WO2022247155A1 - 一种泥沙浆筛分机及筛分工艺 - Google Patents

一种泥沙浆筛分机及筛分工艺 Download PDF

Info

Publication number
WO2022247155A1
WO2022247155A1 PCT/CN2021/130188 CN2021130188W WO2022247155A1 WO 2022247155 A1 WO2022247155 A1 WO 2022247155A1 CN 2021130188 W CN2021130188 W CN 2021130188W WO 2022247155 A1 WO2022247155 A1 WO 2022247155A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
water
mud
screen
stones
Prior art date
Application number
PCT/CN2021/130188
Other languages
English (en)
French (fr)
Inventor
卢良彬
连亚晓
卢良基
Original Assignee
深圳市东深环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市东深环保科技有限公司 filed Critical 深圳市东深环保科技有限公司
Publication of WO2022247155A1 publication Critical patent/WO2022247155A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B9/00Combinations of apparatus for screening or sifting or for separating solids from solids using gas currents; General arrangement of plant, e.g. flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/18Drum screens
    • B07B1/20Stationary drums with moving interior agitators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/122Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using filter presses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B2230/00Specific aspects relating to the whole B07B subclass
    • B07B2230/01Wet separation

Definitions

  • the invention relates to the field of mud slurry screening equipment, in particular to a mud slurry screening machine and a screening process.
  • the invention provides a mud slurry screening machine and a screening process, aiming at solving the problem that the sand and stones in the mud slurry cannot be screened to cause waste due to the lack of recycling of existing engineering dregs.
  • a mud slurry screening machine including: a cylindrical sieve mechanism for screening the mud slurry into mud water and stones; a horizontal vibrating screen mechanism for Screen out sand and fine stones; the dehydration mechanism is used to dehydrate the sand and transport it out; the stone crushing mechanism is used to crush the stones and output the predetermined stone materials; the cylinder sieve mechanism, the horizontal vibrating mechanism and the dehydration The mechanisms are connected in sequence, the stone crushing mechanism is arranged on the side of the horizontal vibrating screen mechanism, and the stone crushing mechanism is connected with the cylindrical sieve mechanism.
  • the cylinder screen mechanism includes a cylinder screen and a first collection tank, the cylinder screen is placed in the first collection tank; the cylinder screen includes a feed end and a discharge end, and the mud slurry Move from the feed end to the discharge end in the cylinder screen; the cylinder screen mechanism includes a first lifting assembly, one end of the first lifting assembly is connected to the first collection pool, and the other end is connected to the horizontal Shaker mechanism.
  • the horizontal vibrating mechanism includes a vibrating machine and a second collection pool, the vibrating machine is arranged above the second collecting pool; the horizontal vibrating mechanism includes a second material lifting component, and the first One end of the second material lifting component is connected to the second collection tank, and the other end is connected to the dehydration mechanism.
  • the crushing mechanism includes a crushing stone feeding belt, one end of the crushing stone feeding belt is connected to the discharge end, and the other end is connected to the stone stacking area; the conveying direction of the crushing stone feeding belt is in line with the The direction in which the trommel moves the mud slurry is vertical.
  • the first collection tank includes a blanking tank and a return tank, the blanking tank is adjacent to the return tank, a communication path is provided between the blanking tank and the return tank, and the falling tank is adjacent to the return tank.
  • a "U"-shaped passage is formed between the feed pool, the communication path and the return pool; the cylindrical screen is placed in the discharge pool, and the return pool is set on the same side as the crushing mechanism.
  • the blanking tank is provided with a water absorbing component at the end of the moving direction of the cylinder screen corresponding to the mud slurry, one end of the water absorbing component is connected to the blanking tank, and the other end is connected to the mixing tank; the mixing tank The top is connected to a water storage assembly, the bottom is connected to a filter press, and the filter press is connected to the water storage assembly; the filter press is located on the side of the blanking tank away from the horizontal vibrating mechanism.
  • a feeding channel is provided between the water storage component and the blanking tank, and the filter press, water storage component, feeding channel and blanking tank are arranged in sequence, and the height gradually decreases.
  • a backflow tank is provided outside the blanking tank, one end of the backflow tank is connected to the blanking tank, and the other end is connected to the second collection tank; Backflow pool side.
  • the present invention also provides a mud slurry screening process, which includes the following steps: step S1: adding water to form mud slurry; step S2: separating the water-added mud slurry into sediment water, stones, and stone After the block is crushed, it is output; step S3: separate the sediment water into mud water, sand and fine stone, and the fine stone is output; step S4: immerse the separated sand in water, and output the sand after dehydration; and step S5: pass the mud water through High pressure separation, output water and dehydrated mud.
  • the mud slurry screening machine provided by the present invention can gradually screen the mud slurry and output sand and fine stones that meet the requirements.
  • the cylindrical sieve mechanism, horizontal vibrating sieve mechanism and dewatering mechanism are arranged in a straight line in sequence, and the structural layout It is compact and improves the efficiency of slurry screening and transportation.
  • a crushing mechanism is installed on the side of the horizontal vibrating screen mechanism, so that the stones output from the cylindrical sieve mechanism can be directly transported to the crushing mechanism for crushing without affecting the slurry.
  • the process of moving the screening forward does not affect each other, the layout is compact, and the space utilization rate is improved, especially in the large-scale construction dregs screening environment, which can reduce the sludge in the mobile screening process of the mud slurry accumulation.
  • the mud slurry is initially screened into mud water and rough stones, which is convenient for directly transporting the rough stones out for crushing, and obtaining stones that meet the requirements. Based on the first A material lifting component continues to screen the sediment water in the first collection tank into the next process.
  • the crushing mechanism removes the coarse stones output by screening from the vertical direction, that is, the mud slurry forms a linear screening based on the linear setting of the cylindrical sieve mechanism, horizontal vibrating sieve mechanism and dewatering mechanism.
  • the crushing mechanism is set on the side of the horizontal vibrating screen mechanism, and the coarse stones output by screening are taken out from the linear screening route based on the gravel feeding belt, which further reduces the floor space of the equipment and improves space utilization. Rate.
  • the setting of the reflux tank can avoid the problem that the muddy water in the blanking tank is too much to pass through the cylindrical screen, increase the filtering capacity of the cylindrical sieve mechanism, and at the same time allow the muddy water in the blanking tank to flow to the reflux In the pool, it is convenient for users to deal with the muddy water in the return pool.
  • the cylindrical sieve is placed in the falling tank, the return tank is set on the same side as the crushing mechanism, and the return tank is set between the falling tank and the crushing mechanism, so that the screen Sub-equipment has a smaller footprint and improves space utilization.
  • the filter press and the water storage assembly are located on the side of the blanking tank away from the horizontal vibrating mechanism, and the water storage assembly is connected to the gap in the blanking tank, so that the recycled clean water can be Re-flow on the side of the gap to form the recovery of clean water - the return flow of the output, so that the output of recovered clean water can be used as one of the power sources to push the muck into the cylinder screen, further saving energy.
  • the filter press, water storage assembly, feeding channel and blanking tank are arranged in sequence, and the straight line formed by the connecting line is parallel to the straight line formed by the filtration process of mud slurry, and the filter press, water storage assembly, feeding channel
  • the height of the material channel and the blanking tank is gradually reduced, so that after the filter press separates and recycles the clean water, the clean water can be discharged into the water storage component by gravity.
  • the reflux tank communicates with the gap of the blanking tank, enters through the gap, and can be mixed with muck first to form mud slurry, so as to improve the mixing efficiency of mud slurry and allow mud water to flow back and mix with mud slurry.
  • Fig. 1 is a schematic structural view of a mud slurry screening machine provided by the first embodiment of the present invention.
  • Fig. 2 is a structural schematic diagram of a cylindrical screen in a mud slurry screening machine provided by the first embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the waterway system of a mud slurry screening machine provided by the first embodiment of the present invention.
  • Fig. 4 is a flow chart of a mud slurry screening process provided by the second embodiment of the present invention.
  • Cylindrical screen 111. Feed end; 112. Discharge end; 113. Cylinder; 1131. Moving section; 1132. Screen section; 114. Stirring core;
  • First collection tank 121. Blanking tank; 1211. Notch; 1212. Depression; 122. Return tank; 123. Connecting path; 124. Return tank; 125. Filter screen;
  • the first lifting component 131. Conveyor belt; 132. Hopper; 14. Water absorption component; 15. Filter press; 16. Water storage component; 17. Feed channel; 18. Mixing pool;
  • the first embodiment of the present invention discloses a mud slurry screening machine 100, including:
  • Cylindrical sieve mechanism 1 is used to sieve mud slurry into silt water and stones
  • horizontal vibrating sieve mechanism 2 is used to sieve sand and fine stones from silt water
  • dehydration mechanism 3 is used to sieve sand After dehydration, it is transported out
  • the stone crushing mechanism 4 is used for crushing the stones and outputting predetermined stones.
  • the cylindrical sieve mechanism 1, the horizontal vibrating sieve mechanism 2 and the dehydration mechanism 3 are arranged in sequence
  • the rock crushing mechanism 4 is arranged on the side of the horizontal vibrating sieve mechanism 2, the crushing stone mechanism 4 and the cylindrical sieve mechanism 1 connection
  • the cylinder sieve mechanism 1 removes the stones screened from the mud slurry by the stone crushing mechanism 4 and performs stone crushing operation.
  • the mud slurry is formed after engineering dregs are mixed with water, which contains muddy water (soil mixed with water), sand, stones and other sundries.
  • the sieve mechanism 1 is preliminarily screened, and the coarse stone needs to pass through the crushing mechanism 4 for crushing to form fine stones that meet the requirements.
  • engineering slag enters the cylindrical sieve mechanism 1 after mixing water and forming mud slurry, and is initially screened into mud water and stones.
  • the mud water contains mud water and sand, and also contains a small amount of fine stones.
  • the stones are directly output and moved to the crushing mechanism 4, and the sediment water continues to move forward to the horizontal vibrating mechanism 2. During the process, it is screened into sand and fine stones, the fine stones are directly output, and the sand enters the dehydration process. It is output after being dried in Mechanism 3.
