shaped surface.
  • the liquid crystal molecules contained in it are in a state of disordered arrangement, and the light cannot pass through the glass film, and the state seen at this time is white and non-transparent state.
  • the internal liquid crystal molecules are arranged in an orderly manner, and the light can pass through the glass film smoothly, and the state seen at this time is the transparent state.
  • the intensity of passing light is controlled through the LCD multi-chip panel, and the specific control method is based on the determined light adjustment strategy. Specifically, taking the illumination adjustment strategy including the backlight photography strategy as an example, the shooting target is firstly identified, and then the strong light area corresponding to the shooting target is determined, and the light passing rate of the strong light area is reduced through the LCD multi-chip panel.
  • the LCD multi-chip panel contains a plurality of pixel control units, as shown in Figure 5, which is a schematic diagram of an LCD multi-chip panel provided by the present invention, wherein each grid can be individually brightened and darkened by a control signal Light transmission control, that is, reduce the brightness of the high-brightness squares in the vicinity of the shooting target.
  • Figure 6 is a schematic diagram of the positional relationship between an LCD multi-chip panel, a camera lens, and an image sensor provided by an embodiment of this solution
  • Figure 7 is another schematic diagram provided by an embodiment of this solution
  • the light passes through the lens and the LCD multi-chip board to reach the image sensor in sequence; as shown in Figure 7, the light goes through the LCD multi-chip board and the lens to reach the image sensor in sequence.
  • the image area captured by the image sensor corresponds to the size of the LCD multi-crystal panel.
  • FIG. 8 is a schematic diagram of light transmittance curves for on-state and off-state under different wavelength conditions provided by the embodiment of this solution.
  • the abscissa is the wavelength of different light
  • the ordinate is the corresponding light transmission rate in the on state and off state.
  • the image generation method in this scheme is based on the LCD multi-crystal panel, the thickness of the LCD multi-crystal panel is very low, and it does not need other traditional motors and spring controls, wherein the LCD multi-chip panel Set between the camera lens and the image sensor or the camera lens is set between the LCD multi-chip board and the image sensor, by determining the corresponding illumination adjustment strategy in the current image generation scene, according to the The illumination adjustment strategy controls the LCD multi-crystal element panel to control the intensity of the passing light, so that the adjusted light passes through the induction of the image sensor to generate an image.
  • This solution realizes the dynamic adjustment of the brightness and darkness of the photographed image, expands the photographing function, can obtain images with better effects, and is easy to install.
  • the LCD multi-element panel can be controlled to control the intensity of passing light according to the light passing rate and/or mask information manually set by the user.
  • the mask information is an array containing the light transmission rate information of the wafer, which also includes information such as starting position, length, width, data size, and overall light transmittance.
  • the light transmission rate It can be represented by 0.0-1.0 or 0-255.
  • the mask information is converted into a grayscale image according to the ratio of the generated image and aligned with the generated image, then the position, shape, size, and Light transmission rate and other information.
  • Fig. 9 is a flow chart of another image generation method based on an LCD multi-chip panel provided by an embodiment of the present invention, and provides a specific method of controlling the passage of the LCD multi-chip panel pair according to the illumination adjustment strategy A method of controlling light intensity. As shown in Figure 9, the specific process is as follows:
  • Step S201 controlling the transmittance of received light.
  • Step S202 determine the overall light intensity of the currently captured image, and reduce the overall light passing rate through the LCD multi-element panel, so that the adjusted light passes through the image sensor to generate an image.
  • the adjustment voltage of the corresponding wafer when receiving a determined light transmission rate, determine the adjustment voltage of the corresponding wafer according to the light transmission rate, and control the voltage of the wafer to the corresponding adjustment voltage, thereby realizing external control of the light transmission rate of the camera.
  • a double-pass cut-off filter for visible light and near-infrared that is, allowing visible light with a wavelength of 400nm-700nm and near-infrared light with a wavelength of 800nm, 820nm, 850nm, 920nm and/or 940nm to pass through at the same time, when the user manually sets When the light transmission rate is 0, the visible light transmission rate is 0%, and the near-infrared light passes through well, then the generated near-infrared image can realize the near-infrared light imaging function, and can be used as a static controllable device instead of IR-CUT The mechanical spectrum switching function.
  • Fig. 10 is a flow chart of another image generation method based on an LCD multi-chip panel provided by an embodiment of the present invention, showing a specific method of controlling the passage of the LCD multi-chip panel pair according to the illumination adjustment strategy A method of controlling light intensity. As shown in Figure 10, the specific process is as follows:
  • Step S301 receiving mask information control.
  • Step S302 Determine the light transmission rate of each crystal element of the LCD multi-chip panel corresponding to the mask information, and make the adjusted light pass through the image sensor to generate an image.
  • the adjustment voltage is controlled to control the voltage of the crystal element to the corresponding adjustment voltage, so as to realize the external control of the light passing rate of the camera.
  • functions such as controlling the overall lighting brightness and partial occlusion can be realized, so that the image generation device can adapt to various lighting environments.
  • Fig. 11 is a flow chart of another image generation method based on an LCD multi-chip panel provided by an embodiment of the present invention, showing a specific method of controlling the passage of the LCD multi-chip panel pair according to the illumination adjustment strategy A method of controlling light intensity. As shown in Figure 11, the specific process is as follows:
  • Step S401 Determine the corresponding illumination adjustment strategy in the current image generation scene.
  • Step S402 determine the overall light intensity in the current shooting frame, and reduce the overall light passing rate through the LCD multi-element panel, so that the adjusted light passes through the image sensor to generate an image.
  • the detection of control commands is performed by an integrated ISP.
  • the image parameters detected by the image sensor are used to determine the overall external light intensity.
  • the image parameters include one of white balance parameters, image exposure values, and the transmittance of the LCD liquid crystal panel. or more.
  • the light passing rate is determined according to the overall light intensity, and correspondingly, the corresponding light intensity of the LCD multi-crystal panel is controlled.
  • the detection of the control instruction is performed by an integrated processor (such as ARM).
  • the overall external light intensity is determined through the image parameters detected by the image sensor.
  • the method of determining the overall light intensity includes: displaying a preview screen of a pair of captured images on the device interface, and determining the overall intensity according to the detected screen brightness set by the user;
  • the overall external light intensity is determined through the image parameters detected by the image sensor.
  • the image parameters include one or more of white balance parameters, image exposure values, and light transmittance of the LCD liquid crystal panel.
  • the overall light transmission rate is determined according to the overall light intensity, and correspondingly, the corresponding light intensity of the LCD multi-crystal panel is controlled.
  • the image generation method in this scheme is based on the LCD multi-crystal panel, the thickness of the LCD multi-crystal panel is very low, and it does not need other traditional motors and spring controls, wherein the LCD multi-chip panel set between the lens of the camera and the image sensor or between the lens of the camera and the image sensor, determine the The strong light area corresponding to the target is photographed, and the light passing rate of the strong light area is reduced by the LCD multi-chip panel, so that the adjusted light is sensed by the image sensor to generate an image with uniform brightness.
  • This solution realizes the dynamic adjustment of the intensity of external light to the captured image, expands the shooting function, and can obtain better images, and at the same time, the hardware equipment is easy to install.
  • Fig. 12 is a flow chart of another image generation method based on an LCD multi-chip panel provided by an embodiment of the present invention, showing a specific method of controlling the passage of the LCD multi-chip panel pair according to the illumination adjustment strategy A method of controlling light intensity. As shown in Figure 12, the specific process is as follows:
  • Step S501 Determine the corresponding illumination adjustment strategy in the current image generation scene.
  • Step S502 determine the strong light area in the current shooting picture, and reduce the light passing rate of the strong light area through the LCD multi-element panel, so that the adjusted light passes through the induction of the image sensor to generate an image.
  • the detection of the control instruction is performed by an integrated ISP, so as to determine the relevant image area in the current picture.
  • the light passing rate is adjusted through the LCD multi-crystal element board.
  • an integrated image algorithm is used to identify the currently captured image to calculate the corresponding strong light area.
  • the average brightness of the image frame in each area may be determined by means of partial photometry or partitioned photometry, and when the average brightness of a certain area is significantly greater than that of other areas, this area is determined as a strong light area.
  • the strong light area corresponding to the LCD multi-chip panel the light passing rate in this area is reduced, and finally an image with uniform brightness that does not include the strong light area is formed.
  • the detection of the control instruction is performed by an integrated processor (for example, ARM), so as to determine the relevant image area in the current picture.
  • the light passing rate is adjusted through the LCD multi-crystal element board.
  • the method of determining the strong light area includes: displaying a preview screen of a pair of captured images on the device interface, and determining it as a strong light area according to the detected click position of the user; Through the integrated image algorithm, the current captured image is recognized to calculate the corresponding strong light area.
  • the average brightness of the image frame in each area may be determined by means of partial photometry or partitioned photometry, and when the average brightness of a certain area is significantly greater than that of other areas, the area is determined as a strong light area.
  • the strong light area corresponding to the LCD multi-chip panel the light passing rate in this area is reduced, and finally an image with uniform brightness that does not include the strong light area is formed.
  • the image generation method in this scheme is based on the LCD multi-crystal panel, the thickness of the LCD multi-crystal panel is very low, and it does not need other traditional motors and spring controls, wherein the LCD multi-chip panel set between the lens of the camera and the image sensor or between the lens of the camera and the image sensor, determine the The strong light area corresponding to the target is photographed, and the light passing rate of the strong light area is reduced by the LCD multi-chip panel, so that the adjusted light is sensed by the image sensor to generate an image with uniform brightness.
  • This solution realizes the dynamic adjustment of the region of the photographed image, expands the photographing function, and can obtain images with better effects.
  • the hardware equipment is easy to install.
  • it can control the different light transmission rates of the specified wafers, and can realize the functions of controlling the overall light brightness and partial shading for various lighting modes such as direct sunlight, high beam, and backlight, so that the image generation device can adapt to various lighting environments.
  • Fig. 13 is a flow chart of another image generation method based on an LCD multi-chip panel provided by an embodiment of the present invention, which shows another specific way to control the passage of the LCD multi-chip panel pair according to the illumination adjustment strategy. method of controlling the light intensity. As shown in Figure 3, the specific process is as follows:
  • Step S601. Determine the corresponding illumination adjustment strategy in the current image generation scene.
  • Step S602 determining the attention area in the current shooting frame.
  • the detection of the control instruction is performed by an integrated ISP, so as to determine the relevant image area in the current picture.
  • the photographing target may be a human body, a human face or other targets.
  • the ISP integrates the face detection algorithm, it can detect the face and determine the location, shape, size and other information of the area where the face is located during the shooting process, and determine that the currently detected face area is the focus of the shooting screen. image area.
  • the detection of the control instruction is performed by an integrated processor (for example, ARM), so as to determine the relevant image area in the current picture.
