WO2020173351A1 - 电池组热管理***和电动汽车的热管理*** - Google Patents

电池组热管理***和电动汽车的热管理*** Download PDF

Info

Publication number
WO2020173351A1
WO2020173351A1 PCT/CN2020/075861 CN2020075861W WO2020173351A1 WO 2020173351 A1 WO2020173351 A1 WO 2020173351A1 CN 2020075861 W CN2020075861 W CN 2020075861W WO 2020173351 A1 WO2020173351 A1 WO 2020173351A1
Authority
WO
WIPO (PCT)
Prior art keywords
solenoid valve
valve
battery pack
port
thermal management
Prior art date
Application number
PCT/CN2020/075861
Other languages
English (en)
French (fr)
Inventor
李艳茹
吴兴远
李国伟
张伟
但志敏
左希阳
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20762930.4A priority Critical patent/EP3923398B1/en
Publication of WO2020173351A1 publication Critical patent/WO2020173351A1/zh
Priority to US17/458,640 priority patent/US11904728B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/667Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an electronic component, e.g. a CPU, an inverter or a capacitor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This application relates to the field of new energy, and in particular to a thermal management system for battery packs and a thermal management system for electric vehicles. Background technique
  • the thermal management system is mainly divided into three parts, namely, the thermal management of the passenger compartment, the thermal management of the battery pack, and the thermal management of the motor and its drive system. Because these three parts have different requirements for temperature, the three parts are generally independent at present, with low integration, resulting in serious heat waste and low energy utilization. Summary of the invention
  • the embodiments of the present application provide a thermal management system for a battery pack and a thermal management system for an electric vehicle, which improves energy utilization.
  • a battery pack thermal management system including: A battery pack thermal management device, a processor, and a solenoid valve network connected to the battery pack thermal management device;
  • the external port of the solenoid valve network is connected to the external cooling system
  • the processor is used to control the operating state of the solenoid valve in the solenoid valve network, so that the battery pack thermal management device uses the heat generated by the external cooling system to heat the battery pack.
  • a thermal management system for an electric vehicle includes an external cooling system and a battery pack thermal management system as provided in the embodiments of the present application.
  • the communication between the external cooling system and the battery pack thermal management system is realized by controlling the operating state of the solenoid valve network, so that the battery thermal management system uses the waste heat generated by the external cooling system to heat the battery pack, thereby reducing the heat
  • the waste of energy improves energy utilization.
  • Figure 1 is a schematic structural diagram of a battery pack thermal management system provided by some embodiments of this application
  • Figure 2 is a structural schematic diagram of a battery pack thermal management system provided by other embodiments of this application
  • Figure 3 is a schematic diagram of a battery pack thermal management system provided by some embodiments of this application Schematic diagram of the car's thermal management system.
  • FIG. 1 shows a schematic structural diagram of a battery pack thermal management system 1 provided by some embodiments of the present application.
  • the battery pack thermal management system 1 includes a battery pack thermal management device 11, a processor 12, and a solenoid valve network 13 connected to the battery pack thermal management device 11.
  • the external port of the solenoid valve network 13 is connected to the external cooling system 2.
  • the processor 12 is connected to the solenoid valve network 13 for controlling the operating state of the solenoid valves in the solenoid valve network 13, so that the battery pack thermal management device 11 uses the heat generated by the external cooling system 2 to heat the battery group.
  • the external cooling system 2 includes a device capable of generating heat and a device for transferring heat.
  • the heat generated by the external cooling system 2 may be waste heat generated by a device capable of generating heat in the external cooling system 2.
  • the external cooling system 2 may be a brake cooling system in an automobile, an engine cooling system in a hybrid electric vehicle, or an electric motor control cooling system in an electric vehicle, etc.
  • the external cooling system is not limited herein.
  • the devices that can generate heat in the motor electric control cooling system are the motor and the electric control device, and the devices used to transfer the waste heat generated by the motor and the electric control device include coolant pipes and coolers.
  • the communication between the external cooling system 2 and the battery pack thermal management system 1 is realized by controlling the operating state of the solenoid valves in the solenoid valve network 13, and the battery pack thermal management system 1 uses the external cooling system 2
  • the generated waste heat heats the battery pack, so that the heat can be fully utilized with each other, which reduces energy waste and improves energy utilization.
  • FIG. 2 shows a schematic structural diagram of a battery pack thermal management system 1 provided by an exemplary embodiment in an embodiment of the present application.
  • Figure 2 shows a schematic diagram of the structure of the battery pack thermal management device 11 and the solenoid valve network 13 and.
  • the solenoid valve network 13 includes: a first solenoid valve 131, a second solenoid valve 132, a third solenoid valve 133, a fourth solenoid valve 134, and a fifth solenoid valve 135.
  • the first valve port of the first solenoid valve 131 and the second valve port of the first solenoid valve 131 are both connected to the external cooling system 2.
  • the first valve port of the second solenoid valve 132 is connected to the first valve port of the first solenoid valve 131, and the second valve port of the second solenoid valve 132 is connected to the battery pack thermal management module.
  • the first valve port of the third solenoid valve 133 is connected to the second valve port of the first solenoid valve 131 port, and the second valve port of the third solenoid valve 133 is connected to the battery pack thermal management module.
  • the fourth solenoid valve 134, the first valve port of the fourth solenoid valve 134 is connected to the external cooling system 2, and the second valve port of the fourth solenoid valve 134 is respectively connected to the first valve port of the fifth solenoid valve 135 and the thermal management of the battery pack Module connection.
  • the fifth solenoid valve 135, the second valve port of the fifth solenoid valve 135 is connected to the second valve port of the second solenoid valve 132.
  • the external ports of the solenoid valve network 13 include the first valve port of the first solenoid valve 131, the second valve port of the first solenoid valve 131, and the first valve port of the fourth solenoid valve 134.
  • each solenoid valve in the solenoid valve network 13 is not limited, and the specific form of the solenoid valve network 13 is not specifically limited.
  • the battery pack thermal management device 11 includes a first heat exchanger 111, a second heat exchanger 112, a first water pump 113, and a first cooling system 114.
  • the first end of the first heat exchanger 11 is connected with the second valve port of the second solenoid valve 132, and the second end of the first heat exchanger 11 is connected with the first end and the second end of the second heat exchanger 112 respectively.
  • the second valve port of the third solenoid valve 133 is connected.
  • the second end of the second heat exchanger 112 is connected to the first end of the first water pump 113, and the second end of the first water pump 113 is connected to the second valve port of the fourth solenoid valve 134.
  • the first cooling system 114 is connected to the second heat exchanger 112 for absorbing the heat transferred by the second heat exchanger 112 to cool the battery pack.
  • the first heat exchanger 11 is a heat exchange plate.
  • the battery pack and the cooling liquid can exchange heat through the heat exchange plate, thereby heating or cooling the battery pack.
  • the heat exchange plate can be arranged at the bottom of the battery pack. The positional relationship between the first heat exchanger 111 and the battery pack is not specifically limited.
  • the external cooling system 2 may be an electric motor control cooling system 3.
  • the electric motor control cooling system 3 includes a cooler 31, a second water pump 32, an electric control device 33 and a motor 34.
  • the electronic control device 33 is a driving device of the motor 34.
  • first valve port of the first solenoid valve 131 is connected to the first end of the motor 34, and the second end of the motor 34 is connected to the first end of the electric control device 33.
  • the second valve port of the first solenoid valve 131 The inlet of the cooler 31 is connected, and the outlet of the cooler 31 is connected with the first end of the second water pump 32.
  • the first valve port of the fourth solenoid valve 134 is respectively connected to the second end of the second water pump 32 and the second end of the electric control device 33, and the second end of the second water pump 32 is connected to the second end of the electric control device 33.
  • the external cooling system 2 may also be other systems capable of generating heat in the electric vehicle except for the electric motor control cooling system 3, which is not limited herein.
  • the cooling requirements for the motor 34 and the electronic control device 33 can be determined according to the temperature of the motor 34 and the temperature of the electronic control device 33.
  • the processor 12 may obtain the temperature through a temperature sensor provided in the coil of the motor 34.
  • the processor 12 can obtain the temperature through a temperature sensor disposed near the electronic control device 33.
  • the motor 34 and the electronic control device 33 are both higher than the first temperature threshold, it is determined that the motor 34 and the electronic control device 33 need to be cooled. How to determine the cooling requirements of the motor 34 and the electronic control device 33 according to the temperature of the motor 34 and the temperature of the electronic control device 33 is not limited here.
  • the thermal management requirements of the battery pack can be determined according to the temperature of the battery pack.