  • the mud slurry screening machine 100 can gradually screen the mud slurry and output sand and fine stones that meet the requirements.
  • the cylindrical sieve mechanism 1 includes a cylindrical sieve 11 and a first collection tank 12 , and the cylindrical sieve 11 is placed in the first collection tank 12 .
  • the cylinder screen 11 includes a feed end 111 and a discharge end 112 , and the mud slurry moves from the feed end 111 to the discharge end 112 in the cylinder screen 11 .
  • the cylinder sieve mechanism 1 also includes a first material lifting assembly 13 , one end of the first material lifting assembly 13 is connected to the first collection tank 12 , and the other end is connected to the horizontal vibrating screen mechanism 2 .
  • the cylindrical sieve 11 includes a cylinder body 113 and a stirring core 114, the stirring core 114 is placed in the cylinder body 113, the stirring core 114 is coaxially arranged with the cylinder body 113, and the stirring core 114 is located at
  • the cylinder 113 rotates inside, and the stirring core 114 rotates to move the mud slurry from the feed end 111 to the discharge end 112 .
  • the side of the cylinder 113 includes a moving section 1131 and a screen section 1132, the moving section 1131 and the screen section 1132 are arranged in sequence in the moving direction of the mud slurry, and the mud slurry moves on the moving section 1131 Enter the sieve section 1132 for sieving.
  • the mud slurry enters the inside of the cylinder 113 from the feed end 111, and based on the rotation of the stirring core 114, the mud slurry starts to move from the feed end 111 to the discharge end 112 while being stirred, and during the moving process
  • the moving section 1131 is a sealed plate structure, and the screen section 1132 is provided with a screen hole.
  • the mud slurry moves along the length of the moving section 1131, the mud slurry is fully stirred and enters the Screen section 1132, when passing through the screen section 1132, the larger coarse stones in the stones continue to move under the drive of the stirring core 114, while the sand, muddy water and some fine stones pass through the screen section 1132 and fall to the first collector.
  • the mud slurry passes through the screen section 1132, it is separated into mud water and larger-sized stones (coarse stones).
  • the material section 112 is output and sent to the crushing mechanism 4 .
  • the cylinder screen 11 drives the mud slurry to move towards the discharge end 112 based on the rotating stirring core 114 while stirring the mud slurry, and based on the sealing setting of the moving section 1131, the sediment
  • the movement of the slurry on the moving section 1131 can be fully stirred, avoiding that the slag that has just entered the cylindrical screen 11 has not been mixed and fully stirred by water, so that the screening efficiency of the slurry is high and the screening is more accurate.
  • the agitating core 114 is a spiral agitating core, and the agitating core 114 rotates to agitate the mud slurry and drives the mud slurry to move, that is, the stirring and driving effects are simultaneously achieved through the rotation of the helical structure.
  • the first collection pool 12 includes a blanking pool 121, the blanking pool 121 is provided with a gap 1211 at the position corresponding to the feeding end 111, the feeding of the cylinder 113
  • the end 111 is placed in the notch 1211 , and the notch 1211 is formed by the concave structure on the edge of the dropping tank 121 , and the feeding end 111 of the cylinder 113 is placed in the notch 1211 .
  • the cylinder body 113 can sink into the blanking tank 121 based on the gap 1211, reducing the height of the feeding end 111 and avoiding the inconvenience of feeding caused by the excessively high feeding end 111 The problem.
  • the height of the notch 1211 is located at half of the feed end 111, so that the cylinder body 113 partially sinks in the blanking tank 121, and partly is higher than the blanking tank 121, which is further convenient The user pushes the mud slurry into the barrel 113 .
  • the falling tank 121 includes a recessed portion 1212, the length of the recessed portion 1212 matches the length of the sieve section 1132, and the sediment water sieved by the sieve section 1132 After falling, it enters the recessed portion 1212 .
  • the length of the recessed portion 1212 to match the length of the screen segment 1132, the sediment water falling from the screen segment 1132 first falls into the recessed portion 1212, and because the sediment water is mixed with sand and fine stones, the sand and fine stones will be directly accumulated in the recessed part 1212, and the muddy water mixed with soil is located above the sand and fine stones due to its low density, which is convenient for users to remove sand and fine stones in the discharge tank 121 .
  • the sieve section 1132 is provided with a plurality of sieve holes (not shown in the figure), and the diameter of the sieve holes is less than 10 mm, so that the sieve section 1132 sieves stones according to a standard 10 mm. Separation of coarse stones and fine stones, wherein the coarse stones larger than 10mm are left in the screen section 1132 to continue moving, while the fine stones smaller than 10mm fall into the discharge tank 121 .
  • the side of the recessed part 1212 is a slope structure, so that the side of the recessed part 1212 has a guiding effect.
  • the falling sand and fine stones fall into the recessed part 1212, it can Driven by the water flow in the pool 121 , when it moves to the side of the recessed part 1212 , it can fall down based on the slope structure, allowing more sand and fine stones to enter the recessed part 1212 .
  • the first material lifting assembly 13 includes a conveyor belt 131 and a plurality of hoppers 132, and the plurality of hoppers 132 are arranged on the conveyor belt 131 at equal intervals in turn, and the hoppers 132 A plurality of water leakage holes (not shown in the figure) are opened on the top, and one end of the conveyor belt 131 is inserted into the concave portion 1212 .
  • the hoppers 132 When in use, the hoppers 132 are driven by the conveyor belt 131 into the recessed portion 1212, and under the action of the end of the conveyor belt 131, a plurality of hoppers 132 are transferred from one side of the conveyor belt 131 to the other side. 132 scoop up the sand and fine stones in the recessed portion 1212, and when the lifting hopper 132 moves to the other end (top) of the conveyor belt 131, it is transferred to the opposite side at the top position again, and when the lifting hopper 132 turns downwards, the sand The mixture with fine stones is poured downward, and then output to the horizontal vibrating screen mechanism 2, and then enters the next process equipment.
  • the number of the conveyor belts 131 is multiple, and the multiple conveyor belts 131 are arranged on both sides of the cylinder 113, specifically, the number of the conveyor belts 131 is four, And symmetrically arranged on both sides of the cylinder body 113 driving mud slurry moving direction, and the conveyor belt 131 is close to one end surface of the cylinder body driving mud slurry moving direction, so that both sides of the cylinder body 113 can be provided with more conveyor belts 131 to transport heavy Into the sand and fine stones in the recessed portion 1212.
  • the horizontal vibrating mechanism 2 includes a vibrating machine 21 and a second collecting pool 22 , and the vibrating machine 21 is arranged above the second collecting pool 22 .
  • the horizontal vibrating mechanism 2 includes a second lifting assembly 23 , one end of the second lifting assembly 23 is connected to the second collection tank 22 , and the other end is connected to the dehydration mechanism 3 .
  • the vibrating screen machine 21 is set through multi-layer screening, and the mixed material of sand and fine stones moved by the first material lifting component 13 is screened in sequence, and the sand and fine stones are separated, and the sand is based on the vibrating screen machine 21. Fall back into the second collection tank 22 under the effect of vibration movement.
  • the vibrating screen machine 21 continues to move the separated sand and fine stones forward at two different positions through vibration, and the sand moves and falls into the second collection pool 22 for secondary sand washing, and The sand in the second collecting tank 22 is moved to the dewatering mechanism 3 through the second lifting component 23, and the fine stone is output through a designated conveying mechanism.
  • the second lifting assembly 23 has the same structure as the first lifting assembly 13, and is provided with a conveyor belt 131 and a lifting hopper 132 to move the sand in the water to the next process through the lifting hopper 132 deal with.
  • a return tank 124 is provided on the outside of the blanking tank 121, one end of the back flow tank 124 is connected to the blanking tank 121, and the other end is connected to the second collection tank 22, so that the second collection tank 22
  • the water source stored in the tank can flow back into the blanking tank 121 based on the reflux tank 124 for further recycling of water resources and energy saving.
  • the second collection pond 22 is used to clean the sand, and based on the transportation of the first material lifting assembly 13, some muddy water or clear water that has not yet drained will enter the second collection pond 22, so that the second collection pond The water level in 22 will continue to increase, and a reflux tank 124 is added to return more water than the preset capacity to the blanking tank 121 (as shown in the flow direction formed by arrow b in Figure 3) for further recycling of water resources .
  • the dehydration mechanism 3 receives the sand sent by the hopper 132 , the sand is dehydrated by vibration, and the sand is outputted outside after being dehydrated and dried by the dehydration mechanism 3 .
  • the crushing mechanism 4 includes a crushing stone feeding belt 41 , one end of the crushing stone feeding belt 41 is connected to the discharge end 112 , and the other end is connected to the stone stacking area 42 .
  • the conveying direction of the crushed stone feeding belt 41 is perpendicular to the direction in which the cylindrical sieve 11 moves the mud slurry, and the crushed stone feeding belt 41 sieves the coarse stone (stones larger than 10mm) output in the cylindrical sieve 11. ) is transferred to the stone stacking area 42.
  • the crushing mechanism 4 removes the coarse stone output by screening from the vertical direction, that is, the mud slurry forms a line based on the linear arrangement of the cylinder sieve mechanism 1, the horizontal vibrating mechanism 2 and the dewatering mechanism 3.
  • Linear screening route, and the crushing mechanism 4 is arranged on the side of the horizontal vibrating screen mechanism 2, based on the gravel feeding belt 41, the coarse stones output by screening are taken out from the linear screening route, further reducing the size of the equipment. Occupies less space and improves space utilization.
  • the first collection pool 12 also includes a backflow pool 122, the blanking pool 121 is adjacent to the backflow pool 122, and the gap between the blanking pool 121 and the backflow pool 122 There is a communication path 123 between them, and a "U"-shaped path is formed among the blanking pool 121, the communication path 123 and the return pool 122 (flow direction formed by arrow a in Figure 3).
  • the external clean water flows into the feed end 111 of the cylindrical screen 11 from the gap 1211.
  • the clean water is mixed with the muck, it is stirred by the stirring core 114 to form a mud slurry, and the muddy water passes through the screen section 1132 and falls to the discharge tank.
  • the muddy water in the blanking tank 121 flows back to the return tank 122 through the communication path 123, and the return tank 122 sinks the mud into the bottom of the return tank 122 through sedimentation, and the clean water continues to flow.
