WO2022237237A1 - 电动车充电、上电及下电控制方法、装置及电动车 - Google Patents

电动车充电、上电及下电控制方法、装置及电动车 Download PDF

Info

Publication number
WO2022237237A1
WO2022237237A1 PCT/CN2022/073786 CN2022073786W WO2022237237A1 WO 2022237237 A1 WO2022237237 A1 WO 2022237237A1 CN 2022073786 W CN2022073786 W CN 2022073786W WO 2022237237 A1 WO2022237237 A1 WO 2022237237A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
electric vehicle
charging
control
state
Prior art date
Application number
PCT/CN2022/073786
Other languages
English (en)
French (fr)
Inventor
俞晓斌
朱秀晖
沈彬
Original Assignee
浙江三一装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三一装备有限公司 filed Critical 浙江三一装备有限公司
Priority to EP22806214.7A priority Critical patent/EP4163148A4/en
Publication of WO2022237237A1 publication Critical patent/WO2022237237A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present application relates to the technical field of electric vehicles, in particular to an electric vehicle charging, power-on and power-off control method and device, and an electric vehicle.
  • control sequence of power on and off, starting and charging of the electric vehicle battery power pack is particularly important.
  • the control sequence of the whole vehicle is different.
  • abnormal operations will occur when the sequence control of the whole vehicle is performed. , resulting in adhesion, normally closed or even damage to various contactors.
  • the present application provides an electric vehicle charging, power-on and power-off control method, device and electric vehicle to solve the defects in the prior art that parts are easily damaged when charging, power-on and power-off control of the electric vehicle.
  • the present application provides a method for controlling the charging, power-on and power-off of an electric vehicle.
  • the method is applied to a control unit of an electric vehicle, including:
  • the complete machine state is a power-off BMS charging mode, a power-on BMS charging mode, a power-off BAT charging mode, a complete machine power-on mode and Any of the power-off modes of the whole machine;
  • the operation flow includes charging operation flow, power-on operation flow and power-off operation flow any kind.
  • the slow charging contactor of the high-voltage charging gun of the electric vehicle is controlled to be powered on, and the high-voltage control box is controlled to be powered on with a high-voltage signal, so that the battery pack of the electric vehicle passes through
  • the high-voltage control box charges the battery of the electric vehicle, and controls the cooling system of the electric vehicle to cool down.
  • control sequence logic if the overall state of the electric vehicle is the power-on BMS charging mode, then the corresponding operation process is executed based on the control sequence logic, include:
  • the charging of the storage battery based on the on-off state of the micro-control unit of the electric vehicle includes:
  • the battery pack is controlled to charge the storage battery in an AC charging mode.
  • the corresponding operation process is executed based on the control sequence logic, include:
  • control the high-voltage control box After the main negative contactor is powered on, control the high-voltage control box to power on the high-voltage signal, so that the battery pack charges the battery through the high-voltage control box when the power of the battery is less than a first threshold , stopping charging until the electric quantity of the storage battery reaches a second threshold; the first threshold is smaller than the second threshold.
  • control sequence logic if the overall state of the electric vehicle is the overall power-on mode, then the corresponding operation process is executed based on the control sequence logic, include:
  • control the high-voltage control box to power on the high-voltage signal
  • control the PTC contactor to power on
  • control the cooling system to cool down, and when the motor voltage is greater than the threshold voltage, sequentially control the The main positive contactor of the electric vehicle is powered on and the pre-charging contactor is powered off;
  • the micro control unit is controlled to be powered on with a high-voltage signal.
  • the whole machine state of the electric vehicle is the whole machine power-on mode, it also includes:
  • the operating state includes the state of the battery pack, the state of the micro control unit, and the state of the high-voltage control box;
  • fault processing includes at least one of reducing torque, reducing speed, turning off the motor, and controlling the power-off of the battery pack.
  • control sequence logic if the whole machine state of the electric vehicle is the whole machine power-off mode, then the corresponding operation process is executed based on the control sequence logic, include:
  • the present application also provides an electric vehicle charging, power-on and power-off control device, the device is installed in the control unit of the electric vehicle, including:
  • the state determination module is used to determine the complete machine state of the electric vehicle based on the power-on signal or power-off signal of the electric vehicle; the complete machine state is a power-off BMS charging mode, a power-on BMS charging mode, a power-off BAT charging mode, Any one of the power-on mode of the whole machine and the power-off mode of the whole machine;
  • the control module is used to determine the corresponding control sequence logic based on the overall state of the electric vehicle, and execute the corresponding operation process based on the control sequence logic; the operation process includes a charging operation process, a power-on operation process, and a power-off operation process. Any of the electrical operation procedures.
  • the present application also provides an electric vehicle, including: the above-mentioned electric vehicle charging, power-on and power-off control device.
  • the present application also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the computer program, any of the above-mentioned The steps of the electric vehicle charging, power-on and power-off control method.
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the method for controlling the charging, power-on and power-off of an electric vehicle as described above can be realized. A step of.
  • the electric vehicle charging, power-on and power-off control method, device and electric vehicle provided by this application, after determining the overall state of the electric vehicle, execute the corresponding operation process based on the control sequence logic corresponding to the overall state, so as to automatically control the electric vehicle.
  • the car is charged, powered on or off to avoid the problem of adhesion or even damage caused by excessive current of various contactors due to abnormal operation.
  • Fig. 1 is a schematic flow chart of an electric vehicle charging, power-on and power-off control method provided by the present application
  • Fig. 2 is a schematic flow chart of another electric vehicle charging, power-on and power-off control method provided by the present application;
  • Fig. 3 is a schematic structural diagram of the electric vehicle charging, power-on and power-off control system provided by the present application;
  • Fig. 4 is a schematic structural view of the electric vehicle charging, power-on and power-off control device provided by the present application;
  • FIG. 5 is a schematic structural diagram of an electronic device provided by the present application.
  • Fig. 1 is a schematic flow chart of the electric vehicle charging, power-on and power-off control method provided by the present application. As shown in Fig. 1, the method includes the following steps:
  • Step 110 Based on the power-on signal or power-off signal of the electric vehicle, determine the complete machine state of the electric vehicle; the complete machine state is power-off BMS charging mode, power-on BMS charging mode, power-off BAT charging mode, and complete machine power-on mode And any of the power-off modes of the whole machine.
  • the VCU of the electric vehicle can obtain the status of the whole machine of the electric vehicle in real time from the power-on signal or the power-off signal. For example, after the VCU detects the power-on signal, it will judge whether the electric vehicle is in the power-off BMS charging mode, or the power-on BMS charging mode, or the power-off BAT charging mode, or the whole machine power-on mode. If a power-off signal is detected, it will be judged whether the electric vehicle is in a normal complete machine power-off mode or an abnormal power-off mode. Among them, the abnormal power-off mode usually occurs when the battery pack BMS, micro control unit MCU, high-voltage control box DCDC, etc. of the electric vehicle fail.
  • Step 120 Determine the corresponding sequential logic based on the overall state of the electric vehicle, and execute the corresponding operation process based on the control sequential logic; the operation process includes any one of the charging operation process, power-on operation process, and power-off operation process.