  • the temperature of the battery pack can be the temperature of the battery pack casing, the temperature of the air in the internal space of the battery pack, the temperature of any battery pack or battery cell in the battery pack, or multiple batteries in the battery pack.
  • the average value of the cell temperature, etc. are not limited here.
  • the temperature of the battery pack is lower than the second temperature threshold, it is determined that the battery pack has a heating requirement.
  • the temperature of the battery pack is greater than the third temperature threshold, it is determined that the battery pack has a cooling requirement.
  • the method for determining the heating demand or cooling demand of the battery pack is not limited here.
  • Scenario 1 When the electric vehicle is driving, the motor 34 and the electronic control device 33 need to be cooled, and the battery pack needs to be heated.
  • the processor 12 controls the first solenoid valve 131, the fourth solenoid valve 134, and the fifth solenoid valve 135 to be In the closed state, the second solenoid valve 132 and the third solenoid valve 133 are controlled to be in the open state, and the second water pump 32 is controlled to be in the open state.
  • the coolant When the coolant flows through the electronic control device 33 and the motor 34, the coolant absorbs the heat generated by the electronic control device 33 and/or the motor 34.
  • the coolant after absorbing heat flows to the first heat exchanger 111 through the opened second solenoid valve 132.
  • the first heat exchanger 111 transfers part of the heat in the cooling liquid to the battery pack to heat the battery pack.
  • the coolant then flows to the cooler 31 through the opened third solenoid valve 133.
  • the cooler 31 transfers another part of the heat to the air, so that the temperature of the cooling liquid meets the cooling requirements of the motor 34 and the electric control device 33.
  • the cooling liquid circulates through the second water pump 32, the electric control device 33, the motor 34, the second solenoid valve 132, and the first heat exchanger 11 in sequence. 1.
  • the first heat exchanger 111 in the battery pack thermal management device 11 absorbs the heat generated by the motor 34 and/or the electronic control device 33 and transfers the heat to the battery pack to heat the battery pack.
  • the battery pack is heated, and the energy recovery rate is improved.
  • Scenario 2 When an electric vehicle is driving, both the motor 34 and the electronic control device 33 need to be cooled, and the battery pack also needs to be cooled.
  • the motor 34 and the electronic control device 33 In the driving state of the electric vehicle, the motor 34 and the electronic control device 33 always need to be cooled, so the second water pump 32 and the cooler 31 always need to be turned on.
  • the processor 12 controls the second solenoid valve 132, the third solenoid valve 133, and the fourth solenoid valve 134 to be in the closed state, and controls the first solenoid valve 131 and the fifth solenoid valve 135 to be in the open state. , And controlling the first water pump 113 and the second water pump 32 to be in an on state. And, the processor 12 activates the second heat exchanger 112 and the first cooling system 114 to Cool the battery pack.
  • the electric motor control cooling system 3 and the battery pack thermal management system 1 are not connected to each other and are two independent systems.
  • the cooler 31 and the second water pump 32 are in a normal working state.
  • the coolant brings the heat generated by the motor 34 and the electronic control device 33 to the cooler 31.
  • the cooler 31 transfers the heat in the coolant to the external environment, so as to cool the motor 34 and the electronic control device 33.
  • the second water pump 32, the electric control device 33, the electric motor 34, the first solenoid valve 131 and the cooler 31 constitute a cooling circuit of the electric motor 34 and the electric control device 33.
  • the cooling liquid passes through the second water pump 32, the electric control device 33, the motor 34, the first solenoid valve 131, and the cooler 31 in sequence, that is, the flow direction of the cooling liquid Is clockwise.
  • the first heat exchanger 111, the second heat exchanger 112, the first water pump 111, and the first cooling system 114 are all activated.
  • the heat generated by the battery pack is transferred to the coolant through the first heat exchanger 111.
  • the coolant brings the heat generated by the battery pack to the second heat exchanger 112.
  • the second heat exchanger 112 transfers heat to the first cooling system 114.
  • the first cooling system 114 transfers the heat to the external environment to cool the battery pack.
  • the first cooling system 114 may be an air cooling system, a water cooling system, a direct refrigerant cooling system or other cooling systems, which is not specifically limited herein.
  • the cooling liquid circulates through the first water pump 113, the opened fifth solenoid valve 135, the first heat exchanger 111, and the second heat exchanger 112 in sequence, that is, the cooling liquid
  • the flow direction is counterclockwise.
  • Scenario 3 When the electric vehicle is driving, the motor 34 and the electronic control device 33 need to be cooled, and the battery pack has no thermal management requirements.
  • the processor 12 controls the second solenoid valve 132, the third solenoid valve 133, and the fourth solenoid valve 134 to be closed, and controls the A solenoid valve 131 is in an open state, and controls the second water pump 32 to be in an open state, and controls the first water pump 113 to be in a stopped state.
  • the battery pack thermal management system 1 stops working. In other words, the battery pack thermal management system 1 neither heats the battery pack nor cools the battery pack.
  • the electric motor control cooling system 3 works normally as an independent system.
  • the principle of cooling the motor 34 and the electronic control device 33 by the motor electronic control cooling system 3 please refer to the description in scenario 2, which will not be repeated here.
  • Scenario 4 When the electric vehicle is parked, the motor 34 and the electronic control device 33 need to be cooled, and the battery pack needs to be heated.
  • the self-heating system of the battery pack can be activated.
  • the processor 12 can generate a continuous alternating excitation current in the high-voltage circuit where the battery pack is located by controlling the electronic control device 33, and the alternating current flows continuously through the battery pack, causing the internal resistance of the battery pack to generate heat , Thereby heating the battery from the inside and improving the heating efficiency.
  • the motor 34 and the electronic control device 33 Since the motor 34 and the electronic control device 33 also generate heat during the self-heating process, if the battery pack needs to be heated in the parking state of the electric vehicle, the motor 34 and the electronic control device 33 need to be cooled, and the processor 12 controls
  • the first solenoid valve 131, the fourth solenoid valve 134, and the fifth solenoid valve 135 are all in a closed state
  • the second solenoid valve 132 and the third solenoid valve 133 are all in an open state
  • the second water pump 32 is controlled in an open state.
  • the specific implementation of heating the battery pack by using the waste heat generated by the motor 34 and the domain electronic control device 33 can refer to the description in scenario 1, which will not be repeated here.
  • the waste heat generated by the motor 34 and/or the electronic control device 33 is recovered to further heat the battery pack.
  • the battery pack thermal management system of the present application can realize that the electric vehicle with the self-heating function uses the motor 34 and electricity during driving.
  • the heat generated by the control device 33 heats the battery pack, which has a wider application range.
  • Scenario 5 When the electric vehicle is parked, the motor 34 and the electronic control device 33 have no thermal management requirements The battery pack needs to be cooled.
  • the motor 34 and the electric control device 33 do not work, that is, the electric motor cooling system 3 has no heat management requirement.
  • the processor 12 controls the second solenoid valve 132, the third solenoid valve 133, and the fourth solenoid valve 134 to be in the closed state, controls the fifth solenoid valve 135 to be in the open state, and controls the first water pump 113 to be in the open state. Open state, and control the second water pump 32 to be in a stopped state.
  • the battery pack thermal management system 1 and the electric motor cooling system 3 are not connected to each other. Since the second water pump 32 stops working and the cooler 31 does not start, the electric motor control cooling system 3 stops working.
  • the battery thermal management system can cool the battery pack.
  • the principle that the battery thermal management system cools the battery pack refer to the description in the second scenario above, which will not be repeated here.
  • the battery pack thermal management system 1 can not only use the waste heat of the external cooling system 2 to heat the battery pack, but also can adapt to different thermal management requirements.
  • the application range is wide, and the working efficiency of the thermal management system 1 of the battery pack is improved.
  • FIG 3 shows a thermal management system for an electric vehicle provided by an embodiment of the present application.
  • the thermal management system of an electric vehicle includes a battery pack thermal management system 1 and an external cooling system 2 provided in the embodiment of the present application.
  • the external cooling system 2 may be the electric motor control cooling system 3 shown in FIG. 2.
  • the processor 12 can recover the waste heat of the motor 34 and the electric control device 33 by controlling the operating status of the solenoid valve in the solenoid valve network 13 and the operating status of the second water pump 32 to recover The group is heated.
  • the energy recovery rate can be improved.
  • the first cooling system 114 in the battery pack thermal management system 1 is an air conditioning system 4.
  • the air-conditioning system 4 can not only cool the battery pack, but also can The cabin is cooled.
  • the thermal management system for electric vehicles provided by the embodiments of the present application not only integrates the battery pack thermal management system 1 and the electric motor cooling system 3, but also integrates the battery pack thermal management system 1 and the air conditioning system 4. .