  • the setting of the reflux tank 122 can avoid the problem that the muddy water in the blanking tank 121 accumulates too much and does not pass through the cylindrical screen 11, increase the filtering capacity of the cylindrical screen mechanism 1, and also allow the blanking tank 121 to The muddy water in the backflow pool 122 flows to facilitate the user to process the muddy water in the backflow pool 122 .
  • the cylindrical screen 11 is placed in the falling pool 121, the backflow pool 122 is set on the same side as the crushing mechanism 4, and the backflow pool 122 is set in the Between the dropping tank 121 and the crushing mechanism 4, the screening equipment has a smaller footprint and improves space utilization.
  • the end of the backflow pool 122 facing away from the communication path 123 is in communication with the gap 1211, so that after the muddy water flows from the blanking pool 121 to the backflow pool 122, it flows into the blanking material again through the gap 1211 In the pool 121, a reflux effect is formed, and at the same time, based on the impact force of the flowing water in the reflux pool 122, it can be used as a driving force for pushing the muck into the cylindrical screen 11, so as to improve the muck propulsion efficiency and save energy.
  • the return pool 122 is provided with a filter screen 125 near the end of the communication path 123, and the filter screen 125 is erected at the entrance of the return pool 122, so that from the discharge pool Before the muddy water floating in 121 enters the backflow pool 122, it first passes through the filtration of the filter screen 125, and some stones and floating debris are blocked by the filter screen 125, so that the muddy water flowing into the backflow pool 122 has lower impurities. Improve filtration efficiency.
  • the depth of the backflow pool 122 is smaller than the depth of the blanking pool 121 , so that the depth of the backflow pool 122 is higher than the depth of the blanking pool 121 .
  • the blanking tank 121 is provided with a water absorbing assembly 14 at the end away from the gap 1211, one end of the water absorbing assembly 14 is connected to the blanking tank 121, and the other end is connected to the mixing tank 18, and the mixing tank 18 is used for settling clear water and mud.
  • the top of the mixing tank 18 is connected to a water storage assembly 16, the bottom is connected to a filter press 15, the filter press 15 is connected to the water storage assembly 16, and the water absorption assembly 14 sucks the muddy water in the blanking tank 121 to the mixing tank 18 in.
  • the water absorption assembly 14 includes a centrifugal pump
  • the centrifugal pump refers to a pump that delivers liquid by the centrifugal force generated when the impeller rotates, so as to extract the muddy water in the blanking tank 121 and transport it to the filter press 15.
  • the filter press 15 pressurizes the muddy water so that the mud and water are separated to obtain dry mud and clear water, and the obtained clear water is output to the water storage assembly 16 for storage (as shown in the flow direction of f in FIG. 3 ), to Recycling of water energy.
  • the water absorbing assembly 14 pumps the muddy water into the mixing tank 18.
  • a flocculant is first added to the muddy water.
  • the flocculant can settle the mud mixed in the muddy water to the bottom of the clear water, and then mix and flocculate.
  • the muddy water enters the mixing tank 18 to settle, and the mud sinks to the bottom of the mixing tank 18, then the clear water is located at the top of the mixing tank 18, and the mixing tank 18 can move the clear water into the water storage assembly 16 (e direction in Fig. 3 and f direction of flow), and the mud at the bottom is moved to the filter press 15 (flow direction of d direction in Figure 3).
  • the filter press 15 and the water storage assembly 16 are arranged on the side of the blanking pool 121 away from the horizontal vibrating mechanism 2, and the water storage assembly 16 communicates with the gap of the blanking pool 121, so that The recovered clean water can flow in again on the side of the gap 1211 to form a recovery-output reflux of clean water (as shown in the flow direction formed by arrow c in Figure 3), so that the output of recovered clean water can be used as the power to push the muck into the cylindrical screen 11
  • One of the sources further saves energy.
  • a feed channel 17 is provided between the water storage assembly 16 and the dropping tank 121, and the filter press 15, the water storage assembly 16, the feed channel 17 and the drop tank
  • the feed tanks 121 are arranged in sequence, and the heights gradually decrease.
  • the feed channel 17 is a space for placing engineering slag, which is connected to the feed end 111 of the blanking tank 121, and the water storage assembly 16 outputs recovered clear water and then enters the feed channel 17 as a driving slag.
  • the clear water can also form a mixture when washing the muck, and mix part of the dregs to form a mud slurry to improve the mixing efficiency.
  • the filter press 15, the water storage assembly 16, the feed channel 17 and the blanking tank 121 are arranged in sequence, and the straight line formed by the connecting line is parallel to the straight line formed by the filtration process of the mud slurry, and the filter press 15 , the water storage assembly 16, the feed channel 17 and the height of the blanking tank 121 gradually decrease successively, so that after the filter press 15 separates and recycles the clean water, the clean water can be discharged into the water storage assembly 16 by gravity.
  • the feed channel 17 can also be flushed under the action of gravity with the help of the height difference formed, so as to form a driving force for the muck to enter the cylindrical screen 11 and save energy.
  • the return pool 122 communicates with the feed channel 17, so that the muddy water in the return pool 122 enters the feed channel 17 to form a flow circuit (direction a in FIG. 3 ).
  • the backflow tank 124 is arranged on the side of the blanking tank 121 away from the backflow tank 122 , so that a surrounding waterway system is formed around the blanking tank 121 to improve space utilization.
  • the reflux tank 124 communicates with the gap 1211 of the blanking tank 121, enters through the gap 1211, and can be mixed with the muck to form a mud slurry to improve the mixing of the mud slurry to form a mud slurry.
  • the efficiency allows the muddy water to flow back and mix with the mud slurry.
  • the second embodiment of the present invention provides a kind of silt slurry screening process, it adopts the silt slurry screening machine 1 that above-mentioned first embodiment provides, comprises the following steps:
  • Step S1 adding the muck to water to form mud slurry.
  • Step S2 Separating the water-added mud slurry into mud water and stones, and the stones are crushed and then output.
  • Step S3 Separating the sediment water into mud water, sand and fine stones, and outputting the fine stones.
  • Step S4 immerse the separated sand in water, and output the sand after being dehydrated.
  • Step S5 Separating the muddy water through high pressure, outputting water and dehydrated mud.
  • step S1 the muck is mixed with water, stirred in the cylindrical sieve 11 and fully mixed with water to form mud slurry.
  • step S2 the silt slurry is initially screened into silt water (a mixture of sand, mud and water), stones (coarse stones and fine stones), and the coarse stones are crushed by the stone crushing mechanism 4 to output meeting requirements. stone.
  • silt water a mixture of sand, mud and water
  • stones coarse stones and fine stones
  • step S3 the sediment water is further screened to obtain mud water (a mixture of mud and water), sand and fine stones, and the fine stones are directly output.
  • mud water a mixture of mud and water
  • sand and fine stones a mixture of mud and water
  • step S4 the separated sand is immersed in water to wash the sand, and enters the dehydration mechanism 3 for dehydration and output.
  • step S5 the mud and water are separated under the pressure of the filter press 15 .
  • the muck and soil waste generated by earthwork operations can be screened out into sand, mud, stones and water, and the sand and stones can be used as building materials for secondary use.
  • Mud can be used as the raw material for firing bricks in brick factories, and the secondary recycling of muck and soil waste generated by earthwork is achieved, which improves the utilization rate of energy and avoids waste.
  • the mud slurry screening machine provided by the present invention can gradually screen the mud slurry and output sand and fine stones that meet the requirements.
  • the cylindrical sieve mechanism, horizontal vibrating sieve mechanism and dewatering mechanism are arranged in a straight line in sequence, and the structural layout It is compact and improves the efficiency of slurry screening and transportation.
  • a crushing mechanism is installed on the side of the horizontal vibrating screen mechanism, so that the stones output from the cylindrical sieve mechanism can be directly transported to the crushing mechanism for crushing without affecting the slurry.
  • the process of moving the screening forward does not affect each other, the layout is compact, and the space utilization rate is improved, especially in the large-scale construction dregs screening environment, which can reduce the sludge in the mobile screening process of the mud slurry accumulation.
  • the mud slurry is initially screened into mud water and rough stones, which is convenient for directly transporting the rough stones out for crushing, and obtaining stones that meet the requirements. Based on the first A material lifting component continues to screen the sediment water in the first collection tank into the next process.
  • the crushing mechanism removes the coarse stones output by screening from the vertical direction, that is, the mud slurry forms a linear screening based on the linear setting of the cylindrical sieve mechanism, horizontal vibrating sieve mechanism and dewatering mechanism.
  • the crushing mechanism is set on the side of the horizontal vibrating screen mechanism, and the coarse stones output by screening are taken out from the linear screening route based on the gravel feeding belt, which further reduces the floor space of the equipment and improves space utilization. Rate.
  • the setting of the reflux tank can avoid the problem that the muddy water in the blanking tank is too much to pass through the cylindrical screen, increase the filtering capacity of the cylindrical sieve mechanism, and at the same time allow the muddy water in the blanking tank to flow to the reflux In the pool, it is convenient for users to deal with the muddy water in the return pool.
  • the cylindrical sieve is placed in the falling tank, the return tank is set on the same side as the crushing mechanism, and the return tank is set between the falling tank and the crushing mechanism, so that the screen Sub-equipment has a smaller footprint and improves space utilization.
  • the filter press and the water storage assembly are located on the side of the blanking tank away from the horizontal vibrating mechanism, and the water storage assembly is connected to the gap in the blanking tank so that the recycled clean water can be Re-flow on the side of the gap to form the recovery of clean water - the return flow of the output, so that the output of recovered clean water can be used as one of the power sources to push the muck into the cylinder screen, further saving energy.
  • the filter press, water storage assembly, feeding channel and blanking tank are arranged in sequence, and the straight line formed by the connecting line is parallel to the straight line formed by the filtration process of mud slurry, and the filter press, water storage assembly, feeding channel
  • the height of the material channel and the blanking tank is gradually reduced, so that after the filter press separates and recycles the clean water, the clean water can be discharged into the water storage component by gravity.
  • the reflux tank communicates with the gap of the blanking tank, enters through the gap, and can be mixed with muck first to form mud slurry, so as to improve the mixing efficiency of mud slurry and allow mud water to flow back and mix with mud slurry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Treatment Of Sludge (AREA)