  • the photographing target may be a human body, a human face or other targets.
  • the mobile phone APP runs the face detection algorithm, the APP can detect the face during the shooting process and determine the location, shape, and size of the area where the face is located to determine the currently detected face.
  • the face area is an image area of interest in the shooting picture.
  • an integrated processor controls the control instruction to determine the relevant image area in the current picture.
  • the method of determining the attention area includes: displaying a preview screen of a pair of captured images on the device interface, and determining it as the attention area according to the detected click position of the user.
  • Step S603 determining the region of interest corresponding to the shooting target, and controlling the light passing rate of the region of interest and other regions through the LCD multi-element panel, so that the adjusted light passes through the sensing of the image sensor to generate an image.
  • the shooting area after determining the shooting area of interest, determine the light intensity of the area of interest and outside the area of interest, and when the light intensity of the area of interest is lower than the light intensity outside the area of interest and reaches a preset threshold, the shooting area In a backlit environment, then determine the position, shape, size and light passing rate of the area of interest and the area outside the area of interest according to the light intensity of the area of interest and the light intensity outside the area of interest.
  • the light passing rate of the corresponding crystal element is controlled through the LCD multi-element panel, so that the adjusted light passes through the induction of the image sensor to generate a clear image without backlight. image.
  • the region of interest is determined to be photographed, when the light intensity of the region of interest is higher than a preset threshold, the region of interest is in a strong light environment, and the location, shape, size and light passing rate of the region of interest are determined.
  • the light passing rate of the corresponding crystal element is controlled through the LCD multi-element panel, so that the adjusted light is sensed by the image sensor to reduce strong light and provide a clear image.
  • the image generation method in this scheme is based on the LCD multi-crystal panel, the thickness of the LCD multi-crystal panel is very low, and it does not need other traditional motors and spring controls, wherein the LCD multi-chip panel Set between the lens of the camera and the image sensor or the lens of the camera is set between the LCD multi-chip board and the image sensor, by determining the corresponding illumination adjustment strategy in the current image generation scene, determine the current shooting The shooting target in the screen, determine the strong light area corresponding to the shooting target, and reduce the light passing rate of the strong light area through the LCD multi-chip panel, so that the adjusted light passes through the induction of the image sensor to generate uniform brightness Image.
  • This solution realizes the dynamic adjustment of the region of the photographed image, expands the photographing function, and can obtain images with better effects.
  • the hardware equipment is easy to install.
  • it can control the different light transmission rates of the specified wafers, and can realize the functions of controlling the overall light brightness and partial shading for various lighting modes such as direct sunlight, high beam, and backlight, so that the image generation device can adapt to various lighting environments.
  • Figure 16 is a schematic diagram of the ambient light of a scene provided by the embodiment of the present invention, that is, an image effect diagram captured by a normal camera under the ambient light of the scene; it can be seen from the figure that the overall light is relatively bright, and the lens in the figure is facing the sun , relatively dazzling, and direct sunlight will affect the entire image generation and affect the picture quality.
  • Figure 17 is a schematic diagram of controlling the light transmission rate of the scene shown in Figure 16 to 50% provided by the embodiment of the present invention. From the image effect, it can be felt that the sunlight is not so glaring, and the whole picture is relatively soft and comfortable, but it does not reduce the impact of sunlight on the scene. The entire picture is imaged in the image.
  • Fig. 18 is a schematic diagram of the distribution of the crystal elements of the LCD multi-crystal element device provided by the embodiment of the present invention and the control of the light transmission rate of each crystal element in Fig. 16.
  • the size of the crystal element is determined by the precision of the LCD liquid crystal process actually used; it can be seen that Properly control the light transmission rate of the strong sun to realize the function of blocking the strong light, and at the same time, you can see the actual image of the blocked sun; you can combine the functions shown in Figure 17 to control the light transmission rate of the entire screen, so as to realize the The control of the light passing rate of each wafer in the whole screen.
  • Figure 18 can be expressed as mask information, and the percentage is converted into octal, which can be expressed as: (length) 24, (height) 14, (overall light passing rate) 1.0, (starting position) [0,0], (array size) 336, (ray passing rate array) [255,...255,230,179,179,230,255,...255,154,102,102,205,255,...255,154,102,102,205,255,...255,230,205,205,230,255],...2 Exemplarily, Figure 18 can be expressed as mask information in another way: (total length) 24, (total height) 14, (overall light passing rate) 1.0, (number of arrays) 1, [(length) 4, ( High) 4, (start position) [7,6], (array size) 16, (ray pass rate array) [230,179,179,230,154,102,102,205,154,102,102,205,230,205,205,230]].
  • Fig. 19 is a schematic diagram of the effect of the captured image of Fig. 18 provided by the embodiment of the present invention.
  • the sunlight is blocked.
  • the light passing rate in other areas except the blocked area is 100%. It can be seen that the whole picture becomes more soft and comfortable, avoiding the glare of direct sunlight, and reducing the interference of direct sunlight on the imaging effect of the whole picture, making the camera more suitable for working in various lighting environments.
  • FIG. 20 is a schematic diagram of the light transmission rate of each wafer in the sun-shading area of FIG. 18 provided by the embodiment of the present invention. It can be seen from the figure that the transmission rate of each wafer is different and controllable.
  • the area with a light transmittance other than 100% in Figure 20 can be expressed as mask information, and the percentage can be converted into octal, which can be expressed as: (length) 4, (height) 4, (overall light transmission rate )1.0, (start position) [7,6], (array size) 16, (ray pass rate array) [230,179,179,230,154,102,102,205,154,102,102,205,230,205,205,230].
  • Fig. 14 is a structural block diagram of an image generation device based on an LCD multi-chip panel provided by an embodiment of the present invention, the device is used to execute the image generation method based on an LCD multi-chip panel provided in the above embodiment, and has a corresponding method for executing the method. functional modules and beneficial effects.
  • the device specifically includes: an illumination strategy determination module 101 and a multi-chip panel adjustment module, which are used to control the LCD multi-chip panel to control the passing light intensity 102 according to the illumination adjustment strategy, wherein ,
  • An illumination strategy determination module 101 configured to determine a corresponding illumination adjustment strategy in the current image generation scene
  • the multi-chip panel adjustment module 102 is configured to control the LCD multi-chip panel to control the intensity of passing light according to the illumination adjustment strategy, so that the adjusted light passes through the induction of the image sensor to generate an image.
  • the image generation method in this scheme is based on the LCD multi-crystal panel, the thickness of the LCD multi-crystal panel is very low, and it does not need other traditional motors and spring controls, wherein the LCD multi-chip panel Set between the camera lens and the image sensor or the camera lens is set between the LCD multi-chip board and the image sensor, by determining the corresponding illumination adjustment strategy in the current image generation scene, according to the The illumination adjustment strategy controls the LCD multi-crystal element panel to control the intensity of the passing light, so that the adjusted light passes through the induction of the image sensor to generate an image.
  • This solution realizes the dynamic adjustment of the brightness and darkness of the photographed image, expands the photographing function, can obtain images with better effects, and is easy to install.
  • the illumination adjustment strategy includes a strong light shading strategy
  • the multi-chip board adjustment module 102 is specifically used for:
  • the illumination adjustment strategy includes a backlight photographing strategy
  • the multi-chip board adjustment module 102 includes a target determination unit 1021 and a target area adjustment unit 1022,
  • the target determination unit 1021 is configured to determine the shooting target in the current shooting frame
  • the target area adjustment unit 1022 is configured to determine the strong light area corresponding to the shooting target, and reduce the light passing rate of the strong light area through the LCD multi-chip panel.
  • the target determining unit 1021 is specifically configured to:
  • a shooting target in the concerned image area is determined.
  • the target determining unit 1021 is specifically configured to:
  • the focused image area in the current shooting picture is determined.
  • the target determining unit 1021 is specifically configured to:
  • the image area of interest in the current shooting frame is determined.
  • the target determining unit 1021 is specifically configured to:
  • the image area concerned in the current shooting frame is determined according to the target position instruction generated by the automatic control system.
  • the multi-chip board adjustment module 102 is specifically used for:
  • the light passing rate of the corresponding crystal elements in the LCD multi-crystal element panel is controlled, so as to realize the control of the light intensity of the passing light.
  • the multi-chip board adjustment module 102 is specifically used for:
  • the voltage of the control crystal element is the corresponding regulation voltage.
  • the multi-chip board adjustment module 102 is specifically used for:
  • the device further includes a mask processing module 103, specifically for:
  • the LCD multi-chip panel After controlling the LCD multi-chip panel to control the intensity of passing light according to the illumination adjustment strategy, the LCD multi-chip panel controls the passing light to output corresponding mask information.
  • the mask processing module 103 is also configured to:
  • the mask information is sent to an external system for the external system to perform corresponding transmission according to the mask information.
  • Photometric processing is performed by the external system to perform corresponding transmission according to the mask information.
  • the mask processing module 103 is also configured to:
  • Fig. 15 is a schematic structural diagram of an image generating device based on an LCD multi-chip panel provided by an embodiment of the present invention.
  • the device includes a processor 201, a memory 202, an input device 203 and an output device 204; the device The number of processors 201 in the device can be one or more.
  • One processor 201 is taken as an example in FIG. In 15, the bus connection is taken as an example.
  • the memory 202 as a computer-readable storage medium, can be used to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the image generation method based on the LCD multi-chip panel in the embodiment of the present invention.
  • the processor 201 executes various functional applications and data processing of the device by running the software programs, instructions and modules stored in the memory 202, that is, realizes the above-mentioned image generation method based on the LCD multi-chip panel.
  • the input device 203 can be used to receive input numbers or character information, and generate key signal input related to user settings and function control of the device.
  • the output device 204 may include a display device such as a display screen.
  • the embodiment of the present invention also provides a storage medium containing computer-executable instructions, and the computer-executable instructions are used to execute an image generation method based on an LCD multi-chip panel when executed by a computer processor, including a camera and and The LCD multi-crystal element plate associated with the camera, the LCD multi-crystal element plate is arranged between the lens of the camera and the image sensor or the lens of the camera is arranged between the LCD multi-crystal element plate and the image sensor , the method includes:
  • the LCD multi-crystal element panel is controlled to control the intensity of the passing light, so that the adjusted light is sensed by the image sensor to generate an image.
  • the embodiment of the present invention can be implemented by means of software and necessary general-purpose hardware, of course, it can also be implemented by hardware, but in many cases the former is better implementation.
  • the essence of the technical solution of the embodiment of the present invention or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disc, etc., including several instructions to make a computer device (which can be personal computer, service, or network equipment, etc.) execute the methods described in the various embodiments of the embodiments of the present invention.
  • the included units and modules are only divided according to the functional logic, but are not limited to the above division, as long as the corresponding function; in addition, the specific names of the functional units are only for the convenience of distinguishing each other, and are not used to limit the scope of protection of the embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

