WO2022242374A1 - 插电式混合动力汽车的整车热管理***及其控制方法 - Google Patents

插电式混合动力汽车的整车热管理***及其控制方法 Download PDF

Info

Publication number
WO2022242374A1
WO2022242374A1 PCT/CN2022/086108 CN2022086108W WO2022242374A1 WO 2022242374 A1 WO2022242374 A1 WO 2022242374A1 CN 2022086108 W CN2022086108 W CN 2022086108W WO 2022242374 A1 WO2022242374 A1 WO 2022242374A1
Authority
WO
WIPO (PCT)
Prior art keywords
water pump
circuit
power battery
way valve
motor
Prior art date
Application number
PCT/CN2022/086108
Other languages
English (en)
French (fr)
Inventor
张天强
杨钫
胡志林
张昶
付磊
王燕
李坤远
刘建康
闫书畅
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022242374A1 publication Critical patent/WO2022242374A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/002Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/005Controlling temperature of lubricant
    • F01M5/007Thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the technical field of vehicles, for example, to a vehicle thermal management system of a plug-in hybrid electric vehicle and a control method thereof.
  • the power battery is the only power source other than the engine in the hybrid powertrain.
  • the performance of the power battery directly affects the safety, power and economy of the vehicle.
  • the viscosity of the electrolyte increases or even solidifies when it is frozen, and the conductivity of the battery decreases; the diffusion rate of the battery in the active material decreases, and the charge transfer resistance increases, resulting in the charging of the lithium battery in a low temperature environment.
  • the discharge capacity decreases sharply, seriously affecting the power and economy of the vehicle.
  • the precipitation of lithium on the negative electrode of the lithium battery is serious.
  • the lithium dendrites precipitated on the negative electrode of the battery can easily pierce the interface of the solid electrolyte and cause a short circuit inside the lithium battery, causing thermal runaway of the battery, and then Combustion or even explosion has seriously affected the safety of lithium batteries.
  • the heating method of the power battery of a hybrid vehicle is single, and it is difficult to ensure the heating demand for the power battery under different operating conditions.
  • This application provides a vehicle thermal management system and its control method for a plug-in hybrid electric vehicle to solve the problem in the related art that the heating method of the power battery is single, and it is difficult to ensure the heating of the power battery under different operating conditions. Technical issues required.
  • a vehicle thermal management system for a plug-in hybrid electric vehicle comprising:
  • the power battery, the battery water pump, the first heat exchanger and the second heat exchanger that form the first circuit are sequentially connected through pipelines, and the working fluid inlet of the power battery is provided with a first temperature detector;
  • the engine thermal system includes an engine, a thermostat, an engine radiator, an engine water pump, and a second temperature detector, wherein the engine, the thermostat, the engine radiator, and the engine water pump are sequentially connected through pipelines to form In the second circuit, the coolant outlet of the engine is communicated with the thermostat, and the coolant outlet of the engine is connected to the pipe between the engine water pump and the engine radiator through a first bypass pipeline.
  • the second temperature detector is configured to detect the temperature of the coolant outlet of the engine;
  • the warm air system includes a warm air core, a heater, and a warm air loop water pump, the warm air core, the warm air loop water pump, the second heat exchanger, and the heater are sequentially connected through pipelines to form In the third circuit, the warm air core is located in the passenger compartment;
  • a communication assembly including a communication structure and a second bypass pipeline, one end of the second bypass pipeline is connected to the communication structure, and the other end is connected to the pipe between the heater and the second heat exchanger
  • the communication structure is arranged on the first bypass pipeline and the third circuit, so that the warm air circuit water pump can only communicate with the second heat exchanger or the second bypass pipeline ;
  • the communication structure has a first working state and a second working state, when the communication structure is in the first working state, the communication structure connects the first bypass pipeline and the third circuit in series , when the communication structure is in the second working state, the communication structure makes the first bypass line and the third circuit not communicate with each other;
  • the first four-way valve has four ports, two ports are connected to the pipeline between the second heat exchanger and the power battery, and the other two ports are connected to the first bypass pipeline;
  • An air conditioning system comprising a compressor, a condenser, a first electronic expansion valve, a second electronic expansion valve and an evaporator, the compressor, the condenser, the first electronic expansion valve and the first heat exchanger
  • the fourth circuit is formed by sequential connection of pipelines, one end of the evaporator is connected to the pipeline between the compressor and the first heat exchanger, the other end is connected to one end of the second electronic expansion valve, and the first end is connected to the pipeline between the compressor and the first heat exchanger.
  • the other end of the second electronic expansion valve is connected to the pipeline between the condenser and the first electronic expansion valve;
  • the driving motor thermal system includes a driving motor, an inverter, a motor water pump, a first three-way valve, a motor radiator and a third temperature detector, the driving motor, the inverter, the motor radiator, the The first three-way valve and the motor water pump are sequentially connected through pipelines to form a fifth circuit, and the remaining port of the first three-way valve is connected to the pipeline between the motor radiator and the drive motor,
  • the third temperature detector is configured to detect the temperature of the working fluid outlet of the driving motor;
  • the second four-way valve has four ports, two ports are connected to the pipeline between the battery water pump and the first heat exchanger, and the other two ports are connected between the motor water pump and the driving motor on the pipeline between them.
  • the communication structure includes a third four-way valve and a second three-way valve, and the third four-way valve has four ports, two of which are connected to the first port of the second three-way valve. The other two ports are connected to the first bypass pipe, the second port of the second three-way valve is connected to the second heat exchanger, The third port of the second three-way valve is connected to the second bypass pipeline.
  • the communication structure is a five-way valve
  • the five-way valve has five ports, one of which is connected to the water outlet of the heating circuit water pump, and one port is connected to the second heat exchanger
  • One port is connected to the second bypass pipeline, one port is connected to the water outlet of the engine water pump, and one port is connected to the working fluid inlet of the engine.
  • the engine thermal system further includes an oil cooler, one end of the oil cooler is connected to the thermostat, and the other end is connected to the pipeline between the engine radiator and the engine water pump,
  • the oil cooler is configured for heat exchange between coolant and oil of the engine.
  • the warm air core includes a front warm air core and a rear warm air core, the front warm air core and the rear warm air core are not connected to each other, and are connected to the rear warm air
  • a switch valve is arranged on the pipeline connected to the air core body, and the switch valve is configured to control whether the working medium in the third circuit passes through the rear heater core body.
  • the drive motor includes a front drive motor and a rear drive motor
  • the inverter includes a front drive inverter and a rear drive inverter
  • the front drive motor is connected to the front drive inverter through a pipeline.
  • the rear drive motor is connected to the rear drive inverter through pipelines, and the front drive motor and the front drive inverter are arranged in parallel with the rear drive motor and the rear drive inverter.
  • the present application also provides a control method for a vehicle thermal management system of a plug-in hybrid electric vehicle, which is applicable to the vehicle thermal management system of a plug-in hybrid electric vehicle in any of the above solutions, and the control method includes :
  • S16-S17 is also included after S13:
  • S15 also includes S20-S21:
  • the present application also provides another control method for the vehicle thermal management system of a plug-in hybrid electric vehicle, which is applicable to the vehicle thermal management system of a plug-in hybrid electric vehicle in any of the above solutions, and the control method includes:
  • Control the second four-way valve to connect the first circuit and the fifth circuit in series, and control the battery water pump and the motor water pump to work.
  • S35-S36 is also included after S33:
  • S34 also includes S37-S38:
  • Fig. 1 is a schematic diagram of a vehicle thermal management system of a plug-in hybrid electric vehicle provided by the present application
  • Fig. 2 is a partial schematic diagram of a vehicle thermal management system of a plug-in hybrid electric vehicle provided by the present application;
  • Fig. 3 is a working schematic diagram of a vehicle thermal management system of a plug-in hybrid electric vehicle in heating mode 1 provided by the present application;
  • Fig. 4 is a working schematic diagram of a plug-in hybrid electric vehicle thermal management system in heating mode 2 provided by the present application;
  • Fig. 5 is a working schematic diagram of a plug-in hybrid electric vehicle thermal management system in heating mode 3 provided by the present application;
  • Fig. 6 is a working schematic diagram of a plug-in hybrid electric vehicle thermal management system in heating mode 4 provided by the present application;
  • Fig. 7 is a flowchart of a control method for a vehicle thermal management system of a plug-in hybrid electric vehicle provided by the present application;
  • Fig. 8 is a flow chart of another control method for the vehicle thermal management system of a plug-in hybrid electric vehicle provided by the present application.
  • FIG. 9 is a flow chart of another control method for a vehicle thermal management system of a plug-in hybrid electric vehicle provided by the present application.
  • FIG. 10 is a flow chart of another control method for a vehicle thermal management system of a plug-in hybrid electric vehicle provided by the present application.
  • Air intake intercooler 302. Intercooler radiator; 303. Intercooler circuit water pump; 304. The third three-way valve;
  • 601 front heater core; 602, rear heater core; 603, heater; 604, second heat exchanger; 605, second three-way valve; 606, third four-way valve; 607, heater circuit Water pump; 608, switch valve;
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, it can be the internal communication of two components or the interaction relationship between two components.
  • connection can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, it can be the internal communication of two components or the interaction relationship between two components.
  • a first feature being "on” or “under” a second feature may include that the first and second features are in direct contact, and may also include that the first and second features are not in direct contact. contact but through additional feature contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • "Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • this embodiment provides a vehicle thermal management system for a plug-in hybrid electric vehicle
  • the vehicle thermal management system includes a power battery 101, a battery water pump 102,
  • the first circuit of the first heat exchanger 407 and the second heat exchanger 604 is filled with a working medium, and the working medium inlet of the power battery 101 is provided with a first temperature detector 103 .
  • the vehicle thermal management system also includes an engine thermal system, a warm air system, a communication assembly, a first four-way valve 208, an air conditioning system, a drive motor thermal system and a second four-way valve 506.
  • the above-mentioned engine thermal system comprises engine 201, thermostat 203, engine radiator 205, engine water pump 206 and second temperature detector 202, and engine 201, thermostat 203, engine radiator 205 and engine water pump 206 are connected sequentially through pipelines A second circuit is formed, the coolant outlet of the engine 201 is communicated with the thermostat 203, and the coolant outlet of the engine 201 is connected to the pipeline between the engine water pump 206 and the engine radiator 205 through the first bypass pipeline, and the second The temperature detector 202 is configured to detect the temperature of the coolant outlet of the engine 201 .
  • the engine thermal system also includes an oil cooler 204, one end of the oil cooler 204 is connected to the thermostat 203, and the other end is connected to the pipeline between the engine radiator 205 and the engine water pump 206, and the oil cooler 204 It is configured to heat-exchange the coolant and engine oil of the engine 201 .
  • the coolant of the engine 201 can be controlled to pass through the oil cooler 204 or through the engine radiator 205 .
  • the engine thermal system further includes a cooling fan 209 that can blow air to the engine radiator 205 to accelerate cooling of the coolant in the engine radiator 209 .