  • the air conditioning system 4 includes: a first evaporator 41, a compressor 42, a condenser 43, a first expansion valve 44, a second expansion valve 45, a second evaporator 46, and a fan
  • the first end of the first evaporator 41 is connected to the first end of the compressor 42 and the first end of the second evaporator 46, respectively, and the first evaporator 41 is connected to the second heat exchanger 112 for absorbing the The heat transferred by the second heat exchanger 112 is used to cool the battery pack.
  • the second end of the compressor 42 is connected to the first end of the condenser 43.
  • the second end of the condenser 43 is connected to the first valve port of the first expansion valve 44 and the first valve port of the second expansion valve 45 respectively.
  • the second valve port of the first expansion valve (44) is connected to the second end of the first evaporator (41).
  • the second port of the second expansion valve 45 is connected to the second end of the second evaporator 46.
  • the second evaporator 46 is used for cooling the passenger compartment of the electric vehicle.
  • the fan 47 is used to send the cold air generated by the second evaporator 46 into the passenger compartment.
  • the air-conditioning system 4 and the battery pack thermal management system 1 can share key components such as the compressor 42 and the condenser 43 to improve the overall electric
  • the degree of integration of the automobile's thermal management system saves space and reduces costs.
  • the operating state of the solenoid valve in the solenoid valve network 13 can be controlled, The working states of the first water pump 113 and the second water pump 32 are realized.
  • the air conditioning system 4 If the battery pack needs to be cooled, the air conditioning system 4, the first heat exchanger 111 and the second heat exchanger 112 are all activated. The heat generated by the battery pack is transferred to the cooling liquid through the first heat exchanger 1 11. The coolant brings the heat generated by the battery pack to the second heat exchanger 112. The second heat exchanger 112 transfers heat to the first evaporator 41 in the air conditioning system 4. Among them, the first evaporator 41, the compressor 42, the condenser 43 and the first expansion valve 44 form a circulation loop, and the circulation loop is a battery Group refrigeration.
  • the second evaporator 46, the compressor 42, the condenser 43, and the second expansion valve 45 form a circulation loop, which is used to cool the passenger compartment of the electric vehicle.
  • the air conditioning system 4 can not only cool the passenger compartment, but also cool the battery pack through the second heat exchanger 112 in the battery thermal management system.
  • Table 1 shows the different thermal management requirements of the electric motor cooling system 3 and the battery thermal management system, and the corresponding control methods.
  • the air conditioning system 4 further includes a heater 48.
  • the heater 48 is used to heat the passenger compartment.
  • the fan 47 is used to send the heat generated by the heater 48 into the passenger compartment.
  • the first solenoid valve 131, the fourth solenoid valve 134, and the fifth solenoid valve 135 are all in a closed state
  • the second solenoid valve 132 and the third solenoid valve 133 are all in a closed state.
  • the power of the second water pump 32 is P1.
  • the power of the second water pump 32 determines the flow rate of the cooling liquid, and in scenario 1, the cooling liquid needs to flow through the first heat exchanger 111 in the battery pack thermal management system 1, and the flow resistance of the cooling liquid is relatively large. Therefore, in order to ensure that the coolant can flow at a certain flow rate and to ensure that the residual heat of the electric control device 33 and the motor 34 can heat the battery pack, the power of the second water pump 32 needs to be increased.
  • the coolant only needs to cool the motor 34 and the electronic control device 33. Compared with scenario 1, the flow resistance of the coolant is relatively small. Therefore, if the flow rate of the coolant in scenario 1 is similar to that in scenario 2, If the flow rate of the liquid is the same, then P2 is less than P1.
  • the power of the second water pump 32 is adjustable in at least two levels.
  • the second water pump 32 is in a normal working state.
  • the second water pump 32 is in a high-power working state.
  • the thermal management system of the electric vehicle further includes a first temperature sensor (not shown in the figure), which is connected to the processor 12 for collecting the temperature of the motor 34.
  • the first temperature sensor is arranged inside the coil of the motor 34 and is used to collect the temperature of the motor 34.
  • the processor 12 is used to adjust the speed of the fan in the cooler 31 according to the temperature of the motor 34.
  • the processor 12 can adjust the speed of the fan in the cooler 31 according to the temperature of the motor 34, thereby adjusting the cooling rate of the electronic control device 33 and the motor 34.
  • the processor 12 compares the temperature of the motor 34 with the preset temperature interval
  • the corresponding relationship of the rotation speed of the fan of the cooler 31 adjusts the rotation speed of the fan of the cooler 31.
  • the higher the temperature corresponding to the temperature interval the greater the rotational speed corresponding to the temperature interval.
  • Table 2 shows the corresponding relationship between the temperature interval and the rotation speed.
  • the rotation speed of the fan of the cooler 31 is adjusted to 20% of the maximum rotation speed.
  • the fan speed of the cooler 31 is adjusted to 50% of the maximum speed.
  • the rotation speed of the fan of the Bayvan cooler 31 is adjusted to the maximum rotation speed.
  • temperature sensors may also be provided at the inlet and outlet of the cooler 31, so that the processor 12 adjusts the fan of the cooler 31 according to the temperature at the inlet of the cooler 31 and the temperature at the outlet of the cooler 31.
  • the rotation speed thereby adjusting the cooling speed of the motor 34 and the electronic control device 33.
  • a temperature sensor may also be provided near the electronic control device 33 to adjust the speed of the fan of the cooler 31 according to the temperature of the electronic control device 33.
  • the thermal management system of the electric vehicle further includes a second temperature sensor (not shown in the figure), a third temperature sensor (not shown in the figure), and a fourth temperature sensor (not shown in the figure) Out).
  • the second temperature sensor is connected to the processor 12 for collecting the The temperature of the first port of a heat exchanger 111.
  • the second temperature sensor is connected to the processor 12 and is used to collect the temperature of the second port of the first heat exchanger 111.
  • the first port of the first heat exchanger 111 is the inlet of the first heat exchanger 111, and the second port of the first heat exchanger 111 is the outlet of the first heat exchanger 111.
  • the fourth temperature sensor is connected to the processor 12 and used to collect the temperature of the battery pack.
  • the processor 12 adjusts the first heat exchanger 111 according to the temperature of the inlet of the first heat exchanger 111, the temperature of the outlet of the first heat exchanger 111, and the temperature of the battery pack. 2.
  • the power of the water pump 32 The power of the water pump 32.
  • the processor 12 uses the temperature difference between the temperature at the inlet of the first heat exchanger 111 and the temperature at the outlet of the first heat exchanger 111, the temperature of the battery pack, and the preset power of the second water pump 32 and the battery pack temperature. According to the corresponding relationship between the temperature difference between the inlet and outlet of the first heat exchanger 111, the power of the second water pump 32 is adjusted. As an example, the corresponding relationship between the power of the second water pump 32 and the battery temperature and the temperature difference between the inlet and outlet of the first heat exchanger 111 can be seen in Table 3 below.
  • the power of the second water pump 32 is adjusted to the maximum power so as to use the residual heat of the motor 34 and the electric control device 33 to heat the battery pack as soon as possible.
  • the power of the second water pump 32 is adjusted to the maximum power. If the temperature difference between the inlet and outlet of the first heat exchanger 1 11 is greater than 5°C, it indicates that the cooling liquid exchange capacity is insufficient, and the flow rate of the cooling liquid needs to be increased. Therefore, the power of the second water pump 32 needs to be adjusted to the maximum power.
  • the battery pack heats up quickly.
  • the power of the second water pump 32 is adjusted to half of the maximum power. If the temperature difference between the inlet and outlet of the first heat exchanger 11 1 is greater than 5°C, it indicates that the heat exchange capacity of the cooling liquid is sufficient. Appropriately reducing the flow of the cooling liquid can also meet the heating demand of the battery pack in order to avoid waste of resources
  • the power of the second water pump 32 can be appropriately reduced, for example, the power of the second water pump 32 can be reduced to half of the maximum power.
  • temperature sensors may also be provided at the inlet and outlet of the second heat exchanger 112 to collect the temperature of the inlet of the second heat exchanger 112 and the temperature of the outlet of the second heat exchanger 112, so that the processing
  • the device 12 controls the flow of the refrigerant in the air conditioning system 4 according to the temperature difference between the inlet and outlet temperatures of the second heat exchanger 112, so as to adjust the cooling rate of the battery pack.
  • the processor 12 can control at least one control parameter in the air conditioning system 4 to adjust the flow of the refrigerant.
  • the control parameters of the air conditioning system 4 include the opening degree of the first expansion valve 44, the opening degree of the second expansion valve 45, the speed of the compressor 32, the speed of the fan of the condenser 33, and other parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池组热管理***和电动汽车的热管理***,该电池组热管理***(1)包括:电池组热管理装置(11)、处理器(12)以及与电池组热管理装置(11)连接的电磁阀网络(13);其中,电磁阀网络(13)的外部端口与外部冷却***(2)连接;处理器(12)用于控制电磁阀网络(13)中电磁阀的工作状态,以使电池组热管理装置(11)利用外部冷却***(2)产生的热量加热电池组。该方案能够提高能量利用率。