本发明实施例公开了一种基于LCD多晶元板的图像生成方法、装置、设备和存储介质,包括摄像头以及和摄像头关联的LCD多晶元板,LCD多晶元板设置于摄像头的镜头和图像传感器之间或摄像头的镜头设置在LCD多晶元板和图像传感器之间,该方法包括:确定当前图像生成场景下对应的光照调整策略(S101);根据光照调整策略控制LCD多晶元板对通过的光线强度进行控制,使得调节后的光线通过图像传感器的感应以生成图像(S102)。本方案,实现了对拍摄图像亮暗的动态调节,扩展了拍摄功能,能够得到效果更佳的图像,同时便于硬件设备安装。

Description

基于LCD多晶元板的图像生成方法、装置、设备和存储介质 技术领域
本申请实施例涉及图像领域,尤其涉及一种基于LCD多晶元板的图像生成方法、装置、设备和存储介质。
背景技术
图像传感器是摄像头的主要元器件,由于图像传感器是非常精密的感光元器件,所以,强光会加速图像传感器的老化,严重影响摄像头的使用寿命;当过度强烈的光高于摄像头的宽动态范围的时候,摄像头所拍摄的图片偏白或颜色过浅,影像拍摄质量;当环境光过暗并低于摄像头的宽动态范围的时候,摄像头所拍摄的图片偏暗或颜色过深,影像拍摄质量;外部光线各种各样,单一深度的光线过滤片无法满足实际的需求;在人脸识别领域,具有立体视觉的可见光加近红外的双目摄像头是一种已有的技术形态,如果近红外摄像头可以有IR-CUT功能切换到可见光,则其立体视觉可以实现VR摄像头功能,大大扩充手机现有的功能,可是手机厚度往往只有1厘米,如果用机械式IR-CUT无法实现小型化目的。
当摄像头应用在对比度强烈的环境拍摄的时候,例如向着太阳的时候,很难拍摄周边的影像;例如拍摄背光人像的时候,由于收到背光影响无法拍清楚人像;例如行车记录仪或智能驾驶***在出隧道口的时候等,由于受到隧道口强光的影响,无法清晰拍摄隧道口的影像;同样,在进入隧道口的时候,由于隧道里面的光线过暗,与外部光线形成强烈的对比,也无法清晰拍摄隧道里面的影像。
发明内容
本发明实施例提供了一种基于LCD多晶元板的图像生成方法、装置、设备和存储介质,实现了对拍摄图像亮暗的动态调节,扩展了拍摄功能,能够得到效果更佳的图像,且便于安装。
第一方面,本发明实施例提供了一种基于LCD多晶元板的图像生成方法,包括摄像头以及和所述摄像头关联的LCD多晶元板,所述LCD多晶元板设置于所述摄像头的镜头和图像传感器之间或所述摄像头的镜头设置在所述LCD多晶元板和所述图像传感器之间,所述图像显示方法包括:
确定当前图像生成场景下对应的光照调整策略;
根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制,使得调节后的光线通过图像传感器的感应以生成图像。
可选的,所述光照调整策略包括强光遮挡策略,所述根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制包括:
确定当前拍摄画面的整体光照强度以及整体光线通过率,根据所述整体光照强度以及所述整体光线通过率对所述LCD多晶元板通过的光线强度进行控制。
可选的,所述光照调整策略包括强光遮挡策略,所述根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制包括:
确定当前拍摄画面中的强光区域,通过所述LCD多晶元板降低所述强光区域的光线通过率。
可选的,所述光照调整策略包括背光拍照策略,所述根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制包括:
确定当前拍摄画面中的关注区域;
确定所述关注区域相关的强光区域,通过所述LCD多晶元板降低所述强光区域的光线通过率。
可选的,所述确定当前拍摄画面中的所述关注区域,包括:
根据检测到的屏幕点击指令确定当前拍摄画面中关注的图像区域。
可选的,所述确定当前拍摄画面中的所述关注区域,包括:
根据人脸识别检测引擎生成的人脸检测指令确定当前拍摄画面中关注的图像区域。
可选的,所述根据检测到的控制指令确定当前拍摄画面中关注的图像区域,包括:
根据自动控制***识别生成的目标物位置指令确定当前拍摄画面中关注的图像区域。
可选的,所述控制所述LCD多晶元板对通过的光线强度进行控制,包括:
对所述LCD多晶元板中的对应晶元的光线通过率进行控制,以实现对通过光线的光线强度的控制。
可选的,所述对所述LCD多晶元板中的对应晶元的光线通过率进行控制,包括:
确定所述LCD多晶元板中的对应晶元的光线通过率;
根据所述光线通过率确定对应晶元的调节电压或电流;
控制晶元的电压或电流为对应的调节电压或电流。
可选的,所述根据所述光线通过率确定对应晶元的调节电压或电流,包括:
根据设置的透光度电压或电流对照表确定对应晶元的调节电压或电流。
可选的,在根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制之后,还包括:
通过所述LCD多晶元板对通过光线的控制输出对应的蒙板信息。
可选的,在所述通过所述LCD多晶元板对通过光线的控制输出对应的蒙板信息之后,还包括:
将所述蒙板信息发送至外部***,以用于外部***根据所述蒙板信息执行相应的透光度控制处理,其中,所述蒙板信息为包含晶元的光线通过率信息的数组,其中还包括起始位置、长度、宽度、数据大小以及整体透光度等信息。
可选的,所述的基于LCD多晶元板的图像生成方法,其特征在于,还包括:
根据用户手动设置的光线通过率和/或蒙板信息控制所述LCD多晶元板对通过的光线强度进行控制。
可选的,所述根据用户手动设置的光线通过率和/或蒙板信息控制所述LCD多晶元板对通过的光线强度进行控制,包括:
接收光线通过率控制,确定当前拍摄画面的整体光线强度,通过所述LCD多晶元板降低整体光线通过率,使得调节后的光线通过图像传感器以生成图像。
可选的,所述接收光线通过率控制,确定当前拍摄画面的所述整体光线强度,其特征在于,还包括:
当滤光片为可见光和近红外的双通截止滤光片的时候,并且所述用户手动设置的光线通过率为0%,则生成近红外图像。
可选的,所述根据用户手动设置的光线通过率和/或蒙板信息控制所述LCD多晶元板对通过的光线强度进行控制,还包括:
接收外部***传送的蒙板信息,基于所述蒙板信息中的灰度参数进行整体光线强度的调节,基于所述蒙板信息中的蒙板参数确定整体透光度、蒙板的大小、位置、形状和光线通过率中的一种或多种。
可选的,所述根据用户手动设置的光线通过率和/或蒙板信息控制所述LCD多晶元板对通过的光线强度进行控制,包括:
接收蒙板信息控制,确定蒙板信息对应LCD多晶元板的各晶元的光线通过率,通过所述LCD多晶元板各晶元的光线通过率,使得调节后的光线通过图像传感器以生成图像。
第二发明,本发明实施例还提供了一种基于LCD多晶元板的图像生成装置,包括摄像头以及和所述摄像头关联的LCD多晶元板,具体包括:
光照策略确定模块,用于确定当前图像生成场景下对应的光照调整策略;
多晶元板调节模块,用于根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制,使得调节后的光线通过图像传感器的感应以生成图像。
第三方面,本发明实施例还提供了一种基于LCD多晶元板的图像生成设备,该设备包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本发明实施例所述的基于LCD多晶元板的图像生成方法。
第四方面,本发明实施例还提供了一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行本发明实施例所述的基于LCD多晶元板的图像生成方法。
本发明实施例中,通过确定当前图像生成场景下对应的光照调整策略,根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制,使得调节后的光线通过图像传感器的感应以生成图像,实现了对拍摄图像亮暗的动态调节,扩展了拍摄功能,能够得到效果更佳的图像,且便于安装。并且可以控制指定晶元不同的光线通过率,可以针对阳光直射、远光灯、背光等各种光照模式实现控制整体光照亮度、部分遮挡等功能,让图像生成装置可以适应各种光照环境。
附图说明
图1为本发明实施例提供的一种基于LCD多晶元板的图像生成方法的流程图;
图2为一种示例性的液晶屏原理示意图;
图3为一种示例性的液晶分子翻转效果图;
图4为一种示例性的液晶偏光特性示意图;
图4a为另一种示例性的液晶屏原理示意图;
图4b为另一种示例性的液晶屏原理示意图;
图5为本发明提供的一种LCD多晶元板的示意图;
图6为本方案实施例提供的一种LCD多晶元板、摄像头镜头以及图像传感器的位置关系示意图;
图7为本方案实施例提供的另一种LCD多晶元板、摄像头镜头以及图像传感器的位置关系示意图;
图8为本方案实施例提供的一种对不同波长情况下开态和关态的光透过率曲线示意图;
图9为本发明实施案例提供的另一种基于LCD多晶元板的图像生成方法的流程图;
图10为本发明实施案例提供的另一种基于LCD多晶元板的图像生成方法的流程图;