  • the above-mentioned engine thermal system also includes an exhaust gas recirculation (Exhaust Gas Recirculation, EGR) cooler 207, and the EDR cooler 207 is arranged in the first bypass pipeline, and is configured to heat exchange the exhaust gas required by the engine exhaust gas recirculation with the first bypass. coolant in the pipeline.
  • EGR exhaust Gas Recirculation
  • the above warm air system includes a warm air core, a heater 603 and a warm air loop water pump 607, the warm air core, the warm air loop water pump 607, the second heat exchanger 604, and the heater 603 are sequentially connected by pipelines to form a third loop , the heater core is located in the passenger compartment.
  • the heater 603 can heat the working fluid in the third circuit, and the working fluid can transmit heat to the passenger compartment through the warm air core, and can also exchange heat with the working fluid in the first circuit through the second heat exchanger 604, In this way, the power battery is heated.
  • the heater core includes a front heater core 601 and a rear heater core 602, the front heater core 601 and the rear heater core 602 are connected in parallel, and are connected to the rear heater core 602
  • An on-off valve 608 is arranged on the pipeline, and the on-off valve 608 is configured to control whether the working fluid in the third circuit passes through or not through the rear heater core 602 .
  • the front warm air core 601 and the rear warm air core 602 can be respectively arranged at the front and rear positions of the passenger compartment, so as to realize the heating of the front and rear positions of the passenger compartment.
  • the communication component includes a communication structure and a second bypass pipeline, one end of the second bypass pipeline is connected to the communication structure, and the other end is connected to the pipeline between the heater 603 and the second heat exchanger 604 .
  • the communication structure is arranged on the first bypass pipeline and the third circuit, so that the warm air circuit water pump 607 can only communicate with the second heat exchanger 604 or the second bypass pipeline.
  • the communication structure has a first working state and a second working state. When the communication structure is in the first working state, the communication structure connects the first bypass pipeline and the third circuit in series. When the communication structure is in the second working state, the communication structure The first bypass line and the third circuit are not communicated with each other.
  • the communication structure includes a third four-way valve 606 and a second three-way valve 605, the third four-way valve 606 has four ports, two of which are connected to the first port of the second three-way valve 605 On the pipeline between the heater circuit and the water pump 607, the other two ports are connected to the first bypass pipeline, the second port of the second three-way valve 605 is connected to the second heat exchanger 604, and the second three-way valve 605 The third port of is connected to the second bypass line.
  • the communication structure can also be a five-way valve, and the five-way valve has five ports, one of which is connected to the water outlet of the heating circuit water pump 607, and one port is connected to the water inlet of the second heat exchanger 604 , one port communicates with the second bypass line, one port communicates with the water inlet of the engine water pump 206 , and one port communicates with the coolant outlet of the engine 201 .
  • the above-mentioned air conditioning system includes a compressor 401, a condenser 402, a first electronic expansion valve 403, a second electronic expansion valve 404 and an evaporator 405, and the compressor 401, a condenser 402, a first electronic expansion valve 403 and a first heat exchanger 407 is sequentially connected through pipelines to form a fourth circuit.
  • One end of the evaporator 405 is connected to the pipeline between the compressor 401 and the first heat exchanger 407, and the other end is connected to one end of the second electronic expansion valve 404.
  • the second electronic expansion valve The other end of the valve 404 is connected to the pipeline between the condenser 402 and the first electronic expansion valve 403 .
  • the above-mentioned evaporator 405 is arranged in the passenger compartment, and is equipped with a blower 406 machine.
  • the working fluid in the first circuit and the working fluid in the fourth circuit can perform heat exchange in the first heat exchanger 407, the working fluid in the fourth circuit absorbs heat in the first heat exchanger 407, and the working fluid in the first circuit The working fluid releases heat in the first heat exchanger 407, so that the temperature of the working fluid in the first circuit is lowered, and cooling of the power battery is realized.
  • the above-mentioned drive motor thermal system includes drive motor, inverter, motor water pump 507, first three-way valve 508, motor radiator 509 and the third temperature detector 510, drive motor, inverter, motor radiator, 509, the first A three-way valve 508 and the motor water pump 507 are connected through pipelines in turn to form the fifth circuit, and the remaining port of the first three-way valve 508 is connected to the pipeline between the motor radiator 509 and the driving motor, so that the third circuit can
  • the working fluid passes through the motor radiator 509 or not, and the third temperature detector 510 is configured to detect the temperature of the working fluid outlet of the driving motor.
  • the drive motor includes a front drive motor 501 and a rear drive motor 503, the inverter includes a front drive inverter 502 and a rear drive inverter 504, and the front drive motor 501 is connected to the front drive inverter 502 through a pipeline , the rear drive motor 503 is connected to the rear drive inverter 504 through pipelines, and the front drive motor 501 and the front drive inverter 502 are not communicated with the rear drive motor 503 and the rear drive inverter 504 .
  • the thermal system of the drive motor also includes a DCDC505, which is connected to the rear-drive inverter 504 through pipelines, and is not connected to the front-drive inverter 502. The driving motor 501, the inverter and the DCDC 505 all need to be cooled down during the working process.
  • the vehicle thermal management system also includes a first expansion tank 701, the first expansion tank 701 is connected to the second circuit and the third circuit through pipelines, and is configured to eliminate the temperature of the liquid working medium in multiple circuits. Differences cause pressure and flow fluctuations.
  • the vehicle thermal management system also includes a second expansion tank 702, the second expansion tank 702 is connected to the first circuit and the fifth circuit through pipelines, and is also configured to eliminate the temperature difference due to the liquid working medium in multiple circuits Caused by pressure and flow fluctuations.
  • the vehicle thermal management system also includes an engine air intake intercooler system, which includes an intake air intercooler 301, a third three-way valve 304, an intercooler The radiator 302 and the intercooling circuit water pump 303 , and the remaining port of the third three-way valve 304 is connected to the pipeline between the intercooling circuit water pump 303 and the intercooling radiator 302 .
  • an engine air intake intercooler system which includes an intake air intercooler 301, a third three-way valve 304, an intercooler The radiator 302 and the intercooling circuit water pump 303 , and the remaining port of the third three-way valve 304 is connected to the pipeline between the intercooling circuit water pump 303 and the intercooling radiator 302 .
  • the motor radiator 509, the condenser 402, the engine radiator 205 and the cooling fan 209 are arranged in sequence along the flow direction of the cooling air when the vehicle is running, and the intercooling radiator 302 It is arranged side by side with the motor radiator 509.
  • the second four-way valve 506 makes the first circuit and the fifth circuit in series, and the first three-way valve 508 makes the working medium in the fifth circuit not pass through the motor radiator 509 .
  • the inverter is powered by the on-board charger or charging pile, and the electric energy is converted into heat energy for the fifth circuit.
  • the working fluid is heated, and since the first loop and the fifth loop are connected in series, the power battery 101 can be heated at this time.
  • the compressor 401 of the air-conditioning system is not working, and the passenger compartment has a heating demand, that is, the heater 603 is working, and the third four-way valve 606 makes the third circuit and the first bypass line disconnected, and the second The two-way and three-way valve 605 makes the water pump 607 of the warm air circuit only communicate with the second bypass pipeline, and at this time, no heat exchange is performed in the second heat exchanger 604 .
  • the second four-way valve 506 connects the first circuit and the fifth circuit in series
  • the first four-way valve 208 connects the first circuit and the first bypass pipeline in series
  • the first four-way valve 208 connects the first circuit and the first bypass pipeline in series.
  • the three-way valve 606 prevents the first bypass line from communicating with the third circuit
  • the first three-way valve 508 prevents the working fluid in the fifth circuit from passing through the radiator of the motor.
  • the inverter is powered by the on-board charger or charging pile, and the electric energy is converted into heat energy for the fifth circuit.
  • the working fluid is heated, and since the first loop and the fifth loop are connected in series, the power battery 101 can be heated at this time.
  • the engine 201 is started and is in an idling state. Fuel is burned in the cylinder of the engine 201 to convert chemical energy into thermal energy to heat the coolant in the first bypass pipeline, thereby heating the power battery 101 .
  • the compressor 401 of the air-conditioning system is not working, and the passenger compartment has a heating demand, that is, the heater 603 is working, and the third four-way valve 606 makes the third circuit and the first bypass line disconnected, and the second The two-way and three-way valve 605 makes the water pump 607 of the warm air circuit only communicate with the second bypass pipeline, and at this time, no heat exchange is performed in the second heat exchanger 604 .
  • the first four-way valve 208 makes the first circuit and the first bypass pipeline disconnected, and the second four-way valve 506 makes the first circuit and the fifth circuit in series , the third four-way valve 606 makes the first bypass line and the third circuit not communicate with each other, the first three-way valve 508 makes the working fluid in the fifth circuit not pass through the motor radiator 509, and the second three-way valve 605 makes the The warm air loop water pump 607 is only connected to the second heat exchanger 604 .
  • the inverter is powered by the on-board charger or charging pile, and the electric energy is converted into heat energy for the fifth circuit.
  • the working fluid is heated, and since the first loop and the fifth loop are connected in series, the power battery 101 can be heated at this time.
  • Control the heater 603 and the warm air circuit water pump 607 to work supply power to the heater 603 through the on-board charger or charging pile, convert the electric energy into heat energy for the third circuit to heat, and pass the second heat exchanger 604 to the workers in the first circuit
  • the mass is heated, thereby heating the power battery 101 .
  • the first four-way valve 208 makes the first circuit and the first bypass pipeline disconnected, and the second four-way valve 506 makes the first circuit and the fifth circuit in series , using the waste heat of the driving motor to heat the power battery 101 .
  • the third four-way valve 606 is controlled so that the third circuit and the first bypass line are connected in series.
  • the second bypass pipeline uses the waste heat of the engine 201 for the heating of the passenger compartment. If there is no heating demand for the passenger compartment, the second three-way valve 605 is controlled to connect only to the second heat exchanger 604, and the waste heat of the engine 201 is used for heating the power The battery 101 is heated.
  • This embodiment also provides a control method for a vehicle thermal management system of a plug-in hybrid electric vehicle, the control method is applicable to the above-mentioned vehicle thermal management system of a plug-in hybrid electric vehicle, as shown in FIGS. 7 to 9 , the control method includes:
  • S15 also includes S20-S21:
  • T1 is, for example, -10°C
  • T2 is, for example, 10°C
  • T3 is, for example, 55°C.
  • T1, T2 and T3 can all be selected according to actual needs.
  • This embodiment also provides another control method for the vehicle thermal management system of a plug-in hybrid electric vehicle, the control method is applicable to the above-mentioned vehicle thermal management system of a plug-in hybrid electric vehicle, as shown in FIG. 10 , the Control methods include:
  • S33 also includes S35-S36:
  • S34 also includes S37-S38:
  • T2 is, for example, 10°C
  • T3 is, for example, 55°C.
  • the vehicle thermal management system of the plug-in hybrid electric vehicle provided by this embodiment is provided with the engine thermal system, the warm air system, the connecting component, the first four-way valve 208, the air conditioning system, the drive motor thermal system and the
  • the two-way and four-way valve 506 can use at least one of the heat generated by the drive motor to block the rotation, the heat generated by the engine at idling speed, and the heating of the heater to heat the power battery 101, so as to ensure rapid heating of the power battery in a low temperature environment and shorten the charging time. Improve the low-temperature driving experience of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