  • the control sequence logic corresponding to each state of the whole machine can be determined, that is, power-off BMS charging mode, power-on BMS charging mode, power-off BAT charging mode, whole machine power-on mode, and
  • the power-off modes of the whole machine correspond to different control sequential logics, which can be pre-set control sequential logics and programmed into the VCU, so that the VCU can control the corresponding components of the electric vehicle based on the corresponding control sequential logics to perform corresponding functions. Operation process, such as charging operation process, power-on operation process, power-off operation process, etc.
  • the electric vehicle charging, power-on and power-off control method provided by the embodiment of the present application, after determining the overall state of the electric vehicle, executes the corresponding operation process based on the control sequence logic corresponding to the overall state, so as to automatically The electric vehicle is charged, powered on or off to avoid the problem of adhesion or even damage of various contactors caused by excessive current due to abnormal operation.
  • control sequence logic including:
  • control the high-voltage control box of the electric vehicle After receiving the charging command, control the high-voltage control box of the electric vehicle to power on the low-voltage signal and the main negative contactor in turn;
  • the slow charging contactor of the high-voltage charging gun of the electric vehicle is controlled to be powered on, and the high-voltage control box is controlled to be powered on with the high-voltage signal, so that the battery pack of the electric vehicle can serve as the battery of the electric vehicle through the high-voltage control box Charge, and control the cooling system of the electric vehicle to cool down.
  • the VCU judges that the overall state of the electric vehicle is in the power-off BMS charging mode at this time, it needs to charge the battery BAT of the electric vehicle.
  • the VCU will detect whether the high-voltage charging gun OBC is in place, and if so, wake up the human-machine interface HMI, and the user sends a charging command to the VCU through the HMI, so that the VCU wakes up the BMS to charge the BAT.
  • the charging instruction will carry information related to the charging current.
  • the VCU After the VCU receives the charging command, if it detects that the OBC plug is in place, it controls the DCDC low-voltage signal to power on, and after the DCDC low-voltage signal is powered on, it controls the main negative contactor to power on. At this time, the VCU According to the charging current information carried in the charging command, the OBC slow charging contactor is controlled to be powered on, and at the same time, the DCDC high voltage signal is powered on to prompt the BMS to charge the BAT through DCDC to DC. At the same time, the VCU controls the cooling water system CWS according to the temperature of the electric vehicle to achieve water cooling.
  • control sequence logic including:
  • the VCU judges that the overall state of the electric vehicle is in the power-on BMS charging mode at this time, it needs to charge the battery BAT of the electric vehicle. At this time, the VCU will detect whether the high-voltage charging gun OBC is in place. If so, the VCU controls the slow charging contactor to power on, and at the same time determines the charging method of the BMS to the BAT according to the opening and closing status of the MCU. At the same time, the VCU controls the CWS to perform water cooling based on the temperature of the whole machine.
  • the VCU detects the power-on signal, the status of the OBC plugged in, and the MCU startup status to control the BMS charging mode.
  • the OBC slow charging contactor is controlled to be powered on, and at the same time, it is judged whether it is AC charging or AC recharging according to whether the MCU is started. mode, if the MCU is on, the BAT will be charged in the AC recharging mode; if the MCU is off, the BAT will be charged in the AC charging mode.
  • the VCU controls the CWS according to the temperature of the whole machine to realize water cooling.
  • charging the storage battery based on the on-off state of the micro-control unit of the electric vehicle includes:
  • the battery pack is controlled to charge the storage battery in the AC recharging mode
  • the battery pack is controlled to charge the storage battery in an AC charging mode.
  • the MCU determines whether the MCU is working and consumes power at a fast rate, so the BAT needs to be charged quickly, so the BAT is charged in the AC recharging mode. If the MCU is off, it means that the MCU is not working, and the power consumption is slower than when the MCU is working. At this time, in order to ensure the life of the BAT, you can use the AC charging mode to charge the BAT.
  • the whole machine state of the electric vehicle is the power-off BAT charging mode
  • the corresponding operation process is executed based on the control sequence logic, including:
  • control the high-voltage control box After the main negative contactor is powered on, control the high-voltage control box to power on the high-voltage signal, so that the battery pack will charge the battery through the high-voltage control box when the power of the battery is less than the first threshold, and stop charging until the power of the battery reaches the second threshold ;
  • the first threshold is less than the second threshold.
  • the first threshold and the second threshold may be set according to specific situations, which is not specifically limited in this embodiment of the present application.
  • the BMS is woken up at this time, and the DCDC low-voltage signal is powered on at the same time.
  • the main negative contactor is powered on, and then the DCDC high-voltage signal is controlled to be powered on to control the BMS.
  • the VCU controls the CWS according to the temperature of the whole machine to realize water cooling.
  • the embodiment of the present application can actively wake up the BMS and DCDC to DC charging control mode protection when the BAT power is insufficient, and the BAT can realize power-off low-voltage charging to prevent power feeding.
  • control sequence logic including:
  • control the high-voltage control box to power on the high-voltage signal
  • control the PTC contactor to power on
  • control the cooling system to cool down, and when the motor voltage is greater than the threshold voltage, sequentially control the main positive contactor of the electric vehicle. Power off the power and pre-charge contactor;
  • the main negative contactor after controlling the power on of the main negative contactor, it also includes:
  • the high-voltage signal of the control micro-control unit is powered on.
  • the VCU detects the power-on signal and knows that the whole machine is in the power-on mode of the electric vehicle, it controls the DCDC low-voltage signal and the MCU low-voltage signal to power on, and then controls the power-on of the main and negative contactors. After the contactor is powered on, the pre-charging contactor is powered on, and the VCU detects the motor voltage (MCU side voltage) and the BMS threshold voltage. If the motor voltage is greater than the BMS threshold voltage, it controls the main positive contactor to be powered on and then the pre-charging contactor is powered off.
  • the synchronous DCDC high-voltage signal is powered on, and the VCU controls the MCU high-voltage signal to power on and start the motor according to the motor start signal. At the same time, the VCU controls the CWS according to the temperature of the whole machine to realize water cooling.
  • the synchronous VCU detects the PTC controller command to control the PTC contactor to power on and start the air conditioning heating or cooling system.
  • the VCU controls the MCU high-voltage signal to power on according to the motor start signal, that is, if the motor is in the starting state, controls the MCU high-voltage signal to power on, and starts the motor at this time.
  • the whole machine state of the electric vehicle is the power-on mode of the whole machine, it also includes:
  • the running status includes the status of the battery pack, the status of the micro control unit and the status of the high-voltage control box;
  • the fault processing includes at least one of reducing torque, reducing speed, shutting down the motor, and controlling power-off of the battery pack.
  • the VCU detects the BMS state, MCU state and DCDC state in real time to control the normal operation of the whole vehicle. Once it detects that the operating state does not meet the preset conditions, it indicates that there is an abnormal fault. For faults or abnormalities, reduce the torque, reduce the speed, turn off the motor, or even directly power off the BMS to avoid abnormalities and faults that cause the whole machine to crash and cause accidents.
  • the level of failure level 4 is the highest
  • torque reduction can be implemented; when the level of failure is level 2, torque reduction can be implemented Torque + speed reduction; when the fault level is level 3, torque reduction + speed reduction + motor shutdown can be implemented; when the fault level is level 4, torque reduction + speed reduction + motor shutdown + BMS power off can be implemented.
