WO2022233323A1 - 智能表面设备的波束控制方法、装置及电子设备 - Google Patents

智能表面设备的波束控制方法、装置及电子设备 Download PDF

Info

Publication number
WO2022233323A1
WO2022233323A1 PCT/CN2022/091230 CN2022091230W WO2022233323A1 WO 2022233323 A1 WO2022233323 A1 WO 2022233323A1 CN 2022091230 W CN2022091230 W CN 2022091230W WO 2022233323 A1 WO2022233323 A1 WO 2022233323A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel information
reference signal
channel
active unit
smart surface
Prior art date
Application number
PCT/CN2022/091230
Other languages
English (en)
French (fr)
Inventor
杨坤
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP22798663.5A priority Critical patent/EP4336738A1/en
Priority to JP2023568542A priority patent/JP2024517892A/ja
Publication of WO2022233323A1 publication Critical patent/WO2022233323A1/zh
Priority to US18/387,236 priority patent/US20240073882A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application belongs to the technical field of mobile communication, and in particular relates to a beam control method, device and electronic device for a smart surface device.
  • Special wireless auxiliary equipment in wireless environment e.g. repeaters, backscatterers
  • large-scale smart surface devices are composed of a large number of passive units and cannot send relevant reference signals, which makes it difficult for base stations and terminals to directly obtain the channel information corresponding to each surface unit of large-scale smart surface devices.
  • Embodiments of the present application provide a beam control method, device, and electronic device for a smart surface device, which can solve the problem of inability to accurately control the beam control of the smart surface device.
  • a beam steering method for a smart surface device applied to a network side device, the method includes:
  • the network side device obtains the first channel information of the active unit of the smart surface device; wherein, the first channel information is the channel information between the network side device and the active unit;
  • the network side device obtains the second channel information of the active unit of the smart surface device; wherein, the second channel information is the channel information between the terminal and the active unit;
  • the network side device determines control information of the cell array of the smart surface device according to the first channel information and the second channel information; wherein the cell array includes active cells and passive cells of the smart surface device unit.
  • a beam steering apparatus for a smart surface device including:
  • a first measurement module configured to obtain first channel information of an active unit of a smart surface device; wherein, the first channel information is channel information between the network-side device and the active unit;
  • the second measurement module is used for the network side device to obtain the second channel information of the active unit of the smart surface device; wherein, the second channel information is the channel information between the terminal and the active unit;
  • a control module used for the network-side device to determine control information of a unit array of the smart surface device according to the first channel information and the second channel information; wherein the unit array includes all the components of the smart surface device source unit and passive unit.
  • a beam steering method for a smart surface device which is applied to a terminal, and the method includes:
  • the terminal acquires the second reference signal sent by the active unit
  • the terminal sends a fourth reference signal to the active unit
  • the second reference signal or the fourth reference signal is used to obtain the second channel information of the active unit, and the second channel information is the channel information between the terminal and the active unit, so The second channel information is used to determine control information of the cell array of the smart surface device with the first channel information, the cell array includes active cells and passive cells of the smart surface device, and the first channel information It is the channel information between the network side device and the active unit.
  • a beam steering apparatus for a smart surface device including:
  • a first acquisition module configured to acquire a second reference signal sent by the active unit when the active unit of the smart surface device supports sending signals
  • a second acquisition module configured to send a fourth reference signal to the active unit when the active unit of the smart surface device supports receiving signals
  • the second reference signal or the fourth reference signal is used to obtain the second channel information of the active unit, and the second channel information is the channel information between the terminal and the active unit, so The second channel information is used to determine control information of the cell array of the smart surface device with the first channel information, the cell array includes active cells and passive cells of the smart surface device, and the first channel information It is the channel information between the network side device and the active unit.
  • a beam steering method for a smart surface device applied to the smart surface device, the method includes:
  • the smart surface device performs channel measurement through the active unit and the network measurement device; wherein, the channel measurement between the active unit and the network side device is used to obtain the first channel information of the active unit, and the first channel information is the Channel information between the network side device and the active unit;
  • the smart surface device performs channel measurement through the active unit and the terminal; wherein, the channel measurement between the active unit and the terminal is used to obtain second channel information, and the second channel information is the communication between the terminal and the active unit. channel information;
  • the smart surface device obtains control information of the cell array; wherein, the control information is obtained based on the first channel information and the second channel information, and the cell array includes active units and passive units of the smart surface device.
  • a beam steering device for a smart surface device including:
  • the first communication module is used for channel measurement through the active unit and the network measurement device; wherein, the channel measurement between the active unit and the network side device is used to obtain the first channel information of the active unit, the first channel The information is channel information between the network side device and the active unit;
  • the second communication module is used for channel measurement through the active unit and the terminal; wherein, the channel measurement between the active unit and the terminal is used to obtain second channel information, and the second channel information is the terminal and the active terminal. Channel information between units;
  • an execution module configured to obtain control information of the cell array; wherein, the control information is obtained based on the first channel information and the second channel information, and the cell array includes active units and passive units of the smart surface device .
  • a network side device in a seventh aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the The processor implements the steps of the method as described in the first aspect when executed.
  • a terminal in an eighth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps as described in the first aspect are implemented.
  • a tenth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the method according to the first aspect or the steps of implementing the method as described in the third aspect, or the steps of implementing the method as described in the fifth aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a non-transitory storage medium, the program/program product is executed by at least one processor to implement the first
  • the first channel information and the second channel information of the active unit of the smart surface device are obtained through the network side device, and then the smart surface device is determined according to the first channel information and the second channel information
  • the control information of the cell array is obtained, thereby improving the efficiency of channel measurement, realizing accurate beam control for smart surface devices, and supporting the generation of complex smart surface devices with multiple terminals and multiple base stations to transmit beams.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system to which an embodiment of the present application can be applied
  • FIG. 2 shows a schematic flowchart of a beam steering method for a smart surface device according to an embodiment of the present application
  • FIG. 3 shows a schematic flowchart of another beam steering method for a smart surface device according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a channel estimation method for a passive unit in a beam steering method for a smart surface device implemented in the present application
  • FIG. 5 shows a schematic flowchart of another beam steering method for a smart surface device according to an embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of a beam steering apparatus for a smart surface device according to an embodiment of the present application
  • FIG. 7 shows a schematic flowchart of another beam steering method for a smart surface device according to an embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of another beam steering apparatus of a smart surface device according to an embodiment of the present application.
  • FIG. 9 shows a schematic flowchart of another beam steering method for a smart surface device according to an embodiment of the present application.
  • FIG. 10 shows a schematic structural diagram of another beam steering apparatus of a smart surface device according to an embodiment of the present application.
  • FIG. 11 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal implementing an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a network side device implementing an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, but the techniques are also applicable to applications other than NR system applications, such as 6th generation (6th generation ) Generation, 6G) communication system.
  • 6th generation 6th generation
  • 6G 6th generation
  • FIG. 1 shows a schematic structural diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system includes a terminal 11 , a network side device 12 and a smart surface device 13 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), PDA, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet Device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device ( VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: smart watches, bracelets, headphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • the network side device 12 may include an access network device or a core network device, wherein the access network device 12 may also be referred to as a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or Radio access network unit.
  • the access network device 12 may include a base station, a WLAN access point, or a WiFi node, etc.
  • the base station may be referred to as a Node B, an evolved Node B (eNB), an access point, a Base Transceiver Station (BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B, Transmitting Receiving Point (TRP) or any As long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary. It should be noted that in the embodiments of this application, only the base station in the NR system is used as an example for introduction, and The specific type of the base station is not limited.
  • the core network equipment may include, but is not limited to, at least one of the following: core network node, core network function, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (Policy Control Function, PCF), Policy and Charging Rules Function (Policy and Charging Rules Function, PCRF), edge application services Discovery function (Edge Application Server Discovery Function, EASDF), Unified Data Management (Unified Data Management, UDM), Unified Data Repository (Unified Data Repository, UDR), Home Subscriber Server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), Application Function (AF), etc.
  • MME mobility management entity
  • AMF Access and Mobility Management Function
  • the smart surface device 13 may be a large smart surface (Large Intelligent Surfaces, LIS) or a reconfigurable smart surface (Reconfigurable Intelligent Surfaces, RIS), and RIS is taken as an example for illustration in the following embodiments.
  • the RIS can dynamically/semi-statically change its own electromagnetic properties, affecting the reflection/refraction behavior of the electromagnetic waves incident on the RIS.
  • RIS realizes functions such as beam scanning/beamforming by manipulating reflected/refracted waves of electromagnetic waves.
  • RIS is composed of artificial surface at the front end and control module at the back end.
  • the artificial surface of the front end is composed of densely arranged artificial device units; the device characteristics of the device units are affected by the control signal/bias voltage of the device, and different control signals/bias voltages correspond to different reflection coefficients/refractive coefficients; Changes in the index of refraction will affect the phase and/or intensity of the reflected/refracted signal; microscopically, each device unit results in an independent reflected/refracted signal, and macroscopically, these signals are superimposed together to realize the manipulation of electromagnetic waves.
  • the control signal/bias voltage is provided by the back-end control module.
  • FIG. 2 shows a schematic flowchart of a beam steering method for a smart surface device according to an embodiment of the present application.
  • the method may be executed by a network-side device, in other words, the method may be implemented by software installed on the network-side device or hardware to execute.
  • the method may be performed by the following steps.
  • Step S201 the network-side device obtains first channel information of an active unit of a smart surface device; wherein, the first channel information is channel information between the network-side device and the active unit.
  • the smart surface device of the embodiments of the present application includes a unit array composed of device units, and may specifically include active units and passive units.
  • the number and position of the active cells in the cell array can be set according to actual needs, and a sparse arrangement can be adopted.
  • Step S202 the network side device obtains the second channel information of the active unit of the smart surface device; wherein the second channel information is the channel information between the terminal and the active unit.
  • Step S203 the network side device determines the control information of the cell array of the smart surface device according to the first channel information and the second channel information; wherein, the cell array includes the active cells of the smart surface device and passive units.
  • the beam steering method of the embodiment of the present application is divided into two stages: the first stage is based on the channel measurement stage of the active unit and the second stage is the beam steering of the smart surface device. stage.
  • the first stage according to the function of sending and receiving information possessed by the active unit of the smart surface device, and channel measurement based on the active unit, the channel information of each active unit in the smart surface device can be obtained, including the active unit and the network.
  • beamforming is performed on the smart surface device based on the obtained channel information, and control information of the cell array of the smart surface device is obtained.
  • the control information may include the working status of each cell in the cell array.
  • the configuration of the analog transponder beam of the smart surface device can be determined. Then the channel measurement between the base station and the terminal is performed, and the wave velocity shaping configuration of the base station and the terminal can be determined.
  • steps S201 and S202 are in no particular order, and may be performed simultaneously or separately according to their corresponding measurement periods.
  • the embodiments of the present application only take step S201 before step S202 as an example for illustration.
  • the first measurement period for obtaining the first channel information may be relatively long, and the first measurement period for obtaining the second channel information may be relatively long.
  • the measurement period may be relatively short, which may depend on the moving speed of the terminal and changes in the environment.
  • the second measurement period may refer to the channel state information (Channel State Information, CSI) measurement period configuration of the terminal, and may be equal to an integer multiple of the CSI measurement period.
  • CSI Channel State Information
  • multiple second measurement periods may be included, and measurements are performed on terminals in multiple different directions.
  • an embodiment of the present application provides a beam control method for a smart surface device, obtaining first channel information and second channel information of an active unit of the smart surface device through a network-side device, and then according to the first channel information and the second channel information to determine the control information of the cell array of the smart surface device, thereby improving the efficiency of channel measurement, realizing accurate beam control for the smart surface device, and supporting complex smart surface devices with multiple terminals and multiple base stations. Generation of transponder beams.
  • FIG. 3 shows a schematic flowchart of another beam steering method for a smart surface device according to an embodiment of the present application.
  • the method may be executed by a network-side device.
  • the method may be implemented by software installed on the network-side device. or hardware to perform.
  • Active units of smart surface devices can be of various types, and can be active units capable of transmitting and/or receiving signals. Wherein, for the case where the active unit supports sending signals, that is, the active unit is an active unit with the function of sending a signal, or an active unit that supports the function of sending and receiving a signal, the method can be performed by the following steps .
  • Step S301 Receive a first reference signal sent by the active unit.
  • Step S302 Obtain first channel information of the active unit by channel measurement on the first reference signal.
  • the active unit when the active unit supports sending signals, the active unit may send the first reference signal to the network side device.
  • the network side device performs channel measurement according to the received first reference signal to obtain the first channel information of the active unit.
  • the parameters of the first reference signal may be configured by the network side device.
  • Step S303 Receive the second channel information sent by the terminal; wherein, the second channel information is obtained by the terminal through channel measurement of a second reference signal, and the second reference signal is obtained by the active unit sent to the terminal.
  • the active unit when the active unit supports sending signals, the active unit may send a second reference signal to the terminal, and the terminal performs channel measurement according to the received second reference signal to obtain the active unit.
  • the second channel information of the unit is sent to the network side device.
  • the parameters of the second reference signal can also be configured by the network side device, and the configured parameters are notified to the terminal at the same time.
  • Information such as Access Control Control Element, MAC CE) or Radio Resource Control (Radio Resource Control, RRC) is carried.
  • the configuration parameters of the first reference signal and the second reference signal configured by the network-side device may specifically include parameters such as time-frequency resources of the reference signal, reference signal sequence and port, and precoding.
  • the first reference signal and the second reference signal may adopt various types of reference signals.
  • the reference signals include at least one of the following types:
  • Synchronization Signal and PBCH block (SSB);
  • CSI-RS Channel State Information Reference Signal
  • a demodulation reference signal (Demodulation Reference Signal, DMRS);
  • the DMRS can be a physical downlink shared channel (Physical downlink shared channel, PDSCH), a physical downlink control channel (Physical Downlink control channel, PDCCH), or a physical uplink shared channel (Physical uplink shared channel) DMRS of uplink shared channel, PUSCH), namely DMRS for PDSCH, DMRS for PDCCH, or DMRS for PUSCH;
  • Positioning reference signal Positioning Reference Signal (Position Reference Signal, PRS);
  • SRS Sounding Reference Signal
  • Physical Random Access Channel Physical Random Access Channel Reference Signal, PRACH reference signal
  • the dedicated reference signal used for the channel measurement of the smart surface device may include a dedicated first reference signal and/or a dedicated second reference signal.
  • the first reference signal sent by the network-side device and the second parameter signal sent by different terminals can be distinguished by different ports.
  • the reference signal is distinguished by at least one of the following ways:
  • each reference signal can be sent on a different OFDM symbol
  • each reference signal can be sent on different frequency domain resources on the same OFDM symbol;
  • Code division multiplexing for example, using a different sequence to generate each reference signal
  • the active unit can send the first reference signal and/or the second reference signal by beam scanning or beam training, and the network measurement equipment and the terminal respectively measure the beam with the best signal quality through the channel As a communication beam, first channel information and second channel information are obtained.
  • the first reference signal and the second reference signal have the same frequency bandwidth.
  • Step S304 Obtain third channel information and fourth channel information of the passive unit of the smart surface device according to the first channel information and the second channel information; wherein the third channel information is the network side Channel information between the device and the passive unit, and the fourth channel information is channel information between the terminal and the passive unit.
  • the network-side device may perform channel estimation on the passive units in the RIS device by using the first channel information and the second channel information of the active units of the RIS device, so as to obtain the third channel information of each passive unit. channel information and fourth channel information.
  • the smart surface device is obtained through an interpolation algorithm according to the first channel information and the second channel information.
  • the third channel information and the fourth channel information of the passive unit are as follows:
  • the figure includes a network side device 410 , a terminal 420 and a RIS device 430 , wherein the RIS device 430 includes an active unit 431 and a passive unit 432 represented by different patterns.
  • the channel information of active units i and j are obtained respectively, including the first channel information H B,i and the second channel information H i,U of active unit i, and the first channel information of active unit j H B,j and the second channel information H j,U .
  • channel estimation is performed on the passive unit k located between the active units i and j, and the third channel information H of the passive unit k can be obtained B,k and the fourth channel information H k,U .
  • it can be obtained through an interpolation algorithm.
  • interpolation algorithms for example, Wiener filtering, nonlinear interpolation, etc., which are not specifically limited here.
  • the first channel information represents the energy intensity of each beam of the active unit of the smart surface received by the network device
  • the second channel information represents the energy intensity received by the terminal device.
  • the network device selects the beam corresponding to one or more measurement results with the strongest energy as the beam from the network device to the smart surface according to the first channel information; selects the beam corresponding to the one or more measurement results with the strongest energy as the beam according to the second channel information. Beam from the end device to the smart surface.
  • the beam codebook of the active unit of the smart surface determine the relative phase relationship between the channels of each active unit, that is, the phase difference between H B,i and H B,j , H i,U and H j,U phase difference between. It is further possible to determine the phase difference between the channels HB ,i *H i,U and HB ,j *H j,U in the cascade channel, the network device to the smart surface active unit and then to the terminal device. Also through the interpolation algorithm, the phase difference between the cascaded channels from the network device to the smart surface passive unit to the end device can be determined. The phase difference between the cascaded channels calculates the control information for the smart surface.
  • the first channel information and the second channel information may specifically be the correlation between the channels of each active unit, for example, the channel measurement result of the active unit obtained by beam scanning or beam training .
  • the third channel information and the fourth channel information of the passive unit obtained by using the interpolation algorithm may also be the correlation between the channels of the passive units.
  • the method further includes:
  • the device parameters include at least one of the following:
  • Device types may include: pure passive RIS devices containing only passive cells, pure active RIS devices containing only active cells, and active-passive hybrid RIS containing active cells and passive cells equipment;
  • Active unit capabilities including support for receive signals only, transmit signals only, or both receive and transmit signals;
  • the capability of the passive unit may also include the quantization accuracy of the control parameters of the passive unit, such as the bit length of the control information that controls the state of the passive unit .