Abstract

一种泥沙浆筛分机(100)及筛分工艺,泥沙浆筛分机(100)可以将泥沙浆逐步筛分并输出符合要求的沙子和细石,泥沙浆筛分机(100)包括依次连接的圆筒筛机构(1)、水平振筛机构(2)及脱水机构(3),碎石机构(4)设于水平振筛机构(2)侧面,碎石机构(4)与圆筒筛机构(1)连接,圆筒筛机构(1)、水平振筛机构(2)及脱水机构(3)依次呈直线设置。

Description

一种泥沙浆筛分机及筛分工艺 技术领域
本发明涉及泥沙浆的筛分设备领域,尤其涉及一种泥沙浆筛分机及筛分工艺。
背景技术
在建筑、隧道等进行土方作业时,需要对地基或山体进行挖掘,而在挖掘时产生大量的渣土,该种渣土内通常混合有大小不一的石块、泥土、沙子或其他杂物,现有的处理工程渣土的方式是回填掩埋,造成渣土内的石块沙子等工程用料无法回收,导致浪费。
技术解决方案
本发明提供了一种泥沙浆筛分机及筛分工艺,旨在解决现有的工程渣土缺少回收,导致泥沙浆内的沙子和石块无法筛分造成浪费的问题。
根据本申请实施例,提供了一种泥沙浆筛分机,包括:圆筒筛机构,用于将泥沙浆筛分为泥沙水及石块;水平振筛机构,用于从泥沙水中筛分出沙子和细石;脱水机构,用于将沙子脱水后运出;碎石机构,用于将石块破碎后输出预定要求的石料;所述圆筒筛机构、水平振筛机构及脱水机构依次连接,所述碎石机构设于所述水平振筛机构侧面,所述碎石机构与所述圆筒筛机构连接。
优选地,所述圆筒筛机构包括圆筒筛及第一收集池,所述圆筒筛置于所述第一收集池内;所述圆筒筛包括进料端和出料端,泥沙浆在圆筒筛内从进料端移动至出料端;所述圆筒筛机构包括第一提料组件,所述第一提料组件一端连接所述第一收集池,另一端连接所述水平振筛机构。
优选地,所述水平振筛机构包括振筛机和第二收集池,所述振筛机设于所述第二收集池上方;所述水平振筛机构包括第二提料组件,所述第二提料组件一端连接所述第二收集池,另一端连接所述脱水机构。
优选地,所述碎石机构包括碎石送料带,所述碎石送料带一端与所述出料端连接,另一端连接石块堆放区;所述碎石送料带的传送方向与所述圆筒筛移动泥沙浆的方向垂直。
优选地,所述第一收集池包括落料池及回流池,所述落料池与所述回流池相邻设置,所述落料池与所述回流池之间设有连通路,所述落料池、连通路及所述回流池之间形成一“U”型通路;所述圆筒筛置于所述落料池内,所述回流池与所述碎石机构同侧设置。
优选地,所述落料池在对应泥沙浆在圆筒筛移动方向的末端,设置有吸水组件,所述吸水组件一端接入所述落料池,另一端连接混合池;所述混合池顶部连接一储水组件,底部连接压滤机,所述压滤机连接储水组件;所述压滤机设于所述落料池背离所述水平振筛机构一侧。
优选地,所述储水组件与所述落料池之间设置有进料通道,所述压滤机、储水组件、进料通道及落料池依次设置,且高度逐渐降低。
优选地,所述落料池外侧设有回流槽,所述回流槽一端连通所述落料池,另一端连接所述第二收集池;所述回流槽设于所述落料池背离所述回流池一侧。
本发明还提供一种泥沙浆筛分工艺,包括以下步骤:步骤S1:将渣土加入水,形成泥沙浆;步骤S2:将加水的泥沙浆分离为泥沙水及石块,石块经过碎石后输出;步骤S3:将泥沙水分离为泥水、沙子与细石,细石输出;步骤S4:将分离的沙子浸入水中,沙子经过脱水后输出;及步骤S5:将泥水经过高压分离,输出水和脱水的泥。
有益效果
本发明提供的一种泥沙浆筛分机及筛分工艺具有以下有益效果:
1、本发明提供的泥沙浆筛分机可以将泥沙浆逐步筛分并输出符合要求的沙子和细石,所述圆筒筛机构、水平振筛机构及脱水机构依次呈直线设置,结构布局紧凑,提高泥沙浆筛分运输的效率,同时在水平振筛机构侧面设置碎石机构,使得圆筒筛机构中输出的石块可直接运输至碎石机构中进行破碎,不影响泥沙浆向前移动筛分的流程,机构之间互不影响,布局紧凑,提高空间利用率,特别是在大型的工程渣土筛分环境中,可以减少泥沙浆在移动筛分过程中的污泥堆积。
2、通过设置圆筒筛及第一收集池,以将泥沙浆初步筛分为泥沙水和粗石,便于用于将粗石直接运出进行破碎,获得符合要求的石料,而基于第一提料组件将第一收集池内的泥沙水继续进入下一个工序筛分。
3、所述碎石机构将筛分输出的粗石从垂直方向上移出,也即泥沙浆基于圆筒筛机构、水平振筛机构及脱水机构的直线型设置下形成一条直线型的筛分路线,而碎石机构设置于水平振筛机构的侧面上,基于碎石送料带将筛分输出的粗石从直线型的筛分路线中取出,进一步减小设备的占地空间,提高空间利用率。
4、所述回流池的设置可避免落料池中的泥水堆积过多而没过圆筒筛的问题,增加圆筒筛机构的过滤承载量,同时也让落料池中的泥水流动至回流池内,方便了用户对回流池内的泥水进行处理。所述圆筒筛置于所述落料池内,所述回流池与所述碎石机构同侧设置,且所述回流池设置于所述落料池与所述碎石机构之间,使得筛分设备具有更小的占地面积,提高空间利用率。
5、所述压滤机及所述储水组件设于所述落料池背离所述水平振筛机构一侧,所述储水组件与所述落料池的缺口连通,使得回收的清水可重新在缺口一侧流入,形成清水的回收-输出的回流,以通过回收清水的输出,作为推动渣土进入圆筒筛的动力来源之一,进一步节省了能源。
6、所述压滤机、储水组件、进料通道及落料池依次设置,其连线形成的直线与泥沙浆的过滤工艺形成的直线平行,且压滤机、储水组件、进料通道及落料池高度依次逐渐降低,使得压滤机将清水分离回收后,可以借助重力将清水排放至储水组件中,同理,储水组件基于用户的操作输出清水后,也可以借助形成的高低差,在重力的作用下冲刷进料通道,为渣土进入圆筒筛形成推动力,节约能源。
7、所述回流槽与所述落料池的缺口连通,从缺口进入,可先与渣土混合形成泥沙浆,提高泥沙浆混合形成的效率,让泥水重新回流与泥沙浆混合。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图   1是本发明第一实施例提供的一种泥沙浆筛分机的结构示意图。
图   2是本发明第一实施例提供的一种泥沙浆筛分机中圆筒筛的结构示意图。
图   3是本发明第一实施例提供的一种泥沙浆筛分机的水路***示意图。
图4是本发明第二实施例提供的一种泥沙浆筛分工艺的流程图。
标号说明:
100、泥沙浆筛分机;
1、圆筒筛机构;
11、圆筒筛;111、进料端;112、出料端;113、筒体;1131、移动段;1132、筛网段;114、搅拌芯;
12、第一收集池;121、落料池;1211、缺口;1212、凹陷部;122、回流池;123、连通路;124、回流槽;125、过滤网;
13、第一提料组件;131、传送带;132、提料斗;14、吸水组件;15、压滤机;16、储水组件;17、进料通道;18、混合池;
2、水平振筛机构;21、振筛机;22、第二收集池;23、第二提料组件;
3、脱水机构;
4、碎石机构;41、碎石送料带;42、石块堆放区。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
还应当理解,在此本发明说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本发明。如在本发明说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本发明说明书和所附权利要求书中使用的术语“和/ 或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
请结合图1、图2和图3,本发明第一实施例公开了一种泥沙浆筛分机100,包括:
圆筒筛机构1,用于将泥沙浆筛分为泥沙水及石块,水平振筛机构2,用于从泥沙水中筛分出沙子和细石,脱水机构3,用于将沙子脱水后运出,碎石机构4,用于将石块破碎后输出预定要求的石料。所述圆筒筛机构1、水平振筛机构2及脱水机构3依次设置,所述碎石机构4设于所述水平振筛机构2侧面,所述碎石机构4与所述圆筒筛机构1连接,所述圆筒筛机构1将泥沙浆筛分出的石块由所述碎石机构4移出并进行碎石操作。
可以理解,所述泥沙浆为工程渣土混合水之后形成的,其中含有泥水(泥土混合于水)、沙子、石块及其他杂物,石块含有粗石和细石,细石在圆筒筛机构1中被初步筛分,粗石需要进过碎石机构4进行破碎形成符合要求的细石。
可以理解,工程渣土在混合水和形成泥沙浆进入圆筒筛机构1内,初步筛分为泥沙水及石块,泥沙水中含有泥水及沙子,同时也含有少量细石,大部分石块被直接输出移动至碎石机构4,泥沙水继续沿着向前移动至水平振筛机构2,过程中被筛分为沙子和细石,细石则直接输出,沙子则进入到脱水机构3中进行干燥后输出。
