WO2022252018A1 - 显示基板以及显示装置 - Google Patents

显示基板以及显示装置 Download PDF

Info

Publication number
WO2022252018A1
WO2022252018A1 PCT/CN2021/097269 CN2021097269W WO2022252018A1 WO 2022252018 A1 WO2022252018 A1 WO 2022252018A1 CN 2021097269 W CN2021097269 W CN 2021097269W WO 2022252018 A1 WO2022252018 A1 WO 2022252018A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting unit
light emitting
area
display area
Prior art date
Application number
PCT/CN2021/097269
Other languages
English (en)
French (fr)
Inventor
汪明文
黄耀
肖星亮
陆忠
陈远
周亚美
宋宇
胡维
林福强
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180001372.4A priority Critical patent/CN116897607A/zh
Priority to US17/781,419 priority patent/US20240107804A1/en
Priority to PCT/CN2021/097269 priority patent/WO2022252018A1/zh
Publication of WO2022252018A1 publication Critical patent/WO2022252018A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • At least one embodiment of the present disclosure relates to a display substrate and a display device.
  • At least one embodiment of the present disclosure provides a display substrate, which includes: a display area including a plurality of light emitting units; the plurality of light emitting units are arranged in multiple rows, and a row of light emitting units is arranged along a first direction; the plurality of light emitting units
  • the light-emitting unit includes a plurality of first light-emitting units; in at least a partial area of the display area: the light-emitting area of the first light-emitting unit and the two second light-emitting units adjacent to the first light-emitting unit in the first direction
  • the distance between the light-emitting regions of a light-emitting unit in the first direction is different, and/or the light-emitting region of the first light-emitting unit is different from the two second light-emitting regions adjacent to the first light-emitting unit in the second direction.
  • the intervals between the light emitting regions of a light emitting unit are different in the second direction, and the first direction intersects with
  • the light-emitting areas of the first light-emitting unit are respectively connected to the light-emitting areas in the first direction.
  • the distances in the first direction between the light-emitting areas of two adjacent first light-emitting units of the first light-emitting unit are respectively the first interval distance and the second interval distance;
  • the at least one row of light-emitting units includes a plurality of The light-emitting regions of the first light-emitting unit are arranged at intervals along the first direction to form a plurality of intervals, the plurality of intervals include the first interval distance and the second interval distance, the first interval distance and the The second separation distances are arranged alternately in the first direction.
  • the light-emitting area of the first light-emitting unit is respectively connected to the first light-emitting unit in the second direction.
  • the distances between the light-emitting regions of two adjacent first light-emitting units in the second direction are respectively the third distance and the fourth distance, and in the second direction, the adjacent first light-emitting units
  • the intervals between the light-emitting regions of the light-emitting units in the second direction are arranged alternately according to the third interval distance and the fourth interval distance.
  • the display substrate provided by an embodiment of the present disclosure includes a base substrate and a plurality of light-emitting unit groups located on the base substrate, and the light-emitting unit group includes at least one of the light-emitting units;
  • the display area includes a second A display area, a second display area and a third display area, the first display area is located on at least one side of the third display area, at least part of the second display area is located on the first display area and the third display area
  • the at least partial area of the display area includes the second display area;
  • the plurality of light emitting unit groups includes a plurality of first light emitting unit groups located in the first display area , a plurality of second light-emitting unit groups located in the second display area, and a plurality of third light-emitting unit groups located in the third display area;
  • the at least one light-emitting unit in the light-emitting unit group includes the In the first light-emitting unit, in the first display area, the light-emitting areas
  • the light-emitting areas of the first light-emitting units located in the same row of light-emitting units are arranged at equal intervals along the first direction, and are located in the same row.
  • the distance between the light-emitting regions of two adjacent first light-emitting units in the row light-emitting unit in the first direction is the sixth separation distance, and at least one of the first separation distance and the second separation distance is - different from the sixth separation distance.
  • the sixth spacing distance is greater than the first spacing distance
  • the first spacing distance is greater than the fifth spacing distance
  • the fifth spacing distance is greater than the first spacing distance. Describe the second separation distance.
  • the area of the light-emitting area of at least one of the first light-emitting units in the third display area is different from that of the first light-emitting unit in the first display area.
  • the area of the light-emitting area of the unit, and/or the area of the light-emitting area of at least one of the first light-emitting units in the third display area is different from the area of the light-emitting area of the first light-emitting unit in the second display area area.
  • the area of the light-emitting region of at least one of the first light-emitting units in the third display region is the same as that of the first light-emitting unit in the first display region.
  • the ratio of the area of the light-emitting area of the light-emitting area is 0.8 to 2.5, and/or the area of the light-emitting area of at least one of the first light-emitting units in the third display area and the area of the first light-emitting area in the second display area
  • the area ratio of the light-emitting regions of the cells is 0.8-2.5.
  • the area of the light-emitting area of the first light-emitting unit in the second light-emitting unit group is smaller than or equal to that of the first light-emitting unit adjacent to the second light-emitting unit group.
  • the at least one light emitting unit in the light emitting unit group further includes a second light emitting unit and a third light emitting unit, the first direction is a row direction, and the The second direction is a column direction, and in at least one of the light emitting unit groups, the second light emitting unit and the third light emitting unit are located in different rows, and the first light emitting unit and the second light emitting unit are located in the same row. Row.
  • the first light emitting unit, the second light emitting unit and the third light emitting unit are respectively configured to provide light of different colors.
  • the at least one light emitting unit in the light emitting unit group further includes a fourth light emitting unit, and the first light emitting unit and the fourth light emitting unit are configured as Provides light of the same color.
  • the light-emitting area of the first light-emitting unit and the fourth The distance between the light-emitting area of the light-emitting unit in the second direction is the first distance, the light-emitting area of the fourth light-emitting unit and the first light-emitting unit group adjacent to the second light-emitting unit group
  • the distance of the light emitting area of the first light emitting unit in the second direction is a second distance, and the first distance is greater than the second distance.
  • the first distance is greater than the size of the light emitting area of the third light emitting unit in the second light emitting unit group in the second direction.
  • the first straight line extending along the first direction passes through
  • a second straight line extending along the first direction passes through the fourth light emitting unit and the second light emitting unit in the first light emitting unit group.
  • the plurality of second light-emitting unit groups include first sub-light-emitting unit groups and second sub-light-emitting unit groups arranged alternately along the first direction, and the At least one third light-emitting unit group adjacent to the plurality of second light-emitting unit groups is located in the same row of light-emitting unit groups as the second sub-light-emitting unit group; in at least one of the first light-emitting unit groups, the first light-emitting unit group The distance between the light-emitting area of the unit and the light-emitting area of the second light-emitting unit is a third distance; in at least one of the first sub-light-emitting unit groups, the light-emitting area of the first light-emitting unit and the second light-emitting unit The distance between the light-emitting areas of the units is the fourth distance; in at least one of the second sub-light-emitting unit groups, the distance between the light
  • the light-emitting area of the first light-emitting unit and the light-emitting area of the fourth light-emitting unit are The distance between two centerlines extending in two directions is the sixth distance; in at least one of the second sub-light-emitting unit groups, the light-emitting area of the first light-emitting unit and the light-emitting area of the fourth light-emitting unit are along the A distance between two centerlines extending in the second direction is a seventh distance, and the seventh distance is greater than the sixth distance.
  • the center line extending along the second direction in the light-emitting region of the second light-emitting unit and the first The distance between the centerlines extending along the second direction in the light-emitting areas of the four light-emitting units is the eighth distance; in at least one of the second sub-light-emitting unit groups, in the light-emitting areas of the second light-emitting units along the said second direction
  • the distance between the center line extending in the second direction and the center line extending in the second direction in the light-emitting area of the fourth light-emitting unit is a ninth distance, and the distance between the ninth distance and the eighth distance
  • the display substrate provided by an embodiment of the present disclosure further includes a plurality of first pixel circuit groups, a plurality of second pixel circuit groups, and a plurality of third pixel circuit groups, and the plurality of first pixel circuit groups are respectively connected to the The plurality of first light emitting unit groups are connected in one-to-one correspondence and located in the first display area, and the plurality of second pixel circuit groups are respectively connected in one-to-one correspondence with the plurality of second light emitting unit groups and located in the first display area.
  • the plurality of third pixel circuit groups are respectively connected to the plurality of third light-emitting unit groups in one-to-one correspondence, and are located in an area of the display substrate other than the third display area.
  • the multiple first pixel circuit groups include multiple first pixel circuits
  • the multiple second pixel circuit groups include multiple second pixel circuits
  • the multiple second pixel circuit groups include multiple second pixel circuits.
  • the arrangement density of the plurality of first pixel circuits in the first display area is greater than or equal to the arrangement density of the plurality of second pixel circuits in the second display area.
  • the second pixel circuit in at least one of the second pixel circuit groups, includes two sub-pixel circuits, and the two sub-pixel circuits are configured to emit light with the same Unit connection; in the first pixel circuit group, the first pixel circuit includes a sub-pixel circuit, and different sub-pixel circuits are configured to be connected to different light emitting units.
  • the display substrate provided by an embodiment of the present disclosure further includes a plurality of data lines extending along the second direction, and the plurality of data lines include first sub-data lines and second sub-data lines;
  • the first display The area includes a first pixel circuit column
  • the second display area includes a second pixel circuit column, and the first pixel circuit column and the second pixel circuit column are located in different columns;
  • the first sub-data line and the The first pixel circuit column is connected, the second sub-data line is connected to the second pixel circuit column, the first sub-data line and the second sub-data line are connected through a data line connection part, and the data line
  • the extending direction of the connection part intersects with the second direction, and the data line connection part and the data line are located at different layers.
  • the first display area further includes a third pixel circuit column
  • the second display area further includes a fourth pixel circuit column
  • the third pixel circuit column and At least part of the fourth pixel circuit column is located in the same column
  • the multiple data lines also include a third sub-data line and a fourth sub-data line
  • the third sub-data line is connected to the third pixel circuit column
  • the fourth sub-data line is connected to the fourth pixel circuit column
  • the third sub-data line and the fourth sub-data line are one continuous data line extending along the second direction.
  • the display substrate provided by an embodiment of the present disclosure further includes a plurality of power signal lines extending along the second direction, and the plurality of power signal lines include a plurality of first sub-power signal lines and a plurality of second sub-power signal lines, the plurality of first sub power signal lines are connected to the plurality of first pixel circuit groups, the plurality of second sub power signal lines are connected to the plurality of second pixel circuit groups, and the The first sub-power signal line is configured to transmit a first power signal, and the second sub-power signal line is configured to transmit a second power signal.
  • the plurality of second sub-power signal lines include a second sub-power signal line on the same straight line as at least one of the first sub-power signal lines, located at There is an interval between the first sub-power signal line and the second sub-power signal line on the same straight line.
  • the display substrate provided by an embodiment of the present disclosure further includes a light-shielding layer located at the edge of the third display area, and the orthographic projection of the light-shielding layer on the base substrate is consistent with the second sub-data line and the second sub-data line.
  • the orthographic projections of the fourth sub-data lines on the base substrate overlap, the light-shielding layer is located on the side of the film layer where the data line connection part is located away from the film layer where the power signal line is located, and the plurality of first sub-data lines At least one of the two sub-power signal lines is connected to the light shielding layer.
  • At least one embodiment of the present disclosure further provides a display device, which includes the display substrate described in any embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a planar structure of a display substrate provided by at least one embodiment of the present disclosure
  • Fig. 2 is a partial schematic diagram of an example of a light-emitting unit at the junction of the first display area and the second display area in the display substrate shown in Fig. 1;
  • Fig. 3 is a partial schematic diagram of an example of a light-emitting unit at the junction of the first display area, the second display area, and the third display area in the display substrate shown in Fig. 1;
  • FIG. 4 is an equivalent circuit diagram of a sub-pixel circuit included in a first pixel circuit provided by at least one embodiment of the present disclosure
  • FIG. 5 is an equivalent circuit diagram of two sub-pixel circuits included in a second pixel circuit provided by at least one embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a local planar structure of an active semiconductor layer at the junction of the third display area and the second display area and the junction of the first display area and the second display area according to at least one embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a partial planar structure of a first conductive layer at the junction of the third display area and the second display area and at the junction of the first display area and the second display area according to at least one embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a partial planar structure of a second conductive layer at the junction of the third display area and the second display area and at the junction of the first display area and the second display area according to at least one embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a local planar structure of a source-drain metal layer at a junction position between a third display region and a second display region and at a junction position between a first display region and a second display region according to at least one embodiment of the present disclosure
  • FIG. 10 is a schematic stacking diagram of the active semiconductor layer, the first conductive layer, the second conductive layer, and the source and drain metal layers shown in FIG. 6 to FIG. 9;
  • FIG. 11 is a partial plan view of the second electrode of the light emitting unit shown in FIG. 4 disposed on the pixel circuit layout shown in FIG. 10;
  • FIG. 12 is a schematic diagram of a planar structure of a display substrate provided by at least one embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a partial structure of the display substrate shown in FIG. 12 .
  • the under-screen camera means that the front camera is located at the bottom of the screen but does not affect the display function of the screen.
  • the screen above the camera can still display images normally. From the appearance, there will be no camera hole for the camera under the screen, which truly achieves a full-screen display effect.
  • organic light emitting diode display devices designed with under-screen cameras are provided with a low-density display area (L area), a high-density display area (H area), and a display area located in the low-density display area. (L area) and the density transition area between the high density display area (H area).
  • the low density display area (L area) in order to ensure the display effect of the organic light emitting diode display device, for example, in order to keep the display brightness uniformity of the low density display area (L area), the high density display area (H area) and the density transition area as consistent as possible, the low density
  • the area of the light-emitting area of each light-emitting unit in the display area (L area) often needs to be set larger than the area of the light-emitting area of each light-emitting unit in the high-density display area (H area) and the density transition area.
  • the area of the light-emitting area of each light-emitting unit in the low-density display area (L area) increases, the area of the light-emitting layer used to form the light-emitting area will also increase accordingly, resulting in a low-density display area (L area). region) and the density transition region, the light-emitting layers of the light-emitting units at the junction of the density transition region are likely to overlap with each other, which has a negative impact on the display effect of the organic light-emitting diode display device.
  • Embodiments of the present disclosure provide a display substrate and a display device.
  • the display substrate includes a display area, and the display area includes a plurality of light-emitting units; the plurality of light-emitting units are arranged in multiple rows, and the light-emitting units in one line are arranged along the first direction; the plurality of light-emitting units include a plurality of first light-emitting units; at least part of the display area In the region: the distance in the first direction between the light-emitting area of the first light-emitting unit and the light-emitting areas of two first light-emitting units adjacent to the first light-emitting unit in the first direction is different in the first direction, and/or the second The distance between the light-emitting area of a light-emitting unit and the light-emitting areas of two first light-emitting units adjacent to the first light-emitting unit in the second direction is different in the second direction, and the first direction intersects the second direction .
  • the display substrate provided by the embodiments of the present disclosure, by adjusting the distance between the light-emitting regions of adjacent first light-emitting units in the first direction or the second direction, for example, by making the light-emitting regions of the first light-emitting units Arranging unequal intervals in one direction, or arranging unequal intervals between the light-emitting regions of the first light-emitting unit in the second direction, can weaken or avoid the possible occurrence between the light-emitting regions or light-emitting layers of adjacent first light-emitting units.
  • the overlapping phenomenon, thereby weakening or avoiding possible adverse effects on the display effect of the display substrate is beneficial to improving the display effect of the display substrate.
  • FIG. 1 is a schematic diagram of a planar structure of a display substrate provided by at least one embodiment of the present disclosure
  • Fig. 2 is a kind of light-emitting unit at the junction of the first display area and the second display area in the display substrate shown in Fig. 1
  • FIG. 3 is a partial schematic diagram of an example of a light-emitting unit at the junction of the first display area, the second display area, and the third display area in the display substrate shown in FIG. 1 .
  • the display substrate includes a display area 101 , and the display area 101 includes a plurality of light emitting units 120 .
  • a plurality of light emitting units 120 are arranged in multiple rows, and the light emitting units 120 of a row are arranged along the first direction X, for example, each light emitting unit 120 in a row is arranged in sequence along the first direction X to form a row of light emitting units.
  • the plurality of light emitting units 120 includes a plurality of first light emitting units 1221 .
  • the X direction shown in the figure is the first direction
  • the Y direction is the second direction.
  • the first direction X and the second direction Y may be perpendicular, but not limited thereto.
  • the first direction and the second direction may also be interchanged.
  • the embodiments of the present disclosure are described by taking the first direction X as the row direction as an example.
  • the second direction Y may be the column direction, and the light emitting units 120 arranged along the first direction X are a row of light emitting units arranged along the row direction.
  • Embodiments of the present disclosure are not limited thereto, and the row direction and the column direction may also be interchanged.
  • the light-emitting unit 120 may refer to a light-emitting element (such as an organic light-emitting element), including a first electrode, a second electrode, and a light-emitting layer between the first electrode and the second electrode.
  • a light-emitting element such as an organic light-emitting element
  • the direction perpendicular to the display substrate, such as the base substrate, is sequentially stacked.
  • the second electrodes of each light emitting unit 120 are schematically shown in FIG. 2 and FIG. 3 .
  • the second electrode of each light emitting unit 120 includes a main body electrode and a connection electrode
  • the shape of the main body electrode is basically the same as that of the light emitting area (refer to the subsequent description) of each light emitting unit 120
  • the connection electrode is configured to be connected to the pixel circuit, for example It is connected with the thin film transistor included in the pixel circuit.
  • the light emitting unit The shape of the main body electrode 0121 of 121 is roughly hexagonal, and the edge of the main body electrode 0121 surrounds the light-emitting area, and the connection electrode 0122 is the part of the second electrode except the main body electrode 0121, which is used to connect with the pixel circuit.
  • the dotted line box shown in is different from the distance in the first direction X between the light emitting areas of the two first light emitting units 1221 adjacent to the first light emitting unit 1221 in the first direction X.
  • the distances in the first direction X between the light-emitting areas of two first light-emitting units 1221 adjacent to the first light-emitting unit 1221 in the first direction X are D12 and D11 (for example, the second described below.
  • D11 is different from D12, in other words, the spacing in the first direction X between the light-emitting area of the first light-emitting unit 1221 and the light-emitting area of the first light-emitting unit 1221 adjacent to the right D11 is different from the distance D12 in the first direction X between the light emitting area of the first light emitting unit 1221 and the light emitting area of the left adjacent first light emitting unit 1221 .
  • the direction indicated by the arrow in the X direction is rightward.
  • the embodiments of the present disclosure schematically show the distance between the edges of the two light emitting regions that are close to each other in the first direction X, or in the first direction X, the distance between the two light emitting regions that are closest to each other spacing between points.
  • the above-mentioned distances D11 and D12 may also refer to the distance between the centers of the two light-emitting regions in the first direction X, that is, passing through the two centers of the above-mentioned two light-emitting regions respectively.
  • the distance between two straight lines extending along the second direction Y, for example, the first direction X is perpendicular to the second direction Y.
  • distances D11 and D12 are all under the same definition, that is, they can both be the distance between the edges of the two light emitting regions close to each other in the first direction X, or they can both be the distance between the centers of the two light emitting regions in the first direction X. distance in direction X, etc.
  • each light emitting unit 120 includes a light emitting area
  • the "light emitting area” here may refer to a two-dimensional planar area, and the planar area is parallel to the display substrate such as the base substrate.
  • the display substrate further includes a pixel defining layer on the base substrate, the pixel defining layer includes an opening for defining the light emitting area of the light emitting unit 120, and the opening exposes the second electrode of the light emitting unit 120, when the subsequent light emitting unit 120
  • the light-emitting layer located in the opening is in contact with the second electrode, so that this part can drive the light-emitting layer to emit light to form a light-emitting region.
  • the size of the part away from the base substrate of the opening of the pixel defining layer is slightly larger than the size of the part close to the base substrate due to process and other reasons, or the opening from the side close to the base substrate to the side away from the base substrate
  • the size gradually increases in the direction, so the size of the light-emitting region and the size of the opening in the pixel defining layer may be slightly different at different positions, but the shape and size of the overall region are basically the same or similar.
  • the orthographic projection of the light emitting region on the base substrate approximately coincides with the orthographic projection of the opening of the corresponding pixel defining layer on the base substrate.
  • the orthographic projection of the light-emitting area on the base substrate completely falls within the area enclosed by the orthographic projection of the opening of the corresponding pixel defining layer on the base substrate, and the two shapes are similar, and the light-emitting area is on the base substrate.
  • the projected area of is slightly smaller than the projected area of the opening of the corresponding pixel defining layer on the base substrate.
  • the light-emitting regions of the first light-emitting units 1221 are arranged at unequal intervals in the first direction X, for example, D11 shown in FIG. 2 is different from D12, which can weaken or avoid possible overlapping phenomenon between the light-emitting regions or light-emitting layers of adjacent first light-emitting units 1221, thereby weakening or avoiding possible negative effects on the display effect of the display substrate.
  • the adverse effects caused are beneficial to improve the display effect of the display substrate.
  • the distance between the light-emitting area of a light-emitting unit 1221 and the light-emitting areas of two first light-emitting units 1221 adjacent to the first light-emitting unit 1221 in the second direction Y is different in the second direction Y.
  • X intersects the second direction Y, for example, the first direction X may be perpendicular to the second direction Y.
  • the light-emitting area of the first light-emitting unit 1221 is located on the upper and lower sides of the first light-emitting unit 1221 in the second direction Y and is connected to the first light-emitting unit 1221.
  • the distances in the second direction Y between the light emitting areas of two adjacent first light emitting units 1221 in the second direction Y are different from each other.
  • the distance between the light-emitting area of the first light-emitting unit 1221 and the light-emitting area of the first light-emitting unit 1221 adjacent to the upper side in the second direction Y is different from the distance between the light-emitting area of the first light-emitting unit 1221 and the lower side.
  • the spacing in the second direction Y between the light emitting regions of adjacent first light emitting units 1221 is upward.
  • the above-mentioned distance in the second direction Y may refer to the distance in the second direction Y between the edges of the two light-emitting regions that are close to each other, or may also refer to the distance between the two light-emitting regions in the second direction Y. The distance between the two points that are closest to each other.
  • the above-mentioned distance in the second direction Y may also refer to the distance between the centers of the two light-emitting regions in the second direction Y, that is, the two centers that respectively pass through the two centers of the two light-emitting regions extend along the first direction X.
  • the distance between the straight lines, for example, the first direction X is perpendicular to the second direction Y.
  • the above-mentioned distances in the second direction Y are all under the same definition, that is, they can be both the distance of the edges of the two light-emitting regions that are close to each other in the second direction Y, or both can be the distance between the two light-emitting regions.
  • the distance between the light-emitting area of a light-emitting unit 1221 and the light-emitting areas of two first light-emitting units 1221 adjacent to the first light-emitting unit 1221 in the first direction X is different from each other in the first direction X
  • the second The spacing in the second direction Y between the light emitting area of a light emitting unit 1221 and the light emitting areas of two first light emitting units 1221 adjacent to the first light emitting unit 1221 in the second direction Y is also different from each other.
  • the light-emitting area of the first light-emitting unit 1221 and the two first light-emitting units 1221 adjacent to the first light-emitting unit 1221 in the first direction X are respectively left and right.
  • the distances D12 and D11 between the light emitting areas are different from each other, and the light emitting area of the first light emitting unit 1221 is different from the light emitting areas of the two first light emitting units 1221 adjacent to the first light emitting unit 1221 in the second direction Y.
  • the spacing between them is different from each other.
  • the distances between the light emitting area of the first light emitting unit 1221 and the light emitting areas of the two first light emitting units 1221 adjacent to the first light emitting unit X in the first direction X in the first direction X are respectively The first separation distance D11 and the second separation distance D12.
  • the light-emitting areas of the plurality of first light-emitting units 1221 are arranged at intervals along the first direction X to form a plurality of intervals, the plurality of intervals include a first interval distance D11 and a second interval distance D12, for example, include A plurality of first separation distances D11 and a plurality of second separation distances D12 are arranged alternately in the first direction X.
  • the distances between the light-emitting regions of the plurality of first light-emitting units 1221 arranged along the first direction X are as follows: the first distance D11, the second distance D12, the first The separation distance D11, the second separation distance D12, and so on.
  • the light emitting area of the first light emitting unit 1221 is connected to the two first light emitting units that are respectively adjacent to the first light emitting unit 1221 in the second direction Y.
  • the distances between the light emitting regions of the light emitting unit 1221 in the second direction Y are respectively the third separation distance and the fourth separation distance.
  • the third In the case that the separation distance and the fourth separation distance are also different from each other, in the second direction Y, the distance between the light emitting regions of adjacent first light emitting units 1221 in the second direction Y can be according to the third separation distance and the fourth separation distance.
  • the four intervals are set alternately.
  • the multiple intervals between the light emitting regions of the plurality of first light emitting units 1221 arranged along the second direction Y are: the third interval distance, the fourth interval distance, the third interval distance, and the fourth interval distance. analogy.
  • the display substrate includes a base substrate 01 and a plurality of light emitting unit groups located on the base substrate 01 , and the light emitting unit group includes at least one light emitting unit 120
  • the at least one light emitting unit 120 includes a first light emitting unit 1221 .
  • the display area 101 includes a first display area 10, a second display area 20 and a third display area 30, the first display area 10 is located on at least one side of the third display area 30, and at least part of the second display area 20 is located on the first display area. Between the area 10 and the third display area 30 , for example, one side of the first display area 10 located in the second direction Y of the second display area 20 .
  • the aforementioned at least partial area of the display area 101 includes the second display area 20 .
  • the first display area 10 can surround the third display area 30, for example, the first display area 10 can be located on both sides of the third display area 30 in the first direction X and at least in the second direction Y. side.
  • the first display area 10 surrounds the second display area 20.
  • the first display area 10 includes at least one side of the second display area 20 in the first direction X and in the second direction Y. side part.
  • the embodiment of the present disclosure schematically shows that the position of the third display area 30 is located in the overall display area 101 (the complete area used for display in the display substrate, for example including the first display area 10, the second display area 20 and the third display area 101).
  • the position of the third display area 30 can be set according to actual needs, for example, it can also be located at the upper left corner or upper right corner of the overall display area 101.
  • Figure 1 schematically shows that the shapes of the second display area 20 and the third display area 30 are both rectangular, but it is not limited thereto, the shape of at least one of the above-mentioned second display area 20 and the third display area 30 can also be It is a regular shape such as a circle or an ellipse or an irregular shape, etc., which are not limited in the embodiments of the present disclosure.
  • FIG. 1 only schematically shows the shape, size and positional relationship of the first display area 10, the second display area 20 and the third display area 30, and the shape of each display area in an actual product may be Regular shape, also can be irregular shape.
  • the second display area 20 may include a protruding area
  • the first display area 10 may include a concave area
  • the protruding area of the second display area 20 may be inserted into the concave area of the first display area 10
  • the protruding area of the second display area 20 may be inserted into the concave area of the first display area 10.
  • the recessed area may have a shape complementary to that of the first display area 10 .
  • the side of the second display area 20 away from the first display area 10 may also include a recessed area.
  • the embodiment of the present disclosure schematically shows that the distance between the light-emitting areas of the two light-emitting units 120 refers to the distance between the edges of the light-emitting areas of the two light-emitting units 120 that are close to each other, but it is not limited thereto.
  • the distance between the light-emitting areas of the light-emitting units 120 can also be the distance between the centers of the light-emitting areas of the two light-emitting units 120 in the first direction X (or the second direction Y), that is, passing through the light-emitting areas of the two light-emitting units 120
  • the distance between the two centers of two straight lines extending along the second direction Y (or the first direction X) (for example, the first direction X is perpendicular to the second direction Y).
  • first light-emitting units 1221 by arranging a row of first light-emitting units 1221 in the second display area 20 at unequal intervals, it is possible to prevent the light-emitting areas or layers of the first light-emitting units 1221 in the second display area 20 from interfering with, for example, The overlapping phenomenon that may occur between the light-emitting areas or light-emitting layers of adjacent light-emitting units in the third display area 30 .
  • the plurality of light-emitting unit groups include a plurality of first light-emitting unit groups 100 located in the first display area 10, a plurality of second light-emitting unit groups 300 located in the second display area 20, and a plurality of light-emitting unit groups located in the third display area 30.
  • the third light emitting unit group 500 In the first display area 10, the light-emitting areas of the first light-emitting units 1221 located in the same row of light-emitting units 120 are arranged at equal intervals along the first direction X, and two adjacent first light-emitting units located in the same row of light-emitting units 120 The distance between the light emitting regions of 1221 in the first direction X is the fifth distance D13.
  • At least one of the first separation distance D11 and the second separation distance D12 is different from the fifth separation distance D13.
  • the first separation distance D11 and the second separation distance D12 are different from the fifth separation distance D13, for example, the first separation distance D11 is greater than the fifth separation distance D13, the second separation distance D13 The fifth separation distance D13 is greater than the second separation distance D12.
  • the light emitting regions of the first light emitting units 1221 located in the same row of light emitting units 120 are arranged at equal intervals along the first direction X, and are located in the same row of light emitting units 120
  • the distance between the light emitting areas of two adjacent first light emitting units 1221 in the first direction X is the sixth distance D14.
  • At least one of the first separation distance D11 and the second separation distance D12 is different from the sixth separation distance D14.
  • the first spacing distance D11 and the second spacing distance D12 are different from the sixth spacing distance D14, for example, the first spacing distance D11 and the second spacing distance D12 are smaller than the sixth spacing distance D12.
  • the sixth separation distance D14 is greater than the first separation distance D11, the first separation distance D11 is greater than the fifth separation distance D13, and the fifth separation distance D13 is greater than the second separation distance D12.
  • the density of the plurality of first light-emitting unit groups 100 in the first display area 10 is the third density
  • the density of the plurality of second light-emitting unit groups 300 in the second display area 20 is It is the fourth density
  • the third density is greater than the fourth density.
  • "the third density is greater than the fourth density” may mean that the number of the first light emitting unit group 100 is greater than the number of the second light emitting unit group 300 in the same area.
  • the above-mentioned same area may be an area of a rectangle, the long side of which is parallel to the first direction X, and the short side is parallel to the second direction Y, for example, the number of second light emitting unit groups 300 in one row may be q, the above
  • the long side of the rectangle can be the length of p (p is a positive integer not greater than q) second light emitting unit groups 300 along the second direction Y, and the short side of the rectangle can be the length of one second light emitting unit group 300 along the first direction X
  • the length of , embodiments of the present disclosure are not limited thereto.
  • the density of the plurality of third light-emitting unit groups 500 in the third display area 30 is the fifth density
  • the density (that is, the third density) of the plurality of first light-emitting unit groups 100 in the first display area 10 is equal to the second density
  • the density (that is, the fourth density) of the plurality of second light emitting unit groups 300 in the display area 20 is greater than the fifth density
  • the third density is greater than the fourth density
  • the fourth density is greater than the fifth density.
  • the number of the first light-emitting unit group 100 and the number of the second light-emitting unit group 300 are greater than the number of the third light-emitting unit group 500 under the same area.
  • the density of the first light-emitting unit group 100 in the first display area 10 is greater than the density of the third light-emitting unit group 500 in the third display area 30 , through the third display area 30 and the first display area 10
  • the second display area 20 is set between them, and the density of the light emitting unit groups in the second display area 20 is between the density of the light emitting unit groups in the first display area 10 and the third display area 30, which can make the first display
  • the border where the area 10 and the third display area 30 are close to each other is brightened.
  • the display substrate provided by the embodiments of the present disclosure is beneficial to improve the third display area.
  • 30 and the first display area 10 are bluish or dark at the border with each other, thereby improving the display quality of the third display area 30 (for example, the area where the camera under the screen is located).
  • the ratio of the fifth density to the third density may be 0.1-0.5, and the ratio of the fourth density to the third density may be 0.5-0.9.
  • the ratio of the fifth density to the third density may be 1/4, and the ratio of the fourth density to the third density may be 1/2.
  • the area of the light emitting area of the first light emitting unit 1221 in the third display area 30 is different from the area of the light emitting area of the first light emitting unit 1221 in the first display area 10
  • the area of the light emitting area of the first light emitting unit 1221 in the third display area 30 is different from the area of the light emitting area of the first light emitting unit 1221 in the second display area 20 .
  • the area of the light emitting area of the first light emitting unit 1221 in the third display area 30 may also be substantially the same or similar to the area of the light emitting area of the first light emitting unit 1221 in the first display area 10
  • the area of the light emitting area of the first light emitting unit 1221 in the third display area 30 may also be approximately the same or similar to the area of the light emitting area of the first light emitting unit 1221 in the second display area 20 .