  • the passive unit is a phase control type RIS unit, and the state of the RIS unit is controlled by 1-bit control information.
  • the system can consider that the control information '0' corresponds to the phase of the reflected signal being continuous with the phase of the incident signal, and the control information '1' corresponds to the phase difference of 180° between the reflected signal and the incident signal; or the control information '0' corresponds to the phase of the incident signal.
  • the phase of the reflected signal differs by 180° from the phase of the reflected signal corresponding to the control information '1'.
  • Step S305 Obtain control information of the cell array of the smart surface device according to the third channel information and the fourth channel information.
  • the network side device obtains the control information of the cell array of the RIS device according to the channel information of each device unit, including the channel information of the active unit and the passive unit, or only according to the channel information of the passive unit Used to get the target forwarding beam at the RIS device.
  • the target forwarding beam may be a single beam directed to a certain terminal or a certain group of terminals, or may be beams in multiple directions directed to multiple terminals or multiple groups of terminals in different directions.
  • step S305 the method further includes:
  • control information of the unit array to the smart surface device, where the control information includes: the working status of each passive unit of the smart surface device.
  • the control information can be carried in DCI, MAC CE or RRC.
  • the beam of the RIS device may be fine-tuned.
  • the network-side device configures several finer beams for the RIS device in the sent control information.
  • the finer beams refer to beams with different beam phases or beams pointing to different beams. Specifically, it can be modified based on the initial beam. get.
  • the network-side device may also configure time parameters for beam fine-tuning for the RIS device, including multiple time units, each time unit corresponding to one of the above-mentioned finer beams.
  • the network-side device can configure the configuration information for the corresponding beam measurement for the terminal, including reference signal time-frequency resources, port numbers, and the like.
  • the reference signal is sent by the network-side device or the terminal, and the terminal or the network-side device receives the reference signal and performs beam measurement, and determines an appropriate finer beam according to the measurement result.
  • the network-side device may send parameter requirements to the smart surface device, where the parameter requirements are used to enable the smart surface device to determine the working state of each passive unit of the smart surface device;
  • the parameter requirements include at least one of the following:
  • the smart surface device can combine the channel information of each device unit, including the channel information of the active unit and the passive unit, or only obtain the control information of the unit array of the RIS device according to the channel information of the passive unit. Used to get the target forwarding beam at the RIS device.
  • step S305 the method further includes:
  • the network-side device determines the beamforming parameters of the network-side device and/or the terminal through channel measurement, and the channel measurement may be performed according to a protocol flow.
  • an embodiment of the present application provides a beam steering method for a smart surface device.
  • the active unit supports sending signals
  • the active unit sends the first reference signal and the second reference signal to the network side device and the terminal.
  • the first channel information and the second channel information of the active unit are obtained respectively, and the third channel information and the fourth channel information of the passive unit are carried out according to the first channel information and the second channel information of the active unit.
  • Channel estimation and then obtain the control information of the unit array of the smart surface device according to the channel information of each unit.
  • the embodiments of the present application use active units to perform segmented channel estimation, so as to avoid a complex channel estimation method for the cascaded channel of network-side device-smart surface device-terminal, improve the efficiency of channel measurement, and realize the realization of intelligent surface devices.
  • FIG. 5 shows a schematic flowchart of another beam steering method for a smart surface device according to an embodiment of the present application.
  • the method may be executed by a network-side device, in other words, the method may be implemented by software installed on the network-side device. or hardware to perform.
  • the active unit supports receiving signals, that is, the active unit is an active unit with a function of receiving signals, or an active unit supporting functions of sending and receiving signals, the method can be performed by the following steps.
  • Step S501 sending a third reference signal to the active unit
  • Step S502 Acquire first channel information sent by the active unit; wherein, the first channel information is obtained by the active unit by performing channel measurement on the third reference signal.
  • the network side device may send the third reference signal to the active unit.
  • the active unit performs channel measurement on the received third reference signal to obtain first channel information of the active unit.
  • the parameters of the third reference signal may be configured by the network side device.
  • the RIS device may send the first channel information to the network-side device through the active unit.
  • Step S503 Acquire second channel information sent by the active unit; wherein, the second channel information is obtained by the active unit by performing channel measurement on a fourth reference signal, the fourth reference signal is obtained by the active unit. sent by the terminal to the active unit.
  • the terminal may send the fourth reference signal to the active unit.
  • the active unit performs channel measurement on the received fourth reference signal to obtain second channel information of the active unit.
  • the parameters of the fourth reference signal may be configured by the network side device, and the configured parameters are notified to the terminal at the same time.
  • the configuration parameters of the third reference signal and the fourth reference signal configured by the network-side device may specifically include parameters such as time-frequency resources of the reference signal, reference signal sequence and port, and precoding.
  • the RIS device may send the second channel information to the network-side device through the active unit.
  • the third reference signal and the fourth reference signal may be of the same type as the first reference signal and the second reference signal in the foregoing embodiment, and are sent in the same manner, and repeated parts will not be repeated here.
  • the fourth reference signal may be SSB, CSI-RS, DMRS for PDSCH, DMRS for PDCCH, PRS, or a dedicated reference signal for channel measurement of smart surface devices.
  • the third reference signal may be an SRS, a PRACH reference signal, a DMRS for PUSCH, a side link reference signal, or a dedicated reference signal for channel measurement of smart surface equipment.
  • there may be multipath effects in the wireless environment that is, objects in the environment reflect or refract the reference signal transmitted by the network-side device or terminal, and the active unit may receive different transmission delays from different propagation paths.
  • the same reference signal with different amplitudes.
  • the influence of the indirect path can be canceled by multiple measurements and averaging, and only the reference signal of the direct path or the path with stronger signal is reserved for channel measurement. The result is the first channel information and the second channel information.
  • Step S504 the smart surface device obtains the third channel information and the fourth channel information of the passive unit of the smart surface device according to the first channel information and the second channel information; wherein, the third channel information is Channel information between the network side device and the passive unit, and the fourth channel information is channel information between the terminal and the passive unit.
  • the RIS device may perform channel estimation on the passive units in the RIS device through the first channel information and the second channel information of the active units, so as to obtain the third channel information and the first channel information of each passive unit. Four channel information.
  • the smart surface device is obtained through an interpolation algorithm according to the first channel information and the second channel information.
  • the third channel information and the fourth channel information of the passive unit may specifically be linear interpolation, Wiener filtering, nonlinear interpolation, etc., which are not specifically limited here.
  • the method further includes:
  • the network side device obtains the third channel information and the fourth channel information of the passive unit of the smart surface device according to the received first channel information and the second channel information, and performs steps S304 and S305 in FIG. 3 . method, and obtain the same technical effect, the repeated parts will not be repeated here.
  • the first channel information and/or the second channel information reported by the RIS device may take various forms, and in an implementation manner, may take at least one of the following forms:
  • Report the relative ratio of channel information between active units for example, report the first channel information H B,o of active unit o and the ratio of H B,o to the first channel information H B,i of active unit i and Phase difference, reporting the ratio and phase difference of the second channel information HU , o of the active unit o and the second channel information HU,i of the active unit i.
  • the active unit o is the reference unit of the active unit set, and the position in the smart surface is determined by the smart surface or jointly determined by the network device and the smart surface.
  • the direction information of the reference signal for example, the Angle-of-Arrival (AOA) and AOZ information of the third reference signal sent by the network-side device, the AOA and AOZ information of the fourth reference signal sent by the terminal, and The signal strength at the corresponding angle;
  • AOA Angle-of-Arrival
  • AOZ information of the third reference signal sent by the network-side device for example, the Angle-of-Arrival (AOA) and AOZ information of the third reference signal sent by the network-side device, the AOA and AOZ information of the fourth reference signal sent by the terminal, and The signal strength at the corresponding angle
  • the method further includes:
  • the reported device parameters of the RIS device include at least one of the following:
  • Step S505 the smart surface device obtains control information of the cell array of the smart surface device according to the third channel information and the fourth channel information.
  • the network side device may send parameter requirements to the smart surface device, where the parameter requirements are used to enable the smart surface device to determine the working state of each passive unit of the smart surface device;
  • the parameter requirements include at least one of the following:
  • the smart surface device can combine the channel information of each device unit, including the channel information of the active unit and the passive unit, or only obtain the control information of the unit array of the RIS device according to the channel information of the passive unit. Used to get the target forwarding beam at the RIS device.
  • the beam of the RIS device may be fine-tuned.
  • the network-side device configures several finer beams for the RIS device in the sent control information.
  • the finer beams refer to beams with different beam phases or beams pointing to different beams. Specifically, it can be modified based on the initial beam. get.
  • the network-side device may also configure time parameters for beam fine-tuning for the RIS device, including multiple time units, each time unit corresponding to one of the above-mentioned finer beams.
  • the network-side device can configure the configuration information for the corresponding beam measurement for the terminal, including reference signal time-frequency resources, port numbers, and the like.
  • the reference signal is sent by the network-side device or the terminal, and the terminal or the network-side device receives the reference signal and performs beam measurement, and determines an appropriate finer beam according to the measurement result.
  • step S505 the method further includes:
  • the network-side device determines the beamforming parameters of the network-side device and/or the terminal through channel measurement, and the channel measurement may be performed according to a protocol flow.
  • an embodiment of the present application provides a beam steering method for a smart surface device.
  • the network side device and the terminal respectively send the third reference signal and the fourth reference signal to the active unit.
  • the RIS device compares the third channel information and the second channel information of the passive unit according to the first channel information and the second channel information of the active unit.
  • Four channel information is used for channel estimation, and then the control information of the unit array of the smart surface device is obtained according to the channel information of each unit.
  • the embodiments of the present application use active units to perform segmented channel estimation, so as to avoid a complex channel estimation method for the cascaded channel of network-side device-smart surface device-terminal, improve the efficiency of channel measurement, and realize the realization of intelligent surface devices.
  • the execution subject may be the beam control device of the smart surface device, or, in the beam control device of the smart surface device, the method for executing the beam control device of the smart surface device may be executed.
  • the control module of the beam steering method In the embodiments of the present application, the beam control device of the smart surface device provided by the embodiment of the present application is described by taking the beam control device of the smart surface device executing the beam control method of the smart surface device as an example.
  • the beam control method for a smart surface device provided by the embodiment of the present application may include the following steps.
  • Step 1 Perform channel measurement between the network side device and the RIS device, and obtain first channel information according to the channel measurement result.
  • the network side device sends the first reference signal to the active unit, and the active unit performs channel measurement on the received first reference signal to obtain the first channel information.
  • the active unit sends the third reference signal to the network side device, and the network side device performs channel measurement based on the third reference signal to obtain the first channel information.
  • the transmission mode of the third reference signal may adopt time division multiplexing, frequency division multiplexing, code division multiplexing, or the like.
  • the reference signal is sent by the active unit in the form of beam scanning
  • the network side device measures the beam sent by each active unit, and determines that the beam with the best signal quality is the beam corresponding to the first channel information.
  • Step 2 the network side device sends control information to the RIS device, so that the RIS device obtains the working state of each unit in the cell array, and the control information can be carried in DCI, MAC CE or RRC.
  • control information may be multiple optional configuration information of passive units in the unit array of the RIS device, respectively corresponding to multiple beam directions of the forwarding signal of the RIS device.
  • control information may be the beam directions of the forwarded signals of the multiple RIS devices and the beams of the RIS active units (corresponding to the beams obtained by the active units after beam scanning in step 1).
  • the control module of the RIS device generates a cell array of the RIS device according to the channel information obtained by the channel measurement in step 1 or the beam information of the RIS active unit configured by the network side device, combined with the beam direction of the forwarding signal of the RIS device configured by the network side device. Configuration information for passive units in .
  • the first channel information between the network side device and each active unit or the relative information between the channels may be determined.
  • the third channel information from the network side device to each passive unit or the relative information between the channels can be determined.
  • the phase or relative phase requirement required by the passive unit in the unit array can be calculated. According to the above information, the working state of each passive unit can be determined.
  • Step 3 The RIS device forwards the beam scan.
  • the network-side device sends control information to configure the working time period of the beams for the multiple RIS devices to forward signals.
  • the network-side device sends a plurality of reference signals, which correspond to the working time periods of the configured beams of the signals to be forwarded by the plurality of RIS devices.
  • the terminal receives multiple reference signals to measure signal quality according to the configuration information of the network-side device, and feeds back the measurement results to the network-side device and/or the RIS device.
  • the network side device receives the measurement result of the terminal, determines the beam direction of the RIS device, and configures the determination result to the RIS device.
  • the beam steering of the smart surface device provided by the embodiments of the present application can implement the method embodiments shown in FIGS. 3-5 , and obtain the same technical effect, and repeated parts will not be repeated here.
  • FIG. 6 shows a schematic structural diagram of a beam control apparatus for a smart surface device according to an embodiment of the present application.
  • the apparatus includes: a first measurement module 601 , a second measurement module 602 and a control module 603 .
  • the first measurement module 601 is used to obtain the first channel information of the active unit of the smart surface device; wherein, the first channel information is the channel information between the network side device and the active unit; the The second measurement module 602 is used for the network side device to obtain the second channel information of the active unit of the smart surface device; wherein, the second channel information is the channel information between the terminal and the active unit; The control module 603 is used for the network side device to determine the control information of the cell array of the smart surface device according to the first channel information and the second channel information; wherein, the cell array includes the cell array of the smart surface device. Active and passive cells.
  • an embodiment of the present application provides a beam control apparatus for a smart surface device, which obtains the first channel information and the second channel information of the active unit of the smart surface device, and then uses the first channel information and the second channel information according to the first channel information and the second channel information.
  • the channel information determines the control information of the unit array of the smart surface device, thereby improving the efficiency of channel measurement, realizing accurate beam control for the smart surface device, and can support complex smart surface devices with multiple terminals and multiple base stations to forward beams. generate.
  • control module is used for:
  • the third channel information and the fourth channel information of the passive unit of the smart surface device are obtained; wherein, the third channel information is the network side device and the channel information between the passive units, the fourth channel information is the channel information between the terminal and the passive unit;
  • Control information of the cell array of the smart surface device is obtained according to the third channel information and the fourth channel information.
  • the first measurement module is used for:
  • the first channel information of the active unit is obtained by channel measurement of the first reference signal.
  • the second measurement module is used for:
  • Receive second channel information sent by the terminal wherein, the second channel information is obtained by the terminal through channel measurement of a second reference signal, and the second reference signal is sent by the active unit to the described terminal.
  • control module is configured to obtain the third channel information and the fourth channel information of the passive unit of the smart surface device through an interpolation algorithm according to the first channel information and the second channel information.
  • control module is further configured to acquire device parameters reported by the smart surface device, and the device parameters include at least one of the following:
  • control module is further configured to send control information of the unit array to the smart surface device, where the control information includes: the working status of each passive unit of the smart surface device.
  • control module is further configured to send parameter requirements to the smart surface device, where the parameter requirements are used to enable the smart surface device to determine the working state of each passive unit of the smart surface device;
  • the parameter requirements include at least one of the following:
  • control module is further configured to determine the beamforming parameters of the network-side device and/or the terminal through channel measurement.
  • the reference signal includes at least one of the following:
  • the reference signal adopts at least one of the following ways:
  • an embodiment of the present application provides a beam control apparatus for a smart surface device.
  • the active unit supports sending signals
  • the active unit sends the first reference signal and the second reference signal to the network side equipment and the terminal.
  • the first channel information and the second channel information of the active unit are obtained respectively, and the third channel information and the fourth channel information of the passive unit are carried out according to the first channel information and the second channel information of the active unit.
  • Channel estimation and then obtain the control information of the unit array of the smart surface device according to the channel information of each unit.
  • the embodiments of the present application use active units to perform segmented channel estimation, so as to avoid a complex channel estimation method for the cascaded channel of network-side device-smart surface device-terminal, improve the efficiency of channel measurement, and realize the realization of intelligent surface devices.
  • the first measurement module is used for:
  • the first channel information is obtained by the active unit by performing channel measurement on the third reference signal.
  • the second measurement module is used for:
  • an embodiment of the present application provides a beam control apparatus for a smart surface device.
  • the network side device and the terminal respectively send the third reference signal and the fourth reference signal to the active unit.
  • the RIS device compares the third channel information and the second channel information of the passive unit according to the first channel information and the second channel information of the active unit.
  • Four channel information is used for channel estimation, and then the control information of the unit array of the smart surface device is obtained according to the channel information of each unit.
  • the embodiments of the present application use active units to perform segmented channel estimation, so as to avoid a complex channel estimation method for the cascaded channel of network-side device-smart surface device-terminal, improve the efficiency of channel measurement, and realize the realization of intelligent surface devices.
  • the beam control device of the smart surface device in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the beam steering apparatus of the smart surface device in the embodiment of the present application may be an apparatus having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the beam control apparatus for the smart surface device provided in the embodiment of the present application can implement the various processes implemented by the method embodiments in FIG. 2 to FIG. 5 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • FIG. 7 shows a schematic flowchart of another beam steering method for a smart surface device according to an embodiment of the present application.
  • the method may be executed by a terminal, in other words, the method may be implemented by software or hardware installed in the terminal. implement.
  • the method may be performed by the following steps.
  • Step S701 in the case that the active unit of the smart surface device supports sending signals, the terminal acquires the second reference signal sent by the active unit;
  • Step S702 in the case that the active unit of the smart surface device supports receiving signals, the terminal sends a fourth reference signal to the active unit;
  • the second reference signal or the fourth reference signal is used to obtain the second channel information of the active unit, and the second channel information is the channel information between the terminal and the active unit, so The second channel information is used to determine control information of the cell array of the smart surface device with the first channel information, the cell array includes active cells and passive cells of the smart surface device, and the first channel information It is the channel information between the network side device and the active unit.
  • the method further includes:
  • Channel measurement is performed on the second reference signal to obtain the second channel information and send it to the network device.
  • the method also includes:
  • the parameters of the second reference signal or the fourth reference signal configured by the network side device are acquired.
  • the reference signal includes at least one of the following:
  • the reference signal adopts at least one of the following ways:
  • the beam steering method for a smart surface device provided in this embodiment of the present application can implement each process implemented by the method embodiments in FIG. 2 to FIG. 5 , and achieve the same technical effect, which is not repeated here to avoid repetition.
  • an embodiment of the present application provides a beam control method for a smart surface device, which performs channel measurement according to the support of the active unit of the smart surface device to transmit and/or receive signals, and obtains a second channel between the active unit and the terminal. information, and then combined with the first channel information to determine the control information of the cell array of the smart surface device, thereby improving the efficiency of channel measurement, realizing accurate beam control for the smart surface device, and supporting complex smart devices with multiple terminals and multiple base stations.
  • Surface devices retransmit beam generation.
  • the execution subject may be the beam control device of the smart surface device, or, in the beam control device of the smart surface device, the method for executing the beam control device of the smart surface device may be executed.
  • the control module of the beam steering method In the embodiments of the present application, the beam control device of the smart surface device provided by the embodiment of the present application is described by taking the beam control device of the smart surface device executing the beam control method of the smart surface device as an example.
  • FIG. 8 shows a schematic structural diagram of another beam steering apparatus of a smart surface device according to an embodiment of the present application.
  • the apparatus includes: a first acquisition module 801 and a second acquisition module 802 .
  • the first acquisition module 801 is used for acquiring the second reference signal sent by the active unit when the active unit of the smart surface device supports sending signals; the second acquisition module 802 is used for When the active unit of the device supports receiving signals, a fourth reference signal is sent to the active unit; wherein the second reference signal or the fourth reference signal is used to obtain the second channel information of the active unit , the second channel information is the channel information between the terminal and the active unit, the second channel information is used to determine the control information of the unit array of the smart surface device with the first channel information, so
  • the unit array includes active units and passive units of the smart surface device, and the first channel information is channel information between the network side device and the active unit.
  • the first obtaining module is further configured to perform channel measurement on the second reference signal to obtain the second channel information and send it to the network device.
  • first obtaining module or the second obtaining module is further configured to obtain the parameters of the second reference signal or the fourth reference signal configured by the network side device.
  • the reference signal includes at least one of the following:
  • the reference signal adopts at least one of the following ways:
  • an embodiment of the present application provides a beam control apparatus for a smart surface device, which performs channel measurement according to the support of the active unit of the smart surface device to transmit and/or receive signals, and obtains a second channel between the active unit and the terminal. information, and then combined with the first channel information to determine the control information of the cell array of the smart surface device, thereby improving the efficiency of channel measurement, realizing accurate beam control for the smart surface device, and supporting complex smart devices with multiple terminals and multiple base stations.
  • Surface devices retransmit beam generation.
  • the beam control device of the smart surface device in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the beam control apparatus for a smart surface device provided in this embodiment of the present application can implement each process implemented by the method embodiment in FIG. 7 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • FIG. 9 shows a schematic flowchart of another beam control method for a smart surface device according to an embodiment of the present application. As shown in FIG. 9 , the method may be executed by the smart surface device. The method may be performed by the following steps.
  • Step S901 the smart surface device performs channel measurement through the active unit and the network measurement device; wherein, the channel measurement between the active unit and the network side device is used to obtain first channel information of the active unit, the first channel information is the channel information between the network side device and the active unit;
  • Step S902 the smart surface device performs channel measurement through the active unit and the terminal; wherein, the channel measurement of the active unit and the terminal is used to obtain second channel information, and the second channel information is the terminal and the active unit. channel information between;
  • Step S903 the smart surface device obtains control information of the cell array; wherein, the control information is obtained based on the first channel information and the second channel information, and the cell array includes active cells and passive cells of the smart surface device unit.
  • the beam steering method provided by the embodiment of the present application can implement the method embodiment of each step shown in FIG. 2 and achieve the same technical effect, and repeated parts are not repeated here.
  • the embodiment of the present application provides a beam control method for a smart surface device, wherein the first channel information and the second channel information obtained by channel measurement are obtained by the active unit of the smart surface device, and then according to the first channel information and the second channel information to determine the control information of the cell array of the smart surface device, thereby improving the efficiency of channel measurement, realizing accurate beam control for the smart surface device, and supporting complex smart surface devices with multiple terminals and multiple base stations. Generation of transponder beams.
  • the step S901 includes:
  • the first reference signal is sent to the network-side device, so that the network-side device obtains first channel information by performing channel measurement on the first reference signal.
  • the step S902 includes:
  • the second reference signal is sent to the terminal, so that the terminal obtains the second channel information by performing channel measurement on the second reference signal.
  • the step S903 includes:
  • the method further includes:
  • the device parameters of the smart surface device reported to the network side device include at least one of the following:
  • the reference signal includes at least one of the following:
  • the reference signal adopts at least one of the following manners:
  • the beam steering method provided in the embodiment of the present application can implement the method embodiments of the steps shown in FIG. 3 and FIG. 4 , and achieve the same technical effect, and repeated parts are not repeated here.
  • an embodiment of the present application provides a beam steering method for a smart surface device.
  • the active unit supports sending signals
  • the active unit sends the first reference signal and the second reference signal to the network side device and the terminal.
  • the first channel information and the second channel information of the active unit are obtained respectively, and the third channel information and the fourth channel information of the passive unit are carried out according to the first channel information and the second channel information of the active unit.
  • Channel estimation and then obtain the control information of the unit array of the smart surface device according to the channel information of each unit.
  • the embodiments of the present application use active units to perform segmented channel estimation, so as to avoid a complex channel estimation method for the cascaded channel of network-side device-smart surface device-terminal, improve the efficiency of channel measurement, and realize the realization of intelligent surface devices.
  • the step S901 includes:
  • the third reference signal sent by the network side device is received, and the first channel information is obtained by performing channel measurement on the third reference signal.
  • the step S902 includes:
  • a fourth reference signal sent by the terminal is received, and second channel information is obtained by performing channel measurement on the fourth reference signal.
  • the method further includes:
  • the step S903 includes:
  • Control information of the unit array of the smart surface device is obtained according to the third channel information and the fourth channel information; wherein the control information includes: the working status of each passive unit of the smart surface device.
  • the obtaining the third channel information and the fourth channel information of the passive unit of the smart surface device according to the first channel information and the second channel information includes:
  • the third channel information and the fourth channel information of the passive unit of the smart surface device are obtained through an interpolation algorithm.
  • the method further includes:
  • the parameter requirements include at least one of the following:
  • the method further includes:
  • the device parameters of the smart surface device reported to the network side device include at least one of the following:
  • the reference signal includes at least one of the following:
  • the reference signal adopts at least one of the following manners:
  • the beam steering method of the embodiment of the present application can implement the method embodiment of each step shown in FIG. 5 , and achieve the same technical effect, and repeated parts are not repeated here.
  • an embodiment of the present application provides a beam steering method for a smart surface device.
  • the network side device and the terminal respectively send the third reference signal and the fourth reference signal to the active unit.
  • the RIS device compares the third channel information and the second channel information of the passive unit according to the first channel information and the second channel information of the active unit.
  • Four channel information is used for channel estimation, and then the control information of the unit array of the smart surface device is obtained according to the channel information of each unit.
  • the embodiments of the present application use active units to perform segmented channel estimation, so as to avoid a complex channel estimation method for the cascaded channel of network-side device-smart surface device-terminal, improve the efficiency of channel measurement, and realize the realization of intelligent surface devices.
  • FIG. 10 shows a schematic structural diagram of another beam control apparatus of a smart surface device according to an embodiment of the present application.
  • the apparatus includes: a first communication module 1001 , a second communication module 1002 and an execution module 1003 .
  • the first communication module 1001 is used for channel measurement through the active unit and the network measurement device; wherein, the channel measurement between the active unit and the network side device is used to obtain the first channel information of the active unit, the One channel information is the channel information between the network-side device and the active unit; the second communication module 1002 is used for channel measurement through the active unit and the terminal; wherein the active unit and the terminal are The channel measurement is used to obtain the second channel information, and the second channel information is the channel information between the terminal and the active unit; the execution module 1003 is used to obtain the control information of the unit array; wherein, the control information Derived based on the first channel information and the second channel information, the cell array includes active cells and passive cells of the smart surface device.
  • an embodiment of the present application provides a beam control apparatus for a smart surface device, first channel information and second channel information obtained by channel measurement through an active unit, and then according to the first channel information and the second channel information information to determine the control information of the cell array of the smart surface device, thereby improving the efficiency of channel measurement, realizing accurate beam control for the smart surface device, and supporting the generation of complex smart surface device forwarding beams with multiple terminals and multiple base stations .
  • the first communication module is configured to send a first reference signal to a network-side device, so that the network-side device obtains first channel information by performing channel measurement on the first reference signal.
  • the second communication module when the active unit supports sending signals, is configured to send a second reference signal to the terminal, so that the terminal can measure the channel by measuring the second reference signal. Obtain the second channel information.
  • the execution module is configured to receive control information of the cell array sent by the network side device.
  • the execution module is further configured to report the device parameters of the smart surface device to the network-side device, where the device parameters include at least one of the following:
  • the reference signal includes at least one of the following:
  • the reference signal adopts at least one of the following manners:
  • an embodiment of the present application provides a beam control apparatus for a smart surface device.
  • the active unit supports sending signals
  • the active unit sends the first reference signal and the second reference signal to the network side equipment and the terminal.
  • the first channel information and the second channel information of the active unit are obtained respectively, and the third channel information and the fourth channel information of the passive unit are carried out according to the first channel information and the second channel information of the active unit.
  • Channel estimation and then obtain the control information of the unit array of the smart surface device according to the channel information of each unit.
  • the embodiments of the present application use active units to perform segmented channel estimation, so as to avoid a complex channel estimation method for the cascaded channel of network-side device-smart surface device-terminal, improve the efficiency of channel measurement, and realize the realization of intelligent surface devices.
  • the first communication module is configured to receive a third reference signal sent by a network-side device, and receive the third reference signal by comparing the third reference signal Perform channel measurement to obtain first channel information.
  • the second communication module when the active unit supports receiving signals, is configured to receive a fourth reference signal sent by the terminal, and perform channel measurement on the fourth reference signal Obtain the second channel information.
  • the execution module is further configured to report the first channel information and/or the second channel information to the network side device.
  • the execution module is configured to obtain third channel information and fourth channel information of the passive unit of the smart surface device according to the first channel information and the second channel information;
  • Control information of the unit array of the smart surface device is obtained according to the third channel information and the fourth channel information; wherein the control information includes: the working status of each passive unit of the smart surface device.
  • the execution module is configured to obtain the third channel information and the fourth channel information of the passive unit of the smart surface device through an interpolation algorithm according to the first channel information and the second channel information.
  • the execution module is further configured to receive a parameter requirement sent by the network-side device, where the parameter requirement is used to enable the smart surface device to determine the work of each passive unit of the smart surface device state;
  • the parameter requirements include at least one of the following:
  • the execution module is further configured to report the device parameters of the smart surface device to the network-side device, where the device parameters include at least one of the following:
  • the reference signal includes at least one of the following:
  • the reference signal adopts at least one of the following manners:
  • an embodiment of the present application provides a beam control apparatus for a smart surface device.
  • the network side device and the terminal respectively send the third reference signal and the fourth reference signal to the active unit.
  • the RIS device compares the third channel information and the second channel information of the passive unit according to the first channel information and the second channel information of the active unit.
  • Four channel information is used for channel estimation, and then the control information of the unit array of the smart surface device is obtained according to the channel information of each unit.
  • the embodiments of the present application use active units to perform segmented channel estimation, so as to avoid a complex channel estimation method for the cascaded channel of network-side device-smart surface device-terminal, improve the efficiency of channel measurement, and realize the realization of intelligent surface devices.
  • the beam control apparatus of the smart surface device in the embodiment of the present application may be a device, an apparatus having an operating system, or an electronic device, which is not specifically limited in the embodiment of the present application.
  • the beam control apparatus of the smart surface device provided in the embodiment of the present application can implement each process implemented by the method embodiment in FIG. 9 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 1100, including a processor 1101, a memory 1102, a program or instruction stored in the memory 1102 and executable on the processor 1101,
  • a communication device 1100 including a processor 1101, a memory 1102, a program or instruction stored in the memory 1102 and executable on the processor 1101,
  • the communication device 1100 is a terminal
  • the program or instruction is executed by the processor 1101
  • each process of the above embodiments of the beam control method for a smart surface device can be implemented, and the same technical effect can be achieved.
  • the communication device 1100 is a network-side device
  • the program or instruction is executed by the processor 1101
  • each process of the above-mentioned embodiment of the beam control method for a smart surface device can be achieved, and the same technical effect can be achieved. To avoid repetition, it is not repeated here. Repeat.
  • An embodiment of the present application further provides a network-side device, including a processor and a communication interface, where the processor is configured to determine control information of a cell array of the smart surface device according to the first channel information and the second channel information, and the communication interface
  • the method is used to obtain first channel information of the active unit of the smart surface device, and is also used to obtain the second channel information of the active unit of the smart surface device.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the network device 1200 includes: an antenna 121 , a radio frequency device 122 , and a baseband device 123 .
  • the antenna 121 is connected to the radio frequency device 122 .
  • the radio frequency device 122 receives information through the antenna 121, and sends the received information to the baseband device 123 for processing.
  • the baseband device 123 processes the information to be sent and sends it to the radio frequency device 122
  • the radio frequency device 122 processes the received information and sends it out through the antenna 121 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 123 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 123 , where the baseband apparatus 123 includes a processor 124 and a memory 125 .
  • the baseband device 123 may include, for example, at least one baseband board on which a plurality of chips are arranged, as shown in FIG. 12 , one of the chips is, for example, the processor 124 , which is connected to the memory 125 to call a program in the memory 125 to execute
  • the network devices shown in the above method embodiments operate.
  • the baseband device 123 may further include a network interface 126 for exchanging information with the radio frequency device 122, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in the embodiment of the present invention further includes: instructions or programs stored in the memory 125 and executable on the processor 124, and the processor 124 invokes the instructions or programs in the memory 125 to execute the modules shown in FIG. 6 .
  • An embodiment of the present application further provides a terminal, including a processor and a communication interface, where the communication interface is used to acquire a second reference signal sent by the active unit in the case that the active unit of the smart surface device supports sending signals, for sending a fourth reference signal to the active unit of the smart surface device if the active unit of the smart surface device supports receiving the signal.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 13 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1300 includes but is not limited to: a radio frequency unit 1301, a network module 1302, an audio output unit 1303, an input unit 1304, a sensor 1305, a display unit 1306, a user input unit 1307, an interface unit 1308, a memory 1309, and a processor 1310, etc. at least part of the components.
  • the terminal 1300 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1310 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 13 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1304 may include a graphics processor (Graphics Processing Unit, GPU) 13041 and a microphone 13042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1306 may include a display panel 13061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1307 includes a touch panel 13071 and other input devices 13072 .
  • the touch panel 13071 is also called a touch screen.
  • the touch panel 13071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 13072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described herein again.
  • the radio frequency unit 1301 receives the downlink data from the network side device, and then processes it to the processor 1310; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1301 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1309 may be used to store software programs or instructions as well as various data.
  • the memory 1309 may mainly include a stored program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1309 may include high-speed random access memory, and may also include non-transitory memory, wherein the non-transitory memory may be Read-Only Memory (ROM), Programmable Read-Only Memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM Programmable Read-Only Memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device.
  • High-speed random access memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory ( Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Synchronous DRAM SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • enhanced SDRAM synchronous dynamic random access memory
  • Synch link DRAM, SLDRAM synchronous link dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor 1310 may include one or more processing units; optionally, the processor 1310 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1310.
  • the radio frequency unit 1301 is configured to acquire the second reference signal sent by the active unit when the active unit of the smart surface device supports sending signals;
  • the radio frequency unit 1301 is further configured to send a fourth reference signal to the active unit when the active unit of the smart surface device supports receiving signals.
  • the processor 1310 is configured to perform channel measurement on the second reference signal to obtain the second channel information.
  • the radio frequency unit 1301 is further configured to send the second channel information to the network device.
  • the radio frequency unit 1301 is further configured to acquire the parameters of the second reference signal or the fourth reference signal configured by the network side device.
  • the reference signal includes at least one of the following:
  • the reference signal adopts at least one of the following modes: time division multiplexing; frequency division multiplexing; code division multiplexing; wave speed scanning.
  • the embodiment of the present application improves the efficiency of channel measurement, realizes accurate beam control for the smart surface device, and can support the generation of forwarding beams for complex smart surface devices with multiple terminals and multiple base stations.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the above-mentioned embodiment of the beam steering method for a smart surface device is implemented, And can achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the beam control of the above-mentioned smart surface device
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a program or an instruction to implement the beam control of the above-mentioned smart surface device
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种智能表面设备的波束控制方法、装置及电子设备,属于移动通信领域,本申请实施例的智能表面设备的波束控制方法包括:网络侧设备获得智能表面设备的有源单元的第一信道信息;所述第一信道信息为所述网络侧设备与所述有源单元之间的信道信息;获得有源单元的第二信道信息;所述第二信道信息为终端与所述有源单元之间的信道信息;根据所述第一信道信息和第二信道信息,确定所述智能表面设备的单元阵列的控制信息;其中,所述单元阵列包括所述智能表面设备的有源单元和无源单元。

Description

智能表面设备的波束控制方法、装置及电子设备
相关申请的交叉引用
本申请要求于2021年05月07日提交的申请号为202110497334.4,发明名称为“智能表面设备的波束控制方法、装置及电子设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于移动通信技术领域,具体涉及一种智能表面设备的波束控制方法、装置及电子设备。
背景技术
无线环境中的特殊的无线辅助设备(例如中继设备、反向散射体
(backscatter)、新型设备/大型智能表面、卫星)具有改变自身电磁参数的功能,影响通信设备之间的信道情况;信号与干扰加噪声比(Signal-to-Noise and Interference Ratio,SINR)或者信道响应随这些特殊设备的电磁参数、硬件特性变化而变化,导致信道响应随之更新。
另一方面,大型智能表面设备由大量的无源单元构成,无法发送相关的参考信号,导致基站和终端很难直接获得大型智能表面设备每个表面单元对应的信道信息,从而无法准确得对控制智能表面设备进行波束控制。
发明内容
本申请实施例提供一种智能表面设备的波束控制方法、装置及电子设备,能够解决无法准确得对控制智能表面设备进行波束控制的问题。
第一方面,提供了一种智能表面设备的波束控制方法,应用于网络 侧设备,该方法包括:
网络侧设备获得智能表面设备的有源单元的第一信道信息;其中,所述第一信道信息为所述网络侧设备与所述有源单元之间的信道信息;
所述网络侧设备获得智能表面设备的有源单元的第二信道信息;其中,所述第二信道信息为终端与所述有源单元之间的信道信息;
所述网络侧设备根据所述第一信道信息和第二信道信息,确定所述智能表面设备的单元阵列的控制信息;其中,所述单元阵列包括所述智能表面设备的有源单元和无源单元。
第二方面,提供了一种智能表面设备的波束控制装置,包括:
第一测量模块,用于获得智能表面设备的有源单元的第一信道信息;其中,所述第一信道信息为所述网络侧设备与所述有源单元之间的信道信息;
第二测量模块,用于所述网络侧设备获得智能表面设备的有源单元的第二信道信息;其中,所述第二信道信息为终端与所述有源单元之间的信道信息;
控制模块,用于所述网络侧设备根据所述第一信道信息和第二信道信息,确定所述智能表面设备的单元阵列的控制信息;其中,所述单元阵列包括所述智能表面设备的有源单元和无源单元。
第三方面,提供了一种智能表面设备的波束控制方法,应用于终端,该方法包括:
在智能表面设备的有源单元支持发送信号的情况下,终端获取由所述有源单元发送的第二参考信号;
在智能表面设备的有源单元支持接收信号的情况下,终端向所述有源单元发送第四参考信号;
其中,所述第二参考信号或第四参考信号用于得到所述有源单元的第二信道信息,所述第二信道信息为所述终端与所述有源单元之间的信 道信息,所述第二信道信息用于与第一信道信息确定所述智能表面设备的单元阵列的控制信息,所述单元阵列包括所述智能表面设备的有源单元和无源单元,所述第一信道信息为网络侧设备与有源单元之间的信道信息。
第四方面,提供了一种智能表面设备的波束控制装置,包括:
第一获取模块,用于在智能表面设备的有源单元支持发送信号的情况下,获取由所述有源单元发送的第二参考信号;
第二获取模块,用于在智能表面设备的有源单元支持接收信号的情况下,向所述有源单元发送第四参考信号;
其中,所述第二参考信号或第四参考信号用于得到所述有源单元的第二信道信息,所述第二信道信息为所述终端与所述有源单元之间的信道信息,所述第二信道信息用于与第一信道信息确定所述智能表面设备的单元阵列的控制信息,所述单元阵列包括所述智能表面设备的有源单元和无源单元,所述第一信道信息为网络侧设备与有源单元之间的信道信息。
第五方面,提供了一种智能表面设备的波束控制方法,应用于智能表面设备,该方法包括:
智能表面设备通过有源单元与网络测设备进行信道测量;其中,所述有源单元与网络侧设备的信道测量用于得到有源单元的第一信道信息,所述第一信道信息为所述网络侧设备与所述有源单元之间的信道信息;
智能表面设备通过有源单元与终端进行信道测量;其中,所述有源单元与终端的信道测量用于得到第二信道信息,所述第二信道信息为终端与所述有源单元之间的信道信息;
智能表面设备得到单元阵列的控制信息;其中,所述控制信息为基于第一信道信息和第二信道信息得到的,所述单元阵列包括所述智能表 面设备的有源单元和无源单元。
第六方面,提供了一种智能表面设备的波束控制装置,包括:
第一通信模块,用于通过有源单元与网络测设备进行信道测量;其中,所述有源单元与网络侧设备的信道测量用于得到有源单元的第一信道信息,所述第一信道信息为所述网络侧设备与所述有源单元之间的信道信息;
第二通信模块,用于通过有源单元与终端进行信道测量;其中,所述有源单元与终端的信道测量用于得到第二信道信息,所述第二信道信息为终端与所述有源单元之间的信道信息;
执行模块,用于得到单元阵列的控制信息;其中,所述控制信息为基于第一信道信息和第二信道信息得到的,所述单元阵列包括所述智能表面设备的有源单元和无源单元。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第八方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤,或者实现如第五方面所述的方法的步骤。
第十面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤,或者实现如第五方面所述的方法的步骤。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤,或者实现如第五方面所述的方法的步骤。
在本申请实施例中,通过网络侧设备获得智能表面设备的有源单元的第一信道信息和第二信道信息,再根据所述第一信道信息和第二信道信息,确定所述智能表面设备的单元阵列的控制信息,从而提高了信道测量的效率,实现对智能表面设备准确的波束控制,并且可以支持多终端多基站的复杂的智能表面设备转发波束的生成。
附图说明
图1示出本申请实施例可应用的一种无线通信***的结构示意图;
图2示出本申请实施例的一种智能表面设备的波束控制方法流程示意图;
图3示出本申请实施例的另一种智能表面设备的波束控制方法流程示意图;
图4示出本申请实施的一种智能表面设备的波束控制方法中对无源单元的信道估计方法示意图;
图5示出本申请实施例的另一种智能表面设备的波束控制方法流程示意图;
图6示出本申请实施例的一种智能表面设备的波束控制装置结构示意图;
图7示出本申请实施例的另一种智能表面设备的波束控制方法流程示意图;
图8示出本申请实施例的另一种智能表面设备的波束控制装置结构示意图;
图9示出本申请实施例的另一种智能表面设备的波束控制方法流程示意图;
图10示出本申请实施例的另一种智能表面设备的波束控制装置结构示意图;
图11示出本申请实施例提供的一种通信设备结构示意图;
图12为实现本申请实施例的一种终端的结构示意图;
图13为实现本申请实施例的一种网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正 交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的应用,如第6代(6 th Generation,6G)通信***。
图1示出本申请实施例可应用的一种无线通信***的结构示意图。无线通信***包括终端11、网络侧设备12和智能表面设备13。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:智能手表、手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR*** 中的基站为例,但是并不限定基站的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR***中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。智能表面设备13可以为大型智能表面(Large  Intelligent Surfaces,LIS)或者可编码智能表面(Reconfigurable Intelligent Surfaces,RIS),在下面的实施例中均以RIS为例进行举例说明。RIS可以动态地/半静态地改变自身的电磁特性,影响入射到RIS的电磁波的反射/折射行为。RIS通过对电磁波的反射波/折射波进行操控,实现波束扫描/波束赋形等功能。RIS工作原理和设备结构:RIS是由前端的人造表面和后端的控制模块组成。前端的人造表面由密集排列的人造器件单元构成;器件单元的器件特性受到器件的控制信号/偏置电压影响,不同的控制信号/偏置电压对应于不同的反射系数/折射系数;反射系数/折射系数的变化会影响反射信号/折射信号的相位和/或强度;微观上每个器件单元导致独立的反射/折射信号,宏观上这些信号叠加在一起进而实现对电磁波的操控。控制信号/偏置电压由后端的控制模块提供。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的智能表面设备的波束控制方法进行详细地说明。
图2示出本申请实施例的一种智能表面设备的波束控制方法流程示意图,如图2所示,该方法可以由网络侧设备执行,换言之,该方法可以由安装在网络侧设备的软件或硬件来执行。所述方法可以由以下步骤执行。
步骤S201、网络侧设备获得智能表面设备的有源单元的第一信道信息;其中,所述第一信道信息为所述网络侧设备与所述有源单元之间的信道信息。
本申请实施例的智能表面设备包括由器件单元构成的单元阵列,具体可以包括有源单元和无源单元。所述单元阵列中的有源单元的数量和位置可以根据实际的需要进行设定,可以采用稀疏排列。
步骤S202、所述网络侧设备获得智能表面设备的有源单元的第二信道信息;其中,所述第二信道信息为终端与所述有源单元之间的信道信息。
步骤S203、所述网络侧设备根据所述第一信道信息和第二信道信息,确定所述智能表面设备的单元阵列的控制信息;其中,所述单元阵列包括所述智能表面设备的有源单元和无源单元。
针对包含有源单元和无源单元的智能表面设备,本申请实施例的波束控制方法分为两个阶段:第一阶段基于有源单元的信道测量阶段和第二阶段的智能表面设备的波束控制阶段。在第一阶段,根据智能表面设备的有源单元具备的收发信息的功能,基于有源单元进行信道测量,可以得到所述智能表面设备中各有源单元的信道信息,包括有源单元与网络侧设备之间的第一信道信息和有源单元与终端之间的第二信道信息。在第二阶段,基于得到的信道信息对智能表面设备进行波束赋形,得到智能表面设备的单元阵列的控制信息。所述控制信息可以包括单元阵列中各单元的工作状态。
通过该控制信息,可以确定智能表面设备的模拟转发波束的配置。之后进行基站与终端之间的信道测量,可以确定基站和终端的波速赋形配置。
所述步骤S201和步骤S202不分先后,可以同时进行,也可以根据各自对应的测量周期分别进行,本申请实施例仅以步骤S201在前步骤S202在后为例进行举例说明。
在一种实施方式中,由于网络侧设备与RIS设备之间位置相对比较固定,信道变化较慢,因此,得到第一信道信息的第一测量周期可以相对较长,得到第二信道信息的第二测量周期可以相对较短,具体可以取决于终端的移动速度和环境的变化情况。例如,第二测量周期可以参考终端的信道状态信息(Channel State Information,CSI)测量周期配置,可以等于CSI测量周期的整数倍。而在第一测量周期内,可以包含多个第二测量周期,并且对多个不同的方向的终端进行测量。
由此,本申请实施例提供了一种智能表面设备的波束控制方法,通 过网络侧设备获得智能表面设备的有源单元的第一信道信息和第二信道信息,再根据所述第一信道信息和第二信道信息,确定所述智能表面设备的单元阵列的控制信息,从而提高了信道测量的效率,实现对智能表面设备准确的波束控制,并且可以支持多终端多基站的复杂的智能表面设备转发波束的生成。
图3示出本申请实施例的另一种智能表面设备的波束控制方法流程示意图,如图3所示,该方法可以由网络侧设备执行,换言之,该方法可以由安装在网络侧设备的软件或硬件来执行。智能表面设备的有源单元可以有多种类型,可以为具备发送和/或接收信号功能的有源单元。其中,对于有源单元支持发送信号的情况下,即所述有源单元为具备发送信号功能的有源单元,或者为支持发送和接收信号功能的有源单元,所述方法可以由以下步骤执行。
步骤S301、接收由所述有源单元发送的第一参考信号。
步骤S302、通过对所述第一参考信号的信道测量,得到所述有源单元的第一信道信息。
在一种实施方式中,在有源单元支持发送信号的情况下,可以由有源单元向网络侧设备发送第一参考信号。网络侧设备根据接收到的第一参考信号进行信道测量,得到所述有源单元的第一信道信息。
所述第一参考信号的参数可以由所述网络侧设备进行配置。
步骤S303、接收由所述终端发送的第二信道信息;其中,所述第二信道信息由所述终端通过对第二参考信号的信道测量得到,所述第二参考信号由所述有源单元发送给所述终端。
在一种实施方式中,在有源单元支持发送信号的情况下,可以由有源单元向终端发送第二参考信号,由终端根据接收到的第二参考信号进行信道测量,得到所述有源单元的第二信道信息,并发送给网络侧设备。
所述第二参考信号的参数也可以由所述网络侧设备进行配置,并同时将配置的参数通知终端,具体可以由下行控制信息(Downlink Control Information,DCI)、媒体接入控制控制单元(Medium Access Control Control Element,MAC CE)或者无线资源控制(Radio Resource Control,RRC)等信息携带。
所述网络侧设备配置的第一参考信号和第二参考信号的配置参数具体可以包括该参考信号的时频资源,参考信号序列和端口,预编码等参数。
所述第一参考信号和第二参考信号可以采用各种类型参考信号,在一种实施方式中,所述参考信号包括以下至少一类:
同步信号块(Synchronization Signal and PBCH block,SSB);
信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS);
解调参考信号(Demodulation Reference Signal,DMRS);所述DMRS可以为物理下行共享信道(Physical downlink shared channel,PDSCH)、物理下行控制信道(Physical downlink control channel,PDCCH)、或者物理上行共享信道(Physical uplink shared channel,PUSCH)的DMRS,即DMRS for PDSCH、DMRS for PDCCH、或者DMRS for PUSCH;
定位参考信号(Position Reference Signal,PRS);
探测参考信号(Sounding Reference Signal,SRS);
物理随机接入信道(Physical Random Access Channel Reference Signal,PRACH)参考信号;
副链路(side link)参考信号;
用于智能表面设备信道测量的专用参考信号,可以包括专用的第一参考信号和/或专用的第二参考信号。
由网络侧设备发送的第一参考信号,和由不同的终端发送的第二参数信号可以通过不同的端口进行区分,在一种实施方式中,所述参考信号采用以下至少一种方式进行区分:
时分复用;例如,可以在不同的OFDM符号上发送各参考信号;
频分复用;例如,可以在相同的OFDM符号上不同的频域资源上发送各参考信号;
码分复用;例如,使用不同的序列生成各参考信号;
空分复用或者波速扫描;有源单元可采用波束扫描或者波束训练的方式发送第一参考信号和/或第二参考信号,由网络测设备和终端分别通过信道测量将信号质量最好的波束作为通信波束,得到第一信道信息和第二信道信息。
可选的,所述第一参考信号和第二参考信号的频率带宽相同。
步骤S304、根据所述第一信道信息和第二信道信息,得到所述智能表面设备的无源单元的第三信道信息和第四信道信息;其中,所述第三信道信息为所述网络侧设备与所述无源单元之间的信道信息,所述第四信道信息为所述终端与所述无源单元之间的信道信息。
在一种实施方式中,网络侧设备可通过RIS设备的有源单元的第一信道信息和第二信道信息,对RIS设备中的无源单元进行信道估计,以得到各无源单元的第三信道信息和第四信道信息。
得到无源单元的第三信道信息和第四信道信息可采用多种估算方法,在一种实施方式中,根据所述第一信道信息和第二信道信息,通过插值算法得到所述智能表面设备的无源单元的第三信道信息和第四信道信息。所述插值算法,具体举例如下:
如图4所示,图中包括网络侧设备410、终端420和RIS设备430,其中,所述RIS设备430包括由不同图案表示的有源单元431和无源单元432。通过信道测量,分别得到有源单元i和j的信道信息,包括有源 单元i的第一信道信息H B,i和第二信道信息H i,U,以及有源单元j的第一信道信息H B,j和第二信道信息H j,U。根据H B,i、H i,U、H B,j和H j,U对位于有源单元i和j中间的无源单元k进行信道估计,可以得到无源单元k的第三信道信息H B,k和第四信道信息H k,U。具体可以通过插值算法得到,例如,可以采用线性插值算法得到H B,k=1/2(H B,i+H B,j)和H k,U=1/2(H i,U+H j,U)。所述插值算法有很多种,例如,维纳滤波、非线性插值等,此处不作具体1限定。
同样如图4所示,如果智能表面使用波束扫描的方式进行信道估计,第一信道信息代表了网络设备接收到智能表面有源单元的各个波束的能量强度,第二信道信息代表了终端设备接收到智能表面有源单元的各个波束的能量强度。网络设备根据第一信道信息选择能量最强的一个或者多个测量结果对应的波束作为网络设备到智能表面的波束;根据第二信道信息选择能量最强的一个或者多个测量结果对应的波束作为终端设备到智能表面的波束。根据智能表面有源单元的波束码本,确定各个有源单元的信道之间的相对相位关系,即H B,i与H B,j之间的相位差,H i,U与H j,U之间的相位差。进一步可以确定在级联信道,网络设备到智能表面有源单元再到终端设备的信道H B,i*H i,U与H B,j*H j,U之间的相位差。同样通过插值算法,可以确定网络设备到智能表面无源单元再到终端设备的级联信道之间的相位差。级联信道之间的相位差计算智能表面的控制信息。
在一种实施方式中,所述第一信道信息和第二信道信息具体可以为各有源单元的信道之间的相关性,例如,通过波束扫描或波束训练得到的有源单元的信道测量结果。同样,通过使用插值算法估算得到无源单元的第三信道信息和第四信道信息也可以为各无源单元的信道之间的相关性。
在一种实施方式中,RIS设备在接入小区后,即完成同步流程,与网 络侧设备保持时频同步之后,所述方法还包括:
获取智能表面设备上报的设备参数,所述设备参数包括以下至少一项:
设备类型;所述设备类型可以包括:仅包含无源单元的纯无源RIS设备,仅包含有源单元的纯有源RIS设备,以及包含有源单元与无源单元的有源无源混合RIS设备;
设备尺寸;
有源单元的类型;
有源单元的位置;
有源单元的数量;
有源单元的能力,包括仅支持接收信号、仅支持发送信号、或者同时支持接收和发送信号;
无源单元的能力,包括无源单元的类型,例如相位控制型和幅度控制型等,还可以包括无源单元的控制参数的量化精度,例如,控制无源单元的状态的控制信息的比特长度。例如,无源单元是相位控制型的RIS单元,且由1bit控制信息控制RIS单元的状态。***可以认为控制信息‘0’对应于反射信号的相位与入射信号的相位连续,控制信息‘1’对应于反射信号的相位与入射信号的相位相差180°;或者认为控制信息‘0’对应的反射信号相位与控制信息‘1’对应的反射信号相位相差180°。
步骤S305、根据所述第三信道信息和第四信道信息,得到所述智能表面设备的单元阵列的控制信息。
在一种实施方式中,由网络侧设备根据各器件单元的信道信息,包括有源单元和无源单元的信道信息,或者仅根据无源单元的信道信息,得到RIS设备的单元阵列的控制信息用于在RIS设备得到目标转发波束。所述目标转发波束可以是单一的波束指向某一个终端或某一组终端,也可以是多个方向的波束指向多个不同方向的多个终端或多组终 端。
在一种实施方式中,在步骤S305后,所述方法还包括:
将所述单元阵列的控制信息发送给所述智能表面设备,所述控制信息包括:所述智能表面设备各无源单元的工作状态。所述控制信息可以承载于DCI、MAC CE或者RRC。
在一种实施方式中,在根据得到的单元阵列的控制信息确定RIS设备的初始波束后,还可以对RIS设备的波束进行微调。网络侧设备在发送的控制信息中为RIS设备配置若干个更精细的波束,所述更精细的波束是指具有不同波束相位或者波束指向不同的波束,具体可以在初始波束的基础上通过适当修正得到。网络侧设备还可以为RIS设备配置进行波束微调的时间参数,包含多个时间单元,每个时间单元对应上述的一个更精细波束。针对波束微调,网络侧设备可以为终端配置相应波束测量的配置信息,包括参考信号时频资源、端口号等。由网络侧设备或者终端发送参考信号,终端或网络侧设备接收参考信号并进行波束测量,根据测量结果确定合适的更精细波束。
在另一种实施方式中,网络侧设备可以向所述智能表面设备发送参数需求,所述参数需求用于使所述智能表面设备确定所述智能表面设备各无源单元的工作状态;
其中,所述参数需求包括以下至少一项:
波束方向;
所述基站与终端间的信道测量结果;
多个波束的功率和相位关系。
智能表面设备可根据接收到的参数需求,结合各器件单元的信道信息,包括有源单元和无源单元的信道信息,或者仅根据无源单元的信道信息,得到RIS设备的单元阵列的控制信息用于在RIS设备得到目标转发波束。
在一种实施方式中,步骤S305后,所述方法还包括:
网络侧设备通过信道测量确定所述网络侧设备和/或所述终端的波束赋形参数,该信道测量可以按照协议流程执行。
由此,本申请实施例提供了一种智能表面设备的波束控制方法,在有源单元支持发送信号的情况下,由有源单元向网络侧设备和终端发送第一参考信号和第二参考信号,经过信道测量,分别得到有源单元的第一信道信息和第二信道信息,并根据有源单元的第一信道信息第二信道信息对无源单元的第三信道信息和第四信道信息进行信道估计,再根据各单元的信道信息得到智能表面设备的单元阵列的控制信息。本申请实施例通过使用有源单元进行分段的信道估计,避免对网络侧设备-智能表面设备-终端的级联信道的复杂的信道估计方法,提高了信道测量的效率,实现对智能表面设备准确的波束控制,并且可以支持多终端多基站的复杂的智能表面设备转发波束的生成。
图5示出本申请实施例的另一种智能表面设备的波束控制方法流程示意图,如图5所示,该方法可以由网络侧设备执行,换言之,该方法可以由安装在网络侧设备的软件或硬件来执行。对于有源单元支持接收信号的情况下,即所述有源单元为具备接收信号功能的有源单元,或者为支持发送和接收信号功能的有源单元,所述方法可以由以下步骤执行。
步骤S501、向所述有源单元发送第三参考信号;
步骤S502、获取所述有源单元发送的第一信道信息;其中,所述第一信道信息为所述有源单元通过对所述第三参考信号进行信道测量得到。
在一种实施方式中,在有源单元支持接收信号的情况下,可以由网络侧设备向有源单元发送第三参考信号。由有源单元对接收到的第三参考信号进行信道测量,得到有源单元的第一信道信息。
所述第三参考信号的参数可以由所述网络侧设备进行配置。
在一种实施方式中,RIS设备在得到有源单元的第一信道信息后,可以将该第一信道信息通过有源单元发送给所述网络侧设备。
步骤S503、获取由所述有源单元发送的第二信道信息;其中,所述第二信道信息为所述有源单元通过对第四参考信号进行信道测量得到,所述第四参考信号由所述终端发送给所述有源单元。
在一种实施方式中,在有源单元支持接收信号的情况下,可以由终端向有源单元发送第四参考信号。由有源单元对接收到的第四参考信号进行信道测量,得到有源单元的第二信道信息。
所述第四参考信号的参数可以由所述网络侧设备进行配置,并同时将配置的参数通知终端。
所述网络侧设备配置的第三参考信号和第四参考信号的配置参数具体可以包括该参考信号的时频资源,参考信号序列和端口,预编码等参数。
在一种实施方式中,RIS设备在得到有源单元的第二信道信息后,可以将该第二信道信息通过有源单元发送给所述网络侧设备。
所述第三参考信号和第四参考信号可以采用上述实施例中第一参考信号和第二参考信号相同的类型,采用相同的方式发送,重复部分此处不再赘述。
在一种实施方式中,所述第四参考信号可以为SSB,CSI-RS,DMRS for PDSCH,DMRS for PDCCH,PRS,或者用于智能表面设备信道测量的专用参考信号。
在一种实施方式中,所述第三参考信号可以为SRS,PRACH参考信号,DMRS for PUSCH,side link参考信号,或者于智能表面设备信道测量的专用参考信号。
在一种实施方式中,在无线环境中可能存在多径影响,即环境中的 物体反射或者折射网络侧设备或者终端发射的参考信号,有源单元会有收到来自不同传播路径不同传输时延不同幅度的相同的参考信号。但是由于不同传播路径的信道响应是随机变化的,因此可以通过多次测量和平均将非直射路径的影响抵消掉,只保留直射路径或者信号较强的路径的参考信号进行信道测量后得到的测量结果,即第一信道信息和第二信道信息。
步骤S504、由智能表面设备根据所述第一信道信息和第二信道信息,得到所述智能表面设备的无源单元的第三信道信息和第四信道信息;其中,所述第三信道信息为所述网络侧设备与所述无源单元之间的信道信息,所述第四信道信息为所述终端与所述无源单元之间的信道信息。
在一种实施方式中,RIS设备可通过有源单元的第一信道信息和第二信道信息,对RIS设备中的无源单元进行信道估计,以得到各无源单元的第三信道信息和第四信道信息。
得到无源单元的第三信道信息和第四信道信息可采用多种估算方法,在一种实施方式中,根据所述第一信道信息和第二信道信息,通过插值算法得到所述智能表面设备的无源单元的第三信道信息和第四信道信息。所述插值算法具体可以为线性插值、维纳滤波和非线性插值等,此处不作具体限定。
在一种实施方式中,在RIS设备通过有源单元进行信道测量得到第一信道信息和第二信道信息后,所述方法还包括:
将第一信道信息和/或第二信道信息上报给所述网络侧设备。所述网络侧设备根据接收到的第一信道信息和第二信道信息,得到所述智能表面设备的无源单元的第三信道信息和第四信道信息,执行如图3中步骤S304和S305的方法实施例,并得到相同的技术效果,重复部分此处不再赘述。
RIS设备上报的第一信道信息和/或第二信道信息可以采用多种形式,在一种实施方式中,可以采用如下至少一种形式:
直接上报所有有源单元的第一信道信息和/或第二信道信息;
上报各有源单元间信道信息的相对比值,例如,上报有源单元o的第一信道信息H B,o以及H B,o与有源单元i的第一信道信息H B,i的比值和相位差,上报有源单元o的第二信道信息H U,o以及H U,o与有源单元i的第二信道信息H U,i的比值和相位差。其中,有源单元o是有源单元集合的参考单元,在智能表面中位置由智能表面确定或者由网络设备和智能表面联合确定。
上报各个信道信息之间的相对比值,例如,H B,i与H U,i之间的比值;
上报参考信号的方向信息,例如,网络侧设备发送的第三参考信号的到达角测距(Angle-of-Arrival,AOA)和AOZ信息,终端发送的第四参考信号的AOA和AOZ信息,以及对应角度上的信号强度;
通过其他信道信息压缩算法进行上报。
在一种实施方式中,RIS设备在接入小区后,所述方法还包括:
上报的RIS设备的设备参数,所述设备参数包括以下至少一项:
设备类型;
设备尺寸;
有源单元的类型;
有源单元的位置;
有源单元的数量;
有源单元的能力;
无源单元的能力。
步骤S505、由智能表面设备根据所述第三信道信息和第四信道信息,得到所述智能表面设备的单元阵列的控制信息。
一种实施方式中,网络侧设备可以向所述智能表面设备发送参数需 求,所述参数需求用于使所述智能表面设备确定所述智能表面设备各无源单元的工作状态;
其中,所述参数需求包括以下至少一项:
波束方向;
所述基站与终端间的信道测量结果;
多个波束的功率和相位关系。
智能表面设备可根据接收到的参数需求,结合各器件单元的信道信息,包括有源单元和无源单元的信道信息,或者仅根据无源单元的信道信息,得到RIS设备的单元阵列的控制信息用于在RIS设备得到目标转发波束。
在一种实施方式中,RIS设备在根据得到的单元阵列的控制信息确定RIS设备的初始波束后,还可以对RIS设备的波束进行微调。网络侧设备在发送的控制信息中为RIS设备配置若干个更精细的波束,所述更精细的波束是指具有不同波束相位或者波束指向不同的波束,具体可以在初始波束的基础上通过适当修正得到。网络侧设备还可以为RIS设备配置进行波束微调的时间参数,包含多个时间单元,每个时间单元对应上述的一个更精细波束。针对波束微调,网络侧设备可以为终端配置相应波束测量的配置信息,包括参考信号时频资源、端口号等。由网络侧设备或者终端发送参考信号,终端或网络侧设备接收参考信号并进行波束测量,根据测量结果确定合适的更精细波束。
在一种实施方式中,在步骤S505后,所述方法还包括:
网络侧设备通过信道测量确定所述网络侧设备和/或所述终端的波束赋形参数,该信道测量可以按照协议流程执行。
由此,本申请实施例提供了一种智能表面设备的波束控制方法,在有源单元支持接收信号的情况下,由网络侧设备和终端分别向有源单元发送第三参考信号和第四参考信号,经过信道测量,分别得到有源单元 的第一信道信息和第二信道信息,并由RIS设备根据有源单元的第一信道信息第二信道信息对无源单元的第三信道信息和第四信道信息进行信道估计,再根据各单元的信道信息得到智能表面设备的单元阵列的控制信息。本申请实施例通过使用有源单元进行分段的信道估计,避免对网络侧设备-智能表面设备-终端的级联信道的复杂的信道估计方法,提高了信道测量的效率,实现对智能表面设备准确的波束控制,并且可以支持多终端多基站的复杂的智能表面设备转发波束的生成。
需要说明的是,本申请实施例提供的智能表面设备的波束控制方法,执行主体可以为智能表面设备的波束控制装置,或者,该智能表面设备的波束控制装置中的用于执行智能表面设备的波束控制方法的控制模块。本申请实施例中以智能表面设备的波束控制装置执智能表面设备的波束控制方法为例,说明本申请实施例提供的智能表面设备的波束控制装置。
基于上述实施例,在另一种实施方式,本申请实施例提供的智能表面设备的波束控制方法可以包括以下步骤。
步骤一、在网络侧设备与RIS设备之间进行信道测量,根据信道测量结果得到第一信道信息。
在一种实施方式中,通过网络侧设备向有源单元发送第一参考信号,由有源单元对接收到的第一参考信号进行信道测量,得到第一信道信息。
在另一种实施方式中,由有源单元向网络侧设备发送第三参考信号,由网络侧设备基于第三参考信号进行信道测量,得到第一信道信息。其中,所述第三参考信号的发送方式可以采用时分复用、频分复用或码分复用等。
在另一种实施方式中,由有源单元以波束扫描的形式发送参考信号,网络侧设备测量各个有源单元发送波束,确定信号质量最好的波束 为第一信道信息对应的波束。
步骤二,网络侧设备向RIS设备发送控制信息,以使所述RIS设备得到单元阵列中各单元的工作状态,所述控制信息可以承载于DCI、MAC CE或者RRC。
在一种实施方式中,控制信息可以为RIS设备的单元阵列中无源单元的多个可选配置信息,分别对应于RIS设备的转发信号的多个波束方向。
在另一种实施方式中,控制信息可以是多个RIS设备的转发信号的波束方向,和RIS有源单元的波束(对应于步骤一中有源单元经过波束扫描后得到的波束)。RIS设备的控制模块根据步骤一经过信道测量得到的信道信息或者网络侧设备配置的RIS有源单元的波束信息,结合网络侧设备配置的RIS设备的转发信号的波束方向,生成RIS设备的单元阵列中无源单元的配置信息。
在一种实施方式中,基于步骤一的信道测量结果或者波束扫描的码本可以确定网络侧设备到各个有源单元之间的第一信道信息或者信道之间的相对信息。通过插值算法可以确定网络侧设备到各无源单元的第三信道信息或者信道之间的相对信息。根据网络侧设备配置的RIS设备的转发信号的波束方向可以计算得到单元阵列中无源单元所需的相位或者相对相位要求。根据上述信息可以确定各无源单元的工作状态。
步骤三、RIS设备转发波束扫描。
网络侧设备发送控制信息,配置多个RIS设备转发信号的波束的工作时间段。
网络侧设备发送多个参考信号,对应于配置的多个RIS设备转发信号的波束的工作时间段。
终端按照网络侧设备的配置信息接收多个参考信号测量信号质量,向网络侧设备和/或RIS设备反馈测量结果。
网络侧设备接收终端的测量结果,确定RIS设备的波束方向,将确定结果配置给RIS设备。
本申请实施例提供的智能表面设备的波束控制,可以实现如图3-5所示的方法实施例,并得到相同的技术效果,重复部分此处不再赘述。
图6示出本申请实施例的一种智能表面设备的波束控制装置结构示意图,如图6所示,所述装置包括:第一测量模块601、第二测量模块602和控制模块603。
所述第一测量模块601用于获得智能表面设备的有源单元的第一信道信息;其中,所述第一信道信息为所述网络侧设备与所述有源单元之间的信道信息;所述第二测量模块602用于所述网络侧设备获得智能表面设备的有源单元的第二信道信息;其中,所述第二信道信息为终端与所述有源单元之间的信道信息;所述控制模块603用于所述网络侧设备根据所述第一信道信息和第二信道信息,确定所述智能表面设备的单元阵列的控制信息;其中,所述单元阵列包括所述智能表面设备的有源单元和无源单元。
由此,本申请实施例提供了一种智能表面设备的波束控制装置,通过得智能表面设备的有源单元的第一信道信息和第二信道信息,再根据所述第一信道信息和第二信道信息,确定所述智能表面设备的单元阵列的控制信息,从而提高了信道测量的效率,实现对智能表面设备准确的波束控制,并且可以支持多终端多基站的复杂的智能表面设备转发波束的生成。
基于上述实施例,进一步地,所述控制模块用于:
根据所述第一信道信息和第二信道信息,得到所述智能表面设备的无源单元的第三信道信息和第四信道信息;其中,所述第三信道信息为所述网络侧设备与所述无源单元之间的信道信息,所述第四信道信息为所述终端与所述无源单元之间的信道信息;
根据所述第三信道信息和第四信道信息,得到所述智能表面设备的单元阵列的控制信息。
进一步地,在所述有源单元支持发送信号的情况下,所述第一测量模块用于:
接收由所述有源单元发送的第一参考信号;
通过对所述第一参考信号的信道测量,得到所述有源单元的第一信道信息。
进一步地,在所述有源单元支持发送信号的情况下,所述第二测量模块用于:
接收由所述终端发送的第二信道信息;其中,所述第二信道信息由所述终端通过对第二参考信号的信道测量得到,所述第二参考信号由所述有源单元发送给所述终端。
进一步地,所述控制模块用于根据所述第一信道信息和第二信道信息,通过插值算法得到所述智能表面设备的无源单元的第三信道信息和第四信道信息。
进一步地,所述控制模块还用于获取智能表面设备上报的设备参数,所述设备参数包括以下至少一项:
设备类型;
设备尺寸;
有源单元的类型;
有源单元的位置;
有源单元的数量;
有源单元的能力;
无源单元的能力。
进一步地,所述控制模块还用于将所述单元阵列的控制信息发送给所述智能表面设备,所述控制信息包括:所述智能表面设备各无源单元 的工作状态。
进一步地,所述控制模块还用于向所述智能表面设备发送参数需求,所述参数需求用于使所述智能表面设备确定所述智能表面设备各无源单元的工作状态;
其中,所述参数需求包括以下至少一项:
波束方向;
所述基站与终端间的信道测量结果;
多个波束的功率和相位关系。
进一步地,所述控制模块还用于通过信道测量确定所述网络侧设备和/或所述终端的波束赋形参数。
进一步地,所述参考信号包括以下至少一类:
同步信号块;
信道状态信息参考信号;
解调参考信号;
定位参考信号;
探测参考信号;
物理随机接入信道参考信号;
副链路参考信号;
用于智能表面设备信道测量的专用参考信号。
进一步地,所述参考信号采用以下至少一种方式:
时分复用;
频分复用;
码分复用;
波速扫描。
由此,本申请实施例提供了一种智能表面设备的波束控制装置,在有源单元支持发送信号的情况下,由有源单元向网络侧设备和终端发送 第一参考信号和第二参考信号,经过信道测量,分别得到有源单元的第一信道信息和第二信道信息,并根据有源单元的第一信道信息第二信道信息对无源单元的第三信道信息和第四信道信息进行信道估计,再根据各单元的信道信息得到智能表面设备的单元阵列的控制信息。本申请实施例通过使用有源单元进行分段的信道估计,避免对网络侧设备-智能表面设备-终端的级联信道的复杂的信道估计方法,提高了信道测量的效率,实现对智能表面设备准确的波束控制,并且可以支持多终端多基站的复杂的智能表面设备转发波束的生成。
基于上述实施例,进一步地,在所述有源单元支持接收信号的情况下,第一测量模块用于:
向所述有源单元发送第三参考信号;
获取所述有源单元发送的第一信道信息;其中,所述第一信道信息为所述有源单元通过对所述第三参考信号进行信道测量得到。
进一步地,在所述有源单元支持接收信号的情况下,所述第二测量模块用于:
获取由所述有源单元发送的第二信道信息;其中,所述第二信道信息为所述有源单元通过对第四参考信号进行信道测量得到,所述第四参考信号由所述终端发送给所述有源单元。
由此,本申请实施例提供了一种智能表面设备的波束控制装置,在有源单元支持接收信号的情况下,由网络侧设备和终端分别向有源单元发送第三参考信号和第四参考信号,经过信道测量,分别得到有源单元的第一信道信息和第二信道信息,并由RIS设备根据有源单元的第一信道信息第二信道信息对无源单元的第三信道信息和第四信道信息进行信道估计,再根据各单元的信道信息得到智能表面设备的单元阵列的控制信息。本申请实施例通过使用有源单元进行分段的信道估计,避免对网络侧设备-智能表面设备-终端的级联信道的复杂的信道估计方法,提高了 信道测量的效率,实现对智能表面设备准确的波束控制,并且可以支持多终端多基站的复杂的智能表面设备转发波束的生成。
本申请实施例中的智能表面设备的波束控制装置可以是装置,具有操作***的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的智能表面设备的波束控制装置可以为具有操作***的装置。该操作***可以为安卓(Android)操作***,可以为ios操作***,还可以为其他可能的操作***,本申请实施例不作具体限定。
本申请实施例提供的智能表面设备的波束控制装置能够实现图2至图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图7示出本申请实施例的另一种智能表面设备的波束控制方法流程示意图,如图7所示,,该方法可以由终端执行,换言之,该方法可以由安装在终端的软件或硬件来执行。所述方法可以由以下步骤执行。
步骤S701、在智能表面设备的有源单元支持发送信号的情况下,终端获取由所述有源单元发送的第二参考信号;
步骤S702、在智能表面设备的有源单元支持接收信号的情况下,终端向所述有源单元发送第四参考信号;
其中,所述第二参考信号或第四参考信号用于得到所述有源单元的第二信道信息,所述第二信道信息为所述终端与所述有源单元之间的信道信息,所述第二信道信息用于与第一信道信息确定所述智能表面设备的单元阵列的控制信息,所述单元阵列包括所述智能表面设备的有源单 元和无源单元,所述第一信道信息为网络侧设备与有源单元之间的信道信息。
进一步地,在获取由所述有源单元发送的第二参考信号后,所述方法还包括:
对所述第二参考信号进行信道测量,得到所述第二信道信息并发送给所述网络设备。
进一步地,所方法还包括:
获取由网络侧设备配置的所述第二参考信号或第四参考信号的参数。
进一步地,所述参考信号包括以下至少一类:
信道状态信息参考信号;
解调参考信号;
定位参考信号;
探测参考信号;
物理随机接入信道参考信号;
副链路参考信号;
用于智能表面设备信道测量的专用参考信号。
进一步地,所述参考信号采用以下至少一种方式:
时分复用;
频分复用
码分复用;
波速扫描。
本申请实施例提供的智能表面设备的波束控制方法能够实现图2至图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
由此,本申请实施例提供了一种智能表面设备的波束控制方法,根 据智能表面设备的有源单元支持发送和/或接收信号进行信道测量,得到有源单元与终端之间的第二信道信息,再结合第一信道信息确定所述智能表面设备的单元阵列的控制信息,从而提高了信道测量的效率,实现对智能表面设备准确的波束控制,并且可以支持多终端多基站的复杂的智能表面设备转发波束的生成。
需要说明的是,本申请实施例提供的智能表面设备的波束控制方法,执行主体可以为智能表面设备的波束控制装置,或者,该智能表面设备的波束控制装置中的用于执行智能表面设备的波束控制方法的控制模块。本申请实施例中以智能表面设备的波束控制装置执智能表面设备的波束控制方法为例,说明本申请实施例提供的智能表面设备的波束控制装置。
图8示出本申请实施例的另一种智能表面设备的波束控制装置结构示意图,如图8所示,所述装置包括:第一获取模块801和第二获取模块802。
所述第一获取模块801用于在智能表面设备的有源单元支持发送信号的情况下,获取由所述有源单元发送的第二参考信号;所述第二获取模块802用于在智能表面设备的有源单元支持接收信号的情况下,向所述有源单元发送第四参考信号;其中,所述第二参考信号或第四参考信号用于得到所述有源单元的第二信道信息,所述第二信道信息为所述终端与所述有源单元之间的信道信息,所述第二信道信息用于与第一信道信息确定所述智能表面设备的单元阵列的控制信息,所述单元阵列包括所述智能表面设备的有源单元和无源单元,所述第一信道信息为网络侧设备与有源单元之间的信道信息。
进一步地,所述第一获取模块还用于对所述第二参考信号进行信道测量,得到所述第二信道信息并发送给所述网络设备。
进一步地,第一获取模块或第二获取模块还用于获取由网络侧设备 配置的所述第二参考信号或第四参考信号的参数。
进一步地,所述参考信号包括以下至少一类:
信道状态信息参考信号;
解调参考信号;
定位参考信号;
探测参考信号;
物理随机接入信道参考信号;
副链路参考信号;
用于智能表面设备信道测量的专用参考信号。
进一步地,所述参考信号采用以下至少一种方式:
时分复用;
频分复用
码分复用;
波速扫描。
由此,本申请实施例提供了一种智能表面设备的波束控制装置,根据智能表面设备的有源单元支持发送和/或接收信号进行信道测量,得到有源单元与终端之间的第二信道信息,再结合第一信道信息确定所述智能表面设备的单元阵列的控制信息,从而提高了信道测量的效率,实现对智能表面设备准确的波束控制,并且可以支持多终端多基站的复杂的智能表面设备转发波束的生成。
本申请实施例中的智能表面设备的波束控制装置可以是装置,具有操作***的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜 员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的智能表面设备的波束控制装置能够实现图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图9示出本申请实施例的另一种智能表面设备的波束控制方法流程示意图,如图9所示,该方法可以由智能表面设备执行。所述方法可以由以下步骤执行。
步骤S901、智能表面设备通过有源单元与网络测设备进行信道测量;其中,所述有源单元与网络侧设备的信道测量用于得到有源单元的第一信道信息,所述第一信道信息为所述网络侧设备与所述有源单元之间的信道信息;
步骤S902、智能表面设备通过有源单元与终端进行信道测量;其中,所述有源单元与终端的信道测量用于得到第二信道信息,所述第二信道信息为终端与所述有源单元之间的信道信息;
步骤S903、智能表面设备得到单元阵列的控制信息;其中,所述控制信息为基于第一信道信息和第二信道信息得到的,所述单元阵列包括所述智能表面设备的有源单元和无源单元。
本申请实施例提供的波束控制方法可实现如图2所示的各步骤的方法实施例,并达到相同的技术效果,重复部分此处不再赘述。
由此,本申请实施例提供了一种智能表面设备的波束控制方法,通过智能表面设备的有源单元进行信道测量得到的第一信道信息和第二信道信息,再根据所述第一信道信息和第二信道信息,确定所述智能表面设备的单元阵列的控制信息,从而提高了信道测量的效率,实现对智能表面设备准确的波束控制,并且可以支持多终端多基站的复杂的智能表面设备转发波束的生成。
基于上述实施例,在一种实施方式中,在所述有源单元支持发送信 号的情况下,所述步骤S901包括:
向网络侧设备发送第一参考信号,以使所述网络侧设备通过对所述第一参考信号进行信道测量得到第一信道信息。
在一种实施方式中,在所述有源单元支持发送信号的情况下,所述步骤S902包括:
向终端发送第二参考信号,以使所述终端通过对第二参考信号进行信道测量得到第二信道信息。
在一种实施方式中,所述步骤S903包括:
接收由网络侧设备发送的单元阵列的控制信息。
在一种实施方式中,所述方法还包括:
向网络侧设备上报的所述智能表面设备的设备参数,所述设备参数包括以下至少一项:
设备类型;
设备尺寸;
有源单元的类型;
有源单元的位置;
有源单元的数量;
有源单元的能力;
无源单元的能力。
在一种实施方式中,所述参考信号包括以下至少一类:
同步信号块;
信道状态信息参考信号;
解调参考信号;
定位参考信号;
探测参考信号;
物理随机接入信道参考信号;
副链路参考信号;
用于智能表面设备信道测量的专用参考信号。
在一种实施方式中,所述参考信号采用以下至少一种方式:
时分复用;
频分复用;
码分复用;
波速扫描。
本申请实施例提供的波束控制方法可实现如图3和图4所示的各步骤的方法实施例,并达到相同的技术效果,重复部分此处不再赘述。
由此,本申请实施例提供了一种智能表面设备的波束控制方法,在有源单元支持发送信号的情况下,由有源单元向网络侧设备和终端发送第一参考信号和第二参考信号,经过信道测量,分别得到有源单元的第一信道信息和第二信道信息,并根据有源单元的第一信道信息第二信道信息对无源单元的第三信道信息和第四信道信息进行信道估计,再根据各单元的信道信息得到智能表面设备的单元阵列的控制信息。本申请实施例通过使用有源单元进行分段的信道估计,避免对网络侧设备-智能表面设备-终端的级联信道的复杂的信道估计方法,提高了信道测量的效率,实现对智能表面设备准确的波束控制,并且可以支持多终端多基站的复杂的智能表面设备转发波束的生成。
基于上述实施例,在一种实施方式中,在所述有源单元支持接收信号的情况下,所述步骤S901包括:
接收由网络侧设备发送的第三参考信号,并通过对所述第三参考信号进行信道测量得到第一信道信息。
在一种实施方式中,在所述有源单元支持接收信号的情况下,所述步骤S902包括:
接收由终端发送的第四参考信号,并通过对所述第四参考信号进行 信道测量得到第二信道信息。
在一种实施方式中,所述方法还包括:
将第一信道信息和/或第二信道信息上报给所述网络侧设备。
在一种实施方式中,所述步骤S903包括:
根据所述第一信道信息和第二信道信息,得到所述智能表面设备的无源单元的第三信道信息和第四信道信息;
根据所述第三信道信息和第四信道信息,得到所述智能表面设备的单元阵列的控制信息;其中,所述控制信息包括:所述智能表面设备各无源单元的工作状态。
在一种实施方式中,所述根据所述第一信道信息和第二信道信息,得到所述智能表面设备的无源单元的第三信道信息和第四信道信息,包括:
根据所述第一信道信息和第二信道信息,通过插值算法得到所述智能表面设备的无源单元的第三信道信息和第四信道信息。
在一种实施方式中,所述方法还包括:
接收由所述网络侧设备发送的参数需求,所述参数需求用于使所述智能表面设备确定所述智能表面设备各无源单元的工作状态;
其中,所述参数需求包括以下至少一项:
波束方向;
所述基站与终端间的信道测量结果;
多个波束的功率和相位关系。
在一种实施方式中,所述方法还包括:
向网络侧设备上报的所述智能表面设备的设备参数,所述设备参数包括以下至少一项:
设备类型;
设备尺寸;
有源单元的类型;
有源单元的位置;
有源单元的数量;
有源单元的能力;
无源单元的能力。
在一种实施方式中,所述参考信号包括以下至少一类:
同步信号块;
信道状态信息参考信号;
解调参考信号;
定位参考信号;
探测参考信号;
物理随机接入信道参考信号;
副链路参考信号;
用于智能表面设备信道测量的专用参考信号。
在一种实施方式中,所述参考信号采用以下至少一种方式:
时分复用;
频分复用;
码分复用;
波速扫描。
本申请实施例的波束控制方法可实现如图5所示各步骤的方法实施例,并达到相同的技术效果,重复部分此处不再赘述。
由此,本申请实施例提供了一种智能表面设备的波束控制方法,在有源单元支持接收信号的情况下,由网络侧设备和终端分别向有源单元发送第三参考信号和第四参考信号,经过信道测量,分别得到有源单元的第一信道信息和第二信道信息,并由RIS设备根据有源单元的第一信道信息第二信道信息对无源单元的第三信道信息和第四信道信息进行信 道估计,再根据各单元的信道信息得到智能表面设备的单元阵列的控制信息。本申请实施例通过使用有源单元进行分段的信道估计,避免对网络侧设备-智能表面设备-终端的级联信道的复杂的信道估计方法,提高了信道测量的效率,实现对智能表面设备准确的波束控制,并且可以支持多终端多基站的复杂的智能表面设备转发波束的生成。
图10示出本申请实施例的另一种智能表面设备的波束控制装置结构示意图,如图10所示,所述装置包括:第一通信模块1001、第二通信模块1002和执行模块1003。
所述第一通信模块1001用于通过有源单元与网络测设备进行信道测量;其中,所述有源单元与网络侧设备的信道测量用于得到有源单元的第一信道信息,所述第一信道信息为所述网络侧设备与所述有源单元之间的信道信息;所述第二通信模块1002用于通过有源单元与终端进行信道测量;其中,所述有源单元与终端的信道测量用于得到第二信道信息,所述第二信道信息为终端与所述有源单元之间的信道信息;所述执行模块1003用于得到单元阵列的控制信息;其中,所述控制信息为基于第一信道信息和第二信道信息得到的,所述单元阵列包括所述智能表面设备的有源单元和无源单元。
由此,本申请实施例提供了一种智能表面设备的波束控制装置,通过有源单元进行信道测量得到的第一信道信息和第二信道信息,再根据所述第一信道信息和第二信道信息,确定所述智能表面设备的单元阵列的控制信息,从而提高了信道测量的效率,实现对智能表面设备准确的波束控制,并且可以支持多终端多基站的复杂的智能表面设备转发波束的生成。
基于上述实施例,进一步地,所述第一通信模块用于向网络侧设备发送第一参考信号,以使所述网络侧设备通过对所述第一参考信号进行信道测量得到第一信道信息。
在一种实施方式中,在所述有源单元支持发送信号的情况下,所述第二通信模块用于向终端发送第二参考信号,以使所述终端通过对第二参考信号进行信道测量得到第二信道信息。
在一种实施方式中,所述执行模块用于接收由网络侧设备发送的单元阵列的控制信息。
在一种实施方式中,所述执行模块还用于向网络侧设备上报的所述智能表面设备的设备参数,所述设备参数包括以下至少一项:
设备类型;
设备尺寸;
有源单元的类型;
有源单元的位置;
有源单元的数量;
有源单元的能力;
无源单元的能力。
在一种实施方式中,所述参考信号包括以下至少一类:
同步信号块;
信道状态信息参考信号;
解调参考信号;
定位参考信号;
探测参考信号;
物理随机接入信道参考信号;
副链路参考信号;
用于智能表面设备信道测量的专用参考信号。
在一种实施方式中,所述参考信号采用以下至少一种方式:
时分复用;
频分复用;
码分复用;
波速扫描。
由此,本申请实施例提供了一种智能表面设备的波束控制装置,在有源单元支持发送信号的情况下,由有源单元向网络侧设备和终端发送第一参考信号和第二参考信号,经过信道测量,分别得到有源单元的第一信道信息和第二信道信息,并根据有源单元的第一信道信息第二信道信息对无源单元的第三信道信息和第四信道信息进行信道估计,再根据各单元的信道信息得到智能表面设备的单元阵列的控制信息。本申请实施例通过使用有源单元进行分段的信道估计,避免对网络侧设备-智能表面设备-终端的级联信道的复杂的信道估计方法,提高了信道测量的效率,实现对智能表面设备准确的波束控制,并且可以支持多终端多基站的复杂的智能表面设备转发波束的生成。
基于上述实施例,进一步地,在所述有源单元支持接收信号的情况下,所述第一通信模块用于接收由网络侧设备发送的第三参考信号,并通过对所述第三参考信号进行信道测量得到第一信道信息。
在一种实施方式中,在所述有源单元支持接收信号的情况下,所述第二通信模块用于接收由终端发送的第四参考信号,并通过对所述第四参考信号进行信道测量得到第二信道信息。
在一种实施方式中,所述执行模块还用于将第一信道信息和/或第二信道信息上报给所述网络侧设备。
在一种实施方式中,所述执行模块用于根据所述第一信道信息和第二信道信息,得到所述智能表面设备的无源单元的第三信道信息和第四信道信息;
根据所述第三信道信息和第四信道信息,得到所述智能表面设备的单元阵列的控制信息;其中,所述控制信息包括:所述智能表面设备各无源单元的工作状态。
在一种实施方式中,所述执行模块用于根据所述第一信道信息和第二信道信息,通过插值算法得到所述智能表面设备的无源单元的第三信道信息和第四信道信息。
在一种实施方式中,所述执行模块还用于接收由所述网络侧设备发送的参数需求,所述参数需求用于使所述智能表面设备确定所述智能表面设备各无源单元的工作状态;
其中,所述参数需求包括以下至少一项:
波束方向;
所述基站与终端间的信道测量结果;
多个波束的功率和相位关系。
在一种实施方式中,所述执行模块还用于向网络侧设备上报的所述智能表面设备的设备参数,所述设备参数包括以下至少一项:
设备类型;
设备尺寸;
有源单元的类型;
有源单元的位置;
有源单元的数量;
有源单元的能力;
无源单元的能力。
在一种实施方式中,所述参考信号包括以下至少一类:
同步信号块;
信道状态信息参考信号;
解调参考信号;
定位参考信号;
探测参考信号;
物理随机接入信道参考信号;
副链路参考信号;
用于智能表面设备信道测量的专用参考信号。
在一种实施方式中,所述参考信号采用以下至少一种方式:
时分复用;
频分复用;
码分复用;
波速扫描。
由此,本申请实施例提供了一种智能表面设备的波束控制装置,在有源单元支持接收信号的情况下,由网络侧设备和终端分别向有源单元发送第三参考信号和第四参考信号,经过信道测量,分别得到有源单元的第一信道信息和第二信道信息,并由RIS设备根据有源单元的第一信道信息第二信道信息对无源单元的第三信道信息和第四信道信息进行信道估计,再根据各单元的信道信息得到智能表面设备的单元阵列的控制信息。本申请实施例通过使用有源单元进行分段的信道估计,避免对网络侧设备-智能表面设备-终端的级联信道的复杂的信道估计方法,提高了信道测量的效率,实现对智能表面设备准确的波束控制,并且可以支持多终端多基站的复杂的智能表面设备转发波束的生成。
本申请实施例中的智能表面设备的波束控制装置可以是装置,具有操作***的装置或电子设备,本申请实施例不作具体限定。
本申请实施例提供的智能表面设备的波束控制装置能够实现图9的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图11所示,本申请实施例还提供一种通信设备1100,包括处理器1101,存储器1102,存储在存储器1102上并可在所述处理器1101上运行的程序或指令,例如,该通信设备1100为终端时,该程序或指令被处理器1101执行时实现上述智能表面设备的波束控制方法实 施例的各个过程,且能达到相同的技术效果。该通信设备1100为网络侧设备时,该程序或指令被处理器1101执行时实现上述智能表面设备的波束控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,处理器用于根据所述第一信道信息和第二信道信息,确定所述智能表面设备的单元阵列的控制信息,通信接口用于获得智能表面设备的有源单元的第一信道信息,还用于获得智能表面设备的有源单元的第二信道信息。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图12所示,该网络设备1200包括:天线121、射频装置122、基带装置123。天线121与射频装置122连接。在上行方向上,射频装置122通过天线121接收信息,将接收的信息发送给基带装置123进行处理。在下行方向上,基带装置123对要发送的信息进行处理,并发送给射频装置122,射频装置122对收到的信息进行处理后经过天线121发送出去。
上述频带处理装置可以位于基带装置123中,以上实施例中网络侧设备执行的方法可以在基带装置123中实现,该基带装置123包括处理器124和存储器125。
基带装置123例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图12所示,其中一个芯片例如为处理器124,与存储器125连接,以调用存储器125中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置123还可以包括网络接口126,用于与射频装置122交互信息,该接口例如为通用公共无线接口(common public radio interface, 简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器125上并可在处理器124上运行的指令或程序,处理器124调用存储器125中的指令或程序执行图6所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于在智能表面设备的有源单元支持发送信号的情况下,获取由所述有源单元发送的第二参考信号,用于在智能表面设备的有源单元支持接收信号的情况下,向所述有源单元发送第四参考信号。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图13为实现本申请实施例的一种终端的硬件结构示意图。
该终端1300包括但不限于:射频单元1301、网络模块1302、音频输出单元1303、输入单元1304、传感器1305、显示单元1306、用户输入单元1307、接口单元1308、存储器1309、以及处理器1310等中的至少部分部件。
本领域技术人员可以理解,终端1300还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理***与处理器1310逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。图13中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1304可以包括图形处理器(Graphics Processing Unit,GPU)13041和麦克风13042,图形处理器13041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1306可包括显示 面板13061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板13061。用户输入单元1307包括触控面板13071以及其他输入设备13072。触控面板13071,也称为触摸屏。触控面板13071可包括触摸检测装置和触摸控制器两个部分。其他输入设备13072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1301将来自网络侧设备的下行数据接收后,给处理器1310处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1301包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1309可用于存储软件程序或指令以及各种数据。存储器1309可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作***、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1309可以包括高速随机存取存储器,还可以包括非瞬态性存储器,其中,非瞬态性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非瞬态性固态存储器件。高速随机存取存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM, DRRAM)。本申请实施例中的存储器1309包括但不限于这些和任意其它适合类型的存储器。
处理器1310可包括一个或多个处理单元;可选的,处理器1310可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1310中。
其中,射频单元1301用于在智能表面设备的有源单元支持发送信号的情况下,获取由所述有源单元发送的第二参考信号;
所述射频单元1301还用于在智能表面设备的有源单元支持接收信号的情况下,向所述有源单元发送第四参考信号。
进一步地,处理器1310,用于所述第二参考信号进行信道测量,得到所述第二信道信息。
所述射频单元1301还用于将所述第二信道信息发送给所述网络设备。
进一步地,所述射频单元1301还用于获取由网络侧设备配置的所述第二参考信号或第四参考信号的参数。
进一步地,所述参考信号包括以下至少一类:
信道状态信息参考信号;
解调参考信号;
定位参考信号;
探测参考信号;
物理随机接入信道参考信号;
副链路参考信号;
用于智能表面设备信道测量的专用参考信号。
进一步地,所述参考信号采用以下至少一种方式:时分复用;频分 复用;码分复用;波速扫描。
由此,本申请实施例提高了信道测量的效率,实现对智能表面设备准确的波束控制,并且可以支持多终端多基站的复杂的智能表面设备转发波束的生成。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述智能表面设备的波束控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述智能表面设备的波束控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同 时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (66)