图11为本发明实施案例提供的另一种基于LCD多晶元板的图像生成方法的流程图;
图12为本发明实施例提供的一种基于LCD多晶元板的图像生成方法的流程图;
图13为本发明实施例提供的一种基于LCD多晶元板的图像生成方法的流程图;
图14为本发明实施例提供的一种基于LCD多晶元板的图像生成装置的结构框图;
图15为本发明实施例提供的一种基于LCD多晶元板的图像生成设备的结构示意图;
图16为本发明实施例提供的一个场景的环境光示意图;
图17为本发明实施例提供的对图16所在场景的光线通过率控制为50%的示意图;
图18为本发明实施例提供的LCD多晶元装置的各晶元分布以及对图16各晶元光线通过率控制示意图;
图19为本发明实施例提供的为对图18的拍摄图像效果示意图;
图20为本发明实施例提供的为对图18的遮挡太阳区域各个晶元的光线通过率示意图。
具体实施方式
下面结合附图和实施例对本发明实施例作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅用于解释本发明实施例,而非对本发明实施例的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明实施例相关的部分而非全部结构。
图1为本发明实施例提供的一种基于LCD多晶元板的图像生成方法的流程图,本实施例可适用于图像生成,该方法可以由图像生成设备如手机、智能摄像头等来实施,具体包括如下步骤:
步骤S101、确定当前图像生成场景下对应的光照调整策略。
在一个实施例中,对图像场景进行了区别划分。图像生成场景指对当前拍摄的图像进行识别或预览以确定出的具体的场景。示例性的,如果识别出预览图像存在强光区域,则相应的该图像生成场景为强光场景,对应的光照调整策略为强光遮挡策略;如果识别出预览图像存在背光情况,则相应的该图像生成场景为背光场景,对应的光照调整策略为背光拍照策略。
本方案中,针对不同的场景设置有不同的光照调整策略。
步骤S102、根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制,使得调节后的光线通过图像传感器的感应以生成图像。
在一个实施例中,在确定出光照调整策略后,通过控制LCD多晶元板的方式对通过的光线强度进行控制,来实现对光线的调节后,使得调节后的光线通过图像传感器的感应以生成图像。
本方案中,包括摄像头以及和所述摄像头关联的LCD多晶元板,所述LCD多晶元板设置于所述摄像头的镜头和图像传感器之间或所述摄像头的镜头设置在所述LCD多晶元板和所述图像传感器之间,通过对该LCD多晶元板的控制以实现不同场景下的光线强度控制。具体的,控制方式可以是,以强光遮挡策略为例,包括:确定当前拍摄画面中的强光区域,通过所述LCD多晶元板降低所述强光区域的光线通过率。以背光拍照策略为例,控制方式包括:确定当前拍摄画面中的拍摄目标;确定所述拍摄目标对应的强光区域,通过所述LCD多晶元板降低所述强光区域的光线通过率。
具体的,对LCD多晶元板的控制可以采用不同的调节电压或电流对所述LCD多晶元板中的对应晶元的光线通过率进行控制,以实现对通过光线的光线强度的控制。现简要介绍本方案中利用的LCD多晶元板如下:
如图2所示,图2为一种示例性的液晶屏原理示意图。LCD液晶屏以TN型液晶为例,TN型液晶是顺着长轴方向串接,长轴间彼此平行方式排列。当接触到槽装表面时,液晶分子就会顺着槽的方向排列于槽中。当液晶被包含在两个槽状表面中间,且槽的方向互相垂直,则液晶分子的排列为:上表面分子:沿着a方向;下表面分子:沿 着b方向;介于上下表面中间的分子:产生旋转的效应。因此液晶分子在两槽状表面间产生90度的旋转。其偏转效果图如图3所示,图3为一种示例性的液晶分子翻转效果图。其中,液晶在电压做用下均匀分布,即当在上下表面之间加电压时,液晶分子会顺着电场方向排列,形成直立排列的现象。此时入射光线不受液晶分子影响,直线射出下表面。
图4为一种示例性的液晶偏光特性示意图。LCD液晶板存在偏光板的特性,如图4(上)所示,将非偏极光(一般光线)过滤成偏极光,当非偏极光通过a方向的偏光片时,光线被过滤成与a方向平行的线性偏极光,线性偏极光继续前进,通过第二片偏光片时,光线通过;如图4(下)所示,线性偏极光继续前进,通过第二片时,光线被完全阻挡。在具体的对光线通过性的控制过程中,当上下偏光片相互垂直时,即角度为90度,若未施加电压,光线可通过,当施加电压时,光线会被相应遮挡。在对LCD液晶板施加电压后,电流通过电晶体产生电场变化,造成液晶分子偏转,由此以改变光线的偏极性,再通过设置的偏光片对通过的光线进行遮挡/通过,以实现不同的明暗状态。
图4a为另一种示例性的液晶屏原理示意图。图4b为另一种示例性的液晶屏原理示意图。其中,与图2所示的最大区别在于不需要偏振光片,以及液晶容器内壁没有设有槽状表面。当没有通电时,如图4a所示,由于没有内壁槽状表面的牵引,其内部所含有的液晶分子呈现无序排列状态,光线无法透过玻璃膜,这时看到的状态就是白色非透明状态。当通电的条件下,如图4b所示,其内部液晶分子有序排列,光线可以顺利透过玻璃膜,这时看到的状态就是透明状态。
本方案中,通过LCD多晶元板对通过的光线强度进行控制,具体控制方式依据确定出的光照调整策略。具体的,以光照调整策略包括背光拍照策略为例,首先识别出拍摄目标,再确定出拍摄目标对应的强光区域后,通过LCD多晶元板降低所述强光区域的光线通过率。该LCD多晶元板包含有多个像素控制单元,如图5所示,图5为本发明提供的一种LCD多晶元板的示意图,其中每个方格可通过控制信号进行单独的明暗透光控制,即对拍摄目标的附近区域的高亮度的方格降低其亮度。
本方案中,如图6和图7所示,图6为本方案实施例提供的一种LCD多晶元板、摄像头镜头以及图像传感器的位置关系示意图;图7为本方案实施例提供的另一种LCD多晶元板、摄像头镜头以及图像传感器的位置关系示意图。如图6所示,光线依次通过镜头、LCD多晶元板到达图像传感器;如图7所示,光线依次通过LCD多晶元板、镜头到达图像传感器。在一个实施例中,图像传感器采集得到的图像区域和LCD多晶元板的尺寸一致对应。
如图8所示,图8为本方案实施例提供的一种对不同波长情况下开态和关态的光透过率曲线示意图。其横坐标为不同光线的波长,纵坐标为开态和关态下相应的光线通过率。通过查询该曲线可以得到在开态的情况下400nm以上光线通过率良好,即可见光(400nm-700nm)以及近红外光(大于700nm)均可以通过;在关态的情况下,可见光的通过率几乎为0,而大于800nm的近红外光则可以正常的通过,实现近红外成像功能,因此,可以作为静态可控装置代替IR-CUT的机械式光谱切换功能。
由上述方案可知,本方案中的图像生成方法基于LCD多晶元板,该LCD多晶元板的厚度很低,且无需其他传统的马达、弹簧的控制,其中,所述LCD多晶元板设置于所述摄像头的镜头和图像传感器之间或所述摄像头的镜头设置在所述LCD多晶元板和所述图像传感器之间,通过确定当前图像生成场景下对应的光照调整策略,根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制,使得调节后的光线通过图像传感器的感应以生成图像。本方案实现了对拍摄图像亮暗的动态调节,扩展了拍摄功能,能够得到效果更佳的图像,且便于安装。
在一个实施例中,可以根据用户手动设置的光线通过率和/或蒙板信息控制所述LCD多晶元板对通过的光线强度进行控制。
在一个实施例中,蒙板信息为包含包含晶元的光线通过率信息的数组,其中还包括起始位置、长度、宽度、数据大小以及整体透光度等信息,示例性地,光线通过率可以用0.0-1.0或0-255表示。示例性地,蒙板信息按照生成图像的比例转换为灰度图并与生成图像对齐,则通过蒙板信息中光线通过率信息的数组可以确定蒙板的位置、形状、大小以及每个晶元光线通过率等信息。
图9为本发明实施案例提供的另一种基于LCD多晶元板的图像生成方法的流程图,给出了一种具体的根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制的方法。如图9所示,具体流程如下:
步骤S201、接收光线通过率控制。
步骤S202、确定当前拍摄画面的整体光线强度,通过所述LCD多晶元板降低整体光线通过率,使得调节后的光线通过图像传感器以生成图像。
针对外部指令,当接收确定的光线通过率的时候,根据所述光线通过率确定对应晶元的调节电压,控制晶元的电压为对应的调节电压,从而实现外部控制摄像头的光线通过率。进一步设计,采用可见光和近红外的双通截止滤 光片,即同时允许波长为400nm-700nm的可见光以及波长为800nm、820nm、850nm、920nm和/或940nm的近红外光线通过,当用户手动设置的光线通过率为0的时候,可见光的通过率为0%,而近红外光通过良好,则所生成为近红外图像,从而实现近红外光成像功能,可以作为静态可控装置代替IR-CUT的机械式光谱切换功能。
图10为本发明实施例提供的另一种基于LCD多晶元板的图像生成方法的流程图,给出了一种具体的根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制的方法。如图10所示,具体流程如下:
步骤S301、接收蒙板信息控制。
步骤S302、确定蒙板信息对应LCD多晶元板的各晶元的光线通过率,通过所述LCD多晶元板各晶元的光线通过率,使得调节后的光线通过图像传感器以生成图像。
当接收确定的蒙板信息的时候,根据蒙板信息中各个象素点的灰度信息确定LCD多晶元板对应晶元的光线通过率,根据所述各晶元光线通过率确定对应晶元的调节电压,控制晶元的电压为对应的调节电压,从而实现外部控制摄像头的光线通过率。可以针对阳光直射、远光灯、背光等各种光照模式实现控制整体光照亮度、部分遮挡等功能,让图像生成装置可以适应各种光照环境。
图11为本发明实施例提供的另一种基于LCD多晶元板的图像生成方法的流程图,给出了一种具体的根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制的方法。如图11所示,具体流程如下:
步骤S401、确定当前图像生成场景下对应的光照调整策略。
步骤S402、确定当前拍摄画面中的整体光线强度,通过所述LCD多晶元板降低所述整体光线通过率,使得调节后的光线通过图像传感器以生成图像。
在一个实施例中,通过集成的ISP进行控制指令的检测。针对拍摄画过程中的整体光线强度,通过图像传感器检测的图像参数确定外部整体光照强度,具体的,所述图像参数包括白平衡参数、图像曝光值以及LCD液晶板的透光度中的一种或多种。根据所述的整体光线强度确定光线通过率,相应的,通过对LCD多晶元板对应光线强度的控制。
在另一个实施例中,通过集成的处理器(例如ARM)进行控制指令的检测。针对拍摄画过程中的整体光线强度,通过图像传感器检测的图像参数确定外部整体光照强度。在一个实施例中,以手机拍照为例,确定整体光强度的方式包括:在设备界面显示一对拍摄图像的预览画面,根据检测到的用户的设置的画面亮度确定整体强光度;也可以通过图像传感器检测的图像参数确定外部整体光照强度,具体的,所述图像参数包括白平衡参数、图像曝光值以及LCD液晶板的透光度中的一种或多种。根据所述的整体光线强度确定整体光线通过率,相应的,通过对LCD多晶元板对应光线强度的控制。
由上述方案可知,本方案中的图像生成方法基于LCD多晶元板,该LCD多晶元板的厚度很低,且无需其他传统的马达、弹簧的控制,其中,所述LCD多晶元板设置于所述摄像头的镜头和图像传感器之间或所述摄像头的镜头设置在所述LCD多晶元板和所述图像传感器之间,通过确定当前图像生成场景下对应的光照调整策略,确定所述拍摄目标对应的强光区域,通过所述LCD多晶元板降低所述强光区域的光线通过率,使得调节后的光线通过图像传感器的感应以生成均匀亮度的图像。本方案实现了对拍摄图像对外部光线强度的动态调节,扩展了拍摄功能,能够得到效果更佳的图像,同时硬件设备且便于安装。
图12为本发明实施例提供的另一种基于LCD多晶元板的图像生成方法的流程图,给出了一种具体的根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制的方法。如图12所示,具体流程如下:
步骤S501、确定当前图像生成场景下对应的光照调整策略。
步骤S502、确定当前拍摄画面中的强光区域,通过所述LCD多晶元板降低所述强光区域的光线通过率,使得调节后的光线通过图像传感器的感应以生成图像。
在一个实施例中,通过集成的ISP进行控制指令的检测,以确定当前画面中的关于的图像区域。针对拍摄画面中的强光区域,通过LCD多晶元板对其光线通过率进行调节。在一个实施例中,通过集成的图像算法,对当前拍摄图像进行识别以计算出对应的强光区域。具体的,可采取局部测光或分区式测光等方式确定每个区域中图像画面的亮度均值,当某个区域的亮度均值显著大于其他区域时,将该区域确定为强光区域。相应的,通过对LCD多晶元板对应强光区域的控制,以降低该区域的光线通过率,最终形成不包含强光区域的亮度均匀的图像。
在另一个实施例中,通过集成的处理器(例如ARM)进行控制指令的检测,以确定当前画面中的关于的图像区域。针对拍摄画面中的强光区域,通过LCD多晶元板对其光线通过率进行调节。在一个实施例中,以手机拍照为例,确定强光区域的方式包括:在设备界面显示一对拍摄图像的预览画面,根据检测到的用户的点击位置确定其为强光区域;还可以是通过集成的图像算法,对当前拍摄图像进行识别以计算出对应的强光区域。具体的,可采取局部测光或分区式测光等方式确定每个区域中图像画面的亮度均值,当某个区域的亮度均值显著大于其他区域时, 将该区域确定为强光区域。相应的,通过对LCD多晶元板对应强光区域的控制,以降低该区域的光线通过率,最终形成不包含强光区域的亮度均匀的图像。
由上述方案可知,本方案中的图像生成方法基于LCD多晶元板,该LCD多晶元板的厚度很低,且无需其他传统的马达、弹簧的控制,其中,所述LCD多晶元板设置于所述摄像头的镜头和图像传感器之间或所述摄像头的镜头设置在所述LCD多晶元板和所述图像传感器之间,通过确定当前图像生成场景下对应的光照调整策略,确定所述拍摄目标对应的强光区域,通过所述LCD多晶元板降低所述强光区域的光线通过率,使得调节后的光线通过图像传感器的感应以生成均匀亮度的图像。本方案实现了对拍摄图像区域性的动态的调节,扩展了拍摄功能,能够得到效果更佳的图像,同时硬件设备且便于安装。并且可以控制指定晶元不同的光线通过率,可以针对阳光直射、远光灯、背光等各种光照模式实现控制整体光照亮度、部分遮挡等功能,让图像生成装置可以适应各种光照环境。
图13为本发明实施例提供的另一种基于LCD多晶元板的图像生成方法的流程图,给出了另一种具体的根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制的方法。如图3所示,具体流程如下:
步骤S601、确定当前图像生成场景下对应的光照调整策略。
步骤S602、确定当前拍摄画面中的关注区域。
在一个实施例中,通过集成的ISP进行控制指令的检测,以确定当前画面中的关于的图像区域。其中,该拍摄目标可以是人体、人脸或其他目标物。具体的,当ISP集成人脸检测算法,在进行拍摄的过程中可以检测到人脸并且确定人脸的所在区域的位置、形状和大小等信息,确定当前检测的人脸区域为拍摄画面中关注的图像区域。
在另一个实施例中,通过集成的处理器(例如ARM)进行控制指令的检测,以确定当前画面中的关于的图像区域。其中,该拍摄目标可以是人体、人脸或其他目标物。具体的,以手机拍照为例,当手机APP运行有人脸检测算法,在进行拍摄的过程中可以APP检测到人脸并且确定人脸的所在区域的位置、形状和大小等信息,确定当前检测的人脸区域为拍摄画面中关注的图像区域。
在另一个实施例中,通过集成的处理器(例如ARM)进行控制指令的控制,以确定当前画面中的关于的图像区域。以手机拍照为例,确定关注区域的方式包括:在设备界面显示一对拍摄图像的预览画面,根据检测到的用户的点击位置确定其为关注区域。
步骤S603、确定所述拍摄目标对应的关注区域,通过所述LCD多晶元板控制所述关注区域及以外区域的光线通过率,使得调节后的光线通过图像传感器的感应以生成图像。
在一个实施例中,确定拍摄关注区域后,确定关注区域和关注区域以外的光强度,当关注区域的光强度低于关注区域以外的光强度且达到低于预设阈值的时候,则拍摄区域处于逆光环境,然后根据关注区域的光强度和关注区域以外的光强度确定关注区域及以外区域的位置、形状、大小和光线通过率。相应的,确定关注区域及以外区域的光照强度后,通过所述LCD多晶元板控制所述对应晶元的光线通过率,使得调节后的光线通过图像传感器的感应以生成非背光下的清晰图像。
在一个实施例中,确定拍摄关注区域后,当关注区域的光强度高于预设阈值的时候,则关注区域处于强光环境,确定关注区域的位置、形状、大小和光线通过率。相应的,确定关注区域的光照强度后,通过所述LCD多晶元板控制所述对应晶元的光线通过率,使得调节后的光线通过图像传感器的感应以减少强光的清晰图像。
由上述方案可知,本方案中的图像生成方法基于LCD多晶元板,该LCD多晶元板的厚度很低,且无需其他传统的马达、弹簧的控制,其中,所述LCD多晶元板设置于所述摄像头的镜头和图像传感器之间或所述摄像头的镜头设置在所述LCD多晶元板和所述图像传感器之间,通过确定当前图像生成场景下对应的光照调整策略,确定当前拍摄画面中的拍摄目标,确定所述拍摄目标对应的强光区域,通过所述LCD多晶元板降低所述强光区域的光线通过率,使得调节后的光线通过图像传感器的感应以生成均匀亮度的图像。本方案实现了对拍摄图像区域性的动态的调节,扩展了拍摄功能,能够得到效果更佳的图像,同时硬件设备且便于安装。并且可以控制指定晶元不同的光线通过率,可以针对阳光直射、远光灯、背光等各种光照模式实现控制整体光照亮度、部分遮挡等功能,让图像生成装置可以适应各种光照环境。
其中,图16为本发明实施例提供的一个场景的环境光示意图,即为在该场景环境光下正常摄像头拍摄的图像效果图;从图中可见整体光线比较亮,并且图中镜头正对太阳,相对刺眼,并且太阳直射光会影响整个图像生成,影响图片质量。