本文公开了一种插电式混合动力汽车的整车热管理***及其控制方法。该整车热管理***包括通过管路依次连接形成第一回路的动力电池、电池水泵、第一热交换器和第二热交换器,动力电池的工质进口设置有第一温度检测器;发动机热***、暖风***、连通组件、第一四通阀、空调***、驱动电机热***及第二四通阀。

Description

插电式混合动力汽车的整车热管理***及其控制方法
本申请要求在2021年05月17日提交中国专利局、申请号为202110535899.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆技术领域,例如涉及一种插电式混合动力汽车的整车热管理***及其控制方法。
背景技术
动力电池是混合动力总成中除发动机之外唯一的动力源,动力电池性能的好坏直接影响整车的安全性、动力性和经济性。当锂电池处于低温环境中时,一方面电解液受冻粘度增大甚至凝固,电池的导电率下降;电池在活性物质内部扩散速率降低,电荷转移阻抗增大,导致低温环境下锂电池的充放电能力急剧降低,严重影响整车动力性及经济性。另一方面,低温环境下,锂电池负极析出锂严重,尤其是在低温充电时,电池负极析出的锂枝晶容易刺穿固态电解质界面导致锂电池内部短接,引起电池的热失控,进而发生燃烧甚至***,严重影响了锂电池的安全性。
混动力汽车的动力电池的加热方式单一,在不同运行工况下,难以保证对动力电池的加热需求。
发明内容
本申请提供一种插电式混合动力汽车的整车热管理***及其控制方法,以解决相关技术中存在的动力电池的加热方式单一,在不同运行工况下,难以保证对动力电池的加热需求的技术问题。
一种插电式混合动力汽车的整车热管理***,包括:
通过管路依次连接形成第一回路的动力电池、电池水泵、第一热交换器和第二热交换器,所述动力电池的工质进口设置有第一温度检测器;
发动机热***,包括发动机、节温器、发动机散热器、发动机水泵和第二温度检测器,所述发动机、所述节温器、所述发动机散热器和所述发动机水泵通过管路依次连接形成第二回路,所述发动机的冷却液出口连通于所述节温器,且所述发动机的冷却液出口通过第一旁通管路连接于所述发动机水泵和所述发动机散热器之间的管路,所述第二温度检测器被配置为检测所述发动机的冷却 液出口的温度;
暖风***,包括暖风芯体、加热器和暖风回路水泵,所述暖风芯体、所述暖风回路水泵、所述第二热交换器、所述加热器依次通过管路连接形成第三回路,所述暖风芯***于乘员舱内;
连通组件,包括连通结构和第二旁通管路,所述第二旁通管路一端连接于所述连通结构,另一端连接于所述加热器和所述第二热交换器之间的管路上,所述连通结构设置于所述第一旁通管路和所述第三回路上,能够使得所述暖风回路水泵仅连通所述第二热交换器或所述第二旁通管路;所述连通结构具有第一工作状态和第二工作状态,当所述连通结构处于所述第一工作状态时,所述连通结构串联连通所述第一旁通管路和所述第三回路,当所述连通结构处于第二工作状态时,所述连通结构使得所述第一旁通管路和所述第三回路互不连通;
第一四通阀,具有四个端口,两个端口连接于所述第二热交换器和所述动力电池之间的管路上,另外两个端口连接于所述第一旁通管路上;
空调***,包括压缩机、冷凝器、第一电子膨胀阀、第二电子膨胀阀和蒸发器,所述压缩机、所述冷凝器、所述第一电子膨胀阀和所述第一热交换器通过管路依次连接形成第四回路,所述蒸发器一端连接于所述压缩机和所述第一热交换器之间的管路,另一端连接于第二电子膨胀阀的一端,所述第二电子膨胀阀的另一端连接于所述冷凝器和所述第一电子膨胀阀之间的管路;
驱动电机热***,包括驱动电机、逆变器、电机水泵、第一三通阀、电机散热器和第三温度检测器,所述驱动电机、所述逆变器、所述电机散热器、所述第一三通阀和所述电机水泵依次通过管路连接形成第五回路,所述第一三通阀剩余的一个端口连通于所述电机散热器和所述驱动电机之间的管路,所述第三温度检测器被配置为检测所述驱动电机的工质出口的温度;
第二四通阀,具有四个端口,两个端口连接于所述电池水泵和所述第一热交换器之间的管路上,另外两个端口连接于所述电机水泵和所述驱动电机之间的管路上。
一实施例中,所述连通结构包括第三四通阀和第二三通阀,所述第三四通阀具有四个端口,其中两个端口连接于所述第二三通阀的第一端口和所述暖风回路水泵之间的管路上,另外两个端口连接于所述第一旁通管路上,所述第二三通阀的第二端口连接于所述第二热交换器,所述第二三通阀的第三端口连接于所述第二旁通管路。
一实施例中,所述连通结构为五通阀,所述五通阀具有五个端口,其中一个端口连通于所述暖风回路水泵的出水口,一个端口连通于所述第二热交换器 的进水口,一个端口连通于所述第二旁通管路,一个端口连通于所述发动机水泵的出水口,一个端口连通于所述发动机的工质进口。
一实施例中,所述发动机热***还包括机油冷却器,所述机油冷却器一端连接于所述节温器,另一端连接于所述发动机散热器和所述发动机水泵之间的管路,所述机油冷却器被配置为用于所述发动机的冷却液与机油的热交换。
一实施例中,所述暖风芯体包括前暖风芯体和后暖风芯体,所述前暖风芯体和所述后暖风芯体互不连通连接,且与所述后暖风芯体连接的管路上设置有开关阀,所述开关阀被配置为控制所述第三回路内的工质是否经过所述后暖风芯体。
一实施例中,所述驱动电机包括前驱动电机和后驱动电机,所述逆变器包括前驱逆变器和后驱逆变器,所述前驱动电机通过管路连接于所述前驱逆变器,所述后驱动电机通过管路连接于所述后驱逆变器,且所述前驱动电机和所述前驱逆变器与所述后驱动电机和所述后驱逆变器并联设置。
本申请还提供一种插电式混合动力汽车的整车热管理***的控制方法,其中,适用于上述任一方案中的插电式混合动力汽车的整车热管理***,所述控制方法包括:
S11、确定插电式混合动力汽车处于充电状态;
S12、获取并判断动力电池的当前温度T,并比较T与T1和T2的大小,T1<T2;且判断乘员舱是否具有采暖需求;
若T1<T≤T2,且乘员舱具有采暖需求,则执行S13;
若T1<T≤T2,且乘员舱无采暖需求,则执行S14;
若T≤T1,且乘员舱具有采暖需求,则执行S15;
若T≤T1,且乘员舱无采暖需求,则执行S14;
S13、控制加热器和暖风回路水泵工作,控制连通结构处于第二工作状态,且使得暖风回路水泵仅连通第二旁通管路;
控制第二四通阀串联第一回路和第五回路,控制第一三通阀仅连通电机水泵和驱动电机,控制驱动电机堵转生热,且控制电机水泵工作;
S14、控制加热器和暖风回路水泵工作,控制连通结构处于第二工作状态,且使得暖风回路水泵仅连通第二热交换器;
控制第二四通阀串联第一回路和第五回路,控制第一三通阀仅连通电机水泵和驱动电机,控制驱动电机堵转生热,且控制电机水泵工作;
S15、控制加热器和暖风回路水泵工作,控制连通结构处于第二工作状态,且使得暖风回路水泵仅连通第二旁通管路;
控制第二四通阀串联第一回路和第五回路,控制第一三通阀仅连通电机水泵和驱动电机,控制驱动电机堵转生热,且控制电机水泵工作;
控制第一四通阀串联第一回路和第一旁通管路,控制节温器与发动机散热器断开连通,控制发动机起机且以怠速运行,控制发动机水泵工作。
一实施例中,在S13之后还包括S16-S17:
S16、获取动力电池的工质进口温度并判断动力电池的工质进口温度是否大于设定值T3,若动力电池的工质进口温度大于设定值T3,则控制驱动电机及电机水泵停止工作;若动力电池的工质进口温度不大于设定值T3,则控制驱动电机及电机水泵工作;
S17、获取动力电池的当前温度T4并判断动力电池的当前温度T4是否大于T2,若动力电池的当前温度T4大于T2,则控制驱动电机和电机水泵停止工作,并控连通结构处于第一工作状态,控制第二四通阀并联第一回路和第五回路;若动力电池的当前温度T4不大于T2,则返回至S16;
在S14之后还包括S18-S19:
S18、获取动力电池的工质进口温度并判断动力电池的工质进口温度是否大于设定值T3,若动力电池的工质进口温度大于设定值T3,则控制加热器、暖风回路水泵、驱动电机及电机水泵停止工作;若动力电池的工质进口温度不大于设定值,则控制加热器、暖风回路水泵、驱动电机及电机水泵工作;
S19、获取动力电池的当前温度T4并判断动力电池的当前温度T4是否大于T2,若动力电池的当前温度T4大于T2,则控制加热器、暖风回路水泵、驱动电机及电机水泵停止工作,并控制连通结构处于第一工作状态,控制第二四通阀并联第一回路和第五回路;若动力电池的当前温度T4不大于T2,则返回至S18;
在S15之后还包括S20-S21:
S20、获取动力电池的工质进口温度并判断动力电池的工质进口温度是否大于设定值T3,若动力电池的工质进口温度大于设定值T3,则控制驱动电机、电机水泵及发动机停止工作;若动力电池的工质进口温度不大于设定值,则控制驱动电机、电机水泵及发动机均工作;
S21、获取动力电池的当前温度T4并判断动力电池的当前温度T4是否大于T2,若动力电池的当前温度T4大于T2,则控制驱动电机、电机水泵及发动机 停止工作,并控制连通结构处于第一工作状态,控制第二四通阀并联第一回路和第五回路,控制第一四通阀串联第一回路和第一旁通管路;若动力电池的当前温度T4不大于T2,则返回至S20。
本申请还提供另一种插电式混合动力汽车的整车热管理***的控制方法,适用于上述任一方案中的插电式混合动力汽车的整车热管理***,所述控制方法包括:
S31、确定插电式混合动力汽车处于行驶状态;
S32、获取动力电池的温度T并比较T与T2的大小,且判断判断乘员舱是否具有采暖需求;
若T≤T2,且乘员舱具有采暖需求,则执行S33;
若T≤T2,且乘员舱无采暖需求,则执行S34;
S33、控制第一四通阀使得第一回路和第二回路互不连通,控制连通结构处于第一工作状态,且使得暖风回路水泵仅连通第二旁通管路,以向暖风芯体输送热量;
控制第二四通阀串联第一回路和第五回路,控制电池水泵和电机水泵工作;
S34、控制第一四通阀使得第一回路和第二回路互不连通,控制连通结构处于第一工作状态,且使得暖风回路水泵仅连通第二热交换器;
控制第二四通阀串联第一回路和第五回路,控制电池水泵和电机水泵工作。
一实施例中,在S33之后还包括S35-S36:
S35、获取动力电池的工质进口温度并判断动力电池的工质进口温度是否大于设定值T3,若动力电池的工质进口温度大于设定值T3,则控制电池水泵和电机水泵均停止工作;若动力电池的工质进口温度不大于设定值T3,则控制电池水泵和电机水泵工作;