可以理解,本发明提供的泥沙浆筛分机100可以将泥沙浆逐步筛分并输出符合要求的沙子和细石,所述圆筒筛机构1、水平振筛机构2及脱水机构3依次呈直线设置,结构布局紧凑,提高泥沙浆筛分运输的效率,同时在水平振筛机构2侧面设置碎石机构,使得圆筒筛机构1中输出的石块可直接运输至碎石机构4中进行破碎,不影响泥沙浆向前移动筛分的流程,机构之间互不影响,布局紧凑,提高空间利用率,特别是在大型的工程渣土筛分环境中,可以减少泥沙浆在移动筛分过程中的污泥堆积。
请参阅图2,所述圆筒筛机构1包括圆筒筛11及第一收集池12,所述圆筒筛11置于所述第一收集池12内。所述圆筒筛11包括进料端111和出料端112,泥沙浆在圆筒筛11内从进料端111移动至出料端112。所述圆筒筛机构1还包括第一提料组件13,所述第一提料组件13一端连接所述第一收集池12,另一端连接所述水平振筛机构2。所述圆筒筛11包括筒体113及搅拌芯114,所述搅拌芯114置于所述筒体113内,所述搅拌芯114与所述筒体113同轴设置,所述搅拌芯114位于所述筒体113内转动,所述搅拌芯114转动将泥沙浆从进料端111移动至出料端112。所述筒体113侧面包括移动段1131和筛网段1132,所述移动段1131和所述筛网段1132在泥沙浆的移动方向上依次设置,泥沙浆在所述移动段1131上移动进入所述筛网段1132内筛分。
泥沙浆从进料端111进入到筒体113内部,基于搅拌芯114的转动,使得泥沙浆被搅拌的同时,开始从进料端111向出料端112方向移动,在移动过程中依次经过移动段1131和筛网段1132,移动段1131为密封板结构,筛网段1132设有筛孔,在泥沙浆位于移动段1131的长度移动之后,泥沙浆被充分搅拌,并进入到筛网段1132,经过筛网段1132时,石块中较大的粗石继续在搅拌芯114的驱动下移动,而沙子和泥水以及部分细石穿过筛网段1132掉落到第一收集池12中,使得泥沙浆经过筛网段1132后,被分离为泥沙水和较大尺寸的石块(粗石),泥沙水落入第一收集池12内,粗石则从出料段112输出,并被送至碎石机构4。
可以理解,通过设置圆筒筛11,圆筒筛11基于转动的搅拌芯114在搅拌泥沙浆的同时驱动泥沙浆向出料端112方向移动,基于移动段1131的密封设置,使得泥沙浆在移动段1131上的移动得以充分搅拌,避免刚进入圆筒筛11的渣土未经过水的混合和充分搅拌,使得泥沙浆的筛分效率跟高,筛分更准确。
可以理解,所述搅拌芯114为螺旋搅拌芯,所述搅拌芯114转动搅拌泥沙浆并驱动泥沙浆移动,也即通过螺旋结构的转动下同时实现搅拌和驱动效果。
请结合图2和图3,所述第一收集池12包括落料池121,所述落料池121在对应所述进料端111的位置设有缺口1211,所述筒体113的进料端111置于所述缺口1211内,所述缺口1211为所述落料池121边缘的凹陷结构形成,所述筒体113的进料端111置于所述缺口1211内。
可以理解,通过设置所述缺口1211,使得筒体113可基于缺口1211下沉于落料池121内,降低进料端111的高度,避免过高的进料端111带来的进料不方便的问题。
可选地,作为一种实施例,所述缺口1211的高度位于所述进料端111的一半,使得筒体113部分下沉于落料池121内,部分高于落料池121,进一步方便用户将泥沙浆推入到筒体113内。
请继续结合图2和图3,所述落料池121包括凹陷部1212,所述凹陷部1212的长度与所述筛网段1132的长度匹配,所述筛网段1132筛分的泥沙水下落后进入所述凹陷部1212内。
可以理解,通过设置所述凹陷部1212的长度与所述筛网段1132的长度匹配,使得从筛网段1132下落的泥沙水首先落入到凹陷部1212内,而由于泥沙水中混合有沙子与细石,则沙子与细石会直接堆积在凹陷部1212中,混合有泥土的泥水则由于密度较低则位于沙子和细石上方,便于用户在落料池121中手机沙子与细石。
可以理解,在本实施例中,所述筛网段1132上开设有多个筛孔(图未示),所述筛孔的口径小于10mm,使得筛网段1132将石块按照10mm的标准筛分出粗石和细石,其中粗石大于10mm则被留置在筛网段1132内继续移动,而小于10mm的细石则掉落入落料池121内。
可选地,作为一种实施例,所述凹陷部1212侧面为斜面结构,使得凹陷部1212侧面具有引导作用,当下落的沙子和细石为掉落至凹陷部1212内时,可基于落料池121中水流的带动作用下移动,当移动至凹陷部1212侧面时,可基于斜面结构向下落入,让更多的沙子和细石进入凹陷部1212内。
请继续结合图1和图2,所述第一提料组件13包括传送带131和多个提料斗132,所述多个提料斗132依次等间距设于所述传送带131上,所述提料斗132上开设有多个漏水孔(图未示),所述传送带131一端置入所述凹陷部1212内。
使用时,提料斗132通过传送带131的带动下进入到凹陷部1212内,而基于传送带131端部的作用下,多个提料斗132从传送带131一侧转移到另一侧,转移过程中提料斗132铲起凹陷部1212内的沙子和细石,当提料斗132移动至传送带131另一端(顶端)时,再次在顶端位置转移到相反一侧上,提料斗132向下翻转的同时,将沙子和细石的混合物向下倾倒,进而输出至水平振筛机构2中,进入到下一个工序设备中。
可选地,作为一种实施例,所述传送带131的数量为多个,多个所述传送带131分设于所述筒体113的两侧,具体地,所述传送带131的数量为四个,并对称设置于筒体113驱动泥沙浆移动方向的两侧面,且传送带131靠近筒体驱动泥沙浆移动方向的一端面,使得筒体113的两侧可以设置较多的传送带131来运送沉入凹陷部1212内的沙子与细石。
请继续参阅图1,所述水平振筛机构2包括振筛机21和第二收集池22,所述振筛机21设于所述第二收集池22上方。所述水平振筛机构2包括第二提料组件23,所述第二提料组件23一端连接所述第二收集池22,另一端连接所述脱水机构3。所述振筛机21通过多层筛分设置,将第一提料组件13移动过来的沙子和细石的混合物料依次进行筛分,将沙子和细石分离,而沙子基于振筛机21的震动移动作用下重新掉落入第二收集池22内。
可以理解,所述振筛机21通过震动方式,将分离的沙子和细石在两个不同的位置向前继续移动,沙子移动而掉落入第二收集池22内进行二次洗沙,并通过第二提料组件23将第二收集池22内的沙子移动至脱水机构3内,而细石则通过指定的传送机构输出。
可以理解,输出的细石由于体积较小,则不需要进入碎石机构4内进行破碎处理,可以直接输出。
可以理解,所述第二提料组件23与所述第一提料组件13的结构相同,均是设置有传送带131和提料斗132,以通过提料斗132将水中的沙子移动到下一个工序中处理。
请继续参阅图3,所述落料池121外侧设有回流槽124,所述回流槽124一端连通所述落料池121,另一端连接所述第二收集池22,使得第二收集池22中存储的水源能够基于回流槽124重新回流至落料池121内,作为水资源的进一步回收利用,节约能源。
可以理解,第二收集池22中用于清洗沙子,而基于第一提料组件13的运送下,会有部分尚未流干的泥水或清水进入到第二收集池22中,使得第二收集池22中水位会不断增加,而增设了回流槽124,可将多于预设容量的水源回流至落料池121中(如图3中的b箭头形成的流向),作为水资源的进一步回收利用。
请继续参阅图1,所述脱水机构3接收提料斗132送来的沙子后,将沙子通过震动方式脱水,沙子经过脱水机构3的脱水干燥处理后,向外输出。
请继续参阅图1,所述碎石机构4包括碎石送料带41,所述碎石送料带41一端与所述出料端112连接,另一端连接石块堆放区42。所述碎石送料带41的传送方向与所述圆筒筛11移动泥沙浆的方向垂直,所述碎石送料带41将圆筒筛11内筛分输出的粗石(大于10mm的石块)转移至石块堆放区42中。
可以理解,所述碎石机构4将筛分输出的粗石从垂直方向上移出,也即泥沙浆基于圆筒筛机构1、水平振筛机构2及脱水机构3的直线型设置下形成一条直线型的筛分路线,而碎石机构4设置于水平振筛机构2的侧面上,基于碎石送料带41将筛分输出的粗石从直线型的筛分路线中取出,进一步减小设备的占地空间,提高空间利用率。
可以理解,所述石块堆放区42一侧设置有碎石间,用户将堆放的粗石投入碎石间中进行破碎处理,即可输出符合要求的石料。
请结合图2和图3,所述第一收集池12还包括回流池122,所述落料池121与所述回流池122相邻设置,所述落料池121与所述回流池122之间设有连通路123,所述落料池121、连通路123及所述回流池122之间形成一“U”型通路(如图3中箭头a形成的流向)。
可以理解,外部清水从缺口1211处流进圆筒筛11的进料端111,清水与渣土混合后,经过搅拌芯114的搅拌形成泥沙浆,泥水经过筛网段1132下落到落料池121中,而落料池121中的部分泥水经过连通路123回流至回流池122中,回流池122经过沉降将泥巴沉入回流池122底部,清水继续流动。