Description

电池组热管理***和电动汽车的热管理*** 相关申请的交叉引用
本申请要求享有于 2019年 02月 28日提交的名称为“电池组热管理系 统和电动汽车的热管理***”的中国专利申请 201910152153.0的优先权, 该申请的全部内容通过引用并入本文中。 技术领域
本申请涉及新能源领域, 尤其涉及一种电池组热管理***和电动汽车 的热管理***。 背景技术
智能化和电动化是智能交通领域发展的重要方向之一, 尤其是在电动 化领域, 随着材料和技术的进步, 电池组的能量密度越来越高, 交通工具 也在使用各个类型的电池组作为能量来源。 相较于传统交通工具主要使用 化石燃料作为能量来源, 现代交通工具中越来越多的使用以锂电池为代表 的电池组作为能量来源。
在纯电动汽车中, 热管理***主要分为三大部分, 即乘客舱的热管 理、 电池组的热管理和电机及其驱动***的热管理。 由于这三部分对于温 度的需求不同, 因此目前这三部分普遍都是各自独立的, 集成度较低, 造 成热量浪费严重, 能量利用率低下。 发明内容
本申请实施例提供一种电池组热管理***和电动汽车的热管理***, 提高了能量利用率。
根据本申请实施例的一方面, 提供一种电池组热管理***, 该***包 括: 电池组热管理装置、 处理器以及与电池组热管理装置连接的电磁阀网 络;
其中, 电磁阀网络的外部端口与外部冷却***连接;
处理器用于控制电磁阀网络中电磁阀的工作状态, 以使电池组热管理 装置利用外部冷却***产生的热量加热电池组。
根据本申请实施例的另一方面, 提供一种电动汽车的热管理***, 该 ***包括外部冷却***以及如本申请实施例提供的电池组热管理***。
根据本申请实施例, 通过控制电磁阀网络的工作状态, 从而实现外部 冷却***和电池组热管理***的连通, 以使电池热管理***利用外部冷却 ***产生的余热对电池组加热, 降低了热量的浪费, 提高了能量利用率。 附图说明
下面将通过参考附图来描述本申请示例性实施例的特征、 优点和技术 效果。
图 1为本申请一些实施例提供的电池组热管理***的结构示意图; 图 2为本申请另一些实施例提供的电池组热管理***的结构示意图; 图 3为本申请一些实施例提供的电动汽车的热管理***的结构示意 图。 具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。 以下 实施例的详细描述和附图用于示例性地说明本申请的原理, 但不能用来限 制本申请的范围, 即本申请不限于所描述的实施例。
需要说明的是, 在本文中, 诸如第一和第二等之类的关系术语仅仅用 来将一个实体或者操作与另一个实体或操作区分开来, 而不一定要求或者 暗示这些实体或操作之间存在任何这种实际的关系或者顺序。 而且, 术语 “包括” 、 “包含”或者其任何其他变体意在涵盖非排他性的包含, 从而 使得包括一系列要素的过程、 方法、 物品或者设备不仅包括那些要素, 而 且还包括没有明确列出的其他要素, 或者是还包括为这种过程、 方法、 物 品或者设备所固有的要素。 在没有更多限制的情况下, 由语句 “包 括 ” 限定的要素, 并不排除在包括要素的过程、 方法、 物品或者设备 中还存在另外的相同要素。
下面首先结合附图对本申请实施例提供的电池组热管理*** 1进行详 细说明。
图 1 示出本申请一些实施例提供的电池组热管理*** 1 的结构示意 图。 如图 1所示, 电池组热管理*** 1包括电池组热管理装置 11、 处理器 12以及与电池组热管理装置 11连接的电磁阀网络 13。
其中, 电磁阀网络 13的外部端口与外部冷却*** 2连接。
在本申请的实施例中, 处理器 12与电磁阀网络 13连接, 用于控制电 磁阀网络 13中电磁阀的工作状态, 以使电池组热管理装置 11利用外部冷 却*** 2产生的热量加热电池组。
在本申请的实施例中, 外部冷却*** 2包括能够产生热量的器件以及 用于传递热量的器件。 其中, 外部冷却*** 2产生的热量可以为外部冷却 *** 2中能够产生热量的器件所产生的废热。
例如, 外部冷却*** 2可以为汽车中的刹车冷却***、 油电混动汽车 中发动机冷却***或电动汽车中的电机电控冷却***等***, 在此并不对 外部冷却***进行限定。 以电机电控冷却***为例, 电机电控冷却***中 能够产生热量的器件为电机和电控装置, 用于传递电机和电控装置产生的 废热的器件包括冷却液管道以及冷却器等器件。
在本申请的实施例中, 通过控制电磁阀网络 13 中电磁阀的工作状 态, 实现了外部冷却*** 2与电池组热管理*** 1 的连通, 实现了电池组 热管理*** 1利用外部冷却*** 2产生的废热对电池组进行加热, 使热量 能够充分地互相利用, 降低了能量的浪费, 从而提高了能量利用率。
图 2示出本申请实施例中的示例性实施例提供的电池组热管理*** 1 的结构示意图。 图 2示出电池组热管理装置 1 1和电磁阀网络 13和的结构 示意图。
参见图 2, 电磁阀网络 13包括: 第一电磁阀 131、 第二电磁阀 132、 第三电磁阀 133、 第四电磁阀 134和第五电磁阀 135。 其中, 第一电磁阀 131的第一阀口和第一电磁阀 131 的第二阀口均与 外部冷却*** 2连接。 第二电磁阀 132的第一阀口与第一电磁阀 131的第 一阀口连接, 第二电磁阀 132的第二阀口与电池组热管理模块连接。 第三 电磁阀 133的第一阀口与第一电磁阀 131 口的第二阀口连接, 第三电磁阀 133 的第二阀口与电池组热管理模块连接。 第四电磁阀 134, 第四电磁阀 134的第一阀口与外部冷却*** 2连接, 第四电磁阀 134的第二阀口分别 与第五电磁阀 135 的第一阀口和电池组热管理模块连接。 第五电磁阀 135 , 第五电磁阀 135的第二阀口与第二电磁阀 132的第二阀口连接。
其中, 电磁阀网络 13 的外部端口包括第一电磁阀 131 的第一阀口、 第一电磁阀 131的第二阀口和第四电磁阀 134的第一阀口。
在本申请的实施例中, 对于电磁阀网络 13 中每个电磁阀的具体形式 并不限定, 并且对于电磁阀网络 13的具体形式也不做具体限定。
参见图 2 , 在一些示例中, 电池组热管理装置 11 包括第一热交换器 1 11、 第二热交换器 112、 第一水泵 1 13和第一冷却*** 1 14。 其中, 第一 热交换器 1 11的第一端与第二电磁阀 132的第二阀口连接, 第一热交换器 1 11 的第二端分别与第二热交换器 112的第一端和第三电磁阀 133的第二 阀口连接。 第二热交换器 1 12的第二端与第一水泵 1 13的第一端连接, 第 一水泵 113 的第二端与第四电磁阀 134 的第二阀口连接。 第一冷却*** 1 14与第二热交换器 112连接, 用于吸收第二热交换器 112传递的热量, 以冷却电池组。
在一些示例中, 第一热交换器 1 11 为换热板。 当冷却液流经换热板 时, 电池组和冷却液可以通过换热板进行热量交换, 从而实现对电池组进 行加热或冷却。 作为一个示例, 换热板可以设置在电池组底部。 对于第一 热交换器 1 1 1和电池组之间的位置关系不做具体限定。
在一些实施例中, 外部冷却*** 2可以为电机电控冷却*** 3。 电机 电控冷却*** 3包括冷却器 31、 第二水泵 32、 电控装置 33和电机 34。 电 控装置 33是电机 34的驱动装置。
其中, 第一电磁阀 131 的第一阀口与电机 34的第一端连接, 电机 34 的第二端与电控装置 33 的第一端连接。 第一电磁阀 131 的第二阀口与冷 却器 31的进口连接, 冷却器 31的出口与第二水泵 32的第一端连接。 第四 电磁阀 134的第一阀口分别与第二水泵 32的第二端和电控装置 33的第二 端连接, 第二水泵 32的第二端与电控装置 33的第二端连接。
在本申请的实施例中, 外部冷却*** 2也可以为电动汽车中除电机电 控冷却*** 3之外的其他能够产生热量的***, 在此并不限定。
在本申请的实施例中, 通过控制电磁阀网络 13 中电磁阀的工作状 态、 第一水泵 113 的工作状态和第二水泵 32 的工作状态, 可以满足电机 电控冷却*** 3和电池组热管理*** 1的多种热管理需求。
在本申请的实施例中, 对于电机 34及电控装置 33的冷却需求可以根 据电机 34的温度和电控装置 33的温度进行确定。 作为一个示例, 对于电 机 34的温度, 处理器 12可以通过设置在电机 34的线圈中的温度传感器进 行获取。 对于电控装置 33的温度, 处理器 12可以通过设置在电控装置 33 附近的温度传感器进行获取。
例如, 当电机 34 的温度和电控装置 33 的温度均高于第一温度阈值 时, 则确定需要对电机 34和电控装置 33进行冷却。 对于如何根据电机 34 的温度和电控装置 33的温度确定电机 34和电控装置 33的冷却需求, 在此 并不限定。
对于电池组的热管理需求, 例如加热需求和冷却需求, 可以根据电池 组的温度进行确定。 电池组温度具体可为电池组壳体的温度, 也可为电池 组内部空间中空气的温度, 也可为电池组中任意一个电池组或电池单元的 温度, 还可为电池组中多个电池单元的温度的平均值等等, 在此并不限 定。 作为一个示例, 当电池组的温度低于第二温度阈值时, 则确定电池组 具有加热需求。 当电池组的温度大于第三温度阈值时, 则确定电池组具有 冷却需求。 对于电池组的加热需求或冷却需求的判断方法, 在此并不限 定。