S36、获取动力电池的当前温度T5并判断动力电池的当前温度T5是否大于T2,若动力电池的当前温度T5大于T2,则控制电池水泵和电机水泵停止工作,并控制第二四通阀并联第一回路和第五回路;若动力电池的当前温度T5不大于T2,则返回至S35。
在S34之后还包括S37-S38:
S37、获取动力电池的工质进口温度并判断动力电池的工质进口温度是否大于设定值T3,若动力电池的工质进口温度大于设定值T3,则控制暖风回路水泵、电池水泵和电机水泵停止工作;若动力电池的工质进口温度不大于设定值T3,则控制暖风回路水泵、电池水泵和电机水泵工作;
S38、获取动力电池的当前温度T5并判断动力电池的当前温度T5是否大于T2,若动力电池的当前温度T5大于T2,则控制暖风回路水泵、电池水泵和电机水泵停止工作,并控制第二四通阀并联第一回路和第五回路;若动力电池的当前温度T5不大于T2,则返回至S37。
附图说明
图1是本申请提供的一种插电式混合动力汽车的整车热管理***的示意图;
图2是本申请提供的一种插电式混合动力汽车的整车热管理***的局部示意图;
图3是本申请提供的一种插电式混合动力汽车的整车热管理***处于加热模式一的工作示意图;
图4是本申请提供的一种插电式混合动力汽车的整车热管理***处于加热模式二的工作示意图;
图5是本申请提供的一种插电式混合动力汽车的整车热管理***处于加热模式三的工作示意图;
图6是本申请提供的一种插电式混合动力汽车的整车热管理***处于加热模式四的工作示意图;
图7是本申请提供的一种插电式混合动力汽车的整车热管理***控制方法的流程图;
图8是本申请提供的另一种插电式混合动力汽车的整车热管理***控制方法的流程图;
图9是本申请提供的另一种插电式混合动力汽车的整车热管理***控制方法的流程图;
图10是本申请提供的另一种插电式混合动力汽车的整车热管理***控制方法的流程图。
图中:
101、动力电池;102、电池水泵;103、第一温度检测器;
201、发动机;202、第二温度检测器;203、节温器;204、机油冷却器;205、发动机散热器;206、发动机水泵;207、EGR冷却器;208、第一四通阀;209、冷却风扇;
301、进气中冷器;302、中冷散热器;303、中冷回路水泵;304、第三三通阀;
401、压缩机;402、冷凝器;403、第一电子膨胀阀;404、第二电子膨胀阀;405、蒸发器;406、鼓风机;407、第一热交换器;
501、前驱动电机;502、前驱逆变器;503、后驱动电机;504、后驱逆变器;505、DCDC;506、第二四通阀;507、电机水泵;508、第一三通阀;509、电机散热器;510、第三温度检测器;
601、前暖风芯体;602、后暖风芯体;603、加热器;604、第二热交换器;605、第二三通阀;606、第三四通阀;607、暖风回路水泵;608、开关阀;
701、第一膨胀水箱;702、第二膨胀水箱。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
在本申请的描述中,除非另有规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本申请中的含义。
在本申请中,除非另有规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
如图1所示,本实施例提供一种插电式混合动力汽车的整车热管理***,该整车热管理***包括通过管路依次连接形成第一回路的动力电池101、电池水泵102、第一热交换器407和第二热交换器604,第一回路内充设有工作介质,动力电池101的工质进口设置有第一温度检测器103。该整车热管理***还包括 发动机热***、暖风***、连通组件、第一四通阀208、空调***、驱动电机热***和第二四通阀506。
上述发动机热***包括发动机201、节温器203、发动机散热器205、发动机水泵206和第二温度检测器202,发动机201、节温器203、发动机散热器205和发动机水泵206通过管路依次连接形成第二回路,发动机201的冷却液出口连通于节温器203,且发动机201的冷却液出口通过第一旁通管路连接于发动机水泵206和发动机散热器205之间的管路,第二温度检测器202被配置为检测发动机201的冷却液出口的温度。
在本实施例中,发动机热***还包括机油冷却器204,机油冷却器204一端连接于节温器203,另一端连接于发动机散热器205和发动机水泵206之间的管路,机油冷却器204被配置为热交换发动机201的冷却液与机油。通过节温器203,能够控制发动机201的冷却液经过机油冷却器204或者经过发动机散热器205。此外,为了提高冷却液在发动机散热器205内的散热效率,发动机热***还包括冷却风扇209,冷却风扇209能够向发动机散热器205吹风以加速发动机散热器209内的冷却液的降温。
上述发动机热***还包括废气再循环(Exhaust Gas Recirculation,EGR)冷却器207,EDR冷却器207设置于第一旁通管路,被配置为热交换发动机废气再循环所需的废气与第一旁通管路内的冷却液。
上述暖风***包括暖风芯体、加热器603和暖风回路水泵607,暖风芯体、暖风回路水泵607、第二热交换器604、加热器603依次通过管路连接形成第三回路,暖风芯***于乘员舱内。加热器能603够加热第三回路内的工质,工质可通过暖风芯体向乘员舱内输送热量,还可通过第二热交换器604与第一回路内的工质进行热交换,以此对动力电池进行加热。
在本实施例中,暖风芯体包括前暖风芯体601和后暖风芯体602,前暖风芯体601和后暖风芯体602并联连接,且与后暖风芯体602连接的管路上设置有开关阀608,开关阀608被配置为控制第三回路内的工质经过或不经过后暖风芯体602。前暖风芯体601和后暖风芯体602可分别设置于乘员舱的前后位置,从而可实现对乘员舱前后位置的加热。
上述连通组件包括连通结构和第二旁通管路,第二旁通管路一端连接于连通结构,另一端连接于加热器603和第二热交换器604之间的管路上。连通结构设置于第一旁通管路和第三回路上,能够使得暖风回路水泵607仅连通第二热交换器604或第二旁通管路。连通结构具有第一工作状态和第二工作状态,当连通结构处于第一工作状态时,连通结构串联连通第一旁通管路和第三回路,当连通结构处于第二工作状态时,连通结构使得第一旁通管路和第三回路互不 连通。
在本实施例中,连通结构包括第三四通阀606和第二三通阀605,第三四通阀606具有四个端口,其中两个端口连接于第二三通阀605的第一端口和暖风回路水泵607之间的管路上,另外两个端口连接于第一旁通管路上,第二三通阀605的第二端口连接于第二热交换器604,第二三通阀605的第三端口连接于第二旁通管路。在其他实施例中,连通结构还可以为五通阀,五通阀具有五个端口,其中一个端口连通于暖风回路水泵607的出水口,一个端口连通于第二热交换器604的进水口,一个端口连通于第二旁通管路,一个端口连通于发动机水泵206的进水口,一个端口连通于发动机201的冷却液出口。
上述空调***包括压缩机401、冷凝器402、第一电子膨胀阀403、第二电子膨胀阀404和蒸发器405,压缩机401、冷凝器402、第一电子膨胀阀403和第一热交换器407通过管路依次连接形成第四回路,蒸发器405一端连接于压缩机401和第一热交换器407之间的管路,另一端连接于第二电子膨胀阀404的一端,第二电子膨胀阀404的另一端连接于冷凝器402和第一电子膨胀阀403之间的管路。上述蒸发器405设置于乘员舱内,且配套设置有鼓风406机。第一回路的工质和第四回路内的工质能够于第一热交换器407内进行热交换,第四回路内的工质在第一热交换器407内吸收热量,第一回路内的工质在第一热交换器407内放出热量,从而使得第一回路内的工质温度降低,实现对动力电池的降温冷却。
上述驱动电机热***包括驱动电机、逆变器、电机水泵507、第一三通阀508、电机散热器509和第三温度检测器510,驱动电机、逆变器、电机散热器、509、第一三通阀508和电机水泵507依次通过管路连接形成第五回路,第一三通阀508剩余的一个端口连通于电机散热器509和驱动电机之间的管路,能够使得第三回路内的工质经过或不经过电机散热器509,第三温度检测器510被配置为检测驱动电机的工质出口的温度。
在本实施例中,驱动电机包括前驱动电机501和后驱动电机503,逆变器包括前驱逆变器502和后驱逆变器504,前驱动电机501通过管路连接于前驱逆变器502,后驱动电机503通过管路连接于后驱逆变器504,且前驱动电机501和前驱逆变器502与后驱动电机503和后驱逆变器504互不连通设置。此外,驱动电机热***还包括DCDC505,DCDC505通过管路连接于后驱逆变器504,且与前驱逆变器502互不连通设置。驱动电机501、逆变器和DCDC505在工作过程中均需要进行降温冷却。
参照图1,该整车热管理***还包括第一膨胀水箱701,第一膨胀水箱701通过管路连接于第二回路和第三回路,被配置为消除多个回路中由于液体工质 的温度差异造成的压力和流量的波动。此外,该整车热管理***还包括第二膨胀水箱702,第二膨胀水箱702通过管路连通于第一回路和第五回路,同样被配置为消除多个回路中由于液体工质的温度差异造成的压力和流量的波动。
再次参照图1,该整车热管理***还包括发动机进气中冷***,该发动机进气中冷***包括通过管路依次连接的进气中冷器301、第三三通阀304、中冷散热器302和中冷回路水泵303,第三三通阀304剩余的一个端口连接于中冷回路水泵303和中冷散热器302之间的管路。
如图2所示,在本实施例中,沿着整车行驶时冷却空气的流动方向,电机散热器509、冷凝器402、发动机散热器205和冷却风扇209依次设置,且中冷散热器302和电机散热器509并排设置。
对该整车热管理***的对动力电池加热的工作原理进行说明。
1、加热模式一
当整车处于充电状态时,如图3所示,第二四通阀506使得第一回路和第五回路串联,第一三通阀508使得第五回路内的工质不经过电机散热器509。
