WO2024017025A1 - 导频参数配置方法及设备 - Google Patents

导频参数配置方法及设备 Download PDF

Info

Publication number
WO2024017025A1
WO2024017025A1 PCT/CN2023/104812 CN2023104812W WO2024017025A1 WO 2024017025 A1 WO2024017025 A1 WO 2024017025A1 CN 2023104812 W CN2023104812 W CN 2023104812W WO 2024017025 A1 WO2024017025 A1 WO 2024017025A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter configuration
pilot sequence
pilot
length
sending device
Prior art date
Application number
PCT/CN2023/104812
Other languages
English (en)
French (fr)
Inventor
袁璞
刘昊
孙布勒
刘劲
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024017025A1 publication Critical patent/WO2024017025A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a pilot parameter configuration method and equipment.
  • the communication channel is usually a time-varying multipath fading channel.
  • OTFS Orthogonal Time Frequency Space
  • the transmitting end of the OTFS system can map the pilot symbols in the information frame to the Delay-Doppler domain resource element (DRE) in the Delay-Doppler domain resource grid.
  • DRE Delay-Doppler domain resource element
  • the time-domain discrete sequence generated by the OTFS system will have a higher peak-to-average power ratio (PAPR).
  • PAPR peak-to-average power ratio
  • the higher PAPR will affect the information processing of the internal hardware of the OTFS system.
  • the capability has high requirements, which makes the hardware cost of the transmitter high.
  • the resource overhead will be large. Therefore, for those skilled in the art, there is an urgent need to solve the technical problem of how to configure pilots while taking into account PAPR and resource overhead.
  • Embodiments of the present application provide a pilot parameter configuration method and device, which can solve the problem of how to configure pilots while taking into account PAPR and overhead.
  • a pilot parameter configuration method including:
  • the sending device sends a target signal to the receiving device based on the first parameter configuration of the pilot sequence; the target signal is obtained based on the pilot sequence mapped to the delayed Doppler domain resource element DRE in the delayed Doppler domain; so
  • the pilot sequence includes at least one pilot symbol;
  • the sending device receives a channel estimation result for the target signal from the receiving device
  • the sending device determines the second parameter configuration of the pilot sequence based on the channel estimation result
  • the sending device sends the second parameter configuration to the receiving device.
  • a pilot parameter configuration method including:
  • the receiving device receives the target signal sent by the sending device based on the first parameter configuration of the pilot sequence; the target signal is obtained based on the pilot sequence mapped to the delayed Doppler domain resource element DRE in the delayed Doppler domain; the The pilot sequence includes at least one pilot symbol;
  • the receiving device performs channel estimation based on the target signal, obtains a channel estimation result, and sends the channel estimation result to the sending device;
  • the receiving device receives a second parameter configuration of the pilot sequence sent by the sending device, where the second parameter configuration is determined by the sending device based on the channel estimation result.
  • a pilot parameter configuration device including:
  • a sending module configured to send a target signal to the receiving device based on the first parameter configuration of the pilot sequence; the target signal is obtained based on the pilot sequence mapped to the delayed Doppler domain resource element DRE in the delayed Doppler domain. ; the pilot sequence includes at least one pilot symbol;
  • a receiving module configured to receive a channel estimation result for the target signal from the receiving device
  • a processing module configured to determine the second parameter configuration of the pilot sequence based on the channel estimation result
  • the sending module is also configured to send the second parameter configuration to the receiving device.
  • a pilot parameter configuration device including:
  • a receiving module configured to receive a target signal sent by the sending device based on the first parameter configuration of the pilot sequence; the target signal is obtained based on the pilot sequence mapped to the delayed Doppler domain resource element DRE in the delayed Doppler domain ; the pilot sequence includes at least one pilot symbol;
  • a processing module configured to perform channel estimation based on the target signal and obtain a channel estimation result
  • a sending module configured to send the channel estimation result to the sending device
  • the receiving module is configured to receive the second parameter configuration of the pilot sequence sent by the sending device, where the second parameter configuration is determined by the sending device based on the channel estimation result.
  • a sending device in a fifth aspect, includes a processor and a memory.
  • the memory stores a program or instructions that can be run on the processor.
  • the program or instructions are implemented when executed by the processor. The steps of the method as described in the first aspect.
  • a sending device including a processor and a communication interface, wherein the communication interface is used to send a target signal to a receiving device based on the first parameter configuration of a pilot sequence; the target signal is based on mapping to the pilot sequence on the delayed Doppler domain resource element DRE in the delayed Doppler domain; the pilot sequence includes at least one pilot symbol; receiving a channel estimate for the target signal from the receiving device Result; the processor is configured to determine a second parameter configuration of the pilot sequence based on the channel estimation result; the communication interface is further configured to send the second parameter configuration to the receiving device.
  • a receiving device in a seventh aspect, includes a processor and a memory.
  • the memory stores a program or instructions that can be run on the processor.
  • the program or instructions are implemented when executed by the processor. The steps of the method as described in the second aspect.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to receive a target signal sent by the sending device based on the first parameter configuration of the pilot sequence; the target signal is based on obtained by mapping to the pilot sequence on the delayed Doppler domain resource element DRE in the delayed Doppler domain; the pilot sequence includes at least one pilot symbol; the processor is used to perform channel estimation based on the target signal to obtain the channel Estimation result; the communication interface is also used to send the channel estimation result to the sending device; receive the second parameter configuration of the pilot sequence sent by the sending device, and the second parameter configuration is the sending device. The device determines based on the channel estimation result.
  • a ninth aspect provides a communication system, including: a sending device and a receiving device.
  • the sending device can be used to perform the steps of the pilot parameter configuration method as described in the first aspect.
  • the receiving device can be used to perform the steps of the pilot parameter configuration method as described in the first aspect.
  • a readable storage medium In a tenth aspect, a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. method, or implement a method as described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect or the second aspect.
  • the sending device sends a target signal to the receiving device based on the first parameter configuration of the pilot sequence; the target signal is based on the pilot mapped to the delayed Doppler domain resource element DRE in the delayed Doppler domain. sequence obtained; the pilot sequence includes at least one pilot symbol; the sending device determines the second parameter configuration of the pilot sequence based on the channel estimation result of the receiving device for the target signal, and sends it to the receiving device, so that the receiving device can based on the second Parameter configuration performs channel estimation, that is, the parameter configuration of the pilot sequence can be dynamically adjusted, so that the resource overhead can be reduced as much as possible while maintaining low PAPR and ensuring communication quality, that is, taking into account both PAPR and resource overhead.
  • Figure 1 is a structural diagram of a wireless communication system applicable to the embodiment of the present application.
  • FIG. 2 is a schematic diagram of the OTFS principle provided by the embodiment of this application.
  • Figure 3 is one of the flow diagrams of the pilot parameter configuration method provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of a pilot sequence provided by an embodiment of the present application.
  • Figure 5 is a second schematic flowchart of the pilot parameter configuration method provided by the embodiment of the present application.
  • Figure 6 is one of the structural schematic diagrams of the pilot parameter configuration device provided by the embodiment of the present application.
  • Figure 7 is the second structural schematic diagram of the pilot parameter configuration device provided by the embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of the hardware structure of a terminal provided by an embodiment of the present application.
  • Figure 10 is one of the schematic diagrams of the hardware structure of the network side device provided by the embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • wearable Smart devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless device. access network unit. Access network equipment may include base stations, WLAN access points or WiFi nodes, etc.
  • the base station may be called Node B, Evolved Node B (eNB), access point, Base Transceiver Station (BTS), radio base station , radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node, transmission and reception point (Transmission Reception Point, TRP) or the above
  • Node B Evolved Node B
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • home B-node home evolved B-node
  • TRP Transmission Reception Point
  • the core network equipment may include but is not limited to at least one of the following: core network node, core network function, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Discovery function (Edge Application Server Discovery Function, EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), centralized network configuration ( Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entity
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • OTFS modulation technology logically maps the information in an M ⁇ N data packet, such as Quadrature Amplitude Modulation (QAM) symbols, to an M ⁇ N resource on the two-dimensional delay Doppler domain.
  • QAM Quadrature Amplitude Modulation
  • the grid point that is, the pulse in each resource grid point modulates a QAM symbol in the data packet.
  • the data set in the M ⁇ N delayed Doppler domain is transformed into the N ⁇ M time-frequency domain plane.
  • This transformation is mathematically called inverse symplectic Fourier Transform (Inverse Symplectic Fourier Transform, ISFFT).
  • ISFFT Inverse Symplectic Fourier Transform
  • the transformation from the time-frequency domain to the delayed Doppler domain is called the Symplectic Fourier Transform.
  • OTFS technology transforms the time-varying multipath channel into a time-invariant two-dimensional delayed Doppler domain channel (within a certain duration), thus directly reflecting the relative reflection between the transceivers in the wireless link. Geometry of the location causes channel delay Doppler response characteristics.
  • delayed Doppler domain analysis eliminates the difficulty of tracking time-varying fading characteristics in traditional time-frequency domain analysis. Instead, it extracts all diversity characteristics of the time-frequency domain channel by analyzing the time-invariant delayed Doppler channel. The time-frequency domain channel can then be calculated using the conversion relationship between the delayed Doppler domain and the time-frequency domain, which can be well coupled with various related time-frequency domain signal processing technologies.
  • a significant feature of OTFS is the unique pilot design in the delayed Doppler domain.
  • the use of a single-point pulse pilot and a guard interval design around its periphery gives it unique advantages in channel detection performance.
  • this pilot signal structure will cause the time domain waveform of the OTFS waveform to have a high peak-to-average power ratio (PAPR).
  • PAPR peak-to-average power ratio
  • the inventor found during the research process that the delay dimension can be Increasing the number of pilot symbols greatly reduces PAPR, greatly reduces the requirements for the dynamic range of the hardware, and facilitates implementation.
  • the more pilot symbols the greater the overhead. Therefore, for those skilled in the field, there is an urgent need to solve how to Technical issues of configuring pilots while taking into account PAPR and overhead.
  • the sending device may be the terminal or network side device shown in Figure 1, and the receiving device may also be the terminal or network side device shown in Figure 1.
  • the receiving device may be the network side device shown in FIG. 1 .