  • the ratio of the area of the light-emitting area of the first light-emitting unit 1221 in the third display area 30 to the area of the light-emitting area of the first light-emitting unit 1221 in the first display area 10 is 0.8-2.5, for example, it can be further 1.1-2.5. 2.5, thereby improving the uniformity and consistency of the overall luminous brightness of the first light emitting unit 1221 in the first display area 10 and the third display area 30 .
  • the area ratio of the light emitting regions of the same light emitting units 120 in the third light emitting unit group 500 and the first light emitting unit group 100 is greater than 1.
  • the ratio of the area of the light emitting region of the first light emitting unit 1221 in the third light emitting unit group 500 to the area of the light emitting region of the first light emitting unit 1221 in the first light emitting unit group 100 may be 1.1 ⁇ 2.5.
  • the ratio of the area of the light-emitting area of the first light-emitting unit 1221 in the third display area 30 to the area of the light-emitting area of the first light-emitting unit 1221 in the second display area 20 is 0.8-2.5, for example, it can be further 1.1-2.5. 2.5, thereby improving the uniformity and consistency of the overall luminous brightness of the first light emitting unit 1221 in the second display area 20 and the third display area 30 .
  • the area ratio of the light emitting regions of the same light emitting units 120 in the third light emitting unit group 500 and the second light emitting unit group 300 is greater than one.
  • the ratio of the area of the light emitting region of the first light emitting unit 1221 in the third light emitting unit group 500 to the area of the light emitting region of the first light emitting unit 1221 in the second light emitting unit group 300 may be 1.1 ⁇ 2.5.
  • the area of the light emitting area of the first light emitting unit 1221 in the second light emitting unit group 300 is smaller than or equal to the area of the light emitting area of the first light emitting unit 1221 in the third light emitting unit group 500 adjacent to the second light emitting unit group 300 area.
  • the area ratio of the light emitting regions of the same light emitting units 120 (for example, the first light emitting unit 1221 ) in the third light emitting unit group 500 and the second light emitting unit group 300 may be 1.3 ⁇ 2.2.
  • the area ratio of the light emitting regions of the same light emitting units 120 (for example, the first light emitting unit 1221 ) in the third light emitting unit group 500 and the second light emitting unit group 300 may be 1.5 ⁇ 2.
  • the area ratio of the light emitting regions of the same light emitting units 120 (for example, the first light emitting unit 1221 ) in the third light emitting unit group 500 and the second light emitting unit group 300 may be 1.8.
  • the area ratio of the light emitting regions of the same light emitting units 120 (for example, the first light emitting unit 1221 ) in the third light emitting unit group 500 and the first light emitting unit group 100 may be 1.3 ⁇ 2.2.
  • the area ratio of the light emitting regions of the same light emitting units 120 (for example, the first light emitting unit 1221 ) in the third light emitting unit group 500 and the first light emitting unit group 100 may be 1.5 ⁇ 2.
  • the area ratio of the light emitting regions of the same light emitting units 120 (for example, the first light emitting unit 1221 ) in the third light emitting unit group 500 and the first light emitting unit group 100 may be 1.8.
  • the light emitting unit 120 in the light emitting unit group further includes a second light emitting unit 121 and a third light emitting unit 123 .
  • the second light-emitting unit 121 and the third light-emitting unit 123 are located in different rows, for example, in different rows of light-emitting units, and the first light-emitting unit 1221 and the second light-emitting unit 121 are located in the same row , for example, in the same row of light-emitting units.
  • a straight line extending along the first direction X can pass through the first light-emitting unit 1221 and the second light-emitting unit 121 at the same time, while the second light-emitting unit 121 and the third light-emitting unit 123 It cannot be passed by any straight line extending along the first direction X at the same time.
  • each first light-emitting unit group 100, each second light-emitting unit group 300, and each third light-emitting unit group 500 include at least one first light-emitting unit 1221, one second light-emitting unit 121 And a third light emitting unit 123 , the second light emitting unit 121 and the third light emitting unit 123 are located in different rows, and the first light emitting unit 1221 and the second light emitting unit 121 are arranged along the first direction X.
  • the light emitting unit 120 in the light emitting unit group further includes a fourth light emitting unit 1222 .
  • a row of light emitting units 120 arranged along the first direction X includes second light emitting units 121 , first light emitting units 1221 and third light emitting units arranged repeatedly in sequence.
  • a row of light emitting units 120 arranged along the first direction X may include a row of third light emitting units 123 arranged along the first direction X, or a row of light emitting units 120 arranged along the first direction X may include A row of fourth light emitting units 1222 arranged along the first direction X, or a row of light emitting units 120 arranged along the first direction X may also include second light emitting units 121 and first light emitting units 1221 arranged alternately along the first direction X Composed of rows of light emitting cells.
  • a row of second light-emitting units 121 are arranged at equal intervals along the first direction X, and a row of fourth light-emitting units 1222 are arranged at equal intervals along the first direction X.
  • a row of third light-emitting units 123 is arranged at equal intervals along the first direction X, while a row of first light-emitting units 1221 is arranged at unequal intervals along the first direction X, so that in the second light-emitting unit group 300, except for the first
  • the manufacture of other light emitting units 120 other than the light emitting unit 1221 reduces the manufacturing cost.
  • the first light emitting unit 1221, the second light emitting unit 121 and the third light emitting unit 123 are respectively configured to provide light of different colors, for example, may be configured to provide light of different colors such as red, green, blue, etc., thereby making each
  • the light emitting unit group may include at least one of a light emitting unit 120 emitting red light, a light emitting unit 120 emitting green light, and a light emitting unit 120 emitting blue light.
  • the embodiment of the present disclosure schematically shows that the second light emitting unit 121 may be a red light emitting unit, the first light emitting unit 1221 may be a green light emitting unit, and the third light emitting unit 123 may be a blue light emitting unit. It should be noted that the embodiments of the present disclosure include but are not limited thereto, and the embodiments of the present disclosure do not specifically limit the light emitting colors of the first light emitting unit 1221 , the second light emitting unit 121 and the third light emitting unit 123 .
  • the first light emitting unit 1221 can also be a blue light emitting unit or a red light emitting unit
  • the second light emitting unit 121 can also be a blue light emitting unit or a green light emitting unit
  • the third light emitting unit 123 can also be a red light emitting unit or a green light emitting unit. unit etc.
  • the first light emitting unit 1221 and the fourth light emitting unit 1222 in each light emitting unit group are configured to provide light of the same color.
  • a row of light emitting units 120 arranged along the first direction X may include a second light emitting unit 121, a first light emitting unit 1221, and a third light emitting unit 123. It may include a second light emitting unit 121 , a fourth light emitting unit 1222 and a third light emitting unit 123 , and the first light emitting unit 1221 and the fourth light emitting unit 1222 may be arranged along the second direction Y.
  • the second light-emitting unit group 300 in the second display area 20 may include three rows of light-emitting units, and the three rows of light-emitting units may include one row of third light-emitting units 123 and one row of fourth light-emitting units. 1222 and a row of alternately arranged second light emitting units 121 and first light emitting units 1221 .
  • a row of light emitting units 120 arranged along the first direction X includes a row of third light emitting units 123 , a row of fourth light emitting units 1222 or a row of alternately arranged second light emitting units 122 .
  • the light emitting unit 121 and the first light emitting unit 1221 may include three rows of light-emitting units, and the three rows of light-emitting units may include a row of third light-emitting units 123, a row of fourth light-emitting units 1222, and a row of alternately arranged second light-emitting units.
  • Unit 121 and the first light emitting unit 1221 are examples of the first light emitting unit 1221.
  • the arrangement law of different light emitting units 120 in the second light emitting unit group 300 may be the same as or similar to the arrangement law of different light emitting units 120 in the third light emitting unit group 500 .
  • the first light emitting units 1221 and the fourth light emitting units 1222 are arranged along the second direction Y, and some of the first light emitting units 1221 in the second display area 20 can be It is roughly arranged with the fourth light emitting unit 1222 in the third display area 30 along the second direction Y.
  • a plurality of third light-emitting unit groups 500 are arranged in multiple rows of third light-emitting unit groups 500, two adjacent rows of third light-emitting unit groups 500 are staggered along the row direction (for example, the first direction X), and the plurality of second light-emitting units
  • the group 300 is arranged as at least one row of second light emitting unit groups 300 , for example, the second light emitting unit group 300 is arranged as a row of second light emitting unit groups 300 .
  • the third light-emitting unit group 500 located in one of the odd-numbered row and the even-numbered row is located in the same column as the odd-numbered second light-emitting unit group 300, and the third light-emitting unit group 500 located in the other of the odd-numbered row and the even-numbered row is located in the same column as the even-numbered second light-emitting unit group 500.
  • the second light emitting unit groups 300 are located in the same column.
  • the second light emitting unit group 300 and the third light emitting unit group 500 located in the same column refer to the first light emitting unit 1221 in the second light emitting unit group 300 and the fourth light emitting unit in the third light emitting unit group 500 1222 is the second light-emitting unit group 300 and the third light-emitting unit group 500 when they are located in the same column (ie, arranged along the column direction, for example, along the second direction Y).
  • a protruding area is provided on the side of the second display area 20 close to the first display area 10
  • a concave area is provided on the side of the first display area 10 close to the second display area 20
  • the protruding area of the second display area 20 can be inserted into the concave area of the first display area 10, and a row of fourth light-emitting units 1222 in the second display area 20 can be located in the protruding area of the second display area 20, that is, in the first display area.
  • a row of fourth light emitting units 1222 in the second display area 20 may be located in the same row as the light emitting units 120 (such as the second light emitting unit 121 and the third light emitting unit 123 ) in the first display area 10 .
  • a row of fourth light-emitting units 1222 in the second display area 20 may be located in the same row as the light-emitting units 120 in the first display area 10" means that a line extending parallel to the row direction (for example, the first direction X) may be Pass through the fourth light emitting unit 1222 and the light emitting unit 120 in the first display area 10 .
  • the third display area 30 is provided with a protruding area on the side close to the second display area 20, and the second display area 20 is provided with a concave area on the side close to the third display area 30, and the protruding area of the third display area 30 can be Inserted into the recessed area of the second display area 20, a row of fourth light-emitting units 1222 in the third display area 30 may be located in the protruding area of the third display area 30, that is, located in the recessed area of the second display area 20, then the third A row of fourth light emitting units 1222 in the display area 30 may be located in the same row as the light emitting units 120 in the second display area 20 .
  • the first light emitting unit 1221 and the fourth light emitting unit 1222 are arranged along the second direction Y, and the fourth light emitting unit 1222 in the second display area 20 can be connected with
  • the first light-emitting units 1221 or the fourth light-emitting units 1222 in the first display area 10 are roughly arranged along the second direction Y, and the first light-emitting units 1221 in the second display area 20 can be aligned with the first light-emitting units in the first display area 10.
  • the light-emitting units 1221 or the fourth light-emitting units 1222 are generally arranged along the second direction Y, and may also deviate from the first light-emitting units 1221 or the fourth light-emitting units 1222 in the first display area 10 by a certain distance in the first direction X.
  • a plurality of first light-emitting unit groups 100 includes multiple columns of third sub-light-emitting unit groups 111 and multiple columns of fourth sub-light-emitting unit groups 112, and multiple columns of third sub-light-emitting unit groups 111 and Multiple columns of fourth sub-light emitting unit groups 112 are arranged alternately along the row direction (eg, the first direction X).
  • the second light-emitting unit 121 , the third light-emitting unit 123 , and the first light-emitting unit 1221 (or the fourth light-emitting unit 1222 ) in the second light-emitting unit group 300 are located in the same column as the third sub-light-emitting unit group 111 .
  • the second light-emitting unit 121, the third light-emitting unit 123, and the first light-emitting unit 1221 (or the fourth light-emitting unit 1222) in the second light-emitting unit group 300 are located in the same row as the third sub-light-emitting unit group 111" may refer to the The second light-emitting units 121 in the second light-emitting unit group 300 and the second light-emitting units 121 in the third sub-light-emitting unit group 111 are roughly arranged along the column direction (for example, the second direction Y), and the third light-emitting units in the second light-emitting unit group 300
  • the light-emitting units 123 and the third light-emitting units 123 in the third sub-light-emitting unit group 111 are roughly arranged in the column direction, and the fourth light-emitting units 1222 in the second light-emitting unit group 300 are aligned with the first light-emitting units in the third sub-light-e
  • a plurality of second light-emitting unit groups 300 include first sub-light-emitting unit groups 310 and second sub-light-emitting unit groups 320 arranged alternately along the first direction X, and a plurality of third light-emitting unit groups At least one third light-emitting unit group 500 in a row of third light-emitting unit groups 500 adjacent to the plurality of second light-emitting unit groups 300 in the group 500 is located in the same column as the second sub-light-emitting unit group 320 .
  • the third light emitting unit group 500 adjacent to the second light emitting unit group 300 is located in the same column as the second light emitting unit group 300 .
  • the fourth light emitting unit 1222 in the third light emitting unit group 500 adjacent to the second light emitting unit group 300 is located in the same row as the second light emitting unit 121 in the second light emitting unit group 300 .
  • a row of light emitting units 120 arranged along the first direction X includes N types of light emitting units 120 of different colors;
  • a row of light emitting units 120 arranged in X includes M light emitting units 120 of different colors, N is greater than M, and both N and M are positive integers not less than 1.
  • a row of light emitting units 120 arranged along the first direction X includes light emitting units 120 of three different colors, such as a first light emitting unit 1221, a second light emitting unit 121 and a third light-emitting unit 123; in the second display area 20, a row of light-emitting units 120 arranged along the first direction X includes light-emitting units 120 of one color or light-emitting units 120 of two different colors, and the light-emitting units of two different colors
  • the units 120 are arranged alternately along the first direction X.
  • N can be 3, and M can be 1 or 2.
  • a row of light emitting units arranged along the first direction X in the first display area 10 may also include light emitting units 120 of two different colors, or four or more light emitting units.
  • the light emitting units 120 of various colors are not limited in this embodiment of the present disclosure.
  • the first display area 10 further includes a plurality of first pixel circuit groups 200 connected to the plurality of first light emitting unit groups 100
  • the second display area 20 further includes a plurality of second light emitting unit groups 200 connected to each other.
  • the group 300 is connected to a plurality of second pixel circuit groups 400
  • the third display area 30 further includes a plurality of third pixel circuit groups 600 connected to a plurality of third light emitting unit groups 500 .
  • the multiple first pixel circuit groups 200 are connected to the multiple first light emitting unit groups 100 in one-to-one correspondence.
  • the multiple second pixel circuit groups 400 are connected to the multiple second light emitting unit groups 300 in one-to-one correspondence.
  • the multiple third pixel circuit groups 600 are connected to the multiple third light emitting unit groups 500 in one-to-one correspondence.
  • the first pixel circuit group 200 , the second pixel circuit group 400 , and the third pixel circuit group 600 are all located on the base substrate 01 .
  • the orthographic projections of the groups 400 on the base substrate 01 overlap each other, and the orthographic projections of the third light-emitting unit group 500 and the third pixel circuit group 600 connected thereto on the base substrate 01 overlap each other, but not limited thereto.
  • the unit group and the pixel circuit group connected thereto may not overlap.
  • the plurality of third pixel circuit groups 600 may also be located in areas other than the third display area 30 . Therefore, by disposing the third pixel circuit group 600 that drives the third light emitting unit group 500 in the third display area 30 to emit light in an area other than the third display area 30, the light transmittance of the third display area 30 can be improved, That is, the light transmittance of the third display area 30 is improved by setting the light emitting unit 120 and the pixel circuit separately.
  • the third display area 30 is an area for setting, for example, an under-screen camera.
  • the camera module can also be a 3D structured light module (for example, a 3D structured light sensor), a time-of-flight 3D imaging module (for example, a time-of-flight sensor), an infrared sensing module (for example, an infrared sensing sensors) and other functional components.
  • a 3D structured light module for example, a 3D structured light sensor
  • a time-of-flight 3D imaging module for example, a time-of-flight sensor
  • an infrared sensing module for example, an infrared sensing sensors
  • the display substrate further includes a transition area 40 between the first display area 10 and the third display area 30 , and the transition area 40 includes Two parts on both sides in one direction X.
  • the transition region 40 includes a plurality of fourth light-emitting unit groups 700 and a plurality of fourth pixel circuit groups 800 connected to the plurality of fourth light-emitting unit groups 700, for example, a plurality of fourth pixel circuit groups 800 and a plurality of fourth light-emitting unit groups 700 one-to-one connection.
  • the transition region 40 further includes a third pixel circuit group 600 connected to the third light emitting unit group 500 .
  • each light-emitting unit 120 and the pixel circuit connected thereto constitute a sub-pixel, that is, the display substrate includes a plurality of sub-pixels, and each sub-pixel includes a light-emitting unit 120 and a pixel circuit connected thereto.
  • the distance in the second direction Y is the first distance D1
  • the embodiment of the present disclosure schematically shows the distance in the second direction Y of the edges where the light emitting areas of the two light emitting units 120 are close to each other, or in the second direction On Y, the distance between two points where the light emitting areas of the two light emitting units 120 are closest to each other.
  • the embodiments of the present disclosure are not limited thereto.
  • the above-mentioned first distance D1 may also refer to the distance between the centers of the light-emitting areas of the two light-emitting units 120 in the second direction Y, that is, the distance between the centers of the light-emitting areas of the two light-emitting units 120 respectively passes through the above-mentioned two light-emitting units.
  • 120 is the distance between two straight lines extending along the first direction X at the two centers of the light emitting area, for example, the first direction X is perpendicular to the second direction Y.
  • the distance in the second direction Y is the second distance D2
  • the embodiment of the present disclosure schematically shows the distance in the second direction Y of the edges where the light emitting regions of the two light emitting units 120 are close to each other.
  • the embodiments of the present disclosure are not limited thereto.
  • the above-mentioned second distance D2 may also refer to the distance between the centers of the light-emitting areas of the two light-emitting units 120 in the second direction Y, that is, the distance between the centers of the light-emitting areas of the two light-emitting units 120 respectively passes through the above-mentioned two light-emitting units.
  • 120 is the distance between two straight lines extending along the first direction X at the two centers of the light emitting area.
  • the first distance D1 may be greater than the second distance D2.
  • first distance D1 and second distance D2 are all under the same definition, that is, they can both be the distances between the edges of the light-emitting areas of the two light-emitting units 120 that are close to each other in the first direction X or the second direction Y. , or both are the distances between the centers of the light emitting regions of the two light emitting units 120 in the first direction X or the second direction Y, etc.
  • the fourth light-emitting unit 1222 in the second light-emitting unit group 300 is located in the same row as the light-emitting unit 120 in the first light-emitting unit group 100, and the fourth light-emitting unit 1222 is located opposite to it.
  • the first light emitting units 1221 of the same second light emitting unit group 300 are closer to the first light emitting units 1221 of the first light emitting unit group 100 .
  • the first distance D1 is greater than the size of the light emitting area of the third light emitting unit 123 in the second light emitting unit group 300 in the second direction Y.
  • the third light emitting unit 123 may be located between the first light emitting unit 1221 and the fourth light emitting unit 1222 .
  • the second distance D2 is smaller than the size of the light emitting area of the third light emitting unit 123 in the second light emitting unit group 300 in the second direction Y.
  • the second distance D2 is smaller than the size of the light emitting area of the third light emitting unit 123 in the first light emitting unit group 100 in the second direction Y.
  • the size of the light emitting area of the third light emitting unit 123 in the first light emitting unit group 100 in the second direction Y and the size of the light emitting area of the third light emitting unit 123 in the second light emitting unit group 300 in the second direction Y may be Roughly equal.
  • substantially equal in the present disclosure means that the ratio of the difference between the two to one of them is not greater than 0.2.
  • the first light emitting unit 1221 or the fourth light emitting unit 1222 is located in the same row as the second light emitting unit 121 .
  • the fourth light emitting unit 1222 is compatible with the second light emitting unit 121 and the second light emitting unit 1222 in the first light emitting unit group 100 .
  • the three light emitting units 123 are located in the same row.
  • the fourth light emitting unit 1222 in the second light emitting unit group 300 is located in the same row as the second light emitting unit 121 and the third light emitting unit 123 in the first light emitting unit group 100 .
  • Embodiments of the present disclosure only schematically show a row of second light-emitting unit groups 300 adjacent to the first light-emitting unit group 100, and embodiments of the present disclosure are not limited to only including this row of second light-emitting unit groups 300, for example,
  • the second display area 20 may include a plurality of rows of second light emitting unit groups 300.
  • the first light emitting unit 1221 and the second light emitting unit group 300 are located in the same row, and the fourth light-emitting unit 1222 and another second light-emitting unit group 300 (the second light-emitting unit group is the first adjacent to the above-mentioned "other second light-emitting unit group" in the second direction Y)
  • the second light emitting unit 121 and the third light emitting unit 123 in the second light emitting unit group are located in the same row.
  • the number of light emitting units 120 arranged in a row along the first direction X in the first display area 10 is greater than the number of light emitting units 120 arranged in a row along the first direction X in the second display area 20 .
  • the average distance between the light-emitting regions of two adjacent light-emitting units 120 located in the same row in the first display area 10 is a
  • the second display area 20 is located in any row and The average distance between the light emitting areas of two adjacent light emitting units 120 is b, and a is smaller than b.
  • the distance between the light-emitting area of the second light-emitting unit 121 and the light-emitting area of the first light-emitting unit 1221 is a third distance D3; at least one In the first sub-light-emitting unit group 310, the distance between the light-emitting area of the second light-emitting unit 121 and the light-emitting area of the first light-emitting unit 1221 is the fourth distance D4; in at least one second sub-light-emitting unit group 320, the second light-emitting unit The distance between the light emitting area of the unit 121 and the light emitting area of the first light emitting unit 1221 is a fifth distance D5, the fifth distance D5 is greater than the fourth distance D4, and the fourth distance D4 is greater than the third distance D3.
  • the fifth distance D5 may be 50-60 microns
  • the fourth distance D4 may be 28-35 microns
  • the distance between the lines is the sixth distance D6; in at least one second sub-light-emitting unit group 320, two centers extending along the second direction Y in the light-emitting area of the first light-emitting unit 1221 and the light-emitting area of the fourth light-emitting unit 1222
  • the distance between the lines is a seventh distance D7, which is greater than the sixth distance D6.
  • the central line extending along the second direction Y in the light emitting area of the second light emitting unit 121 and the central line extending along the second direction Y in the light emitting area of the fourth light emitting unit 1222 The distance between the centerlines extending along the second direction Y is the eighth distance D8; in at least one second sub-light-emitting unit group 320, the centerline extending along the second direction Y in the light-emitting area of the second light-emitting unit 121 is the eighth distance D8.
  • the distance between the centerlines extending along the second direction Y in the light emitting regions of the four light emitting units 1222 is the ninth distance D9, and the ratio of the ninth distance D9 to the eighth distance D8 is 0.8 ⁇ 1.2.
  • the shape of the light emitting area of the second light emitting unit 121 is approximately the same and the area is approximately equal; the first light emitting unit group 100 and the second light emitting unit group 300
  • the light emitting regions of the third light emitting units 123 have approximately the same shape and approximately equal areas.
  • the shapes of the light-emitting areas of the second light-emitting unit 121 and the third light-emitting unit 123 include a hexagon; The shape of the light emitting area includes a hexagon.
  • the area of the light emitting region of the third light emitting unit 123 is larger than the area of the light emitting region of the second light emitting unit 121 .
  • the shape of the light emitting region of the first light emitting unit 1221 in the first light emitting unit group 100 is different from the shape of the light emitting region of the first light emitting unit 1221 in the second light emitting unit group 300
  • the shape of the light emitting region of the fourth light emitting unit 1222 in the first light emitting unit group 100 is different from the shape of the light emitting region of the fourth light emitting unit 1222 in the second light emitting unit group 300 .
  • the shapes of the first light-emitting unit 1221 and the fourth light-emitting unit 1222 in the first light-emitting unit group 100 can both be pentagonal, and the shapes of the first light-emitting unit 1221 and the fourth light-emitting unit 1222 in the second light-emitting unit group 300 can be pentagonal.
  • the shapes can be substantially rectangular, so as to prevent the second electrode of the third light-emitting unit 123 in the second light-emitting unit group 300 from conflicting with the second electrode of the fourth light-emitting unit 1222 in space, and prevent the second light-emitting unit group 300 from The second electrode of the second light emitting unit 121 and the second electrode of the first light emitting unit 1221 conflict in space.
  • the area of the light emitting region of the first light emitting unit 1221 in the first light emitting unit group 100 is different from the area of the light emitting region of the first light emitting unit 1221 in the second light emitting unit group 300 .
  • the area of the light emitting region of the first light emitting unit 1221 in the first light emitting unit group 100 is larger than the area of the light emitting region of the first light emitting unit 1221 in the second light emitting unit group 300 .
  • the area of the light emitting region of the fourth light emitting unit 1222 in the first light emitting unit group 100 is different from the area of the light emitting region of the fourth light emitting unit 1222 in the second light emitting unit group 300 .
  • the area of the light emitting region of the fourth light emitting unit 1222 in the first light emitting unit group 100 is larger than the area of the light emitting region of the fourth light emitting unit 1222 in the second light emitting unit group 300 .
  • the same light-emitting units 120 (for example, light-emitting units 120 that emit light of the same color) have different shapes of light-emitting regions.
  • the shape of the light emitting area of each light emitting unit 120 includes a circle, an ellipse or a drop shape.
  • the above-mentioned circle includes a standard circle and an approximate circle, and the approximate circle may include an approximate circle with a notch on the edge, an approximate circle with a ratio of diameters extending in each direction of 0.9 to 1.1, and the like.
  • the ellipse mentioned above includes a standard ellipse and an approximate ellipse, and the approximate ellipse may include an approximate ellipse with a notch on the edge, an approximate ellipse with a ratio of diameters extending in each direction of 0.9-1.1, and the like.
  • the shapes of the light emitting regions of the second light emitting unit 121 and the third light emitting unit 123 are both circular, and the shapes of the first light emitting unit 1221 and the fourth light emitting unit
  • the light emitting regions of 1222 are all elliptical in shape, and the major axis of the ellipse extends along the first direction X.
  • the edge of the opening of the pixel defining layer used to define the light-emitting area of each light-emitting unit 120 in the third light-emitting unit group 500 includes a protrusion, and the light-emitting layer formed in the opening includes a recess, that is, the light-emitting area includes a recess.
  • the notch is the part where the second electrode of the light emitting unit 120 is connected to the thin film transistor.
  • the shapes of the light-emitting regions of the same light-emitting units 120 may also be different.
  • the plurality of first pixel circuit groups 200 includes a plurality of first pixel circuits 210
  • the plurality of second pixel circuit groups 400 includes a plurality of second pixel circuits 410
  • each second pixel circuit 410 includes two sub-pixel circuits 411 and 412
  • the two sub-pixel circuits 411 and 412 are configured to be connected to the same light emitting unit 120 (for example, the first light emitting unit 1221 , the second light emitting unit 121 , the third light emitting unit 123 or the fourth light emitting unit 1222 ), for example, the two sub-pixel circuits 411 and 412 are connected to the second electrode of the same light emitting unit 120 .
  • each first pixel circuit 210 includes a sub-pixel circuit, and different sub-pixel circuits are configured to be connected to different light-emitting units 120, that is, one sub-pixel circuit is only connected to the first pixel circuit of one light-emitting unit 120.
  • the two electrodes are connected.
  • the sub-pixel circuits included in the second pixel circuit 410 may have the same structure as the sub-pixel circuits included in the first pixel circuit 210 .
  • FIG. 4 is an equivalent circuit diagram of a sub-pixel circuit included in a first pixel circuit provided by at least one embodiment of the present disclosure.
  • the equivalent circuit diagram of the first pixel circuit 210 for driving other light-emitting units is basically the same as that shown in FIG. 4 .
  • the first pixel circuit 210 includes a second reset transistor T1, a second light emission control transistor T5, a first light emission control transistor T6, a data writing transistor T4, a driving transistor T3, a threshold compensation transistor T2, a first reset Control transistor T7 and storage capacitor C.
  • the display substrate further includes reset power signal lines, scan signal lines, power signal lines, reset control signal lines, light emission control signal lines and data lines.
  • the first pole of the threshold compensation transistor T2 is connected to the first pole of the driving transistor T3, the second pole of the threshold compensation transistor T2 is connected to the gate of the driving transistor T3; the first pole of the first reset control transistor T7 is connected to the reset power supply
  • the signal line is connected to receive the reset signal Vinit
  • the second pole of the first reset control transistor T7 is connected to the second electrode of the light emitting unit 120 (such as the first light emitting unit 1221);
  • the first pole of the data writing transistor T4 is connected to the driving transistor T3
  • the second pole of the data writing transistor T4 is connected to the data line to receive the data signal Data, and the gate of the data writing transistor T4 is electrically connected to the scanning signal line to receive the scanning signal Gate;
  • the second pole of the storage capacitor C One pole is electrically connected to the power signal line, the second pole of the storage capacitor C is electrically connected to the gate of the driving transistor T3; the gate of the threshold compensation transistor T2 is electrically connected to the scanning signal line to receive the compensation control signal;
  • the signal line is electrically connected to receive the light emission control signal EM; the first pole of the second light emission control transistor T5 is electrically connected to the power signal line to receive the first power supply signal VDD, and the second pole of the second light emission control transistor T5 is connected to the drive transistor T3.
  • the second electrode is electrically connected, the gate of the second light emission control transistor T5 is electrically connected to the light emission control signal line to receive the light emission control signal EM, and the first electrode of the light emitting unit 120 (for example, the first light emitting unit 1221 ) is connected to the voltage terminal VSS.
  • the above-mentioned power supply signal line refers to a signal line that outputs a voltage signal VDD, which can be connected to a voltage source to output a constant voltage signal, such as a positive voltage signal.
  • the scan signal and the compensation control signal can be the same, that is, the gate of the data writing transistor T3 and the gate of the threshold compensation transistor T2 can be electrically connected to the same signal line to receive the same signal, reducing the number of signal lines.
  • the gate of the data writing transistor T3 and the gate of the threshold compensation transistor T2 may also be electrically connected to different signal lines respectively, that is, the gate of the data writing transistor T3 is electrically connected to the first scanning signal line, and the gate of the threshold compensation transistor T2 is electrically connected to the first scanning signal line.
  • the gate of T2 is electrically connected to the second scanning signal line, and the signals transmitted by the first scanning signal line and the second scanning signal line can be the same or different, so that the gate of the data writing transistor T3 and the threshold compensation transistor T2 Can be controlled separately, increasing the flexibility of controlling the pixel circuit.
  • the light emission control signal input to the first light emission control transistor T6 and the second light emission control transistor T5 may be the same, that is, the gate of the first light emission control transistor T6 and the gate of the second light emission control transistor T5 may be electrically connected to the same One signal line to receive the same signal, reducing the number of signal lines.
  • the gate of the first light emission control transistor T6 and the gate of the second light emission control transistor T5 may also be electrically connected to different light emission control signal lines, and the signals transmitted by different light emission control signal lines may be the same or different. .
  • the reset control signal input to the first reset transistor T7 and the second reset transistor T1 may be the same, that is, the gate of the first reset transistor T7 and the gate of the second reset transistor T1 may be electrically connected to the same signal line to Receiving the same signal, reducing the number of signal lines.
  • the gate of the first reset transistor T7 and the gate of the second reset transistor T1 may also be electrically connected to different reset control signal lines, at this time, the signals on different reset control signal lines may be the same or different.
  • the second reset transistor T1 when the display substrate is working, in the first stage of screen display, the second reset transistor T1 is turned on to initialize the voltage of node N1; in the second stage of screen display, data data is written into the transistor through data T4, the driving transistor T3 and the threshold compensation transistor T2 are stored at the N1 node; in the third light emitting stage, the second light emitting control transistor T5, the driving transistor T3 and the first light emitting control transistor T6 are all turned on, and the light emitting unit 120 is forward-conducting and emitting light.
  • the pixel circuit of the sub-pixel may also include other numbers of transistors or capacitors
  • the structure, such as 7T2C structure, 6T1C structure, 6T2C structure or 9T2C structure, etc., is not limited in the embodiments of the present disclosure.
  • FIG. 5 is an equivalent circuit diagram of two sub-pixel circuits included in a second pixel circuit provided by at least one embodiment of the present disclosure.
  • the equivalent circuit diagram of the second pixel circuit 410 driving other light emitting units is basically the same as that shown in FIG. 5 .
  • the equivalent circuit diagram of any one of the two subpixel circuits 411 and 412 in the second pixel circuit 410 is basically the same as the equivalent circuit diagram of the subpixel circuit of the first pixel circuit 210 shown in FIG. 4 .
  • the same, for example, both have a 7T1C structure.
  • the data writing transistor T4 of the two sub-pixel circuits is connected, and the N4 node of the two sub-pixel circuits is connected to jointly drive the same light-emitting unit 120 to emit light.
  • the second reset transistor T1 when the display substrate is working, in the first stage of screen display, the second reset transistor T1 is turned on to initialize the voltage of the N1 node; in the second stage, the same data signal Data is written through two connected data
  • the input transistor T4 and the two drive transistors T3 and two threshold compensation transistors T2 respectively connected to the two connected data write transistors T4 are stored in the two N1 nodes of the two pixel circuits;
  • the second light emission control transistor T5, the drive transistor T3 and the first light emission control transistor T6 in the pixel circuits 411 and 412 are all turned on to transmit the same data signal to the two N4 nodes.
  • the two sub-pixel circuits 411 and 412 connected to the N4 node and jointly drive the same light emitting unit 120 (for example, the first light emitting unit 1221 ) to emit light.
  • the second pixel circuit in the second display area 20 adopts a double 7T1C design, which can achieve the purpose of increasing current and brightness.
  • the third pixel circuit group includes a plurality of third pixel circuits
  • the fourth pixel circuit group includes a plurality of fourth pixel circuits
  • the third pixel circuit and the fourth pixel circuit may have the same equivalent circuit diagram as the first pixel circuit, It may also have the same equivalent circuit diagram as that of the second pixel circuit.
  • both the third pixel circuit and the fourth pixel circuit have the same equivalent circuit diagram as the second pixel circuit, then both the third pixel circuit and the fourth pixel circuit include two sub-pixel circuits, and the two sub-pixel circuits
  • the circuit is configured to be connected to the same light emitting unit 120 (such as the first light emitting unit 1221, the second light emitting unit 121, the third light emitting unit 123 or the fourth light emitting unit 1222), for example, two sub-pixel circuits are connected to the same light emitting unit 120
  • the second electrode connection can achieve the purpose of increasing current and brightness.
  • FIG. 6 is a schematic diagram of a local planar structure of the active semiconductor layer at the junction of the third display area and the second display area and at the junction of the first display area and the second display area according to at least one embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a partial planar structure of the first conductive layer at the junction position between the third display area and the second display area and at the junction position between the first display area and the second display area provided by at least one embodiment of the present disclosure.
  • FIG. 8 A schematic diagram of a partial planar structure of the second conductive layer at the junction of the third display area and the second display area and at the junction of the first display area and the second display area provided for at least one embodiment of the present disclosure.
  • FIG. 9 is the present disclosure.
  • At least one embodiment of the disclosure provides a schematic diagram of a local planar structure of the source-drain metal layer at the junction of the third display area and the second display area and the junction of the first display area and the second display area.