  • the whole machine state of the electric vehicle is the whole machine power-off mode
  • the corresponding operation process is executed based on the control sequence logic, including:
  • the VCU detects the power-off signal and controls the MCU high-voltage signal to lose power. At this time, the motor stops. After the motor stops, the main positive relay loses power, and then the DCDC high-voltage signal loses power. , after detecting the DCDC high-voltage signal power-off, the DCDC low-voltage signal is delayed and power-off,
  • the present application also provides an electric vehicle charging, power-on and power-off control system, as shown in Figure 3, the system includes a battery pack (BMS), a cooling water system (CWS), a high-voltage charging gun (OBC), high-voltage control box (DCDC, PTC), control unit (VCU), human-machine interface (HMI), battery (BAT); BMS is charged through OBC, and BMS is converted into DC 24V by DCDC to charge BAT, while BMS It supplies high voltage power to DCDC, PTC and MCU, and BAT supplies low voltage power to DCDC, MCU, HMI and VCU.
  • BMS battery pack
  • CWS cooling water system
  • OBC high-voltage charging gun
  • DCDC high-voltage control box
  • VCU control unit
  • HMI human-machine interface
  • BAT battery
  • BMS is charged through OBC, and BMS is converted into DC 24V by DCDC to charge BAT, while BMS It supplies high voltage power to DCDC, PTC and MCU, and BAT
  • the electric vehicle charging, power-on and power-off control device provided by this application is described below.
  • the electric vehicle charging, power-on and power-off control device described below can be compared with the electric vehicle charging, power-on and power-off control method described above. refer to each other.
  • the present application also provides a charging, power-on and power-off control device for an electric vehicle, which is installed in the control unit of the electric vehicle, as shown in Figure 4, the device includes:
  • the state determination module 410 is used to determine the complete machine state of the electric vehicle based on the power-on signal or the power-off signal of the electric vehicle; the complete machine state is power-off BMS charging mode, power-on BMS charging mode, power-off BAT charging mode, complete Any one of the power-on mode of the machine and the power-off mode of the whole machine;
  • the control module 420 is configured to determine the corresponding control sequence logic based on the overall state of the electric vehicle, and execute the corresponding operation process based on the control sequence logic; the operation process includes a charging operation process, a power-on operation process, and Any one of the power-off operation procedures.
  • control module 420 is further configured to:
  • the slow charging contactor of the high-voltage charging gun of the electric vehicle is controlled to be powered on, and the high-voltage control box is controlled to be powered on with a high-voltage signal, so that the battery pack of the electric vehicle passes through
  • the high-voltage control box charges the battery of the electric vehicle, and controls the cooling system of the electric vehicle to cool down.
  • control module 420 is further configured to:
  • control module 420 includes:
  • the first charging module is configured to control the battery pack to charge the storage battery in an AC recharging mode if the startup state of the micro control unit is on;
  • the second charging module is configured to control the battery pack to charge the storage battery in an AC charging mode if the startup state of the micro control unit is off.
  • control module 420 is further configured to:
  • control the high-voltage control box After the main negative contactor is powered on, control the high-voltage control box to power on the high-voltage signal, so that the battery pack charges the battery through the high-voltage control box when the power of the battery is less than a first threshold , stopping charging until the electric quantity of the storage battery reaches a second threshold; the first threshold is smaller than the second threshold.
  • control module 420 is further configured to:
  • control the high-voltage control box to power on the high-voltage signal
  • control the PTC contactor to power on
  • control the cooling system to cool down, and when the motor voltage is greater than the threshold voltage, sequentially control the The main positive contactor of the electric vehicle is powered on and the pre-charging contactor is powered off;
  • the micro control unit is controlled to be powered on with a high-voltage signal.
  • a monitoring module configured to acquire the operating state of the electric vehicle in real time; the operating state includes the state of the battery pack, the state of the micro control unit, and the state of the high-voltage control box;
  • a fault processing module configured to perform fault processing if the operating state does not meet a preset condition; the fault processing includes at least one of torque reduction, speed reduction, motor shutdown, and controlling power-off of the battery pack.
  • control module 420 is further configured to:
  • the present application further provides an electric vehicle, including: the above-mentioned electric vehicle charging, power-on and power-off control device.
  • the electric vehicle provided by the embodiment of the present application can automatically charge, power on and power off the electric vehicle according to the corresponding control sequence logic flow, avoiding the problem of adhesion or even damage of various contactors caused by excessive current due to abnormal operation.
  • FIG. 5 is a schematic structural diagram of an electronic device provided by the present application.
  • the electronic device may include: a processor (processor) 510, a communication interface (CommunicationsInterface) 520, a memory (memory) 530, and a communication bus 540, wherein , the processor 510 , the communication interface 520 , and the memory 530 communicate with each other through the communication bus 540 .
  • the processor 510 can call the logic instructions in the memory 530 to execute the electric vehicle charging, power-on and power-off control method.
  • the method includes: determining the overall state of the electric vehicle based on the power-on signal or power-off signal of the electric vehicle;
  • the state of the complete machine is any one of the power-off BMS charging mode, the power-on BMS charging mode, the power-off BAT charging mode, the power-on mode of the whole machine and the power-off mode of the whole machine; based on the state of the whole machine of the electric vehicle , determine the corresponding control sequence logic, and execute the corresponding operation flow based on the control sequence logic; the operation flow includes any one of the charging operation flow, power-on operation flow, and power-off operation flow.
  • the above logic instructions in the memory 530 may be implemented in the form of software function units and be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the present application also provides a computer program product
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium
  • the computer program includes program instructions, and when the program instructions are executed by a computer
  • the method includes: based on the power-on signal or power-off signal of the electric vehicle, determining the state of the whole machine of the electric vehicle;
  • the state of the whole machine is any one of the power-off BMS charging mode, the power-on BMS charging mode, the power-off BAT charging mode, the power-on mode of the whole machine, and the power-off mode of the whole machine; based on the state of the whole machine of the electric vehicle, determine Corresponding control sequence logic, and based on the control sequence logic, execute the corresponding operation flow;
  • the operation flow includes any one of the charging operation flow, power-on operation flow and power-off operation flow.
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the charging, power-on and power-off of the electric vehicle provided above.
  • a control method comprising: determining the complete machine state of the electric vehicle based on a power-on signal or a power-off signal of the electric vehicle; the complete machine state is a power-off BMS charging mode, a power-on BMS charging mode, and a power-off BAT charging mode , any one of the power-on mode of the whole machine and the power-off mode of the whole machine; based on the state of the whole machine of the electric vehicle, determine the corresponding control sequence logic, and execute the corresponding operation process based on the control sequence logic;
  • the operation flow includes any one of a charging operation flow, a power-on operation flow, and a power-off operation flow.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • each implementation can be implemented by means of software plus a necessary general hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic discs, optical discs, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