  • the sending device is the network side device shown in Figure 1
  • the receiving device can be the terminal shown in Figure 1.
  • Figure 3 is one of the schematic flow diagrams of the pilot parameter configuration method provided by the embodiment of the present application. As shown in Figure 3, the method provided by this embodiment includes:
  • Step 101 The sending device sends a target signal to the receiving device based on the first parameter configuration of the pilot sequence; the target signal is obtained based on the pilot sequence mapped to the delayed Doppler domain resource element DRE in the delayed Doppler domain. to; the pilot sequence includes at least one pilot symbol;
  • the first parameter configuration of the pilot sequence includes, for example, the length of the pilot sequence, whether the pilot sequence has a cyclic prefix, the length of the cyclic prefix, the pilot sequence generation method (for example, including an algorithm for generating the pilot sequence), etc., and will All symbols in the information frame to be sent (all symbols include data symbols and pilot symbols) are respectively mapped to DREs in the delayed Doppler domain, and one symbol is mapped to one DRE.
  • the sending device obtains the time domain discrete sequence based on the delayed Doppler domain information frame, and sends the target signal to the receiving device based on the time domain discrete sequence.
  • IDFT Inverse Discrete Fourier Transform
  • the Puller domain information frame is mapped to the delay time domain resource grid to obtain the delay time domain information; based on sequence conversion processing, the delay time domain information frame is converted into a time domain discrete sequence; based on the correlation processing method on the sending side, the time domain discrete sequence Convert it into a target signal that can be transmitted by the communication channel, and send the target signal to the receiving device.
  • IDFT Inverse Discrete Fourier Transform
  • the sequence conversion processing may include parallel/serial conversion (P/S) processing and adding sequential cyclic prefix (cyclic prefix, CP) processing.
  • P/S parallel/serial conversion
  • CP sequential cyclic prefix
  • Step 102 The sending device receives the channel estimation result for the target signal from the receiving device;
  • the receiving side of the receiving device receives the target signal, it performs channel estimation based on the target signal.
  • the channel estimation results may include signal attenuation metrics, channel delay metrics, etc.
  • the signal attenuation metrics include, for example: the signal-to-noise ratio (Signal-Noise Ratio) of the received signal. to-Noise Ratio, SNR), received signal strength indicator (Received Signal Strength Indicator, RSSI), reference signal received power (Reference Signal Received Power, RSRP), reference signal received quality (Reference Signal Received Quality, RSRQ), etc., reception guide The correlation peak s corr of the frequency sequence and the transmitted pilot sequence, etc.
  • the channel delay metric includes, for example, the delay amount of each delay path of the channel or the maximum delay amount among multiple delay paths.
  • Step 103 The sending device determines the second parameter configuration of the pilot sequence based on the channel estimation result
  • the sending device determines the second parameter configuration of the pilot sequence based on the channel estimation result, for example, adjusts the length of the pilot sequence, the length of the cyclic prefix, etc. in the first parameter configuration, and can subsequently send the target signal based on the second parameter configuration.
  • the length of the pilot sequence mainly determines the Pilot-Signal-to-Noise Ratio (PSNR) and pilot resource overhead during pilot detection.
  • PSNR Pilot-Signal-to-Noise Ratio
  • the length of the pilot sequence can be adjusted to achieve a compromise between overhead and performance. For example, when the channel quality is good, the length of the pilot sequence can be appropriately reduced, while taking into account PAPR to avoid high PAPR. ;
  • the length of the pilot sequence is less than the number of resource elements DRE in the delay dimension, the part where pilot symbols are not placed can be used to place data symbols, as shown in Figure 4.
  • CP can be added to the pilot sequence to avoid channel estimation errors caused by data interference.
  • the CP length of the pilot sequence only needs to be greater than the maximum duration length. Therefore, a strategy of dynamically adjusting pilot parameters can be used to minimize pilot overhead. For example, in Figure 4, power 1 and power 2 have the same size, which avoids higher PAPR.
  • Step 104 The sending device sends the second parameter configuration to the receiving device.
  • the receiving device obtains a new pilot sequence according to the second parameter configuration of the pilot sequence, and uses the new pilot sequence to perform channel measurement.
  • the sending device sends a target signal to the receiving device based on the first parameter configuration of the pilot sequence; the target signal is based on the pilot sequence mapped to the delayed Doppler domain resource element DRE in the delayed Doppler domain. Obtained; the pilot sequence includes at least one pilot symbol; the sending device determines the second parameter configuration of the pilot sequence based on the channel estimation result of the receiving device for the target signal, and sends it to the receiving device, so that the receiving device can based on the second parameter Configure for channel estimation, that is, the parameter configuration of the pilot sequence can be dynamically adjusted, so that the resource overhead can be reduced as much as possible while maintaining low PAPR and ensuring communication quality, that is, taking into account both PAPR and resource overhead.
  • the above method of steps 101 to 104 can be executed periodically.
  • the first parameter configuration includes at least one of the following:
  • the first indication information is used to indicate whether parameter reconfiguration of the pilot sequence is supported.
  • the initial value of the length of the pilot sequence is M, where M is the total number of DREs in the delay dimension in the delay Doppler domain, and/or the initial value of the length of the cyclic prefix CP of the pilot sequence is 0.
  • the sending device sends the target signal based on the first parameter configuration.
  • the initial value of the length of the pilot sequence in the first parameter configuration is M, and/or the initially sent target signal has no cyclic prefix, that is, the length of the cyclic prefix CP is The initial value is 0.
  • initial value of the length of the pilot sequence and/or the initial value of the length of the cyclic prefix CP of the pilot sequence can also be other values, which are not limited in the embodiments of the present application.
  • the pilot sequence generation method includes at least one of the following: a pilot sequence generation algorithm and initial parameters required for pilot sequence generation.
  • whether the sending device supports parameter reconfiguration of the pilot sequence can be determined by the network side device configuration and the terminal capabilities.
  • the second parameter configuration includes at least one of the following:
  • the first indication information is used to indicate whether parameter reconfiguration of the pilot sequence is supported.
  • step 104 can be implemented in the following manner:
  • the sending device sends the second parameter configuration to the receiving device through second indication information;
  • the second indication information includes at least one of the following: Radio Resource Control (Radio Resource Control, RRC) signaling, Downlink Control Information (DCI).
  • Radio Resource Control Radio Resource Control, RRC
  • DCI Downlink Control Information
  • the second indication information may be carried through DCI, RRC signaling, or a combination of the two.
  • the second indication information may be sent in a control channel or a data channel.
  • the RRC message can be used to configure a list of a set of available pilot sequence generation methods and pilot sequence length combinations
  • the DCI can be used to indicate the list index, so that the corresponding pilot sequence generation method and pilot sequence can be determined. length.
  • the RRC message can be used to configure a list of the lengths of a set of available CPs, and the DCI can be used to indicate the list index, so that the length of the cyclic prefix of the corresponding pilot sequence can be determined.
  • step 103 can be implemented in the following ways:
  • the sending device determines the length of the pilot sequence based on the signal attenuation result; and/or,
  • the sending device determines the length of the CP of the pilot sequence based on the channel delay result.
  • the signal attenuation result includes at least one of the following: signal-to-noise ratio SNR of the received signal, peak signal-to-noise ratio PSNR of the received signal, strength indicator RSSI of the received signal, reference signal received power RSRP, reference signal received quality RSRQ, received The ratio of the correlation peak value between the pilot sequence and the transmitted pilot sequence, the correlation peak value between the received pilot sequence and the transmitted pilot sequence, and the autocorrelation peak value of the transmitted pilot sequence.
  • the channel delay result includes: the delay amount of each delay path included in the channel, or the maximum delay amount among the delay amounts of each delay path included in the channel.
  • the sending device receives the channel estimation result fed back by the receiving device, and determines the length of the required pilot sequence and/or the length of the cyclic prefix based on the channel estimation result measurement.
  • the sending device determines the minimum length of the pilot sequence corresponding to the signal attenuation result that meets the preset threshold
  • the sending device uses the minimum length as the length of the pilot sequence.
  • the minimum L seq that satisfies s corr (L seq ) ⁇ s threshold can be selected as the length of the required pilot sequence, and s threshold represents the preset threshold. Specifically, when it is judged based on the channel estimation result fed back by the receiving device that the currently used pilot sequence s′ corr (L′ seq ) ⁇ s threshold , that is, it does not meet the requirements.
  • the pre-configured or protocol-predefined pilot sequence Generate a formula and select a new sequence length L seq so that the generated new pilot sequence s corr (L seq ) satisfies s corr (L seq ) ⁇ s threshold .
  • L seq and L' seq are both less than or equal to M.
  • the amount of delay is represented by the number of DREs in the delay Doppler domain.
  • the delay amount may be a specific physical time, or may be a quantized value, for example, represented by the number of basic resource units of the delay dimension in the delay Doppler domain, that is, represented by DRE.
  • the above channel delay result can be a set of delay amounts, representing the delays of different delay paths in the channel. It can also be a maximum delay amount, which represents the maximum delay amount among all delay paths in the channel.
  • the length of the CP can be determined in the following way:
  • the sending device takes a length greater than or equal to the maximum delay amount of all delay paths in the channel as the length of the CP; or,
  • the sending device determines that the length of the CP is the target length, and the target length is the minimum length in the CP length list that is greater than or equal to the maximum delay amount of all delay paths in the channel.
  • the sending device receives the channel estimation result fed back by the receiving device, and determines the length of the CP required to avoid the pilot sequence being interfered by data based on the channel delay result.
  • the length of the CP is determined to be L cp ⁇ L delay .
  • a CP length list can be predefined, and the smallest CP length value greater than or equal to L delay in the CP length list is selected as the CP length L cp .
  • the channel estimation results sent by the receiving device can be sent in the data channel, control channel, or feedback channel.
  • the receiving device can perform channel estimation based on the adjusted pilot parameter configuration, thereby realizing dynamic adjustment of the parameter configuration of the pilot sequence, so that it is possible to While keeping PAPR low and ensuring communication quality, resource overhead is reduced as much as possible, that is, PAPR and resource overhead are taken into consideration.
  • sequence pilot parameter configuration method in this embodiment can be performed as follows:
  • Sending device side When there is no prior information about the channel (for example, the receiving device side initially accesses or the receiving device side has not fed back the channel estimation result), the sending device side first sends a target signal including a pilot sequence of length M, and the pilot The sequence has no cyclic prefix.