可以理解,所述回流池122的设置可避免落料池121中的泥水堆积过多而没过圆筒筛11的问题,增加圆筒筛机构1的过滤承载量,同时也让落料池121中的泥水流动至回流池122内,方便了用户对回流池122内的泥水进行处理。
请继续结合图1和图3,所述圆筒筛11置于所述落料池121内,所述回流池122与所述碎石机构4同侧设置,且所述回流池122设置于所述落料池121与所述碎石机构4之间,使得筛分设备具有更小的占地面积,提高空间利用率。
可选地,作为一种实施例,所述回流池122背离所述连通路123一端与所述缺口1211连通,使得泥水从落料池121流至回流池122后,通过缺口1211重新流入落料池121内,形成回流效果,同时也可基于回流池122的流水冲击力,作为将渣土推入圆筒筛11内的推动力,以提高渣土推进效率,节省能源。
可选地,作为又一种实施例,所述回流池122靠近所述连通路123一端设有过滤网125,所述过滤网125竖立于所述回流池122的入口处,使得从落料池121中漂流过来的泥水在进入回流池122之前,首先经过过滤网125的过滤,将部分石块及飘浮的杂物经由过滤网125挡住,使得流入回流池122中的泥水具有更低的杂质,提高过滤效率。
可以理解,在土方作业产生的工程渣土中,除了具有工程可重复利用的沙子、石块、泥巴及水,还会具有塑料、泡沫等生活工业垃圾,工业垃圾在落入落料池121中时,会飘浮于水面,基于水流流向而进入回流池122,此时则会被过滤网125遮挡而堆积于过滤网125上,提高了泥水的过滤效率,同时也便于用户在过滤网125位置收集和清理垃圾杂质。进一步地,过滤网125设置于水流方向上,利用了水流的驱动作用过滤垃圾杂质,进一步节省了能源。
可选地,作为又一种实施例,所述回流池122的深度小于所述落料池121的深度,使得回流池122的深度高于所述落料池121的深度。
请参阅图3,所述落料池121在背离所述缺口1211一端设置有吸水组件14,所述吸水组件14一端接入所述落料池121,另一端连接混合池18,所述混合池18用于沉降清水和泥巴。
所述混合池18顶部连接一储水组件16,底部连接压滤机15,所述压滤机15连接所述储水组件16,所述吸水组件14吸取落料池121内的泥水至混合池18中。
可以理解,所述吸水组件14包括一个离心泵,离心泵是指靠叶轮旋转时产生的离心力来输送液体的泵,实现将落料池121内的泥水抽出,并运送至压滤机15内,所述压滤机15将泥水加压,使得泥巴和水分离,获得干燥的泥巴与清水,而获得的清水则被输出至储水组件16中存储(如图3中f方向的流向),以对水能源的回收利用。
可以理解,所述离心泵在抽出泥水时,会混合有沙子,离心泵将混合有沙子的泥水首先进入到旋流器(图未示),此时通过旋流器的特性,使得重力较大的沙子重新落回落料池121内,而泥水则被离心泵抽出。
可以理解,所述吸水组件14将泥水抽送至混合池18中,泥水在进入混合池18之前,首先在泥水中添加絮凝剂,絮凝剂可以将泥水中混合的泥巴沉降于清水底部,在混合絮凝剂后,泥水进入到混合池18沉降,泥巴沉到混合池18的池底,则清水位于混合池18的上部,混合池18可以将清水移动到储水组件16内(如图3中e方向和f方向的流向),而底部的泥巴被移动到压滤机15中(如图3中d方向的流向)。
所述压滤机15及所述储水组件16设于所述落料池121背离所述水平振筛机构2一侧,所述储水组件16与所述落料池121的缺口连通,使得回收的清水可重新在缺口1211一侧流入,形成清水的回收-输出的回流(如图3中箭头c形成的流向),以通过回收清水的输出,作为推动渣土进入圆筒筛11的动力来源之一,进一步节省了能源。
可选地,作为一种实施例,所述储水组件16与所述落料池121之间设置有进料通道17,所述压滤机15、储水组件16、进料通道17及落料池121依次设置,且高度逐渐降低。
可以理解,所述进料通道17为放置工程渣土的空间,其连接落料池121的进料端111,而储水组件16输出回收的清水后先进入进料通道17内,作为推动渣土的动力来源之一,同时,清水在冲刷渣土也可以形成混合,将部分渣土混合形成泥沙浆,提高搅拌效率。
可以理解,所述压滤机15、储水组件16、进料通道17及落料池121依次设置,其连线形成的直线与泥沙浆的过滤工艺形成的直线平行,且压滤机15、储水组件16、进料通道17及落料池121高度依次逐渐降低,使得压滤机15将清水分离回收后,可以借助重力将清水排放至储水组件16中,同理,储水组件16基于用户的操作输出清水后,也可以借助形成的高低差,在重力的作用下冲刷进料通道17,为渣土进入圆筒筛11形成推动力,节约能源。
可选地,作为一种实施例,所述回流池122与所述进料通道17连通,使得回流池122中的泥水进入进料通道17,形成流水回路(如图3中a方向)。
所述回流槽124设于所述落料池121背离所述回流池122一侧,使得以落料池121为中心,形成一个环绕的水路***,提高空间的利用率。
可选地,作为又一种实施例,所述回流槽124与所述落料池121的缺口1211连通,从缺口1211进入,可先与渣土混合形成泥沙浆,提高泥沙浆混合形成的效率,让泥水重新回流与泥沙浆混合。
请参阅图4,本发明第二实施例提供一种泥沙浆筛分工艺,其采用上述第一实施例提供的泥沙浆筛分机1,包括以下步骤:
步骤S1:将渣土加入水,形成泥沙浆。
步骤S2:将加水的泥沙浆分离为泥沙水及石块,石块经过碎石后输出。
步骤S3:将泥沙水分离为泥水、沙子与细石,细石输出。
步骤S4:将分离的沙子浸入水中,沙子经过脱水后输出。及
步骤S5:将泥水经过高压分离,输出水和脱水的泥。
可以理解,在步骤S1中,渣土与水混合,在圆筒筛11中搅拌与水充分混合,形成泥沙浆。
可以理解,在步骤S2中,泥沙浆初步筛分为泥沙水(沙子、泥巴和水的混合物)、石块(粗石与细石),粗石经过碎石机构4破碎输出符合要求的石料。
可以理解,在步骤S3中,将泥沙水进一步筛分,获得泥水(泥巴与水的混合物)、沙子与细石,细石则直接输出。
可以理解,在步骤S4中,分离出的沙子浸入水中洗沙,进入到脱水机构3中脱水输出。
可以理解,在步骤S5中,通过压滤机15的压力作用下将泥巴和水分离。
可以理解,通过本方法提供的泥沙浆筛分工艺,可以将土方作业产生的渣土废料,分别筛分出沙子、泥巴、石块及水,沙子和石块可以作为建筑原料二次利用,泥巴可以作为砖厂烧制砖头的原料,做到了对土方作业产生的渣土废料的二次回收利用,提高了对能源的利用率,避免浪费。
本发明提供的一种泥沙浆筛分机及筛分工艺具有以下有益效果:
1、本发明提供的泥沙浆筛分机可以将泥沙浆逐步筛分并输出符合要求的沙子和细石,所述圆筒筛机构、水平振筛机构及脱水机构依次呈直线设置,结构布局紧凑,提高泥沙浆筛分运输的效率,同时在水平振筛机构侧面设置碎石机构,使得圆筒筛机构中输出的石块可直接运输至碎石机构中进行破碎,不影响泥沙浆向前移动筛分的流程,机构之间互不影响,布局紧凑,提高空间利用率,特别是在大型的工程渣土筛分环境中,可以减少泥沙浆在移动筛分过程中的污泥堆积。
2、通过设置圆筒筛及第一收集池,以将泥沙浆初步筛分为泥沙水和粗石,便于用于将粗石直接运出进行破碎,获得符合要求的石料,而基于第一提料组件将第一收集池内的泥沙水继续进入下一个工序筛分。
3、所述碎石机构将筛分输出的粗石从垂直方向上移出,也即泥沙浆基于圆筒筛机构、水平振筛机构及脱水机构的直线型设置下形成一条直线型的筛分路线,而碎石机构设置于水平振筛机构的侧面上,基于碎石送料带将筛分输出的粗石从直线型的筛分路线中取出,进一步减小设备的占地空间,提高空间利用率。
4、所述回流池的设置可避免落料池中的泥水堆积过多而没过圆筒筛的问题,增加圆筒筛机构的过滤承载量,同时也让落料池中的泥水流动至回流池内,方便了用户对回流池内的泥水进行处理。所述圆筒筛置于所述落料池内,所述回流池与所述碎石机构同侧设置,且所述回流池设置于所述落料池与所述碎石机构之间,使得筛分设备具有更小的占地面积,提高空间利用率。
5、所述压滤机及所述储水组件设于所述落料池背离所述水平振筛机构一侧,所述储水组件与所述落料池的缺口连通,使得回收的清水可重新在缺口一侧流入,形成清水的回收-输出的回流,以通过回收清水的输出,作为推动渣土进入圆筒筛的动力来源之一,进一步节省了能源。
6、所述压滤机、储水组件、进料通道及落料池依次设置,其连线形成的直线与泥沙浆的过滤工艺形成的直线平行,且压滤机、储水组件、进料通道及落料池高度依次逐渐降低,使得压滤机将清水分离回收后,可以借助重力将清水排放至储水组件中,同理,储水组件基于用户的操作输出清水后,也可以借助形成的高低差,在重力的作用下冲刷进料通道,为渣土进入圆筒筛形成推动力,节约能源。
7、所述回流槽与所述落料池的缺口连通,从缺口进入,可先与渣土混合形成泥沙浆,提高泥沙浆混合形成的效率,让泥水重新回流与泥沙浆混合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (9)