提供一种电动车充电、上电及下电控制方法、装置及电动车,方法包括:基于电动车的上电信号或下电信号,确定电动车的整机状态;整机状态为断电BMS充电模式、上电BMS充电模式、断电BAT充电模式、整机上电模式以及整机下电模式中的任一种(110);基于电动车的整机状态,确定对应的控制时序逻辑,并基于控制时序逻辑执行对应的操作流程;操作流程包括充电操作流程、上电操作流程以及下电操作流程中的任一种(120)。能在确定电动车的整机状态后,基于整机状态对应的控制时序逻辑执行对应的操作流程,以自动对电动车进行充电、上电或下电,避免由于非正常操作导致各类接触器电流过大出现粘连甚至损坏的问题。

Description

电动车充电、上电及下电控制方法、装置及电动车
相关申请的交叉引用
本申请要求于2021年05月11日提交的申请号为202110513292.9,名称为“电动车充电、上电及下电控制方法、装置及电动车”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及电动车技术领域,尤其涉及一种电动车充电、上电及下电控制方法、装置及电动车。
背景技术
随着电动汽车行业的崛起与发展,各行各业都在用电池动力组替换现有的发动机,不仅可以提升能源的使用效率,还可以减震降噪。
因此,电动车电池动力组的上下电、启动和充电的控制时序就尤为重要,对于不同的电动车,整车的控制时序不同,现有技术中对整车进行时序控制时会出现非正常操作,导致各类接触器出现粘连、常闭甚至损坏情况。
发明内容
本申请提供一种电动车充电、上电及下电控制方法、装置及电动车,用以解决现有技术中对电动车进行充电、上电及下电控制时容易导致零件损坏的缺陷。
本申请提供一种电动车充电、上电及下电控制方法,所述方法应用于电动车的控制单元,包括:
基于电动车的上电信号或下电信号,确定电动车的整机状态;所述整机状态为断电BMS充电模式、上电BMS充电模式、断电BAT充电模式、整机上电模式以及整机下电模式中的任一种;
基于所述电动车的整机状态,确定对应的控制时序逻辑,并基于所述控制时序逻辑执行对应的操作流程;所述操作流程包括充电操作流程、上电操作流程以及下电操作流程中的任一种。
根据本申请提供的一种电动车充电、上电及下电控制方法,若所述电动车的整机状态为断电BMS充电模式,则所述基于所述控制时序逻辑执行对应的操作流程,包括:
在接收充电指令后,依次控制所述电动车的高压控制盒低压信号上电和主负接触器上电;
在所述主负接触器上电后,控制所述电动车的高压充电枪的慢充接触器上电,以及控制所述高压控制盒高压信号上电,以使所述电动车的电池组通过所述高压控制盒为所述电动车的蓄电池充电,并控制所述电动车的冷却***进行冷却降温。
根据本申请提供的一种电动车充电、上电及下电控制方法,若所述电动车的整机状态为上电BMS充电模式,则所述基于所述控制时序逻辑执行对应的操作流程,包括:
控制所述慢充接触器上电,以及基于所述电动车的微控制单元的启闭状态对所述蓄电池进行充电,并控制所述电动车的冷却***进行冷却降温。
根据本申请提供的一种电动车充电、上电及下电控制方法,所述基于所述电动车的微控制单元的启闭状态对所述蓄电池进行充电,包括:
若所述微控制单元的启动状态为开启,则控制所述电池组以交流回充充电模式对所述蓄电池进行充电;
若所述微控制单元的启动状态为关闭,则控制所述电池组以交流充电模式对所述蓄电池进行充电。
根据本申请提供的一种电动车充电、上电及下电控制方法,若所述电动车的整机状态为断电BAT充电模式,则所述基于所述控制时序逻辑执行对应的操作流程,包括:
依次控制所述高压控制盒低压信号上电和所述主负接触器上电;
在所述主负接触器上电后,控制所述高压控制盒高压信号上电,以使所述电池组在所述蓄电池的电量小于第一阈值时通过所述高压控制盒向所述蓄电池充电,直至所述蓄电池的电量达到第二阈值时停止充电;所述第一阈值小于所述第二阈值。
根据本申请提供的一种电动车充电、上电及下电控制方法,若所述电动车的整机状态为整机上电模式,则所述基于所述控制时序逻辑执行对应的操 作流程,包括:
控制所述高压控制盒低压信号上电和所述电动车的微控制单元低压信号上电后,依次控制所述主负接触器上电和预充接触器上电;
在所述预充接触器上电后,控制所述高压控制盒高压信号上电、控制PTC接触器上电、控制所述冷却***进行冷却降温以及在电机电压大于阈值电压时,依次控制所述电动车的主正接触器上电和所述预充接触器下电;
其中,在所述控制所述主负接触器上电之后,还包括:
若所述电动车的电机处于启动状态,则控制所述微控制单元高压信号上电。
根据本申请提供的一种电动车充电、上电及下电控制方法,若所述电动车的整机状态为整机上电模式,还包括:
实时获取所述电动车的运行状态;所述运行状态包括所述电池组的状态、所述微控制单元的状态以及所述高压控制盒的状态;
若所述运行状态不满足预设条件,则进行故障处理;所述故障处理包括降扭矩、降速、关闭电机以及控制所述电池组下电中的至少一种。
根据本申请提供的一种电动车充电、上电及下电控制方法,若所述电动车的整机状态为整机下电模式,则所述基于所述控制时序逻辑执行对应的操作流程,包括:
控制所述电动车的微控制单元高压信号失电,以依次使所述电动车的主正继电器失电、所述高压控制盒高压信号失电、所述高压控制盒低压信号延时失电以及所述微控制单元低压信号失电,且所述电动车的主正接触器、预充接触器、慢充接触器以及PTC接触器均处于失电状态时,控制所述主负接触器失电。
本申请还提供一种电动车充电、上电及下电控制装置,所述装置安装于电动车的控制单元,包括:
状态确定模块,用于基于电动车的上电信号或下电信号,确定电动车的整机状态;所述整机状态为断电BMS充电模式、上电BMS充电模式、断电BAT充电模式、整机上电模式以及整机下电模式中的任一种;
控制模块,用于基于所述电动车的整机状态,确定对应的控制时序逻辑,并基于所述控制时序逻辑执行对应的操作流程;所述操作流程包括充电操作 流程、上电操作流程以及下电操作流程中的任一种。
本申请还提供一种电动车,包括:如上所述的电动车充电、上电及下电控制装置。
本申请还提供一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述任一种所述电动车充电、上电及下电控制方法的步骤。
本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述电动车充电、上电及下电控制方法的步骤。
本申请提供的电动车充电、上电及下电控制方法、装置及电动车,在确定电动车的整机状态后,基于整机状态对应的控制时序逻辑执行对应的操作流程,以自动对电动车进行充电、上电或下电,避免由于非正常操作导致各类接触器电流过大出现粘连甚至损坏的问题。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的电动车充电、上电及下电控制方法的流程示意图;
图2是本申请提供的又一电动车充电、上电及下电控制方法的流程示意图;
图3是本申请提供的电动车充电、上电及下电控制***的结构示意图;
图4是本申请提供的电动车充电、上电及下电控制装置的结构示意图;
图5是本申请提供的电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例, 都属于本申请保护的范围。