下面结合具体场景, 详细描述本申请实施例提供的电池组热管理***
1。
场景一: 电动汽车在行车状态下, 电机 34及电控装置 33需要冷却, 电池组需要加热。 在本申请的实施例中, 当电机 34及电控装置 33需要冷却, 而电池组 需要加热时, 处理器 12控制控制第一电磁阀 131、 第四电磁阀 134和第五 电磁阀 135均处于关闭状态, 控制第二电磁阀 132和第三电磁阀 133均处 于开启状态, 以及控制第二水泵 32处于开启状态。
当第二电磁阀 132处于开启状态时, 电机 34和第一热交换器 111之间 的通道连通。 当第三电磁阀 133处于开启状态时, 第一热交换器 1 11和冷 却器 31之间的通道连通。
当冷却液流经电控装置 33和电机 34时, 冷却液吸收电控装置 33和 / 或电机 34产生的热量。 吸收热量后的冷却液通过开启的第二电磁阀 132 流至第一热交换器 11 1。 第一热交换器 11 1将冷却液中的部分热量传递给 电池组, 以对电池组加热。 然后冷却液通过开启的第三电磁阀 133流至冷 却器 31。 冷却器 31将另外的部分热量传递到空气中, 使冷却液的温度满 足电机 34和电控装置 33的冷却需求。
在利用电机 34和电控装置 33的余热对电池组加热的回路中, 冷却液 依次循环通过第二水泵 32、 电控装置 33、 电机 34、 第二电磁阀 132、 第 一热交换器 1 1 1、 第三电磁阀 133和冷却器 31。
也就是说, 电池组热管理装置 11 中的第一热交换器 111 通过吸收电 机 34和 /或电控装置 33产生的热量, 并将热量传递至电池组, 以对电池组 进行加热。
在本申请的实施例中, 通过对电机 34和 /或电控装置 33余热进行回 收, 实现对电池组进行加热, 提高了能量回收率。
场景二: 电动汽车在行车状态下, 电机 34以及电控装置 33均需要冷 却, 电池组也需要冷却。
在电动汽车的行车状态下, 电机 34和电控装置 33始终需要进行冷 却, 因此第二水泵 32和冷却器 31始终需要开启。
当电池组也需要冷却时, 处理器 12控制第二电磁阀 132、 第三电磁阀 133和第四电磁阀 134均处于关闭状态, 控制第一电磁阀 131和第五电磁 阀 135均处于开启状态, 以及控制第一水泵 113和第二水泵 32均处于开启 状态。 并且, 处理器 12启动第二热交换器 112以及第一冷却*** 114, 以 对电池组进行制冷。
由于第二电磁阀 132、 第三电磁阀 133和第四电磁阀 134均处于关闭 状态, 因此电机电控冷却*** 3和电池组热管理*** 1互不连通, 为两个 独立的***。 在电机电控冷却*** 3中, 冷却器 31和第二水泵 32处于正 常工作状态。 通过开启的第一电磁阀 131, 冷却液将电机 34和电控装置 33产生的热量带到冷却器 31。 然后冷却器 31将冷却液中的热量传递到外 界环境, 从而实现对电机 34和电控装置 33的冷却。
也就是说, 第二水泵 32、 电控装置 33、 电机 34、 第一电磁阀 131和 冷却器 31构成了电机 34和电控装置 33的冷却回路。 参见图 2, 在电机 34 和电控装置 33 的冷却回路中, 冷却液依次通过第二水泵 32、 电控装置 33、 电机 34、 第一电磁阀 131和冷却器 31, 即冷却液的流动方向为顺时 针。
在电池组热管理*** 1 中, 若电池组需要制冷, 则第一热交换器 1 11、 第二热交换器 112、 第一水泵 1 13和第一冷却*** 1 14均启动。 电池 组产生的热量通过第一热交换器 11 1传递至冷却液中。 冷却液将电池组产 生的热量带到第二热交换器 112。 第二热交换器 112将热量传递给第一冷 却*** 114。 然后第一冷却*** 114将热量传递到外界环境, 以实现对电 池组的冷却。 其中, 第一冷却*** 114可以为风冷***、 水冷***、 冷媒 直接冷却***或其他冷却***, 在此不做具体限定。
也就是说, 在电池组的冷却回路中, 冷却液依次循环通过第一水泵 1 13、 开启的第五电磁阀 135、 第一热交换器 11 1和第二热交换器 112, 即 冷却液的流动方向为逆时针。
场景三: 电动汽车在行车状态下, 电机 34及电控装置 33需要冷却, 电池组无热管理需求。
当电机 34电控装置 33需要冷却, 而电池组不需要冷却也不需要加热 时, 处理器 12控制第二电磁阀 132、 第三电磁阀 133和第四电磁阀 134均 处于关闭状态, 控制第一电磁阀 131处于开启状态, 以及控制第二水泵 32 处于开启状态, 并且控制第一水泵 113处于停止状态。
由于第二电磁阀 132、 第三电磁阀 133和第四电磁阀 134均处于关闭 状态, 因此电池组热管理*** 1和电机电控冷却*** 3互不连通。
由于第一水泵 113停止工作, 第一冷却*** 1 14停止工作, 因此电池 组热管理*** 1停止工作。 也就是说, 电池组热管理*** 1既不对电池组 进行加热, 也不对电池组进行冷却。
由于第二水泵 32处于开启状态, 且第一电磁阀 131 处于开启状态, 则电机电控冷却*** 3作为独立***正常工作。 关于电机电控冷却*** 3 对电机 34和电控装置 33进行冷却的原理可参照场景二中的叙述, 在此不 再赘述。
场景四: 电动汽车在驻车状态下, 电机 34及电控装置 33需要冷却, 电池组需要加热。
在电动汽车的驻车状态下, 若电池组需要加热, 即可以启动电池组的 自加热***。 作为一个示例, 处理器 12通过对电控装置 33的控制, 可以 在电池组所在的高压回路中产生持续不断的交变激励电流, 交变激流电流 持续流过电池组, 使电池组内阻发热, 从而从内部加热电池, 提高了加热 效率。
由于在自加热过程中, 电机 34和电控装置 33也会产生热量, 因此在 电动汽车的驻车状态下, 若电池组需要加热, 因此电机 34和电控装置 33 需要冷却, 处理器 12控制第一电磁阀 131、 第四电磁阀 134和第五电磁阀 135均处于关闭状态, 控制第二电磁阀 132和第三电磁阀 133均处于开启 状态, 以及控制第二水泵 32处于开启状态。
其中, 利用电机 34和域电控装置 33产生的余热对电池组进行加热的 具体实现方式, 可参照场景一中的叙述, 在此不再赘述。
在电池组自加热的基础上, 再回收电机 34和 /或电控装置 33产生的余 热对电池组进一步进行加热。
由于具有自加热电池组功能的电动汽车是在驻车状态下对电池组进行 自加热, 而本申请的电池组热管理***可以实现具有自加热功能的电动汽 车在行车过程中利用电机 34和电控装置 33产生的热量对电池组进行加 热, 应用范围更广。
场景五: 电动汽车在驻车状态下, 电机 34及电控装置 33无热管理需 求, 电池组需要冷却。
在此种场景下, 由于电动汽车是停驻状态, 且电池组也没有加热需 求, 因此电机 34和电控装置 33不工作, 即电机电控冷却*** 3没有热管 理需求。
在此种场景下, 处理器 12控制第二电磁阀 132、 第三电磁阀 133和第 四电磁阀 134均处于关闭状态, 控制第五电磁阀 135处于开启状态, 以及 控制第一水泵 1 13处于开启状态, 并且控制第二水泵 32处于停止状态。
通过控制第二电磁阀 132、 第三电磁阀 133和第四电磁阀 134均处于 关闭状态, 则电池组热管理*** 1和电机电控冷却*** 3互不连通。 由于 第二水泵 32停止工作且冷却器 31也不启动, 因此电机电控冷却*** 3停 止工作。
通过开启第一水泵 113 以及开启第五电磁阀 135, 则电池热管理*** 可以对电池组进行冷却。 关于电池热管理***对电池组进行冷却的原理, 可参考上述场景二中的叙述, 在此不再赘述。
在本申请的实施例中, 通过控制电磁阀网络 13 中电磁阀的工作状 态, 电池组热管理*** 1不仅可以实现利用外部冷却*** 2的余热加热电 池组, 还可以适应不同的热管理需求, 应用范围广, 提高了电池组热管理 *** 1的工作效率。
图 3示出本申请实施例提供的电动汽车的热管理***。 如图 3所示, 电动汽车的热管理***包括本申请实施例提供的电池组热管理*** 1和外 部冷却*** 2。
作为一个示例, 外部冷却*** 2可以为图 2所示的电机电控冷却*** 3。 参见上述的电池组热管理*** 1, 处理器 12通过控制电磁阀网络 13中 电磁阀的工作状态和第二水泵 32的工作状态, 可以实现回收电机 34和电 控装置 33的余热, 以对电池组进行加热。
因此, 通过将电池组热管理*** 1 和电机电控冷却*** 3集成在一 起, 可以提高能量回收率。
在一些实施例中, 电池组热管理*** 1 中的第一冷却*** 1 14为空调 *** 4。 空调*** 4不仅可以对电池组进行冷却, 还可以对电动汽车的乘 客舱进行冷却。
也就是说, 本申请实施例提供的电动汽车的热管理***不仅将电池组 热管理*** 1和电机电控冷却*** 3进行了集成, 还将电池组热管理*** 1和空调*** 4进行了集成。
参见图 3 , 在一些示例中, 空调*** 4包括: 第一蒸发器 41、 压缩机 42、 冷凝器 43、 第一膨胀阀 44、 第二膨胀阀 45、 第二蒸发器 46和风扇
47。