控制前驱动电机501和后驱动电机503堵转加热,此时两个电机无转速和扭矩输出,通过车载充电机或充电桩对逆变器进行供电,把电能转化为热能为第五回路内的工质加热,并且由于第一回路和第五回路串联,此时能够对动力电池101进行加热。
此时空调***的压缩机401不工作,且此时乘员舱有取暖需求,也即加热器603工作,第三四通阀606使得第三回路和第一旁通管路互不连通,且第二三通阀605使得暖风回路水泵607仅连通第二旁通管路,此时第二热交换器604内不进行热交换。
2、加热模式二
当整车处于充电状态时,如图4所示,第二四通阀506使得第一回路和第五回路串联,第一四通阀208使得第一回路和第一旁通管路串联,第三四通阀606使得第一旁通管路和第三回路互不连通,第一三通阀508使得第五回路内的工质不经过电机散热器。
控制前驱动电机501和后驱动电机503堵转加热,此时两个电机无转速和扭矩输出,通过车载充电机或充电桩对逆变器进行供电,把电能转化为热能为第五回路内的工质加热,并且由于第一回路和第五回路串联,此时能够对动力电池101进行加热。同时发动机201启机并处于怠速状态,通过燃油在发动机201缸体内进行燃烧,把化学能转化成热能加热第一旁通管路内的冷却液,进而对动力电池101进行加热。
此时空调***的压缩机401不工作,且此时乘员舱有取暖需求,也即加热器603工作,第三四通阀606使得第三回路和第一旁通管路互不连通,且第二三通阀605使得暖风回路水泵607仅连通第二旁通管路,此时第二热交换器604内不进行热交换。
3、加热模式三
当整车处于充电状态时,如图5所示,第一四通阀208使得第一回路和第一旁通管路互不连通,第二四通阀506使得第一回路和第五回路串联,第三四通阀606使得第一旁通管路和第三回路互不连通,第一三通阀508使得第五回路内的工质不经过电机散热器509,第二三通阀605使得暖风回路水泵607仅连通第二热交换器604。
控制前驱动电机501和后驱动电机503堵转加热,此时两个电机无转速和扭矩输出,通过车载充电机或充电桩对逆变器进行供电,把电能转化为热能为第五回路内的工质加热,并且由于第一回路和第五回路串联,此时能够对动力电池101进行加热。控制加热器603和暖风回路水泵607工作,通过车载充电机或充电桩对加热器603供电,把电能转化成热能为第三回路加热,通过第二热交换器604对第一回路内的工质进行加热,从而对动力电池101进行加热。
4、加热模式四
当整车处于行驶状态时,如图6所示,第一四通阀208使得第一回路和第一旁通管路互不连通,第二四通阀506使得第一回路和第五回路串联,利用驱动电机的余热为动力电池101进行加热。
当发动机201的出水温度上升到预设值,控制第三四通阀606使得第三回路和第一旁通管路串联,如果乘员舱有取暖需求,则控制第二三通阀605仅连通第二旁通管路,将发动机201的余热用于乘员舱采暖,如果乘员舱无取暖需求,则控制第二三通阀605仅连通第二热交换器604,将发动机201的余热用于对动力电池101加热。
本实施例还提供一种插电式混合动力汽车的整车热管理***的控制方法,该控制方法适用于上述插电式混合动力汽车的整车热管理***,如图7至图9所示,该控制方法包括:
S11、确定插电式混合动力汽车处于充电状态。
S12、获取并判断动力电池101的当前温度T,并比较T与T1和T2的大小,T1<T2,且判断乘员舱是否具有采暖需求。
若T1≤T≤T2,且乘员舱具有采暖需求,则执行S13。
若T1≤T≤T2,且乘员舱无采暖需求,则执行S14。
若T≤T1,且乘员舱具有采暖需求,则执行S15。
若T≤T1,且乘员舱无采暖需求,则执行S14。
S13、控制加热器603和暖风回路水泵607工作,控制连通结构处于第二工作状态,且使得暖风回路水泵607仅连通第二旁通管路;在本实施例中,控制第三四通阀606使得第三回路和第一旁通回路互不连通,且控制第二三通阀605仅连通第二旁通管路。
控制第二四通阀506串联第一回路和第五回路,控制第一三通阀508仅连通电机水泵507和驱动电机,控制驱动电机堵转生热,且控制电机水泵507工作。
S14、控制加热器603和暖风回路水泵607工作,控制连通结构处于第二工作状态,且使得暖风回路水泵607仅连通第二热交换器604;在本实施例中,在本实施例中,控制第三四通阀606使得第三回路和第一旁通回路互不连通,且控制第二三通阀605仅连通第二热交换器604。
控制第二四通阀506串联第一回路和第五回路,控制第一三通阀508仅连通电机水泵507和驱动电机,控制驱动电机堵转生热,且控制电机水泵507工作。
S15、控制加热器603和暖风回路水泵607工作,控制连通结构处于第二工作状态,且使得暖风回路水泵607仅连通第二旁通管路;在本实施例中,控制第三四通阀606使得第三回路和第一旁通回路互不连通,且控制第二三通阀605仅连通第二旁通管路。
控制第二四通阀506串联第一回路和第五回路,控制第一三通阀508仅连通电机水泵507和驱动电机,控制驱动电机堵转生热,且控制电机水泵507工作。
控制第一四通阀208串联第一回路和第一旁通管路,控制节温器203与发动机散热器205断开连通,控制发动机201起机且以怠速运行,控制发动机水泵206工作。
在S13之后还包括S16-S17:
S16、获取并判断动力电池101的工质进口温度是否大于设定值T3,若动力电池101的工质进口温度大于设定值T3,则控制驱动电机及电机水泵507停止工作;若动力电池101的工质进口温度不大于设定值T3,则控制驱动电机及电机水泵507工作。
S17、获取并判断动力电池101的当前温度T4是否大于T2,若动力电池101的当前温度T4大于T2,则控制驱动电机和电机水泵507停止工作,并控连通结构处于第一工作状态,控制第二四通阀506并联第一回路和第五回路;若动力电池101的当前温度T4不大于T2,则返回至S16。
在S14之后还包括S18-S19:
S18、获取并判断动力电池101的工质进口温度是否大于设定值T3,若动力电池101的工质进口温度大于设定值T3,则控制加热器603、暖风回路水泵607、驱动电机及电机水泵507停止工作;若动力电池101的工质进口温度不大于设定值T3,则控制加热器603、暖风回路水泵607、驱动电机及电机水泵507工作。
S19、获取并判断动力电池101的当前温度T4是否大于T2,若动力电池101的当前温度T4大于T2,则控制加热器603、暖风回路水泵607、驱动电机及电机水泵507停止工作,并控制连通结构处于第一工作状态,控制第二四通阀506并联第一回路和第五回路;若动力电池101的当前温度T4不大于T2,则返回至S18。
在S15之后还包括S20-S21:
S20、获取并判断动力电池101的工质进口温度是否大于设定值T3,若动力电池101的工质进口温度大于设定值T3,则控制驱动电机、电机水泵507及发动机201停止工作;若动力电池101的工质进口温度不大于设定值T3,则控制驱动电机、电机水泵507及发动机201均工作。
S21、获取并判断动力电池101的当前温度T4是否大于T2,若动力电池101的当前温度T4大于T2,则控制驱动电机、电机水泵507及发动机201停止工作,并控制连通结构处于第一工作状态,控制第二四通阀506并联第一回路和第五回路,控制第一四通阀208串联第一回路和第一旁通管路;若动力电池101的当前温度T4不大于T2,则返回至S20。
在本实施例中,T1例如为-10℃,T2例如为10℃,T3例如为55℃,在其他实施例中,T1、T2和T3均可根据实际需要进行选择。
本实施例还提供另一种插电式混合动力汽车的整车热管理***的控制方法,该控制方法适用于上述插电式混合动力汽车的整车热管理***,如图10所示,该控制方法包括:
S31、确定插电式混合动力汽车处于行驶状态。
S32、获取动力电池101的温度T并比较T与T2的大小,且判断乘员舱是否具有采暖需求。
若T≤T2,且乘员舱具有采暖需求,则执行S33。
若T≤T2,且乘员舱无采暖需求,则执行S34。
S33、控制第一四通阀208使得第一回路和第二回路互不连通,控制连通结构处于第一工作状态,且使得暖风回路水泵607仅连通第二旁通管路,以向暖风芯体输送热量。
控制第二四通阀506串联第一回路和第五回路,控制电池水泵102和电机水泵507工作。
S34、控制第一四通阀208使得第一回路和第二回路互不连通,控制连通结构处于第一工作状态,且使得暖风回路水泵607仅连通第二热交换器604。
控制第二四通阀506串联第一回路和第五回路,控制电池水泵102和电机水泵507工作。
在S33之后还包括S35-S36:
S35、获取并判断动力电池101的工质进口温度是否大于设定值T3,若动力电池101的工质进口温度大于设定值T3,则控制电池水泵101和电机水泵507均停止工作;若动力电池101的工质进口温度不大于设定值T3,则控制电池水泵102和电机水泵507工作。
S36、获取并判断动力电池101的当前温度T5是否大于T2,若动力电池101的当前温度T5大于T2,则控制电池水泵102和电机水泵507停止工作,并控制第二四通阀506并联第一回路和第五回路;若动力电池101的当前温度T5不大于T2,则返回至S35。
在S34之后还包括S37-S38:
S37、获取并判断动力电池101的工质进口温度是否大于设定值T3,若动力电池101的工质进口温度大于设定值T3,则控制暖风回路水泵607、电池水泵102和电机水泵507停止工作;若动力电池101的工质进口温度不大于设定值T3,则控制暖风回路水泵607、电池水泵102和电机水泵507工作。
S38、获取并判断动力电池101的当前温度T5是否大于T2,若动力电池101的当前温度T5大于T2,则控制暖风回路水泵607、电池水泵102和电机水泵507停止工作,并控制第二四通阀506并联第一回路和第五回路;若动力电池101的当前温度T5不大于T2,则返回至S37。
同样地,在本实施例中,上述T2例如为10℃,T3例如为55℃。
综上,本实施例提供的插电式混合动力汽车的整车热管理***,通过设置发动机热***、暖风***、连通组件、第一四通阀208、空调***、驱动电机热 ***和第二四通阀506,能够利用驱动电机堵转生热,发动机怠速生热以及加热器加热中的至少一种对动力电池101进行加热,保证在低温环境下对动力电池进行快速加热,缩短充电时间,改善整车低温驾驶体验。