  1. 一种泥沙浆筛分机,其特征在于:包括:
    圆筒筛机构,用于将泥沙浆筛分为泥沙水及石块;
    水平振筛机构,用于从泥沙水中筛分出沙子和细石;
    脱水机构,用于将沙子脱水后运出;
    碎石机构,用于将石块破碎后输出预定要求的石料;
    所述圆筒筛机构、水平振筛机构及脱水机构依次连接,所述碎石机构设于所述水平振筛机构侧面,所述碎石机构与所述圆筒筛机构连接。
  2. 根据权利要求1所述的泥沙浆筛分机,其特征在于:所述圆筒筛机构包括圆筒筛及第一收集池,所述圆筒筛置于所述第一收集池内;
    所述圆筒筛包括进料端和出料端,泥沙浆在圆筒筛内从进料端移动至出料端;
    所述圆筒筛机构包括第一提料组件,所述第一提料组件一端连接所述第一收集池,另一端连接所述水平振筛机构。
  3. 根据权利要求2所述的泥沙浆筛分机,其特征在于:所述水平振筛机构包括振筛机和第二收集池,所述振筛机设于所述第二收集池上方;
    所述水平振筛机构包括第二提料组件,所述第二提料组件一端连接所述第二收集池,另一端连接所述脱水机构。
  4. 根据权利要求2所述的泥沙浆筛分机,其特征在于:所述碎石机构包括碎石送料带,所述碎石送料带一端与所述出料端连接,另一端连接石块堆放区;
    所述碎石送料带的传送方向与所述圆筒筛移动泥沙浆的方向垂直。
  5. 根据权利要求3所述的泥沙浆筛分机,其特征在于:所述第一收集池包括落料池及回流池,所述落料池与所述回流池相邻设置,所述落料池与所述回流池之间设有连通路,所述落料池、连通路及所述回流池之间形成一“U”型通路;
    所述圆筒筛置于所述落料池内,所述回流池与所述碎石机构同侧设置。
  6. 根据权利要求5所述的泥沙浆筛分机,其特征在于:所述落料池在对应泥沙浆在圆筒筛移动方向的末端,设置有吸水组件,所述吸水组件一端接入所述落料池,另一端连接混合池;
    所述混合池顶部连接一储水组件,底部连接压滤机,所述压滤机连接储水组件;
    所述压滤机设于所述落料池背离所述水平振筛机构一侧。
  7. 根据权利要求6所述的泥沙浆筛分机,其特征在于:所述储水组件与所述落料池之间设置有进料通道,所述压滤机、储水组件、进料通道及落料池依次设置,且高度逐渐降低。
  8. 根据权利要求5所述的泥沙浆筛分机,其特征在于:所述落料池外侧设有回流槽,所述回流槽一端连通所述落料池,另一端连接所述第二收集池;
    所述回流槽设于所述落料池背离所述回流池一侧。
  9. 一种泥沙浆筛分工艺,其特征在于:包括以下步骤:
    步骤S1:将渣土加入水,形成泥沙浆;
    步骤S2:将加水的泥沙浆分离为泥沙水及石块,石块经过碎石后输出;
    步骤S3:将泥沙水分离为泥水、沙子与细石,细石输出;
    步骤S4:将分离的沙子浸入水中,沙子经过脱水后输出;及
    步骤S5:将泥水经过高压分离,输出水和脱水的泥。
PCT/CN2021/130188 2021-05-22 2021-11-12 一种泥沙浆筛分机及筛分工艺 WO2022247155A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110561121.3 2021-05-22
CN202110561121.3A CN113318980A (zh) 2021-05-22 2021-05-22 一种泥沙浆筛分机及筛分工艺