其中, 第一蒸发器 41 的第一端分别与压缩机 42的第一端和第二蒸发 器 46的第一端连接, 第一蒸发器 41与第二热交换器 112连接, 用于吸收 第二热交换器 112传递的热量, 以对电池组冷却。 压缩机 42的第二端与 冷凝器 43的第一端连接。
冷凝器 43的第二端分别与第一膨胀阀 44的第一阀口和第二膨胀阀 45 的第一阀口连接。 第一膨胀阀 44的第二阀口与第一蒸发器 41的第二端连 接。 第二膨胀阀 45的第二端口与第二蒸发器 46的第二端连接。
第二蒸发器 46, 用于对电动汽车的乘客舱制冷。 风扇 47用于将第二 蒸发器 46产生的冷风送入乘客舱。
在本申请的实施例中, 通过将空调*** 4和电池组热管理*** 1集成 在一起, 空调*** 4和电池组热管理*** 1可以共用压缩机 42和冷凝器 43等关键部件, 提高整个电动汽车的热管理***的集成度, 节约了空间并 降低了成本。
与上述五个场景的叙述相类似, 当电动汽车中的电机电控冷却*** 3 和电池组热管理*** 1 具有不同的热管理需求时, 可以通过控制电磁阀网 络 13中电磁阀的工作状态、 第一水泵 113及第二水泵 32的工作状态来实 现。
若电池组需要制冷, 则空调*** 4、 第一热交换器 1 1 1和第二热交换 器 112均启动。 电池组产生的热量通过第一热交换器 1 11 传递至冷却液 中。 冷却液将电池组产生的热量带到第二热交换器 1 12。 第二热交换器 1 12将热量传递给空调*** 4中的第一蒸发器 41。 其中, 第一蒸发器 41、 压缩机 42、 冷凝器 43和第一膨胀阀 44形成循环回路, 该循环回路为电池 组制冷。
另外, 若电动汽车的乘客舱需要制冷, 则第二蒸发器 46、 压缩机 42、 冷凝器 43和第二膨胀阀 45形成循环回路, 该循环回路用于为电动汽 车的乘客舱制冷。
因此, 在本申请的实施例中, 空调*** 4不仅可以对乘客舱进行制 冷, 也可以通过电池热管理***中的第二热交换器 112对电池组进行制 冷。
表 1 出电机电控冷却*** 3和电池热管理***的不同热管理需求, 所分别对应的控制方法。
表 1
Figure imgf000013_0001
在一些实施例中, 空调*** 4还包括加热器 48。 加热器 48用于对乘 客舱制热。 风扇 47用于将加热器 48产生的热量送入乘客舱。 在本申请的实施例中, 通过将电池组热管理*** 1、 电机电控冷却系 统 3和空调*** 4集成在一起, 不仅可以提高能量利用率, 还可以提高电 动汽车的热管理***的工作效率, 降低电动汽车的热管理***的制造成 本。
在本申请的一些实施例中, 在场景一中, 即第一电磁阀 131、 第四电 磁阀 134和第五电磁阀 135均处于关闭状态, 且第二电磁阀 132和第三电 磁阀 133均处于开启状态, 第二水泵 32的功率为 P1。
在场景二中, 若第二电磁阀 132、 第三电磁阀 133和第四电磁阀 134 均处于关闭状态, 第一电磁阀 131和第五电磁阀 135均处于开启状态, 第 二水泵 32的功率为 P2。 若场景一中冷却液的流速和场景二中冷却液的流 速相同则 P1大于 P2。
由于第二水泵 32 的功率决定冷却液的流速, 而在场景一中, 冷却液 需要流经电池组热管理*** 1 中的第一热交换器 111, 冷却液的流阻较 大。 因此为了保证冷却液能够以一定的流速流动, 确保电控装置 33和电 机 34的余热可以对电池组加热, 因此需要增加第二水泵 32的功率。 而在 场景二中, 冷却液仅需要对电机 34和电控装置 33进行冷却, 与场景一相 比, 冷却液的流阻相对较小, 因此若场景一中冷却液的流速和场景二中冷 却液的流速相同, 则 P2小于 P1。
也就是说, 第二水泵 32 的功率至少两档可调, 当冷却液仅用于冷却 电机 34及电控装置 33时, 第二水泵 32为正常工作状态。 当冷却液需要流 经电池组时, 第二水泵 32为大功率工作状态。
在本申请的一些实施例中, 电动汽车的热管理***还包括第一温度传 感器 (图中未示出) , 与处理器 12连接, 用于采集电机 34的温度。
其中, 第一温度传感器设置于电机 34线圈的内部, 用于采集电机 34 的温度。 处理器 12用于根据电机 34的温度调节冷却器 31中风扇的转速。
当电机电控冷却*** 3正常工作时, 处理器 12可以根据电机 34的温 度调节冷却器 31中风扇的转速, 从而调节对电控装置 33和电机 34的冷却 速率。
在一些示例中, 处理器 12根据电机 34的温度以及预设的温度区间与 冷却器 31风扇的转速的对应关系, 调节冷却器 31风扇的转速。 在温度区 间与转速的对应关系中, 温度区间对应的温度越高, 则该温度区间对应的 转速越大。 作为一个示例, 表 2示出温度区间与转速的对应关系。
表 2
Figure imgf000015_0001
当电机 34的温度位于第一温度区间时, 即电机 34的温度小于 50°C, 则将冷却器 31的风扇的转速调节为最大转速的 20%。
当电机 34 的温度位于第二温度区间时, 即电机 34 的温度位于 50°C〜 60°C内时, 贝 IJ将冷却器 31的风扇的转速调节为最大转速的 50%。
当电机 34 的温度位于第三温度区间时, 即电机 34 的温度位于 60°C〜 70°C内时, 贝幡冷却器 31的风扇的转速调节为最大转速。
也就是说, 当电机 34的温度越高时, 将增大冷却器 31风扇的转速, 从而可以快速对电机 34进行冷却。
在本申请的一些实施例中, 还可以在冷却器 31 的进口和出口处均设 置温度传感器, 以使处理器 12根据冷却器 31进口的温度和冷却器 31出口 的温度调节冷却器 31风扇的转速, 从而调节对电机 34和电控装置 33的冷 却速度。
在本申请的另一些实施例中, 还可以在电控装置 33 附近设置温度传 感器, 以根据电控装置 33的温度调节冷却器 31风扇的转速。
在本申请的一些实施例中, 电动汽车的热管理***还包括第二温度传 感器 (图中未示出) , 第三温度传感器 (图中未示出) 和第四温度传感器 (图中未示出) 。 其中, 第二温度传感器与处理器 12连接, 用于采集第 一热交换器 111 的第一端口的温度。 第二温度传感器, 与处理器 12连 接, 用于采集第一热交换器 111 的第二端口的温度。 其中, 第一热交换器 111 的第一端口为第一热交换器 111 的进口, 第一热交换器 111 的第二端 口为第一热交换器 111 的出口。 第四温度传感器, 与处理器 12连接, 用 于采集电池组的温度。
在利用电机 34和电控装置 33的余热对电池组进行加热的场景下, 处 理器 12根据第一热交换器 111进口的温度、 第一热交换器 111出口的温度 和电池组的温度调整第二水泵 32的功率。
具体地, 处理器 12根据第一热交换器 111进口的温度和第一热交换 器 111出口的温度之间的温度差、 电池组的温度, 以及预设的第二水泵 32 功率与电池组温度和第一热交换器 111进出口温度差的对应关系, 调整第 二水泵 32的功率。 作为一个示例, 第二水泵 32的功率与电池温度和第一 热交换器 111进出口温度差的对应关系可参见下表 3。
表 3
Figure imgf000016_0001
参见表 2, 若电池组的温度位于 -10°C~0°C内, 则无论第一热交换器 1 11进出口的温度差是大于 5°C还是小于 5°C, 都将第二水泵 32的功率调 节至最大功率。
也就是说, 若电池组的温度较低, 则将第二水泵 32 的功率调节至最 大功率, 以利用电机 34和电控装置 33的余热尽快对电池组加热。
当电池组的温度位于 0°C〜 7°C时, 若第一热交换器 11 1进出口的温度 差大于 5°C, 则将第二水泵 32 的功率调节至最大功率。 若第一热交换器 1 11 进出口的温度差大于 5°C, 则说明冷却液的交换能力不足, 需要增大 冷却液的流量因此需要将第二水泵 32 的功率调节至最大功率, 以对电池 组快速加热。
当电池组的温度位于 0°C〜 7°C时, 若第一热交换器 11 1进出口的温度 差小于 5°C, 则将第二水泵 32的功率调节至最大功率的一半。 若第一热交 换器 11 1进出口的温度差大小于 5°C, 则说明冷却液的热交换能力足够, 适当减小冷却液的流量也可以满足对电池组的加热需求为了避免资源的浪 费, 可以将第二水泵 32的功率适当降低, 例如将第二水泵 32的功率降低 至最大功率的一半。
在本申请的一些实施例中, 还可以在第二热交换器 112的进出口设置 温度传感器, 以采集第二热交换器 112进口的温度和第二热交换器 112出 口的温度, 从而使处理器 12根据第二热交换器 112进出口的温度的温 差, 控制空调*** 4 中冷媒的流量, 实现对电池组冷却速率的调节。 具体 地, 处理器 12可以控制空调*** 4 中至少一个控制参数以调节冷媒的流 量。 其中, 空调*** 4 的控制参数包括第一膨胀阀 44 的开度、 第二膨胀 阀 45的开度、 压缩机 32的转速、 冷凝器 33的风扇转速等参数。
虽然已经参考优选实施例对本申请进行了描述, 但在不脱离本申请的 范围的情况下, 可以对其进行各种改进并且可以用等效物替换其中的部 件。 尤其是, 只要不存在结构冲突, 各个实施例中所提到的各项技术特征 均可以任意方式组合起来。 本申请并不局限于文中公开的特定实施例, 而 是包括落入权利要求的范围内的所有技术方案。