本申请提供一种电动车充电、上电及下电控制方法,该方法应用于电动车的控制单元(VCU)。图1是本申请提供的电动车充电、上电及下电控制方法的流程示意图,如图1所示,该方法包括如下步骤:
步骤110、基于电动车的上电信号或下电信号,确定电动车的整机状态;整机状态为断电BMS充电模式、上电BMS充电模式、断电BAT充电模式、整机上电模式以及整机下电模式中的任一种。
具体地,电动车的VCU可以从上电信号或下电信号中,实时获取电动车的整机状态。例如VCU检测到上电信号后,会判断电动车此时是处于断电BMS充电模式、或上电BMS充电模式、或断电BAT充电模式、或整机上电模式。若检测到下电信号,会判断电动车是正常整机下电模式还是异常下电模式。其中,异常下电模式通常发生在电动车的电池组BMS、微控制单元MCU、高压控制盒DCDC等发生故障时导致的。
步骤120、基于电动车的整机状态,确定对应的时序逻辑,并基于控制时序逻辑执行对应的操作流程;操作流程包括充电操作流程、上电操作流程以及下电操作流程中的任一种。
具体地,在确定电动车的整机状态后,可以确定各整机状态对应的控制时序逻辑,即断电BMS充电模式、上电BMS充电模式、断电BAT充电模式、整机上电模式以及整机下电模式分别对应不同的控制时序逻辑,该控制时序逻辑可以是预先设置的控制时序逻辑,并编程至VCU中,以便VCU基于相应的控制时序逻辑控制电动车的相应零部件执行对应的操作流程,如充电操作流程、上电操作流程、下电操作流程等。
由此可见,本申请实施例提供的电动车充电、上电及下电控制方法,在确定电动车的整机状态后,基于整机状态对应的控制时序逻辑执行对应的操作流程,以自动对电动车进行充电、上电或下电,避免由于非正常操作导致各类接触器电流过大出现粘连甚至损坏的问题。
基于上述任一实施例,若电动车的整机状态为断电BMS充电模式,则基于控制时序逻辑执行对应的操作流程,包括:
在接收充电指令后,依次控制电动车的高压控制盒低压信号上电和主负接触器上电;
在主负接触器上电后,控制电动车的高压充电枪的慢充接触器上电,以及控制高压控制盒高压信号上电,以使电动车的电池组通过高压控制盒为电动车的蓄电池充电,并控制电动车的冷却***进行冷却降温。
具体地,若VCU判断此时电动车的整机状态为断电BMS充电模式,则需要对电动车的蓄电池BAT进行充电。此时VCU会检测高压充电枪OBC是否到位,若是,则唤醒人机界面HMI,用户通过HMI向VCU发送充电指令,以使VCU唤醒BMS对BAT进行充电。其中,充电指令中会携带充电电流的相关信息。
如图2所示,在VCU接收到充电指令之后,若检测到OBC的插枪到位,则控制DCDC低压信号上电,在DCDC低压信号上电之后,控制主负接触器上电,此时VCU根据充电指令中携带的充电电流信息控制OBC慢充接触器上电,同时DCDC高压信号上电促使BMS通过DCDC转直流给BAT充电。同时VCU根据电动车的整机温度控制冷却水***CWS实现水冷降温。
由此可见,本申请实施例提供的电动车充电、上电及下电控制方法,若确定电动车的整机状态为断电BMS充电模式,则按照相应的控制时序逻辑流程自动对电动车进行充电,避免由于非正常操作导致各类接触器电流过大出现粘连甚至损坏的问题。
基于上述实施例,若电动车的整机状态为上电BMS充电模式,则基于控制时序逻辑执行对应的操作流程,包括:
控制慢充接触器上电,以及基于电动车的微控制单元的启闭状态对蓄电池进行充电,并控制电动车的冷却***进行冷却降温。
具体地,若VCU判断此时电动车的整机状态为上电BMS充电模式,则需要对电动车的蓄电池BAT进行充电。此时VCU会检测高压充电枪OBC是否到位,若是,VCU控制慢充接触器上电,同时根据MCU的启闭状态,确定BMS对BAT的充电方式。同时,VCU基于整机的温度控制CWS进行水冷降温。
如图2所示,VCU检测上电信号、OBC插枪状态、MCU启动状态控制BMS充电方式,此时控制OBC慢充接触器上电,同时根据MCU是否启动判断为交流充电还是交流回充充电模式,若MCU处于启动状态,则以交流回充充电模式对BAT进行充电;若MCU处于关闭状态,则以交流充电模式对 BAT进行充电。同时VCU根据整机温度控制CWS实现水冷降温。
基于上述任一实施例,基于电动车的微控制单元的启闭状态对蓄电池进行充电,包括:
若微控制单元的启动状态为开启,则控制电池组以交流回充充电模式对蓄电池进行充电;
若微控制单元的启动状态为关闭,则控制电池组以交流充电模式对蓄电池进行充电。
具体地,若MCU为开启状态,此时表明MCU正在工作,耗费的电量的速度较快,所以需要快速对BAT进行充电,因此采用交流回充充电模式对BAT进行充电。若MCU为关闭状态,表明MCU未工作,相较于MCU工作时耗费电量的速度较慢,此时为了保证BAT的寿命,可以采用交流充电模式对BAT进行充电。
基于上述任一实施例,若电动车的整机状态为断电BAT充电模式,则基于控制时序逻辑执行对应的操作流程,包括:
依次控制高压控制盒低压信号上电和主负接触器上电;
在主负接触器上电后,控制高压控制盒高压信号上电,以使电池组在蓄电池的电量小于第一阈值时通过高压控制盒向蓄电池充电,直至蓄电池的电量达到第二阈值时停止充电;第一阈值小于第二阈值。
具体地,若电动车的整机状态为断电BAT充电模式,此时若BAT的电量小于第一阈值,表明BAT的SOC电量不足,需要BMS对其进行充电,直至BAT的电量达到第二阈值后,充电结束。其中,第一阈值和第二阈值可以根据具体情况设置,本申请实施例对此不作具体限定。
如图2所示,若BAT电量小于第一阈值,此时唤醒BMS,同时DCDC低压信号上电,DCDC低压信号上电后主负接触器上电,然后控制DCDC高压信号上电,以控制BMS通过DCDC转直流给BAT充电。同时VCU根据整机温度控制CWS实现水冷降温。
由此可见,本申请实施例在BAT电量不足时,可以主动唤醒BMS和DCDC转直流充电的控制方式保护,BAT可实现断电低压充电,防止馈电现象。
基于上述任一实施例,若电动车的整机状态为整机上电模式,则基于控 制时序逻辑执行对应的操作流程,包括:
控制高压控制盒低压信号上电和电动车的微控制单元低压信号上电后,依次控制主负接触器上电和预充接触器上电;
在预充接触器上电后,控制高压控制盒高压信号上电、控制PTC接触器上电、控制冷却***进行冷却降温以及在电机电压大于阈值电压时,依次控制电动车的主正接触器上电和预充接触器下电;
其中,在控制主负接触器上电之后,还包括:
若电动车的电机处于启动状态,则控制微控制单元高压信号上电。
如图2所示,若VCU通过检测上电信号获知电动车的整机状态为整机上电模式,则控制DCDC低压信号和MCU低压信号上电,然后控制主负接触器上电,主负接触器上电后预充接触器上电,VCU检测电机电压(MCU侧电压)与BMS阈值电压,若电机电压大于BMS阈值电压,则控制主正接触器上电后预充接触器下电,同步DCDC高压信号上电,VCU再根据电机启动信号控制MCU高压信号上电启动电机。同时VCU根据整机温度控制CWS实现水冷降温。同步VCU检测PTC控制器指令控制PTC接触器上电启动空调加热或冷却***。
其中,VCU根据电机启动信号控制MCU高压信号上电,即若电机处于启动状态,则控制MCU高压信号上电,此时启动电机。