  • the receiving device side After receiving the target signal, the receiving device performs channel estimation.
  • the channel estimation result contains the signal attenuation measurement of the channel within a period of time and the delay information of the channel.
  • Receiving device side Feeds back the channel estimation results, including one or several signal attenuation results, and the channel delay.
  • Sending device side receives the feedback channel estimation result and first determines the length of the required pilot sequence L seq . Then determine the required CP length L cp according to the delay amount of the channel. Note that it is necessary to ensure that L seq +L cp ⁇ M at this time. If L seq + L cp > M, the L seq value can be taken as the sequence length, and the L cp value can be updated to ML cp .
  • the sending device side sends the second parameter configuration including the length of the pilot sequence, the length of the CP, the pilot sequence generation method, etc. to the receiving device side through signaling.
  • Receiving side Learn the new pilot sequence and new CP length according to the signaling, and use the updated pilot parameters for signaling. Trace measurement.
  • Figure 5 is a second schematic flowchart of a pilot parameter configuration method provided by an embodiment of the present application. As shown in Figure 5, the method provided by this embodiment includes:
  • Step 201 The receiving device receives the target signal sent by the sending device based on the first parameter configuration of the pilot sequence; the target signal is obtained based on the pilot sequence mapped to the delayed Doppler domain resource element DRE in the delayed Doppler domain;
  • the pilot sequence includes at least one pilot symbol;
  • Step 202 The receiving device performs channel estimation based on the target signal, obtains the channel estimation result, and sends the channel estimation result to the sending device;
  • Step 203 The receiving device receives the second parameter configuration of the pilot sequence sent by the sending device.
  • the second parameter configuration is determined by the sending device based on the channel estimation result.
  • the second parameter configuration includes at least one of the following:
  • the first indication information is used to indicate whether parameter reconfiguration of the pilot sequence is supported.
  • the first parameter configuration includes at least one of the following:
  • the first indication information is used to indicate whether parameter reconfiguration of the pilot sequence is supported.
  • the initial value of the length of the pilot sequence is M, where M is the total number of DREs in the delay dimension in the delayed Doppler domain, and/or the cyclic prefix CP of the pilot sequence.
  • the initial value of the length is 0.
  • the receiving device receives the second parameter configuration of the pilot sequence sent by the sending device, including:
  • the receiving device receives the second parameter configuration sent by the sending device through second indication information; the second indication information includes at least one of the following: radio resource control RRC signaling and downlink control information DCI.
  • the execution subject may be a pilot parameter configuration device.
  • the pilot parameter configuration device performing the pilot parameter configuration method is used as an example to illustrate the pilot parameter configuration device provided by the embodiment of the present application.
  • Figure 6 is one of the structural schematic diagrams of a pilot parameter configuration device provided by an embodiment of the present application. As shown in Figure 6, the pilot parameter configuration device provided by this embodiment includes:
  • the sending module 210 is configured to send a target signal to the receiving device based on the first parameter configuration of the pilot sequence; the target signal is based on the pilot sequence mapped to the delayed Doppler domain resource element DRE in the delayed Doppler domain. Obtained; the pilot sequence includes at least one pilot symbol;
  • the receiving module 220 is configured to receive the channel estimation result for the target signal from the receiving device;
  • the processing module 230 is configured to determine the second parameter configuration of the pilot sequence based on the channel estimation result
  • the sending module 210 is also configured to send the second parameter configuration to the receiving device.
  • the second parameter configuration includes at least one of the following:
  • the first indication information is used to indicate whether parameter reconfiguration of the pilot sequence is supported.
  • processing module 230 is specifically used to:
  • the sending device determines the length of the pilot sequence based on the signal attenuation result; and/or,
  • the sending device determines the length of the CP of the pilot sequence based on the channel delay result.
  • processing module 230 is specifically used to:
  • the sending device determines the minimum length of the pilot sequence corresponding to the signal attenuation result that meets the preset threshold
  • the sending device uses the minimum length as the length of the pilot sequence.
  • processing module 230 is specifically used to:
  • the sending device uses a length greater than or equal to the maximum delay amount of all delay paths in the channel as the length of the CP; or,
  • the sending device determines that the length of the CP is a target length, and the target length is the minimum length in the CP length list that is greater than or equal to the maximum delay amount of all delay paths in the channel.
  • the signal attenuation result includes at least one of the following: signal-to-noise ratio SNR of the received signal, peak signal-to-noise ratio PSNR of the received signal, strength indicator RSSI of the received signal, reference signal received power RSRP, reference signal received quality RSRQ , the correlation peak value between the received pilot sequence and the transmitted pilot sequence, the ratio of the correlation peak value between the received pilot sequence and the transmitted pilot sequence and the auto-correlation peak value of the transmitted pilot sequence.
  • the channel delay result includes: the delay amount of each delay path included in the channel, or the maximum delay amount among the delay amounts of each delay path included in the channel.
  • the delay amount is represented by the number of DREs in the delay Doppler domain.
  • the first parameter configuration includes at least one of the following:
  • the first indication information is used to indicate whether parameter reconfiguration of the pilot sequence is supported.
  • the initial value of the length of the pilot sequence is M, where M is the total number of DREs in the delay dimension in the delayed Doppler domain, and/or the cyclic prefix CP of the pilot sequence.
  • the initial value of the length is 0.
  • the sending module 210 is specifically used to:
  • the second parameter configuration is sent to the receiving device through second indication information;
  • the second indication information includes at least one of the following: radio resource control RRC signaling and downlink control information DCI.
  • the device of this embodiment can be used to execute the method of any of the foregoing sending device side method embodiments. Its specific implementation process and technical effects are the same as those in the sending device side method embodiments. For details, please refer to the sending device side method implementation. The detailed introduction in the example will not be repeated here.
  • FIG. 7 is a second structural schematic diagram of a pilot parameter configuration device provided by an embodiment of the present application. As shown in Figure 7, the pilot parameter configuration device provided by this embodiment includes:
  • the receiving module 310 is configured to receive a target signal sent by the sending device based on the first parameter configuration of the pilot sequence; the target signal is based on the pilot sequence mapped to the delayed Doppler domain resource element DRE in the delayed Doppler domain. Obtained; the pilot sequence includes at least one pilot symbol;
  • the processing module 320 is used to perform channel estimation based on the target signal and obtain a channel estimation result
  • Sending module 330 configured to send the channel estimation result to the sending device
  • the receiving module 310 is configured to receive the second parameter configuration of the pilot sequence sent by the sending device, where the second parameter configuration is determined by the sending device based on the channel estimation result.
  • the second parameter configuration includes at least one of the following:
  • the first indication information is used to indicate whether parameter reconfiguration of the pilot sequence is supported.
  • the first parameter configuration includes at least one of the following:
  • the first indication information is used to indicate whether parameter reconfiguration of the pilot sequence is supported.
  • the initial value of the length of the pilot sequence is M, where M is the total number of DREs in the delay dimension in the delayed Doppler domain, and/or the cyclic prefix CP of the pilot sequence.
  • the initial value of the length is 0.
  • the receiving module 310 is specifically used for:
  • the second indication information includes at least one of the following: radio resource control RRC signaling and downlink control information DCI.
  • the device of this embodiment can be used to perform the method of any of the foregoing receiving device side method embodiments. Its specific implementation process and technical effects are the same as those in the receiving device side method embodiments. For details, see Receiving Device The detailed introduction of the side method embodiment will not be described again here.
  • the pilot parameter configuration device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the pilot parameter configuration device provided by the embodiments of the present application can implement each process implemented by the method embodiments of Figures 3 to 5, and achieve the same technical effect. To avoid duplication, details will not be described here.
  • this embodiment of the present application also provides a communication device 800, which includes a processor 801 and a memory 802.
  • the memory 802 stores programs or instructions that can be run on the processor 801, such as , when the communication device 800 is a transmitting device, when the program or instruction is executed by the processor 801, each step of the above pilot parameter configuration method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 800 is a receiving device, when the program or instruction is executed by the processor 801, the steps of the above pilot parameter configuration method embodiment are implemented, and the same technical effect can be achieved. To avoid duplication, they will not be described again here.
  • Embodiments of the present application also provide a terminal, including a processor and a communication interface.
  • the terminal is a sending device
  • the communication interface is used to send a target signal to a receiving device based on the first parameter configuration of the pilot sequence; so The target signal is obtained based on a pilot sequence mapped to a delayed Doppler domain resource element DRE in the delayed Doppler domain; the pilot sequence includes at least one pilot symbol; receiving from the receiving device for the The channel estimation result of the target signal; the processor is used to determine the second parameter configuration of the pilot sequence based on the channel estimation result; the communication interface is also used to send the second parameter to the receiving device configuration.
  • This sending device embodiment corresponds to the above-mentioned sending device side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this sending device embodiment, and can achieve the same technical effect.
  • FIG. 9 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 1000 includes but is not limited to: radio frequency unit 1001, network module 1002, audio output unit 1003, input unit 1004, sensor 1005, display unit 1006, user input unit 1007, interface unit 1008, memory 1009, processor 1010, etc. at least some parts of it.
  • the terminal 1000 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1010 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or may combine certain components, or arrange different components, which will not be described again here.
  • the input unit 1004 may include a graphics processing unit (GPU) 10041 and a microphone 10042.
  • the graphics processing unit 10041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Image data of still pictures or videos obtained by a camera (such as a camera) for processing.
  • the display unit 1006 may include a display panel 10061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes a touch panel 10071 and at least one of other input devices 10072 .
  • Touch panel 10071 also known as touch screen.
  • the touch panel 10071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 10072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1001 after receiving downlink data from the network side device, can transmit it to the processor 1010 for processing; in addition, the radio frequency unit 1001 can send uplink data to the network side device.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, at least one amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 1009 may be used to store software programs or instructions as well as various data.
  • the memory 1009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage program or instruction area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, image playback function, etc.), etc.
  • memory 1009 may include volatile memory or nonvolatile memory, or memory 1009 may include both volatile and nonvolatile memory.