图17为本发明实施例提供的对图16所在场景的光线通过率控制为50%的示意图,从图像效果可以感受到太阳光没有那么刺眼,整个画面相对柔和、舒适,但没有减少太阳光对整个画面成像的形象。
图18为本发明实施例提供的LCD多晶元装置的各晶元分布以及对图16各晶元光线通过率控制示意图,晶元 的大小由实际采用的LCD液晶工艺精度决定;可以看见针对发出强光的太阳进行适当的光线通过率控制,实现遮挡强光的功能,同时可以看见被遮挡的太阳的实际图像;可以结合图17所示的功能来控制整个画面的光线通过率,从而实现对整个画面各晶元的光线通过率的控制。示例性地,图18可以表示为蒙板信息,并把百分比换算成为8进制,则可以表示为:(长)24,(高)14,(整体光线通过率)1.0,(起始位置)[0,0],(数组大小)336,(光线通过率数组)[255,……255,230,179,179,230,255,……255,154,102,102,205,255,……255,154,102,102,205,255,……255,230,205,205,230,255,……255]。示例性地,图18可以表示为蒙板信息另外一种方式为:(总长)24,(总高)14,(整体光线通过率)1.0,(数组数量)1,[(长)4,(高)4,(起始位置)[7,6],(数组大小)16,(光线通过率数组)[230,179,179,230,154,102,102,205,154,102,102,205,230,205,205,230]]。
图19为本发明实施例提供的为对图18的拍摄图像效果示意图,图中可以看见太阳光被遮挡了,为体现更直观的效果,除遮挡区域的其他区域光线通过率均为100%,可见整个画面变得更加柔和舒适,避免了太阳直射的刺眼,并且减少了太阳直射光对整个画面成像效果的干扰,使摄像头更适合在各种光照环境下工作。
图20为本发明实施例提供的为对图18的遮挡太阳区域各个晶元的光线通过率示意图,图中可见各晶元的通过率各不相同,并且可控。示例性地,图20透光率非100%的区域可以表示为蒙板信息,并把百分比换算成为8进制,则可以表示为:(长)4,(高)4,(整体光线通过率)1.0,(起始位置)[7,6],(数组大小)16,(光线通过率数组)[230,179,179,230,154,102,102,205,154,102,102,205,230,205,205,230]。
图14为本发明实施例提供的一种基于LCD多晶元板的图像生成装置的结构框图,该装置用于执行上述实施例提供的基于LCD多晶元板的图像生成方法,具备执行方法相应的功能模块和有益效果。如图14所示,该装置具体包括:光照策略确定模块101以及多晶元板调节模块,用于根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控102,其中,
光照策略确定模块101,用于确定当前图像生成场景下对应的光照调整策略;
多晶元板调节模块102,用于根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制,使得调节后的光线通过图像传感器的感应以生成图像。
由上述方案可知,本方案中的图像生成方法基于LCD多晶元板,该LCD多晶元板的厚度很低,且无需其他传统的马达、弹簧的控制,其中,所述LCD多晶元板设置于所述摄像头的镜头和图像传感器之间或所述摄像头的镜头设置在所述LCD多晶元板和所述图像传感器之间,通过确定当前图像生成场景下对应的光照调整策略,根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制,使得调节后的光线通过图像传感器的感应以生成图像。本方案实现了对拍摄图像亮暗的动态调节,扩展了拍摄功能,能够得到效果更佳的图像,且便于安装。
在一个可能的实施例中,所述光照调整策略包括强光遮挡策略,所述多晶元板调节模块102具体用于:
确定当前拍摄画面中的强光区域,通过所述LCD多晶元板降低所述强光区域的光线通过率。
在一个可能的实施例中,所述光照调整策略包括背光拍照策略,所述多晶元板调节模块102包括目标确定单元1021以及目标区域调节单元1022,
所述目标确定单元1021用于,确定当前拍摄画面中的拍摄目标;
所述目标区域调节单元1022用于,确定所述拍摄目标对应的强光区域,通过所述LCD多晶元板降低所述强光区域的光线通过率。
在一个可能的实施例中,所述目标确定单元1021具体用于:
通过图像信号处理单元根据检测到的控制指令确定当前拍摄画面中关注的图像区域;
确定所述关注的图像区域中的拍摄目标。
在一个可能的实施例中,所述目标确定单元1021具体用于:
根据检测到的屏幕点击指令确定当前拍摄画面中关注的图像区域。
在一个可能的实施例中,所述目标确定单元1021具体用于:
根据人脸识别检测引擎生成的人脸检测指令确定当前拍摄画面中关注的图像区域。
在一个可能的实施例中,所述目标确定单元1021具体用于:
根据自动控制***识别生成的目标物位置指令确定当前拍摄画面中关注的图像区域。
在一个可能的实施例中,所述多晶元板调节模块102具体用于:
对所述LCD多晶元板中的对应晶元的光线通过率进行控制,以实现对通过光线的光线强度的控制。
在一个可能的实施例中,所述多晶元板调节模块102具体用于:
确定所述LCD多晶元板中的对应晶元的光线通过率;
根据所述光线通过率确定对应晶元的调节电压;
控制晶元的电压为对应的调节电压。
在一个可能的实施例中,所述多晶元板调节模块102具体用于:
根据设置的透光度电压对照表确定对应晶元的调节电压。
在一个可能的实施例中,该装置还包括蒙板处理模块103,具体用于:
在根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制之后,通过所述LCD多晶元板对通过光线的控制输出对应的蒙板信息。
在一个可能的实施例中,所述蒙板处理模块103还用于:
在所述通过所述LCD多晶元板对通过光线的控制输出对应的蒙板信息之后,将所述蒙板信息发送至外部***,以用于外部***根据所述蒙板信息执行相应的透光度控制处理。
在一个可能的实施例中,所述蒙板处理模块103还用于:
在根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制之后,接收外部***传送的蒙板信息,基于所述蒙板信息产生对应的蒙板。
图15为本发明实施例提供的一种基于LCD多晶元板的图像生成设备的结构示意图,如图15所示,该设备包括处理器201、存储器202、输入装置203和输出装置204;设备中处理器201的数量可以是一个或多个,图15中以一个处理器201为例;设备中的处理器201、存储器202、输入装置203和输出装置204可以通过总线或其他方式连接,图15中以通过总线连接为例。存储器202作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本发明实施例中的基于LCD多晶元板的图像生成方法对应的程序指令/模块。处理器201通过运行存储在存储器202中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述的基于LCD多晶元板的图像生成方法。输入装置203可用于接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置204可包括显示屏等显示设备。
本发明实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种基于LCD多晶元板的图像生成方法,包括摄像头以及和所述摄像头关联的LCD多晶元板,述LCD多晶元板设置于所述摄像头的镜头和图像传感器之间或所述摄像头的镜头设置在所述LCD多晶元板和所述图像传感器之间,该方法包括:
确定当前图像生成场景下对应的光照调整策略;
根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制,使得调节后的光线通过图像传感器的感应以生成图像。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本发明实施例可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务,或者网络设备等)执行本发明实施例各个实施例所述的方法。
值得注意的是,上述基于LCD多晶元板的图像生成装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明实施例的保护范围。
注意,上述仅为本发明实施例的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明实施例不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明实施例的保护范围。因此,虽然通过以上实施例对本发明实施例进行了较为详细的说明,但是本发明实施例不仅仅限于以上实施例,在不脱离本发明实施例构思的情况下,还可以包括更多其他等效实施例,而本发明实施例的范围由所附的权利要求范围决定。