Claims

权 利 要 求 书
1、 一种电池组热管理***, 其中, 所述***包括:
电池组热管理装置、 处理器以及与所述电池组热管理装置连接的电磁 阀网络;
其中, 所述电磁阀网络的外部端口与外部冷却***连接;
所述处理器用于控制所述电磁阀网络中电磁阀的工作状态, 以使所述 电池组热管理装置利用所述外部冷却***产生的热量加热电池组。
2、 根据权利要求 1所述的***, 其中, 所述电磁阀网络包括: 第一电磁阀, 所述第一电磁阀的第一阀口和所述第一电磁阀的第二阀 口均与所述外部冷却***连接;
第二电磁阀, 所述第二电磁阀的第一阀口与所述第一电磁阀的第一阀 口连接, 所述第二电磁阀的第二阀口与所述电池组热管理模块连接;
第三电磁阀, 所述第三电磁阀的第一阀口与所述第一电磁阀口的第二 阀口连接, 所述第三电磁阀的第二阀口与所述电池组热管理模块连接; 第四电磁阀, 所述第四电磁阀的第一阀口与所述外部冷却***连接, 所述第四电磁阀的第二阀口分别与第五电磁阀的第一阀口和所述电池组热 管理模块连接;
所述第五电磁阀, 所述第五电磁阀的第二阀口与所述第二电磁阀的第 二阀口连接;
其中, 所述外部端口包括所述第一电磁阀的第一阀口、 所述第一电磁 阀的第二阀口和所述第四电磁阀的第一阀口。
3、 根据权利要求 2所述的***, 其中, 所述电池热管理装置包括: 第一热交换器, 所述第一热交换器的第一端与所述第二电磁阀的第二 阀口连接, 所述第一热交换器的第二端分别与第二热交换器的第一端和所 述第三电磁阀的第二阀口连接;
所述第二热交换器, 所述第二热交换器的第二端与第一水泵的第一端 连接; 所述第一水泵, 所述第一水泵的第二端与所述第四电磁阀的第二阀口 连接;
第一冷却***, 所述第一冷却***与所述第二热交换器连接, 用于吸 收所述第二热交换器传递的热量, 以冷却所述电池组。
4、 根据权利要求 3所述的***, 其中, 所述外部冷却***为电机电 控冷却***; 其中, 所述电机电控冷却***包括冷却器、 第二水泵、 电控 装置和电机;
所述第一电磁阀的第一阀口与所述电机的第一端连接, 所述电机的第 二端与所述电控装置的第一端连接;
所述第一电磁阀的第二阀口与所述冷却器的进口连接, 所述冷却器的 出口与所述第二水泵的第一端连接;
所述第四电磁阀的第一阀口分别与所述第二水泵的第二端和所述电控 装置的第二端连接。
5、 根据权利要求 4所述的***, 其中, 所述处理器用于控制所述第 一电磁阀、 所述第四电磁阀和所述第五电磁阀均处于关闭状态, 控制所述 第二电磁阀和所述第三电磁阀均处于开启状态, 以及控制所述第二水泵处 于开启状态, 以使所述电池组热管理装置利用所述电机和 /或所述电控装置 产生的热量加热所述电池组。
6、 根据权利要求 4所述的***, 其中, 所述处理器用于控制所述第 一电磁阀、 所述第四电磁阀和所述第五电磁阀均处于关闭状态, 控制所述 第二电磁阀和所述第三电磁阀均处于开启状态, 以及控制所述第二水泵处 于开启状态, 以使所述第一热交换器利用所述电机和 /或所述电控装置产生 的热量加热所述电池组。
7、 根据权利要求 4所述的***, 其中, 所述处理器用于控制所述第 二电磁阀、 所述第三电磁阀和所述第四电磁阀均处于关闭状态, 控制所述 第一电磁阀和所述第五电磁阀均处于开启状态, 以及控制所述第一水泵和 所述第二水泵均处于开启状态, 以使在所述电动汽车的行车状态下所述电 机电控冷却***冷却所述电机和所述电控装置, 且所述电池组热管理装置 冷却所述电池组。
8、 根据权利要求 4所述的***, 其中, 所述处理器用于控制所述第 二电磁阀、 所述第三电磁阀和所述第四电磁阀均处于关闭状态, 控制所述 第一电磁阀处于开启状态, 以及控制所述第二水泵处于开启状态, 以使在 所述电动汽车的行车状态下所述电机电控冷却***冷却所述电机和所述电 控装置, 且所述电池组热管理装置处于不工作状态。
9、 根据权利要求 4所述的***, 其中, 所述处理器用于控制所述第 二电磁阀、 所述第三电磁阀和所述第四电磁阀均处于关闭状态, 控制所述 第五电磁阀处于开启状态, 以及控制所述第一水泵处于开启状态, 以使在 所述电动汽车的驻车状态下所述电池组热管理装置冷却所述电池组, 且所 述电机电控冷却***处于不工作状态。
10、 一种电动汽车的热管理***, 其中, 所述***包括所述外部冷却 ***以及如权利要求 1-9任一项所述的电池组热管理***。
1 1、 根据权利要求 10所述的***, 其中, 所述电磁阀网络包括: 第 一电磁阀, 所述第一电磁阀的第一阀口和所述第一电磁阀的第二阀口均与 所述外部冷却***连接; 第二电磁阀, 所述第二电磁阀的第一阀口与所述 第一电磁阀的第一阀口连接, 所述第二电磁阀的第二阀口与所述电池组热 管理模块连接; 第三电磁阀, 所述第三电磁阀的第一阀口与所述第一电磁 阀口的第二阀口连接, 所述第三电磁阀的第二阀口与所述电池组热管理模 块连接; 第四电磁阀, 所述第四电磁阀的第一阀口与所述外部冷却***连 接, 所述第四电磁阀的第二阀口分别与第五电磁阀的第一阀口和所述电池 组热管理模块连接; 所述第五电磁阀, 所述第五电磁阀的第二阀口与所述 第二电磁阀的第二阀口连接; 其中, 所述外部端口包括所述第一电磁阀的 第一阀口、 所述第一电磁阀的第二阀口和所述第四电磁阀的第一阀口; 所述电池热管理装置包括: 第一热交换器, 所述第一热交换器的第一 端与所述第二电磁阀的第二阀口连接, 所述第一热交换器的第二端分别与 第二热交换器的第一端和所述第三电磁阀的第二阀口连接; 所述第二热交 换器, 所述第二热交换器的第二端与第一水泵的第一端连接; 所述第一水 泵, 所述第一水泵的第二端与所述第四电磁阀的第二阀口连接; 第一冷却 ***, 所述第一冷却***与所述第二热交换器连接, 用于吸收所述第二热 交换器传递的热量, 以冷却所述电池组;
其中, 所述第一冷却***为空调***, 还用于对所述电动汽车的乘客 舱制冷, 所述空调***包括:
第一蒸发器, 所述第一蒸发器的第一端分别与压缩机的第一端和第二 蒸发器的第一端连接, 所述第一蒸发器与所述第二热交换器连接, 用于吸 收所述第二热交换器传递的热量, 以对所述电池组冷却;
所述压缩机, 所述压缩机的第二端与冷凝器的第一端连接;
所述冷凝器, 所述冷凝器的第二端分别与第一膨胀阀的第一阀口和第 二膨胀阀的第一阀口连接;
所述第一膨胀阀, 所述第一膨胀阀的第二阀口与所述第一蒸发器的第 二端连接;
所述第二膨胀阀, 所述第二膨胀阀的第二端口与所述第二蒸发器的第 二端连接;
所述第二蒸发器, 用于对所述电动汽车的乘客舱制冷;
风扇, 用于将所述第二蒸发器产生的冷风送入乘客舱。
12、 根据权利要求 11 所述的***, 其中, 所述空调***还包括加热 器, 用于对所述乘客舱制热;
所述风扇, 还用于将所述加热器产生的热量送入所述乘客舱。
13、 根据权利要求 11或 12所述的***, 其中, 所述外部冷却***为 电机电控冷却***; 其中, 所述电机电控冷却***包括冷却器、 第二水 泵、 电控装置和电机; 所述第一电磁阀的第一阀口与所述电机的第一端连 接, 所述电机的第二端与所述电控装置的第一端连接; 所述第一电磁阀的 第二阀口与所述冷却器的进口连接, 所述冷却器的出口与所述第二水泵的 第一端连接; 所述第四电磁阀的第一阀口分别与所述第二水泵的第二端和 所述电控装置的第二端连接, 所述第二水泵的第二端与所述电控装置的第 二端连接; 其中, 若所述第一电磁阀、 所述第四电磁阀和所述第五电磁阀均处于 关闭状态, 且所述第二电磁阀和所述第三电磁阀均处于开启状态, 所述第 二水泵的功率为 P1, 冷却液的流速为 VI ;
若所述第二电磁阀、 所述第三电磁阀和所述第四电磁阀均处于关闭状 态, 所述第一电磁阀和所述第五电磁阀均处于开启状态, 所述第二水泵的 功率为 P2, 冷却液的流速为 VI ;
其中, P1大于 P2。
14、 根据权利要求 13所述的***, 其中, 所述***还包括: 第一温度传感器, 与所述处理器连接, 用于采集所述电机的温度; 所述处理器用于根据所述电机的温度调节所述冷却器中风扇的转速。
15、 根据权利要求 13所述的***, 其中, 所述***还包括: 第二温度传感器, 与所述处理器连接, 用于采集所述第一热交换器的 第一端口的温度;
第三温度传感器, 与所述处理器连接, 用于采集所述第一热交换器的 第二端口的温度;
第四温度传感器, 与所述处理器连接, 用于采集所述电池组的温度; 所述处理器用于根据所述第一热交换器的第一端口的温度、 所述第一 热交换器的第二端口的温度和所述电池组的温度调整所述第二水泵的功 率。
PCT/CN2020/075861 2019-02-28 2020-02-19 电池组热管理***和电动汽车的热管理*** WO2020173351A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20762930.4A EP3923398B1 (en) 2019-02-28 2020-02-19 Battery pack thermal management system and thermal management system for electric vehicle
US17/458,640 US11904728B2 (en) 2019-02-28 2021-08-27 Thermal management system for battery pack and thermal management system for electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910152153.0A CN111628238B (zh) 2019-02-28 2019-02-28 电池组热管理***和电动汽车的热管理***
CN201910152153.0 2019-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/458,640 Continuation US11904728B2 (en) 2019-02-28 2021-08-27 Thermal management system for battery pack and thermal management system for electric vehicle

Publications (1)

Publication Number Publication Date
WO2020173351A1 true WO2020173351A1 (zh) 2020-09-03

Family

ID=72239070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075861 WO2020173351A1 (zh) 2019-02-28 2020-02-19 电池组热管理***和电动汽车的热管理***

Country Status (4)

Country Link
US (1) US11904728B2 (zh)
EP (1) EP3923398B1 (zh)
CN (1) CN111628238B (zh)
WO (1) WO2020173351A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023272566A1 (zh) * 2021-06-30 2023-01-05 舍弗勒技术股份两合公司 车辆用热管理***及其工作方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112124469B (zh) * 2020-09-10 2021-10-22 南京瑞摩速珂智能科技有限公司 一种电动车用电机余热利用***
CN113540620A (zh) * 2021-07-07 2021-10-22 恒大恒驰新能源汽车研究院(上海)有限公司 电动汽车电池加热方法、电子设备及存储介质
JP2024503050A (ja) * 2021-10-26 2024-01-24 寧徳時代新能源科技股▲分▼有限公司 熱管理方法及び熱管理システム
CN114132148B (zh) * 2021-12-24 2023-09-12 广州小鹏汽车科技有限公司 热管理***和车辆
CN115425323A (zh) * 2022-09-08 2022-12-02 湖北亿纬动力有限公司 电池热管理***及其调试方法以及电动车辆
CN116885332B (zh) * 2023-07-07 2024-02-06 苏州黑盾环境股份有限公司 一种变频多联储能制冷***

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022888A1 (en) * 2011-07-22 2013-01-24 Robert Bosch Gmbh Fuel cell cooling system with coupling out of heat
CN105655667A (zh) * 2015-12-31 2016-06-08 北京长城华冠汽车科技股份有限公司 一种新能源汽车的热管理***及其调节方法和新能源汽车
CN106985657A (zh) * 2017-03-26 2017-07-28 安徽安凯汽车股份有限公司 新能源纯电动客车电池电机联合热管理***及热管理方法
CN107097664A (zh) * 2017-04-25 2017-08-29 上海思致汽车工程技术有限公司 一种智能化多回路电动汽车热管理***
US20180006347A1 (en) * 2016-07-01 2018-01-04 Ford Global Technologies, Llc Battery coolant circuit control
CN107914538A (zh) * 2016-10-10 2018-04-17 盾安环境技术有限公司 一种电动汽车热管理***
CN207265191U (zh) * 2017-08-18 2018-04-20 宝沃汽车(中国)有限公司 用于电动汽车的热管理***和电动汽车
CN108099544A (zh) * 2018-01-12 2018-06-01 浙江大学 一种纯电动汽车整车热管理***及管理方法
JP2018124021A (ja) * 2017-02-02 2018-08-09 株式会社デンソー 熱交換モジュール、および温度調整装置
CN108501658A (zh) * 2018-06-12 2018-09-07 上海加冷松芝汽车空调股份有限公司 一种热管理***及汽车

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6028756B2 (ja) * 2014-03-19 2016-11-16 トヨタ自動車株式会社 電池温度調節装置
CN103887578B (zh) 2014-03-25 2016-03-30 东风汽车公司 提高电动汽车低温续航里程的动力电池加热方法和***
CN106183789B (zh) 2016-07-06 2018-11-13 中国第一汽车股份有限公司 一种电动车整车热管理***及其控制方法
CN106143053B (zh) * 2016-07-29 2018-09-28 天津博世汽车部件有限公司 一种电动汽车集控热管理***
CN106585414B (zh) * 2016-12-27 2018-01-19 上海思致汽车工程技术有限公司 一种智能化多回路电动汽车冷却***
US9680190B1 (en) * 2017-02-27 2017-06-13 Bordrin Motor Corporation, Inc. Intelligent multiple-loop electric vehicle cooling system
US10730403B2 (en) 2017-05-30 2020-08-04 Ford Global Technologies, Llc System and method to utilize waste heat from power electronics to heat high voltage battery
CN108387023B (zh) * 2018-01-30 2024-01-30 天津大学 一种耦合车载空调动力电池组用制冷制热***
CN207842707U (zh) * 2018-01-30 2018-09-11 宁波国创机车装备有限公司 一种动力电池冷却加热管理***及动力电池
CN108539327B (zh) * 2018-05-25 2020-10-09 上海汽车集团股份有限公司 基于液冷***的动力电池液热***及其控制方法
CN109037831B (zh) 2018-06-25 2021-03-19 蔚来(安徽)控股有限公司 热管理***及其控制方法、充换电站
CN110758043B (zh) * 2018-07-25 2023-07-28 蔚来控股有限公司 车用热管理***、车用热管理方法及车辆
CN109367438B (zh) * 2018-11-29 2024-06-04 北京长城华冠汽车技术开发有限公司 一种应用于混合动力车型的电池热管理***

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022888A1 (en) * 2011-07-22 2013-01-24 Robert Bosch Gmbh Fuel cell cooling system with coupling out of heat
CN105655667A (zh) * 2015-12-31 2016-06-08 北京长城华冠汽车科技股份有限公司 一种新能源汽车的热管理***及其调节方法和新能源汽车
US20180006347A1 (en) * 2016-07-01 2018-01-04 Ford Global Technologies, Llc Battery coolant circuit control
CN107914538A (zh) * 2016-10-10 2018-04-17 盾安环境技术有限公司 一种电动汽车热管理***
JP2018124021A (ja) * 2017-02-02 2018-08-09 株式会社デンソー 熱交換モジュール、および温度調整装置
CN106985657A (zh) * 2017-03-26 2017-07-28 安徽安凯汽车股份有限公司 新能源纯电动客车电池电机联合热管理***及热管理方法
CN107097664A (zh) * 2017-04-25 2017-08-29 上海思致汽车工程技术有限公司 一种智能化多回路电动汽车热管理***
CN207265191U (zh) * 2017-08-18 2018-04-20 宝沃汽车(中国)有限公司 用于电动汽车的热管理***和电动汽车
CN108099544A (zh) * 2018-01-12 2018-06-01 浙江大学 一种纯电动汽车整车热管理***及管理方法
CN108501658A (zh) * 2018-06-12 2018-09-07 上海加冷松芝汽车空调股份有限公司 一种热管理***及汽车

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023272566A1 (zh) * 2021-06-30 2023-01-05 舍弗勒技术股份两合公司 车辆用热管理***及其工作方法

Also Published As

Publication number Publication date
US11904728B2 (en) 2024-02-20
EP3923398B1 (en) 2023-10-04
EP3923398A4 (en) 2022-04-13
CN111628238A (zh) 2020-09-04
EP3923398A1 (en) 2021-12-15
US20210387548A1 (en) 2021-12-16
CN111628238B (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2020173351A1 (zh) 电池组热管理***和电动汽车的热管理***
CN107097664B (zh) 一种智能化多回路电动汽车热管理***
JP6916600B2 (ja) 車両用バッテリ冷却システム
US11207947B2 (en) Cooling system for a motor vehicle and motor vehicle having such a cooling system
US9649908B2 (en) Temperature regulation device
US20180178615A1 (en) Intelligent multi-loop thermal management system for an electric vehicle
US11142037B2 (en) Thermal management system for vehicle
KR102533382B1 (ko) 열관리 시스템
WO2014034061A1 (ja) 車両用熱管理システム
US20220088991A1 (en) Heat pump system for vehicle
JP7518737B2 (ja) 車両用ヒートポンプシステム
US20120291987A1 (en) System for a motor vehicle for heating and/or cooling a battery and a vehicle interior
WO2018028299A1 (zh) 纯电动汽车冷却***及汽车
JP2021000971A (ja) 車両用ヒートポンプシステム
CN108376808A (zh) 一种汽车电池温度调节装置
JP2014037178A (ja) 電動車両用熱管理システム
US11654744B2 (en) Thermal management system for vehicle
CN208576388U (zh) 集成电池温度控制的电动车热管理***
CN110816208A (zh) 一种多回路电动汽车热管理***
US11807066B2 (en) Thermal management system
CN114074517A (zh) 车辆的热管理***
KR20220152055A (ko) 차량용 히트펌프 시스템
CN113237249A (zh) 一种热泵***、热泵***的节能控制方法及车辆
CN112693363A (zh) 一种纯电动卡车整车热管理***
CN214564757U (zh) 一种纯电动卡车整车热管理***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020762930

Country of ref document: EP

Effective date: 20210907