Claims (10)

  1. 一种插电式混合动力汽车的整车热管理***,包括:
    通过管路依次连接形成第一回路的动力电池(101)、电池水泵(102)、第一热交换器(407)和第二热交换器(604),所述动力电池(101)的工质进口设置有第一温度检测器(103);
    发动机热***,包括发动机(201)、节温器(203)、发动机散热器(205)、发动机水泵(206)和第二温度检测器(202),所述发动机(201)、所述节温器(203)、所述发动机散热器(205)和所述发动机水泵(206)通过管路依次连接形成第二回路,所述发动机(201)的冷却液出口连通于所述节温器(203),且所述发动机(201)的冷却液出口通过第一旁通管路连接于所述发动机水泵(206)和所述发动机散热器(205)之间的管路,所述第二温度检测器(202)被配置为检测所述发动机(201)的冷却液出口的温度;
    暖风***,包括暖风芯体、加热器(603)和暖风回路水泵(607),所述暖风芯体、所述暖风回路水泵(607)、所述第二热交换器(604)、所述加热器(603)依次通过管路连接形成第三回路,所述暖风芯***于乘员舱内;
    连通组件,包括连通结构和第二旁通管路,所述第二旁通管路一端连接于所述连通结构,另一端连接于所述加热器(603)和所述第二热交换器(604)之间的管路上,所述连通结构设置于所述第一旁通管路和所述第三回路上,被配置为使得所述暖风回路水泵(607)仅连通所述第二热交换器(604)或所述第二旁通管路;所述连通结构具有第一工作状态和第二工作状态,在所述连通结构处于所述第一工作状态的情况下,所述连通结构串联连通所述第一旁通管路和所述第三回路,在所述连通结构处于第二工作状态的情况下,所述连通结构被配置为使得所述第一旁通管路和所述第三回路互不连通;
    第一四通阀(208),具有四个端口,两个端口连接于所述第二热交换器(604)和所述动力电池(101)之间的管路上,另外两个端口连接于所述第一旁通管路上;
    空调***,包括压缩机(401)、冷凝器(402)、第一电子膨胀阀(403)、第二电子膨胀阀(404)和蒸发器(405),所述压缩机(401)、所述冷凝器(402)、所述第一电子膨胀阀(403)和所述第一热交换器(407)通过管路依次连接形成第四回路,所述蒸发器(405)一端连接于所述压缩机(401)和所述第一热交换器(407)之间的管路,另一端连接于第二电子膨胀阀(404)的一端,所述第二电子膨胀阀(404)的另一端连接于所述冷凝器(402)和所述第一电子膨胀阀(403)之间的管路;
    驱动电机热***,包括驱动电机、逆变器、电机水泵(507)、第一三通阀 (508)、电机散热器(509)和第三温度检测器(510),所述驱动电机、所述逆变器、所述电机散热器(509)、所述第一三通阀(508)和所述电机水泵(507)依次通过管路连接形成第五回路,所述第一三通阀(508)剩余的一个端口连通于所述电机散热器(509)和所述驱动电机之间的管路,所述第三温度检测器(510)被配置为检测所述驱动电机的工质出口的温度;
    第二四通阀(506),具有四个端口,两个端口连接于所述电池水泵(102)和所述第一热交换器(407)之间的管路上,另外两个端口连接于所述电机水泵(507)和所述驱动电机之间的管路上。
  2. 根据权利要求1所述的插电式混合动力汽车的整车热管理***,其中,所述连通结构包括第三四通阀(606)和第二三通阀(605),所述第三四通阀(606)具有四个端口,所述第三四通阀(606)中的两个端口连接于所述第二三通阀(605)的第一端口和所述暖风回路水泵(607)之间的管路上,所述第三四通阀(606)中的另外两个端口连接于所述第一旁通管路上,所述第二三通阀(605)的第二端口连接于所述第二热交换器(604),所述第二三通阀(605)的第三端口连接于所述第二旁通管路。
  3. 根据权利要求1所述的插电式混合动力汽车的整车热管理***,其中,所述连通结构为五通阀,所述五通阀具有五个端口,所述五通阀中的一个端口连通于所述暖风回路水泵(607)的出水口,一个端口连通于所述第二热交换器(604)的进水口,一个端口连通于所述第二旁通管路,一个端口连通于所述发动机水泵(206)的出水口,一个端口连通于所述发动机(201)的工质进口。
  4. 根据权利要求1所述的插电式混合动力汽车的整车热管理***,还包括机油冷却器(204),所述机油冷却器(204)一端连接于所述节温器(203),另一端连接于所述发动机散热器(205)和所述发动机水泵(206)之间的管路,所述机油冷却器(204)被配置为热交换所述发动机(201)的冷却液与机油。
  5. 根据权利要求1所述的插电式混合动力汽车的整车热管理***,其中,所述暖风芯体包括前暖风芯体(601)和后暖风芯体(602),所述前暖风芯体(601)和所述后暖风芯体(602)互不连通连接,且与所述后暖风芯体(602)连接的管路上设置有开关阀(608),所述开关阀(608)被配置为控制所述第三回路内的工质是否经过所述后暖风芯体(602)。
  6. 根据权利要求1所述的插电式混合动力汽车的整车热管理***,其中,所述驱动电机包括前驱动电机(501)和后驱动电机(503),所述逆变器包括前驱逆变器(502)和后驱逆变器(504),所述前驱动电机(501)通过管路连接于所述前驱逆变器(502),所述后驱动电机(503)通过管路连接于所述后驱逆变器(504),且所述前驱动电机(501)和所述前驱逆变器(502)与所述后 驱动电机(503)和所述后驱逆变器(504)并联设置。
  7. 一种插电式混合动力汽车的整车热管理***的控制方法,适用于如权利要求1-6任一项所述的插电式混合动力汽车的整车热管理***,包括:
    确定插电式混合动力汽车处于充电状态;
    获取动力电池的当前温度T,并比较T与T1和T2的大小,T1<T2;且判断乘员舱是否具有采暖需求;
    响应于T1<T≤T2,且所述乘员舱具有所述采暖需求,控制加热器和暖风回路水泵工作,控制连通结构处于第二工作状态,且使得所述暖风回路水泵仅连通第二旁通管路;控制第二四通阀串联第一回路和第五回路,控制第一三通阀仅连通电机水泵和驱动电机,控制所述驱动电机堵转生热,且控制所述电机水泵工作;
    响应于T1<T≤T2,且所述乘员舱无所述采暖需求,控制加热器和暖风回路水泵工作,控制连通结构处于第二工作状态,且使得所述暖风回路水泵仅连通第二热交换器;控制第二四通阀串联第一回路和第五回路,控制第一三通阀仅连通电机水泵和驱动电机,控制所述驱动电机堵转生热,且控制所述电机水泵工作;
    响应于T≤T1,且乘员舱具有采暖需求,控制加热器和暖风回路水泵工作,控制连通结构处于第二工作状态,且使得所述暖风回路水泵仅连通第二旁通管路;控制第二四通阀串联第一回路和第五回路,控制第一三通阀仅连通电机水泵和驱动电机,控制所述驱动电机堵转生热,且控制所述电机水泵工作;控制第一四通阀串联所述第一回路和第一旁通管路,控制节温器与发动机散热器断开连通,控制发动机起机且以怠速运行,控制发动机水泵工作;
    响应于T≤T1,且乘员舱无采暖需求,控制加热器和暖风回路水泵工作,控制连通结构处于第二工作状态,且使得所述暖风回路水泵仅连通第二热交换器;控制第二四通阀串联第一回路和第五回路,控制第一三通阀仅连通电机水泵和驱动电机,控制所述驱动电机堵转生热,且控制所述电机水泵工作。