Claims (19)

  1. 基于LCD多晶元板的图像生成方法,包括摄像头以及和所述摄像头关联的LCD多晶元板,其特征在于,所述LCD多晶元板设置于所述摄像头的镜头和图像传感器之间或所述摄像头的镜头设置在所述LCD多晶元板和所述图像传感器之间,所述图像显示方法包括:
    确定当前图像生成场景下对应的光照调整策略;
    根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制,使得调节后的光线通过图像传感器的感应以生成图像。
  2. 根据权利要求1所述的基于LCD多晶元板的图像生成方法,其特征在于,所述光照调整策略包括强光遮挡策略,所述根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制包括:
    确定当前拍摄画面的整体光照强度以及整体光线通过率,根据所述整体光照强度以及所述整体光线通过率对所述LCD多晶元板通过的光线强度进行控制。
  3. 根据权利要求1所述的基于LCD多晶元板的图像生成方法,其特征在于,所述光照调整策略包括强光遮挡策略,所述根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制包括:
    确定当前拍摄画面中的强光区域,通过所述LCD多晶元板降低所述强光区域的光线通过率。
  4. 根据权利要求1所述的基于LCD多晶元板的图像生成方法,其特征在于,所述光照调整策略包括背光拍照策略,所述根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制包括:
    确定当前拍摄画面中的关注区域;
    确定所述关注区域相关的强光区域,通过所述LCD多晶元板降低所述强光区域的光线通过率。
  5. 根据权利要求4所述的基于LCD多晶元板的图像生成方法,其特征在于,所述确定当前拍摄画面中的所述关注区域,包括:
    根据检测到的屏幕点击指令确定当前拍摄画面中关注的图像区域。
  6. 根据权利要求4所述的基于LCD多晶元板的图像生成方法,其特征在于,所述确定当前拍摄画面中的所述关注区域,包括:
    根据自动控制***识别生成的目标物位置指令确定当前拍摄画面中关注的图像区域。
  7. 根据权利要求1-6中任一项所述的基于LCD多晶元板的图像生成方法,其特征在于,所述控制所述LCD多晶元板对通过的光线强度进行控制,包括:
    对所述LCD多晶元板中的对应晶元的光线通过率进行控制,以实现对通过光线的光线强度的控制。
  8. 根据权利要求7所述的基于LCD多晶元板的图像生成方法,其特征在于,所述对所述LCD多晶元板中的对应晶元的光线通过率进行控制,包括:
    确定所述LCD多晶元板中的对应晶元的光线通过率;
    根据所述光线通过率确定对应晶元的调节电压或电流;
    控制对应晶元的电压或电流为对应的调节电压或电流。
  9. 根据权利要求8所述的基于LCD多晶元板的图像生成方法,其特征在于,所述根据所述光线通过率确定对应晶元的调节电压或电流,包括:
    根据设置的透光度电压或电流对照表确定对应晶元的调节电压或电流。
  10. 根据权利要求1所述的基于LCD多晶元板的图像生成方法,其特征在于,在根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制之后,还包括:
    通过所述LCD多晶元板对通过光线的控制输出对应的蒙板信息。
  11. 根据权利要求10所述的基于LCD多晶元板的图像生成方法,其特征在于,在所述通过所述LCD多晶元板对通过光线的控制输出对应的蒙板信息之后,还包括:
    将所述蒙板信息发送至外部***,以用于外部***根据所述蒙板信息执行相应的透光度控制处理,其中,所述蒙板信息为包含晶元的光线通过率信息的数组,其中还包括起始位置、长度、宽度、数据大小以及整体透光度信息。
  12. 根据权利要求1所述的基于LCD多晶元板的图像生成方法,其特征在于,还包括:
    根据用户手动设置的光线通过率和/或蒙板信息控制所述LCD多晶元板对通过的光线强度进行控制。
  13. 根据权利要求12所述的基于LCD多晶元板的图像生成方法,所述根据用户手动设置的光线通过率和/或蒙板信息控制所述LCD多晶元板对通过的光线强度进行控制,包括:
    接收光线通过率控制,确定当前拍摄画面的整体光线强度,通过所述LCD多晶元板降低整体光线通过率,使得调节后的光线通过图像传感器以生成图像。
  14. 根据权利要求13所述的基于LCD多晶元板的图像生成方法,所述接收光线通过率控制,确定当前拍摄画 面的所述整体光线强度,其特征在于,还包括:
    当滤光片为可见光和近红外的双通截止滤光片的时候,并且所述用户手动设置的光线通过率为0%,则生成近红外图像。
  15. 根据权利要求12所述的基于LCD多晶元板的图像生成方法,所述根据用户手动设置的光线通过率和/或蒙板信息控制所述LCD多晶元板对通过的光线强度进行控制,还包括:
    接收外部***传送的蒙板信息,基于所述蒙板信息中的灰度参数进行整体光线强度的调节,基于所述蒙板信息中的蒙板参数确定整体透光度、蒙板的大小、位置、形状和光线通过率中的一种或多种。
  16. 根据权利要求12所述的基于LCD多晶元板的图像生成方法,所述根据用户手动设置的光线通过率和/或蒙板信息控制所述LCD多晶元板对通过的光线强度进行控制,包括:
    接收蒙板信息控制,确定蒙板信息对应LCD多晶元板的各晶元的光线通过率,通过所述LCD多晶元板各晶元的光线通过率,使得调节后的光线通过图像传感器以生成图像。
  17. 基于LCD多晶元板的图像生成装置,包括摄像头以及和所述摄像头关联的LCD多晶元板,其特征在于,包括:
    光照策略确定模块,用于确定当前图像生成场景下对应的光照调整策略;
    多晶元板调节模块,用于根据所述光照调整策略控制所述LCD多晶元板对通过的光线强度进行控制,使得调节后的光线通过图像传感器的感应以生成图像。
  18. 一种基于LCD多晶元板的图像生成设备,所述设备包括:一个或多个处理器;存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-16中任一项所述的基于LCD多晶元板的图像生成方法。
  19. 一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如权利要求1-16中任一项所述的基于LCD多晶元板的图像生成方法
PCT/CN2022/096755 2021-06-04 2022-06-02 基于lcd多晶元板的图像生成方法、装置、设备和存储介质 WO2022253295A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110627542.1A CN113364996A (zh) 2021-06-04 2021-06-04 基于lcd多晶元板的图像生成方法、装置、设备和存储介质
CN202110627542.1 2021-06-04

Publications (1)

Publication Number Publication Date
WO2022253295A1 true WO2022253295A1 (zh) 2022-12-08

Family

ID=77532554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096755 WO2022253295A1 (zh) 2021-06-04 2022-06-02 基于lcd多晶元板的图像生成方法、装置、设备和存储介质

Country Status (2)

Country Link
CN (1) CN113364996A (zh)
WO (1) WO2022253295A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113364996A (zh) * 2021-06-04 2021-09-07 巽腾(广东)科技有限公司 基于lcd多晶元板的图像生成方法、装置、设备和存储介质
CN115629505B (zh) * 2022-12-06 2023-03-28 开拓导航控制技术股份有限公司 基于液晶调控的成像过程过曝光实时抑制方法和***

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080007645A1 (en) * 2006-07-07 2008-01-10 Mccutchen David Active mask for electronic imaging system
CN101201468A (zh) * 2006-12-13 2008-06-18 鸿富锦精密工业(深圳)有限公司 具有液晶式快门的相机模组
CN103149721A (zh) * 2011-11-29 2013-06-12 索尼公司 液晶调光装置、图像拾取单元和驱动液晶调光器件的方法
CN104078028A (zh) * 2014-06-27 2014-10-01 联想(北京)有限公司 一种屏幕亮度调节方法及电子设备
US20160269603A1 (en) * 2015-03-10 2016-09-15 Denso Corporation Imaging apparatus
CN107786785A (zh) * 2016-08-29 2018-03-09 华为技术有限公司 光照处理方法及装置
CN108803197A (zh) * 2018-06-07 2018-11-13 维沃移动通信有限公司 一种光学结构、成像装置、电子设备及光量调整方法
CN111586264A (zh) * 2019-02-15 2020-08-25 杭州海康威视数字技术股份有限公司 图像采集设备及图像采集方法
WO2021063099A1 (zh) * 2019-09-30 2021-04-08 维沃移动通信有限公司 拍摄方法及电子设备
CN113364996A (zh) * 2021-06-04 2021-09-07 巽腾(广东)科技有限公司 基于lcd多晶元板的图像生成方法、装置、设备和存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110225228A (zh) * 2019-05-13 2019-09-10 北京百度网讯科技有限公司 一种摄像头局部透光率调节方法、***及摄像头
CN111614894B (zh) * 2020-04-28 2022-04-01 深圳英飞拓智能技术有限公司 一种图像采集方法、装置及终端设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080007645A1 (en) * 2006-07-07 2008-01-10 Mccutchen David Active mask for electronic imaging system
CN101201468A (zh) * 2006-12-13 2008-06-18 鸿富锦精密工业(深圳)有限公司 具有液晶式快门的相机模组
CN103149721A (zh) * 2011-11-29 2013-06-12 索尼公司 液晶调光装置、图像拾取单元和驱动液晶调光器件的方法
CN104078028A (zh) * 2014-06-27 2014-10-01 联想(北京)有限公司 一种屏幕亮度调节方法及电子设备
US20160269603A1 (en) * 2015-03-10 2016-09-15 Denso Corporation Imaging apparatus
CN107786785A (zh) * 2016-08-29 2018-03-09 华为技术有限公司 光照处理方法及装置
CN108803197A (zh) * 2018-06-07 2018-11-13 维沃移动通信有限公司 一种光学结构、成像装置、电子设备及光量调整方法
CN111586264A (zh) * 2019-02-15 2020-08-25 杭州海康威视数字技术股份有限公司 图像采集设备及图像采集方法
WO2021063099A1 (zh) * 2019-09-30 2021-04-08 维沃移动通信有限公司 拍摄方法及电子设备
CN113364996A (zh) * 2021-06-04 2021-09-07 巽腾(广东)科技有限公司 基于lcd多晶元板的图像生成方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN113364996A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2022253295A1 (zh) 基于lcd多晶元板的图像生成方法、装置、设备和存储介质
US11245825B2 (en) Dual-camera module, electronic device, and image acquisition method
JP5777820B2 (ja) 表示装置
US20120268626A1 (en) Apparatus and method for eliminating glare
US7817190B2 (en) Method and apparatus for processing an image exposed to backlight
WO2022253296A1 (zh) 基于lcd液晶板的图像生成方法、装置、设备和存储介质
US20080055535A1 (en) Transparent display
US10104273B2 (en) Optical low pass filter, image pickup device, and image pickup apparatus
US20130002925A1 (en) Image capture apparatus with variable translucency mirror
US8078049B2 (en) Imaging apparatus
CN106133820B (zh) 显示装置以及取景器装置
WO2022253299A1 (zh) 基于lcd液晶装置的图像生成方法、装置、设备和存储介质
WO2022253300A1 (zh) 基于lcd液晶装置的图像生成控制装置和方法
WO2014141612A1 (ja) 撮像装置
US11006041B1 (en) Multiple camera system for wide angle imaging
CN114554050A (zh) 图像处理方法、装置和设备
US9723207B2 (en) Imaging device and control method therefor
TW201807998A (zh) 根據多個圖像感測器幀進行高解析度數位攝影的方法和設備
US20230326163A1 (en) Imaging apparatus
CN111263039B (zh) 一种智能光学滤波器
JP2014048492A (ja) 撮像装置
US10567662B2 (en) Imaging device and control method therefor using shift direction calculation
JP3135345U (ja) 透光性感応電子スチル絞りシャッター装置及びカメラ
JP2014186226A (ja) 表示装置及び撮像装置
EP2515527A1 (en) Apparatus and method for eliminating glare

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815336

Country of ref document: EP

Kind code of ref document: A1