  • non-volatile memory can also include non-volatile memory, where the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), programmable read-only memory (Programmable ROM, PROM), Erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM programmable read-only memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable programmable read-only memory
  • EPROM electrically erasable programmable read-only memory
  • flash memory electrically erasable programmable read-only memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • Memory 1009 in embodiments of the present application includes, but is not limited to, these and any other suitable type of memory such as at least one disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 may integrate an application processor and a modem processor, where the application processor mainly processes operating systems, user interfaces, application programs or instructions, etc. In operation, the modem processor mainly processes wireless communication signals, such as the baseband processor. It can be understood that the above modem processor may not be integrated into the processor 1010.
  • the radio frequency unit 1001 is configured to send a target signal to the receiving device based on the first parameter configuration of the pilot sequence; the target signal is based on the pilot signal mapped to the delayed Doppler domain resource element DRE in the delayed Doppler domain. obtained from a frequency sequence; the pilot sequence includes at least one pilot symbol; receiving a channel estimation result for the target signal from the receiving device;
  • Processor 1010 configured to determine the second parameter configuration of the pilot sequence based on the channel estimation result
  • the radio frequency unit 1001 is also configured to send the second parameter configuration to the receiving device.
  • the method of this embodiment sends the target signal to the receiving device based on the first parameter configuration of the pilot sequence; the target signal is obtained based on the pilot sequence mapped to the delayed Doppler domain resource element DRE in the delayed Doppler domain. ;
  • the pilot sequence includes at least one pilot symbol;
  • Based on the channel estimation result of the receiving device for the target signal determine the second parameter configuration of the pilot sequence and send it to the receiving device, so that the receiving device can perform channel estimation based on the second parameter configuration , that is, the parameter configuration of the pilot sequence can be dynamically adjusted, so that the resource overhead can be reduced as much as possible while maintaining low PAPR and ensuring communication quality, that is, taking into account both PAPR and resource overhead.
  • the second parameter configuration includes at least one of the following:
  • the first indication information is used to indicate whether parameter reconfiguration of the pilot sequence is supported.
  • processor 1010 is specifically used to:
  • the sending device determines the length of the pilot sequence based on the signal attenuation result; and/or,
  • the sending device determines the length of the CP of the pilot sequence based on the channel delay result.
  • processor 1010 is specifically used to:
  • the sending device determines the minimum length of the pilot sequence corresponding to the signal attenuation result that meets the preset threshold
  • the sending device uses the minimum length as the length of the pilot sequence.
  • processor 1010 is specifically used to:
  • the sending device uses a length greater than or equal to the maximum delay amount of all delay paths in the channel as the length of the CP; or,
  • the sending device determines that the length of the CP is a target length, and the target length is the minimum length in the CP length list that is greater than or equal to the maximum delay amount of all delay paths in the channel.
  • the signal attenuation result includes at least one of the following: signal-to-noise ratio SNR of the received signal, peak signal-to-noise ratio PSNR of the received signal, strength indicator RSSI of the received signal, reference signal received power RSRP, reference signal received quality RSRQ , the correlation peak value between the received pilot sequence and the transmitted pilot sequence, the ratio of the correlation peak value between the received pilot sequence and the transmitted pilot sequence and the auto-correlation peak value of the transmitted pilot sequence.
  • the channel delay result includes: the delay amount of each delay path included in the channel, or the maximum delay amount among the delay amounts of each delay path included in the channel.
  • the delay amount is represented by the number of DREs in the delay Doppler domain.
  • the first parameter configuration includes at least one of the following:
  • the first indication information is used to indicate whether parameter reconfiguration of the pilot sequence is supported.
  • the initial value of the length of the pilot sequence is M, where M is the total number of DREs in the delay dimension in the delayed Doppler domain, and/or the cyclic prefix CP of the pilot sequence.
  • the initial value of the length is 0.
  • the radio frequency unit 1001 is specifically used for:
  • the second parameter configuration is sent to the receiving device through second indication information;
  • the second indication information includes at least one of the following: radio resource control RRC signaling and downlink control information DCI.
  • the terminal of this embodiment can be used to perform the signal sending method in the aforementioned sending device side embodiment. Its specific implementation process and technical effects are similar to those in the sending device side method embodiment. For details, please refer to the sending device side method embodiment. Detailed introduction will not be repeated here.
  • the terminal in this embodiment can also be a receiving device.
  • the terminal in this embodiment can perform the signal sending method in the above embodiment on the receiving device side, and its specific implementation process and technical effects Similar to the method embodiment on the receiving device side, for details, please refer to the detailed introduction in the method embodiment on the receiving device side, and will not be described again here.
  • An embodiment of the present application also provides a network side device, including a processor and a communication interface.