  8. 根据权利要求7所述的插电式混合动力汽车的整车热管理***的控制方法,在所述控制加热器和暖风回路水泵工作,控制连通结构处于第二工作状态,且使得所述暖风回路水泵仅连通第二旁通管路;控制第二四通阀串联第一回路和第五回路,控制第一三通阀仅连通电机水泵和驱动电机,控制所述驱动电机堵转生热,且控制所述电机水泵工作之后,还包括:
    获取所述动力电池的工质进口温度并判断所述动力电池的工质进口温度是否大于设定值T3,响应于所述动力电池的工质进口温度大于所述设定值T3,控 制所述驱动电机及所述电机水泵停止工作;响应于所述动力电池的工质进口温度不大于所述设定值T3,控制所述驱动电机及所述电机水泵工作;
    获取所述动力电池的当前温度T4并判断所述动力电池的当前温度T4是否大于T2,响应于所述动力电池的当前温度T4大于T2,控制所述驱动电机和所述电机水泵停止工作,并控制所述连通结构处于第一工作状态,控制所述第二四通阀并联所述第一回路和所述第五回路;响应于所述动力电池的当前温度T4不大于T2,返回执行所述获取所述动力电池的工质进口温度并判断所述动力电池的工质进口温度是否大于设定值T3;
    在所述控制加热器和暖风回路水泵工作,控制连通结构处于第二工作状态,且使得所述暖风回路水泵仅连通第二热交换器;控制第二四通阀串联第一回路和第五回路,控制第一三通阀仅连通电机水泵和驱动电机,控制所述驱动电机堵转生热,且控制所述电机水泵工作之后,还包括:
    获取所述动力电池的工质进口温度并判断所述动力电池的工质进口温度是否大于设定值T3,响应于所述动力电池的工质进口温度大于所述设定值T3,控制所述加热器、所述暖风回路水泵、所述驱动电机及所述电机水泵停止工作;响应于所述动力电池的工质进口温度不大于所述设定值T3,控制所述加热器、所述暖风回路水泵、所述驱动电机及所述电机水泵工作;
    获取所述动力电池的当前温度T4并判断所述动力电池的当前温度T4是否大于T2,响应于所述动力电池的当前温度T4大于T2,控制所述加热器、所述暖风回路水泵、所述驱动电机及所述电机水泵停止工作,并控制所述连通结构处于第一工作状态,控制所述第二四通阀并联所述第一回路和所述第五回路;响应于所述动力电池的当前温度T4不大于T2,返回执行所述获取所述动力电池的工质进口温度并判断所述动力电池的工质进口温度是否大于设定值T3;
    在所述控制加热器和暖风回路水泵工作,控制连通结构处于第二工作状态,且使得所述暖风回路水泵仅连通第二旁通管路;控制第二四通阀串联第一回路和第五回路,控制第一三通阀仅连通电机水泵和驱动电机,控制所述驱动电机堵转生热,且控制所述电机水泵工作;控制第一四通阀串联所述第一回路和第一旁通管路,控制节温器与发动机散热器断开连通,控制发动机起机且以怠速运行,控制发动机水泵工作之后,还包括:
    获取所述动力电池的工质进口温度并判断动力电池的工质进口温度是否大于设定值T3,响应于所述动力电池的工质进口温度大于所述设定值T3,控制所述驱动电机、所述电机水泵及所述发动机停止工作;响应于所述动力电池的工质进口温度不大于所述设定值T3,控制所述驱动电机、所述电机水泵及所述发动机均工作;
    获取所述动力电池的当前温度T4并判断所述动力电池的当前温度T4是否大于T2,响应于所述动力电池的当前温度T4大于T2,控制所述驱动电机、所述电机水泵及所述发动机停止工作,并控制所述连通结构处于第一工作状态,控制所述第二四通阀并联所述第一回路和所述第五回路,控制所述第一四通阀串联所述第一回路和所述第一旁通管路;响应于所述动力电池的当前温度T4不大于T2,返回执行所述获取所述动力电池的工质进口温度并判断动力电池的工质进口温度是否大于设定值T3。
  9. 一种插电式混合动力汽车的整车热管理***的控制方法,适用于如权利要求1-6任一项所述的插电式混合动力汽车的整车热管理***,包括:
    确定插电式混合动力汽车处于行驶状态;
    获取动力电池的温度T并比较T与T2的大小,且判断乘员舱是否具有采暖需求;
    响应于T≤T2,且所述乘员舱具有所述采暖需求,控制第一四通阀使得第一回路和第二回路互不连通,控制连通结构处于第一工作状态,且使得暖风回路水泵仅连通第二旁通管路,以向暖风芯体输送热量;控制第二四通阀串联所述第一回路和第五回路,控制电池水泵和电机水泵工作;
    响应于T≤T2,且所述乘员舱无所述采暖需求,控制第一四通阀使得第一回路和第二回路互不连通,控制连通结构处于第一工作状态,且使得暖风回路水泵仅连通第二热交换器;控制第二四通阀串联所述第一回路和第五回路,控制电池水泵和电机水泵工作。
  10. 根据权利要求9所述的插电式混合动力汽车的整车热管理***的控制方法,在所述控制第一四通阀使得第一回路和第二回路互不连通,控制连通结构处于第一工作状态,且使得暖风回路水泵仅连通第二旁通管路,以向暖风芯体输送热量;控制第二四通阀串联所述第一回路和第五回路,控制电池水泵和电机水泵工作之后,还包括:
    获取所述动力电池的工质进口温度并判断所述动力电池的工质进口温度是否大于设定值T3,响应于所述动力电池的工质进口温度大于所述设定值T3,控制所述电池水泵和所述电机水泵均停止工作;响应于所述动力电池的工质进口温度不大于所述设定值T3,控制所述电池水泵和所述电机水泵工作;
    获取所述动力电池的当前温度T5并判断所述动力电池的当前温度T5是否大于T2,响应于所述动力电池的当前温度T5大于T2,控制所述电池水泵和所述电机水泵停止工作,并控制所述第二四通阀并联所述第一回路和所述第五回路;响应于所述动力电池的当前温度T5不大于T2,返回执行所述获取所述动 力电池的工质进口温度并判断所述动力电池的工质进口温度是否大于设定值T3;
    在所述控制第一四通阀使得第一回路和第二回路互不连通,控制连通结构处于第一工作状态,且使得暖风回路水泵仅连通第二热交换器;控制第二四通阀串联所述第一回路和第五回路,控制电池水泵和电机水泵工作之后,还包括:
    获取所述动力电池的工质进口温度并判断所述动力电池的工质进口温度是否大于设定值T3,响应于所述动力电池的工质进口温度大于所述设定值T3,控制所述暖风回路水泵、所述电池水泵和所述电机水泵停止工作;响应于所述动力电池的工质进口温度不大于所述设定值T3,控制所述暖风回路水泵、所述电池水泵和所述电机水泵工作;
    获取所述动力电池的当前温度T5并判断所述动力电池的当前温度T5是否大于T2,响应于所述动力电池的当前温度T5大于T2,控制所述暖风回路水泵、所述电池水泵和所述电机水泵停止工作,并控制所述第二四通阀并联所述第一回路和所述第五回路;响应于所述动力电池的当前温度T5不大于T2,返回执行所述获取所述动力电池的工质进口温度并判断所述动力电池的工质进口温度是否大于设定值T3。
PCT/CN2022/086108 2021-05-17 2022-04-11 插电式混合动力汽车的整车热管理***及其控制方法 WO2022242374A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110535899.7A CN113119688B (zh) 2021-05-17 2021-05-17 一种插电式混合动力汽车的整车热管理***及其控制方法
CN202110535899.7 2021-05-17

Publications (1)

Publication Number Publication Date
WO2022242374A1 true WO2022242374A1 (zh) 2022-11-24

Family

ID=76782060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086108 WO2022242374A1 (zh) 2021-05-17 2022-04-11 插电式混合动力汽车的整车热管理***及其控制方法

Country Status (2)

Country Link
CN (1) CN113119688B (zh)
WO (1) WO2022242374A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220410653A1 (en) * 2021-06-24 2022-12-29 Guangzhou Automobile Group Co., Ltd. Thermal management system and electric vehicle having the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113119688B (zh) * 2021-05-17 2023-01-10 中国第一汽车股份有限公司 一种插电式混合动力汽车的整车热管理***及其控制方法
CN113547895B (zh) * 2021-08-18 2023-02-17 安徽江淮汽车集团股份有限公司 一种增程式汽车余热回收***
CN113580905B (zh) * 2021-08-31 2023-05-26 奇瑞汽车股份有限公司 插电式混合动力汽车的热管理***及插电式混合动力汽车
CN113771589B (zh) * 2021-09-23 2024-05-17 潍柴动力股份有限公司 一种热管理***及其控制方法
CN114030390B (zh) * 2021-11-18 2023-04-25 三一重机有限公司 混动车辆的热管理***及其控制方法、车辆
CN114368323B (zh) * 2022-01-04 2023-10-13 岚图汽车科技有限公司 汽车热管理***及汽车
CN117002250A (zh) * 2022-04-28 2023-11-07 比亚迪股份有限公司 热管理***和具有其的车辆
CN114771205A (zh) * 2022-05-07 2022-07-22 中国第一汽车股份有限公司 电动车低温充电及采暖***及其控制方法
CN114810452A (zh) * 2022-05-19 2022-07-29 联合汽车电子有限公司 混合动力车辆热管理***、控制方法及车辆
CN114801652B (zh) * 2022-05-20 2024-07-09 中国第一汽车股份有限公司 热管理***的控制方法、装置、存储介质及处理器
CN115465089B (zh) * 2022-09-26 2024-06-18 潍柴动力股份有限公司 混合动力车辆的热管理***控制方法及混合动力车辆
CN116291842B (zh) * 2023-02-17 2024-04-12 重庆长安汽车股份有限公司 一种用于混合动力车型的冷却***及车辆
CN116968543B (zh) * 2023-09-22 2024-02-02 豫新汽车热管理科技有限公司 一种集成式的热管理集成模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205768485U (zh) * 2016-07-04 2016-12-07 浙江大学 一种电动汽车智能整车热管理***
CN107097664A (zh) * 2017-04-25 2017-08-29 上海思致汽车工程技术有限公司 一种智能化多回路电动汽车热管理***
CN208559081U (zh) * 2018-05-21 2019-03-01 上海思致汽车工程技术有限公司 一种热泵型智能化多回路电动汽车热管理***
CN111231620A (zh) * 2018-11-29 2020-06-05 比亚迪股份有限公司 车辆热管理***及其控制方法、车辆
CN112109521A (zh) * 2020-09-17 2020-12-22 东风汽车集团有限公司 一种纯电动汽车整车热管理***
CN113119688A (zh) * 2021-05-17 2021-07-16 中国第一汽车股份有限公司 一种插电式混合动力汽车的整车热管理***及其控制方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11105537A (ja) * 1997-09-30 1999-04-20 Isuzu Motors Ltd 電気自動車用ヒートポンプ式空調装置
JP2010119282A (ja) * 2008-10-17 2010-05-27 Denso Corp 熱マネージメントシステム
JP6079417B2 (ja) * 2013-05-07 2017-02-15 株式会社デンソー 温度調整システム
JP2015186989A (ja) * 2014-03-12 2015-10-29 カルソニックカンセイ株式会社 車載温調装置、車両用空調装置及びバッテリ温調装置
CN207077971U (zh) * 2017-03-31 2018-03-09 一汽海马汽车有限公司 一种用于混动汽车的整车热管理装置
CN107972445B (zh) * 2017-11-21 2021-05-18 重庆邮电大学 一种四驱混合动力汽车热管理***及其控制方法
CN209290214U (zh) * 2018-11-09 2019-08-23 浙江吉利新能源商用车有限公司 一种电池装置及车辆
CN111231618B (zh) * 2018-11-29 2022-09-06 比亚迪股份有限公司 车辆热管理***及其控制方法、车辆
CN111231774A (zh) * 2018-11-29 2020-06-05 比亚迪股份有限公司 车辆热管理***、车辆热管理***的控制方法以及车辆
CN111251813B (zh) * 2018-11-30 2022-07-15 比亚迪股份有限公司 车辆的热管理***及车辆
CN111251800A (zh) * 2018-11-30 2020-06-09 宝沃汽车(中国)有限公司 车辆热管理***及车辆
CN109572365B (zh) * 2018-12-27 2022-07-08 重庆长安汽车股份有限公司 混合动力车型热管理***
CN112537180A (zh) * 2019-09-23 2021-03-23 北京新能源汽车股份有限公司 一种热管理***、控制方法、装置及汽车
CN110816208A (zh) * 2019-10-31 2020-02-21 上海思致汽车工程技术有限公司 一种多回路电动汽车热管理***
CN211493588U (zh) * 2019-12-30 2020-09-15 北汽福田汽车股份有限公司 用于车辆的空调采暖装置和车辆
CN111532100B (zh) * 2020-03-31 2024-04-12 浙江吉利控股集团有限公司 一种混合动力汽车集成化热管理***
CN211995079U (zh) * 2020-05-06 2020-11-24 长城汽车股份有限公司 混合动力车辆热管理***及车辆
CN111716995A (zh) * 2020-07-02 2020-09-29 重庆金康赛力斯新能源汽车设计院有限公司 电动汽车的空调和动力电池的加热***、方法和电动汽车
CN112319174A (zh) * 2020-10-19 2021-02-05 东风小康汽车有限公司重庆分公司 用于增程式汽车的热管理***及增程式汽车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205768485U (zh) * 2016-07-04 2016-12-07 浙江大学 一种电动汽车智能整车热管理***
CN107097664A (zh) * 2017-04-25 2017-08-29 上海思致汽车工程技术有限公司 一种智能化多回路电动汽车热管理***
CN208559081U (zh) * 2018-05-21 2019-03-01 上海思致汽车工程技术有限公司 一种热泵型智能化多回路电动汽车热管理***
CN111231620A (zh) * 2018-11-29 2020-06-05 比亚迪股份有限公司 车辆热管理***及其控制方法、车辆
CN112109521A (zh) * 2020-09-17 2020-12-22 东风汽车集团有限公司 一种纯电动汽车整车热管理***
CN113119688A (zh) * 2021-05-17 2021-07-16 中国第一汽车股份有限公司 一种插电式混合动力汽车的整车热管理***及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220410653A1 (en) * 2021-06-24 2022-12-29 Guangzhou Automobile Group Co., Ltd. Thermal management system and electric vehicle having the same
US11780287B2 (en) * 2021-06-24 2023-10-10 Guangzhou Automobile Group Co., Ltd. Thermal management system and electric vehicle having the same

Also Published As

Publication number Publication date
CN113119688B (zh) 2023-01-10
CN113119688A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2022242374A1 (zh) 插电式混合动力汽车的整车热管理***及其控制方法
JP4891584B2 (ja) 自動車用熱交換装置
CN108376808A (zh) 一种汽车电池温度调节装置
CN103660916A (zh) 一种用于混合动力或增程式的电动汽车热控制***
CN112455180B (zh) 混合动力汽车热管理***
WO2023083127A1 (zh) 插电式燃料电池混合动力汽车热管理***及其控制方法
CN104669998B (zh) 一种基于水缓速器的混合动力汽车及其控制方法
CN109638386B (zh) 一种汽车和供暖与动力电池加热***及方法
CN208827529U (zh) 一种汽车热管理***及汽车
WO2020173351A1 (zh) 电池组热管理***和电动汽车的热管理***
CN114161997B (zh) 双电堆大功率氢燃料电池汽车热管理***
CN212685168U (zh) 一种混动全地形车热管理***
CN114347867B (zh) 一种燃料电池汽车热管理***及控制方法
CN113665318A (zh) 插电式混动车动力电池的控制***及方法
CN109339931B (zh) 混合动力车辆冷却***及混合动力车辆
WO2023236342A1 (zh) 一种针对混合动力汽车的集成式整车中央热管理***
CN112428766A (zh) 混合动力车热量管理***及管理方法
CN212637096U (zh) 车辆热管理***和车辆
CN216157755U (zh) 一种阀组件及热管理***
CN220984639U (zh) 电池加热及冷却装置、汽车
WO2024037100A1 (zh) 混合动力发动机热管理***、控制方法、车辆
CN218647987U (zh) 燃料电池车辆热管理***
CN215771221U (zh) 一种燃料电池***快速降温装置
CN219667962U (zh) 一种纯电动汽车电机和电池冷却集成热管理***
CN114368323B (zh) 汽车热管理***及汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22803699

Country of ref document: EP

Kind code of ref document: A1