基于上述任一实施例,若电动车的整机状态为整机上电模式,还包括:
实时获取电动车的运行状态;运行状态包括电池组的状态、微控制单元的状态以及高压控制盒的状态;
若运行状态不满足预设条件,则进行故障处理;故障处理包括降扭矩、降速、关闭电机以及控制电池组下电中的至少一种。
具体地,在整机上电模式过程中,VCU实时检测BMS状态、MCU状态和DCDC状态控制整车正常运转,一旦检测到运行状态不满足预设条件,则表明存在异常故障,此时可以根据故障或异常程度分别实行降扭矩、降速、关闭电机甚至BMS直接下电处理,避免异常和故障导致整机崩溃和出现事故。例如,将故障等级分为1级、2级、3级以及4级(其中4级故障等级最高),则故障等级为1级时,可以实行降扭矩;故障等级为2级时,可以实行降扭矩+降速;故障等级为3级时,可以实行降扭矩+降速+关闭电机;故障等级为 4级时,可以实行降扭矩+降速+关闭电机+BMS下电。
基于上述任一实施例,若电动车的整机状态为整机下电模式,则基于控制时序逻辑执行对应的操作流程,包括:
控制电动车的微控制单元高压信号失电,以依次使电动车的主正继电器失电、高压控制盒高压信号失电、高压控制盒低压信号延时失电以及微控制单元低压信号失电,且电动车的主正接触器、预充接触器、慢充接触器以及PTC接触器均处于失电状态时,控制主负接触器失电。
具体地,若电动车的整机状态为整机下电模式,VCU检测下电信号控制MCU高压信号失电此时电机停转,电机停转后主正继电器失电,然后DCDC高压信号失电,检测到DCDC高压信号失电后DCDC低压信号延时失电,
MCU低压信号检测DCDC低压信号失电状态延时MCU电压信号失电(MCU可以为电容形放电),VCU检测DCDC低压信号、MCU低压信号、DCDC高压信号、MCU高压信号、主正接触器状态、预充接触器状态、OBC慢充接触器转换,PTC接触器状态均失电来控制BMS主负接触器失电。
基于上述任一实施例,本申请还提供一种电动车充电、上电及下电控制***,如图3所示,该***包括电池组(BMS)、冷却水***(CWS)、高压充电枪(OBC)、高压控制盒(DCDC、PTC)、控制单元(VCU)、人机界面(HMI)、蓄电池(BAT);通过OBC给BMS充电,BMS通过DCDC转换为直流24V给BAT充电,同时BMS给DCDC、PTC和MCU供高压电,BAT给DCDC、MCU、HMI和VCU供低压电。其中包括整机正接触器、负接触器、预充接触器、慢充接触器、PTC接触器、MCU接触器、DCDC接触器、MCU低压信号、DCDC低压信号、BMS低压唤醒信号和VCU之间的上电、下电和充电时序逻辑控制。
下面对本申请提供的电动车充电、上电及下电控制装置进行描述,下文描述的电动车充电、上电及下电控制装置与上文描述的电动车充电、上电及下电控制方法可相互对应参照。
基于上述任一实施例,本申请还提供一种电动车充电、上电及下电控制装置,该装置安装于电动车的控制单元,如图4所示,该装置包括:
状态确定模块410,用于基于电动车的上电信号或下电信号,确定电动车的整机状态;整机状态为断电BMS充电模式、上电BMS充电模式、断电 BAT充电模式、整机上电模式以及整机下电模式中的任一种;
控制模块420,用于基于所述电动车的整机状态,确定对应的控制时序逻辑,并基于所述控制时序逻辑执行对应的操作流程;所述操作流程包括充电操作流程、上电操作流程以及下电操作流程中的任一种。
基于上述任一实施例,若所述电动车的整机状态为断电BMS充电模式,则所述控制模块420,还用于:
在接收充电指令后,依次控制所述电动车的高压控制盒低压信号上电和主负接触器上电;
在所述主负接触器上电后,控制所述电动车的高压充电枪的慢充接触器上电,以及控制所述高压控制盒高压信号上电,以使所述电动车的电池组通过所述高压控制盒为所述电动车的蓄电池充电,并控制所述电动车的冷却***进行冷却降温。
基于上述任一实施例,若所述电动车的整机状态为上电BMS充电模式,则所述控制模块420,还用于:
控制所述慢充接触器上电,以及基于所述电动车的微控制单元的启闭状态对所述蓄电池进行充电,并控制所述电动车的冷却***进行冷却降温。
基于上述任一实施例,所述控制模块420,包括:
第一充电模块,用于若所述微控制单元的启动状态为开启,则控制所述电池组以交流回充充电模式对所述蓄电池进行充电;
第二充电模块,用于若所述微控制单元的启动状态为关闭,则控制所述电池组以交流充电模式对所述蓄电池进行充电。
基于上述任一实施例,若所述电动车的整机状态为断电BAT充电模式,则所述控制模块420,还用于:
依次控制所述高压控制盒低压信号上电和所述主负接触器上电;
在所述主负接触器上电后,控制所述高压控制盒高压信号上电,以使所述电池组在所述蓄电池的电量小于第一阈值时通过所述高压控制盒向所述蓄电池充电,直至所述蓄电池的电量达到第二阈值时停止充电;所述第一阈值小于所述第二阈值。
基于上述任一实施例,若所述电动车的整机状态为整机上电模式,则所述控制模块420,还用于:
控制所述高压控制盒低压信号上电和所述电动车的微控制单元低压信号上电后,依次控制所述主负接触器上电和预充接触器上电;
在所述预充接触器上电后,控制所述高压控制盒高压信号上电、控制PTC接触器上电、控制所述冷却***进行冷却降温以及在电机电压大于阈值电压时,依次控制所述电动车的主正接触器上电和所述预充接触器下电;
其中,在所述控制所述主负接触器上电之后,还包括:
若所述电动车的电机处于启动状态,则控制所述微控制单元高压信号上电。
基于上述任一实施例,还包括:
监测模块,用于实时获取所述电动车的运行状态;所述运行状态包括所述电池组的状态、所述微控制单元的状态以及所述高压控制盒的状态;
故障处理模块,用于若所述运行状态不满足预设条件,则进行故障处理;所述故障处理包括降扭矩、降速、关闭电机以及控制所述电池组下电中的至少一种。
基于上述任一实施例,若所述电动车的整机状态为整机下电模式,则所述控制模块420,还用于:
控制所述电动车的微控制单元高压信号失电,以依次使所述电动车的主正继电器失电、所述高压控制盒高压信号失电、所述高压控制盒低压信号延时失电以及所述微控制单元低压信号失电,且所述电动车的主正接触器、预充接触器、慢充接触器以及PTC接触器均处于失电状态时,控制所述主负接触器失电。
基于上述任一实施例,本申请还提供一种电动车,包括:如上所述的电动车充电、上电及下电控制装置。
本申请实施例提供的电动车,能够按照相应的控制时序逻辑流程自动对电动车进行充电、上电及下电,避免由于非正常操作导致各类接触器电流过大出现粘连甚至损坏的问题。
图5是本申请提供的电子设备的结构示意图,如图5所示,该电子设备可以包括:处理器(processor)510、通信接口(CommunicationsInterface)520、存储器(memory)530和通信总线540,其中,处理器510,通信接口520,存储器530通过通信总线540完成相互间的通信。处理器510可以调用存储器530 中的逻辑指令,以执行电动车充电、上电及下电控制方法,该方法包括:基于电动车的上电信号或下电信号,确定电动车的整机状态;所述整机状态为断电BMS充电模式、上电BMS充电模式、断电BAT充电模式、整机上电模式以及整机下电模式中的任一种;基于所述电动车的整机状态,确定对应的控制时序逻辑,并基于所述控制时序逻辑执行对应的操作流程;所述操作流程包括充电操作流程、上电操作流程以及下电操作流程中的任一种。
此外,上述的存储器530中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的电动车充电、上电及下电控制方法,该方法包括:基于电动车的上电信号或下电信号,确定电动车的整机状态;所述整机状态为断电BMS充电模式、上电BMS充电模式、断电BAT充电模式、整机上电模式以及整机下电模式中的任一种;基于所述电动车的整机状态,确定对应的控制时序逻辑,并基于所述控制时序逻辑执行对应的操作流程;所述操作流程包括充电操作流程、上电操作流程以及下电操作流程中的任一种。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各提供的电动车充电、上电及下电控制方法,该方法包括:基于电动车的上电信号或下电信号,确定电动车的整机状态;所述整机状态为断电BMS充电模式、上电BMS充电模式、断电BAT充电模式、整机上电模式以及整机下电模式中的任一种;基于所述电动车的整机状态,确定对应的控制时序逻辑,并基于所述控制时 序逻辑执行对应的操作流程;所述操作流程包括充电操作流程、上电操作流程以及下电操作流程中的任一种。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种电动车充电、上电及下电控制方法,其特征在于,所述方法应用于电动车的控制单元,包括:
    基于电动车的上电信号或下电信号,确定电动车的整机状态;所述整机状态为断电BMS充电模式、上电BMS充电模式、断电BAT充电模式、整机上电模式以及整机下电模式中的任一种;
    基于所述电动车的整机状态,确定对应的控制时序逻辑,并基于所述控制时序逻辑执行对应的操作流程;所述操作流程包括充电操作流程、上电操作流程以及下电操作流程中的任一种。
  2. 根据权利要求1所述的电动车充电、上电及下电控制方法,其特征在于,若所述电动车的整机状态为断电BMS充电模式,则所述基于所述控制时序逻辑执行对应的操作流程,包括:
    在接收充电指令后,依次控制所述电动车的高压控制盒低压信号上电和主负接触器上电;
    在所述主负接触器上电后,控制所述电动车的高压充电枪的慢充接触器上电,以及控制所述高压控制盒高压信号上电,以使所述电动车的电池组通过所述高压控制盒为所述电动车的蓄电池充电,并控制所述电动车的冷却***进行冷却降温。
  3. 根据权利要求1所述的电动车充电、上电及下电控制方法,其特征在于,若所述电动车的整机状态为上电BMS充电模式,则所述基于所述控制时序逻辑执行对应的操作流程,包括:
    控制所述慢充接触器上电,以及基于所述电动车的微控制单元的启闭状态对所述蓄电池进行充电,并控制所述电动车的冷却***进行冷却降温。
  4. 根据权利要求3所述的电动车充电、上电及下电控制方法,其特征在于,所述基于所述电动车的微控制单元的启闭状态对所述蓄电池进行充电,包括:
    若所述微控制单元的启动状态为开启,则控制所述电池组以交流回充充电模式对所述蓄电池进行充电;
    若所述微控制单元的启动状态为关闭,则控制所述电池组以交流充电模式对所述蓄电池进行充电。
  5. 根据权利要求1所述的电动车充电、上电及下电控制方法,其特征在于,若所述电动车的整机状态为断电BAT充电模式,则所述基于所述控制时序逻辑执行对应的操作流程,包括:
    依次控制所述高压控制盒低压信号上电和所述主负接触器上电;
    在所述主负接触器上电后,控制所述高压控制盒高压信号上电,以使所述电池组在所述蓄电池的电量小于第一阈值时通过所述高压控制盒向所述蓄电池充电,直至所述蓄电池的电量达到第二阈值时停止充电;所述第一阈值小于所述第二阈值。
  6. 根据权利要求1所述的电动车充电、上电及下电控制方法,其特征在于,若所述电动车的整机状态为整机上电模式,则所述基于所述控制时序逻辑执行对应的操作流程,包括:
    控制所述高压控制盒低压信号上电和所述电动车的微控制单元低压信号上电后,依次控制所述主负接触器上电和预充接触器上电;
    在所述预充接触器上电后,控制所述高压控制盒高压信号上电、控制PTC接触器上电、控制所述冷却***进行冷却降温以及在电机电压大于阈值电压时,依次控制所述电动车的主正接触器上电和所述预充接触器下电;
    其中,在所述控制所述主负接触器上电之后,还包括:
    若所述电动车的电机处于启动状态,则控制所述微控制单元高压信号上电。
  7. 根据权利要求1至6任一项所述的电动车充电、上电及下电控制方法,其特征在于,若所述电动车的整机状态为整机上电模式,还包括:
    实时获取所述电动车的运行状态;所述运行状态包括所述电池组的状态、所述微控制单元的状态以及所述高压控制盒的状态;
    若所述运行状态不满足预设条件,则进行故障处理;所述故障处理包括降扭矩、降速、关闭电机以及控制所述电池组下电中的至少一种。
  8. 根据权利要求1至6任一项所述的电动车充电、上电及下电控制方法,其特征在于,若所述电动车的整机状态为整机下电模式,则所述基于所述控制时序逻辑执行对应的操作流程,包括:
    控制所述电动车的微控制单元高压信号失电,以依次使所述电动车的主正继电器失电、所述高压控制盒高压信号失电、所述高压控制盒低压信号延 时失电以及所述微控制单元低压信号失电,且所述电动车的主正接触器、预充接触器、慢充接触器以及PTC接触器均处于失电状态时,控制所述主负接触器失电。
  9. 一种电动车充电、上电及下电控制装置,其特征在于,所述装置安装于电动车的控制单元,包括:
    状态确定模块,用于基于电动车的上电信号或下电信号,确定电动车的整机状态;所述整机状态为断电BMS充电模式、上电BMS充电模式、断电BAT充电模式、整机上电模式以及整机下电模式中的任一种;
    控制模块,用于基于所述电动车的整机状态,确定对应的控制时序逻辑,并基于所述控制时序逻辑执行对应的操作流程;所述操作流程包括充电操作流程、上电操作流程以及下电操作流程中的任一种。
  10. 一种电动车,其特征在于,包括:如权利要求9所述的电动车充电、上电及下电控制装置。
PCT/CN2022/073786 2021-05-11 2022-01-25 电动车充电、上电及下电控制方法、装置及电动车 WO2022237237A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22806214.7A EP4163148A4 (en) 2021-05-11 2022-01-25 METHOD AND DEVICE FOR CONTROLLING THE CHARGING, SWITCHING ON AND OFF OF AN ELECTRIC VEHICLE AND ELECTRIC VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110513292.9 2021-05-11
CN202110513292.9A CN113085595B (zh) 2021-05-11 2021-05-11 电动车充电、上电及下电控制方法、装置及电动车

Publications (1)

Publication Number Publication Date
WO2022237237A1 true WO2022237237A1 (zh) 2022-11-17

Family

ID=76665107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073786 WO2022237237A1 (zh) 2021-05-11 2022-01-25 电动车充电、上电及下电控制方法、装置及电动车

Country Status (3)

Country Link
EP (1) EP4163148A4 (zh)
CN (1) CN113085595B (zh)
WO (1) WO2022237237A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116080405A (zh) * 2023-03-24 2023-05-09 成都赛力斯科技有限公司 车辆上下电***、实现方法和计算机设备
CN117360310A (zh) * 2023-12-07 2024-01-09 成都壹为新能源汽车有限公司 一种使用增程式动力电池的车辆充电控制方法及***

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113085595B (zh) * 2021-05-11 2022-11-04 浙江三一装备有限公司 电动车充电、上电及下电控制方法、装置及电动车
CN115489460B (zh) * 2022-09-30 2024-04-02 东风汽车股份有限公司 一种多合一控制器的上下电控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106515455A (zh) * 2016-11-30 2017-03-22 成都雅骏新能源汽车科技股份有限公司 一种适用于纯电动物流车的整车模式转换策略
CN106515490A (zh) * 2016-11-28 2017-03-22 成都雅骏新能源汽车科技股份有限公司 一种新能源电动汽车的整车控制方法
US20180111490A1 (en) * 2016-10-25 2018-04-26 Hyundai Motor Company Method and Apparatus for Charging Auxiliary Battery of Vehicle Including Driving Motor
CN108394281A (zh) * 2018-04-28 2018-08-14 北京新能源汽车股份有限公司 一种电动汽车整车上下电控制方法、装置及电动汽车
CN109501636A (zh) * 2018-12-10 2019-03-22 山东国金汽车制造有限公司 一种电动车充电时防止小电瓶馈电的方法
CN113085595A (zh) * 2021-05-11 2021-07-09 浙江三一装备有限公司 电动车充电、上电及下电控制方法、装置及电动车

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106004510B (zh) * 2016-07-15 2018-08-10 奇瑞汽车股份有限公司 纯电动汽车的高低压上下电时序控制方法
CN107662501B (zh) * 2016-07-28 2020-07-28 长城汽车股份有限公司 纯电动汽车下电控制方法及纯电动汽车
CN107487196B (zh) * 2016-08-24 2019-09-20 宝沃汽车(中国)有限公司 用于车辆的上电、下电控制方法、装置和***
CN107199891B (zh) * 2017-05-23 2020-05-26 北京新能源汽车股份有限公司 燃料电池汽车上下电控制方法、整车控制器及电动汽车
CN107962955A (zh) * 2017-10-17 2018-04-27 宝沃汽车(中国)有限公司 上下电控制方法、装置及车辆
CN109532494B (zh) * 2018-09-17 2020-12-22 江苏敏安电动汽车有限公司 一种纯电动汽车高压上电控制方法及高压下电控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180111490A1 (en) * 2016-10-25 2018-04-26 Hyundai Motor Company Method and Apparatus for Charging Auxiliary Battery of Vehicle Including Driving Motor
CN106515490A (zh) * 2016-11-28 2017-03-22 成都雅骏新能源汽车科技股份有限公司 一种新能源电动汽车的整车控制方法
CN106515455A (zh) * 2016-11-30 2017-03-22 成都雅骏新能源汽车科技股份有限公司 一种适用于纯电动物流车的整车模式转换策略
CN108394281A (zh) * 2018-04-28 2018-08-14 北京新能源汽车股份有限公司 一种电动汽车整车上下电控制方法、装置及电动汽车
CN109501636A (zh) * 2018-12-10 2019-03-22 山东国金汽车制造有限公司 一种电动车充电时防止小电瓶馈电的方法
CN113085595A (zh) * 2021-05-11 2021-07-09 浙江三一装备有限公司 电动车充电、上电及下电控制方法、装置及电动车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4163148A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116080405A (zh) * 2023-03-24 2023-05-09 成都赛力斯科技有限公司 车辆上下电***、实现方法和计算机设备
CN116080405B (zh) * 2023-03-24 2023-06-27 成都赛力斯科技有限公司 车辆上下电***、实现方法和计算机设备
CN117360310A (zh) * 2023-12-07 2024-01-09 成都壹为新能源汽车有限公司 一种使用增程式动力电池的车辆充电控制方法及***
CN117360310B (zh) * 2023-12-07 2024-02-09 成都壹为新能源汽车有限公司 一种使用增程式动力电池的车辆充电控制方法及***

Also Published As

Publication number Publication date
CN113085595A (zh) 2021-07-09
CN113085595B (zh) 2022-11-04
EP4163148A4 (en) 2024-05-01
EP4163148A1 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
WO2022237237A1 (zh) 电动车充电、上电及下电控制方法、装置及电动车
CN107599857B (zh) 一种基于锂电池的纯电动汽车充电***和充电方法
CN107662499B (zh) 纯电动汽车整车故障下电控制方法及***
CN110040038B (zh) 一种氢-电混合燃料电池客车能量管理控制方法及***
CN107662501B (zh) 纯电动汽车下电控制方法及纯电动汽车
CN108437835B (zh) 电源***
CN109532494B (zh) 一种纯电动汽车高压上电控制方法及高压下电控制方法
CN113459810A (zh) 基于全功率电电混合燃料电池汽车的下电控制方法
CN205395802U (zh) 燃料电池与储能电池混合动力车***
JP2010213500A (ja) 電力制御装置および方法、並びにプログラム
CN103029593B (zh) 电动汽车动力***的供电控制方法和装置及供电装置
CN113561918B (zh) 电动汽车蓄电池智能补电方法及***
WO2023236747A1 (zh) 电源管理***的控制方法、装置、存储介质及处理器
CN112977160A (zh) 电池管理方法、电池***、车辆及计算机存储介质
WO2020007328A1 (zh) 无人飞行器电池安全处理方法及其装置
CN112046338A (zh) 燃料电池车辆的高压下电方法及电池***
CN114013282A (zh) 一种氢燃料电池汽车的整车高压上下电控制方法及控制设备
CN115972910A (zh) 纯电动汽车及其补电控制方法和***、智能补电控制器
CN113696748B (zh) 一种燃料电池供电***及其控制方法和控制装置
CN106654429B (zh) 电池控制方法及***
KR20140061839A (ko) 배터리 충전 장치 및 방법
CN204845586U (zh) 电动汽车供电设备
CN215752026U (zh) 一种新能源汽车对外放电控制***
CN114407657A (zh) 飞行车辆的电源***控制方法、装置及飞行车辆
CN112895980A (zh) 新能源汽车低温充电方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022806214

Country of ref document: EP

Effective date: 20230104

NENP Non-entry into the national phase

Ref country code: DE