  • the communication interface is used to receive a target signal sent by the sending device based on the first parameter configuration of the pilot sequence; the target signal is based on the delay multiplexed signal mapped to the delay Doppler domain.
  • the pilot sequence on the Puller domain resource element DRE is obtained; the pilot sequence includes at least one pilot symbol; the processor is used to perform channel estimation based on the target signal to obtain a channel estimation result; the communication interface is also used to Send the channel estimation result to the sending device; receive a second parameter configuration of the pilot sequence sent by the sending device, where the second parameter configuration is determined by the sending device based on the channel estimation result.
  • This network-side device embodiment corresponds to the above-mentioned receiving device method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 700 includes: an antenna 71 , a radio frequency device 72 , a baseband device 73 , a processor 75 and a memory 75 .
  • the antenna 71 is connected to the radio frequency device 72 .
  • the radio frequency device 72 receives information through the antenna 71 and sends the received information to the baseband device 73 for processing.
  • the baseband device 73 processes the information to be sent and sends it to the radio frequency device 72.
  • the radio frequency device 72 processes the received information and then sends it out through the antenna 71.
  • the above frequency band processing device may be located in the baseband device 73 , and the method performed by the network side device in the above embodiment may be implemented in the baseband device 73 .
  • the baseband device 73 includes a baseband processor 75 and a memory 75 .
  • the baseband device 73 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG.
  • the program performs the network device operations shown in the above method embodiment.
  • the network side equipment of the baseband device 73 may also include a network interface 76 for exchanging information with the radio frequency device 72,
  • the interface is, for example, a common public radio interface (CPRI for short).
  • the network side device 700 in the embodiment of the present application also includes: instructions or programs stored in the memory 75 and executable on the processor 75.
  • the processor 75 calls the instructions or programs in the memory 75 to execute as shown in Figure 6 or Figure 6
  • the method of executing the module shown in 7 and achieving the same technical effect will not be repeated here to avoid repetition.
  • the network side device in this embodiment can also be a sending device.
  • the network side device in this embodiment can perform the signal sending method in the above sending device side embodiment, in which The specific implementation process and technical effects are similar to those in the sending device side method embodiment. For details, please refer to the detailed introduction in the sending device side method embodiment, and will not be described again here.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above pilot parameter configuration method embodiment is implemented, and can To achieve the same technical effect, to avoid repetition, we will not repeat them here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above pilot parameter configuration method.
  • Each process in the example can achieve the same technical effect. To avoid repetition, we will not repeat it here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above pilot parameter configuration method.
  • Each process of the embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • An embodiment of the present application also provides a communication system, including: a sending device and a receiving device.
  • the sending device can be used to perform the steps of the pilot parameter configuration method as described above.
  • the receiving device can be used to perform the above steps. Steps of the pilot parameter configuration method.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种导频参数配置方法及设备,属于通信技术领域,本申请实施例的导频参数配置方法包括:发送设备基于导频序列的第一参数配置,向接收设备发送目标信号;所述目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;所述导频序列包括至少一个导频符号;所述发送设备接收来自所述接收设备的针对所述目标信号的信道估计结果;所述发送设备基于所述信道估计结果,确定所述导频序列的第二参数配置;所述发送设备向所述接收设备发送所述第二参数配置。

Description

导频参数配置方法及设备
相关申请的交叉引用
本申请要求于2022年07月21日提交的申请号为202210868934.1,发明名称为“导频参数配置方法及设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种导频参数配置方法及设备。
背景技术
通信信道通常是一种时变多径衰落信道,目前通常采用正交时频空(Orthogonal Time Frequency Space,OTFS)技术来抵抗通信信道的时变特性、多径特性和衰落特性,以提高发送端和接收端之间通过通信信道进行信号传输的质量。
相关技术中,在OTFS***的发送端可以将信息帧中的导频符号映射至延迟多普勒域资源格中的延迟多普勒域资源元素(Delay-Doppler domain resource element,DRE)上。如果导频符号数量较少则会导致OTFS***产生的时域离散序列具有较高的峰均功率比(Peak-to-average power ratio,PAPR),较高的PAPR对OTFS***内部硬件的信息处理能力具有较高的要求,从而使得发送端的硬件成本较高,如果导频符号数量较多则资源开销较大。因此,对于本领域的技术人员,亟需解决如何在兼顾PAPR和资源开销的情况下配置导频的技术问题。
发明内容
本申请实施例提供一种导频参数配置方法及设备,能够解决如何在兼顾PAPR和开销的情况下配置导频的问题。
第一方面,提供了一种导频参数配置方法,包括:
发送设备基于导频序列的第一参数配置,向接收设备发送目标信号;所述目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;所述导频序列包括至少一个导频符号;
所述发送设备接收来自所述接收设备的针对所述目标信号的信道估计结果;
所述发送设备基于所述信道估计结果,确定所述导频序列的第二参数配置;
所述发送设备向所述接收设备发送所述第二参数配置。
第二方面,提供了一种导频参数配置方法,包括:
接收设备接收发送设备基于导频序列的第一参数配置发送的目标信号;所述目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;所述导频序列包括至少一个导频符号;
所述接收设备基于所述目标信号进行信道估计,得到信道估计结果,并向所述发送设备发送所述信道估计结果;
所述接收设备接收所述发送设备发送的所述导频序列的第二参数配置,所述第二参数配置为所述发送设备基于所述信道估计结果确定的。
第三方面,提供了一种导频参数配置装置,包括:
发送模块,用于基于导频序列的第一参数配置,向接收设备发送目标信号;所述目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;所述导频序列包括至少一个导频符号;
接收模块,用于接收来自所述接收设备的针对所述目标信号的信道估计结果;
处理模块,用于基于所述信道估计结果,确定所述导频序列的第二参数配置;
所述发送模块,还用于向所述接收设备发送所述第二参数配置。
第四方面,提供了一种导频参数配置装置,包括:
接收模块,用于接收发送设备基于导频序列的第一参数配置发送的目标信号;所述目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;所述导频序列包括至少一个导频符号;
处理模块,用于基于所述目标信号进行信道估计,得到信道估计结果;
发送模块,用于向所述发送设备发送所述信道估计结果;
所述接收模块,用于接收所述发送设备发送的所述导频序列的第二参数配置,所述第二参数配置为所述发送设备基于所述信道估计结果确定的。
第五方面,提供了一种发送设备,该发送设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种发送设备,包括处理器及通信接口,其中,所述通信接口用于基于导频序列的第一参数配置,向接收设备发送目标信号;所述目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;所述导频序列包括至少一个导频符号;接收来自所述接收设备的针对所述目标信号的信道估计结果;所述处理器用于基于所述信道估计结果,确定所述导频序列的第二参数配置;所述通信接口还用于向所述接收设备发送所述第二参数配置。
第七方面,提供了一种接收设备,该接收设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现 如第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于接收发送设备基于导频序列的第一参数配置发送的目标信号;所述目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;所述导频序列包括至少一个导频符号;处理器用于基于所述目标信号进行信道估计,得到信道估计结果;所述通信接口还用于向所述发送设备发送所述信道估计结果;接收所述发送设备发送的所述导频序列的第二参数配置,所述第二参数配置为所述发送设备基于所述信道估计结果确定的。
第九方面,提供了一种通信***,包括:发送设备及接收设备,所述发送设备可用于执行如第一方面所述的导频参数配置方法的步骤,所述接收设备可用于执行如第二方面所述的导频参数配置方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的导频参数配置方法的步骤。
在本申请实施例中,发送设备基于导频序列的第一参数配置,向接收设备发送目标信号;目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;导频序列包括至少一个导频符号;发送设备基于接收设备针对目标信号的信道估计结果,确定导频序列的第二参数配置,并发送给接收设备,使得接收设备可以基于第二参数配置进行信道估计,即可以动态调整导频序列的参数配置,使得可以在低PAPR和保证通信质量的同时,尽量降低资源开销,即兼顾了PAPR和资源开销。
附图说明
图l是本申请实施例可应用的无线通信***的结构图;
图2是本申请实施例提供的OTFS原理示意图;
图3是本申请实施例提供的导频参数配置方法的流程示意图之一;
图4是本申请实施例提供的导频序列示意图;
图5是本申请实施例提供的导频参数配置方法的流程示意图之二;
图6是本申请实施例提供的导频参数配置装置的结构示意图之一;
图7是本申请实施例提供的导频参数配置装置的结构示意图之二;
图8是本申请实施例提供的通信设备的结构示意图;
图9是本申请实施例提供的终端的硬件结构示意图;
图10是本申请实施例提供的网络侧设备的硬件结构示意图之一。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的应用,如第6代(6th Generation,6G)通信***。
图1示出本申请实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User  Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR***中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
首先对本申请实施例涉及到的相关概念进行介绍:
OTFS调制技术把一个大小为M×N的数据包中的信息,例如正交幅度调制(Quadrature Amplitude Modulation,QAM)符号,在逻辑上映射到二维延迟多普勒域上的一个M×N资源格点中,即每个资源格点内的脉冲调制了数据包中的一个QAM符号。进一步的,通过设计一组正交二维基函数,将M×N的延迟多普勒域上的数据集变换到N×M的时频域平面上,这种变换在数学上被称为逆辛傅里叶变换(Inverse Symplectic Fourier Transform,ISFFT)。对应的,从时频域到延迟多普勒域的变换被称为辛傅里叶变换(Symplectic Fourier Transform)。其背后的物理意义是,信号的延 迟和多普勒效应,实际上是一种信号通过多径信道后的一系列具有不同时间和频率偏移的回波的线性叠加效应。从这个意义上说,延迟多普勒分析和时频域分析可以通过所述的ISSFT和SSFT相互转换得到。上述的转换关系如图2所示。
由此,OTFS技术把时变多径信道变换为一个(一定持续时间内的)时不变二维延迟多普勒域信道,从而直接体现了无线链路中由于收发机之间的反射体相对位置的几何特性造成的信道延迟多普勒响应特性。这样的好处有如下三点:
1)信道耦合状态的不变性。由于信号的延迟和多普勒反应了物理信道中反射体的直接作用,只取决于反射体的相对速度和位置,因此在无线帧的时间尺度上,信号的延迟和多普勒相应可以看作是不变的。
2)信道耦合状态的可分离性。延迟多普勒域的信道频率响应中,所有的分集路径均体现为一个单独的冲击响应,完全可分离。而QAM符号遍历这所有的分集路径。
3)信道耦合状态的正交性。当波形设计的分辨率足够时,可以认为延迟多普勒域的信道冲击响应限定在一个延迟多普勒域资源元素上,因此在收端理论上不存在延迟维度和多普勒维度的多普勒间干扰(inter delay/Doppler interference,IDI)。
由于上述特点,延迟多普勒域分析消除了传统时频域分析跟踪时变衰落特性的难点,转而通过分析时不变的延迟多普勒信道,抽取出时频域信道的所有分集特性,进而可以利用延迟多普勒域和时频域的转换关系计算出时频域信道,与相关的各种时频域信号处理技术可以良好耦合。
OTFS一大显著特点是在延迟多普勒域独特的导频设计。利用单点脉冲导频和环绕其周边的保护间隔设计,使其在信道检测性能方面具有独特优势。但是,这种导频信号结构会造成OTFS波形的时域波形具有较高的峰均功率比(Peak-to-average power ratio,PAPR),为了降低PAPR发明人在研究过程中发现可以在延迟维度增加导频符号的数量,极大降低了PAPR,使得对硬件的动态范围的要求大大降低,利于实现,但是导频符号越多开销越大,因此对于本领域的技术人员,亟需解决如何在兼顾PAPR和开销的情况下配置导频的技术问题。
在本申请实施例中,发送设备可以是图1中所示的终端或者网络侧设备,接收设备也可以是图1中所示的终端或者网络侧设备。例如在发送设备是图1中所示的终端的情况下,接收设备可以是图1所示中的网络侧设备。例如在发送设备是图1中所示的网络侧设备的情况下,接收设备可以是图1所示中的终端。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的导频参数配置方法进行详细地说明。
图3是本申请实施例提供的导频参数配置方法的流程示意图之一。如图3所示,本实施例提供的方法,包括:
步骤101、发送设备基于导频序列的第一参数配置,向接收设备发送目标信号;目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得 到的;导频序列包括至少一个导频符号;
具体地,导频序列的第一参数配置例如包括导频序列的长度、导频序列有无循环前缀、循环前缀的长度、导频序列生成方式(例如包括生成导频序列的算法)等,将待发送的信息帧中的所有符号(所有符号中包括数据符号和导频符号)分别映射至延迟多普勒域中的DRE上,一个符号映射至一个DRE上。
发送设备基于延迟多普勒域信息帧得到时域离散序列,并基于时域离散序列向接收设备发送目标信号。
可选地,将待发送的信息帧中的符号,映射至延迟多普勒域,得到延迟多普勒域信息帧;基于离散傅里叶反变换(Inverse Discrete Fourier Transform,IDFT),将延迟多普勒域信息帧映射至延迟时间域资源格,得到延迟时间域信息;基于序列转换处理,将延迟时间域信息帧转换成时域离散序列;基于发送侧的相关处理方法,将时域离散序列转换为通信信道可以传输的目标信号,并向接收设备发送目标信号。
其中,序列转换处理可以包括并/串转换(P/S)处理以及增加循序循环前缀(cyclic prefix,CP)处理。
步骤102、发送设备接收来自接收设备的针对目标信号的信道估计结果;
具体地,接收设备接收侧收到目标信号后,基于目标信号进行信道估计,信道估计结果中可能包含信号衰减度量,信道延迟度量等,信号衰减度量例如包括:接收信号的信噪比(Signal-to-Noise Ratio,SNR),接收信号强度指示(Received Signal Strength Indicator,RSSI),参考信号接收功率(Reference Signal Received Power,RSRP),参考信号接收质量(Reference Signal Received Quality,RSRQ)等,接收导频序列和发送导频序列的相关峰值scorr等。
信道延迟度量例如包括信道的每个延迟径的延迟量或多个延迟径中的最大延迟量等。
步骤103、发送设备基于信道估计结果,确定导频序列的第二参数配置;
具体地,发送设备基于信道估计结果,确定导频序列的第二参数配置,例如调整第一参数配置中导频序列的长度、循环前缀的长度等,后续可以基于第二参数配置发送目标信号。
导频序列的长度主要决定了导频检测时的导频信号噪声功率比(Pilot-Signal-to-Noise Ratio,PSNR)和导频资源开销。当信道质量较好时,可以通过调整导频序列的长度来取得开销和性能间的折衷,例如信道质量较好时可以适当减小导频序列的长度,同时还要兼顾PAPR,避免PAPR较高;当导频序列长度小于延迟维度的资源元素DRE数量时,未放置导频符号的部分可以用来放置数据符号,如图4所示。此时可以给导频序列加CP来避免数据干扰引起的信道估计误差。例如导频序列的CP的长度仅需要大于最大时延长度即可,因此可以采用动态调整导频参数的策略尽量减小导频的开销。例如图4中功率1和功率2大小相同,避免了较高的PAPR。
步骤104、发送设备向接收设备发送第二参数配置。
接收设备根据导频序列的第二参数配置,获取新的导频序列,利用新导频序列进行信道测量。
本实施例的方法,发送设备基于导频序列的第一参数配置,向接收设备发送目标信号;目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;导频序列包括至少一个导频符号;发送设备基于接收设备针对目标信号的信道估计结果,确定导频序列的第二参数配置,并发送给接收设备,使得接收设备可以基于第二参数配置进行信道估计,即可以动态调整导频序列的参数配置,使得可以在低PAPR和保证通信质量的同时,尽量降低资源开销,即兼顾了PAPR和资源开销。
可选地,上述步骤101-步骤104的方法可以周期性的执行。
可选地,第一参数配置包括以下至少一项:
导频序列的长度;
导频序列的CP的长度;
导频序列生成方式;
第一指示信息,第一指示信息用于指示是否支持导频序列的参数重配置。
可选地,导频序列的长度的初始值为M,M为延迟多普勒域中延迟维度的DRE的总数量,和/或,导频序列的循环前缀CP的长度的初始值为0。
具体地,发送设备基于第一参数配置发送目标信号,第一参数配置中导频序列的长度的初始值为M,和/或,初始发送的目标信号无循环前缀,即循环前缀CP的长度的初台值为0。
需要说明的是,导频序列的长度的初始值和/或导频序列的循环前缀CP的长度的初始值也可以为其它值,本申请实施例对此并不限定。
可选地,导频序列生成方式包括以下至少一项:导频序列生成算法、导频序列生成所需的初始参数。
例如,发送设备为终端,则发送设备是否支持导频序列的参数重配置,可以通过网络侧设备配置和终端能力共同决定。
可选地,第二参数配置包括以下至少一项:
导频序列的长度;
导频序列的循环前缀CP的长度;
导频序列生成方式;
第一指示信息,第一指示信息用于指示是否支持导频序列的参数重配置。
可选地,步骤104可以通过如下方式实现:
所述发送设备通过第二指示信息向所述接收设备发送所述第二参数配置;所述第二指示信息包括以下至少一项:无线资源控制(Radio Resource Control,RRC)信令、 下行控制信息(Downlink Control Information,DCI)。
具体地,第二指示信息可以通过DCI、RRC信令携带,或者二者结合使用。第二指示信息可以在控制信道或者数据信道中发送。例如二者结合时,可以用RRC消息配置一组可用的导频序列生成方式与导频序列的长度组合的列表,用DCI指示列表索引,从而可以确定相应的导频序列生成方式与导频序列的长度。或,例如二者结合时,可以用RRC消息配置一组可用的CP的长度的列表,用DCI指示列表索引,从而可以确定相应的导频序列的循环前缀的长度。
可选地,步骤103可以通过如下方式实现:
在信道估计结果包括信号衰减结果的情况下,发送设备基于信号衰减结果,确定导频序列的长度;和/或,
在信道估计结果包括信道延迟结果的情况下,发送设备基于信道延迟结果,确定导频序列的CP的长度。
可选地,信号衰减结果包括以下至少一项:接收信号的信噪比SNR、接收信号的峰值信噪比PSNR、接收信号的强度指示RSSI、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收导频序列和发送导频序列的相关峰值、接收导频序列和发送导频序列的相关峰值与发送导频序列的自相关峰值的比值。
可选地,信道延迟结果包括:信道包括的每个延迟径的延迟量,或信道包括的每个延迟径的延迟量中的最大延迟量。
具体地,发送设备接收到接收设备反馈的信道估计结果,根据信道估计结果度量确定所需导频序列的长度的大小,和/或循环前缀的长度。
可选地,发送设备确定满足预设门限的信号衰减结果对应的导频序列的最小长度;
发送设备将最小长度作为导频序列的长度。
例如,当信号衰减结果通过相关峰值scorr表示时,可以选取满足scorr(Lseq)≥sthreshold的最小的Lseq为所需导频序列的长度,sthreshold表示预设门限。具体地,当根据接收设备反馈的信道估计结果判断,当前所使用的导频序列s′corr(L′seq)≤sthreshold时,即不满足要求,根据预先配置或协议预定义的导频序列生成公式,选取新的序列长度Lseq,使得所生成的新导频序列scorr(Lseq)满足scorr(Lseq)≥sthreshold。上述Lseq和L′seq均小于或等于M。
可选地,延迟量通过延迟多普勒域中的DRE的数量表示。
具体地,延迟量可以是具体的物理时间,也可以是量化后的值,例如通过延迟多普勒域中延迟维度的基本资源单位的个数表示,即通过DRE表示。
上述信道延迟结果,可以是一组延迟量,代表了信道中不同延迟径的延迟。也可以是一个最大延迟量,代表了信道中所有延迟径中的最大延迟量。
可选地,在信道估计结果包括信道延迟结果时,可以通过以下方式确定CP的长度:
发送设备将大于或等于信道中所有延迟径的最大延迟量的长度作为CP的长度;或,
发送设备确定CP的长度为目标长度,目标长度为CP长度列表中大于或等于信道中所有延迟径的最大延迟量的最小长度。
具体地,发送设备接收到接收设备反馈的信道估计结果,根据信道延迟结果确定避免导频序列被数据干扰所需的CP的长度大小。
假设信道的最大延迟量在以延迟维度的DRE数量量化后的大小为Ldelay,则确定CP的长度Lcp≥Ldelay
或,可以预定义CP长度列表,选取CP长度列表中最小的大于或等于Ldelay的CP长度值作为CP的长度Lcp
接收设备发送的信道估计结果可以在数据信道,控制信道,或者反馈信道中发送。
上述实施方式中,通过调整导频序列的长度,和/或循环前缀的长度,使得接收设备可以基于调整后的导频参数配置进行信道估计,实现了动态调整导频序列的参数配置,使得可以在低PAPR和保证通信质量的同时,尽量降低资源开销,即兼顾了PAPR和资源开销。
示例性地,在一个延迟多普勒域二维资源格中,假设延迟维度的基本资源单位数为M个,多普勒维度的基本资源单位数为N个。本实施例中的序列导频参数配置方法可以按照如下方式进行:
STEP-1:
发送设备侧:没有信道先验信息的情况下(例如接收设备侧初始接入或接收设备侧未曾反馈信道估计结果),发送设备侧首先发送包括长度为M的导频序列的目标信号,导频序列无循环前缀。
接收设备侧:接收设备侧收到目标信号后,进行信道估计,信道估计结果中含有一段时间内信道对信号衰减度量和信道的延迟信息。
STEP-2:
接收设备侧:反馈信道估计结果,其中包括信号衰减结果中的一个或者几个,以及信道的延迟量。
发送设备侧:发送设备侧接收到反馈的信道估计结果,首先确定所需导频序列的长度的大小Lseq。再根据信道的延迟量确定所需的CP的长度大小Lcp。注意到此时需保证Lseq+Lcp<M。如果Lseq+Lcp>M,可以取Lseq值为序列长度,将Lcp的值更新为M-Lcp
STEP-3:
发送设备侧:将包括导频序列的长度、CP的长度、导频序列生成方式等的第二参数配置通过信令发送给接收设备侧。
接收侧:根据信令获知新导频序列和新CP长度,利用更新后的导频参数进行信 道测量。
上述STEP-1到STEP-3的步骤,可以周期性地进行。
图5是本申请实施例提供的导频参数配置方法的流程示意图之二。如图5所示,本实施例提供的方法,包括:
步骤201、接收设备接收发送设备基于导频序列的第一参数配置发送的目标信号;目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;导频序列包括至少一个导频符号;
步骤202、接收设备基于目标信号进行信道估计,得到信道估计结果,并向发送设备发送信道估计结果;
步骤203、接收设备接收发送设备发送的导频序列的第二参数配置,第二参数配置为发送设备基于信道估计结果确定的。
可选地,所述第二参数配置包括以下至少一项:
导频序列的长度;
导频序列的循环前缀CP的长度;
导频序列生成方式;
第一指示信息,所述第一指示信息用于指示是否支持导频序列的参数重配置。
可选地,所述第一参数配置包括以下至少一项:
导频序列的长度;
导频序列的CP的长度;
导频序列生成方式;
第一指示信息,所述第一指示信息用于指示是否支持导频序列的参数重配置。
可选地,所述导频序列的长度的初始值为M,所述M为所述延迟多普勒域中延迟维度的DRE的总数量,和/或,所述导频序列的循环前缀CP的长度的初始值为0。
可选地,所述接收设备接收所述发送设备发送的所述导频序列的第二参数配置,包括:
所述接收设备接收所述发送设备通过第二指示信息发送的所述第二参数配置;所述第二指示信息包括以下至少一项:无线资源控制RRC信令、下行控制信息DCI。
本实施例的方法,其具体实现过程与技术效果与发送设备侧方法实施例中相同,具体可以参见发送设备侧方法实施例中的详细介绍,此处不再赘述。
本申请实施例提供的导频参数配置方法,执行主体可以为导频参数配置装置。本申请实施例中以导频参数配置装置执行导频参数配置方法为例,说明本申请实施例提供的导频参数配置装置。
图6是本申请实施例提供的导频参数配置装置的结构示意图之一。如图6所示,本实施例提供的导频参数配置装置,包括:
发送模块210,用于基于导频序列的第一参数配置,向接收设备发送目标信号;所述目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;所述导频序列包括至少一个导频符号;
接收模块220,用于接收来自所述接收设备的针对所述目标信号的信道估计结果;
处理模块230,用于基于所述信道估计结果,确定所述导频序列的第二参数配置;
所述发送模块210,还用于向所述接收设备发送所述第二参数配置。
可选地,所述第二参数配置包括以下至少一项:
导频序列的长度;
导频序列的循环前缀CP的长度;
导频序列生成方式;
第一指示信息,所述第一指示信息用于指示是否支持导频序列的参数重配置。
可选地,所述处理模块230,具体用于:
在所述信道估计结果包括信号衰减结果的情况下,所述发送设备基于所述信号衰减结果,确定所述导频序列的长度;和/或,
在所述信道估计结果包括信道延迟结果的情况下,所述发送设备基于所述信道延迟结果,确定所述导频序列的CP的长度。
可选地,所述处理模块230,具体用于:
所述发送设备确定满足预设门限的信号衰减结果对应的导频序列的最小长度;
所述发送设备将所述最小长度作为所述导频序列的长度。
可选地,所述处理模块230,具体用于:
所述发送设备将大于或等于信道中所有延迟径的最大延迟量的长度作为所述CP的长度;或,
所述发送设备确定所述CP的长度为目标长度,所述目标长度为CP长度列表中大于或等于信道中所有延迟径的最大延迟量的最小长度。
可选地,所述信号衰减结果包括以下至少一项:接收信号的信噪比SNR、接收信号的峰值信噪比PSNR、接收信号的强度指示RSSI、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收导频序列和发送导频序列的相关峰值、接收导频序列和发送导频序列的相关峰值与发送导频序列的自相关峰值的比值。
可选地,所述信道延迟结果包括:信道包括的每个延迟径的延迟量,或信道包括的每个延迟径的延迟量中的最大延迟量。
可选地,所述延迟量通过延迟多普勒域中的DRE的数量表示。
可选地,所述第一参数配置包括以下至少一项:
导频序列的长度;
导频序列的CP的长度;
导频序列生成方式;
第一指示信息,所述第一指示信息用于指示是否支持导频序列的参数重配置。
可选地,所述导频序列的长度的初始值为M,所述M为所述延迟多普勒域中延迟维度的DRE的总数量,和/或,所述导频序列的循环前缀CP的长度的初始值为0。
可选地,所述发送模块210具体用于:
通过第二指示信息向所述接收设备发送所述第二参数配置;所述第二指示信息包括以下至少一项:无线资源控制RRC信令、下行控制信息DCI。
本实施例的装置,可以用于执行前述发送设备侧方法实施例中任一实施例的方法,其具体实现过程与技术效果与发送设备侧方法实施例中相同,具体可以参见发送设备侧方法实施例中的详细介绍,此处不再赘述。
图7是本申请实施例提供的导频参数配置装置的结构示意图之二。如图7所示,本实施例提供的导频参数配置装置,包括:
接收模块310,用于接收发送设备基于导频序列的第一参数配置发送的目标信号;所述目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;所述导频序列包括至少一个导频符号;
处理模块320,用于基于所述目标信号进行信道估计,得到信道估计结果;
发送模块330,用于向所述发送设备发送所述信道估计结果;
所述接收模块310,用于接收所述发送设备发送的所述导频序列的第二参数配置,所述第二参数配置为所述发送设备基于所述信道估计结果确定的。
可选地,所述第二参数配置包括以下至少一项:
导频序列的长度;
导频序列的循环前缀CP的长度;
导频序列生成方式;
第一指示信息,所述第一指示信息用于指示是否支持导频序列的参数重配置。
可选地,所述第一参数配置包括以下至少一项:
导频序列的长度;
导频序列的CP的长度;
导频序列生成方式;
第一指示信息,所述第一指示信息用于指示是否支持导频序列的参数重配置。
可选地,所述导频序列的长度的初始值为M,所述M为所述延迟多普勒域中延迟维度的DRE的总数量,和/或,所述导频序列的循环前缀CP的长度的初始值为0。
可选地,所述接收模块310,具体用于:
接收所述发送设备通过第二指示信息发送的所述第二参数配置;所述第二指示信息包括以下至少一项:无线资源控制RRC信令、下行控制信息DCI。
本实施例的装置,可以用于执行前述接收设备侧方法实施例中任一实施例的方法,其具体实现过程与技术效果与接收设备侧方法实施例中相同,具体可以参见接收设备 侧方法实施例中的详细介绍,此处不再赘述。
本申请实施例中的导频参数配置装置可以是电子设备,例如具有操作***的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的导频参数配置装置能够实现图3至图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图8所示,本申请实施例还提供一种通信设备800,包括处理器801和存储器802,存储器802上存储有可在所述处理器801上运行的程序或指令,例如,该通信设备800为发送设备时,该程序或指令被处理器801执行时实现上述导频参数配置方法实施例的各个步骤,且能达到相同的技术效果。该通信设备800为接收设备时,该程序或指令被处理器801执行时实现上述导频参数配置方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,在终端为发送设备的情况下,所述通信接口用于基于导频序列的第一参数配置,向接收设备发送目标信号;所述目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;所述导频序列包括至少一个导频符号;接收来自所述接收设备的针对所述目标信号的信道估计结果;所述处理器用于基于所述信道估计结果,确定所述导频序列的第二参数配置;所述通信接口还用于向所述接收设备发送所述第二参数配置。该发送设备实施例与上述发送设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该发送设备实施例中,且能达到相同的技术效果。具体地,图9为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、以及处理器1010等中的至少部分部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理***与处理器1010逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理单元(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理单元10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据 进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其它输入设备10072中的至少一种。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其它输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001将接收来自网络侧设备的下行数据接收后,可以传输给处理器1010进行处理;另外,射频单元1001可以将上行的数据发送给向网络侧设备发送上行数据。通常,射频单元1001包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储程序或指令区可存储操作***、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括易失性存储器或非易失性存储器,或者,存储器1009可以包括易失性和非易失性存储器两者。包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1009包括但不限于这些和任意其它适合类型的存储器例如至少一个磁盘存储器件、闪存器件、或其它非易失性固态存储器件。
处理器1010可包括一个或多个处理单元;可选的,处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作***、用户界面和应用程序或指令等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,射频单元1001,用于基于导频序列的第一参数配置,向接收设备发送目标信号;所述目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;所述导频序列包括至少一个导频符号;接收来自所述接收设备的针对所述目标信号的信道估计结果;
处理器1010,用于基于所述信道估计结果,确定所述导频序列的第二参数配置;
射频单元1001,还用于向所述接收设备发送所述第二参数配置。
本实施例的方法,基于导频序列的第一参数配置,向接收设备发送目标信号;目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;导频序列包括至少一个导频符号;基于接收设备针对目标信号的信道估计结果,确定导频序列的第二参数配置,并发送给接收设备,使得接收设备可以基于第二参数配置进行信道估计,即可以动态调整导频序列的参数配置,使得可以在低PAPR和保证通信质量的同时,尽量降低资源开销,即兼顾了PAPR和资源开销。
可选地,可选地,所述第二参数配置包括以下至少一项:
导频序列的长度;
导频序列的循环前缀CP的长度;
导频序列生成方式;
第一指示信息,所述第一指示信息用于指示是否支持导频序列的参数重配置。
可选地,所述处理器1010,具体用于:
在所述信道估计结果包括信号衰减结果的情况下,所述发送设备基于所述信号衰减结果,确定所述导频序列的长度;和/或,
在所述信道估计结果包括信道延迟结果的情况下,所述发送设备基于所述信道延迟结果,确定所述导频序列的CP的长度。
可选地,所述处理器1010,具体用于:
所述发送设备确定满足预设门限的信号衰减结果对应的导频序列的最小长度;
所述发送设备将所述最小长度作为所述导频序列的长度。
可选地,所述处理器1010,具体用于:
所述发送设备将大于或等于信道中所有延迟径的最大延迟量的长度作为所述CP的长度;或,
所述发送设备确定所述CP的长度为目标长度,所述目标长度为CP长度列表中大于或等于信道中所有延迟径的最大延迟量的最小长度。
可选地,所述信号衰减结果包括以下至少一项:接收信号的信噪比SNR、接收信号的峰值信噪比PSNR、接收信号的强度指示RSSI、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收导频序列和发送导频序列的相关峰值、接收导频序列和发送导频序列的相关峰值与发送导频序列的自相关峰值的比值。
可选地,所述信道延迟结果包括:信道包括的每个延迟径的延迟量,或信道包括的每个延迟径的延迟量中的最大延迟量。
可选地,所述延迟量通过延迟多普勒域中的DRE的数量表示。
可选地,所述第一参数配置包括以下至少一项:
导频序列的长度;
导频序列的CP的长度;
导频序列生成方式;
第一指示信息,所述第一指示信息用于指示是否支持导频序列的参数重配置。
可选地,所述导频序列的长度的初始值为M,所述M为所述延迟多普勒域中延迟维度的DRE的总数量,和/或,所述导频序列的循环前缀CP的长度的初始值为0。
可选地,所述射频单元1001具体用于:
通过第二指示信息向所述接收设备发送所述第二参数配置;所述第二指示信息包括以下至少一项:无线资源控制RRC信令、下行控制信息DCI。
本实施例的终端,可以用于执行前述发送设备侧实施例中的信号发送方法,其具体实现过程和技术效果与发送设备侧方法实施例中类似,具体可以参见发送设备侧方法实施例中的详细介绍,此处不再赘述。
可选地,本实施例的终端还可以为接收设备,在终端为接收设备的情况下,本实施例的终端可以执行上述接收设备侧实施例中的信号发送方法,其具体实现过程和技术效果与接收设备侧方法实施例中类似,具体可以参见接收设备侧方法实施例中的详细介绍,此处不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口。在网络侧设备为接收设备的情况下,所述通信接口用于接收发送设备基于导频序列的第一参数配置发送的目标信号;所述目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;所述导频序列包括至少一个导频符号;处理器用于基于所述目标信号进行信道估计,得到信道估计结果;所述通信接口还用于向所述发送设备发送所述信道估计结果;接收所述发送设备发送的所述导频序列的第二参数配置,所述第二参数配置为所述发送设备基于所述信道估计结果确定的。该网络侧设备实施例与上述接收设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图10所示,该网络侧设备700包括:天线71、射频装置72、基带装置73、处理器75和存储器75。天线71与射频装置72连接。在上行方向上,射频装置72通过天线71接收信息,将接收的信息发送给基带装置73进行处理。在下行方向上,基带装置73对要发送的信息进行处理,并发送给射频装置72,射频装置72对收到的信息进行处理后经过天线71发送出去。
上述频带处理装置可以位于基带装置73中,以上实施例中网络侧设备执行的方法可以在基带装置73中实现,该基带装置73包括基带处理器75和存储器75。
基带装置73例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为基带处理器75,通过总线接口与存储器75连接,以调用存储器75中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置73网络侧设备还可以包括网络接口76,用于与射频装置72交互信息, 该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本申请实施例的网络侧设备700还包括:存储在存储器75上并可在处理器75上运行的指令或程序,处理器75调用存储器75中的指令或程序执行如图6或图7所示模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
可选地,本实施例的网络侧设备还可以为发送设备,在网络侧设备为发送设备的情况下,本实施例的网络侧设备可以执行上述发送设备侧实施例中的信号发送方法,其具体实现过程和技术效果与发送设备侧方法实施例中类似,具体可以参见发送设备侧方法实施例中的详细介绍,此处不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述导频参数配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述导频参数配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述导频参数配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信***,包括:发送设备及接收设备,所述发送设备可用于执行如上所述的导频参数配置方法的步骤,所述接收设备可用于执行如上所述的导频参数配置方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被 组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (21)

  1. 一种导频参数配置方法,包括:
    发送设备基于导频序列的第一参数配置,向接收设备发送目标信号;所述目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;所述导频序列包括至少一个导频符号;
    所述发送设备接收来自所述接收设备的针对所述目标信号的信道估计结果;
    所述发送设备基于所述信道估计结果,确定所述导频序列的第二参数配置;
    所述发送设备向所述接收设备发送所述第二参数配置。
  2. 根据权利要求1所述的导频参数配置方法,其中,所述第二参数配置包括以下至少一项:
    导频序列的长度;
    导频序列的循环前缀CP的长度;
    导频序列生成方式;
    第一指示信息,所述第一指示信息用于指示是否支持导频序列的参数重配置。
  3. 根据权利要求2所述的导频参数配置方法,其中,所述发送设备基于所述信道估计结果,确定所述导频序列的第二参数配置,包括:
    在所述信道估计结果包括信号衰减结果的情况下,所述发送设备基于所述信号衰减结果,确定所述导频序列的长度;和/或,
    在所述信道估计结果包括信道延迟结果的情况下,所述发送设备基于所述信道延迟结果,确定所述导频序列的CP的长度。
  4. 根据权利要求3所述的导频参数配置方法,其中,所述发送设备基于所述信号衰减结果,确定所述导频序列的长度,包括:
    所述发送设备确定满足预设门限的信号衰减结果对应的导频序列的最小长度;
    所述发送设备将所述最小长度作为所述导频序列的长度。
  5. 根据权利要求3所述的导频参数配置方法,其中,所述发送设备基于所述信道延迟结果,确定所述导频序列的CP的长度,包括:
    所述发送设备将大于或等于信道中所有延迟径的最大延迟量的长度作为所述CP的长度;或,
    所述发送设备确定所述CP的长度为目标长度,所述目标长度为CP长度列表中大于或等于信道中所有延迟径的最大延迟量的最小长度。
  6. 根据权利要求3或4所述的导频参数配置方法,其中,
    所述信号衰减结果包括以下至少一项:接收信号的信噪比SNR、接收信号的峰值信噪比PSNR、接收信号的强度指示RSSI、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收导频序列和发送导频序列的相关峰值、接收导频序列和发送导频序 列的相关峰值与发送导频序列的自相关峰值的比值。
  7. 根据权利要求3或5所述的导频参数配置方法,其中,
    所述信道延迟结果包括:信道包括的每个延迟径的延迟量,或信道包括的每个延迟径的延迟量中的最大延迟量。
  8. 根据权利要求7所述的导频参数配置方法,其中,
    所述延迟量通过延迟多普勒域中的DRE的数量表示。
  9. 根据权利要求1-5任一项所述的导频参数配置方法,其中,
    所述第一参数配置包括以下至少一项:
    导频序列的长度;
    导频序列的CP的长度;
    导频序列生成方式;
    第一指示信息,所述第一指示信息用于指示是否支持导频序列的参数重配置。
  10. 根据权利要求9所述的导频参数配置方法,其中,
    所述导频序列的长度的初始值为M,所述M为所述延迟多普勒域中延迟维度的DRE的总数量,和/或,所述导频序列的循环前缀CP的长度的初始值为0。
  11. 根据权利要求1-5任一项所述的导频参数配置方法,其中,所述发送设备向所述接收设备发送所述第二参数配置,包括:
    所述发送设备通过第二指示信息向所述接收设备发送所述第二参数配置;所述第二指示信息包括以下至少一项:无线资源控制RRC信令、下行控制信息DCI。
  12. 一种导频参数配置方法,包括:
    接收设备接收发送设备基于导频序列的第一参数配置发送的目标信号;所述目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;所述导频序列包括至少一个导频符号;
    所述接收设备基于所述目标信号进行信道估计,得到信道估计结果,并向所述发送设备发送所述信道估计结果;
    所述接收设备接收所述发送设备发送的所述导频序列的第二参数配置,所述第二参数配置为所述发送设备基于所述信道估计结果确定的。
  13. 根据权利要求12所述的导频参数配置方法,其中,所述第二参数配置包括以下至少一项:
    导频序列的长度;
    导频序列的循环前缀CP的长度;
    导频序列生成方式;
    第一指示信息,所述第一指示信息用于指示是否支持导频序列的参数重配置。
  14. 根据权利要求12或13所述的导频参数配置方法,其中,
    所述第一参数配置包括以下至少一项:
    导频序列的长度;
    导频序列的CP的长度;
    导频序列生成方式;
    第一指示信息,所述第一指示信息用于指示是否支持导频序列的参数重配置。
  15. 根据权利要求14所述的导频参数配置方法,其中,
    所述导频序列的长度的初始值为M,所述M为所述延迟多普勒域中延迟维度的DRE的总数量,和/或,所述导频序列的循环前缀CP的长度的初始值为0。
  16. 根据权利要求12或13所述的导频参数配置方法,其中,所述接收设备接收所述发送设备发送的所述导频序列的第二参数配置,包括:
    所述接收设备接收所述发送设备通过第二指示信息发送的所述第二参数配置;所述第二指示信息包括以下至少一项:无线资源控制RRC信令、下行控制信息DCI。
  17. 一种导频参数配置装置,包括:
    发送模块,用于基于导频序列的第一参数配置,向接收设备发送目标信号;所述目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;所述导频序列包括至少一个导频符号;
    接收模块,用于接收来自所述接收设备的针对所述目标信号的信道估计结果;
    处理模块,用于基于所述信道估计结果,确定所述导频序列的第二参数配置;
    所述发送模块,还用于向所述接收设备发送所述第二参数配置。
  18. 一种导频参数配置装置,包括:
    接收模块,用于接收发送设备基于导频序列的第一参数配置发送的目标信号;所述目标信号为基于映射至延迟多普勒域中延迟多普勒域资源元素DRE上的导频序列得到的;所述导频序列包括至少一个导频符号;
    处理模块,用于基于所述目标信号进行信道估计,得到信道估计结果;
    发送模块,用于向所述发送设备发送所述信道估计结果;
    所述接收模块,用于接收所述发送设备发送的所述导频序列的第二参数配置,所述第二参数配置为所述发送设备基于所述信道估计结果确定的。
  19. 一种发送设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至11任一项所述的导频参数配置方法的步骤。
  20. 一种接收设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求12至16任一项所述的导频参数配置方法的步骤。
  21. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至11任一项所述的导频参数配置方法,或者实现如权利要求12至16任一项所述的导频参数配置方法的步骤。
PCT/CN2023/104812 2022-07-21 2023-06-30 导频参数配置方法及设备 WO2024017025A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210868934.1 2022-07-21
CN202210868934.1A CN117478285A (zh) 2022-07-21 2022-07-21 导频参数配置方法及设备

Publications (1)

Publication Number Publication Date
WO2024017025A1 true WO2024017025A1 (zh) 2024-01-25

Family

ID=89617039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104812 WO2024017025A1 (zh) 2022-07-21 2023-06-30 导频参数配置方法及设备

Country Status (2)

Country Link
CN (1) CN117478285A (zh)
WO (1) WO2024017025A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200186397A1 (en) * 2016-08-12 2020-06-11 Cohere Technologies, Inc. Localized equalization for channels with intercarrier interference
CN112003808A (zh) * 2019-05-27 2020-11-27 成都华为技术有限公司 信号处理方法及装置
CN114142977A (zh) * 2020-09-04 2022-03-04 维沃移动通信有限公司 导频处理方法及相关设备
CN114629610A (zh) * 2020-12-11 2022-06-14 维沃移动通信有限公司 导频传输方法、装置、网络侧设备及存储介质
CN114696971A (zh) * 2020-12-25 2022-07-01 维沃移动通信有限公司 导频传输方法、装置、设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200186397A1 (en) * 2016-08-12 2020-06-11 Cohere Technologies, Inc. Localized equalization for channels with intercarrier interference
CN112003808A (zh) * 2019-05-27 2020-11-27 成都华为技术有限公司 信号处理方法及装置
CN114142977A (zh) * 2020-09-04 2022-03-04 维沃移动通信有限公司 导频处理方法及相关设备
CN114629610A (zh) * 2020-12-11 2022-06-14 维沃移动通信有限公司 导频传输方法、装置、网络侧设备及存储介质
CN114696971A (zh) * 2020-12-25 2022-07-01 维沃移动通信有限公司 导频传输方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN117478285A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
WO2023088298A1 (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
US20240073882A1 (en) Beam Control Method and Apparatus for Intelligent Surface Device and Electronic Device
US20230208698A1 (en) Frame structure indication method, frame structure updating method, and related device
WO2023088299A1 (zh) 感知信号传输处理方法、装置及相关设备
WO2024017025A1 (zh) 导频参数配置方法及设备
WO2023231924A1 (zh) 信号发送方法、发送设备及接收设备
WO2024061255A1 (zh) 信号发送方法、信号接收方法及设备
WO2023138633A1 (zh) 信息传输方法、装置、网络侧设备及终端
WO2023186158A1 (zh) 解调参考信号传输方法、装置、终端及网络侧设备
WO2023169544A1 (zh) 质量信息确定方法、装置、终端及存储介质
WO2023138456A1 (zh) 信号处理方法、装置及通信设备
WO2024061233A1 (zh) 信号发送方法、信号接收方法及设备
WO2024146482A1 (zh) 一种传输参数配置方法、装置及终端设备
WO2023241514A1 (zh) 参考信号接收、发送方法、终端及网络侧设备
WO2024027537A1 (zh) 感知方法、装置、通信设备及可读存储介质
WO2024083195A1 (zh) 资源大小的确定方法、终端及网络侧设备
WO2023131316A1 (zh) 探测参考信号的端口映射方法和终端
CN116094650B (zh) 传输方法、装置、设备及存储介质
WO2023198062A1 (zh) Csi测量和上报方法、装置、设备、***及存储介质
WO2024114492A1 (zh) 测量方法、装置、终端及网络侧设备
WO2023109734A1 (zh) 干扰测量方法、装置、设备及存储介质
WO2023198094A1 (zh) 模型输入的确定方法及通信设备
WO2024114490A1 (zh) 上行信道传输方法、装置、终端及网络侧设备
WO2024067379A1 (zh) Dci解析方法、动态波形切换确定方法、上行接收确定方法、装置、终端及网络侧设备
WO2022171155A1 (zh) 数据发送处理方法、接收处理方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842090

Country of ref document: EP

Kind code of ref document: A1