  1. 一种智能表面设备的波束控制方法,包括:
    网络侧设备获得智能表面设备的有源单元的第一信道信息;其中,所述第一信道信息为所述网络侧设备与所述有源单元之间的信道信息;
    所述网络侧设备获得智能表面设备的有源单元的第二信道信息;其中,所述第二信道信息为终端与所述有源单元之间的信道信息;
    所述网络侧设备根据所述第一信道信息和第二信道信息,确定所述智能表面设备的单元阵列的控制信息;其中,所述单元阵列包括所述智能表面设备的有源单元和无源单元。
  2. 根据权利要求1所述的方法,其中,所述根据所述第一信道信息和第二信道信息,确定所述智能表面设备的单元阵列的控制信息,包括:
    根据所述第一信道信息和第二信道信息,得到所述智能表面设备的无源单元的第三信道信息和第四信道信息;其中,所述第三信道信息为所述网络侧设备与所述无源单元之间的信道信息,所述第四信道信息为所述终端与所述无源单元之间的信道信息;
    根据所述第三信道信息和第四信道信息,得到所述智能表面设备的单元阵列的控制信息。
  3. 根据权利要求1或2所述的方法,其中,在所述有源单元支持发送信号的情况下,所述获得智能表面设备的有源单元的第一信道信息包括:
    接收由所述有源单元发送的第一参考信号;
    通过对所述第一参考信号的信道测量,得到所述有源单元的第一信道信息。
  4. 根据权利要求1或2所述的方法,其中,在所述有源单元支持发送信号的情况下,所述获得智能表面设备的有源单元的第二信道信息, 包括:
    接收由所述终端发送的第二信道信息;其中,所述第二信道信息由所述终端通过对第二参考信号的信道测量得到,所述第二参考信号由所述有源单元发送给所述终端。
  5. 根据权利要求1或2所述的方法,其中,在所述有源单元支持接收信号的情况下,所述获得智能表面设备的有源单元的第一信道信息,包括:
    向所述有源单元发送第三参考信号;
    获取所述有源单元发送的第一信道信息;其中,所述第一信道信息为所述有源单元通过对所述第三参考信号进行信道测量得到。
  6. 根据权利要求1或2所述的方法,其中,在所述有源单元支持接收信号的情况下,所述获得智能表面设备的有源单元的第二信道信息,包括:
    获取由所述有源单元发送的第二信道信息;其中,所述第二信道信息为所述有源单元通过对第四参考信号进行信道测量得到,所述第四参考信号由所述终端发送给所述有源单元。
  7. 根据权利要求2所述的方法,其中,所述根据所述第一信道信息和第二信道信息,得到所述智能表面设备的无源单元的第三信道信息和第四信道信息,包括:
    根据所述第一信道信息和第二信道信息,通过插值算法得到所述智能表面设备的无源单元的第三信道信息和第四信道信息。
  8. 根据权利要求1或2所述的方法,其中,在所述网络侧设备获得智能表面设备的有源单元的第一信道信息和/或第二信道信息之前,所述方法还包括:
    获取智能表面设备上报的设备参数,所述设备参数包括以下至少一项:
    设备类型;
    设备尺寸;
    有源单元的类型;
    有源单元的位置;
    有源单元的数量;
    有源单元的能力;
    无源单元的能力。
  9. 根据权利要求1或2所述的方法,其中,所述在确定所述智能表面设备的单元阵列的控制信息之后,所述方法还包括:
    将所述单元阵列的控制信息发送给所述智能表面设备,所述控制信息包括:所述智能表面设备各无源单元的工作状态。
  10. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    向所述智能表面设备发送参数需求,所述参数需求用于使所述智能表面设备确定所述智能表面设备各无源单元的工作状态;
    其中,所述参数需求包括以下至少一项:
    波束方向;
    所述基站与终端间的信道测量结果;
    多个波束的功率和相位关系。
  11. 根据权利要求1或2所述的方法,其中,所述在确定所述智能表面设备的单元阵列的控制信息之后,所述方法还包括:
    通过信道测量确定所述网络侧设备和/或所述终端的波束赋形参数。
  12. 根据权利要求1或2所述的方法,其中,所述参考信号包括以下至少一类:
    同步信号块;
    信道状态信息参考信号;
    解调参考信号;
    定位参考信号;
    探测参考信号;
    物理随机接入信道参考信号;
    副链路参考信号;
    用于智能表面设备信道测量的专用参考信号。
  13. 根据权利要求1或2所述的方法,其中,所述参考信号采用以下至少一种方式:
    时分复用;
    频分复用;
    码分复用;
    波速扫描。
  14. 一种智能表面设备的波束控制装置,包括:
    第一测量模块,用于获得智能表面设备的有源单元的第一信道信息;其中,所述第一信道信息为网络侧设备与所述有源单元之间的信道信息;
    第二测量模块,用于获得智能表面设备的有源单元的第二信道信息;其中,所述第二信道信息为终端与所述有源单元之间的信道信息;
    控制模块,用于根据所述第一信道信息和第二信道信息,确定所述智能表面设备的单元阵列的控制信息;其中,所述单元阵列包括所述智能表面设备的有源单元和无源单元。
  15. 根据权利要求14所述的装置,其中,所述控制模块用于:
    根据所述第一信道信息和第二信道信息,得到所述智能表面设备的无源单元的第三信道信息和第四信道信息;其中,所述第三信道信息为所述网络侧设备与所述无源单元之间的信道信息,所述第四信道信息为所述终端与所述无源单元之间的信道信息;
    根据所述第三信道信息和第四信道信息,得到所述智能表面设备的单元阵列的控制信息。
  16. 根据权利要求14或15所述的装置,其中,在所述有源单元支持发送信号的情况下,所述第一测量模块用于:
    接收由所述有源单元发送的第一参考信号;
    通过对所述第一参考信号的信道测量,得到所述有源单元的第一信道信息。
  17. 根据权利要求14或15所述的装置,其中,在所述有源单元支持发送信号的情况下,所述第二测量模块用于:
    接收由所述终端发送的第二信道信息;其中,所述第二信道信息由所述终端通过对第二参考信号的信道测量得到,所述第二参考信号由所述有源单元发送给所述终端。
  18. 根据权利要求14或15所述的装置,其中,在所述有源单元支持接收信号的情况下,所述第一测量模块用于:
    向所述有源单元发送第三参考信号;
    获取所述有源单元发送的第一信道信息;其中,所述第一信道信息为所述有源单元通过对所述第三参考信号进行信道测量得到。
  19. 根据权利要求14或15所述的装置,其中,在所述有源单元支持接收信号的情况下,所述第二测量模块用于:
    获取由所述有源单元发送的第二信道信息;其中,所述第二信道信息为所述有源单元通过对第四参考信号进行信道测量得到,所述第四参考信号由所述终端发送给所述有源单元。
  20. 根据权利要求15所述的装置,其中,所述控制模块用于:
    根据所述第一信道信息和第二信道信息,通过插值算法得到所述智能表面设备的无源单元的第三信道信息和第四信道信息。
  21. 根据权利要求14或15所述的装置,其中,所述控制模块还用于获取智能表面设备上报的设备参数,所述设备参数包括以下至少一项:
    设备类型;
    设备尺寸;
    有源单元的类型;
    有源单元的位置;
    有源单元的数量;
    有源单元的能力;
    无源单元的能力。
  22. 根据权利要求14或15所述的装置,其中,所述控制模块还用于:
    将所述单元阵列的控制信息发送给所述智能表面设备,所述控制信息包括:所述智能表面设备各无源单元的工作状态。
  23. 根据权利要求14或15所述的装置,其中,所述控制模块还用于向所述智能表面设备发送参数需求,所述参数需求用于使所述智能表面设备确定所述智能表面设备各无源单元的工作状态;
    其中,所述参数需求包括以下至少一项:
    波束方向;
    所述基站与终端间的信道测量结果;
    多个波束的功率和相位关系。
  24. 根据权利要求14或15所述的装置,其中,所述控制模块还用于通过信道测量确定所述网络侧设备和/或所述终端的波束赋形参数。
  25. 根据权利要求14或15所述的装置,其中,所述参考信号包括以下至少一类:
    同步信号块;
    信道状态信息参考信号;
    解调参考信号;
    定位参考信号;
    探测参考信号;
    物理随机接入信道参考信号;
    副链路参考信号;
    用于智能表面设备信道测量的专用参考信号。
  26. 根据权利要求14或15所述的装置,其中,所述参考信号采用以下至少一种方式:
    时分复用;
    频分复用;
    码分复用;
    波速扫描。
  27. 一种智能表面设备的波束控制方法,包括:
    在智能表面设备的有源单元支持发送信号的情况下,终端获取由所述有源单元发送的第二参考信号;
    在智能表面设备的有源单元支持接收信号的情况下,终端向所述有源单元发送第四参考信号;
    其中,所述第二参考信号或第四参考信号用于得到所述有源单元的第二信道信息,所述第二信道信息为所述终端与所述有源单元之间的信道信息,所述第二信道信息用于与第一信道信息确定所述智能表面设备的单元阵列的控制信息,所述单元阵列包括所述智能表面设备的有源单元和无源单元,所述第一信道信息为网络侧设备与有源单元之间的信道信息。
  28. 根据权利要求27所述的方法,其中,在获取由所述有源单元发送的第二参考信号后,所述方法还包括:
    对所述第二参考信号进行信道测量,得到所述第二信道信息并发送给所述网络设备。
  29. 根据权利要求27所述的方法,其中,所述方法还包括:
    获取由网络侧设备配置的所述第二参考信号或第四参考信号的参数。
  30. 根据权利要求27所述的方法,其中,所述参考信号包括以下至少一类:
    信道状态信息参考信号;
    解调参考信号;
    定位参考信号;
    探测参考信号;
    物理随机接入信道参考信号;
    副链路参考信号;
    用于智能表面设备信道测量的专用参考信号。
  31. 根据权利要求27所述的方法,其中,所述参考信号采用以下至少一种方式:
    时分复用;
    频分复用;
    码分复用;
    波速扫描。
  32. 一种智能表面设备的波束控制装置,包括:
    第一获取模块,用于在智能表面设备的有源单元支持发送信号的情况下,获取由所述有源单元发送的第二参考信号;
    第二获取模块,用于在智能表面设备的有源单元支持接收信号的情况下,向所述有源单元发送第四参考信号;
    其中,所述第二参考信号或第四参考信号用于得到所述有源单元的第二信道信息,所述第二信道信息为所述终端与所述有源单元之间的信道信息,所述第二信道信息用于与第一信道信息确定所述智能表面设备的单元阵列的控制信息,所述单元阵列包括所述智能表面设备的有源单元和无源单元,所述第一信道信息为网络侧设备与有源单元之间的信道信息。
  33. 根据权利要求32所述的装置,其中,所述第一获取模块还用于对所述第二参考信号进行信道测量,得到所述第二信道信息并发送给所述网络设备。
  34. 根据权利要求32所述的装置,其中,所述第一获取模块或第二 获取模块还用于获取由网络侧设备配置的所述第二参考信号或第四参考信号的参数。
  35. 根据权利要求32所述的装置,其中,所述参考信号包括以下至少一类:
    信道状态信息参考信号;
    解调参考信号;
    定位参考信号;
    探测参考信号;
    物理随机接入信道参考信号;
    副链路参考信号;
    用于智能表面设备信道测量的专用参考信号。
  36. 根据权利要求32所述的装置,其中,所述参考信号采用以下至少一种方式:
    时分复用;
    频分复用;
    码分复用;
    波速扫描。
  37. 一种智能表面设备的波束控制方法,包括:
    智能表面设备通过有源单元与网络测设备进行信道测量;其中,所述有源单元与网络侧设备的信道测量用于得到有源单元的第一信道信息,所述第一信道信息为所述网络侧设备与所述有源单元之间的信道信息;
    智能表面设备通过有源单元与终端进行信道测量;其中,所述有源单元与终端的信道测量用于得到第二信道信息,所述第二信道信息为终端与所述有源单元之间的信道信息;
    智能表面设备得到单元阵列的控制信息;其中,所述控制信息为基于第一信道信息和第二信道信息得到的,所述单元阵列包括所述智能表 面设备的有源单元和无源单元。
  38. 根据权利要求37所述的方法,其中,在所述有源单元支持发送信号的情况下,所述通过有源单元与网络测设备进行信道测量包括:
    向网络侧设备发送第一参考信号,以使所述网络侧设备通过对所述第一参考信号进行信道测量得到第一信道信息。
  39. 根据权利要求37所述的方法,其中,在所述有源单元支持发送信号的情况下,所述通过有源单元与终端进行信道测量包括:
    向终端发送第二参考信号,以使所述终端通过对第二参考信号进行信道测量得到第二信道信息。
  40. 根据权利要求37所述的方法,其中,在所述有源单元支持接收信号的情况下,所述通过有源单元与网络测设备进行信道测量包括:
    接收由网络侧设备发送的第三参考信号,并通过对所述第三参考信号进行信道测量得到第一信道信息。
  41. 根据权利要求37所述的方法,其中,在所述有源单元支持接收信号的情况下,所述通过有源单元与终端进行信道测量包括:
    接收由终端发送的第四参考信号,并通过对所述第四参考信号进行信道测量得到第二信道信息。
  42. 根据权利要求40或41所述的方法,其中,所述方法还包括:
    将第一信道信息和/或第二信道信息上报给所述网络侧设备。
  43. 根据权利要求42所述的方法,其中,所述得到单元阵列的控制信息包括:
    接收由网络侧设备发送的单元阵列的控制信息。
  44. 根据权利要求37所述的方法,其中,所述得到单元阵列的控制信息,包括:
    根据所述第一信道信息和第二信道信息,得到所述智能表面设备的无源单元的第三信道信息和第四信道信息;
    根据所述第三信道信息和第四信道信息,得到所述智能表面设备的 单元阵列的控制信息;其中,所述控制信息包括:所述智能表面设备各无源单元的工作状态。
  45. 根据权利要求44所述的方法,其中,所述根据所述第一信道信息和第二信道信息,得到所述智能表面设备的无源单元的第三信道信息和第四信道信息,包括:
    根据所述第一信道信息和第二信道信息,通过插值算法得到所述智能表面设备的无源单元的第三信道信息和第四信道信息。
  46. 根据权利要求37所述的方法,其中,所述方法还包括:
    接收由所述网络侧设备发送的参数需求,所述参数需求用于使所述智能表面设备确定所述智能表面设备各无源单元的工作状态;
    其中,所述参数需求包括以下至少一项:
    波束方向;
    所述基站与终端间的信道测量结果;
    多个波束的功率和相位关系。
  47. 根据权利要求37所述的方法,其中,所述方法还包括:
    向网络侧设备上报的所述智能表面设备的设备参数,所述设备参数包括以下至少一项:
    设备类型;
    设备尺寸;
    有源单元的类型;
    有源单元的位置;
    有源单元的数量;
    有源单元的能力;
    无源单元的能力。
  48. 根据权利要求37所述的方法,其中,所述参考信号包括以下至少一类:
    同步信号块;
    信道状态信息参考信号;
    解调参考信号;
    定位参考信号;
    探测参考信号;
    物理随机接入信道参考信号;
    副链路参考信号;
    用于智能表面设备信道测量的专用参考信号。
  49. 根据权利要求37所述的方法,其中,所述参考信号采用以下至少一种方式:
    时分复用;
    频分复用;
    码分复用;
    波速扫描。
  50. 一种智能表面设备的波束控制装置,包括:
    第一通信模块,用于通过有源单元与网络测设备进行信道测量;其中,所述有源单元与网络侧设备的信道测量用于得到有源单元的第一信道信息,所述第一信道信息为所述网络侧设备与所述有源单元之间的信道信息;
    第二通信模块,用于通过有源单元与终端进行信道测量;其中,所述有源单元与终端的信道测量用于得到第二信道信息,所述第二信道信息为终端与所述有源单元之间的信道信息;
    执行模块,用于得到单元阵列的控制信息;其中,所述控制信息为基于第一信道信息和第二信道信息得到的,所述单元阵列包括所述智能表面设备的有源单元和无源单元。
  51. 根据权利要求50所述的装置,其中,在所述有源单元支持发送信号的情况下,所述第一通信模块用于向网络侧设备发送第一参考信号,以使所述网络侧设备通过对所述第一参考信号进行信道测量得到第 一信道信息。
  52. 根据权利要求50所述的装置,其中,在所述有源单元支持发送信号的情况下,所述第二通信模块用于向终端发送第二参考信号,以使所述终端通过对第二参考信号进行信道测量得到第二信道信息。
  53. 根据权利要求50所述的装置,其中,在所述有源单元支持接收信号的情况下,所述第一通信模块用于接收由网络侧设备发送的第三参考信号,并通过对所述第三参考信号进行信道测量得到第一信道信息。
  54. 根据权利要求50所述的装置,其中,在所述有源单元支持接收信号的情况下,所述第二通信模块用于接收由终端发送的第四参考信号,并通过对所述第四参考信号进行信道测量得到第二信道信息。
  55. 根据权利要求53或54所述的装置,其中,所述执行模块还用于将第一信道信息和/或第二信道信息上报给所述网络侧设备。
  56. 根据权利要求55所述的装置,其中,所述执行模块用于接收由网络侧设备发送的单元阵列的控制信息。
  57. 根据权利要求50所述的装置,其中,所述执行模块用于根据所述第一信道信息和第二信道信息,得到所述智能表面设备的无源单元的第三信道信息和第四信道信息;
    根据所述第三信道信息和第四信道信息,得到所述智能表面设备的单元阵列的控制信息;其中,所述控制信息包括:所述智能表面设备各无源单元的工作状态。
  58. 根据权利要求57所述的装置,其中,所述执行模块用于根据所述第一信道信息和第二信道信息,通过插值算法得到所述智能表面设备的无源单元的第三信道信息和第四信道信息。
  59. 根据权利要求50所述的装置,其中,所述执行模块还用于接收由所述网络侧设备发送的参数需求,所述参数需求用于使所述智能表面设备确定所述智能表面设备各无源单元的工作状态;
    其中,所述参数需求包括以下至少一项:
    波束方向;
    所述基站与终端间的信道测量结果;
    多个波束的功率和相位关系。
  60. 根据权利要求50所述的装置,其中,所述执行模块还用于向网络侧设备上报的所述智能表面设备的设备参数,所述设备参数包括以下至少一项:
    设备类型;
    设备尺寸;
    有源单元的类型;
    有源单元的位置;
    有源单元的数量;
    有源单元的能力;
    无源单元的能力。
  61. 根据权利要求50所述的装置,其中,所述参考信号包括以下至少一类:
    同步信号块;
    信道状态信息参考信号;
    解调参考信号;
    定位参考信号;
    探测参考信号;
    物理随机接入信道参考信号;
    副链路参考信号;
    用于智能表面设备信道测量的专用参考信号。
  62. 根据权利要求50所述的装置,其中,所述参考信号采用以下至少一种方式:
    时分复用;
    频分复用;
    码分复用;
    波速扫描。
  63. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求27至31任一项所述的智能表面设备的波束控制方法的步骤。
  64. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至13任一项所述的智能表面设备的波束控制方法的步骤。
  65. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至13任一项所述的智能表面设备的波束控制方法,或者实现如权利要求27至31任一项所述的智能表面设备的波束控制方法,或者实现如权利要求37至49任一项所述的智能表面设备的波束控制方法的步骤。
  66. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至13任一项所述的智能表面设备的波束控制方法,或者实现如权利要求27至31任一项所述的智能表面设备的波束控制方法,或者实现如权利要求37至49任一项所述的智能表面设备的波束控制方法的步骤。
PCT/CN2022/091230 2021-05-07 2022-05-06 智能表面设备的波束控制方法、装置及电子设备 WO2022233323A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22798663.5A EP4336738A1 (en) 2021-05-07 2022-05-06 Beam control method and apparatus for intelligent surface device, and electronic device
JP2023568542A JP2024517892A (ja) 2021-05-07 2022-05-06 インテリジェントサーフェス機器のビーム制御方法、装置及び電子機器
US18/387,236 US20240073882A1 (en) 2021-05-07 2023-11-06 Beam Control Method and Apparatus for Intelligent Surface Device and Electronic Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110497334.4A CN115314089A (zh) 2021-05-07 2021-05-07 智能表面设备的波束控制方法、装置及电子设备
CN202110497334.4 2021-05-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/387,236 Continuation US20240073882A1 (en) 2021-05-07 2023-11-06 Beam Control Method and Apparatus for Intelligent Surface Device and Electronic Device

Publications (1)

Publication Number Publication Date
WO2022233323A1 true WO2022233323A1 (zh) 2022-11-10

Family

ID=83854014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091230 WO2022233323A1 (zh) 2021-05-07 2022-05-06 智能表面设备的波束控制方法、装置及电子设备

Country Status (5)

Country Link
US (1) US20240073882A1 (zh)
EP (1) EP4336738A1 (zh)
JP (1) JP2024517892A (zh)
CN (1) CN115314089A (zh)
WO (1) WO2022233323A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230078537A1 (en) * 2021-09-16 2023-03-16 Qualcomm Incorporated Channel state information reporting for reconfigurable intelligent surfaces
WO2024108411A1 (en) * 2022-11-23 2024-05-30 Qualcomm Incorporated Detecting unintended signal reflections in reconfigurable intelligent surfaces

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111181615A (zh) * 2019-11-29 2020-05-19 广东工业大学 一种基于智能反射面的多小区无线通信方法
CN111817768A (zh) * 2020-06-03 2020-10-23 北京交通大学 一种用于智能反射表面无线通信的信道估计方法
US20210013619A1 (en) * 2019-07-12 2021-01-14 Arizona Board Of Regents On Behalf Of Arizona State University Large intelligent surfaces with sparse channel sensors
CN112260740A (zh) * 2020-10-19 2021-01-22 电子科技大学 可重构智能表面辅助的共生通信***波束赋形设计方法
CN112564752A (zh) * 2020-11-13 2021-03-26 西安电子科技大学 一种优化稀疏天线激活可重构智能表面辅助通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210013619A1 (en) * 2019-07-12 2021-01-14 Arizona Board Of Regents On Behalf Of Arizona State University Large intelligent surfaces with sparse channel sensors
CN111181615A (zh) * 2019-11-29 2020-05-19 广东工业大学 一种基于智能反射面的多小区无线通信方法
CN111817768A (zh) * 2020-06-03 2020-10-23 北京交通大学 一种用于智能反射表面无线通信的信道估计方法
CN112260740A (zh) * 2020-10-19 2021-01-22 电子科技大学 可重构智能表面辅助的共生通信***波束赋形设计方法
CN112564752A (zh) * 2020-11-13 2021-03-26 西安电子科技大学 一种优化稀疏天线激活可重构智能表面辅助通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG JINMING; QI CHENHAO; LI PING; LU PING: "Channel Estimation for Reconfigurable Intelligent Surface Aided Massive MIMO System", 2020 IEEE 21ST INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), IEEE, 26 May 2020 (2020-05-26), pages 1 - 5, XP033803809, DOI: 10.1109/SPAWC48557.2020.9154276 *

Also Published As

Publication number Publication date
EP4336738A1 (en) 2024-03-13
JP2024517892A (ja) 2024-04-23
CN115314089A (zh) 2022-11-08
US20240073882A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
EP3861806B1 (en) Method for positioning reference design
WO2022078276A1 (zh) Ai网络参数的配置方法和设备
WO2022233323A1 (zh) 智能表面设备的波束控制方法、装置及电子设备
WO2022171084A1 (zh) 接入方法、装置、通信设备及可读存储介质
CN114448586A (zh) 指示工作模式的方法、装置及设备
WO2023088298A1 (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
WO2022171129A1 (zh) 信号参数上报方法、装置及设备
WO2019029426A1 (zh) 用于传输参考信号的方法及装置
CN114071690A (zh) 信息上报方法、信息接收方法及相关设备
WO2023088299A1 (zh) 感知信号传输处理方法、装置及相关设备
WO2022194144A1 (zh) 定位方法、终端及网络侧设备
WO2022105913A1 (zh) 通信方法、装置及通信设备
US20240088970A1 (en) Method and apparatus for feeding back channel information of delay-doppler domain, and electronic device
WO2022237822A1 (zh) 训练数据集获取方法、无线传输方法、装置及通信设备
WO2022083619A1 (zh) 通信信息的发送、接收方法及通信设备
WO2023169544A1 (zh) 质量信息确定方法、装置、终端及存储介质
WO2023217173A1 (zh) 无线辅助设备的波束控制方法、装置及网络侧设备
CN114205015B (zh) 测量方法、发送方法及相关设备
WO2023125656A1 (zh) 多端口定位参考信号配置方法、装置及通信设备
WO2023036226A1 (zh) 信号传输方法、装置、设备及存储介质
WO2023109734A1 (zh) 干扰测量方法、装置、设备及存储介质
WO2024017025A1 (zh) 导频参数配置方法及设备
WO2023284800A1 (zh) Srs的传输方法、装置、终端及网络侧设备
WO2023125848A1 (zh) 多端口定位参考信号测量方法、装置及通信设备
WO2022022553A1 (zh) 干扰协调处理方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798663

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023568542

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022798663

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022798663

Country of ref document: EP

Effective date: 20231207