Publications (1)

Publication Number Publication Date
WO2022247155A1 true WO2022247155A1 (zh) 2022-12-01

Family

ID=77416535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130188 WO2022247155A1 (zh) 2021-05-22 2021-11-12 一种泥沙浆筛分机及筛分工艺

Country Status (2)

Country Link
CN (1) CN113318980A (zh)
WO (1) WO2022247155A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118080530A (zh) * 2024-04-23 2024-05-28 广州市盾建建设有限公司 基于高含砂地层的工程渣土绿色环保处理设备及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113318980A (zh) * 2021-05-22 2021-08-31 深圳市东深环保科技有限公司 一种泥沙浆筛分机及筛分工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080329A (ja) * 2006-08-29 2008-04-10 Yamazaki Jari Shoten:Kk 材料回収システム及び材料回収方法
CN105057320A (zh) * 2015-09-18 2015-11-18 南通天蓝环保能源成套设备有限公司 一种工程渣土处置工艺
CN110695064A (zh) * 2019-11-12 2020-01-17 青岛恩普环保设备有限公司 盾构渣土零排放处理***及方法
CN210450263U (zh) * 2019-07-18 2020-05-05 三川德青工程机械有限公司 土压平衡盾构渣土综合处理及资源生态利用***
CN111203315A (zh) * 2019-12-27 2020-05-29 程泉 工程渣土砂石分离***
CN111268930A (zh) * 2018-12-05 2020-06-12 长沙理工大学 一种高含砂石率建筑渣土工业化再利用的方法
CN210764904U (zh) * 2019-07-18 2020-06-16 北京加隆工程机械有限公司 一种新型泥沙分离装置
CN111282707A (zh) * 2020-03-19 2020-06-16 深圳市工勘岩土集团有限公司 一种基坑开挖砂质土洗滤净化分离***及方法
CN113318980A (zh) * 2021-05-22 2021-08-31 深圳市东深环保科技有限公司 一种泥沙浆筛分机及筛分工艺
CN215313932U (zh) * 2021-05-22 2021-12-28 深圳市东深环保科技有限公司 一种泥沙浆筛分机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103586260B (zh) * 2013-11-16 2016-04-27 程建中 一种建筑垃圾除杂分级绞龙及建筑垃圾成套处理设备
CN204769087U (zh) * 2015-05-07 2015-11-18 康明克斯(北京)机电设备有限公司 土压平衡盾构渣土环保再生处理设备
CN108568448A (zh) * 2017-03-08 2018-09-25 武汉中地金盾环境科技有限公司 一种车载重金属污染土壤移动式磁富集净化成套装备
CN207887309U (zh) * 2017-11-28 2018-09-21 深圳市万佳晟环保产业有限公司 建筑垃圾处理***
CN108405563A (zh) * 2018-03-19 2018-08-17 北京建工环境修复股份有限公司 一种用于非危废污染建筑物的修复***及修复方法
CN208960138U (zh) * 2018-06-12 2019-06-11 合肥荣桂环保科技有限公司 一种垃圾焚烧炉渣分选处理***
CN110303033B (zh) * 2019-07-30 2023-08-08 中铁工程服务有限公司 一种盾构施工渣土处理***及处理方法
CN211989148U (zh) * 2020-03-19 2020-11-24 深圳市工勘岩土集团有限公司 一种基坑开挖砂质土洗滤净化分离***
CN212524526U (zh) * 2020-05-29 2021-02-12 青岛恩普环保设备有限公司 工程弃土尾浆水环保处理***
CN112007936A (zh) * 2020-08-31 2020-12-01 深圳大学 一种渣土资源化处理***
CN112794606A (zh) * 2020-12-24 2021-05-14 山东大学 一种用于盾构的渣土处理***及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080329A (ja) * 2006-08-29 2008-04-10 Yamazaki Jari Shoten:Kk 材料回収システム及び材料回収方法
CN105057320A (zh) * 2015-09-18 2015-11-18 南通天蓝环保能源成套设备有限公司 一种工程渣土处置工艺
CN111268930A (zh) * 2018-12-05 2020-06-12 长沙理工大学 一种高含砂石率建筑渣土工业化再利用的方法
CN210450263U (zh) * 2019-07-18 2020-05-05 三川德青工程机械有限公司 土压平衡盾构渣土综合处理及资源生态利用***
CN210764904U (zh) * 2019-07-18 2020-06-16 北京加隆工程机械有限公司 一种新型泥沙分离装置
CN110695064A (zh) * 2019-11-12 2020-01-17 青岛恩普环保设备有限公司 盾构渣土零排放处理***及方法
CN111203315A (zh) * 2019-12-27 2020-05-29 程泉 工程渣土砂石分离***
CN111282707A (zh) * 2020-03-19 2020-06-16 深圳市工勘岩土集团有限公司 一种基坑开挖砂质土洗滤净化分离***及方法
CN113318980A (zh) * 2021-05-22 2021-08-31 深圳市东深环保科技有限公司 一种泥沙浆筛分机及筛分工艺
CN215313932U (zh) * 2021-05-22 2021-12-28 深圳市东深环保科技有限公司 一种泥沙浆筛分机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118080530A (zh) * 2024-04-23 2024-05-28 广州市盾建建设有限公司 基于高含砂地层的工程渣土绿色环保处理设备及方法

Also Published As

Publication number Publication date
CN113318980A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
CN110303033B (zh) 一种盾构施工渣土处理***及处理方法
CN110695064A (zh) 盾构渣土零排放处理***及方法
WO2022247155A1 (zh) 一种泥沙浆筛分机及筛分工艺
CN210305011U (zh) 一种盾构施工渣土处理***
CN211100741U (zh) 盾构渣土零排放处理***
CN112007936A (zh) 一种渣土资源化处理***
CN111203315A (zh) 工程渣土砂石分离***
CN110665934A (zh) 一种建筑垃圾的回收处理***
CN110252641A (zh) 洗砂设备
CN201240955Y (zh) 钻井废弃物固液四相分离设备
CN215313932U (zh) 一种泥沙浆筛分机
CN112774853A (zh) 一种用于盾构施工的渣土循环处理***及方法
CN104925993B (zh) 砂石加工冲洗废水处理***及方法
CN215614040U (zh) 盾构渣土轻量化处理***
CN214974790U (zh) 一种土压平衡盾构渣土环保处理***
CN215313931U (zh) 一种基于圆筒筛的泥沙浆筛分机构
CN202063817U (zh) 城市排水管网污泥处理设备
CN215587151U (zh) 一种泥沙浆筛分的水路***
CN108160314B (zh) 建筑垃圾处理***
CN108160315B (zh) 用于建筑垃圾处理的水循环***
CN209378609U (zh) 一种渣浆环保干排水循环***
CN113318981A (zh) 一种基于圆筒筛的泥沙浆筛分机构
CN111672619A (zh) 一种混凝土废料快速处理回收***
CN113102255A (zh) 一种泥沙浆筛分的水路***
CN111451207A (zh) 一种碎石清洗设备及其清洗方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE