WO2022244734A1 - 磁気センサ及び磁気検知システム - Google Patents

磁気センサ及び磁気検知システム Download PDF

Info

Publication number
WO2022244734A1
WO2022244734A1 PCT/JP2022/020401 JP2022020401W WO2022244734A1 WO 2022244734 A1 WO2022244734 A1 WO 2022244734A1 JP 2022020401 W JP2022020401 W JP 2022020401W WO 2022244734 A1 WO2022244734 A1 WO 2022244734A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
axis
bias
output signal
magnetic
Prior art date
Application number
PCT/JP2022/020401
Other languages
English (en)
French (fr)
Inventor
卓史 津島
和弘 尾中
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280029590.3A priority Critical patent/CN117178193A/zh
Publication of WO2022244734A1 publication Critical patent/WO2022244734A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details

Definitions

  • the present disclosure relates generally to magnetic sensors and magnetic sensing systems, and more particularly to magnetic sensors and magnetic sensing systems comprising at least one bias magnet.
  • the rotation angle detection sensor (magnetic sensor) described in Patent Document 1 is configured as follows. At least two pairs of GMR elements having a free magnetic layer and a pinned magnetic layer are provided on the substrate. Each pair of GMR elements is connected in series, a magnet is rotatably disposed facing the GMR element, and a saturation magnetic field is applied to the GMR element by this magnet. The rotation angle of the rotation axis of the magnet is detected from the change in the resistance value of the GMR element caused by the angle between the magnetization direction of the free magnetic layer and the magnetization direction of the pinned magnetic layer, which follow the direction of the magnet's magnetic lines of force.
  • An object of the present disclosure is to provide a magnetic sensor and a magnetic detection system that can improve the detection accuracy of the direction of the magnetic field applied to the magnetic sensor.
  • a magnetic sensor includes at least one bias magnet, a first half-bridge circuit, a second half-bridge circuit, and a base.
  • the at least one bias magnet has a bias magnetic field along the positive X-axis, a bias magnetic field along the negative X-axis, and a positive Y-axis that is orthogonal to the X-axis. and a bias magnetic field along the negative direction of the Y-axis.
  • the substrate holds the at least one bias magnet, the first half-bridge circuit and the second half-bridge circuit.
  • the first half-bridge circuit includes a pair of first magnetoresistive effect elements that are half-bridge connected and detect a magnetic field along the X-axis, and a first output signal from a connection point between the pair of first magnetoresistive effect elements. and a first output terminal for outputting
  • the second half-bridge circuit includes a pair of second magnetoresistive effect elements that are half-bridge connected and detect a magnetic field along the Y-axis, and a second output signal from a connection point between the pair of second magnetoresistive effect elements.
  • the bias magnetic field along the positive direction of the X-axis is applied to one of the pair of first magnetoresistive elements, and the bias magnetic field along the negative direction of the X-axis is applied to the other. applied.
  • the bias magnetic field along the positive direction of the Y-axis is applied to one of the pair of second magnetoresistance effect elements, and the bias magnetic field along the negative direction of the Y-axis is applied to the other. applied.
  • a magnetic detection system includes the magnetic sensor and a processing circuit.
  • the processing circuitry determines the orientation of the magnetic field applied to the magnetic sensor based on at least the first output signal and the second output signal.
  • FIG. 1 is a plan view of a magnetic sensor according to one embodiment.
  • FIG. 2 is a plan view of the same magnetic sensor, omitting the illustration of the bias magnet.
  • FIG. 3 is a cross-sectional view of the same magnetic sensor.
  • FIG. 4 is a schematic diagram showing the state of use of the same magnetic sensor.
  • FIG. 5 is an equivalent circuit diagram of the first half bridge circuit and the third half bridge circuit of the same magnetic sensor.
  • FIG. 6 is an equivalent circuit diagram of the second half-bridge circuit and the fourth half-bridge circuit of the same magnetic sensor.
  • FIG. 7 is a cross-sectional view of a magnetoresistive element of the same magnetic sensor.
  • FIG. 8 is an explanatory diagram showing output signals of the same magnetic sensor.
  • a magnetic sensor and a magnetic detection system will be described below with reference to the drawings.
  • the embodiment described below is but one of the various embodiments of the present disclosure.
  • the embodiments described below can be modified in various ways according to design and the like as long as the objects of the present disclosure can be achieved.
  • Each drawing described in the following embodiments is a schematic drawing, and the ratio of the size and thickness of each component in the drawing does not necessarily reflect the actual dimensional ratio. .
  • the magnetic sensor 100 of this embodiment includes at least one bias magnet 5, a first half-bridge circuit 1, a second half-bridge circuit 2, a substrate 73 (see FIG. 3), Prepare.
  • At least one bias magnet 5 has a bias magnetic field along the positive direction of the X-axis, a bias magnetic field along the negative direction of the X-axis, and a bias magnetic field along the positive direction of the Y-axis which is orthogonal to the X-axis.
  • a magnetic field and a bias magnetic field along the negative direction of the Y-axis are generated.
  • a substrate 73 holds at least one bias magnet 5 , a first half-bridge circuit 1 and a second half-bridge circuit 2 .
  • the first half-bridge circuit 1 includes a pair of first magnetoresistive elements 1P and 1Q that are half-bridge connected and detect a magnetic field along the X-axis, and a connection point between the pair of first magnetoresistive elements 1P and 1Q. and a first output terminal 1T for outputting a first output signal.
  • the second half-bridge circuit 2 includes a pair of second magnetoresistive effect elements 2P and 2Q that are half-bridge connected and detect a magnetic field along the Y-axis, and a connection point between the pair of second magnetoresistive effect elements 2P and 2Q. and a second output terminal 2T for outputting a second output signal.
  • a bias magnetic field along the positive direction of the X-axis is applied to one of the pair of first magnetoresistive elements 1P and 1Q, and a bias magnetic field along the negative direction of the X-axis is applied to the other.
  • a bias magnetic field along the positive direction of the Y-axis is applied to one of the pair of second magnetoresistive elements 2P and 2Q, and a bias magnetic field along the negative direction of the Y-axis is applied to the other. be.
  • the waveform of the first output signal that is output along with the rotation of the magnetic field applied to the magnetic sensor 100 is a waveform close to an ideal sine wave, and the waveform of the second output signal is an ideal cosine wave.
  • the waveform is similar to that of a wave. Therefore, it is possible to obtain the direction of the magnetic field applied to the magnetic sensor 100 with high accuracy based on the first output signal and the second output signal.
  • first half-bridge circuit 1 and the second half-bridge circuit 2 are integrated on one base material 73 . Therefore, unlike the case where the first base material on which the first half-bridge circuit 1 is mounted and the second base material on which the second half-bridge circuit 2 is mounted, the positions of the first base material and the second base material You can save the trouble of adjusting the relationship. In addition, it is possible to suppress deterioration in detection accuracy of the direction of the magnetic field due to deviation of the positional relationship.
  • the angle difference between the two is preferably 5 degrees or less.
  • the Z-axis which is orthogonal to both the X-axis and Y-axis, will be used for further explanation.
  • the X-axis, Y-axis, and Z-axis are virtual axes set on the magnetic sensor 100, and are not actual configurations.
  • the magnetic sensor 100 includes a second protective film 72, a bias magnet 5, a first protective film 71, a wiring layer W1, and a base material 73.
  • the wiring layer W ⁇ b>1 includes a first half bridge circuit 1 , a second half bridge circuit 2 , a third half bridge circuit 3 and a fourth half bridge circuit 4 .
  • 1 shows only the wiring layer W1 and the bias magnet 5
  • FIG. 2 shows only the wiring layer W1.
  • the magnetic detection system 200 includes a magnetic sensor 100 and a processing circuit 201.
  • Processing circuitry 201 determines the orientation of the magnetic field applied to magnetic sensor 100 based on at least the first output signal and the second output signal.
  • the magnetic sensor 100 and the magnetic detection system 200 are used to determine the direction of the magnetic field generated from the rotor 8 (see FIG. 4) of the motor, thereby determining the rotation angle of the rotor 8.
  • the magnetic sensor 100 and the magnetic detection system 200 are used to determine the direction of the magnetic field generated from the rotor 8 (see FIG. 4) of the motor, thereby determining the rotation angle of the rotor 8.
  • the rotor 8 contains a plurality of permanent magnets.
  • a plurality of permanent magnets form a plurality of magnetic poles 80 .
  • the multiple permanent magnets have multiple magnetic poles 80 .
  • the plurality of magnetic poles 80 are arranged in the rotational direction of the rotor 8 so that N poles and S poles are arranged alternately.
  • a plurality of magnetic poles 80 are arranged so that the N pole and the S pole are interchanged every 45 degrees along the direction of rotation of the rotor 8 .
  • each magnetic pole 80 is marked with the letter "N" representing the N pole or the letter "S" representing the S pole. is not the character that is The same applies to "N" and "S” displayed on the bias magnet 5 in FIGS.
  • Bias Magnet As shown in FIGS. 1 and 3, the shape of the bias magnet 5 is a rectangular parallelepiped. Bias magnet 5 is a single piece. A permanent magnet or an electromagnet, for example, can be used as the bias magnet 5 . The bias magnet 5 of this embodiment is a permanent magnet. Bias magnet 5 is, for example, a ferrite magnet or a neodymium magnet.
  • the bias magnet 5 has a plurality of (eight in this embodiment) magnetic poles 50 .
  • Four of the eight magnetic poles 50 are arranged on a first plane parallel to both the X-axis and the Y-axis.
  • the remaining four magnetic poles 50 of the eight magnetic poles 50 are arranged on the second plane parallel to the first plane.
  • two sets of four magnetic poles 50 are provided, and in each set, the four magnetic poles 50 are provided on the same plane.
  • the magnetic poles 50 belonging to different sets are provided at different positions in the Z-axis direction.
  • the Z coordinates of the four poles 50 shown in FIG. 1 are greater than the Z coordinates of the remaining four poles 50 .
  • the eight magnetic poles 50 are arranged so that the magnetic poles 50 adjacent to each other in the X-axis direction have different poles and the magnetic poles 50 adjacent to each other in the Y-axis direction have different poles.
  • the eight magnetic poles 50 are arranged such that the magnetic poles 50 adjacent to each other in the Z-axis direction have different poles.
  • the shape of the substrate 73 is plate-like.
  • the base material 73 is, for example, an alumina substrate.
  • the wiring layer W1 is formed on the surface of the base material 73 . Thereby, the base material 73 holds the wiring layer W1.
  • the wiring layer W1 of this embodiment includes, for example, a plurality of layers.
  • the multiple layers are electrically connected to each other through through holes.
  • the wiring layer W1 includes a first half bridge circuit 1, a second half bridge circuit 2, a third half bridge circuit 3, and a fourth half bridge circuit 4.
  • the first half bridge circuit 1 has a pair of first magnetoresistive elements 1P and 1Q and a first output terminal 1T.
  • the second half bridge circuit 2 has a pair of second magnetoresistive elements 2P and 2Q and a second output end 2T.
  • the third half bridge circuit 3 has a pair of third magnetoresistive elements 3P and 3Q and a third output end 3T.
  • a pair of third magnetoresistive elements 3P and 3Q are half-bridge connected.
  • a pair of third magnetoresistive elements 3P and 3Q sense a magnetic field along the X-axis.
  • the third output terminal 3T outputs a third output signal from a connection point between the pair of third magnetoresistive elements 3P and 3Q.
  • the fourth half bridge circuit 4 has a pair of fourth magnetoresistive elements 4P and 4Q and a fourth output terminal 4T.
  • a pair of fourth magnetoresistive elements 4P and 4Q are half-bridge connected.
  • a pair of fourth magnetoresistive elements 4P and 4Q sense a magnetic field along the Y-axis.
  • the fourth output terminal 4T outputs a fourth output signal from a connection point between the pair of fourth magnetoresistive elements 4P and 4Q.
  • the first magnetoresistive effect elements 1P and 1Q, the second magnetoresistive effect elements 2P and 2Q, the third magnetoresistive effect elements 3P and 3Q, and the fourth magnetoresistive effect elements 4P and 4Q are referred to as magnetoresistive effect elements.
  • the element may be referred to as Mr0. That is, the magnetic sensor 100 includes a plurality (eight) of magnetoresistive elements Mr0.
  • the wiring layer W1 further includes power terminals H10, H20 and reference terminals L10, L20.
  • the power terminals H10 and H20 are high potential side terminals electrically connected to the high potential side electric path of the power supply.
  • the reference terminals L10 and L20 are low-potential-side terminals electrically connected to the low-potential-side electric line (reference-potential electric line) of the power supply.
  • the reference terminals L10 and L20 are ground terminals that are electrically connected to a ground potential electric path.
  • a first end of the first magnetoresistive element 1P is electrically connected to the reference terminal L20.
  • a second end of the first magnetoresistive element 1P is electrically connected to a first end of the first magnetoresistive element 1Q.
  • a second end of the first magnetoresistive element 1Q is electrically connected to the power terminal H10.
  • the first output terminal 1T is electrically connected to a connection point between the pair of first magnetoresistive elements 1P and 1Q.
  • a first end of the second magnetoresistive element 2P is electrically connected to the power terminal H10.
  • a second end of the second magnetoresistive element 2P is electrically connected to a first end of the second magnetoresistive element 2Q.
  • a second end of the second magnetoresistive element 2Q is electrically connected to the reference terminal L10.
  • the second output terminal 2T is electrically connected to a connection point between the pair of second magnetoresistive elements 2P and 2Q.
  • a first end of the third magnetoresistive element 3P is electrically connected to the power terminal H20.
  • a second end of the third magnetoresistive element 3P is electrically connected to a first end of the third magnetoresistive element 3Q.
  • a second end of the third magnetoresistive element 3Q is electrically connected to the reference terminal L10.
  • the third output terminal 3T is electrically connected to a connection point between the pair of third magnetoresistive elements 3P and 3Q.
  • a first end of the fourth magnetoresistive element 4P is electrically connected to the reference terminal L20.
  • a second end of the fourth magnetoresistive element 4P is electrically connected to a first end of the fourth magnetoresistive element 4Q.
  • a second end of the fourth magnetoresistive element 4Q is electrically connected to the power terminal H20.
  • the fourth output terminal 4T is electrically connected to a connection point between the pair of fourth magnetoresistive elements 4P and 4Q.
  • the first output terminal 1T, the second output terminal 2T, the third output terminal 3T, and the fourth output terminal 4T are electrically connected to the processing circuit 201. 1 and 2, only the first output terminal 1T is shown connected to the processing circuit 201 for the sake of simplification.
  • the shape of the magnetoresistive element Mr0 is illustrated as a rectangle when viewed from the Z-axis direction. However, this shape is a shape schematically illustrated to show the orientation of the magnetoresistive element Mr0, and does not necessarily match the actual shape of the magnetoresistive element Mr0.
  • the electrical resistance value of the magnetoresistive element Mr0 changes according to the magnitude of the applied magnetic field.
  • the magnetic sensor 100 outputs a change in the electrical resistance value of the magnetoresistive element Mr0 as a voltage signal.
  • the magnetoresistive element Mr0 has no sensitivity to the magnetic field in the first direction (the direction along the long side in FIG. 1) and is sensitive to the magnetic field in the second direction (the direction along the short side in FIG. 1). sensitive to The sensitivity of the magnetoresistive element Mr0 is maximized with respect to the magnetic field in the second direction.
  • the pair of first magnetoresistive elements 1P and 1Q and the pair of third magnetoresistive elements 3P and 3Q are arranged so as to be sensitive to the magnetic field in the direction along the X-axis.
  • the pair of first magnetoresistive elements 1P and 1Q and the pair of third magnetoresistive elements 3P and 3Q are subjected to a magnetic field along the positive direction of the X-axis and a magnetic field along the negative direction of the X-axis.
  • the magnitude of the magnetic field is the same, the resistance changes in the same way.
  • the pair of second magnetoresistive elements 2P and 2Q and the pair of fourth magnetoresistive elements 4P and 4Q are arranged so as to be sensitive to the magnetic field in the direction along the Y-axis.
  • the pair of second magnetoresistive elements 2P and 2Q and the pair of fourth magnetoresistive elements 4P and 4Q are subjected to a magnetic field along the positive direction of the Y-axis and a magnetic field along the negative direction of the Y-axis.
  • the magnitude of the magnetic field is the same, the resistance changes in the same way.
  • the magnetoresistive elements Mr0 are arranged as follows. That is, the first magnetoresistive element 1P and the third magnetoresistive element 3P are arranged on the positive side of the Y-axis from the center. The first magnetoresistive element 1Q and the third magnetoresistive element 3Q are arranged on the negative side of the Y-axis from the center. The second magnetoresistive element 2P and the fourth magnetoresistive element 4P are arranged on the positive side of the X-axis from the center. The second magnetoresistive element 2Q and the fourth magnetoresistive element 4Q are arranged on the negative side of the X-axis from the center.
  • the Z coordinates of the four magnetic poles 50 shown in FIG. 1 are larger than the Z coordinates of the remaining four magnetic poles 50. That is, among the plurality of magnetic poles 50 of the bias magnet 5, the four magnetic poles 50 shown in FIG. 1 face the plurality of magnetoresistive effect elements Mr0, and apply a bias magnetic field to the plurality of magnetoresistive effect elements Mr0. In FIG. 1, the direction of the bias magnetic field is indicated by an arrow.
  • a bias magnetic field along the positive direction of the X-axis is applied to the first magnetoresistive element 1P and the third magnetoresistive element 3P.
  • a bias magnetic field along the negative direction of the X-axis is applied to the first magnetoresistive element 1Q and the third magnetoresistive element 3Q.
  • a bias magnetic field along the positive direction of the Y-axis is applied to the second magnetoresistive element 2P and the fourth magnetoresistive element 4P.
  • a bias magnetic field along the negative direction of the Y-axis is applied to the second magnetoresistive element 2Q and the fourth magnetoresistive element 4Q.
  • a single bias magnet 5 generates a bias magnetic field along the positive direction of the X-axis and a bias magnetic field along the negative direction of the X-axis. Furthermore, the single bias magnet 5 also generates a bias magnetic field along the positive direction of the Y-axis and a bias magnetic field along the negative direction of the Y-axis.
  • the magnetoresistive element Mr0 is a GMR (Giant Magneto Resistance) element. More specifically, the magnetoresistive element Mr0 is a CIP (current in plane) type GMR element. As shown in FIG. 7, the magnetoresistive element Mr0 has a laminated portion 90 and an underlying layer 93 .
  • the laminated portion 90 is formed by alternately laminating magnetic layers 91 containing NiFeCo as a component and non-magnetic layers 92 containing Cu as a component. With such a structure, a high output magnetoresistive element Mr0 can be obtained.
  • the number of layers of the laminated part 90 is, for example, 10 or more or 20 or more.
  • the magnetic layer 91 is a ferromagnetic layer.
  • the magnetic layer 91 is more easily magnetized than the non-magnetic layer 92 .
  • the non-magnetic layer 92 preferably contains only Cu.
  • the magnetic sensor 100 includes a substrate layer 6, as shown in FIG.
  • the substrate layer 6 is included in the wiring layer W1 (see FIG. 3).
  • the substrate layer 6 includes a substrate 61 and a glaze layer 62 .
  • a glaze layer 62 is formed on the surface of the substrate 61 .
  • the glaze layer 62 contains a glass material such as amorphous glass as a material.
  • the glaze layer 62 is formed by printing a glass paste on the surface of the substrate 61 and firing the glass paste.
  • a magnetoresistive element Mr0 is formed on the surface of the glaze layer 62 .
  • the laminated portion 90 overlaps the underlying layer 93 . More specifically, an underlying layer 93 is formed on the surface of the glaze layer 62 of the substrate layer 6 , and the laminate portion 90 is formed on the surface of the underlying layer 93 .
  • the underlying layer 93 contains NiFeCr as a component.
  • the magnetoresistive element Mr0 does not have sensitivity in a predetermined direction, but isotropically has sensitivity in a direction crossing the predetermined direction.
  • the bias magnet 5 applies a plurality of magnetoresistive effects to each of a plurality of (eight) magnetoresistive elements Mr0 including a pair of first magnetoresistive elements 1P and 1Q and a pair of second magnetoresistive elements 2P and 2Q.
  • a magnetic field (bias magnetic field) having a strength of 1/2 or less of the anisotropic magnetic field of each element Mr0 is applied. Thereby, the distortion of the output waveform of each of the plurality of magnetoresistive elements Mr0 can be suppressed.
  • the first protective film 71 covers the wiring layer W1.
  • the bias magnet 5 is mounted on the surface of the first protective film 71 .
  • a second protective film 72 covers the bias magnet 5 .
  • the first protective film 71 is made of, for example, resin, metal oxide such as Al 2 O 3 (alumina), or metal nitride.
  • the second protective film 72 is made of resin, for example.
  • the processing circuit 201 includes a computer system having one or more processors and memory.
  • the functions of the processing circuit 201 are realized by the processor of the computer system executing a program recorded in the memory of the computer system.
  • the program may be recorded in a memory, provided through an electric communication line such as the Internet, or recorded in a non-temporary recording medium such as a memory card and provided.
  • the processing circuit 201 obtains the direction of the magnetic field applied to the magnetic sensor 100 based on the first output signal, the second output signal, the third output signal, and the fourth output signal.
  • the first output signal, the second output signal, the third output signal, and the fourth output signal are respectively output from the first output terminal 1T, the second output terminal 2T, the third output terminal 3T, and the fourth output terminal 4T. This is the output signal.
  • the first output signal, the second output signal, the third output signal, and the fourth output signal are respectively the first half bridge circuit 1, the second half bridge circuit 2, the third half bridge circuit 3, and the This signal is output from the fourth half bridge circuit 4 .
  • the third output signal has a phase opposite to that of the first output signal.
  • the magnetic sensor 100 is installed near the rotor 8 .
  • a plurality of magnetic poles 80 of the rotor 8 create a magnetic field.
  • the processing circuit 201 obtains the direction of the magnetic field applied to the magnetic sensor 100 based on the output of the magnetic sensor 100 .
  • the processing circuit 201 can obtain the direction of the magnetic field. . Therefore, in the following description, referring to FIG. 4, the rotor 8 is fixed and the position of the magnetic sensor 100 changes in order of positions L1, L2, L3, L4, and L5. The magnetic sensor 100 rotates around the rotor 8, and along with this, the X-axis and the Y-axis also rotate.
  • the magnetic sensors 100 are arranged radially outward of the rotor 8 .
  • the direction of the magnetic field applied to the magnetic sensor 100 is perpendicular to the direction of the rotation axis of the rotor 8, so the Z-axis set in the magnetic sensor 100 is along the direction of the rotation axis of the rotor 8.
  • the orientation of the magnetic sensor 100 needs to be adjusted.
  • FIG. 8 illustrates the waveform V1 of the first output signal and the waveform V2 of the second output signal.
  • the third and fourth output signals are omitted because the third and fourth output signals are opposite phase signals to the first output signal and fourth output signals are opposite phase signals to the second output signal.
  • the plurality of magnetic poles 80 are shown linearly for convenience.
  • a magnetic field is applied to the magnetic sensor 100 along the positive direction of the Y axis.
  • a magnetic field is not detected by the pair of first magnetoresistive elements 1P and 1Q and the pair of third magnetoresistive elements 3P and 3Q. Since a bias magnetic field along the positive direction of the Y-axis is applied to the second magnetoresistive element 2P and the fourth magnetoresistive element 4P, the magnetic field of the rotor 8 and the bias magnetic field strengthen each other.
  • a magnetic field along the positive direction of the X axis is applied to the magnetic sensor 100.
  • a magnetic field is not detected by the pair of second magnetoresistive elements 2P and 2Q and the pair of fourth magnetoresistive elements 4P and 4Q. Since a bias magnetic field along the positive direction of the X-axis is applied to the first magnetoresistive element 1P and the third magnetoresistive element 3P, the magnetic field of the rotor 8 and the bias magnetic field strengthen each other.
  • the magnetic sensor 100 when the magnetic sensor 100 is at the position L2, the first output signal is maximum and the third output signal is minimum.
  • the rotor 8 has a plurality of boundary portions between the N magnetic poles 80 and the S magnetic poles 80 in the circumferential direction.
  • the direction of the magnetic field of the rotor 8 is opposite to that at the position L2. Therefore, the first output signal is minimized and the third output signal is maximized.
  • the first and second output signals have the same waveform. repeat.
  • the rotation angle corresponding to twice the width of the magnetic pole 80 corresponds to one period of the first and second output signals.
  • each of the first output signal and the second output signal is a sine wave
  • the phase difference between the first output signal and the second output signal is a rotation angle corresponding to half the width of the magnetic pole 80 . That is, the phase difference is 1/4 period. Therefore, assuming that the first output signal is a sine wave, the second output signal corresponds to a cosine wave with respect to the first output signal.
  • the processing circuit 201 obtains a phase common to the first output signal as a sine wave and the second output signal as a cosine wave based on the first output signal and the second output signal.
  • the processing circuit 201 can determine that the magnetic sensor 100 (actually, the rotor 8) has rotated by a rotation angle corresponding to one cycle.
  • the processing circuit 201 can determine that the magnetic sensor 100 (actually, the rotor 8) has rotated by a rotation angle corresponding to twice the width of the magnetic pole 80. can. In this way, the processing circuit 201 can determine how much the magnetic sensor 100 (actually, the rotor 8) has rotated from the initial rotation angle (that is, the relative rotation angle).
  • the phases of the first output signal and the second output signal correspond to the direction of the magnetic field applied to the magnetic sensor 100 . That is, the processing circuitry 201 can determine the orientation of the magnetic field applied to the magnetic sensor 100 . More specifically, processing circuitry 201 can determine the orientation of the magnetic field applied to magnetic sensor 100 in the range of 0 degrees to 360 degrees.
  • the processing circuit 201 further detects the magnetic sensor 100 (actually, the rotor 8) based on the third output signal and the fourth output signal in addition to the first output signal and the second output signal. Find the rotation angle of Specifically, the processing circuit 201 generates a first differential signal that is a differential signal between the first output signal and the third output signal. The waveform of the first differential signal is a waveform whose amplitude is doubled in the first output signal. The processing circuit 201 also generates a second differential signal that is a differential signal between the second output signal and the fourth output signal. The waveform of the second differential signal is a waveform whose amplitude is doubled in the second output signal.
  • the processing circuit 201 determines the common phase of the first differential signal as a sine wave and the second differential signal as a cosine wave. Each time the phase changes by one cycle, the processing circuit 201 can determine that the magnetic sensor 100 (actually, the rotor 8) has rotated by a rotation angle corresponding to one cycle. Since the first differential signal and the second differential signal have twice the amplitude compared to the first output signal and the second output signal, the orientation of the magnetic field and the rotation angle of the magnetic sensor 100 (actually the rotor 8) can be determined more accurately.
  • the magnetic detection system 200 may include a sensor (for example, an optical sensor or a magnetic sensor) for detecting the starting point of movement (rotation) of the object to be measured (rotor 8). Each time the object rotates, the sensor generates a predetermined output signal, and the processing circuit 201 detects the starting point based on the predetermined output signal.
  • a sensor for example, an optical sensor or a magnetic sensor
  • Modification 1 of the embodiment will be described below. Configurations similar to those of the embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the case where the magnetic sensor 100 is arranged on the outer side of the rotor 8 in the circumferential direction has been described with reference to FIG. may be That is, the magnetic sensor 100 may be arranged at a position facing the rotor 8 in the direction parallel to the rotation axis of the rotor 8 . Also in this case, the magnetic field applied to the magnetic sensor 100 rotates as the rotor 8 rotates, and the direction of the magnetic field can be detected by the magnetic sensor 100 .
  • the orientation of the magnetic sensor 100 must be different from that in the embodiment. Since the direction of the magnetic field applied to the magnetic sensor 100 is orthogonal to the radial direction of the rotor 8 , the magnetic sensor 100 is positioned so that the Z-axis set in the magnetic sensor 100 is along the radial direction of the rotor 8 . Orientation needs to be adjusted.
  • the application of the magnetic sensor 100 is not limited to detecting the rotation angle of the detection target.
  • the magnetic sensor 100 may be used for detecting linear movement of a detection target.
  • the detection target is not limited to the rotor 8.
  • the object to be detected and the object that generates the magnetism detected by the magnetic sensor 100 may be formed separately and then attached to each other.
  • the application of the magnetic sensor 100 is not limited to the application for determining the angle of rotation, and may be any application for detecting the orientation of the magnetic field.
  • the reference terminal L20 electrically connected to the first magnetoresistive element 1P and the reference terminal L20 electrically connected to the fourth magnetoresistive element 4P may be separate terminals.
  • Other reference terminals L10 and power supply terminals H10 and H20 may also be provided individually for each magnetoresistive element Mr0.
  • the third half bridge circuit 3 and the fourth half bridge circuit 4 may be omitted.
  • the processing circuit 201 generates a first differential signal that is a differential signal between the first output signal and the third output signal, and a second differential signal that is a differential signal between the second output signal and the fourth output signal.
  • the direction of the magnetic field applied to the magnetic sensor 100 may be obtained using the first output signal and the second output signal instead of the differential signal.
  • the first protective film 71 and the second protective film 72 may be omitted.
  • the number of bias magnets 5 is not limited to one, and may be two or more.
  • the number of magnetic poles 50 of the bias magnet 5 is not limited to eight, and may be two or four, for example.
  • a magnetic sensor (100) comprises at least one bias magnet (5), a first half-bridge circuit (1), a second half-bridge circuit (2), a substrate (73), Prepare.
  • the at least one bias magnet (5) has a bias magnetic field along the positive direction of the X-axis, a bias magnetic field along the negative direction of the X-axis, and a positive direction of the Y-axis which is orthogonal to the X-axis. and a bias magnetic field along the negative direction of the Y-axis.
  • a substrate (73) holds at least one bias magnet (5), a first half-bridge circuit (1) and a second half-bridge circuit (2).
  • the first half-bridge circuit (1) includes a pair of first magnetoresistive elements (1P, 1Q) that are half-bridge connected and detect a magnetic field along the X-axis, and a pair of first magnetoresistive elements (1P, 1Q ), and a first output end (1T) for outputting a first output signal from a connection point between the .
  • the second half bridge circuit (2) includes a pair of second magnetoresistive effect elements (2P, 2Q) that are half-bridge connected and detect a magnetic field along the Y-axis, and a pair of second magnetoresistive effect elements (2P, 2Q ), and a second output end (2T) for outputting a second output signal from a connection point between .
  • a bias magnetic field along the positive direction of the X-axis is applied to one of the pair of first magnetoresistive elements (1P, 1Q), and a bias magnetic field along the negative direction of the X-axis is applied to the other. applied.
  • a bias magnetic field along the positive direction of the Y-axis is applied to one of the pair of second magnetoresistive elements (2P, 2Q), and a bias magnetic field along the negative direction of the Y-axis is applied to the other. applied.
  • the waveform of the first output signal that is output as the magnetic field applied to the magnetic sensor (100) rotates becomes a waveform close to an ideal sine wave
  • the waveform of the second output signal becomes an ideal waveform. It becomes a waveform close to a cosine wave. Therefore, the direction of the magnetic field applied to the magnetic sensor (100) can be obtained with high accuracy based on the first output signal and the second output signal.
  • the at least one bias magnet (5) has a bias magnetic field along the positive direction of the X-axis and a magnetic field along the negative direction of the X-axis. and a single bias magnet (5) that generates a bias magnetic field along the .
  • the at least one bias magnet (5) has a bias magnetic field along the positive direction of the X-axis and a magnetic field along the negative direction of the X-axis. , along the positive direction of the Y-axis, and along the negative direction of the Y-axis.
  • the pair of first magnetoresistive effect elements (1P, 1Q) and the pair of second magnetoresistive effect elements At least one magnetoresistive element (Mr0) of (2P, 2Q) is a laminate obtained by alternately laminating a magnetic layer (91) containing NiFeCo as a component and a non-magnetic layer (92) containing Cu as a component. It has a part (90).
  • At least one magnetoresistive element (Mr0) includes an underlayer (93) containing NiFeCr as a component and an underlayer (93) a lamination (90) overlying the .
  • the at least one bias magnet (5) includes a pair of first magnetoresistance effect elements (1P, 1Q ) and a pair of second magnetoresistive elements (2P, 2Q), 1/2 of the anisotropic magnetic field of each of the plurality of magnetoresistive elements (Mr0). A magnetic field with the following intensity is applied.
  • the magnetic sensor (100) according to the seventh aspect is the magnetic sensor (100) according to any one of the first to sixth aspects, further comprising a third half bridge circuit (3) and a fourth half bridge circuit (4) Prepare.
  • a third half bridge circuit (3) outputs a third output signal having a phase opposite to that of the first output signal.
  • a fourth half bridge circuit (4) outputs a fourth output signal having a phase opposite to that of the second output signal.
  • Configurations other than the first mode are not essential to the magnetic sensor (100), and can be omitted as appropriate.
  • a magnetic detection system (200) includes the magnetic sensor (100) according to any one of the first to seventh aspects, and a processing circuit (201).
  • a processing circuit (201) determines the orientation of the magnetic field applied to the magnetic sensor (100) based on at least the first output signal and the second output signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本開示は、磁気センサに印加される磁界の向きの検知精度を向上させることを目的とする。磁気センサ(100)は、少なくとも1つのバイアス磁石(5)と、第1ハーフブリッジ回路(1)と、第2ハーフブリッジ回路(2)と、基材と、を備える。第1ハーフブリッジ回路(1)の一対の第1磁気抵抗効果素子(1P、1Q)のうち一方には、X軸の正の向きに沿ったバイアス磁界が印加され、他方には、X軸の負の向きに沿ったバイアス磁界が印加される。第2ハーフブリッジ回路(2)の一対の第2磁気抵抗効果素子(2P、2Q)のうち一方には、Y軸の正の向きに沿ったバイアス磁界が印加され、他方には、Y軸の負の向きに沿ったバイアス磁界が印加される。

Description

磁気センサ及び磁気検知システム
 本開示は一般に磁気センサ及び磁気検知システムに関し、より詳細には、少なくとも1つのバイアス磁石を備える磁気センサ及び磁気検知システムに関する。
 特許文献1に記載の回転角検出センサ(磁気センサ)は、次のように構成される。フリー磁性層とピン止め磁性層とを有するGMR素子を基板上に少なくとも2対設ける。各対のGMR素子同士を直列に接続し、GMR素子と対向させて回転可能に磁石を配設し、この磁石によってGMR素子に飽和磁界を印加させる。磁石の磁力線の向きに従うフリー磁性層の磁化の向きとピン止め磁性層の磁化の向きのなす角度により発生するGMR素子の抵抗値の変化によって磁石の回転軸の回転角度を検出する。
特開2002-303536号公報
 本開示は、磁気センサに印加される磁界の向きの検知精度を向上させることができる磁気センサ及び磁気検知システムを提供することを目的とする。
 本開示の一態様に係る磁気センサは、少なくとも1つのバイアス磁石と、第1ハーフブリッジ回路と、第2ハーフブリッジ回路と、基材と、を備える。前記少なくとも1つのバイアス磁石は、X軸の正の向きに沿ったバイアス磁界、前記X軸の負の向きに沿ったバイアス磁界、前記X軸と直交する軸であるY軸の正の向きに沿ったバイアス磁界、及び、前記Y軸の負の向きに沿ったバイアス磁界を発生させる。前記基材は、前記少なくとも1つのバイアス磁石、前記第1ハーフブリッジ回路及び前記第2ハーフブリッジ回路を保持する。前記第1ハーフブリッジ回路は、ハーフブリッジ接続され前記X軸に沿った磁界を検知する一対の第1磁気抵抗効果素子と、前記一対の第1磁気抵抗効果素子間の接続点から第1出力信号を出力する第1出力端と、を有する。前記第2ハーフブリッジ回路は、ハーフブリッジ接続され前記Y軸に沿った磁界を検知する一対の第2磁気抵抗効果素子と、前記一対の第2磁気抵抗効果素子間の接続点から第2出力信号を出力する第2出力端と、を有する。前記一対の第1磁気抵抗効果素子のうち一方には、前記X軸の正の向きに沿った前記バイアス磁界が印加され、他方には、前記X軸の負の向きに沿った前記バイアス磁界が印加される。前記一対の第2磁気抵抗効果素子のうち一方には、前記Y軸の正の向きに沿った前記バイアス磁界が印加され、他方には、前記Y軸の負の向きに沿った前記バイアス磁界が印加される。
 本開示の一態様に係る磁気検知システムは、前記磁気センサと、処理回路と、を備える。前記処理回路は、前記磁気センサに印加される磁界の向きを、少なくとも前記第1出力信号及び前記第2出力信号に基づいて求める。
図1は、一実施形態に係る磁気センサの平面図である。 図2は、同上の磁気センサの平面図であって、バイアス磁石の図示を省略した図である。 図3は、同上の磁気センサの断面図である。 図4は、同上の磁気センサの使用状態を示す概略図である。 図5は、同上の磁気センサの第1ハーフブリッジ回路及び第3ハーフブリッジ回路の等価回路図である。 図6は、同上の磁気センサの第2ハーフブリッジ回路及び第4ハーフブリッジ回路の等価回路図である。 図7は、同上の磁気センサの磁気抵抗効果素子の断面図である。 図8は、同上の磁気センサの出力信号を示す説明図である。
 以下、実施形態に係る磁気センサ及び磁気検知システムについて、図面を用いて説明する。ただし、下記の実施形態は、本開示の様々な実施形態の1つに過ぎない。下記の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、下記の実施形態において説明する各図は、模式的な図であり、図中の各構成要素の大きさ及び厚さそれぞれの比が必ずしも実際の寸法比を反映しているとは限らない。
 (概要)
 図1に示すように、本実施形態の磁気センサ100は、少なくとも1つのバイアス磁石5と、第1ハーフブリッジ回路1と、第2ハーフブリッジ回路2と、基材73(図3参照)と、を備える。少なくとも1つのバイアス磁石5は、X軸の正の向きに沿ったバイアス磁界、X軸の負の向きに沿ったバイアス磁界、X軸と直交する軸であるY軸の正の向きに沿ったバイアス磁界、及び、Y軸の負の向きに沿ったバイアス磁界を発生させる。基材73は、少なくとも1つのバイアス磁石5、第1ハーフブリッジ回路1及び第2ハーフブリッジ回路2を保持する。第1ハーフブリッジ回路1は、ハーフブリッジ接続されX軸に沿った磁界を検知する一対の第1磁気抵抗効果素子1P、1Qと、一対の第1磁気抵抗効果素子1P、1Q間の接続点から第1出力信号を出力する第1出力端1Tと、を有する。第2ハーフブリッジ回路2は、ハーフブリッジ接続されY軸に沿った磁界を検知する一対の第2磁気抵抗効果素子2P、2Qと、一対の第2磁気抵抗効果素子2P、2Q間の接続点から第2出力信号を出力する第2出力端2Tと、を有する。一対の第1磁気抵抗効果素子1P、1Qのうち一方には、X軸の正の向きに沿ったバイアス磁界が印加され、他方には、X軸の負の向きに沿ったバイアス磁界が印加される。一対の第2磁気抵抗効果素子2P、2Qのうち一方には、Y軸の正の向きに沿ったバイアス磁界が印加され、他方には、Y軸の負の向きに沿ったバイアス磁界が印加される。
 本実施形態によれば、磁気センサ100に印加される磁界の回転に伴い出力される第1出力信号の波形は理想的な正弦波に近い波形となり、第2出力信号の波形は理想的な余弦波に近い波形となる。そのため、磁気センサ100に印加される磁界の向きを、第1出力信号及び第2出力信号に基づいて精度良く求めることが可能となる。
 また、第1ハーフブリッジ回路1及び第2ハーフブリッジ回路2は、1つの基材73に集約されている。よって、第1ハーフブリッジ回路1を実装した第1基材と第2ハーフブリッジ回路2を実装した第2基材とをそれぞれ設ける場合と異なって、第1基材と第2基材との位置関係を調整する手間を省くことができる。また、位置関係のずれによる磁界の向きの検出精度の低下を抑制できる。
 バイアス磁界の方向又は磁気抵抗効果素子による磁界の検知方向がX軸又はY軸に沿っていると言う場合に、両者の角度差は、5度以下であることが好ましい。
 なお、以下では、X軸及びY軸に加えて、X軸及びY軸の両方と直交する軸であるZ軸を更に用いて説明する。X軸、Y軸及びZ軸はそれぞれ、磁気センサ100上に設定された仮想的な軸であり、実体のある構成ではない。
 (詳細)
 (1)全体構成
 図1~図3に示すように、磁気センサ100は、第2保護膜72と、バイアス磁石5と、第1保護膜71と、配線層W1と、基材73と、を備える。配線層W1は、第1ハーフブリッジ回路1と、第2ハーフブリッジ回路2と、第3ハーフブリッジ回路3と、第4ハーフブリッジ回路4と、を含む。なお、図1では配線層W1及びバイアス磁石5のみを図示し、図2では配線層W1のみを図示している。
 磁気検知システム200は、磁気センサ100と、処理回路201と、を備える。処理回路201は、磁気センサ100に印加される磁界の向きを、少なくとも第1出力信号及び第2出力信号に基づいて求める。
 本実施形態では、一例として、モータのロータ8(図4参照)から発生する磁界の向きを求め、これにより、ロータ8の回転角を求める用途に磁気センサ100及び磁気検知システム200が用いられる場合について説明する。
 (2)ロータ
 ロータ8は、複数の永久磁石を含む。複数の永久磁石は、複数の磁極80を形成する。換言すると、複数の永久磁石は、複数の磁極80を有する。複数の磁極80は、N極とS極とが交互に並ぶように、ロータ8の回転方向に並んでいる。図4では、ロータ8の回転方向に沿って45度ごとにN極とS極とが入れ替わるように、複数の磁極80が並んでいる。なお、図4では各磁極80にはN極を表す「N」又はS極を表す「S」の文字が付されているが、これらは説明のために付した文字であって、実際に付されている文字ではない。図1、図3においてバイアス磁石5に表示されている「N」、「S」も同様である。
 (3)バイアス磁石
 図1、図3に示すように、バイアス磁石5の形状は、直方体状である。バイアス磁石5は、単一の部材である。バイアス磁石5としては、例えば、永久磁石又は電磁石を採用できる。本実施形態のバイアス磁石5は、永久磁石である。バイアス磁石5は、例えば、フェライト磁石又はネオジム磁石である。
 バイアス磁石5は、複数(本実施形態では8つ)の磁極50を有する。8つの磁極50のうち4つの磁極50は、X軸及びY軸の両方と平行な第1平面上に配置されている。8つの磁極50のうち残りの4つの磁極50は、第1平面と平行な第2平面上に配置されている。
 つまり、4つの磁極50からなる組が2組設けられており、各組において、4つの磁極50は同一平面上に設けられている。互いに異なる組に属する磁極50は、Z軸の方向において互いに異なる位置に設けられている。図1に示す4つの磁極50のZ座標は、残りの4つの磁極50のZ座標よりも大きい。
 8つの磁極50は、X軸の方向において互いに隣り合う磁極50が異なる極となり、かつ、Y軸の方向において互いに隣り合う磁極50が異なる極となるように配置されている。また、8つの磁極50は、Z軸の方向において互いに隣り合う磁極50が異なる極となるように配置されている。
 (4)基材
 図3に示すように、基材73の形状は、板状である。基材73は、例えば、アルミナ基板である。
 (5)配線層
 図3に示すように、配線層W1は、基材73の表面に形成されている。これにより、基材73は、配線層W1を保持している。
 本実施形態の配線層W1は、例えば、複数の層を含む。複数の層は、スルーホールを介して互いに電気的に接続されている。
 図2に示すように、配線層W1は、第1ハーフブリッジ回路1と、第2ハーフブリッジ回路2と、第3ハーフブリッジ回路3と、第4ハーフブリッジ回路4と、を含む。
 第1ハーフブリッジ回路1は、一対の第1磁気抵抗効果素子1P、1Qと、第1出力端1Tと、を有する。
 第2ハーフブリッジ回路2は、一対の第2磁気抵抗効果素子2P、2Qと、第2出力端2Tと、を有する。
 図5に示すように、第3ハーフブリッジ回路3は、一対の第3磁気抵抗効果素子3P、3Qと、第3出力端3Tと、を有する。一対の第3磁気抵抗効果素子3P、3Qは、ハーフブリッジ接続されている。一対の第3磁気抵抗効果素子3P、3Qは、X軸に沿った磁界を検知する。第3出力端3Tは、一対の第3磁気抵抗効果素子3P、3Q間の接続点から第3出力信号を出力する。
 図6に示すように、第4ハーフブリッジ回路4は、一対の第4磁気抵抗効果素子4P、4Qと、第4出力端4Tと、を有する。一対の第4磁気抵抗効果素子4P、4Qは、ハーフブリッジ接続されている。一対の第4磁気抵抗効果素子4P、4Qは、Y軸に沿った磁界を検知する。第4出力端4Tは、一対の第4磁気抵抗効果素子4P、4Q間の接続点から第4出力信号を出力する。
 以下では、第1磁気抵抗効果素子1P、1Q、第2磁気抵抗効果素子2P、2Q、第3磁気抵抗効果素子3P、3Q、及び、第4磁気抵抗効果素子4P、4Qをそれぞれ、磁気抵抗効果素子Mr0と称することがある。すなわち、磁気センサ100は、複数(8つ)の磁気抵抗効果素子Mr0を備える。
 図2に示すように、配線層W1は、電源端子H10、H20と、基準端子L10、L20と、を更に含む。電源端子H10、H20は、電源の高電位側電路に電気的に接続される、高電位側端子である。基準端子L10、L20は、電源の低電位側電路(基準電位の電路)に電気的に接続される、低電位側端子である。本実施形態では、基準端子L10、L20は、グランド電位の電路に電気的に接続される接地端子である。
 第1磁気抵抗効果素子1Pの第1端は、基準端子L20に電気的に接続されている。第1磁気抵抗効果素子1Pの第2端は、第1磁気抵抗効果素子1Qの第1端に電気的に接続されている。第1磁気抵抗効果素子1Qの第2端は、電源端子H10に電気的に接続されている。第1出力端1Tは、一対の第1磁気抵抗効果素子1P、1Q間の接続点に電気的に接続されている。
 第2磁気抵抗効果素子2Pの第1端は、電源端子H10に電気的に接続されている。第2磁気抵抗効果素子2Pの第2端は、第2磁気抵抗効果素子2Qの第1端に電気的に接続されている。第2磁気抵抗効果素子2Qの第2端は、基準端子L10に電気的に接続されている。第2出力端2Tは、一対の第2磁気抵抗効果素子2P、2Q間の接続点に電気的に接続されている。
 第3磁気抵抗効果素子3Pの第1端は、電源端子H20に電気的に接続されている。第3磁気抵抗効果素子3Pの第2端は、第3磁気抵抗効果素子3Qの第1端に電気的に接続されている。第3磁気抵抗効果素子3Qの第2端は、基準端子L10に電気的に接続されている。第3出力端3Tは、一対の第3磁気抵抗効果素子3P、3Q間の接続点に電気的に接続されている。
 第4磁気抵抗効果素子4Pの第1端は、基準端子L20に電気的に接続されている。第4磁気抵抗効果素子4Pの第2端は、第4磁気抵抗効果素子4Qの第1端に電気的に接続されている。第4磁気抵抗効果素子4Qの第2端は、電源端子H20に電気的に接続されている。第4出力端4Tは、一対の第4磁気抵抗効果素子4P、4Q間の接続点に電気的に接続されている。
 第1出力端1T、第2出力端2T、第3出力端3T、及び、第4出力端4Tは、処理回路201に電気的に接続されている。なお、図1、図2では、簡略化のため、第1出力端1Tのみが処理回路201に接続されたように図示している。
 図1、図2、図4、図5、図6では、Z軸の方向から見て、磁気抵抗効果素子Mr0の形状を長方形として図示している。ただし、この形状は、磁気抵抗効果素子Mr0の向きを示すために模式的に図示した形状であって、必ずしも実際の磁気抵抗効果素子Mr0の形状と一致しない。
 磁気抵抗効果素子Mr0の電気抵抗値は、印加される磁界の大きさに応じて変化する。磁気センサ100は、磁気抵抗効果素子Mr0の電気抵抗値の変化を、電圧信号として出力する。磁気抵抗効果素子Mr0は、第1方向(図1において長辺に沿った方向)の磁界に対して感度を有さず、第2方向(図1において短辺に沿った方向)の磁界に対して感度を有する。磁気抵抗効果素子Mr0の感度は、第2方向の磁界に対して最大となる。
 一対の第1磁気抵抗効果素子1P、1Q及び一対の第3磁気抵抗効果素子3P、3Qは、X軸に沿った方向の磁界に対して感度を有するように配置されている。一対の第1磁気抵抗効果素子1P、1Q及び一対の第3磁気抵抗効果素子3P、3Qは、X軸の正の向きに沿った磁界と、X軸の負の向きに沿った磁界と、に対して、磁界の大きさが同じであれば同じ抵抗値変化をする。
 一対の第2磁気抵抗効果素子2P、2Q及び一対の第4磁気抵抗効果素子4P、4Qは、Y軸に沿った方向の磁界に対して感度を有するように配置されている。一対の第2磁気抵抗効果素子2P、2Q及び一対の第4磁気抵抗効果素子4P、4Qは、Y軸の正の向きに沿った磁界と、Y軸の負の向きに沿った磁界と、に対して、磁界の大きさが同じであれば同じ抵抗値変化をする。
 Z軸の方向から見て、磁気センサ100の中心を基準として、各磁気抵抗効果素子Mr0は、次のように配置されている。すなわち、第1磁気抵抗効果素子1P及び第3磁気抵抗効果素子3Pは、上記中心よりY軸の正の側に配置されている。第1磁気抵抗効果素子1Q及び第3磁気抵抗効果素子3Qは、上記中心よりY軸の負の側に配置されている。第2磁気抵抗効果素子2P及び第4磁気抵抗効果素子4Pは、上記中心よりX軸の正の側に配置されている。第2磁気抵抗効果素子2Q及び第4磁気抵抗効果素子4Qは、上記中心よりX軸の負の側に配置されている。
 上述の通り、図1に示す4つの磁極50のZ座標は、残りの4つの磁極50のZ座標よりも大きい。つまり、バイアス磁石5の複数の磁極50のうち、図1に示す4つの磁極50が、複数の磁気抵抗効果素子Mr0に対向しており、複数の磁気抵抗効果素子Mr0にバイアス磁界を印加する。図1には、バイアス磁界の向きを矢印で示している。
 第1磁気抵抗効果素子1P及び第3磁気抵抗効果素子3Pには、X軸の正の向きに沿ったバイアス磁界が印加される。第1磁気抵抗効果素子1Q及び第3磁気抵抗効果素子3Qには、X軸の負の向きに沿ったバイアス磁界が印加される。
 第2磁気抵抗効果素子2P及び第4磁気抵抗効果素子4Pには、Y軸の正の向きに沿ったバイアス磁界が印加される。第2磁気抵抗効果素子2Q及び第4磁気抵抗効果素子4Qには、Y軸の負の向きに沿ったバイアス磁界が印加される。
 このように、単一のバイアス磁石5が、X軸の正の向きに沿ったバイアス磁界と、X軸の負の向きに沿ったバイアス磁界と、を発生させる。さらに、上記単一のバイアス磁石5が、Y軸の正の向きに沿ったバイアス磁界と、Y軸の負の向きに沿ったバイアス磁界と、をも発生させる。
 磁気抵抗効果素子Mr0は、GMR(Giant Magneto Resistance)素子である。より詳細には、磁気抵抗効果素子Mr0は、CIP(current in plane)型GMR素子である。図7に示すように、磁気抵抗効果素子Mr0は、積層部90と、下地層93と、を有する。
 積層部90は、NiFeCoを成分として含む磁性層91と、Cuを成分として含む非磁性層92と、を交互に積層してなる。このような構造により、高出力の磁気抵抗効果素子Mr0を得ることができる。積層部90の層数は、例えば、10以上又は20以上である。磁性層91は、強磁性体の層である。磁性層91は、非磁性層92と比較して磁化されやすい。非磁性層92は、Cuのみを有していることが好ましい。
 図7に示すように、磁気センサ100は、基板層6を含む。基板層6は、配線層W1(図3参照)に含まれる。基板層6は、基板61と、グレーズ層62と、を含む。グレーズ層62は、基板61の表面に形成されている。グレーズ層62は、材料として、非晶質ガラス等のガラス材料を含む。グレーズ層62は、ガラスペーストを基板61の表面に印刷し、ガラスペーストを焼成することにより形成される。グレーズ層62の表面には、磁気抵抗効果素子Mr0が形成されている。
 積層部90は、下地層93に重なっている。より詳細には、基板層6のグレーズ層62の表面に下地層93が形成されており、下地層93の表面に積層部90が形成されている。下地層93は、NiFeCrを成分として含む。下地層93を設けることにより、高出力の磁気抵抗効果素子Mr0を得ることができる。また、下地層93を設けることで、磁性層91の結晶粒を大きく成長させることができ、これにより、磁気抵抗効果素子Mr0の耐熱性を向上させることができる。
 磁気抵抗効果素子Mr0は、所定方向に感度を有さず、所定方向と交差する方向に等方的に感度を有する。
 バイアス磁石5は、一対の第1磁気抵抗効果素子1P、1Q及び一対の第2磁気抵抗効果素子2P、2Qを含む複数(8つ)の磁気抵抗効果素子Mr0の各々に、複数の磁気抵抗効果素子Mr0の各々の異方性磁界の1/2以下の強度の磁界(バイアス磁界)を印加する。これにより、複数の磁気抵抗効果素子Mr0の各々の出力波形の歪みを抑えることができる。
 (6)保護膜
 図3に示すように、第1保護膜71は、配線層W1を覆っている。バイアス磁石5は、第1保護膜71の表面に実装されている。第2保護膜72は、バイアス磁石5を覆っている。
 第1保護膜71は、例えば、樹脂、又は、Al(アルミナ)等の金属酸化物、あるいは金属窒化物を材料として形成されている。第2保護膜72は、例えば、樹脂を材料として形成されている。
 (7)処理回路
 処理回路201(図1参照)は、1以上のプロセッサ及びメモリを有するコンピュータシステムを含んでいる。コンピュータシステムのメモリに記録されたプログラムを、コンピュータシステムのプロセッサが実行することにより、処理回路201の機能が実現される。プログラムは、メモリに記録されていてもよいし、インターネット等の電気通信回線を通して提供されてもよく、メモリカード等の非一時的記録媒体に記録されて提供されてもよい。
 処理回路201は、磁気センサ100に印加される磁界の向きを、第1出力信号、第2出力信号、第3出力信号及び第4出力信号に基づいて求める。第1出力信号、第2出力信号、第3出力信号、及び、第4出力信号はそれぞれ、第1出力端1T、第2出力端2T、第3出力端3T、及び、第4出力端4Tから出力される信号である。言い換えると、第1出力信号、第2出力信号、第3出力信号、及び、第4出力信号はそれぞれ、第1ハーフブリッジ回路1、第2ハーフブリッジ回路2、第3ハーフブリッジ回路3、及び、第4ハーフブリッジ回路4から出力される信号である。
 第1ハーフブリッジ回路1と第3ハーフブリッジ回路3とを比較すると、図1、図5に示すように、磁気抵抗効果素子Mr0の感度方向、及び、印加されるバイアス磁界の向きは同じであって、高電位側と低電位側との関係が互いに反対である。そのため、第3出力信号は、第1出力信号とは逆相の信号となる。
 第2ハーフブリッジ回路2と第4ハーフブリッジ回路4とを比較すると、図1、図6に示すように、磁気抵抗効果素子Mr0の感度方向、及び、印加されるバイアス磁界の向きは同じであって、高電位側と低電位側との関係が互いに反対である。そのため、第4出力信号は、第2出力信号とは逆相の信号となる。
 (8)磁界の向きの検知
 磁気センサ100は、ロータ8の近傍に設置される。ロータ8の複数の磁極80は、磁場を形成する。ロータ8の回転に伴い、磁気センサ100に印加される磁界の向きが変化する。処理回路201は、磁気センサ100の出力に基づいて、磁気センサ100に印加される磁界の向きを求める。
 なお、ロータ8ではなく磁気センサ100がロータ8に対して回転する場合を想定しても、磁気センサ100に印加される磁界の向きが変化し、処理回路201は磁界の向きを求めることができる。そこで、以下では、図4を参照して、ロータ8は固定されていて磁気センサ100の位置が位置L1、L2、L3、L4、L5の順に変化するとして説明する。磁気センサ100は、ロータ8を中心に回転し、これに伴い、X軸及びY軸も回転する。
 位置L1、L2、L3、L4、L5では、磁気センサ100は、ロータ8の径方向における外側に配置されている。この場合、磁気センサ100に印加される磁界の向きは、ロータ8の回転軸の方向と直交する向きとなるので、磁気センサ100に設定されるZ軸が、ロータ8の回転軸の方向に沿うように、磁気センサ100の向きを調整する必要がある。
 磁気センサ100の位置が位置L1、L2、L3、L4、L5の順に変化すること(実際には、ロータ8の回転)に伴い、第1出力信号、第2出力信号、第3出力信号及び第4出力信号はそれぞれ、正弦波状又は余弦波状に変化する。図8に、第1出力信号の波形V1と、第2出力信号の波形V2と、を図示する。第3出力信号は第1出力信号の逆相の信号であり、第4出力信号は第2出力信号の逆相の信号なので、第3、第4出力信号の図示は省略する。図8では、便宜上、複数の磁極80を直線状に示している。
 磁気センサ100がロータ8のN極の磁極80の中心と対向する位置L3にある場合、磁気センサ100にはY軸の正の向きに沿った磁界が印加される。一対の第1磁気抵抗効果素子1P、1Q及び一対の第3磁気抵抗効果素子3P、3Qでは磁界が検知されない。第2磁気抵抗効果素子2P及び第4磁気抵抗効果素子4Pには、Y軸の正の向きに沿ったバイアス磁界が印加されているので、ロータ8の磁界とバイアス磁界とが強め合う。一方で、第2磁気抵抗効果素子2Q及び第4磁気抵抗効果素子4Qには、Y軸の負の向きに沿ったバイアス磁界が印加されているので、ロータ8の磁界とバイアス磁界とが弱め合う。
 そのため、磁気センサ100が位置L3にあるとき、第2出力信号は最小となり、第4出力信号は最大となる。
 磁気センサ100がロータ8のS極の磁極80の中心と対向する位置L1、L5にある場合は、ロータ8の磁界の向きが、位置L3の場合と逆向きとなるので、第2出力信号は最大となり、第4出力信号は最小となる。
 磁気センサ100がロータ8のN極の磁極80とS極の磁極80との境界部分と対向する位置L2にある場合、磁気センサ100にはX軸の正の向きに沿った磁界が印加される。一対の第2磁気抵抗効果素子2P、2Q及び一対の第4磁気抵抗効果素子4P、4Qでは磁界が検知されない。第1磁気抵抗効果素子1P及び第3磁気抵抗効果素子3Pには、X軸の正の向きに沿ったバイアス磁界が印加されているので、ロータ8の磁界とバイアス磁界とが強め合う。一方で、第1磁気抵抗効果素子1Q及び第3磁気抵抗効果素子3Qには、X軸の負の向きに沿ったバイアス磁界が印加されているので、ロータ8の磁界とバイアス磁界とが弱め合う。
 そのため、磁気センサ100が位置L2にあるとき、第1出力信号は最大となり、第3出力信号は最小となる。
 ロータ8には、N極の磁極80とS極の磁極80との境界部分が、周方向に複数設けられている。磁気センサ100が位置L2の次の、N極の磁極80とS極の磁極80との境界部分と対向する位置L4にある場合は、ロータ8の磁界の向きが、位置L2の場合と逆向きとなるので、第1出力信号は最小となり、第3出力信号は最大となる。
 図8に示すように、磁気センサ100とロータ8との相対的な回転角が、磁極80の幅の2倍に対応する回転角だけ変化する度に、第1、第2出力信号が同じ波形を繰り返す。言い換えると、磁極80の幅の2倍に対応する回転角は、第1、第2出力信号の1周期に相当する。
 第1出力信号及び第2出力信号をそれぞれ正弦波と想定すると、第1出力信号と第2出力信号との位相差は、磁極80の幅の1/2倍に対応する回転角である。つまり、位相差は、1/4周期である。したがって、第1出力信号を正弦波と想定すると、第2出力信号は、第1出力信号に対する余弦波に相当する。
 一例として、処理回路201は、第1出力信号及び第2出力信号に基づいて、正弦波としての第1出力信号、及び、余弦波としての第2出力信号に共通の位相を求める。位相が1周期だけ変化するごとに、処理回路201は、1周期に相当する回転角だけ磁気センサ100(実際には、ロータ8)が回転したと判定することができる。言い換えると、位相が1周期だけ変化するごとに、処理回路201は、磁極80の幅の2倍に対応する回転角だけ磁気センサ100(実際には、ロータ8)が回転したと判定することができる。このように、処理回路201は、磁気センサ100(実際には、ロータ8)が始点の回転角からどれだけ回転したかを(すなわち、相対的な回転角を)求めることができる。
 また、第1出力信号及び第2出力信号の位相は、磁気センサ100に印加される磁界の向きに相当する。つまり、処理回路201は、磁気センサ100に印加される磁界の向きを求めることができる。より詳細には、処理回路201は、0度~360度の範囲で、磁気センサ100に印加される磁界の向きを求めることができる。
 また、別の一例として、処理回路201は、第1出力信号及び第2出力信号に加えて、第3出力信号及び第4出力信号に更に基づいて、磁気センサ100(実際には、ロータ8)の回転角を求める。具体的には、処理回路201は、第1出力信号と第3出力信号との差動信号である第1差動信号を生成する。第1差動信号の波形は、第1出力信号において振幅を2倍にした波形となる。また、処理回路201は、第2出力信号と第4出力信号との差動信号である第2差動信号を生成する。第2差動信号の波形は、第2出力信号において振幅を2倍にした波形となる。処理回路201は、第1差動信号及び第2差動信号に基づいて、正弦波としての第1差動信号、及び、余弦波としての第2差動信号に共通の位相を求める。位相が1周期だけ変化するごとに、処理回路201は、1周期に相当する回転角だけ磁気センサ100(実際には、ロータ8)が回転したと判定することができる。第1差動信号及び第2差動信号は、第1出力信号及び第2出力信号と比較して振幅が2倍なので、磁界の向き及び磁気センサ100(実際には、ロータ8)の回転角をより精度良く求めることができる。
 磁気検知システム200は、計測対象(ロータ8)の移動(回転)の始点を検知するためのセンサ(例えば、光学センサ又は磁気センサ)を備えていてもよい。計測対象が1回転するごとに、上記センサが所定の出力信号を生成し、上記所定の出力信号に基づいて、処理回路201は、始点を検知する。
 (変形例1)
 以下、実施形態の変形例1について説明する。実施形態と同様の構成については、同一の符号を付して説明を省略する。
 実施形態では、図4を参照して、ロータ8の周方向における外側に磁気センサ100が配置されている場合について説明したが、磁気センサ100は、例えば、位置L41(図4参照)に配置されていてもよい。つまり、磁気センサ100は、ロータ8の回転軸と平行な方向においてロータ8と対向する位置に配置されていてもよい。この場合も、ロータ8の回転に伴い、磁気センサ100に印加される磁界が回転し、磁気センサ100により磁界の向きを検知することができる。
 ただし、この場合は、磁気センサ100の向きを実施形態とは異ならせる必要がある。磁気センサ100に印加される磁界の向きは、ロータ8の径方向と直交する向きとなるので、磁気センサ100に設定されるZ軸が、ロータ8の径方向に沿うように、磁気センサ100の向きを調整する必要がある。
 (実施形態のその他の変形例)
 以下、実施形態のその他の変形例を列挙する。以下の変形例は、適宜組み合わせて実現されてもよい。また、以下の変形例は、上述の変形例1と適宜組み合わせて実現されてもよい。
 磁気センサ100の用途は、検知対象の回転角を検知する用途に限定されない。磁気センサ100は、検知対象の直線的な移動を検知する用途に用いられてもよい。
 検知対象は、ロータ8に限らない。また、検知対象と、磁気センサ100で検出される磁気を発生させる物体とが、別体に形成されてから互いに取り付けられてもよい。
 磁気センサ100の用途は、回転角を求める用途に限らず、磁界の向きを検出する用途であればよい。
 第1磁気抵抗効果素子1Pに電気的に接続された基準端子L20と、第4磁気抵抗効果素子4Pに電気的に接続された基準端子L20と、が別々の端子であってもよい。他の基準端子L10及び電源端子H10、H20も同様に、磁気抵抗効果素子Mr0ごとに個別に設けられていてもよい。
 磁気センサ100において、第3ハーフブリッジ回路3及び第4ハーフブリッジ回路4を省略してもよい。この場合、処理回路201は、第1出力信号と第3出力信号との差動信号である第1差動信号、及び、第2出力信号と第4出力信号との差動信号である第2差動信号に代えて、第1出力信号及び第2出力信号を用いて、磁気センサ100に印加される磁界の向きを求めればよい。
 磁気センサ100において、第1保護膜71及び第2保護膜72は、省略されてもよい。
 バイアス磁石5の個数は、1つに限定されず、2つ以上であってもよい。
 バイアス磁石5の磁極50の個数は、8つに限定されず、例えば、2つ又は4つであってもよい。
 (まとめ)
 以上説明した実施形態等から、以下の態様が開示されている。
 第1の態様に係る磁気センサ(100)は、少なくとも1つのバイアス磁石(5)と、第1ハーフブリッジ回路(1)と、第2ハーフブリッジ回路(2)と、基材(73)と、を備える。少なくとも1つのバイアス磁石(5)は、X軸の正の向きに沿ったバイアス磁界、X軸の負の向きに沿ったバイアス磁界、X軸と直交する軸であるY軸の正の向きに沿ったバイアス磁界、及び、Y軸の負の向きに沿ったバイアス磁界を発生させる。基材(73)は、少なくとも1つのバイアス磁石(5)、第1ハーフブリッジ回路(1)及び第2ハーフブリッジ回路(2)を保持する。第1ハーフブリッジ回路(1)は、ハーフブリッジ接続されX軸に沿った磁界を検知する一対の第1磁気抵抗効果素子(1P、1Q)と、一対の第1磁気抵抗効果素子(1P、1Q)間の接続点から第1出力信号を出力する第1出力端(1T)と、を有する。第2ハーフブリッジ回路(2)は、ハーフブリッジ接続されY軸に沿った磁界を検知する一対の第2磁気抵抗効果素子(2P、2Q)と、一対の第2磁気抵抗効果素子(2P、2Q)間の接続点から第2出力信号を出力する第2出力端(2T)と、を有する。一対の第1磁気抵抗効果素子(1P、1Q)のうち一方には、X軸の正の向きに沿ったバイアス磁界が印加され、他方には、X軸の負の向きに沿ったバイアス磁界が印加される。一対の第2磁気抵抗効果素子(2P、2Q)のうち一方には、Y軸の正の向きに沿ったバイアス磁界が印加され、他方には、Y軸の負の向きに沿ったバイアス磁界が印加される。
 上記の構成によれば、磁気センサ(100)に印加される磁界の回転に伴い出力される第1出力信号の波形は理想的な正弦波に近い波形となり、第2出力信号の波形は理想的な余弦波に近い波形となる。そのため、磁気センサ(100)に印加される磁界の向きを、第1出力信号及び第2出力信号に基づいて精度良く求めることが可能となる。
 また、第2の態様に係る磁気センサ(100)では、第1の態様において、少なくとも1つのバイアス磁石(5)は、X軸の正の向きに沿ったバイアス磁界と、X軸の負の向きに沿ったバイアス磁界と、を発生させる単一のバイアス磁石(5)を含む。
 上記の構成によれば、X軸の正の向きに沿ったバイアス磁界を発生させるバイアス磁石と、X軸の負の向きに沿ったバイアス磁界を発生させるバイアス磁石と、を個別に設ける場合と比較して、上記2つのバイアス磁界の間の角度誤差の低減を図ることができる。これにより、第1出力信号の波形の歪を低減させることができる。
 また、第3の態様に係る磁気センサ(100)では、第2の態様において、少なくとも1つのバイアス磁石(5)は、X軸の正の向きに沿ったバイアス磁界と、X軸の負の向きに沿ったバイアス磁界と、Y軸の正の向きに沿ったバイアス磁界と、Y軸の負の向きに沿ったバイアス磁界と、を発生させる単一のバイアス磁石(5)を含む。
 上記の構成によれば、4つのバイアス磁界に対応して4つのバイアス磁石を設ける場合と比較して、上記4つのバイアス磁界の間の角度誤差の低減を図ることができる。これにより、第1出力信号及び第2出力信号の波形の歪を低減させることができる。
 また、第4の態様に係る磁気センサ(100)では、第1~3の態様のいずれか1つにおいて、一対の第1磁気抵抗効果素子(1P、1Q)及び一対の第2磁気抵抗効果素子(2P、2Q)のうち少なくとも1つの磁気抵抗効果素子(Mr0)は、NiFeCoを成分として含む磁性層(91)と、Cuを成分として含む非磁性層(92)と、を交互に積層した積層部(90)を有する。
 上記の構成によれば、磁気抵抗効果素子(Mr0)の高出力化を図ることができる。
 また、第5の態様に係る磁気センサ(100)では、第4の態様において、少なくとも1つの磁気抵抗効果素子(Mr0)は、NiFeCrを成分として含む下地層(93)と、下地層(93)に重なった積層部(90)と、を有する。
 上記の構成によれば、磁気抵抗効果素子(Mr0)の高出力化を図ることができる。
 また、第6の態様に係る磁気センサ(100)では、第1~5の態様のいずれか1つにおいて、少なくとも1つのバイアス磁石(5)は、一対の第1磁気抵抗効果素子(1P、1Q)及び一対の第2磁気抵抗効果素子(2P、2Q)を含む複数の磁気抵抗効果素子(Mr0)の各々に、複数の磁気抵抗効果素子(Mr0)の各々の異方性磁界の1/2以下の強度の磁界を印加する。
 上記の構成によれば、第1出力信号及び第2出力信号の波形の歪を低減させることができる。
 また、第7の態様に係る磁気センサ(100)は、第1~6の態様のいずれか1つにおいて、第3ハーフブリッジ回路(3)と、第4ハーフブリッジ回路(4)と、を更に備える。第3ハーフブリッジ回路(3)は、第1出力信号とは逆相の第3出力信号を出力する。第4ハーフブリッジ回路(4)は、第2出力信号とは逆相の第4出力信号を出力する。
 上記の構成によれば、第1出力信号と第3出力信号との差動出力を取ることで、第1出力信号と比較して略2倍の出力を得ることができる。同様に、第2出力信号と第4出力信号との差動出力を取ることで、第2出力信号と比較して略2倍の出力を得ることができる。これにより、差動出力に基づいて磁界の向きをより精度良く求めることができる。
 第1の態様以外の構成については、磁気センサ(100)に必須の構成ではなく、適宜省略可能である。
 また、第8の態様に係る磁気検知システム(200)は、第1~7の態様のいずれか1つに係る磁気センサ(100)と、処理回路(201)と、を備える。処理回路(201)は、磁気センサ(100)に印加される磁界の向きを、少なくとも第1出力信号及び第2出力信号に基づいて求める。
 上記の構成によれば、処理回路(201)を一体に備えた磁気検知システム(200)を提供できる。
1 第1ハーフブリッジ回路
1P、1Q 第1磁気抵抗効果素子
2 第2ハーフブリッジ回路
2P、2Q 第2磁気抵抗効果素子
3 第3ハーフブリッジ回路
4 第4ハーフブリッジ回路
5 バイアス磁石
73 基材
90 積層部
91 磁性層
92 非磁性層
93 下地層
100 磁気センサ
200 磁気検知システム
201 処理回路
Mr0 磁気抵抗効果素子
1T 第1出力端
2T 第2出力端

Claims (8)

  1.  X軸の正の向きに沿ったバイアス磁界、前記X軸の負の向きに沿ったバイアス磁界、前記X軸と直交する軸であるY軸の正の向きに沿ったバイアス磁界、及び、前記Y軸の負の向きに沿ったバイアス磁界を発生させる少なくとも1つのバイアス磁石と、
     第1ハーフブリッジ回路と、
     第2ハーフブリッジ回路と、
     前記少なくとも1つのバイアス磁石、前記第1ハーフブリッジ回路及び前記第2ハーフブリッジ回路を保持する基材と、を備え、
     前記第1ハーフブリッジ回路は、
      ハーフブリッジ接続され前記X軸に沿った磁界を検知する一対の第1磁気抵抗効果素子と、
      前記一対の第1磁気抵抗効果素子間の接続点から第1出力信号を出力する第1出力端と、を有し、
     前記第2ハーフブリッジ回路は、
      ハーフブリッジ接続され前記Y軸に沿った磁界を検知する一対の第2磁気抵抗効果素子と、
      前記一対の第2磁気抵抗効果素子間の接続点から第2出力信号を出力する第2出力端と、を有し、
     前記一対の第1磁気抵抗効果素子のうち一方には、前記X軸の正の向きに沿った前記バイアス磁界が印加され、他方には、前記X軸の負の向きに沿った前記バイアス磁界が印加され、
     前記一対の第2磁気抵抗効果素子のうち一方には、前記Y軸の正の向きに沿った前記バイアス磁界が印加され、他方には、前記Y軸の負の向きに沿った前記バイアス磁界が印加される、
     磁気センサ。
  2.  前記少なくとも1つのバイアス磁石は、前記X軸の正の向きに沿った前記バイアス磁界と、前記X軸の負の向きに沿った前記バイアス磁界と、を発生させる単一のバイアス磁石を含む、
     請求項1に記載の磁気センサ。
  3.  前記少なくとも1つのバイアス磁石は、前記X軸の正の向きに沿った前記バイアス磁界と、前記X軸の負の向きに沿った前記バイアス磁界と、前記Y軸の正の向きに沿った前記バイアス磁界と、前記Y軸の負の向きに沿った前記バイアス磁界と、を発生させる単一のバイアス磁石を含む、
     請求項2に記載の磁気センサ。
  4.  前記一対の第1磁気抵抗効果素子及び前記一対の第2磁気抵抗効果素子のうち少なくとも1つの磁気抵抗効果素子は、NiFeCoを成分として含む磁性層と、Cuを成分として含む非磁性層と、を交互に積層した積層部を有する、
     請求項1~3のいずれか一項に記載の磁気センサ。
  5.  前記少なくとも1つの磁気抵抗効果素子は、NiFeCrを成分として含む下地層と、前記下地層に重なった前記積層部と、を有する、
     請求項4に記載の磁気センサ。
  6.  前記少なくとも1つのバイアス磁石は、前記一対の第1磁気抵抗効果素子及び前記一対の第2磁気抵抗効果素子を含む複数の磁気抵抗効果素子の各々に、前記複数の磁気抵抗効果素子の各々の異方性磁界の1/2以下の強度の磁界を印加する、
     請求項1~5のいずれか一項に記載の磁気センサ。
  7.  前記第1出力信号とは逆相の第3出力信号を出力する第3ハーフブリッジ回路と、
     前記第2出力信号とは逆相の第4出力信号を出力する第4ハーフブリッジ回路と、を更に備える、
     請求項1~6のいずれか一項に記載の磁気センサ。
  8.  請求項1~7のいずれか一項に記載の磁気センサと、
     前記磁気センサに印加される磁界の向きを、少なくとも前記第1出力信号及び前記第2出力信号に基づいて求める処理回路と、を備える、
     磁気検知システム。
PCT/JP2022/020401 2021-05-17 2022-05-16 磁気センサ及び磁気検知システム WO2022244734A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280029590.3A CN117178193A (zh) 2021-05-17 2022-05-16 磁传感器和磁检测***

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021083385A JP2022176783A (ja) 2021-05-17 2021-05-17 磁気センサ及び磁気検知システム
JP2021-083385 2021-05-17

Publications (1)

Publication Number Publication Date
WO2022244734A1 true WO2022244734A1 (ja) 2022-11-24

Family

ID=84141564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020401 WO2022244734A1 (ja) 2021-05-17 2022-05-16 磁気センサ及び磁気検知システム

Country Status (3)

Country Link
JP (1) JP2022176783A (ja)
CN (1) CN117178193A (ja)
WO (1) WO2022244734A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303536A (ja) * 2001-04-03 2002-10-18 Alps Electric Co Ltd 回転角検出センサ
JP2012037463A (ja) * 2010-08-11 2012-02-23 Alps Electric Co Ltd 磁気センサ
US20120319221A1 (en) * 2011-06-14 2012-12-20 Dmytro Apalkov Method and system for providing a magnetic junction configured for precessional switching using a bias structure
JP2014149268A (ja) * 2013-02-04 2014-08-21 Yokogawa Electric Corp 磁気検出装置
JP2014153054A (ja) * 2013-02-04 2014-08-25 Mitsubishi Electric Corp 磁界検出装置、電流検出装置、半導体集積回路、および、磁界検出方法
WO2016080470A1 (ja) * 2014-11-18 2016-05-26 日立金属株式会社 磁気センサ及びその製造方法並びにそれを用いた電流量検出器
JP2016186476A (ja) * 2015-03-27 2016-10-27 Tdk株式会社 磁気センサ及び磁気式エンコーダ
JP2018107280A (ja) * 2016-12-26 2018-07-05 アルプス電気株式会社 磁気検出装置、磁気検出装置の製造方法および磁気検出装置を用いてなる電流検出装置
US20180238711A1 (en) * 2017-02-17 2018-08-23 Infineon Technologies Ag Angle sensor with disturbance field suppression
JP2018179776A (ja) * 2017-04-13 2018-11-15 大同特殊鋼株式会社 薄膜磁気センサ
US20200041310A1 (en) * 2018-08-06 2020-02-06 Allegro Microsystems, Llc Magnetic field sensor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303536A (ja) * 2001-04-03 2002-10-18 Alps Electric Co Ltd 回転角検出センサ
JP2012037463A (ja) * 2010-08-11 2012-02-23 Alps Electric Co Ltd 磁気センサ
US20120319221A1 (en) * 2011-06-14 2012-12-20 Dmytro Apalkov Method and system for providing a magnetic junction configured for precessional switching using a bias structure
JP2014149268A (ja) * 2013-02-04 2014-08-21 Yokogawa Electric Corp 磁気検出装置
JP2014153054A (ja) * 2013-02-04 2014-08-25 Mitsubishi Electric Corp 磁界検出装置、電流検出装置、半導体集積回路、および、磁界検出方法
WO2016080470A1 (ja) * 2014-11-18 2016-05-26 日立金属株式会社 磁気センサ及びその製造方法並びにそれを用いた電流量検出器
JP2016186476A (ja) * 2015-03-27 2016-10-27 Tdk株式会社 磁気センサ及び磁気式エンコーダ
JP2018107280A (ja) * 2016-12-26 2018-07-05 アルプス電気株式会社 磁気検出装置、磁気検出装置の製造方法および磁気検出装置を用いてなる電流検出装置
US20180238711A1 (en) * 2017-02-17 2018-08-23 Infineon Technologies Ag Angle sensor with disturbance field suppression
JP2018179776A (ja) * 2017-04-13 2018-11-15 大同特殊鋼株式会社 薄膜磁気センサ
US20200041310A1 (en) * 2018-08-06 2020-02-06 Allegro Microsystems, Llc Magnetic field sensor

Also Published As

Publication number Publication date
JP2022176783A (ja) 2022-11-30
CN117178193A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
CN104656042A (zh) 离轴磁场角度传感器
JP5215370B2 (ja) 磁気式位置検出装置
WO2014181382A1 (ja) 磁気電流センサおよび電流測定方法
JP2016176911A (ja) 磁気センサ
JP2009025319A (ja) 回転角度検出装置及び回転機
JPH11304415A (ja) 磁気検出装置
US7064537B2 (en) Rotation angle detecting device
JP7226624B2 (ja) 回転検出装置
JP7215454B2 (ja) 磁気センサ、磁気式エンコーダおよびレンズ位置検出装置
JP2014209089A (ja) 磁気センサおよび磁気センサシステム
JP3487452B2 (ja) 磁気検出装置
JP4028971B2 (ja) 磁気センサの組立方法
JP2012127736A (ja) 磁気センサ
JPH11304413A (ja) 磁気検出装置
JP2002228733A (ja) 磁気検出装置
JP2010133851A (ja) 回転角度センサ
WO2022244734A1 (ja) 磁気センサ及び磁気検知システム
US20230384125A1 (en) Position detection system
JP2001141514A (ja) 磁気抵抗素子
WO2022131049A1 (ja) 磁気検知システム、位置検知システム及び磁気検知モジュール
WO2022244735A1 (ja) 磁気センサ及び磁気検知システム
KR20230101134A (ko) 스핀 궤도 결합 토크를 이용한 자기 센서 및 그것을 이용한 센싱 방법
JP4737371B2 (ja) 回転角度検出装置
JP2003315091A (ja) 回転角度センサ
WO2023058697A1 (ja) モータ用位置検知システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804645

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18561565

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804645

Country of ref document: EP

Kind code of ref document: A1