  • FIG. 9 is a schematic diagram of lamination of the active semiconductor layer, the first conductive layer, the second conductive layer, and the source-drain metal layer.
  • the active semiconductor layer 3100 can be formed by patterning a semiconductor material.
  • the active semiconductor layer 3100 can be used to make the above-mentioned second reset transistor T1, threshold compensation transistor T2, drive transistor T3, data writing transistor T4, second light emission control transistor T5, first light emission control transistor T6 and first reset control transistor Active layer of T7.
  • the active semiconductor layer 3100 includes the active layer pattern (channel region) and doped region pattern (source-drain doped region) of each transistor of each sub-pixel, and the active layer pattern and doped region pattern of each transistor in the same pixel circuit Miscellaneous area patterns are set in one piece.
  • the active layer may include an integrally formed low-temperature polysilicon layer, and the source region and the drain region may be conductorized by doping or the like to realize electrical connection of various structures. That is, the active semiconductor layer of each transistor of each sub-pixel is an overall pattern formed of p-silicon, and each transistor in the same pixel circuit includes a doped region pattern (ie, a source region and a drain region) and an active layer pattern, the active layers of different transistors are separated by doping structures.
  • the active semiconductor layer 3100 can be made of amorphous silicon, polysilicon, oxide semiconductor materials and the like. It should be noted that the above-mentioned source region and drain region may be regions doped with n-type impurities or p-type impurities.
  • Each dotted rectangular box in FIG. 6 shows each portion where the first conductive layer 3200 overlaps with the active semiconductor layer 3100 .
  • the active semiconductor layer on both sides of each channel region is conductorized by processes such as ion doping as the first pole and the second pole of each transistor (i.e. above doped region pattern).
  • the source and drain of the transistor can be symmetrical in structure, so there can be no difference in the physical structure of the source and drain.
  • the transistors except for the gate as the control electrode, it is directly described that one of them is the first electrode and the other is the second electrode, so the first electrode of all or part of the transistors in the embodiments of the present disclosure
  • the first and second poles are interchangeable as desired.
  • each of the plurality of first pixel circuit groups, the plurality of second pixel circuit groups, and the plurality of third pixel circuit groups includes a plurality of thin film transistors, for example, the plurality of thin film transistors include a second reset transistor T1, a threshold Compensation transistor T2, driving transistor T3, data writing transistor T4, second light emission control transistor T5, first light emission control transistor T6 and first reset control transistor T7.
  • the plurality of thin film transistors include a second reset transistor T1, a threshold Compensation transistor T2, driving transistor T3, data writing transistor T4, second light emission control transistor T5, first light emission control transistor T6 and first reset control transistor T7.
  • the active semiconductor layer 3100 includes an active layer pattern 3102 and a doped region pattern 3103 of each thin film transistor, and the active semiconductor layer 3100 also includes a dummy pattern 3101 .
  • the dummy pattern 3101 may be located in the third display area 30 .
  • the dummy pattern 3101 may include a plurality of block patterns arranged along the first direction X, and the plurality of block patterns may be evenly or non-uniformly distributed, which is not limited in this embodiment of the present disclosure.
  • the display substrate includes a gate insulating layer located on the side of the active semiconductor layer away from the base substrate, used to insulate the above-mentioned active semiconductor layer 3100 from the subsequently formed first conductive layer 3200 (ie, the gate metal layer).
  • FIG. 7 shows the first conductive layer 3200 included in the display substrate, and the first conductive layer 3200 is disposed on the gate insulating layer so as to be insulated from the active semiconductor layer 3100 .
  • the first conductive layer 3200 may include the second pole CC2 of the capacitor C, a plurality of scanning signal lines 043 extending along the first direction X, a plurality of reset control signal lines 044, a plurality of light emission control signal lines 045, and a second reset transistor T1 , the threshold compensation transistor T2, the driving transistor T3, the data write transistor T4, the second light emission control transistor T5, the first light emission control transistor T6 and the gates of the first reset control transistor T7.
  • the gate of the data writing transistor T3 can be the overlapping part of the scanning signal line 043 and the active semiconductor layer 3100;
  • the gate of the first light emission control transistor T6 can be the light emission control signal
  • the gate of the second light emission control transistor T5 may be the second part where the light emission control signal line 045 overlaps the active semiconductor layer 3100 .
  • the gate of the second reset transistor T1 is the first part where the reset control signal line 044 overlaps the active semiconductor layer 3100
  • the gate of the first reset control transistor T7 is the second part where the reset control signal line 044 overlaps the active semiconductor layer 3100. part.
  • the threshold compensation transistor T2 can be a thin film transistor with a double gate structure, the first gate of the threshold compensation transistor T2 can be the overlapping part of the scanning signal line 043 and the active semiconductor layer 3100, and the second gate of the threshold compensation transistor T2 can be It may be a portion where the protruding structure P protruding from the scan signal line 043 overlaps with the active semiconductor layer 3100 .
  • the gate of the driving transistor T1 can be the second pole CC2 of the capacitor C. As shown in FIG.
  • the scanning signal lines 043 , the reset control signal lines 044 and the light emission control signal lines 045 are arranged along the second direction Y.
  • the scan signal line 043 is located between the reset control signal line 044 and the light emission control signal line 045 .
  • the second pole CC2 of the capacitor C ie, the gate of the driving transistor T1
  • the second pole CC2 of the capacitor C is located between the scanning signal line 043 and the light emission control signal line 045 .
  • the protruding structure P protruding from the scanning signal line 043 is located on a side of the scanning signal line 043 away from the light emission control signal line 045 .
  • the gate insulation layer on the side of the first conductive layer 3200 away from the active semiconductor layer 3100 includes a plurality of via holes for exposing the doped region pattern and the dummy pattern in the active semiconductor layer 3100 .
  • a first insulating layer is formed on the first conductive layer 3200 to insulate the first conductive layer 3200 from the second conductive layer 3300 formed subsequently.
  • the first insulating layer includes via holes for exposing the dummy pattern, part of the doped region pattern of the thin film transistor, and the second electrode CC2 of the capacitor C.
  • the second conductive layer 3300 includes the first pole CC1 of the capacitor C and a plurality of reset power signal lines 041 extending along the first direction X.
  • the first pole CC1 of the capacitor C and the second pole CC2 of the capacitor C at least partially overlap to form the capacitor C.
  • the source-drain metal layer 3400 includes data lines 910 and power signal lines 920 extending along the first direction X.
  • the data line 910 is electrically connected to the second electrode of the data writing transistor T2 through a via hole penetrating through the gate insulating layer, the first insulating layer and the second insulating layer.
  • the power signal line 920 (such as the power signal line located in the first display area 10 ) is electrically connected to the first electrode of the second light emission control transistor T5 through a via hole penetrating through the gate insulating layer, the first insulating layer and the second insulating layer.
  • the power signal lines 920 and the data lines 910 are arranged alternately along the second direction Y.
  • the power signal line 920 is electrically connected to the first pole CC1 of the capacitor C through a via hole penetrating through the second insulating layer.
  • a passivation layer and a flat layer may be provided on the side of the above-mentioned source-drain metal layer 3400 away from the base substrate to protect the above-mentioned source-drain metal layer 3400 .
  • the display substrate provided by the embodiment of the present disclosure further includes a plurality of first connection parts 051 , and at least part of the first ends of the first connection parts 051 are connected to one sub-section of the second pixel circuit 410 .
  • the second pole of the data writing transistor T4 of the pixel circuit is connected, and the second end of the first connection part 051 is connected to the second pole of the data writing transistor T4 of another sub-pixel circuit in the second pixel circuit 410 so that the second The two data writing transistors T4 of the two-pixel circuit 410 are connected to the same data line 910 .
  • at least part of the first connection portion 051 is located between the second pole of the data writing transistor T2 and the first pole of the first reset control transistor T7 in one sub-pixel circuit.
  • the second poles of the data writing transistors of at least two sub-pixel circuits (that is, at least one second pixel circuit) in the second display area 20 are connected through the first connection part to drive the same light-emitting unit 120 to emit light.
  • the current and brightness of the light emitting unit 120 in the second display area 20 can be increased, for example, the current and brightness of the light emitting unit 120 in the second display area 20 can be increased to 1.8 to 2 times that in the case of driving with a sub-pixel circuit, realizing A more uniform visual display effect of the full screen.
  • the first connection portion 051 is located between the second pole of the threshold compensation transistor T3 and the first pole of the first reset control transistor T7 in a sub-pixel circuit.
  • the first connecting portion 051 is disposed on the same layer as the reset power signal line 041 .
  • a second insulating layer is formed on the second conductive layer 3300 to insulate the second conductive layer 3300 from the subsequently formed source-drain metal layer 3400 .
  • the second insulating layer includes via holes exposing structures such as the aforementioned dummy patterns.
  • the source-drain metal layer is connected to the doped region pattern through a first via hole in the insulating layer between the source-drain metal layer and the active semiconductor layer.
  • dummy patterns are provided at positions other than the edge of the second display area, and the insulating layer located between the source-drain metal layer and the active semiconductor layer is patterned (for example, etched) to expose the dummy pattern, so that the dummy pattern located at the second display area can be
  • the insulating layer in the second display area is etched relatively uniformly to form via holes, thereby ensuring that the via holes in the insulating layer corresponding to the driving transistors in the second display area have better etching uniformity.
  • the insulating layer between the dummy pattern and the planar layer is patterned to form a via hole to expose the dummy pattern, and the planar layer is configured to fill the via hole.
  • the second pixel circuit 410 includes two adjacent sub-pixel circuits, and the two adjacent sub-pixel circuits drive the same light-emitting unit to emit light, and the two data of the adjacent two sub-pixel circuits
  • the write transistor is connected to the same data line.
  • the first pixel circuit 210 only includes one sub-pixel circuit, each of two adjacent sub-pixel circuits drives a light-emitting unit to emit light, and the two data writing transistors in the two adjacent pixel circuits are independent of each other, and are respectively connected to each other. different data lines.
  • the difference between the layout of the first pixel circuit and the second pixel circuit in the embodiment of the present disclosure mainly lies in whether the first connection part is provided, the position of the second pole of the data writing transistor connected to the first connection part, and the source The positional relationship between the fourth connection part and the data line in the drain metal layer.
  • the density of the plurality of first pixel circuits 210 is the first density
  • the density of the plurality of second pixel circuits 410 is the second density
  • the first density is not less than the second density.
  • the first density is greater than the second density.
  • "the first density is greater than the second density” may mean that the number of the first pixel circuits is greater than the number of the second pixel circuits in the same area.
  • each first pixel circuit 210 includes only one sub-pixel circuit
  • each second pixel circuit 410 includes two sub-pixel circuits
  • the density of the sub-pixel circuits in the first display area 10 is approximately equal to
  • the density of sub-pixel circuits in the second display area 20 that is, the number of sub-pixel circuits included in the first pixel circuit is approximately equal to the number of sub-pixel circuits included in the second pixel circuit in the same area.
  • each second pixel circuit includes two sub-pixel circuits
  • only one sub-pixel circuit may be connected to the light-emitting unit, or two sub-pixel circuits may be connected to the same light-emitting unit, which is not limited by the embodiment of the present disclosure.
  • the two sub-pixel circuits are connected to the same light-emitting unit, the current and brightness of the light-emitting unit can be increased to achieve a more uniform visual display effect of the full screen.
  • each pixel circuit further includes: a second connection portion 052 and a third connection portion 053 arranged on the same layer as the data line 910, and the second connection portion 052 is configured to connect the threshold compensation transistor T2
  • the second pole of the first reset control transistor T7 is connected to the gate of the driving transistor T3, and the third connection portion 053 is configured to connect the first pole of the first reset control transistor T7 to the reset power signal line 041.
  • one end of the second connection part 052 is electrically connected to the second electrode of the threshold compensation transistor T2 through a via hole penetrating through the gate insulating layer, the first insulating layer and the second insulating layer, and the other end of the second connecting part 052 is connected through
  • the via hole penetrating through the first insulating layer and the second insulating layer is electrically connected to the gate of the driving transistor T3 (ie, the second pole CC2 of the capacitor C).
  • One end of the third connecting portion 053 is electrically connected to the reset power signal line 041 through a via hole penetrating through the second insulating layer, and the other end of the third connecting portion 053 is electrically connected to the reset power signal line 041 through a hole penetrating through the gate insulating layer, the first insulating layer and the second insulating layer.
  • the via hole in is electrically connected to the first electrode of the first reset control transistor T7.
  • the first connecting portion 051 and the data line 910 are located on different layers, and along the third direction perpendicular to the base substrate, each first connecting portion 051 is connected to the data line 910 and the power signal line 920 has overlap.
  • a data line 910 and a power signal line 920 are arranged between the two data writing transistors T4 included in the second pixel circuit 410 to connect the first connection part 051 of the two data writing transistors T4 to the data line 910 Both overlap with the power signal line 920 .
  • each pixel circuit further includes a fourth connection portion 054 arranged on the same layer as the data line 910, and the fourth connection portion 054 is configured to connect the first connection portion 051 and the data writing transistor T4
  • the above "there is an interval between the fourth connection part 054 and the immediately adjacent data line 910" means that there is no other data line between the fourth connection part 054 and the data line 910 .
  • the fourth connection portion 054 integrated with the data line 910 is the first sub-section 0541
  • the fourth connection portion 054 that is spaced from the data line 910 is the second sub-section 0542 . Since there is no pixel circuit pair design in the first pixel circuit, the fourth connection parts of the two adjacent pixel circuits arranged along the first direction X or the second direction Y in the first pixel circuit are all integrated with the data line In order to realize the electrical connection between each pixel circuit and the corresponding data line.
  • the display substrate further includes a plurality of covering parts S provided on the same layer as the first connecting part 051, and each threshold compensation transistor T2 includes two gates and a gate between the two gates.
  • Active semiconductor layer 3100 As shown in FIG. 6 to FIG. 10 , the display substrate further includes a plurality of covering parts S provided on the same layer as the first connecting part 051, and each threshold compensation transistor T2 includes two gates and a gate between the two gates. Active semiconductor layer 3100.
  • the covering portion S overlaps with the active semiconductor layer 3100 between the two gates, the data line 910 and the power signal line 920 .
  • the active semiconductor layer between the two channels of the double-gate threshold compensation transistor T2 is in a floating state when the threshold compensation transistor T2 is turned off, and is susceptible to jumping due to the influence of the surrounding line voltage, thereby affecting The leakage current of the threshold compensation transistor T2 further affects the luminous brightness.
  • the covering part S is designed to form a capacitance with the active semiconductor layer between the two channels of the threshold compensation transistor T2, and the covering part S can be connected to to the power signal line 920 to obtain a constant voltage, so that the voltage of the active semiconductor layer in the floating state can be kept stable.
  • the covering part S overlaps the active semiconductor layer between the two channels of the double-gate threshold compensation transistor T2, and can also prevent the active semiconductor layer between the two gates from being illuminated to change its characteristics, for example, preventing this part from The voltage of the active semiconductor layer is changed to prevent crosstalk.
  • the power signal line 920 may be electrically connected to the covering part S through a via hole penetrating the second insulating layer so as to provide the covering part S with a constant voltage.
  • the first connecting portion 051 includes a main body connecting portion extending along the first direction X and two end portions located at both ends of the main body connecting portion and extending along the first direction X, the two ends parts are respectively connected to the two fourth connection parts 054 of the second pixel circuit 410, and the main body connection part and the two ends form a zigzag shape to keep a distance from the covering part.
  • the embodiment of the present disclosure does not limit the shape of the first connecting part, as long as it can keep a certain distance from other structures arranged on the same layer.
  • the main connecting part of the first connecting part can be linear, zigzag or wavy. shape.
  • the distance between the covering part S and the second pole of the threshold compensation transistor T2 is smaller than the distance between the covering part S and the first pole of the first reset control transistor T7, that is, the covering part S is closer Close to threshold compensation transistor T2. Therefore, in order to facilitate design and maintain a certain distance between the first connecting portion 051 and the covering portion S, the first connecting portion 051 is arranged closer to the first pole of the first reset transistor T7.
  • a plurality of data lines 910 include a first sub-data line 911 and a second sub-data line 912; the first display area 10 includes a first pixel circuit column 201, and the second display area 20 includes The second pixel circuit column 401 .
  • the first pixel circuit column 201 includes one column of sub-pixel circuits, and the second pixel circuit column 401 includes two columns of sub-pixel circuits.
  • the first pixel circuit column 201 and the second pixel circuit column 401 are located in different columns, that is, any sub-pixel circuit column in the second pixel circuit column 401 is located in the same column as the first pixel circuit column. different columns.
  • the first sub-data line 911 is connected to the first pixel circuit column 201
  • the second sub-data line 912 is connected to the second pixel circuit column 401
  • the second sub-data line 912 is connected to a sub-column in the second pixel circuit column 401.
  • the first sub-data line 911 and the second sub-data line 912 are connected through the data line connection part 056, the extension direction of the data line connection part 056 intersects the second direction Y, and the data line
  • the connecting portion 056 and the data line 910 are located at different layers.
  • the junction of the first display area 10 and the second display area 20 refers to the first pole of the first reset transistor of the pixel circuit in the row of pixel circuits in the row close to the second display area 20 with the first display area 10 and The gap between the second poles of the data write transistors.
  • the first sub-data line 911 is located on the same straight line (a straight line extending along the Y direction) and is located between the data line 910 in the second display area 20 and the first sub-data line 911. There is a gap between them, and the data line 910 located in the second display area 20 is not used to transmit data signals, and the first sub-data line 911 and the second sub-data line 912 are connected through the data line connection part 056, then the first sub-data line
  • the data line 911 and the second sub-data line 912 are configured to transmit the same data signal.
  • the second sub-data line 912 is not only connected to the second pixel circuit column 401, but also bypasses the edge of the third display area 30 and passes through the transition area 40 to serve as the The subpixel circuits provide the data line numbers.
  • the first display area 10 further includes a third pixel circuit column 202
  • the second display area 20 further includes a fourth pixel circuit column 402 .
  • the third pixel circuit column 202 includes one column of sub-pixel circuits
  • the fourth pixel circuit column 402 includes two columns of sub-pixel circuits.
  • at least part of the third pixel circuit column 202 and the fourth pixel circuit column 402 are located in the same column, for example, a column of sub-pixel circuits in the third pixel circuit column 202 and the fourth pixel circuit column 402 are located in the same column.
  • the multiple data lines 910 also include a third sub-data line 913 and a fourth sub-data line 914, the third sub-data line 913 is connected to the third pixel circuit column 202, and the fourth sub-data line
  • the data line 914 is connected to the fourth pixel circuit column 402 , for example, the fourth sub-data line 914 is connected to a column of sub-pixel circuits in the fourth pixel circuit column 402 .
  • the third sub-data line 913 and the fourth sub-data line 914 are one continuous data line extending along the second direction Y.
  • the continuous data line is configured to transmit the same data signal to the first pixel circuit and the second pixel circuit connected thereto.
  • the data line 910 also includes a fifth sub-data line 915 and a sixth sub-data line 916
  • the first display area 10 also includes a fifth pixel circuit column 203 and a sixth pixel circuit column 204.
  • the fifth sub-data line 915 is connected to the fifth pixel circuit column 203
  • the sixth sub-data line 916 is connected to the sixth pixel circuit column 204 .
  • the fifth sub-data line 915 is insulated from the data lines in the second display area 20
  • the sixth sub-data line 916 is insulated from the data lines in the second display area 20.
  • the line 916 is only configured to provide data signals to the first pixel circuits in the first display area 10 .
  • the fifth pixel circuit column 203 is located in the same column as a sub-pixel circuit in the second pixel circuit column 401, and the sixth pixel circuit column 204 is located in another column of sub-pixel circuits in the second pixel circuit column 401. the same column.
  • the data line located on the same line as the fifth sub-data line 915 and located in the second display area 20 is not connected to any pixel circuit, and there is an interval between the fifth sub-data line 915; and
  • the sixth sub-data line 916 is located on the same straight line and the data line located in the second display area 20 is not connected to any pixel circuit, and there is an interval between the sixth sub-data line 915 and the fifth sub-data line 915 .
  • FIG. 11 is a partial plan view of the second electrode of the light emitting unit shown in FIG. 4 disposed on the pixel circuit layout shown in FIG. 10 .
  • the second display area 20 may include three rows of light-emitting units, and the second pixel circuits connected to the three rows of light-emitting units are arranged in two rows, and the fourth light-emitting units in the second light-emitting unit group 300
  • the unit 1222 is located in the same row as the second light-emitting unit 121 and the third light-emitting unit 123 in the first light-emitting unit group 100, but is connected to the second pixel circuit 410 connected to the fourth light-emitting unit 1222 in the second light-emitting unit group 300 and connected to
  • the first pixel circuits 210 connected to the second light emitting units 121 in the first light emitting unit group 100 are located in different rows.
  • the data signal is transmitted from the source driver integrated circuit located on the side of the first display area away from the second display area to the pixel circuits in the first display area and the second display area through the data lines, and to the pixel circuits in the transition area.
  • the data signal transmitted to the pixel circuit connected to a light-emitting unit (for example, a light-emitting unit of the same color) in the second display area should be the same as that transmitted to the above-mentioned same light-emitting unit (for example, a light-emitting unit of the same color) in the first display area.
  • the data signal of the pixel circuit connected to a light emitting unit of the same color is the same, and the data signal transmitted to the pixel circuit connected to a light emitting unit (such as a light emitting unit of the same color) in the second display area should be the same as that transmitted to the transition
  • the data signals of the pixel circuits connected to the same light-emitting units (for example, light-emitting units of the same color) in the region are the same. Therefore, when the same first pixel circuit column in the first display area is connected to the same data line, and when two sub-pixel circuits in the second pixel circuit in the second display area are connected to the same data line, for example, transmission to and from the same data line is likely to occur.
  • the data signal of the first pixel circuit connected to the second light emitting unit in the first display area is the same as the data signal transmitted to the second pixel circuit connected to the first light emitting unit or the fourth light emitting unit in the second display area, resulting in The data signals of the first display area and the second display area do not match.
  • the embodiments of the present disclosure use a plurality of light emitting units 120 connected to the third sub-pixel circuit column 202 in the first display area 10 to include a second light emitting unit 121 and a third light emitting unit 123
  • the plurality of light-emitting units 120 connected to the first pixel circuit column 201 in the first display area 10 include a first light-emitting unit 1221 and a fourth light-emitting unit 1222, which are connected to the second pixel circuit column 401 in the second display area 20
  • the plurality of light emitting units 120 include a first light emitting unit 1221 and a fourth light emitting unit 1222
  • the plurality of light emitting units 120 connected to the fourth pixel circuit column 402 in the second display area 20 include a second light emitting unit 121 and a third light emitting unit Unit 123 as an example.
  • the second light emitting unit 121 and the third light emitting unit 123 are located in different rows, the first light emitting unit 1221 and the fourth light emitting unit 1222 are arranged along the second direction Y, the second light emitting unit 121 and the first light emitting unit The light emitting unit 1221 and the fourth light emitting unit 1222 are arranged along the first direction X, and the second light emitting unit 121 in two adjacent first light emitting unit groups 100 points to the third light emitting unit 123 in opposite directions.
  • the first pixel circuit column 201, the fifth pixel circuit column 203, the sixth pixel circuit column 204, and the third pixel circuit column 202 form a pixel circuit column group, which is close to the second display area 20 in the first display area 10.
  • a row of first pixel circuits and the light emitting units connected to the four first pixel circuits located in the first pixel circuit column group are the first light emitting unit 1221 , the third light emitting unit 123 , the fourth light emitting unit 1222 and the second light emitting unit 121 .
  • the four light-emitting units connected to the second row of pixel circuits located in the first display area and close to the second display area in the above-mentioned pixel circuit column group are the fourth light-emitting unit 1222, the second light-emitting unit 121, the first light-emitting unit 1221, and The third light emitting unit 123 .
  • the arrangement of the second light-emitting unit and the third light-emitting unit connected to the pixel circuit of the fifth pixel circuit column and the third pixel circuit column is different from that of the pixel circuit of the first pixel circuit column and the pixel circuit of the sixth pixel circuit column.
  • the arrangements of the circuit-connected first light emitting unit and the fourth light emitting unit are different.
  • the data signal transmitted by the data line is related to the arrangement of the corresponding light-emitting units (for example, light-emitting units of corresponding colors), and both the first display area and the second display area should transmit matching data signals according to the arrangement of the above-mentioned light-emitting units.
  • the corresponding light-emitting units for example, light-emitting units of corresponding colors
  • the plurality of light emitting units 120 connected to the fourth pixel circuit column 402 in the second display area 20 include alternately arranged second light emitting units 121 and third light emitting units 123 , and are located in the second display area 20.
  • the light-emitting units 120 in a row close to the first display area 10 in the second display area 20 and connected to the pixel circuits in the second pixel circuit column 401 are, for example, the third light-emitting units 123 .
  • the plurality of light-emitting units 120 connected to the third pixel circuit column 202 in the first display area 10 include alternately arranged second light-emitting units 121 and third light-emitting units 123, which are located in the first display area 10 close to the second display area 20
  • the light emitting units 120 connected to the pixel circuits in one row and the third pixel circuit column 202 are the second light emitting units 121 .
  • the pixel circuits in a row of pixel circuits in the first display area close to the second display area and connected to the third sub-data line are connected to the second light emitting unit, and the pixels in the row of pixel circuits in the second display area close to the first display area are connected to the second light emitting unit.
  • the pixel circuit in the circuit row and connected to the fourth sub-data line is connected to the third light-emitting unit.
  • the data line is a continuous data line extending along the second direction, that is, the third sub-data line and the fourth sub-data line can be kept connected at the junction of the first display area and the second display area, and there is no need to connect the two display areas. The junction is disconnected.
  • the light-emitting unit 120 connected to the second pixel circuit column 401 in the second display area 20 includes alternately arranged first light-emitting units 1221 and fourth light-emitting units 1222 .
  • the light emitting unit 120 in a row close to the first display region 10 in the region 20 and connected to the pixel circuits in the second pixel circuit column 401 is, for example, the fourth light emitting unit 1222 .
  • the plurality of light-emitting units 120 connected to the sixth pixel circuit column 204 in the first display area 10 include alternately arranged first light-emitting units 1221 and fourth light-emitting units 1222, which are located in the first display area 10 close to the second display area 20
  • the light emitting unit 120 connected to the pixel circuits in one row and the sixth pixel circuit column 204 is also the fourth light emitting unit 1222 .
  • the light-emitting unit connected to the pixel circuit row of the first display area close to the second display area and the pixel circuit row of the second pixel circuit column and the second display area close to the first display area of the pixel circuit row are
  • the light-emitting unit connected to the pixel circuit of the sixth pixel circuit column is the same light-emitting unit, then the data signal of the second sub-data line connected to the second pixel circuit column of the first display area is the same as that of the sixth pixel of the second display area.
  • the data signal of the sixth sub-data line connected to the circuit column does not match, therefore, there is an interval between the second sub-data line and the sixth sub-data line at the junction of the first display area and the second display area.
  • the plurality of light emitting units 120 connected to the first pixel circuit column 201 in the first display region 10 include alternately arranged first light emitting units 1221 and fourth light emitting units 1222 , and are located in the The light-emitting units 120 in a row close to the second display area 20 in the first display area 10 and connected to the pixel circuits in the first sub-pixel circuit column 201 are first light-emitting units 1221 .
  • the data signal of the second sub-data line connected to the second pixel circuit column in the second display area matches the data signal of the first sub-data line connected to the first pixel circuit column in the first display area, then
  • the first sub-data line located in the first display area is connected to the second sub-data line located in the second display area through the data line connection part, so as to meet the unified algorithm of the integrated circuit (IC) in the first display area and the second display area deal with.
  • the first sub-data line and the second sub-data line are connected through the data line connection part, so that the transmission from the data line to the first display area can be ensured.
  • the data signal of the light-emitting unit in the middle matches the data signal transmitted from the data line to the light-emitting unit in the second display area.
  • the data line connecting portion 056 and the plurality of data lines 910 are located on different layers.
  • the data line connecting portion 056 and the reset power signal line 041 are located on the same layer to facilitate design.
  • the plurality of power signal lines 920 includes a plurality of first sub-power signal lines 921 and a plurality of second sub-power signal lines 922, and the plurality of first sub-power signal lines 921 and a plurality of The first pixel circuit group 200 is connected, and the plurality of second sub-power signal lines 922 are connected to the plurality of second pixel circuit groups 400, and each first sub-power signal line 921 is configured to transmit a first power signal, and each second sub-power signal line The power signal line 922 is configured to transmit a second power signal.
  • the magnitudes of power signals required by the first pixel circuit and the second pixel circuit are different, for example, the first pixel circuit If the required power signal is smaller than the power signal required by the second pixel circuit, the first sub-power signal line connected to the first pixel circuit and the second sub-power signal line connected to the second pixel circuit are configured to transmit different power signals .
  • the multiple second sub-power signal lines 922 include the second sub-power signal line 922 on the same straight line as at least one first sub-power signal line 921, and the first sub-power signal line 921 and the second sub-power signal line on the same straight line.
  • a gap G is set between the two sub-power signal lines 922 .
  • two signal lines located on the same straight line means that the two signal lines may be penetrated by the same straight line.
  • the first power signal can be transmitted from an integrated circuit located on the side of the first display area away from the second display area to the pixel circuits in the first display area via the first sub-power signal line.
  • the second sub-power signal line can be connected to the third sub-power signal line in the transition area through the structure in the second conductive layer, and the third sub-power signal line in the transition area is connected to another integrated circuit for the second sub-power signal line.
  • the power signal line provides the second power signal.
  • FIG. 12 is a schematic diagram of a planar structure of a display substrate provided by at least one embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a partial structure of the display substrate shown in FIG. 12 .
  • This example is different from the examples shown in FIGS. 1 to 11 in that this example further includes a light-shielding layer.
  • the display substrate further includes a light shielding layer 930 located at the edge of the third display area 30 .
  • the light-shielding layer 930 overlaps the second sub-data line 912 and the fourth sub-data line 914 in a direction perpendicular to the base substrate 01, that is, the light-shielding layer 930 overlaps the base substrate 01.
  • the orthographic projection on the above overlaps with the orthographic projections of the second sub-data line 912 and the fourth sub-data line 914 on the base substrate 01 .
  • a light-shielding layer on the edge of the third display area 30 , it is possible to prevent the data lines located at the edge of the third display area 30 and arranged in a winding manner from diffracting.
  • the shape of the light shielding layer 930 may be circular, but not limited thereto, and may also be changed according to the shape of the third display area 30 .
  • the outer ring of the light-shielding layer 930 may be arc-shaped or zigzag-shaped to match the positions of the light-emitting unit groups.
  • the light-shielding layer 930 is located on the side of the film layer where the second sub-data line 912 is located (ie, the film layer where the data connection part is located) away from the film layer where the power signal line 920 is located.
  • the light-shielding layer 930 may be located at the same layer as the first conductive layer shown in FIG. 7 to facilitate fabrication and reduce fabrication costs.
  • At least one of the second sub-power signal lines 922 is connected to the light shielding layer 930 to reduce the resistance of the second sub-power signal lines.
  • each light emitting unit group and pixel circuit group in the first display area 10, the second display area 20, and the third display area 30 in this example may be the same as those of the corresponding structures in the examples shown in FIGS. 1 to 11 , I won't repeat them here.
  • At least one embodiment of the present disclosure further provides a display device, which includes any one of the above-mentioned display substrates.
  • the display device provided by the embodiments of the present disclosure may be an organic light emitting diode display device.
  • the display device provided by the embodiments of the present disclosure, by setting the second display area between the third display area and the first display area, it is beneficial to improve the bluishness or blurring of the border between the third display area and the first display area.
  • the phenomenon of dimming thereby improving the display quality of the third display area (for example, the area where the camera under the screen is located).
  • the display device by adjusting the distance between the light-emitting regions of adjacent first light-emitting units in the first direction or the second direction, for example, by making the distance between the light-emitting regions of the first light-emitting units Arranging at unequal intervals in the first direction, or arranging at unequal intervals between the light-emitting regions of the first light-emitting unit in the second direction, can weaken or avoid the light-emitting regions or light-emitting layers of adjacent first light-emitting units.
  • the overlap phenomenon that may be generated between them, so as to reduce or avoid possible adverse effects on the display effect of the display device, which is beneficial to improve the display effect of the display device.
  • the display device may further include a cover plate located on the display side of the display substrate.
  • the display device may further include a functional component located on the side of the base substrate away from the light-emitting element, and the functional component is, for example, directly opposite to the second display area.
  • the functional components may include a camera module (for example, a front-facing camera module), a 3D structured light module (for example, a 3D structured light sensor), a time-of-flight 3D imaging module (for example, a time-of-flight sensor), At least one of an infrared sensing module (for example, an infrared sensing sensor) and the like.
  • a camera module for example, a front-facing camera module
  • a 3D structured light module for example, a 3D structured light sensor
  • a time-of-flight 3D imaging module for example, a time-of-flight sensor
  • At least one of an infrared sensing module for example, an infrared sensing sensor
  • the front camera module is usually activated when the user takes a selfie or makes a video call, and the pixel display area of the display device displays the image obtained by the selfie for the user to watch.
  • the front camera module includes, for example, a lens, an image sensor, an image processing chip, and the like.
  • the optical image generated by the scene through the lens is projected onto the surface of the image sensor (the image sensor includes CCD and CMOS) and converted into an electrical signal, which is converted into a digital image signal by the image processing chip and then sent to the processor for processing.
  • An image of the scene is output on the display screen.
  • a 3D structured light sensor and a Time of Flight (ToF) sensor can be used for face recognition to unlock a display device and the like.
  • ToF Time of Flight
  • the functional component may also only include a camera module to realize the function of self-timer or video call; for example, the functional component may further include a 3D structured light module or a time-of-flight 3D imaging module to realize face recognition and unlocking, etc.
  • embodiments of the present disclosure include but are not limited thereto.
  • the above-mentioned display device may be any product or component with a display function, such as a mobile phone, a tablet computer, a notebook computer, a navigator, etc. with an under-screen camera, which is not specifically limited in the embodiments of the present disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示基板以及显示装置。该显示基板包括显示区(101),显示区(101)包括多个发光单元(120);多个发光单元(120)排列为多行,一行发光单元(120)沿第一方向(X)排列;多个发光单元(120)包括多个第一发光单元(1221);显示区(101)的至少部分区域中:第一发光单元(1221)的发光区与在第一方向(X)上分别与该第一发光单元(1221)相邻的两个第一发光单元(1221)的发光区之间在第一方向(X)上的间距不同,和/或第一发光单元(1221)的发光区与在第二方向(Y)上分别与该第一发光单元(1221)相邻的两个第一发光单元(1221)的发光区之间在第二方向(Y)上的间距不同,第一方向(X)与第二方向(Y)相交。通过调整相邻的第一发光单元的发光区之间在第一方向或第二方向上的间距,可避免相邻的第一发光单元的发光区或发光层之间可能产生的交叠现象,有利于改善显示基板的显示效果。

Description

显示基板以及显示装置 技术领域
本公开至少一个实施例涉及一种显示基板以及显示装置。
背景技术
随着人们对显示产品视觉效果的不断追求,窄边框甚至全屏显示成为当前有机发光二极管(OLED)显示产品发展的新趋势。随着许多手机的屏占比逐步稳定提高,全面屏已经成为了当下的潮流趋势。前置摄像头是设计全面屏的关键,为了达到更高的屏占比,陆续出现了具有刘海屏、水滴屏、挖孔屏等屏幕的显示产品,这几种全面屏形态通过牺牲手机外观而提高了屏占比。由此,近年来在全面屏趋势下,集成屏下摄像头的柔性屏,解决了传统全面屏显示挖孔痛点,较高的屏占比为用户带来全新视觉体验。
发明内容
本公开至少一个实施例提供一种显示基板,该显示基板包括:显示区,包括多个发光单元;所述多个发光单元排列为多行,一行发光单元沿第一方向排列;所述多个发光单元包括多个第一发光单元;所述显示区的至少部分区域中:所述第一发光单元的发光区与在所述第一方向上分别与该第一发光单元相邻的两个第一发光单元的发光区之间在所述第一方向上的间距不同,和/或所述第一发光单元的发光区与在第二方向上分别与该第一发光单元相邻的两个第一发光单元的发光区之间在所述第二方向上的间距不同,所述第一方向与所述第二方向相交。
例如,在本公开一实施例提供的显示基板中,所述显示区的所述至少部分区域的至少一行发光单元中,所述第一发光单元的发光区与在所述第一方向上分别与该第一发光单元相邻的两个第一发光单元的发光区之间在所述第一方向上的间距分别为第一间隔距离和第二间隔距离;所述至少一行发光单元包括的多个第一发光单元的发光区沿所述第一方向间隔排列以形成多个间距,所述多个间距包括所述第一间隔距离和所述第二间隔距离,所述第一间隔距离和所述第二间隔距离在所述第一方向上交替设置。
例如,在本公开一实施例提供的显示基板中,所述显示区的所述至少部分区域中,所述第一发光单元的发光区与在所述第二方向上分别与该第一发光单元相邻的两个第一发光单元的发光区之间在所述第二方向上的间距分别为第三间隔距离和第四间隔距离,在所述第二方向上,相邻的所述第一发光单元的发光区之间在所述第二方向上的间距按照所述第三间隔距离和所述第四间隔距离交替设置。
例如,本公开一实施例提供的显示基板包括衬底基板以及位于所述衬底基板上的多个发光单元组,所述发光单元组中包括至少一个所述发光单元;所述显示区包括第一显示区、第二显示区和第三显示区,所述第一显示区位于所述第三显示区的至少一侧,所 述第二显示区的至少部分位于所述第一显示区和所述第三显示区之间,所述显示区的所述至少部分区域包括所述第二显示区;所述多个发光单元组包括位于所述第一显示区中的多个第一发光单元组、位于所述第二显示区中的多个第二发光单元组以及位于所述第三显示区中的多个第三发光单元组;所述发光单元组中的所述至少一个发光单元包括所述第一发光单元,所述第一显示区中,位于同一行发光单元中的第一发光单元的发光区沿所述第一方向呈等间距排列,且位于同一行发光单元中的相邻两个第一发光单元的发光区之间在所述第一方向上的间距为第五间隔距离,所述第一间隔距离和所述第二间隔距离中的至少之一不同于所述第五间隔距离。
例如,在本公开一实施例提供的显示基板中,所述第三显示区中,位于同一行发光单元中的第一发光单元的发光区沿所述第一方向呈等间距排列,且位于同一行发光单元中的相邻两个第一发光单元的发光区之间在所述第一方向上的间距为第六间隔距离,所述第一间隔距离和所述第二间隔距离中的至少之一不同于所述第六间隔距离。
例如,在本公开一实施例提供的显示基板中,所述第六间隔距离大于所述第一间隔距离,所述第一间隔距离大于所述第五间隔距离,所述第五间隔距离大于所述第二间隔距离。
例如,在本公开一实施例提供的显示基板中,所述第三显示区中的至少一个所述第一发光单元的发光区的面积不同于所述第一显示区中的所述第一发光单元的发光区的面积,和/或所述第三显示区中的至少一个所述第一发光单元的发光区的面积不同于所述第二显示区中的所述第一发光单元的发光区的面积。
例如,在本公开一实施例提供的显示基板中,所述第三显示区中的至少一个所述第一发光单元的发光区的面积与所述第一显示区中的所述第一发光单元的发光区的面积之比为0.8~2.5,和/或所述第三显示区中的至少一个所述第一发光单元的发光区的面积与所述第二显示区中的所述第一发光单元的发光区的面积之比为0.8~2.5。
例如,在本公开一实施例提供的显示基板中,所述第二发光单元组中的所述第一发光单元的发光区的面积小于或等于与该第二发光单元组相邻的所述第三发光单元组中的所述第一发光单元的发光区的面积。
例如,在本公开一实施例提供的显示基板中,所述发光单元组中的所述至少一个发光单元还包括第二发光单元和第三发光单元,所述第一方向为行方向,所述第二方向为列方向,在至少一个所述发光单元组中,所述第二发光单元与所述第三发光单元位于不同行,且所述第一发光单元与所述第二发光单元位于同一行。
例如,在本公开一实施例提供的显示基板中,所述第一发光单元、所述第二发光单元和所述第三发光单元分别被配置为提供不同颜色的光。
例如,在本公开一实施例提供的显示基板中,所述发光单元组中的所述至少一个发光单元还包括第四发光单元,所述第一发光单元和所述第四发光单元被配置为提供相同颜色的光。
例如,在本公开一实施例提供的显示基板中,与所述第一发光单元组相邻的至少一 个所述第二发光单元组中,所述第一发光单元的发光区与所述第四发光单元的发光区在所述第二方向上的距离为第一距离,所述第四发光单元的发光区和与该第二发光单元组相邻的所述第一发光单元组中的所述第一发光单元的发光区在所述第二方向上的距离为第二距离,所述第一距离大于所述第二距离。
例如,在本公开一实施例提供的显示基板中,所述第一距离大于所述第二发光单元组中的所述第三发光单元的发光区在所述第二方向上的尺寸。
例如,在本公开一实施例提供的显示基板中,与所述第一发光单元组相邻的至少一个所述第二发光单元组中,沿所述第一方向延伸的第一直线穿过所述第一发光单元与所述第二发光单元,沿所述第一方向延伸的第二直线穿过所述第四发光单元与所述第一发光单元组中的所述第二发光单元。
例如,在本公开一实施例提供的显示基板中,所述多个第二发光单元组包括沿所述第一方向交替排列的第一子发光单元组和第二子发光单元组,与所述多个第二发光单元组相邻的至少一个第三发光单元组与所述第二子发光单元组位于同一列发光单元组中;至少一个所述第一发光单元组中,所述第一发光单元的发光区和所述第二发光单元的发光区之间的距离为第三距离;至少一个所述第一子发光单元组中,所述第一发光单元的发光区和所述第二发光单元的发光区之间的距离为第四距离;至少一个所述第二子发光单元组中,所述第一发光单元的发光区和所述第二发光单元的发光区之间的距离为第五距离,所述第五距离大于所述第四距离,所述第四距离大于所述第三距离。
例如,在本公开一实施例提供的显示基板中,至少一个所述第一子发光单元组中,所述第一发光单元的发光区和所述第四发光单元的发光区中沿所述第二方向延伸的两条中心线之间的距离为第六距离;至少一个所述第二子发光单元组中,所述第一发光单元的发光区和所述第四发光单元的发光区中沿所述第二方向延伸的两条中心线之间的距离为第七距离,所述第七距离大于所述第六距离。
例如,在本公开一实施例提供的显示基板中,至少一个所述第一子发光单元组中,所述第二发光单元的发光区中沿所述第二方向延伸的中心线和所述第四发光单元的发光区中沿所述第二方向延伸的中心线之间的距离为第八距离;至少一个所述第二子发光单元组中,所述第二发光单元的发光区中沿所述第二方向延伸的中心线和所述第四发光单元的发光区中沿所述第二方向延伸的中心线之间的距离为第九距离,所述第九距离与所述第八距离之间的比例为0.8~1.2。
例如,本公开一实施例提供的显示基板还包括多个第一像素电路组、多个第二像素电路组和多个第三像素电路组,所述多个第一像素电路组分别与所述多个第一发光单元组一一对应连接,且位于所述第一显示区中,所述多个第二像素电路组分别与所述多个第二发光单元组一一对应连接,且位于所述第二显示区中,所述多个第三像素电路组分别与所述多个第三发光单元组一一对应连接,且位于所述显示基板中的除所述第三显示区以外的区域。
例如,在本公开一实施例提供的显示基板中,所述多个第一像素电路组包括多个第 一像素电路,所述多个第二像素电路组包括多个第二像素电路,所述多个第一像素电路在所述第一显示区中的排列密度大于或等于所述多个第二像素电路在所述第二显示区中的排列密度。
例如,在本公开一实施例提供的显示基板中,至少一个所述第二像素电路组中,所述第二像素电路包括两个子像素电路,所述两个子像素电路被配置为与同一个发光单元连接;所述第一像素电路组中,所述第一像素电路包括一个子像素电路,且不同子像素电路被配置为与不同发光单元连接。
例如,本公开一实施例提供的显示基板还包括沿所述第二方向延伸的多条数据线,所述多条数据线包括第一子数据线和第二子数据线;所述第一显示区包括第一像素电路列,所述第二显示区包括第二像素电路列,所述第一像素电路列与所述第二像素电路列位于不同列;所述第一子数据线与所述第一像素电路列连接,所述第二子数据线与所述第二像素电路列连接,所述第一子数据线和所述第二子数据线通过数据线连接部连接,所述数据线连接部的延伸方向与所述第二方向相交,且所述数据线连接部与所述数据线位于不同层。
例如,在本公开一实施例提供的显示基板中,所述第一显示区还包括第三像素电路列,所述第二显示区还包括第四像素电路列,所述第三像素电路列与所述第四像素电路列的至少部分位于同一列;所述多条数据线还包括第三子数据线和第四子数据线,所述第三子数据线与所述第三像素电路列连接,所述第四子数据线与所述第四像素电路列连接,所述第三子数据线和所述第四子数据线为沿所述第二方向延伸且连续的一条数据线。
例如,本公开一实施例提供的显示基板还包括沿所述第二方向延伸的多条电源信号线,所述多条电源信号线包括多条第一子电源信号线和多条第二子电源信号线,所述多条第一子电源信号线与所述多个第一像素电路组连接,所述多条第二子电源信号线与所述多个第二像素电路组连接,且所述第一子电源信号线被配置为传输第一电源信号,所述第二子电源信号线被配置为传输第二电源信号。
例如,在本公开一实施例提供的显示基板中,所述多条第二子电源信号线中包括与至少一条所述第一子电源信号线位于同一直线上的第二子电源信号线,位于同一直线上的所述第一子电源信号线和所述第二子电源信号线之间设置有间隔。
例如,本公开一实施例提供的显示基板还包括位于所述第三显示区的边缘的遮光层,所述遮光层在所述衬底基板上的正投影与所述第二子数据线和所述第四子数据线在衬底基板上的正投影有交叠,所述遮光层位于所述数据线连接部所在膜层远离所述电源信号线所在膜层的一侧,所述多条第二子电源信号线的至少一条与所述遮光层连接。
本公开至少一个实施例还提供一种显示装置,该显示装置包括本公开任一实施例所述的显示基板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍, 显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开至少一实施例提供的一种显示基板的平面结构的示意图;
图2为图1所示的显示基板中的第一显示区与第二显示区交界位置的发光单元的一种示例的局部示意图;
图3为图1所示的显示基板中的第一显示区、第二显示区以及第三显示区交界位置的发光单元的一种示例的局部示意图;
图4为本公开至少一实施例提供的一种第一像素电路包括的子像素电路的等效电路图;
图5为本公开至少一实施例提供的一种第二像素电路包括的两个子像素电路的等效电路图;
图6为本公开至少一实施例提供的一种第三显示区与第二显示区的交界位置以及第一显示区与第二显示区交界位置的有源半导体层的局部平面结构示意图;
图7为本公开至少一实施例提供的一种第三显示区与第二显示区的交界位置以及第一显示区与第二显示区交界位置的第一导电层的局部平面结构示意图;
图8为本公开至少一实施例提供的一种第三显示区与第二显示区的交界位置以及第一显示区与第二显示区交界位置的第二导电层的局部平面结构示意图;
图9为本公开至少一实施例提供的一种第三显示区与第二显示区的交界位置以及第一显示区与第二显示区交界位置的源漏金属层的局部平面结构示意图;
图10为图6至图9所示的有源半导体层、第一导电层、第二导电层以及源漏金属层的层叠示意图;
图11为在图10所示的像素电路版图上设置如图4所示的发光单元的第二电极的局部平面结构示意图;
图12为本公开至少一实施例提供的一种显示基板的平面结构的示意图;以及
图13为图12所示的显示基板的局部结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
屏下摄像头指前置摄像头位于屏幕下方但并不影响屏幕显示功能,不使用前置摄像头的时候,相机上方的屏幕仍可以正常显示图像。从外观上看,屏下摄像头不会有任何相机孔,真正的达到了全面屏显示效果。
在研究中,本申请的发明人发现:目前,采用屏下摄像头设计的有机发光二极管显示装置中设置有低密度显示区(L区)、高密度显示区(H区)以及位于低密度显示区(L区)与高密度显示区(H区)之间的密度过渡区。通常,为了保证有机发光二极管显示装置的显示效果,例如为了使低密度显示区(L区)、高密度显示区(H区)以及密度过渡区的显示亮度均一性尽可能地保持一致,低密度显示区(L区)中的各发光单元的发光区的面积往往需要设置为较大于高密度显示区(H区)及密度过渡区中的各发光单元的发光区的面积。但是,当低密度显示区(L区)中的各发光单元的发光区的面积增大后,用于形成该发光区的发光层的面积也会随之增加,导致位于低密度显示区(L区)与密度过渡区交界位置处的发光单元的发光层之间容易出现彼此交叠的现象,对有机发光二极管显示装置的显示效果造成不良影响。
本公开的实施例提供一种显示基板以及显示装置。该显示基板包括显示区,显示区包括多个发光单元;多个发光单元排列为多行,一行发光单元沿第一方向排列;多个发光单元包括多个第一发光单元;显示区的至少部分区域中:第一发光单元的发光区与在第一方向上分别与该第一发光单元相邻的两个第一发光单元的发光区之间在第一方向上的间距不同,和/或第一发光单元的发光区与在第二方向上分别与该第一发光单元相邻的两个第一发光单元的发光区之间在第二方向上的间距不同,第一方向与第二方向相交。
本公开实施例提供的显示基板中,通过调整相邻的第一发光单元的发光区之间在第一方向或第二方向上的间距,例如通过使第一发光单元的发光区之间在第一方向上非等间距排列,或者使第一发光单元的发光区之间在第二方向上非等间距排列,可以减弱或避免相邻的第一发光单元的发光区或发光层之间可能产生的交叠现象,从而减弱或避免可能对显示基板的显示效果所造成的不良影响,有利于改善显示基板的显示效果。
下面,将参考附图详细地说明本公开的实施例。应当注意的是,不同的附图中相同的附图标记将用于指代已描述的相同的元件。
图1为本公开至少一实施例提供的一种显示基板的平面结构的示意图,图2为图1所示的显示基板中的第一显示区与第二显示区交界位置的发光单元的一种示例的局部示意图,图3为图1所示的显示基板中的第一显示区、第二显示区以及第三显示区交界位置的发光单元的一种示例的局部示意图。
例如,结合图1至图3所示,该显示基板包括显示区101,该显示区101包括多个发光单元120。多个发光单元120排列为多行,一行发光单元120沿第一方向X排列,例如一行中的各发光单元120沿第一方向X依次排列,以形成一行发光单元。多个发光单元120包括多个第一发光单元1221。
需要说明的是,图中所示的X方向为第一方向,Y方向为第二方向,例如第一方向X和第二方向Y可以垂直,但不限于此。例如,第一方向和第二方向也可以互换。例如, 本公开的实施例以第一方向X为行方向为例进行描述,例如第二方向Y可以为列方向,沿第一方向X排列的发光单元120为沿行方向排列的一行发光单元,本公开的实施例不限于此,行方向和列方向也可以互换。
例如,发光单元120可以指发光元件(例如有机发光元件),包括第一电极、第二电极以及位于第一电极和第二电极之间的发光层,第一电极、发光层以及第二电极沿垂直于该显示基板的例如衬底基板的方向依次层叠设置,图2和图3中示意性的示出了各发光单元120的第二电极。例如,各发光单元120的第二电极包括主体电极和连接电极,主体电极的形状与各发光单元120的发光区(参考后续描述)的形状基本相同,连接电极被配置为与像素电路连接,例如与像素电路包括的薄膜晶体管连接。例如,以图1至图3所示的区域10(例如后文中所述的第一显示区10)中的发光单元121(例如后文中所述的第二发光单元121)为例,该发光单元121的主体电极0121的形状大致为六边形,且主体电极0121的边缘围绕发光区,而连接电极0122为第二电极中除主体电极0121以外的部分,用于与像素电路连接。
显示区101的至少部分区域中,例如在图1至图3所示的区域20(例如后文中所述的第二显示区20)中,第一发光单元1221的发光区(图2和图3中所示的虚线框)与在第一方向X上分别与该第一发光单元1221相邻的两个第一发光单元1221的发光区之间在第一方向X上的间距不同。例如,以图1至图3所示的区域20为例,在该区域20中,第一发光单元1221的发光区与在第一方向X上分别位于该第一发光单元1221的左右两侧且与该第一发光单元1221在第一方向X上相邻的两个第一发光单元1221的发光区之间在第一方向X上的间距分别为D12和D11(例如下文中所述的第二间隔距离和第一间隔距离),D11不同于D12,换句话说,第一发光单元1221的发光区与右侧相邻的第一发光单元1221的发光区之间在第一方向X上的间距D11不同于该第一发光单元1221的发光区与左侧相邻的第一发光单元1221的发光区之间在第一方向X上的间距D12。例如,本公开的实施例中以X方向的箭头所指的方向为向右。
需要说明的是,本公开的实施例中示意性地示出两个发光区彼此靠近的边缘在第一方向X上的间距,或者在第一方向X上,两个发光区彼此最靠近的两个点之间的间距。但需要说明的是,本公开的实施例不限于此,上述间距D11和D12也可以指两个发光区的中心在第一方向X上的间距,即分别经过上述两个发光区的两个中心的两条沿第二方向Y延伸的直线之间的间距,例如第一方向X与第二方向Y垂直。需要说明的是,上述间距D11和D12均在相同的定义下,即可以均为两个发光区彼此靠近的边缘在第一方向X上的距离,或者均为两个发光区的中心在第一方向X上的距离等。
例如,各发光单元120包括发光区,这里的“发光区”可以指二维的平面区域,该平面区域平行于该显示基板的例如衬底基板。例如,该显示基板还包括位于衬底基板上的像素限定层,像素限定层包括用于限定发光单元120的发光区的开口,该开口暴露发光单元120的第二电极,当后续的发光单元120的发光层的至少部分形成在上述像素限定层的开口中时,位于开口内的发光层与第二电极接触,从而这部分能够驱动发光层进 行发光以形成发光区。需要说明的是,像素限定层的开口由于工艺等原因,远离衬底基板的部分的尺寸略大于靠近衬底基板的部分的尺寸,或者从靠近衬底基板一侧到远离衬底基板一侧的方向上呈现尺寸逐渐增加的形态,因此发光区的尺寸与像素限定层中的开口的不同位置的尺寸可能略有不同,但整体区域形状和尺寸基本相同或相似。例如,发光区在衬底基板上的正投影与对应的像素限定层的开口在衬底基板上的正投影大致重合。例如,发光区在衬底基板上的正投影完全落在对应的像素限定层的开口在衬底基板上的正投影所围成的区域内,且二者形状相似,发光区在衬底基板上的投影面积相比对应的像素限定层的开口在衬底基板上的投影面积略小。
由此,通过调整相邻的第一发光单元1221的发光区之间在第一方向X上的间距,使第一发光单元1221的发光区在第一方向X上呈非等间距排列,例如使图2中所示的D11不同于D12,可以减弱或避免相邻的第一发光单元1221的发光区或发光层之间可能产生的交叠现象,从而减弱或避免可能对显示基板的显示效果所造成的不良影响,有利于改善显示基板的显示效果。
在本公开的一些实施例中,在显示区101的至少部分区域中,例如在图1至图3所示的区域20(例如后文中所述的第二显示区20)中,也可以是第一发光单元1221的发光区与在第二方向Y上分别与该第一发光单元1221相邻的两个第一发光单元1221的发光区之间在第二方向Y上的间距不同,第一方向X与第二方向Y相交,例如第一方向X可以垂直于第二方向Y。例如,在图1至图3所示的区域20中,第一发光单元1221的发光区与在第二方向Y上分别位于该第一发光单元1221的上下两侧且与该第一发光单元1221在第二方向Y上相邻的两个第一发光单元1221的发光区之间在第二方向Y上的间距(例如下文中所述的第三间隔距离和第四间隔距离)彼此不同,换句话说,第一发光单元1221的发光区与上侧相邻的第一发光单元1221的发光区之间在第二方向Y上的间距不同于该第一发光单元1221的发光区与下侧相邻的第一发光单元1221的发光区之间在第二方向Y上的间距。例如,本公开的实施例以Y方向的箭头所指的方向为向上。
需要说明的是,上述在第二方向Y上的间距可以是指两个发光区彼此靠近的边缘在第二方向Y上的间距,或者也可以是指在第二方向Y上,两个发光区彼此最靠近的两个点之间的间距。或者,上述在第二方向Y上的间距也可以指两个发光区的中心在第二方向Y上的间距,即分别经过上述两个发光区的两个中心的两条沿第一方向X延伸的直线之间的间距,例如第一方向X与第二方向Y垂直。需要说明的是,上述在第二方向Y上的间距均在相同的定义下,即可以均为两个发光区彼此靠近的边缘在第二方向Y上的距离,或者均为两个发光区的中心在第二方向Y上的距离等。
在本公开的一些实施例中,在显示区101的至少部分区域中,例如在图1至图3所示的区域20(例如后文中所述的第二显示区20)中,还可以是第一发光单元1221的发光区与在第一方向X上分别与该第一发光单元1221相邻的两个第一发光单元1221的发光区之间在第一方向X上的间距彼此不同,且第一发光单元1221的发光区与在第二方向Y上分别与该第一发光单元1221相邻的两个第一发光单元1221的发光区之间在第二方 向Y上的间距也彼此不同。例如,在图1至图3所示的区域20中,第一发光单元1221的发光区与在第一方向X上分别与该第一发光单元1221左右相邻的两个第一发光单元1221的发光区之间的间距D12和D11彼此不同,且第一发光单元1221的发光区与在第二方向Y上分别与该第一发光单元1221上下相邻的两个第一发光单元1221的发光区之间的间距彼此不同。
在本公开的一些实施例中,结合图1至图3所示,显示区101的至少部分区域的至少一行发光单元120中,例如在图1至图3所示的区域20的一行发光单元120中,第一发光单元1221的发光区与在第一方向X上分别与该第一发光单元X相邻的两个第一发光单元1221的发光区之间在第一方向X上的间距分别为第一间隔距离D11和第二间隔距离D12。在该行发光单元120中,多个第一发光单元1221的发光区沿第一方向X间隔排列以形成多个间距,该多个间距包括第一间隔距离D11和第二间隔距离D12,例如包括多个第一间隔距离D11和多个第二间隔距离D12,第一间隔距离D11和第二间隔距离D12在第一方向X上交替设置。例如,在该行发光单元120中,沿第一方向X排列的多个第一发光单元1221的发光区之间的多个间距依次为:第一间隔距离D11、第二间隔距离D12、第一间隔距离D11、第二间隔距离D12,以此类推。
在本公开的一些实施例中,在显示区101的上述至少部分区域中,第一发光单元1221的发光区与在第二方向Y上分别与该第一发光单元1221相邻的两个第一发光单元1221的发光区之间在第二方向Y上的间距分别为第三间隔距离和第四间隔距离。例如,在第一发光单元1221的发光区与在第二方向Y上分别与该第一发光单元1221相邻的两个第一发光单元1221的发光区之间在第二方向Y上的第三间隔距离和第四间隔距离也彼此不同的情况下,在第二方向Y上,相邻的第一发光单元1221的发光区之间在第二方向Y上的间距可以按照第三间隔距离和第四间隔距离交替设置。例如,沿第二方向Y排列的多个第一发光单元1221的发光区之间的多个间距依次为:第三间隔距离、第四间隔距离、第三间隔距离、第四间隔距离,以此类推。
在本公开的一些实施例中,结合图1至图3所示,该显示基板包括衬底基板01以及位于衬底基板01上的多个发光单元组,发光单元组中包括至少一个发光单元120,例如该至少一个发光单元120包括第一发光单元1221。
显示区101包括第一显示区10、第二显示区20和第三显示区30,第一显示区10位于第三显示区30的至少一侧,第二显示区20的至少部分位于第一显示区10和第三显示区30之间,例如第一显示区10的位于第二显示区20在第二方向Y上的一侧。显示区101的上述至少部分区域包括第二显示区20。
例如,如图1所示,第一显示区10可以围绕第三显示区30,例如第一显示区10可以位于第三显示区30在第一方向X的两侧以及在第二方向Y的至少一侧。例如,如图1所示,第一显示区10围绕第二显示区20,例如第一显示区10包括位于第二显示区20在第一方向X的两侧以及在第二方向Y的至少一侧的部分。本公开的实施例示意性地示出第三显示区30的位置位于整体显示区101(显示基板中用于显示的完整的区域,例如 包括第一显示区10、第二显示区20以及第三显示区30等)的顶部中间的位置,但不限于此,例如第三显示区30的位置可以根据实际需要进行设置,例如还可以位于整体显示区101的左上角位置或右上角位置处等。图1示意性地示出第二显示区20和第三显示区30的形状均为矩形,但不限于此,上述第二显示区20和第三显示区30中的至少之一的形状还可以为圆形或椭圆形等规则形状或者不规则形状等,本公开的实施例对此不作限制。
需要说明的是,图1仅示意性地示出了第一显示区10、第二显示区20和第三显示区30的形状、大小和位置关系等,实际产品中各显示区的形状可以是规则形状,也可以是不规则形状。例如,第二显示区20可以包括突出区域,第一显示区10包括凹入区域,第二显示区20的突出区域可以***第一显示区10的凹入区域,第二显示区20的突出区域可以与第一显示区10的凹入区域具有互补的形状。例如,第二显示区20远离第一显示区10的一侧也可以包括凹入区域。
本公开的实施例示意性地示出上述两个发光单元120的发光区之间的距离指两个发光单元120的发光区的彼此靠近的边缘之间的距离,但不限于此,上述两个发光单元120的发光区之间的距离也可以为两个发光单元120的发光区的中心在第一方向X(或第二方向Y)上的距离,即经过上述两个发光单元120的发光区的两个中心的两条沿第二方向Y(或第一方向X)延伸的直线之间的距离(例如,第一方向X与第二方向Y垂直)。本公开的实施例中,通过对第二显示区20中的一行第一发光单元1221进行非等间距排列,可以防止第二显示区20中的第一发光单元1221的发光区或发光层与例如第三显示区30中相邻的发光单元的发光区或发光层之间可能产生的交叠现象。
多个发光单元组包括位于第一显示区10中的多个第一发光单元组100、位于第二显示区20中的多个第二发光单元组300以及位于第三显示区30中的多个第三发光单元组500。第一显示区10中,位于同一行发光单元120中的第一发光单元1221的发光区沿第一方向X呈等间距排列,且位于同一行发光单元120中的相邻两个第一发光单元1221的发光区之间在第一方向X上的间距为第五间隔距离D13。第一间隔距离D11和第二间隔距离D12中的至少之一不同于第五间隔距离D13。例如,在图1至图3所示的实施例中,第一间隔距离D11和第二间隔距离D12均不同于第五间隔距离D13,例如,第一间隔距离D11大于第五间隔距离D13,第五间隔距离D13大于第二间隔距离D12。
在本公开的一些实施例中,第三显示区30中,位于同一行发光单元120中的第一发光单元1221的发光区沿第一方向X呈等间距排列,且位于同一行发光单元120中的相邻两个第一发光单元1221的发光区之间在第一方向X上的间距为第六间隔距离D14。第一间隔距离D11和第二间隔距离D12中的至少之一不同于第六间隔距离D14。例如,在图1至图3所示的实施例中,第一间隔距离D11和第二间隔距离D12均不同于第六间隔距离D14,例如第一间隔距离D11和第二间隔距离D12均小于第六间隔距离D14。
例如,第六间隔距离D14大于第一间隔距离D11,第一间隔距离D11大于第五间隔距离D13,第五间隔距离D13大于第二间隔距离D12。
例如,如图1至图3所示,第一显示区10中的多个第一发光单元组100的密度为第三密度,第二显示区20中的多个第二发光单元组300的密度为第四密度,第三密度大于第四密度。本公开的实施例中“第三密度大于第四密度”可以指相同面积下第一发光单元组100的数量大于第二发光单元组300的数量。例如,上述相同面积可以为一矩形的面积,该矩形的长边平行于第一方向X,短边平行于第二方向Y,例如,一行第二发光单元组300的数量可以为q个,上述矩形的长边可以为p个(p为不大于q的正整数)第二发光单元组300沿第二方向Y的长度,矩形的短边可以为一个第二发光单元组300沿第一方向X的长度,本公开的实施例不限于此。
例如,第三显示区30中的多个第三发光单元组500的密度为第五密度,第一显示区10中的多个第一发光单元组100的密度(即第三密度)和第二显示区20中的多个第二发光单元组300的密度(即第四密度)均大于第五密度,第三密度大于第四密度,第四密度大于第五密度。本公开的实施例中,相同面积下第一发光单元组100的数量和第二发光单元组300的数量均大于第三发光单元组500的数量。本公开的实施例中,第一显示区10中第一发光单元组100的密度大于第三显示区30中第三发光单元组500的密度,通过在第三显示区30和第一显示区10之间设置第二显示区20,且第二显示区20中的发光单元组的密度介于第一显示区10和第三显示区30中的发光单元组的密度之间,可以使得第一显示区10与第三显示区30彼此靠近的边界变亮。进而,相对于第一显示区10与第三显示区30相接(即两者之间没有设置第二显示区20)的情况,本公开的实施例提供的显示基板有利于改善第三显示区30与第一显示区10彼此靠近边界的发青或发暗的现象,进而提高第三显示区30(例如屏下摄像头所在区域)的显示画质。
例如,第五密度与第三密度之比可以为0.1~0.5,第四密度与第三密度之比可以为0.5~0.9。例如,第五密度与第三密度之比可以为1/4,第四密度与第三密度之比可以为1/2。
例如,在图1至图3所示的示例中,第三显示区30中的第一发光单元1221的发光区的面积不同于第一显示区10中的第一发光单元1221的发光区的面积,第三显示区30中的第一发光单元1221的发光区的面积不同于第二显示区20中的第一发光单元1221的发光区的面积。
在本公开的其他一些示例中,第三显示区30中的第一发光单元1221的发光区的面积也可以与第一显示区10中的第一发光单元1221的发光区的面积大致相同或相似,第三显示区30中的第一发光单元1221的发光区的面积也可以与第二显示区20中的第一发光单元1221的发光区的面积大致相同或相似。
例如,第三显示区30中的第一发光单元1221的发光区的面积与第一显示区10中的第一发光单元1221的发光区的面积之比为0.8~2.5,例如可以进一步为1.1~2.5,从而提升第一显示区10和第三显示区30中的第一发光单元1221的整体发光亮度的均匀性和一致性。
例如,第三发光单元组500与第一发光单元组100中相同的发光单元120的发光区 的面积比大于1。例如,第三发光单元组500中的第一发光单元1221的发光区的面积与第一发光单元组100中的第一发光单元1221的发光区的面积之比可以为1.1~2.5。
例如,第三显示区30中的第一发光单元1221的发光区的面积与第二显示区20中的第一发光单元1221的发光区的面积之比为0.8~2.5,例如可以进一步为1.1~2.5,从而提升第二显示区20和第三显示区30中的第一发光单元1221的整体发光亮度的均匀性和一致性。
例如,第三发光单元组500与第二发光单元组300中相同的发光单元120的发光区的面积比大于1。例如,第三发光单元组500中的第一发光单元1221的发光区的面积与第二发光单元组300中的第一发光单元1221的发光区的面积之比可以为1.1~2.5。
例如,第二发光单元组300中的第一发光单元1221的发光区的面积小于或等于与该第二发光单元组300相邻的第三发光单元组500中的第一发光单元1221的发光区的面积。
例如,第三发光单元组500与第二发光单元组300中相同的发光单元120(例如第一发光单元1221)的发光区的面积比可以为1.3~2.2。例如,第三发光单元组500与第二发光单元组300中相同的发光单元120(例如第一发光单元1221)的发光区的面积比可以为1.5~2。例如,第三发光单元组500与第二发光单元组300中相同的发光单元120(例如第一发光单元1221)的发光区的面积比可以为1.8。
例如,第三发光单元组500与第一发光单元组100中相同的发光单元120(例如第一发光单元1221)的发光区的面积比可以为1.3~2.2。例如,第三发光单元组500与第一发光单元组100中相同的发光单元120(例如第一发光单元1221)的发光区的面积比可以为1.5~2。例如,第三发光单元组500与第一发光单元组100中相同的发光单元120(例如第一发光单元1221)的发光区的面积比可以为1.8。
在本公开的一些实施例中,如图1至图3所示,发光单元组中的发光单元120还包括第二发光单元121和第三发光单元123。在显示区101的各发光单元组中,第二发光单元121与第三发光单元123位于不同行中,例如位于不同行发光单元中,且第一发光单元1221与第二发光单元121位于同一行中,例如位于同一行发光单元中。例如,在显示区101的各发光单元组中,沿第一方向X延伸的一条直线可以同时穿过第一发光单元1221与第二发光单元121,而第二发光单元121与第三发光单元123不能够被沿第一方向X延伸的任意一条直线同时穿过。
例如,如图1至图3所示,各第一发光单元组100、各第二发光单元组300和各第三发光单元组500均至少包括一个第一发光单元1221、一个第二发光单元121以及一个第三发光单元123,第二发光单元121和第三发光单元123位于不同行,第一发光单元1221与第二发光单元121沿第一方向X排列。
在本公开的一些实施例中,如图1至图3所示,发光单元组中的发光单元120还包括第四发光单元1222。例如,如图2和图3所示,第一显示区10中,沿第一方向X排列的一行发光单元120包括依次重复排列的第二发光单元121、第一发光单元1221以及第三发光单元123;第二显示区20中,沿第一方向X排列的一行发光单元120可以包括 沿第一方向X排列的一行第三发光单元123,或者沿第一方向X排列的一行发光单元120可以包括沿第一方向X排列的一行第四发光单元1222,或者沿第一方向X排列的一行发光单元120还可以包括由沿第一方向X依次交替排列的第二发光单元121和第一发光单元1221组成的发光单元行。
例如,如图1至图3所示,第二显示区20中,一行第二发光单元121沿第一方向X等间距排布,一行第四发光单元1222沿第一方向X等间距排布,一行第三发光单元123沿第一方向X等间距排布,而一行第一发光单元1221是沿第一方向X非等间距排布的,从而有利于第二发光单元组300中,除第一发光单元1221以外的其他发光单元120的制作,降低制备成本。
例如,第一发光单元1221、第二发光单元121和第三发光单元123分别被配置为提供不同颜色的光,例如可以配置为提供红色、绿色、蓝色等不同颜色的光,由此使各发光单元组可以包括发出红光的发光单元120、发出绿光的发光单元120以及发出蓝光的发光单元120的至少之一。
本公开的实施例示意性地示出第二发光单元121可以为红色发光单元,第一发光单元1221可以为绿色发光单元,第三发光单元123可以为蓝色发光单元。需要说明的是,本公开的实施例包括但并不仅限于此,本公开的实施例对第一发光单元1221、第二发光单元121和第三发光单元123的发光颜色不作具体限制。例如,第一发光单元1221也可以为蓝色发光单元或红色发光单元,第二发光单元121也可以为蓝色发光单元或绿色发光单元,第三发光单元123也可以为红色发光单元或绿色发光单元等。
例如,各发光单元组中的第一发光单元1221和第四发光单元1222被配置为提供相同颜色的光。
例如,如图2和图3所示,第一显示区10中,沿第一方向X排列的一行发光单元120可以包括第二发光单元121、第一发光单元1221以及第三发光单元123,也可以包括第二发光单元121、第四发光单元1222以及第三发光单元123,第一发光单元1221和第四发光单元1222可以沿第二方向Y排列。
例如,如图1至图3所示,第二显示区20中的第二发光单元组300可以包括三行发光单元,该三行发光单元可以包括一行第三发光单元123、一行第四发光单元1222以及一行交替排列的第二发光单元121和第一发光单元1221。
例如,如图1至图3所示,第三显示区30中,沿第一方向X排列的一行发光单元120包括一行第三发光单元123、一行第四发光单元1222或者一行交替排列的第二发光单元121和第一发光单元1221。例如,第三显示区30中的至少一个发光单元组500可以包括三行发光单元,该三行发光单元可以包括一行第三发光单元123、一行第四发光单元1222以及一行交替排列的第二发光单元121和第一发光单元1221。
例如,第二发光单元组300中不同发光单元120的排布规律可以与第三发光单元组500中不同发光单元120的排布规律相同或相似。
例如,如图1至图3所示,第三显示区30中,第一发光单元1221和第四发光单元 1222沿第二方向Y排列,第二显示区20中的一些第一发光单元1221可以与第三显示区30中的第四发光单元1222大致沿第二方向Y排列。
例如,多个第三发光单元组500排列为多行第三发光单元组500,相邻两行第三发光单元组500沿行方向(例如第一方向X)错开分布,多个第二发光单元组300排列为至少一行第二发光单元组300,例如,第二发光单元组300排列为一行第二发光单元组300。
例如,位于奇数行和偶数行之一的第三发光单元组500与第奇数个第二发光单元组300位于同一列,位于奇数行和偶数行中另一个的第三发光单元组500与第偶数个第二发光单元组300位于同一列。本公开的实施例中位于同一列的第二发光单元组300和第三发光单元组500指第二发光单元组300中的第一发光单元1221与第三发光单元组500中的第四发光单元1222位于同一列(即沿列方向排列,例如沿第二方向Y排列)时的第二发光单元组300和第三发光单元组500。
例如,如图2和图3所示,第二显示区20靠近第一显示区10的一侧设置有突出区域,第一显示区10靠近第二显示区20的一侧设置有凹入区域,第二显示区20的突出区域可以***第一显示区10的凹入区域,第二显示区20中的一行第四发光单元1222可以位于第二显示区20的突出区域,即位于第一显示区10的凹入区域,则第二显示区20中的一行第四发光单元1222可以与第一显示区10中的发光单元120(例如第二发光单元121和第三发光单元123)位于同一行。这里的“第二显示区20中的一行第四发光单元1222可以与第一显示区10中的发光单元120位于同一行”指沿平行于行方向(例如第一方向X)延伸的一条直线可以穿过第四发光单元1222与第一显示区10中的发光单元120。
例如,第三显示区30靠近第二显示区20的一侧设置有突出区域,第二显示区20靠近第三显示区30的一侧设置有凹入区域,第三显示区30的突出区域可以***第二显示区20的凹入区域,第三显示区30中的一行第四发光单元1222可以位于第三显示区30的突出区域,即位于第二显示区20的凹入区域,则第三显示区30中的一行第四发光单元1222可以与第二显示区20中的发光单元120位于同一行。
例如,如图2和图3所示,第一显示区10中,第一发光单元1221和第四发光单元1222沿第二方向Y排列,第二显示区20中的第四发光单元1222可以与第一显示区10中的第一发光单元1221或第四发光单元1222大致沿第二方向Y排列,而第二显示区20中的第一发光单元1221可以与第一显示区10中的第一发光单元1221或第四发光单元1222大致沿第二方向Y排列,也可以与第一显示区10中的第一发光单元1221或第四发光单元1222在第一方向X上偏离一定距离。
例如,如图1至图3所示,多个第一发光单元组100包括多列第三子发光单元组111和多列第四子发光单元组112,多列第三子发光单元组111和多列第四子发光单元组112沿行方向(例如第一方向X)交替排列。例如,第二发光单元组300中的第二发光单元121、第三发光单元123以及第一发光单元1221(或第四发光单元1222)与第三子发光单元组111位于同一列。上述“第二发光单元组300中的第二发光单元121、第三发光单元123以及第一发光单元1221(或第四发光单元1222)与第三子发光单元组111位于同 一列”可以指第二发光单元组300中的第二发光单元121与第三子发光单元组111中的第二发光单元121大致沿列方向(例如第二方向Y)排列,第二发光单元组300中的第三发光单元123与第三子发光单元组111中的第三发光单元123大致沿列方向排列,第二发光单元组300中的第四发光单元1222与第三子发光单元组111中的第一发光单元1221大致沿列方向排列。
例如,如图1至图3所示,多个第二发光单元组300包括沿第一方向X交替排列的第一子发光单元组310和第二子发光单元组320,多个第三发光单元组500中与多个第二发光单元组300相邻的一行第三发光单元组500中的至少一个第三发光单元组500与第二子发光单元组320位于同一列。例如,与第二发光单元组300相邻的第三发光单元组500与该第二发光单元组300位于同一列。例如,与第二发光单元组300相邻的第三发光单元组500中的第四发光单元1222与该第二发光单元组300中的第二发光单元121位于同一行。
例如,如图1至图3所示,第一显示区10中,沿第一方向X排列的一行发光单元120包括N种不同颜色的发光单元120;第二显示区20中,沿第一方向X排列的一行发光单元120包括M种不同颜色的发光单元120,N大于M,且N和M均为不小于1的正整数。
例如,如图2和图3所示,第一显示区10中,沿第一方向X排列的一行发光单元120包括三种不同颜色的发光单元120,例如第一发光单元1221、第二发光单元121以及第三发光单元123;第二显示区20中,沿第一方向X排列的一行发光单元120包括一种颜色的发光单元120或者两种不同颜色的发光单元120,两种不同颜色的发光单元120沿第一方向X交替排列。例如,N可以为3,M可以为1或2。需要说明的是,本公开的实施例包括但并不限于此,第一显示区10中沿第一方向X排列的一行发光单元还可以包括两种不同颜色的发光单元120,或者四种或更多种不同颜色的发光单元120,本公开的实施例对此不作限制。
在本公开的一些实施例中,第一显示区10还包括与多个第一发光单元组100连接的多个第一像素电路组200,第二显示区20还包括与多个第二发光单元组300连接的多个第二像素电路组400,第三显示区30还包括与多个第三发光单元组500连接的多个第三像素电路组600。例如,多个第一像素电路组200与多个第一发光单元组100一一对应连接。例如,多个第二像素电路组400与多个第二发光单元组300一一对应连接。例如,多个第三像素电路组600与多个第三发光单元组500一一对应连接。
例如,第一像素电路组200、第二像素电路组400、以及第三像素电路组600均位于衬底基板01上。图中示意性地示出第一发光单元组100和与其连接的第一像素电路组200在衬底基板01上的正投影彼此交叠,第二发光单元组300和与其连接的第二像素电路组400在衬底基板01上的正投影彼此交叠,第三发光单元组500和与其连接的第三像素电路组600在衬底基板01上的正投影彼此交叠,但不限于此,发光单元组和与其连接的像素电路组还可以不交叠。
在本公开的其他一些实施例中,多个第三像素电路组600还可以位于第三显示区30以外的区域。由此,通过将驱动第三显示区30中的第三发光单元组500发光的第三像素电路组600设置在第三显示区30以外的区域可以提高第三显示区30的光透过率,即通过发光单元120和像素电路分离设置的方式来提高第三显示区30的光透过率。例如,第三显示区30为用于设置例如屏下摄像头的区域,当然本公开的实施例不限于在第三显示区30中的衬底基板01的远离发光单元120的一侧设置例如前置摄像模组,还可以是采用例如3D结构光模组(例如,3D结构光传感器)、飞行时间法3D成像模组(例如,飞行时间法传感器)、红外感测模组(例如,红外感测传感器)等其他功能部件。
在本公开的一些实施例中,如图1所示,显示基板还包括位于第一显示区10与第三显示区30之间的过渡区40,过渡区40包括位于第三显示区30在第一方向X上的两侧的两部分。过渡区40包括多个第四发光单元组700和与多个第四发光单元组700连接的多个第四像素电路组800,例如多个第四像素电路组800与多个第四发光单元组700一一对应连接。例如,过渡区40还包括与第三发光单元组500连接的第三像素电路组600。本公开的实施例中,各发光单元120和与其连接的像素电路构成了一个子像素,即显示基板包括多个子像素,各子像素包括发光单元120和与其连接的像素电路。
例如,如图1至图3所示,与第一发光单元组100相邻的至少一个第二发光单元组300中,第一发光单元1221的发光区与第四发光单元1222的发光区之间在第二方向Y上的距离为第一距离D1,本公开的实施例示意性地示出两个发光单元120的发光区彼此靠近的边缘在第二方向Y上的距离,或者在第二方向Y上,两个发光单元120的发光区彼此最靠近的两个点之间的距离。但需要说明的是,本公开的实施例不限于此,上述第一距离D1也可以指两个发光单元120的发光区的中心在第二方向Y上的距离,即分别经过上述两个发光单元120的发光区的两个中心的两条沿第一方向X延伸的直线之间的距离,例如第一方向X与第二方向Y垂直。与第一发光单元组100相邻的第二发光单元组300中的第四发光单元1222的发光区和与该发光区紧邻且位于第一发光单元组100中的第一发光单元1221的发光区在第二方向Y上的距离为第二距离D2,本公开的实施例示意性地示出两个发光单元120的发光区彼此靠近的边缘在第二方向Y上的距离。但需要说明的是,本公开的实施例不限于此,上述第二距离D2也可以指两个发光单元120的发光区的中心在第二方向Y上的距离,即分别经过上述两个发光单元120的发光区的两个中心的两条沿第一方向X延伸的直线之间的距离。例如,第一距离D1可以大于第二距离D2。
需要说明的是,上述第一距离D1与第二距离D2均在相同的定义下,即可以均为两个发光单元120的发光区彼此靠近边缘在第一方向X或第二方向Y上的距离,或者均为两个发光单元120的发光区的中心在第一方向X或第二方向Y上的距离等。
例如,如图2和图3所示,第二发光单元组300中的第四发光单元1222与第一发光单元组100中的发光单元120位于同一行,该第四发光单元1222相对于与其位于同一第二发光单元组300的第一发光单元1221,更靠近第一发光单元组100中的第一发光单元 1221。
例如,如图2和图3所示,第一距离D1大于第二发光单元组300中的第三发光单元123的发光区在第二方向Y上的尺寸。例如,如图2和图3所示,在第二发光单元组300中,第三发光单元123可以位于第一发光单元1221和第四发光单元1222之间。
例如,如图2和图3所示,第二距离D2小于第二发光单元组300中的第三发光单元123的发光区在第二方向Y上的尺寸。例如,如图2和图3所示,第二距离D2小于第一发光单元组100中的第三发光单元123的发光区在第二方向Y上的尺寸。例如,第一发光单元组100中的第三发光单元123的发光区在第二方向Y的尺寸与第二发光单元组300中的第三发光单元123的发光区在第二方向Y的尺寸可以大致相等。例如,本公开中的“大致相等”指两者之差与其中一者的比值不大于0.2。
例如,如图1至图3所示,各第二发光单元组300中,第一发光单元1221或第四发光单元1222与第二发光单元121位于同一行。例如,如图1至图3所示,与第一发光单元组100相邻的第二发光单元组300中,第四发光单元1222与第一发光单元组100中的第二发光单元121和第三发光单元123位于同一行。例如,第二发光单元组300中的第四发光单元1222与第一发光单元组100中的第二发光单元121和第三发光单元123位于同一行。
本公开的实施例仅示意性地示出与第一发光单元组100相邻的一行第二发光单元组300,本公开的实施例不限于仅包括这一行第二发光单元组300,例如,第二显示区20可以包括多行第二发光单元组300,除与第一发光单元组100相邻的第二发光单元组300外的其他第二发光单元组300中,第一发光单元1221与第二发光单元121位于同一行,第四发光单元1222与另一第二发光单元组300(该第二发光单元组为与上述“其他第二发光单元组”在第二方向Y上相邻的第二发光单元组)中的第二发光单元121和第三发光单元123位于同一行。
例如,如图1至图3所示,第一显示区10中沿第一方向X排列的一行发光单元120的数量大于第二显示区20中沿第一方向X排列的一行发光单元120的数量。例如,如图1至图3所示,第一显示区10中位于同一行且相邻的两个发光单元120的发光区之间的平均距离为a,第二显示区20中位于任一行且相邻的两个发光单元120的发光区之间的平均距离为b,a小于b。
例如,如图1至图3所示,至少一个第一发光单元组100中,第二发光单元121的发光区和第一发光单元1221的发光区之间的距离为第三距离D3;至少一个第一子发光单元组310中,第二发光单元121的发光区和第一发光单元1221的发光区之间的距离为第四距离D4;至少一个第二子发光单元组320中,第二发光单元121的发光区和第一发光单元1221的发光区之间的距离为第五距离D5,第五距离D5大于第四距离D4,第四距离D4大于第三距离D3。例如,第五距离D5可以为50微米~60微米,第四距离D4可以为28微米~35微米,第三距离D3可以为20微米~27微米。
例如,如图1至图3所示,至少一个第一子发光单元组310中,第一发光单元1221 的发光区和第四发光单元1222的发光区中沿第二方向Y延伸的两条中心线之间的距离为第六距离D6;至少一个第二子发光单元组320中,第一发光单元1221的发光区和第四发光单元1222的发光区中沿第二方向Y延伸的两条中心线之间的距离为第七距离D7,第七距离D7大于第六距离D6。
例如,如图1至图3所示,至少一个第一子发光单元组310中,第二发光单元121的发光区中沿第二方向Y延伸的中心线和第四发光单元1222的发光区中沿第二方向Y延伸的中心线之间的距离为第八距离D8;至少一个第二子发光单元组320中,第二发光单元121的发光区中沿第二方向Y延伸的中心线和第四发光单元1222的发光区中沿第二方向Y延伸的中心线之间的距离为第九距离D9,第九距离D9与第八距离D8之比为0.8~1.2。
例如,如图1至图3所示,第一发光单元组100和第二发光单元组300中,第二发光单元121的发光区的形状大致相同且面积大致相等;第一发光单元组100和第二发光单元组300中,第三发光单元123的发光区的形状大致相同且面积大致相等。例如,第一发光单元组100中,第二发光单元121和第三发光单元123的发光区的形状包括六边形;第二发光单元组300中,第二发光单元121和第三发光单元123的发光区的形状包括六边形。
例如,各发光单元组中,第三发光单元123的发光区的面积大于第二发光单元121的发光区的面积。
例如,如图1至图3所示,第一发光单元组100中的第一发光单元1221的发光区的形状与第二发光单元组300中的第一发光单元1221的发光区的形状不同,第一发光单元组100中的第四发光单元1222的发光区的形状与第二发光单元组300中的第四发光单元1222的发光区的形状不同。例如,第一发光单元组100中的第一发光单元1221和第四发光单元1222的形状可以均为五边形,第二发光单元组300中的第一发光单元1221和第四发光单元1222的形状可以均大致为矩形,从而防止第二发光单元组300中的第三发光单元123的第二电极与第四发光单元1222的第二电极在空间上出现冲突,且防止第二发光单元组300中的第二发光单元121的第二电极与第一发光单元1221的第二电极在空间上出现冲突。
例如,第一发光单元组100中的第一发光单元1221的发光区的面积与第二发光单元组300中的第一发光单元1221的发光区的面积不同。例如,第一发光单元组100中的第一发光单元1221的发光区的面积大于第二发光单元组300中的第一发光单元1221的发光区的面积。
例如,第一发光单元组100中的第四发光单元1222的发光区的面积与第二发光单元组300中的第四发光单元1222的发光区的面积不同。例如,第一发光单元组100中的第四发光单元1222的发光区的面积大于第二发光单元组300中的第四发光单元1222的发光区的面积。
例如,如图1至图3所示,第一发光单元组100和第三发光单元组500中,相同的 发光单元120(例如发出相同颜色光的发光单元120)的发光区的形状不同。例如,在本公开的一些实施例中,第三发光单元组500中,各发光单元120的发光区的形状包括圆形、椭圆形或水滴形。上述圆形包括标准圆形和近似圆形,近似圆形可以包括边缘具有凹口的近似圆形、各方向延伸的直径之比为0.9~1.1的近似圆形等。上述椭圆形包括标准椭圆形和近似椭圆形,近似椭圆形可以包括边缘具有凹口的近似椭圆形、各方向延伸的直径之比为0.9~1.1的近似椭圆形等。
例如,在本公开的一些实施例中,第三发光单元组500中,第二发光单元121和第三发光单元123的发光区的形状均为圆形,第一发光单元1221和第四发光单元1222的发光区的形状均为椭圆形,且椭圆形的长轴沿第一方向X延伸。
例如,用于限定第三发光单元组500中的各发光单元120的发光区的像素限定层的开口的边缘包括凸起,形成在该开口内的发光层包括凹口,即发光区包括凹口,该凹口处为发光单元120的第二电极与薄膜晶体管连接的部分。
在本公开的其他一些实施例中,第一发光单元组100和第三发光单元组500中,相同的发光单元120(例如发出相同颜色光的发光单元120)的发光区的形状也可以不同。
例如,上述多个第一像素电路组200包括多个第一像素电路210,上述多个第二像素电路组400包括多个第二像素电路410。例如,至少一个第二像素电路组400中,各第二像素电路410包括两个子像素电路411和412,两个子像素电路411和412被配置为与同一个发光单元120(例如第一发光单元1221、第二发光单元121、第三发光单元123或者第四发光单元1222)连接,例如两个子像素电路411和412与同一个发光单元120的第二电极连接。例如,第一像素电路组200中,各第一像素电路210包括一个子像素电路,且不同子像素电路被配置为与不同发光单元120连接,即一个子像素电路仅与一个发光单元120的第二电极连接。例如,第二像素电路410包括的子像素电路可与第一像素电路210包括的子像素电路具有相同的结构。
例如,图4为本公开至少一实施例提供的一种第一像素电路包括的子像素电路的等效电路图。以图4所示的第一像素电路210用于驱动第一发光单元1221为例,驱动其他发光单元的第一像素电路210的等效电路图与图4所示的等效电路图基本相同。如图4所示,第一像素电路210包括第二复位晶体管T1、第二发光控制晶体管T5、第一发光控制晶体管T6、数据写入晶体管T4、驱动晶体管T3、阈值补偿晶体管T2、第一复位控制晶体管T7以及存储电容C。例如,显示基板还包括复位电源信号线、扫描信号线、电源信号线、复位控制信号线、发光控制信号线以及数据线。
例如,阈值补偿晶体管T2的第一极与驱动晶体管T3的第一极连接,阈值补偿晶体管T2的第二极与驱动晶体管T3的栅极连接;第一复位控制晶体管T7的第一极与复位电源信号线连接以接收复位信号Vinit,第一复位控制晶体管T7的第二极与发光单元120(例如第一发光单元1221)的第二电极连接;数据写入晶体管T4的第一极与驱动晶体管T3的第二极连接,数据写入晶体管T4的第二极与数据线连接以接收数据信号Data,数据写入晶体管T4的栅极与扫描信号线电连接以接收扫描信号Gate;存储电容C的第 一极与电源信号线电连接,存储电容C的第二极与驱动晶体管T3的栅极电连接;阈值补偿晶体管T2的栅极与扫描信号线电连接以接收补偿控制信号;第一复位晶体管T7的栅极与复位控制信号线电连接以接收复位控制信号Reset(N+1);第二复位晶体管T1的第一极与复位电源信号线电连接以接收复位信号Vinit,第二复位晶体管T1的第二极与驱动晶体管T3的栅极电连接,第二复位晶体管T1的栅极与复位控制信号线电连接以接收复位控制信号Reset(N);第一发光控制晶体管T6的栅极与发光控制信号线电连接以接收发光控制信号EM;第二发光控制晶体管T5的第一极与电源信号线电连接以接收第一电源信号VDD,第二发光控制晶体管T5的第二极与驱动晶体管T3的第二极电连接,第二发光控制晶体管T5的栅极与发光控制信号线电连接以接收发光控制信号EM,发光单元120(例如第一发光单元1221)的第一电极与电压端VSS连接。上述电源信号线指输出电压信号VDD的信号线,可以与电压源连接以输出恒定的电压信号,例如正电压信号。
例如,扫描信号和补偿控制信号可以相同,即,数据写入晶体管T3的栅极和阈值补偿晶体管T2的栅极可以电连接到同一条信号线以接收相同的信号,减少信号线的数量。例如,数据写入晶体管T3的栅极和阈值补偿晶体管T2的栅极也可以分别电连接至不同的信号线,即数据写入晶体管T3的栅极电连接到第一扫描信号线,阈值补偿晶体管T2的栅极电连接到第二扫描信号线,而第一扫描信号线和第二扫描信号线传输的信号可以相同,也可以不同,从而使得数据写入晶体管T3的栅极和阈值补偿晶体管T2可以被分开单独控制,增加控制像素电路的灵活性。
例如,第一发光控制晶体管T6和第二发光控制晶体管T5被输入的发光控制信号可以相同,即,第一发光控制晶体管T6的栅极和第二发光控制晶体管T5的栅极可以电连接到同一条信号线以接收相同的信号,减少信号线的数量。例如,第一发光控制晶体管T6的栅极和第二发光控制晶体管T5的栅极也可以分别电连接至不同的发光控制信号线,而不同的发光控制信号线传输的信号可以相同,也可以不同。
例如,第一复位晶体管T7和第二复位晶体管T1被输入的复位控制信号可以相同,即,第一复位晶体管T7的栅极和第二复位晶体管T1的栅极可以电连接到同一条信号线以接收相同的信号,减少信号线的数量。例如,第一复位晶体管T7的栅极和第二复位晶体管T1的栅极也可以分别电连接至不同的复位控制信号线,此时,不同复位控制信号线上的信号可以相同也可以不相同。
例如,如图4所示,显示基板工作时,在画面显示的第一阶段,第二复位晶体管T1打开,使N1节点的电压初始化;在画面显示的第二阶段,data数据通过数据写入晶体管T4、驱动晶体管T3以及阈值补偿晶体管T2存储在N1节点;在第三发光阶段,第二发光控制晶体管T5、驱动晶体管T3以及第一发光控制晶体管T6均打开,发光单元120正向导通发光。
需要说明的是,在本公开的实施例中,子像素的像素电路除了可以为图4所示的7T1C(即七个晶体管和一个电容)结构之外,还可以为包括其他数量的晶体管或电容的结构,如7T2C结构、6T1C结构、6T2C结构或者9T2C结构等,本公开实施例对此不作限定。
例如,图5为本公开至少一实施例提供的一种第二像素电路包括的两个子像素电路的等效电路图。以图5所示的第二像素电路410用于驱动第一发光单元1221为例,驱动其他发光单元的第二像素电路410的等效电路图与图5所示的等效电路图基本相同。如图5所示,第二像素电路410中的两个子像素电路411和412中任一子像素电路的等效电路图与图4所示的第一像素电路210的子像素电路的等效电路图基本相同,例如均为7T1C结构,第二像素电路410中将两个子像素电路的数据写入晶体管T4相连,并将两个子像素电路的N4节点相连以实现共同驱动同一个发光单元120发光。
例如,如图5所示,显示基板工作时,画面显示的第一阶段,第二复位晶体管T1打开,使N1节点的电压初始化;第二阶段,同一个数据信号Data通过两个相连的数据写入晶体管T4,以及与两个相连的数据写入晶体管T4分别连接的两个驱动晶体管T3以及两个阈值补偿晶体管T2存储在两个像素电路的两个N1节点;在第三发光阶段,两个子像素电路411和412中的第二发光控制晶体管T5、驱动晶体管T3以及第一发光控制晶体管T6均打开,以将同样的数据信号传输到两个N4节点,此时,两个子像素电路411和412的N4节点相连,共同驱动同一个发光单元120(例如第一发光单元1221)发光。本公开实施例中,第二显示区20中的第二像素电路采用双7T1C的设计,可以达到增加电流和亮度的目的。
例如,第三像素电路组包括多个第三像素电路、第四像素电路组包括多个第四像素电路,第三像素电路和第四像素电路可以与第一像素电路具有相同的等效电路图,也可以与第二像素电路具有相同的等效电路图。例如,本公开一示例中,第三像素电路和第四像素电路均与第二像素电路具有相同的等效电路图,则第三像素电路和第四像素电路均包括两个子像素电路,两个子像素电路被配置为与同一个发光单元120(例如第一发光单元1221、第二发光单元121、第三发光单元123或者第四发光单元1222)连接,例如两个子像素电路与同一个发光单元120的第二电极连接,可以达到增加电流和亮度的目的。
例如,图6为本公开至少一实施例提供的一种第三显示区与第二显示区的交界位置以及第一显示区与第二显示区交界位置的有源半导体层的局部平面结构示意图,图7为本公开至少一实施例提供的一种第三显示区与第二显示区的交界位置以及第一显示区与第二显示区交界位置的第一导电层的局部平面结构示意图,图8为本公开至少一实施例提供的一种第三显示区与第二显示区的交界位置以及第一显示区与第二显示区交界位置的第二导电层的局部平面结构示意图,图9为本公开至少一实施例提供的一种第三显示区与第二显示区的交界位置以及第一显示区与第二显示区交界位置的源漏金属层的局部平面结构示意图,图10为图6至图9所示的有源半导体层、第一导电层、第二导电层以及源漏金属层的层叠示意图。
例如,如图6至图10所示,有源半导体层3100可采用半导体材料图案化形成。有源半导体层3100可用于制作上述的第二复位晶体管T1、阈值补偿晶体管T2、驱动晶体管T3、数据写入晶体管T4、第二发光控制晶体管T5、第一发光控制晶体管T6和第一复 位控制晶体管T7的有源层。有源半导体层3100包括各子像素的各晶体管的有源层图案(沟道区)和掺杂区图案(源漏掺杂区),且同一像素电路中的各晶体管的有源层图案和掺杂区图案一体设置。
需要说明的是,有源层可以包括一体形成的低温多晶硅层,源极区域和漏极区域可以通过掺杂等进行导体化以实现各结构的电连接。也就是每个子像素的各晶体管的有源半导体层为由p-硅形成的整体图案,且同一像素电路中的各晶体管包括掺杂区图案(即源极区域和漏极区域)和有源层图案,不同晶体管的有源层之间由掺杂结构隔开。
例如,有源半导体层3100可采用非晶硅、多晶硅、氧化物半导体材料等制作。需要说明的是,上述的源极区域和漏极区域可为掺杂有n型杂质或p型杂质的区域。
图6中各虚线矩形框示出了第一导电层3200与有源半导体层3100交叠的各个部分。作为各个晶体管的沟道区(即上述有源层图案),在每个沟道区两侧的有源半导体层通过离子掺杂等工艺导体化作为各个晶体管的第一极和第二极(即上述掺杂区图案)。晶体管的源极、漏极在结构上可以是对称的,所以其源极、漏极在物理结构上可以是没有区别的。在本公开的实施例中,为了区分晶体管,除作为控制极的栅极,直接描述了其中一极为第一极,另一极为第二极,所以本公开的实施例中全部或部分晶体管的第一极和第二极根据需要是可以互换的。
例如,多个第一像素电路组、多个第二像素电路组和多个第三像素电路组中各像素电路组包括多个薄膜晶体管,例如,多个薄膜晶体管包括第二复位晶体管T1、阈值补偿晶体管T2、驱动晶体管T3、数据写入晶体管T4、第二发光控制晶体管T5、第一发光控制晶体管T6和第一复位控制晶体管T7。
例如,有源半导体层3100包括各薄膜晶体管的有源层图案3102和掺杂区图案3103,有源半导体层3100还包括虚设图案3101。例如,虚设图案3101可以位于第三显示区30。例如,虚设图案3101可以包括沿第一方向X排列的多个块状图案,多个块状图案可以均匀分布,也可以非均匀分布,本公开实施例对此不作限制。
例如,显示基板包括位于有源半导体层远离衬底基板一侧的栅极绝缘层,用于将上述的有源半导体层3100与后续形成的第一导电层3200(即栅极金属层)绝缘。图7示出了该显示基板包括的第一导电层3200,第一导电层3200设置在栅极绝缘层上,从而与有源半导体层3100绝缘。第一导电层3200可以包括电容C的第二极CC2、沿第一方向X延伸的多条扫描信号线043、多条复位控制信号线044、多条发光控制信号线045以及第二复位晶体管T1、阈值补偿晶体管T2、驱动晶体管T3、数据写入晶体管T4、第二发光控制晶体管T5、第一发光控制晶体管T6和第一复位控制晶体管T7的栅极。
例如,如图6至图10所示,数据写入晶体管T3的栅极可以为扫描信号线043与有源半导体层3100交叠的部分;第一发光控制晶体管T6的栅极可以为发光控制信号线045与有源半导体层3100交叠的第一部分,第二发光控制晶体管T5的栅极可以为发光控制信号线045与有源半导体层3100交叠的第二部分。第二复位晶体管T1的栅极为复位控制信号线044与有源半导体层3100交叠的第一部分,第一复位控制晶体管T7的栅极为 复位控制信号线044与有源半导体层3100交叠的第二部分。阈值补偿晶体管T2可为双栅结构的薄膜晶体管,阈值补偿晶体管T2的第一个栅极可为扫描信号线043与有源半导体层3100交叠的部分,阈值补偿晶体管T2的第二个栅极可为从扫描信号线043突出的突出结构P与有源半导体层3100交叠的部分。如图7所示,驱动晶体管T1的栅极可为电容C的第二极CC2。
例如,如图6至图10所示,扫描信号线043、复位控制信号线044和发光控制信号线045沿第二方向Y排布。扫描信号线043位于复位控制信号线044和发光控制信号线045之间。
例如,在第二方向Y上,电容C的第二极CC2(即驱动晶体管T1的栅极)位于扫描信号线043和发光控制信号线045之间。从扫描信号线043突出的突出结构P位于扫描信号线043的远离发光控制信号线045的一侧。
例如,位于第一导电层3200远离有源半导体层3100一侧的栅极绝缘层包括多个过孔,用于暴露有源半导体层3100中的掺杂区图案以及虚设图案。
例如,在上述的第一导电层3200上形成有第一绝缘层,用于将上述的第一导电层3200与后续形成的第二导电层3300绝缘。
例如,第一绝缘层包括用于暴露上述虚设图案、部分薄膜晶体管的掺杂区图案以及电容C的第二极CC2的过孔。
例如,如图6至图10所示,第二导电层3300包括电容C的第一极CC1以及沿第一方向X延伸多条复位电源信号线041。电容C的第一极CC1与电容C的第二极CC2至少部分重叠以形成电容C。
例如,如图6至图10所示,源漏金属层3400包括沿第一方向X延伸的数据线910以及电源信号线920。数据线910通过贯穿栅极绝缘层、第一绝缘层和第二绝缘层的过孔与数据写入晶体管T2的第二极电连接。电源信号线920(例如位于第一显示区10的电源信号线)通过贯穿栅极绝缘层、第一绝缘层和第二绝缘层的过孔与第二发光控制晶体管T5的第一极电连接。电源信号线920和数据线910沿第二方向Y交替设置。电源信号线920通过贯穿第二绝缘层的过孔与电容C的第一极CC1电连接。
例如,在上述的源漏极金属层3400远离衬底基板的一侧可以设置钝化层以及平坦层用于保护上述的源漏极金属层3400。
例如,如图6至图10所示,本公开实施例提供的显示基板还包括多个第一连接部051,至少部分第一连接部051的第一端与第二像素电路410中的一个子像素电路的数据写入晶体管T4的第二极连接,第一连接部051的第二端与第二像素电路410中的另一个子像素电路的数据写入晶体管T4的第二极连接以使第二像素电路410的两个数据写入晶体管T4与同一条数据线910连接。例如,沿第二方向Y,第一连接部051的至少部分位于一个子像素电路中的数据写入晶体管T2的第二极与第一复位控制晶体管T7的第一极之间。
本公开实施例中,第二显示区20内的至少两个子像素电路(即至少一个第二像素电路)的数据写入晶体管的第二极通过第一连接部连接以驱动同一个发光单元120发光, 可以增加第二显示区20的发光单元120的电流和亮度,例如可使第二显示区20的发光单元120的电流和亮度增加到采用一个子像素电路驱动情况下的1.8到2倍,实现更加均匀的全面屏的视觉显示效果。
例如,沿第二方向Y,第一连接部051位于一个子像素电路中的阈值补偿晶体管T3的第二极与第一复位控制晶体管T7的第一极之间。
例如,第一连接部051与复位电源信号线041同层设置。
例如,在上述的第二导电层3300上形成有第二绝缘层,用于将上述的第二导电层3300与后续形成的源漏极金属层3400绝缘。
例如,第二绝缘层包括暴露上述虚设图案等结构的过孔。
例如,源漏金属层通过位于其与有源半导体层之间的绝缘层中的第一过孔与掺杂区图案连接。本公开实施例通过在第二显示区边缘以外的位置设置虚设图案,且位于源漏金属层与有源半导体层之间的绝缘层均图案化(例如刻蚀)暴露虚设图案,可以使得位于第二显示区内的绝缘层通过较均匀的刻蚀形成过孔,进而保证第二显示区内驱动晶体管对应的绝缘层中的过孔具有较好的刻蚀均一性。例如,虚设图案与平坦层之间的绝缘层均图案化形成过孔以暴露虚设图案,平坦层被配置为填充该过孔。
例如,如图6至图10所示,第二像素电路410包括相邻的两个子像素电路,相邻的两个子像素电路驱动同一个发光单元发光,相邻的两个子像素电路的两个数据写入晶体管连接同一数据线。而第一像素电路210中仅包括一个子像素电路,相邻的两个子像素电路各驱动一个发光单元发光,该相邻的两个像素电路中的两个数据写入晶体管彼此独立,且分别连接不同的数据线。本公开实施例中的第一像素电路与第二像素电路的版图区别主要在于是否设置了第一连接部,与第一连接部连接的数据写入晶体管的第二极的位置的设置、以及源漏金属层中第四连接部与数据线的位置关系。
例如,如图6至图10所示,多个第一像素电路210的密度为第一密度,多个第二像素电路410的密度为第二密度,第一密度不小于第二密度。例如,第一密度大于第二密度。本公开实施例中“第一密度大于第二密度”可以指相同面积下第一像素电路的数量大于第二像素电路的数量。
例如,如图6至图10所示,各第一像素电路210仅包括一个子像素电路,各第二像素电路410包括两个子像素电路,第一显示区10中的子像素电路的密度大致等于第二显示区20中的子像素电路的密度,即相同面积下第一像素电路包括的子像素电路的数量大致等于第二像素电路包括的子像素电路的数量。
例如,在各第二像素电路包括两个子像素电路的情况下,可以仅一个子像素电路与发光单元连接,也可以两个子像素电路连接同一个发光单元,本公开实施例不作限制。在两个子像素电路连接同一个发光单元时,可以增加发光单元的电流和亮度,实现更加均匀的全面屏的视觉显示效果。
例如,如图6至图10所示,各像素电路还包括:与数据线910同层设置的第二连接部052和第三连接部053,第二连接部052被配置为连接阈值补偿晶体管T2的第二极和 驱动晶体管T3的栅极,第三连接部053被配置为连接第一复位控制晶体管T7的第一极和复位电源信号线041。例如,第二连接部052的一端通过贯穿栅极绝缘层、第一绝缘层和第二绝缘层中的过孔与阈值补偿晶体管T2的第二极电连接,第二连接部052的另一端通过贯穿第一绝缘层和第二绝缘层中的过孔与驱动晶体管T3的栅极(即电容C的第二极CC2)电连接。第三连接部053的一端通过贯穿第二绝缘层中的过孔与复位电源信号线041电连接,第三连接部053的另一端通过贯穿栅极绝缘层、第一绝缘层和第二绝缘层中的过孔与第一复位控制晶体管T7的第一极电连接。
例如,如图6至图10所示,第一连接部051与数据线910位于不同层,且沿垂直于衬底基板的第三方向,各第一连接部051与数据线910和电源信号线920有交叠。例如,第二像素电路410包括的两个数据写入晶体管T4之间设置有一条数据线910和一条电源信号线920,连接上述两个数据写入晶体管T4的第一连接部051与数据线910和电源信号线920均有交叠。
例如,如图6至图10所示,各像素电路还包括与数据线910同层设置的第四连接部054,第四连接部054被配置为连接第一连接部051和数据写入晶体管T4的第二极,第二像素电路410中的一个子像素电路的第四连接部054与紧邻的数据线910之间具有间隔,第二像素电路410中的另一个子像素电路的第四连接部054与数据线910为一体结构以实现第二像素电路410仅与一条数据线910连接。上述“第四连接部054与紧邻的数据线910之间具有间隔”中“紧邻的数据线”指第四连接部054和该数据线910之间没有其他数据线。
例如,如图6至图10所示,以与数据线910为一体的第四连接部054为第一子部0541,与紧邻数据线910具有间隔的第四连接部054为第二子部0542。由于第一像素电路中没有像素电路对的设计,所以第一像素电路中沿第一方向X或第二方向Y排列的相邻两个像素电路中的第四连接部均与数据线为一体结构以实现各像素电路与相应数据线的电连接。
例如,如图6至图10所示,显示基板还包括与第一连接部051同层设置的多个覆盖部S,各阈值补偿晶体管T2包括两个栅极以及位于两个栅极之间的有源半导体层3100。沿第三方向,覆盖部S与两个栅极之间的有源半导体层3100、数据线910以及电源信号线920均有交叠。
例如,双栅型阈值补偿晶体管T2的两段沟道之间的有源半导体层在阈值补偿晶体管T2关闭时处于浮置(floating)状态,易受周围线路电压的影响而跳变,从而会影响阈值补偿晶体管T2的漏电流,进而影响发光亮度。为了保持阈值补偿晶体管T2的两段沟道之间的有源半导体层电压稳定,设计覆盖部S与阈值补偿晶体管T2的两段沟道之间的有源半导体层形成电容,覆盖部S可以连接至电源信号线920以获得恒定电压,因此处于浮置状态的有源半导体层的电压可以保持稳定。覆盖部S与双栅型阈值补偿晶体管T2的两段沟道之间的有源半导体层交叠,还可以防止两个栅极之间的有源半导体层被光照而改变特性,例如防止该部分有源半导体层的电压发生变化,以防止产生串扰。例如, 电源信号线920可以通过贯穿第二绝缘层的过孔与覆盖部S电连接以为覆盖部S提供恒定电压。
例如,如图6至图10所示,第一连接部051包括沿第一方向X延伸的主体连接部和位于主体连接部两端的且沿第一方向X延伸的两个端部,两个端部分别与第二像素电路410的两个第四连接部054连接,主体连接部和两个端部形成了折线形以与覆盖部保持距离。本公开实施例对第一连接部的形状不作限制,只要可以与同层设置的其他结构保持一定距离即可,例如第一连接部的主体连接部可以为直线型,也可以为折线型或者波浪形。
例如,在第二方向Y上,覆盖部S与阈值补偿晶体管T2的第二极之间的距离小于覆盖部S与第一复位控制晶体管T7的第一极之间的距离,即覆盖部S更靠近阈值补偿晶体管T2。由此,为了方便设计,且使得第一连接部051与覆盖部S之间保持一定间隔,第一连接部051设置为更靠近第一复位晶体管T7的第一极。
例如,如图6至图10所示,多条数据线910包括第一子数据线911和第二子数据线912;第一显示区10包括第一像素电路列201,第二显示区20包括第二像素电路列401。例如,第一像素电路列201包括一列子像素电路,第二像素电路列401包括两列子像素电路。
例如,如图6至图10所示,第一像素电路列201与第二像素电路列401位于不同列,即第二像素电路列401中的任意列子像素电路列均与第一像素电路列位于不同列。例如,第一子数据线911与第一像素电路列201连接,第二子数据线912与第二像素电路列401连接,例如第二子数据线912与第二像素电路列401中的一列子像素电路连接。
例如,如图6至图10所示,第一子数据线911和第二子数据线912通过数据线连接部056连接,数据线连接部056的延伸方向与第二方向Y相交,且数据线连接部056与数据线910位于不同层。
例如,如图1至图10所示,在第一显示区10和第二显示区20的交界处,即第一像素电路210和第二像素电路410之间的间隔处,一些数据线设置有断口以使位于第一显示区10和位于第二显示区20的部分数据线在上述间隔处断开。本公开实施例中,第一显示区10和第二显示区20交界处指与第一显示区10靠近第二显示区20的一行像素电路行中像素电路的第一复位晶体管的第一极与数据写入晶体管的第二极之间的间隔。
例如,如图1至图10所示,与第一子数据线911位于同一直线(沿Y方向延伸的直线)且位于第二显示区20中的数据线910和该第一子数据线911之间设置有间隔,且位于第二显示区20的该数据线910不用于传输数据信号,而该第一子数据线911与第二子数据线912通过数据线连接部056连接,则第一子数据线911与第二子数据线912被配置为传输相同的数据信号。例如,如图1至图10所示,第二子数据线912不仅与第二像素电路列401连接,其还绕过第三显示区30的边缘并经过过渡区40,以为过渡区40中的子像素电路提供数据线号。
例如,如图6至图10所示,第一显示区10还包括第三像素电路列202,第二显示区 20还包括第四像素电路列402。例如,第三像素电路列202包括一列子像素电路,第四像素电路列402包括两列子像素电路。例如,第三像素电路列202与第四像素电路列402的至少部分位于同一列,例如第三像素电路列202与第四像素电路列402中的一列子像素电路位于同一列。
例如,如图6至图10所示,多条数据线910还包括第三子数据线913和第四子数据线914,第三子数据线913与第三像素电路列202连接,第四子数据线914与第四像素电路列402连接,例如第四子数据线914与第四像素电路列402中的一列子像素电路连接。
例如,如图6至图10所示,第三子数据线913和第四子数据线914为沿第二方向Y延伸且连续的一条数据线。
例如,如图1至图10所示,在第一显示区10和第二显示区20的交界处,即第一像素电路210和第二像素电路410之间的间隔处,一些数据线是连续的,由此该连续数据线被配置为给与其连接的第一像素电路和第二像素电路传输相同的数据信号。
例如,如图1至图10所示,数据线910还包括第五子数据线915和第六子数据线916,第一显示区10还包括第五像素电路列203和第六像素电路列204,第五子数据线915与第五像素电路列203连接,第六子数据线916与第六像素电路列204连接。第五子数据线915与第二显示区20中的数据线绝缘设置,第六子数据线916与第二显示区20中的数据线绝缘设置,则第五子数据线915和第六子数据线916仅被配置为给第一显示区10中的第一像素电路提供数据信号。
例如,如图10所示,第五像素电路列203与第二像素电路列401的一列子像素电路位于同一列,第六像素电路列204与第二像素电路列401的另一列子像素电路位于同一列。
例如,如图10所示,与第五子数据线915位于同一直线且位于第二显示区20的数据线不与任何像素电路连接,且与第五子数据线915之间设置有间隔;与第六子数据线916位于同一直线且位于第二显示区20的数据线不与任何像素电路连接,且与第五子数据线915之间设置有间隔。
例如,图11为在图10所示的像素电路版图上设置如图4所示的发光单元的第二电极的局部平面结构示意图。如图1至图11所示,第二显示区20可以包括三行发光单元,与该三行发光单元连接的第二像素电路排列为两行,则第二发光单元组300中的第四发光单元1222与第一发光单元组100中的第二发光单元121和第三发光单元123位于同一行,但与第二发光单元组300中的第四发光单元1222连接的第二像素电路410和与第一发光单元组100中的第二发光单元121连接的第一像素电路210位于不同行。
本公开实施例中,数据信号从位于第一显示区远离第二显示区一侧的源极驱动集成电路经数据线传输给第一显示区和第二显示区中的像素电路,以及过渡区中的部分像素电路,传输给与第二显示区中一种发光单元(例如同一种颜色的发光单元)连接的像素电路的数据信号应与传输给与第一显示区中的上述相同发光单元(例如相同颜色的发光单元)连接的像素电路的数据信号相同,且传输给与第二显示区中一种发光单元(例如 同一种颜色的发光单元)连接的像素电路的数据信号应与传输给与过渡区中的上述相同发光单元(例如相同颜色的发光单元)连接的像素电路的数据信号相同。由此,第一显示区中同一第一像素电路列连接至同一数据线,而第二显示区中的第二像素电路中的两个子像素电路连接至同一数据线时,例如容易出现传输至与第一显示区中第二发光单元连接的第一像素电路的数据信号与传输至与第二显示区中第一发光单元或第四发光单元连接的第二像素电路的数据信号相同的问题,导致第一显示区和第二显示区的数据信号不匹配。
例如,如图1至图11所示,本公开实施例以与第一显示区10中的第三子像素电路列202连接的多个发光单元120包括第二发光单元121和第三发光单元123,与第一显示区10中的第一像素电路列201连接的多个发光单元120包括第一发光单元1221和第四发光单元1222,与第二显示区20中的第二像素电路列401连接的多个发光单元120包括第一发光单元1221和第四发光单元1222,与第二显示区20中的第四像素电路列402连接的多个发光单元120包括第二发光单元121和第三发光单元123为例。
例如,第一显示区10中,第二发光单元121和第三发光单元123位于不同行,第一发光单元1221和第四发光单元1222沿第二方向Y排列,第二发光单元121与第一发光单元1221和第四发光单元1222沿第一方向X排列,相邻两个第一发光单元组100中第二发光单元121指向第三发光单元123的方向相反。
例如,第一像素电路列201、第五像素电路列203、第六像素电路列204以及第三像素电路列202组成一像素电路列组,与第一显示区10中靠近第二显示区20的一行第一像素电路且位于第一像素电路列组中的四个第一像素电路连接的发光单元依次为第一发光单元1221、第三发光单元123、第四发光单元1222以及第二发光单元121。上述像素电路列组中的且位于第一显示区靠近第二显示区的第二行像素电路连接的四个发光单元依次为第四发光单元1222、第二发光单元121、第一发光单元1221以及第三发光单元123。由此,与第五像素电路列和与第三像素电路列的像素电路连接的第二发光单元和第三发光单元的排列方式不同,与第一像素电路列和与第六像素电路列的像素电路连接的第一发光单元和第四发光单元的排列方式不同。数据线传输的数据信号与相应的发光单元(例如相应颜色的发光单元)的排列相关,且第一显示区和第二显示区均应按照上述发光单元排列方式传输匹配的数据信号。
例如,如图1至图11所示,与第二显示区20中第四像素电路列402连接的多个发光单元120包括交替排列的第二发光单元121和第三发光单元123,与位于第二显示区20靠近第一显示区10的一行且为第二像素电路列401的像素电路连接的发光单元120例如为第三发光单元123。第一显示区10中与第三像素电路列202连接的多个发光单元120包括交替排列的第二发光单元121和第三发光单元123,与位于第一显示区10靠近第二显示区20的一行且为第三像素电路列202的像素电路连接的发光单元120为第二发光单元121。由此,第一显示区的靠近第二显示区的一行像素电路行中且与第三子数据线连接的像素电路与第二发光单元连接,第二显示区的靠近第一显示区的一行像素电路行 中且与第四子数据线连接的像素电路与第三发光单元连接,该发光单元的排列方式与第三子数据线传输的数据信号相匹配,则第三子数据线与第四子数据线为沿第二方向延伸且连续的一条数据线,即第三子数据线与第四子数据线可以在第一显示区和第二显示区的交界处保持连接,无需在两个显示区交界处断开。
例如,如图1至图11所示,与第二显示区20中第二像素电路列401连接的发光单元120包括交替排列的第一发光单元1221和第四发光单元1222,与位于第二显示区20靠近第一显示区10的一行且为第二像素电路列401的像素电路连接的发光单元120例如为第四发光单元1222。第一显示区10中与第六像素电路列204连接的多个发光单元120包括交替排列的第一发光单元1221和第四发光单元1222,与位于第一显示区10靠近第二显示区20的一行且为第六像素电路列204的像素电路连接的发光单元120也为第四发光单元1222。由此,与第一显示区靠近第二显示区的一行像素电路行且为第二像素电路列的像素电路连接的发光单元和与第二显示区靠近第一显示区的一行像素电路行且为第六像素电路列的像素电路连接的发光单元为同一种发光单元,则与第一显示区的第二像素电路列连接的第二子数据线的数据信号和与第二显示区的第六像素电路列连接的第六子数据线的数据信号不匹配,因此,第二子数据线与第六子数据线在第一显示区和第二显示区的交界处设置有间隔。
例如,如图1至图11所示,第一显示区10中与第一像素电路列201连接的多个发光单元120包括交替排列的第一发光单元1221和第四发光单元1222,且与位于第一显示区10靠近第二显示区20的一行且为第一子像素电路列201的像素电路连接的发光单元120为第一发光单元1221。由此,与第二显示区的第二像素电路列连接的第二子数据线的数据信号和与第一显示区的第一像素电路列连接的第一子数据线的数据信号相匹配,则位于第一显示区的第一子数据线通过数据线连接部与位于第二显示区的第二子数据线连接,以满足集成电路(IC)在第一显示区和第二显示区统一的算法处理。
本公开实施例中,在第一显示区和第二显示区交界的位置,通过数据线连接部连接第一子数据线和第二子数据线,从而可以保证从数据线传输至第一显示区中发光单元的数据信号与从数据线传输至第二显示区中发光单元的数据信号的匹配。
例如,如图1至图11所示,数据线连接部056与多条数据线910位于不同层。
例如,如图1至图11所示,数据线连接部056与复位电源信号线041位于同层以方便设计。
例如,如图6至图11所示,多条电源信号线920包括多条第一子电源信号线921和多条第二子电源信号线922,多条第一子电源信号线921与多个第一像素电路组200连接,多条第二子电源信号线922与多个第二像素电路组400连接,且各第一子电源信号线921被配置为传输第一电源信号,各第二子电源信号线922被配置为传输第二电源信号。本公开实施例中,在第一像素电路仅包括一个子像素电路,第二像素电路包括两个子像素电路时,第一像素电路和第二像素电路需要的电源信号大小不同,例如第一像素电路需要的电源信号小于第二像素电路需要的电源信号,则与第一像素电路连接的第一子电源 信号线和与第二像素电路连接的第二子电源信号线被配置为传输不同的电源信号。
例如,多条第二子电源信号线922中包括与至少一条第一子电源信号线921位于同一直线上的第二子电源信号线922,位于同一直线上的第一子电源信号线921和第二子电源信号线922之间设置有间隔G。本公开实施例中,位于同一直线上的两条信号线指两条信号线可以被同一直线贯穿。
例如,第一电源信号可以从位于第一显示区远离第二显示区一侧的一个集成电路经第一子电源信号线传输给第一显示区中的像素电路。例如,第二子电源信号线可以通过第二导电层中的结构连接至过渡区中的第三子电源信号线,过渡区中的第三子电源信号线与另一集成电路连接以为第二子电源信号线提供第二电源信号。
例如,图12为本公开至少一实施例提供的一种显示基板的平面结构的示意图,图13为图12所示的显示基板的局部结构示意图。本示例与图1至图11所示的示例不同之处在于本示例还包括遮光层。
例如,如图12和图13所示,显示基板还包括遮光层930,位于第三显示区30的边缘。例如,如图12和图13所示,遮光层930在垂直于衬底基板01的方向与第二子数据线912和第四子数据线914有交叠,即遮光层930在衬底基板01上的正投影与第二子数据线912和第四子数据线914在衬底基板01上的正投影有交叠。本公开的实施例通过在第三显示区30的边缘设置遮光层,可以防止位于第三显示区30的边缘且以绕线方式设置的数据线发生衍射。
例如,遮光层930的形状可以为圆环形,但不限于此,也可以根据第三显示区30的形状而进行改变。例如,遮光层930的外环可以为弧形,也可以为折线型以匹配发光单元组的位置。
例如,遮光层930位于第二子数据线912所在膜层(即数据连接部所在膜层)远离电源信号线920所在膜层的一侧。例如,遮光层930可以与图7所示的第一导电层位于同一层,以方便制作,降低制备成本。
例如,多条第二子电源信号线922的至少一条与遮光层930连接,以降低第二子电源信号线的电阻。
本示例中的第一显示区10、第二显示区20以及第三显示区30中各发光单元组以及像素电路组的特征可以与图1至图11所示的示例中相应结构的特征相同,在此不再赘述。
本公开至少一实施例还提供一种显示装置,该显示装置包括上述任一显示基板。
例如,本公开实施例提供的显示装置可以为有机发光二极管显示装置。
例如,本公开实施例提供的显示装置中,通过在第三显示区和第一显示区之间设置第二显示区,有利于改善第三显示区与第一显示区彼此靠近边界的发青或发暗的现象,进而提高第三显示区(例如屏下摄像头所在区域)的显示画质。
例如,本公开实施例提供的显示装置中,通过调整相邻的第一发光单元的发光区之间在第一方向或第二方向上的间距,例如通过使第一发光单元的发光区之间在第一方向上呈非等间距排列,或者使第一发光单元的发光区之间在第二方向上呈非等间距排列, 可以减弱或避免相邻的第一发光单元的发光区或发光层之间可能产生的交叠现象,从而减弱或避免可能对显示装置的显示效果所造成的不良影响,有利于改善显示装置的显示效果。
例如,显示装置还可以包括位于显示基板显示侧的盖板。例如,显示装置还可以包括位于衬底基板的远离发光元件一侧的功能部件,该功能部件例如与第二显示区正对。
例如,该功能部件可以包括相机模组(例如,前置摄像模组)、3D结构光模组(例如,3D结构光传感器)、飞行时间法3D成像模组(例如,飞行时间法传感器)、红外感测模组(例如,红外感测传感器)等至少之一。
例如,前置摄像模组通常在用户自拍或视频通话时启用,显示装置的像素显示区显示自拍所得到的图像供用户观看。前置摄像模组例如包括镜头、图像传感器、图像处理芯片等。景物通过镜头生成的光学图像投射到图像传感器表面(图像传感器包括CCD和CMOS两种)变换为电信号,通过图像处理芯片模数转换后变为数字图像信号,再送到处理器中加工处理,在显示屏上输出该景物的图像。
例如,3D结构光传感器和飞行时间法(Time of Flight,ToF)传感器可以用于人脸识别以对显示装置进行解锁等。
例如,该功能部件也可以仅包括相机模组以实现自拍或者视频通话的功能;例如,该功能部件也可以进一步包括3D结构光模组或者飞行时间法3D成像模组以实现人脸识别解锁等,本公开的实施例包括但不限于此。
例如,上述显示装置可以为具有例如屏下摄像头的手机、平板电脑、笔记本电脑、导航仪等任何具有显示功能的产品或者部件等,本公开的实施例对此不作具体限制。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (27)

  1. 一种显示基板,包括:
    显示区,包括多个发光单元,
    其中,所述多个发光单元排列为多行,一行发光单元沿第一方向排列;
    所述多个发光单元包括多个第一发光单元;
    所述显示区的至少部分区域中:
    所述第一发光单元的发光区与在所述第一方向上分别与该第一发光单元相邻的两个第一发光单元的发光区之间在所述第一方向上的间距不同,和/或
    所述第一发光单元的发光区与在第二方向上分别与该第一发光单元相邻的两个第一发光单元的发光区之间在所述第二方向上的间距不同,所述第一方向与所述第二方向相交。
  2. 根据权利要求1所述的显示基板,其中,所述显示区的所述至少部分区域的至少一行发光单元中,所述第一发光单元的发光区与在所述第一方向上分别与该第一发光单元相邻的两个第一发光单元的发光区之间在所述第一方向上的间距分别为第一间隔距离和第二间隔距离;
    所述至少一行发光单元包括的多个第一发光单元的发光区沿所述第一方向间隔排列以形成多个间距,所述多个间距包括所述第一间隔距离和所述第二间隔距离,所述第一间隔距离和所述第二间隔距离在所述第一方向上交替设置。
  3. 根据权利要求2所述的显示基板,其中,所述显示区的所述至少部分区域中,所述第一发光单元的发光区与在所述第二方向上分别与该第一发光单元相邻的两个第一发光单元的发光区之间在所述第二方向上的间距分别为第三间隔距离和第四间隔距离,
    在所述第二方向上,相邻的所述第一发光单元的发光区之间在所述第二方向上的间距按照所述第三间隔距离和所述第四间隔距离交替设置。
  4. 根据权利要求2或3所述的显示基板,包括:
    衬底基板;以及
    位于所述衬底基板上的多个发光单元组,所述发光单元组中包括至少一个所述发光单元,
    其中,所述显示区包括第一显示区、第二显示区和第三显示区,所述第一显示区位于所述第三显示区的至少一侧,所述第二显示区的至少部分位于所述第一显示区和所述第三显示区之间,所述显示区的所述至少部分区域包括所述第二显示区;
    所述多个发光单元组包括位于所述第一显示区中的多个第一发光单元组、位于所述第二显示区中的多个第二发光单元组以及位于所述第三显示区中的多个第三发光单元组;
    所述发光单元组中的所述至少一个发光单元包括所述第一发光单元,
    所述第一显示区中,位于同一行发光单元中的第一发光单元的发光区沿所述第一方 向呈等间距排列,且位于同一行发光单元中的相邻两个第一发光单元的发光区之间在所述第一方向上的间距为第五间隔距离,
    所述第一间隔距离和所述第二间隔距离中的至少之一不同于所述第五间隔距离。
  5. 根据权利要求4所述的显示基板,其中,所述第三显示区中,位于同一行发光单元中的第一发光单元的发光区沿所述第一方向呈等间距排列,且位于同一行发光单元中的相邻两个第一发光单元的发光区之间在所述第一方向上的间距为第六间隔距离,
    所述第一间隔距离和所述第二间隔距离中的至少之一不同于所述第六间隔距离。
  6. 根据权利要求5所述的显示基板,其中,所述第六间隔距离大于所述第一间隔距离,所述第一间隔距离大于所述第五间隔距离,所述第五间隔距离大于所述第二间隔距离。
  7. 根据权利要求4-6任一项所述的显示基板,其中,所述第三显示区中的至少一个所述第一发光单元的发光区的面积不同于所述第一显示区中的所述第一发光单元的发光区的面积,和/或
    所述第三显示区中的至少一个所述第一发光单元的发光区的面积不同于所述第二显示区中的所述第一发光单元的发光区的面积。
  8. 根据权利要求4-7任一项所述的显示基板,其中,所述第三显示区中的至少一个所述第一发光单元的发光区的面积与所述第一显示区中的所述第一发光单元的发光区的面积之比为0.8~2.5,和/或
    所述第三显示区中的至少一个所述第一发光单元的发光区的面积与所述第二显示区中的所述第一发光单元的发光区的面积之比为0.8~2.5。
  9. 根据权利要求4-8任一项所述的显示基板,其中,所述第二发光单元组中的所述第一发光单元的发光区的面积小于或等于与该第二发光单元组相邻的所述第三发光单元组中的所述第一发光单元的发光区的面积。
  10. 根据权利要求4-9任一项所述的显示基板,其中,所述发光单元组中的所述至少一个发光单元还包括第二发光单元和第三发光单元,
    所述第一方向为行方向,所述第二方向为列方向,
    在至少一个所述发光单元组中,所述第二发光单元与所述第三发光单元位于不同行,且所述第一发光单元与所述第二发光单元位于同一行。
  11. 根据权利要求10所述的显示基板,其中,所述第一发光单元、所述第二发光单元和所述第三发光单元分别被配置为提供不同颜色的光。
  12. 根据权利要求10或11所述的显示基板,其中,所述发光单元组中的所述至少一个发光单元还包括第四发光单元,
    所述第一发光单元和所述第四发光单元被配置为提供相同颜色的光。
  13. 根据权利要求12所述的显示基板,其中,与所述第一发光单元组相邻的至少一个所述第二发光单元组中,所述第一发光单元的发光区与所述第四发光单元的发光区在所述第二方向上的距离为第一距离,所述第四发光单元的发光区和与该第二发光单元组 相邻的所述第一发光单元组中的所述第一发光单元的发光区在所述第二方向上的距离为第二距离,所述第一距离大于所述第二距离。
  14. 根据权利要求13所述的显示基板,其中,所述第一距离大于所述第二发光单元组中的所述第三发光单元的发光区在所述第二方向上的尺寸。
  15. 根据权利要求13或14所述的显示基板,其中,与所述第一发光单元组相邻的至少一个所述第二发光单元组中,沿所述第一方向延伸的第一直线穿过所述第一发光单元与所述第二发光单元,沿所述第一方向延伸的第二直线穿过所述第四发光单元与所述第一发光单元组中的所述第二发光单元。
  16. 根据权利要求15所述的显示基板,其中,所述多个第二发光单元组包括沿所述第一方向交替排列的第一子发光单元组和第二子发光单元组,与所述多个第二发光单元组相邻的至少一个第三发光单元组与所述第二子发光单元组位于同一列发光单元组中;
    至少一个所述第一发光单元组中,所述第一发光单元的发光区和所述第二发光单元的发光区之间的距离为第三距离;至少一个所述第一子发光单元组中,所述第一发光单元的发光区和所述第二发光单元的发光区之间的距离为第四距离;至少一个所述第二子发光单元组中,所述第一发光单元的发光区和所述第二发光单元的发光区之间的距离为第五距离,所述第五距离大于所述第四距离,所述第四距离大于所述第三距离。
  17. 根据权利要求16所述的显示基板,其中,至少一个所述第一子发光单元组中,所述第一发光单元的发光区和所述第四发光单元的发光区中沿所述第二方向延伸的两条中心线之间的距离为第六距离;
    至少一个所述第二子发光单元组中,所述第一发光单元的发光区和所述第四发光单元的发光区中沿所述第二方向延伸的两条中心线之间的距离为第七距离,所述第七距离大于所述第六距离。
  18. 根据权利要求17所述的显示基板,其中,至少一个所述第一子发光单元组中,所述第二发光单元的发光区中沿所述第二方向延伸的中心线和所述第四发光单元的发光区中沿所述第二方向延伸的中心线之间的距离为第八距离;
    至少一个所述第二子发光单元组中,所述第二发光单元的发光区中沿所述第二方向延伸的中心线和所述第四发光单元的发光区中沿所述第二方向延伸的中心线之间的距离为第九距离,所述第九距离与所述第八距离之间的比例为0.8~1.2。
  19. 根据权利要求4-18任一项所述的显示基板,还包括多个第一像素电路组、多个第二像素电路组和多个第三像素电路组,
    其中,所述多个第一像素电路组分别与所述多个第一发光单元组一一对应连接,且位于所述第一显示区中,
    所述多个第二像素电路组分别与所述多个第二发光单元组一一对应连接,且位于所述第二显示区中,
    所述多个第三像素电路组分别与所述多个第三发光单元组一一对应连接,且位于所述显示基板中的除所述第三显示区以外的区域。
  20. 根据权利要求19所述的显示基板,其中,所述多个第一像素电路组包括多个第一像素电路,所述多个第二像素电路组包括多个第二像素电路,所述多个第一像素电路在所述第一显示区中的排列密度大于或等于所述多个第二像素电路在所述第二显示区中的排列密度。
  21. 根据权利要求19或20所述的显示基板,其中,至少一个所述第二像素电路组中,所述第二像素电路包括两个子像素电路,所述两个子像素电路被配置为与同一个发光单元连接;
    所述第一像素电路组中,所述第一像素电路包括一个子像素电路,且不同子像素电路被配置为与不同发光单元连接。
  22. 根据权利要求21所述的显示基板,还包括:
    多条数据线,沿所述第二方向延伸,
    其中,所述多条数据线包括第一子数据线和第二子数据线;
    所述第一显示区包括第一像素电路列,所述第二显示区包括第二像素电路列,所述第一像素电路列与所述第二像素电路列位于不同列;
    所述第一子数据线与所述第一像素电路列连接,所述第二子数据线与所述第二像素电路列连接,所述第一子数据线和所述第二子数据线通过数据线连接部连接,所述数据线连接部的延伸方向与所述第二方向相交,且所述数据线连接部与所述数据线位于不同层。
  23. 根据权利要求22所述的显示基板,其中,所述第一显示区还包括第三像素电路列,所述第二显示区还包括第四像素电路列,所述第三像素电路列与所述第四像素电路列的至少部分位于同一列;
    所述多条数据线还包括第三子数据线和第四子数据线,所述第三子数据线与所述第三像素电路列连接,所述第四子数据线与所述第四像素电路列连接,所述第三子数据线和所述第四子数据线为沿所述第二方向延伸且连续的一条数据线。
  24. 根据权利要求23所述的显示基板,还包括:
    多条电源信号线,沿所述第二方向延伸,
    其中,所述多条电源信号线包括多条第一子电源信号线和多条第二子电源信号线,所述多条第一子电源信号线与所述多个第一像素电路组连接,所述多条第二子电源信号线与所述多个第二像素电路组连接,且所述第一子电源信号线被配置为传输第一电源信号,所述第二子电源信号线被配置为传输第二电源信号。
  25. 根据权利要求24所述的显示基板,其中,所述多条第二子电源信号线中包括与至少一条所述第一子电源信号线位于同一直线上的第二子电源信号线,位于同一直线上的所述第一子电源信号线和所述第二子电源信号线之间设置有间隔。
  26. 根据权利要求24或25所述的显示基板,还包括:
    遮光层,位于所述第三显示区的边缘,且所述遮光层在所述衬底基板上的正投影与所述第二子数据线和所述第四子数据线在衬底基板上的正投影有交叠,
    其中,所述遮光层位于所述数据线连接部所在膜层远离所述电源信号线所在膜层的一侧,所述多条第二子电源信号线的至少一条与所述遮光层连接。
  27. 一种显示装置,包括如权利要求1-26任一项所述的显示基板。
PCT/CN2021/097269 2021-05-31 2021-05-31 显示基板以及显示装置 WO2022252018A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180001372.4A CN116897607A (zh) 2021-05-31 2021-05-31 显示基板以及显示装置
US17/781,419 US20240107804A1 (en) 2021-05-31 2021-05-31 Display substrate and display device
PCT/CN2021/097269 WO2022252018A1 (zh) 2021-05-31 2021-05-31 显示基板以及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/097269 WO2022252018A1 (zh) 2021-05-31 2021-05-31 显示基板以及显示装置

Publications (1)

Publication Number Publication Date
WO2022252018A1 true WO2022252018A1 (zh) 2022-12-08

Family

ID=84323806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097269 WO2022252018A1 (zh) 2021-05-31 2021-05-31 显示基板以及显示装置

Country Status (3)

Country Link
US (1) US20240107804A1 (zh)
CN (1) CN116897607A (zh)
WO (1) WO2022252018A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190326366A1 (en) * 2017-09-30 2019-10-24 Yungu (Gu' An) Technology Co., Ltd. Display screens and display devices
CN110767694A (zh) * 2018-12-28 2020-02-07 云谷(固安)科技有限公司 阵列基板、显示面板及显示装置
US20200066809A1 (en) * 2017-09-30 2020-02-27 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Display screen and display apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190326366A1 (en) * 2017-09-30 2019-10-24 Yungu (Gu' An) Technology Co., Ltd. Display screens and display devices
US20200066809A1 (en) * 2017-09-30 2020-02-27 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Display screen and display apparatus
CN110767694A (zh) * 2018-12-28 2020-02-07 云谷(固安)科技有限公司 阵列基板、显示面板及显示装置

Also Published As

Publication number Publication date
CN116897607A (zh) 2023-10-17
US20240107804A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
WO2020238343A1 (zh) 显示基板、显示面板及显示装置
TWI749662B (zh) 顯示面板及顯示裝置
US20230157102A1 (en) Display substrate and display device
CN215451420U (zh) 显示基板以及显示装置
US11727859B2 (en) Display panel and display device
WO2021217994A1 (zh) 显示基板及显示装置
US11991910B2 (en) Display substrate and display device
WO2021226817A1 (zh) 显示基板及显示装置
WO2021184306A1 (zh) 显示基板以及显示装置
US20240212610A1 (en) Display panel and display apparatus
US20240087528A1 (en) Display substrate and display device
WO2021081753A1 (zh) 显示基板及其制作方法、驱动方法、显示装置
WO2021184305A1 (zh) 显示基板以及显示装置
US20230165052A1 (en) Display panel, method for manufacturing same, and display device
WO2023143568A1 (zh) 显示面板、显示模组及显示装置
US11915634B2 (en) Display substrate and display device
WO2022252018A1 (zh) 显示基板以及显示装置
WO2022252502A1 (zh) 显示基板以及显示装置
WO2023000215A1 (zh) 显示基板及显示装置
CN115104186B (zh) 显示基板、显示面板、显示装置
WO2021226785A1 (zh) 显示面板和显示装置
US20240078936A1 (en) Display panel and display device
WO2022226801A1 (zh) 显示基板及其制备方法、显示装置
WO2023123239A1 (zh) 显示面板和电子设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17781419

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/04/2024)