WO2022022553A1 - 干扰协调处理方法及相关设备 - Google Patents

干扰协调处理方法及相关设备 Download PDF

Info

Publication number
WO2022022553A1
WO2022022553A1 PCT/CN2021/108856 CN2021108856W WO2022022553A1 WO 2022022553 A1 WO2022022553 A1 WO 2022022553A1 CN 2021108856 W CN2021108856 W CN 2021108856W WO 2022022553 A1 WO2022022553 A1 WO 2022022553A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
information
configuration information
terminal
trp
Prior art date
Application number
PCT/CN2021/108856
Other languages
English (en)
French (fr)
Inventor
司晔
邬华明
王媛媛
王园园
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022022553A1 publication Critical patent/WO2022022553A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay

Definitions

  • the present application belongs to the field of communication technologies, and in particular, relates to an interference coordination processing method and related equipment.
  • the positioning reference signal (Positioning reference signal, PRS) configuration can be increased or decreased according to the region.
  • PRS Positioning reference signal
  • increasing or decreasing the PRS configuration will cause interference to the reception of the terminal (User Equipment, UE) at the edge of the area. Therefore, there is a problem in the prior art that the on demand PRS transmission causes great interference to the data received by the terminal.
  • the purpose of the embodiments of the present application is to provide an interference coordination processing method and related equipment, which can solve the problem that the on-demand PRS transmission in the prior art causes relatively large interference to the data received by the terminal.
  • an interference coordination processing method including:
  • the terminal receives first indication information, where the first indication information is used to indicate that the positioning reference signals PRS transmitted by the M transmission reception points TRPs are interference resources, and the first indication information carries the first PRS configuration information of the M TRPs, M is a positive integer.
  • an interference coordination processing method including:
  • the serving base station receives first indication information sent by the location server, where the first indication information is used to indicate that the positioning reference signals PRS transmitted by the M transmission and reception points TRP are interference resources of the terminal, and the first indication information carries the M TRPs
  • the first PRS configuration information, M is a positive integer.
  • an interference coordination processing method including:
  • the location server sends first indication information to the terminal or the serving base station, where the first indication information is used to indicate that the positioning reference signals PRS transmitted by the M transmission and reception points TRP are interference resources of the terminal, and the first indication information carries M The first PRS configuration information of the TRP, where M is a positive integer.
  • an interference coordination processing device including:
  • a first receiving module configured to receive first indication information, where the first indication information is used to indicate that the positioning reference signals PRS transmitted by the M transmission reception points TRP are interference resources of the terminal, and the first indication information carries M The first PRS configuration information of the TRP, where M is a positive integer.
  • an interference coordination processing device including:
  • the second receiving module is configured to receive the first indication information sent by the location server, where the first indication information is used to indicate that the positioning reference signal PRS transmitted by the M transmission reception points TRP is the interference resource of the terminal, and the first indication information
  • the first PRS configuration information that carries M TRPs, where M is a positive integer.
  • an interference coordination processing device including:
  • the third sending module is configured to send first indication information to the terminal or the location server, where the first indication information is used to indicate that the positioning reference signal PRS transmitted by the M transmission and reception points TRP is the interference resource of the terminal, and the first indication
  • the information carries the first PRS configuration information of M TRPs, where M is a positive integer.
  • a terminal in a seventh aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor. The steps of implementing the method as described in the first aspect.
  • a serving base station in an eighth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor. The steps of the method as described in the second aspect are implemented when executed.
  • a location server comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor When executed, the steps of the method as described in the third aspect are implemented.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect to the third aspect are implemented .
  • an embodiment of the present application provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement The method of the second aspect or the third aspect.
  • a twelfth aspect provides an interference coordination processing method, including:
  • the terminal receives first indication information, where the first indication information is used to indicate that downlink reference signals transmitted by the M transmission and reception points TRP are interference resources, and the first indication information carries the first downlink of the M transmission and reception points TRP Reference signal configuration information, where M is a positive integer.
  • a thirteenth aspect provides an interference coordination processing method, including:
  • the first indication information is used to indicate that the downlink reference signals transmitted by the M transmission and reception points TRP are interference resources of the terminal, and the first indication information carries the first indication of the M transmission and reception points TRP.
  • Downlink reference signal configuration information M is a positive integer.
  • a fourteenth aspect provides a terminal comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor When implementing the steps of the method according to the twelfth aspect.
  • a fifteenth aspect provides a serving base station, the serving base station includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being processed by the processor
  • the steps of the method as described in the thirteenth aspect are implemented when the device is executed.
  • the first indication information indicates that the PRSs transmitted by the M TRPs are interference resources, and the first indication information carries the first PRS configuration information of the M TRPs, which can facilitate the terminal to perform Interference coordination to reduce the interference of the on demand PRS to the data received by the terminal.
  • FIG. 1 is a structural diagram of a network system to which an embodiment of the present application can be applied;
  • FIG. 2 is an example diagram of a region division applicable to an embodiment of the present application
  • FIG. 4 is the second flowchart of a method for processing interference coordination provided by an embodiment of the present application.
  • FIG. 6 is one of the structural diagrams of an interference coordination processing apparatus provided by an embodiment of the present application.
  • FIG. 8 is a third structural diagram of an interference coordination processing apparatus provided by an embodiment of the present application.
  • FIG. 9 is a structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 11 is a structural diagram of a serving base station provided by an embodiment of the present application.
  • FIG. 12 is a structural diagram of a location server provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the following description, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation, 6G) communication system.
  • 6th generation 6th Generation, 6G
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (Vehicle User Equipment, VUE), pedestrian terminal (Pedestrian User Equipment, PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • the network side device 12 may be a base station or a core network device, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic Service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the core network device may be a location server, which may be a location server in LTE (Evolved Serving Mobile Location Centre, E-SMLC), or a location server (Location Management Function, LMF) in NR, or a subsequent evolution.
  • the location server in the version.
  • NR redesigned the downlink (DL) PRS based on the NR system.
  • PRS supports transmission in the frequency range (Frequency range, FR) 1 up to 100M and FR2 up to 400M.
  • the NR PRS bandwidth configuration has nothing to do with the bandwidth part (Bandwidth Part, BWP) configuration.
  • BWP bandwidth part
  • the UE is supported to measure the PRS using a measurement gap (Measurement Gap).
  • PRS supports beamforming and introduces the concept of PRS resources.
  • the PRS resource identifier (ID) can correspond to one beam in one TRP.
  • One or more PRS resources can form a PRS resource set (resource set), or a PRS resource set can contain one or more PRS resources.
  • a TRP can contain one or more PRS resources.
  • PRS beam scanning and PRS beam repetition are supported.
  • the PRS is supported to refer to the RS of the neighboring cell as a spatial quasi co-location (Quasi co-location, QCL) reference signal.
  • QCL spatial quasi co-location
  • PRS supports staggered patterns and supports flexible pattern configuration.
  • the comb structure of the PRS resource can support ⁇ 2, 4, 6, 12 ⁇ ; the number of symbols can support at least ⁇ 2, 4, 6, 12 ⁇ .
  • the currently supported combinations of the number of symbols and the comb size (size) are as follows:
  • DL PRS resource repetition factor (DL-PRS-ResourceRepetitionFactor) and: DL PRS resource time interval (DL-PRS-ResourceTimeGap).
  • DL-PRS-ResourceRepetitionFactor is used to control the number of repetitions of DL PRS resource, and the number of times can be 1, 2, 4, 6, 8, 16 and 32.
  • Duplicate DL PRS resources have the same resource ID.
  • 'DL-PRS-ResourceTimeGap' represents the interval between 2 repeated DL PRS resources, the value can be 1, 2, 4, 6, 8, 16 and 32, and the unit is slot. This parameter is only provided to the UE when 'DL-PRS-ResourceRepetitionFactor' is configured and the value is greater than 1.
  • the time span of a PRS resource set containing duplicate DL PRS resources shall not exceed the period of the DL PRS.
  • the mechanism of PRS muting is introduced.
  • the serving base station can configure the PRS of one of the neighboring cells to be muted within a certain period of time (that is, not to send any PRS signals), which can ensure that the UE can accurately receive the PRS of the other cell. signal without inter-cell interference.
  • NR redefines how muting is configured, specifically:
  • PRS muting can be configured at 'DL PRS resource set' level, can be represented by bitmap, and supports the following options (Option):
  • Option1 Whether each bit in the bitmap corresponds to one or more consecutive cycles of the DL PRS resource set is muting.
  • the first bit can indicate whether one or more cycles starting with the DL PRS resource set are muting, and the second bit indicates whether one or more cycles following the DL PRS resource set are muting, and so on.
  • this bit is set to 0, the UE may consider that all DL PRS resources are muting during this period.
  • the continuous period length is indicated by the higher layer parameter 'DL-PRS-MutingBitRepetitionFactor'.
  • bitmap is equal to 'DL-PRS-ResourceRepetitionFactor'.
  • bit represents whether a certain resource in the multiple repeated DL PRS resources is muting.
  • Transmission Point A cell, part of a cell, or a group of geographically co-located transmit antennas (eg, antenna arrays with one or more antenna elements) of a DL-PRS-only TP.
  • Transmission points may include base station (ng-eNB or gNB) antennas, remote radio heads, base station remote antennas, DL-PRS TP-only antennas, etc.
  • a cell may include one or more transmission points. For homogeneous deployment, each transmission point may correspond to one cell.
  • Receive Point A cell, part of a cell, or a set of geographically co-located receive antennas (eg, antenna arrays) of an RP for UL-SRS only.
  • the receiving points may include base station (ng-eNB or gNB) antennas, remote radio heads, remote antennas of the base station, antennas of uplink sounding reference signal (UL-SRS) RP only, and the like.
  • a cell may include one or more reception points. For homogeneous deployment, each receiving point can correspond to one cell.
  • PRS-only TP A TP that only transmits PRS signals for PRS-based TBS positioning and is not associated with a cell.
  • Transmission Receive Point A group of geographically co-located antennas (eg, antenna arrays) that support TP and/or RP functionality.
  • the PRS is sent in the form of broadcast, and the PRS configuration is relatively fixed, and it does not support the flexible change of the PRS configuration, which may cause some waste of resources.
  • the serving base station configures 128 TRPs in a certain area to transmit PRS with large bandwidth, and in this area, only some UEs have high positioning accuracy requirements, or only some UEs have positioning requirements, then for this part of UEs It is not worthwhile to make PRS covering a large bandwidth in the whole area.
  • a PRS with a smaller bandwidth is configured in a certain area, and some of the UEs have strong positioning accuracy, delay requirements or power consumption requirements. PRS.
  • the PRS configuration can be increased or decreased flexibly.
  • the network begins to deploy a PRS with a smaller bandwidth, and for a certain UE that requires higher positioning accuracy, a dedicated PRS with a larger bandwidth is configured for the UE through signaling.
  • a dedicated PRS with a larger bandwidth is configured for the UE through signaling.
  • on demand PRS the interference problem encountered after on demand PRS configuration:
  • an area 201 also called on demand positioning area
  • increase the PRS configuration for example, Increase the bandwidth, the PRS center frequency remains unchanged, and the bandwidth changes from 20MHz to 100MHz
  • TRPs all send PRS with a bandwidth of 100 MHz.
  • this area for example, area 202
  • the PRS sent by the TRP is still sent at 20 MHz according to the configuration of the conventional PRS.
  • the resources of the TRP at the edge of this area will cause some interference to the terminal 2 of the area 202 due to the configuration change (increasing the bandwidth to 100M). Because the TRP of area 202 still sends PRS according to the 20M bandwidth, the terminal 2 still receives the PRS according to the 20M bandwidth, and the PRS of the 100M bandwidth at the edge of the area 201 will cause interference to other signal transmissions (such as data transmission) outside the 20M bandwidth of terminal 2 . Therefore, the interference coordination processing method of the present application is proposed.
  • An interference coordination processing method includes the following steps: the terminal receives first indication information, where the first indication information is used to indicate that the downlink reference signals transmitted by the M transmission reception points TRP are interference resources, and the The first indication information carries the first downlink reference signal configuration information of the M transmission and reception points TRP, where M is a positive integer.
  • the downlink reference signal includes: PRS, CSI-RS or SSB. PRS is taken as an example for description below, and CSI-RS or SSB can be implemented in a similar manner.
  • the configuration of the SSB under a certain TRP includes at least one of the following: the physical cell identifier PCI of the cell where the SSB is located, the absolute frequency position of the SSB, the SSB half frame indication, the SSB period, and the SSB sub-frame.
  • the configuration of CSI-RS under a certain TRP includes at least one of the following: CSI-RS index, PCI of the cell where the CSI-RS is located, and CSI-RS reference point pointA position , CSI-RS starting PRB position, CSI-RS bandwidth RB number, CSI-RS subcarrier interval, CSI-RS period, CSI-RS mapping pattern, CSI-RS transmission power, TRP timing information, etc.
  • the interference suppression of PRS is also applicable to the CSI-RS.
  • the timing information of the TRP may be: the offset between the time slot 0 of the SFN0 of the TRP sending the PRS and the SFN0 time slot 0 of the UE serving cell, or the time slot 0 of the SFN0 of the cell where the TRP is located and the SFN0 time slot of the UE serving cell 0 offset.
  • FIG. 3 is a flowchart of an interference coordination processing method provided by an embodiment of the present application. As shown in FIG. 3, the method includes the following steps:
  • Step 301 The terminal receives first indication information, where the first indication information is used to indicate that the positioning reference signals PRS transmitted by the M transmission and reception points TRPs are interference resources, and the first indication information carries the first indication of the M TRPs.
  • a PRS configuration information, M is a positive integer.
  • the above-mentioned M TRPs can be understood as TRPs in a certain positioning area, for example, the positioning area may be an on-demand positioning area P, and the positioning reference signal in this on-demand positioning area may be an On-demand PRS,
  • the above-mentioned first PRS configuration information may be understood as On demand PRS configuration information.
  • the above-mentioned terminal may be understood as a terminal located at the outer edge of the positioning area, that is, the terminal is located outside the positioning area, and the distance from the edge of the positioning area is less than a preset value.
  • the above-mentioned M TRPs may be understood as TRPs adjacent to the terminal. That is, the TRP configuration information adjacent to the terminal is sent to the terminal through the first indication information.
  • the TRP adjacent to the terminal may be understood as the TRP whose distance from the terminal is less than a preset value.
  • the size of the preset value can be set according to actual needs, which is not further limited here.
  • an indication identifier may be carried in the first indication information, and the indication identifier indicates that the PRSs transmitted by the M TRPs are interference resources.
  • the first PRS configuration information of the M TRPs may also be used to implicitly indicate that the PRSs transmitted by the M transmission and reception point TRPs are interference resources. That is, the terminal may determine, based on the first PRS configuration information, whether the PRSs transmitted by the M TRPs in the currently received first indication information are interference resources.
  • the terminal After the terminal receives the above-mentioned first indication information, it can perform interference coordination calculation according to the first indication information, instead of performing positioning measurement, so there is no need to report the positioning measurement result to the positioning server. For example, after the terminal receives the instruction, it is determined according to the instruction that the terminal does not perform On demand positioning measurement.
  • first indication information may be sent by the serving base station, or may be sent by the location server.
  • the serving base station may first receive the first indication information sent by the location server, and then forward the first indication information to the terminal.
  • the first indication information sent by the location server to the serving base station may be the same as the first indication information sent by the serving base station to the terminal, and some parameters may be adjusted, which is not further limited herein.
  • the signaling between the location server and the UE includes but is not limited to one of the following:
  • LTE Positioning Protocol LTE Positioning Protocol, LPP
  • NR Positioning Protocol NR Positioning Protocol
  • the first signaling is signaling between the serving base station and the terminal.
  • the serving base station may send the first indication information to the terminal through the first signaling.
  • the signaling between the serving base station and the terminal includes but is not limited to one of the following: Radio Resource Control (Radio Resource Control, RRC), Medium Access Control Control Element (Medium Access Control Control Element, MAC CE), downlink Control information (Downlink Control Information, DCI), message (Msg) 1, Msg3, broadcast signaling and paging (Paging).
  • Radio Resource Control Radio Resource Control
  • RRC Radio Resource Control
  • Medium Access Control Control Element Medium Access Control Control Element
  • MAC CE Medium Access Control Control Element
  • DCI Downlink Control Information
  • Msg message
  • Msg3 broadcast signaling and paging
  • the communication signaling between the location server and the serving base station includes but is not limited to one of the following:
  • LTE Positioning Protocol A (LTE Positioning Protocol A, LPPa), NR Positioning Protocol A (NR Positioning Protocol A, NRPPa).
  • the location server may indicate the adjacent TRP or the gNB associated with the adjacent TRP through the LPPa, and the adjacent TRP or the gNB associated with the adjacent TRP sends the PRS configuration of the adjacent TRP to the gNB through the Xn interface.
  • the location server may send the PRS configuration of the adjacent TRP to the serving gNB or the location server where the UE is located through the core network interface, and then send it to the serving gNB through LPPa signaling.
  • the first indication information indicates that the PRSs transmitted by the M TRPs are interference resources, and the first indication information carries the first PRS configuration information of the M TRPs, which can facilitate the terminal to perform Interference coordination to reduce the interference of the on demand PRS to the data received by the terminal.
  • the first PRS configuration information satisfies any of the following:
  • the first PRS configuration information is target PRS configuration information added relative to the second PRS configuration information
  • the first PRS configuration information is PRS configuration information obtained by adding the target PRS configuration information relative to the second PRS configuration information;
  • the second PRS configuration information is PRS configuration information configured by the terminal for positioning measurement.
  • the second PRS configuration information is an empty set. At this time, it can be understood that the terminal does not have the PRS configuration information of the M transmission and reception point TRPs, then the M transmission and reception point TRPs have no PRS configuration information.
  • Any PRS configuration is additional configuration information, and the above-mentioned first PRS configuration information may be all PRS configuration information of the M transmission and reception point TRPs.
  • the current PRS configuration information of the terminal includes part of the PRS configuration information of the M transmission and reception point TRPs.
  • the first PRS configuration information may be all configurations of the M TRPs or relative to the second PRS configuration information Added PRS configuration information.
  • the second PRS configuration information currently configured by the terminal is: a configuration in which a certain PRS resource bandwidth of the M TRPs is 20M, then the indicated first PRS configuration information is the configuration in which the PRS resource bandwidth becomes 100M increased or increased .
  • the second PRS configuration information currently configured by the terminal is: a configuration in which a certain resource period adjacent to the TRP is 160ms, then the indicated first PRS configuration information is a configuration that is increased or increased after the PRS resource period becomes 80ms.
  • the first PRS configuration information includes: configuration of at least one PRS resource under the first TRP, where the first TRP is any one of the M TRPs.
  • the above-mentioned first PRS configuration information includes the PRS configuration information corresponding to each TRP, wherein, the PRS configuration information corresponding to each TRP may exist in part or all of the same PRS configuration information, or the PRS configuration information corresponding to all TRPs may exist. are different, and no further limitation is made here.
  • the above-mentioned first PRS configuration information may be the configuration of a certain PRS resource, or may be the configuration of multiple PRS resources, or may be all of a certain PRS resource set or all of the PRS resources under the first TRP. configuration. That is to say, the above-mentioned first PRS configuration information includes any of the following:
  • N is a positive integer, where N PRS resources can come from the same resource set or different resource sets;
  • the configuration of the PRS resource may include a configuration specific to the PRS resource, or may include a common configuration of a resource set, a TRP, or a positioning frequency layer (positioning frequency layer).
  • the information specifically included in the configuration of the above-mentioned PRS resources can be set according to actual needs.
  • the configuration of the above-mentioned PRS resources includes at least one of the following: PRS time domain location information, PRS frequency domain location information, PRS sequence identifier information, PRS resource identification information, PRS transmit power information, TRP timing information, PRS Quasi co-location (QCL) information, SSB configuration of the cell where the TRP is located, and CSI-RS configuration of the cell where the TRP is located.
  • the PRS resource identification information includes at least one of NR Cell Global Identifier (NCGI), Physical Cell Identifier (PCI), TRP Identifier (ID), resource set ID and resource ID one.
  • the PRS transmission power information may be absolute power or relative power.
  • the QCL reference signal in the QCL information includes but is not limited to the synchronization signal block (Synchronization Signal and PBCH block, SSB) of the neighboring cell, the channel state information reference signal (Channel State Information Reference Signal, CSI-RS) and other positioning reference signals of the neighboring cell. At least one of the PRS.
  • the PRS time domain location information includes, but is not limited to, at least one of the following: PRS cycle, cycle offset, PRS resource repetition factor, PRS resource repetition interval, PRS muting pattern, system frames of the PRS transmission cell and the reference cell Number (System frame number, SFN) 0 offset of slot 0, PRS resource slot offset, number of PRS symbols, starting position of PRS symbols, etc.
  • PRS frequency domain location information includes but is not limited to at least one of the following: PRS subcarrier spacing, PRS CP type, PRS reference point A, PRS comb structure type, RB number of PRS bandwidth, PRS frequency domain starting RB position, PRS starting RB Initial resource element (Resource element, RE) offset, positioning frequency layer identification, etc.
  • the timing information of the TRP may be: the offset between the time slot 0 of the SFN0 of the TRP sending the PRS and the SFN0 time slot 0 of the UE serving cell, or the time slot 0 of the SFN0 of the cell where the TRP is located and the SFN0 time slot of the UE serving cell 0 offset.
  • the configuration of the PRS resources may include the SSB configuration of the cell where the TRP is located (the SSB configuration directly included in the PRS configuration or the SSB configuration included in the QCL information in the PRS configuration).
  • the SSB configuration includes but is not limited to one of the following: the physical cell identifier PCI of the cell where the SSB is located, the absolute frequency point position of the SSB, the SSB half-frame indication, the SSB period, the SSB subcarrier interval, the SSB listening time window (SMTC), the SSB in the
  • the position in the SSB burst (ssb-PositionsInBurst, is a bitmap, used to indicate whether an SSB in the SSB burst is sent, 0 means no transmission, 1 means transmission), SSB transmission power, SSB SFN offset (SFN-SSBoffset with values ⁇ 0,1,2,...15 ⁇ ) and SSB index, etc.
  • the configuration of the PRS resources may include the CSI-RS (such as CSI-RS for mobility, CSI-RS for mobility management) configuration of the cell where the TRP is located (the one directly included in the PRS configuration) CSI-RS configuration or the CSI-RS configuration included in the QCL information in the PRS configuration), then the CSI-RS configuration includes but is not limited to one of the following: CSI-RS index, PCI of the cell where the CSI-RS is located, CSI-RS reference Point pointA position, CSI-RS starting PRB position, CSI-RS bandwidth RB number, CSI-RS subcarrier spacing, CSI-RS period, CSI-RS mapping pattern, CSI-RS transmission power, etc.
  • the CSI-RS configuration includes but is not limited to one of the following: CSI-RS index, PCI of the cell where the CSI-RS is located, CSI-RS reference Point pointA position, CSI-RS starting PRB position, CSI-RS bandwidth RB number, CSI-RS subcarrier spacing, CSI-RS
  • the configuration of the PRS resource includes the SSB configuration of the cell where the TRP is located, it is implicitly indicated that the SSB is also an interference resource (the UE or the serving base station should also assume that the SSB is an interference resource). Then, the interference suppression of the PRS in the interference coordination processing method in the solution of the present application is also applicable to the SSB of the cell where the TRP is located.
  • the configuration of the PRS resource includes the CSI-RS configuration of the cell where the TRP is located, it is implicitly indicated that the SSB is also an interference resource (the UE or the serving base station should also assume that the CSI-RS is an interference resource). Then, the interference suppression of the PRS in the interference coordination processing method in the solution of the present application is also applicable to the CSI-RS of the cell where the TRP is located.
  • the method further includes:
  • the terminal reports the target configuration in the first PRS configuration information to the serving base station.
  • the above target configuration includes, but is not limited to, at least one of the time domain and frequency domain positions of the PRS.
  • the above target configuration is used to assist the serving base station in determining the processing behavior of interference coordination after determining the time-frequency positions of the M TRPs. For example, it may include at least one of the following: determine whether to send downlink resources; determine how to send downlink resources; determine whether to configure downlink resources; determine whether to send downlink resources; determine whether to schedule downlink resources; determine how to schedule downlink resources.
  • the downlink resources may include but not limited to at least one of the following: Physical downlink shared channel (Physical downlink shared channel, PDSCH), Physical downlink control channel (Physical Downlink control channel, PDCCH) and other downlink reference signals (such as CSI-RS) , DMRS, etc.).
  • Physical downlink shared channel Physical downlink shared channel, PDSCH
  • Physical downlink control channel Physical Downlink control channel, PDCCH
  • other downlink reference signals such as CSI-RS
  • CSI-RS CSI-RS
  • the terminal also reports at least part of the configuration of the SSB to the serving base station.
  • the terminal also reports at least part of the configuration of the CSI-RS to the serving base station.
  • the terminal reports the target configuration to the serving base station, so that the serving base station can be assisted in allocating downlink resources of the serving cell.
  • the serving base station may also send a request to the location server according to the target configuration, so as to request to mute the PRS resources transmitted by at least one TRP among the M TPRs.
  • the method further includes at least one of the following: the terminal performs PRS interference measurement; the terminal performs PRS interference calculation.
  • the above-mentioned PRS interference measurement may include at least one of the following: reference signal received power (Reference Signal Received Power, RSRP) measurement, reference signal received quality (Reference Signal Received Quality, RSRQ) measurement, received signal strength indication ( Received Signal Strength Indication (RSSI) measurement, signal-to-noise and interference ratio (SINR) measurement, and time of arrival (ToA) measurement.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI Received Signal Strength Indication
  • SINR signal-to-noise and interference ratio
  • ToA time of arrival
  • the terminal after receiving the first indication information, the terminal also performs one of SSB interference measurement and SSB interference calculation.
  • the terminal after receiving the first indication information, the terminal also performs one of CSI-RS interference measurement and SSB interference calculation.
  • the method further includes:
  • the terminal sends target information to the serving base station
  • the target information is used to indicate whether the terminal can suppress the interference of the PRS transmitted by the M TRPs; or, the target information includes the measurement result obtained by the PRS interference measurement and the interference level obtained by the PRS interference calculation at least one of them.
  • the target information also includes whether the SSB interference can be suppressed, or the target information includes the measurement result obtained by the SSB interference measurement and the SSB interference calculation obtained. at least one of the interference levels.
  • the target information also includes whether the interference of the CSI-RS can be suppressed, or the target information includes the measurement obtained by the CSI-RS interference measurement. At least one of the result and the interference level obtained by the CSI-RS interference calculation.
  • the target information indicates whether the terminal can suppress the interference of the PRS transmitted by the M TRPs
  • the terminal determines whether to suppress the PRS interference.
  • the target information includes at least one of the measurement result obtained by the PRS interference measurement and the interference level obtained by the PRS interference calculation, it may be understood that the serving base station decides whether to suppress the PRS interference and/or send downlink resources.
  • the terminal may receive a request signaling from the serving base station for requesting the terminal to send the target information.
  • the method further includes:
  • the terminal receives the second indication information sent by the serving base station, where the second indication information is used to indicate that the downlink resource is sent in the first resource block and the serving base station performs rate matching (rate matching) on the first resource block,
  • the first resource block is composed of a resource block (Resource block, RB) where the PRS of the first TRP is located and a symbol, and the first TRP is any one of the M TRPs. That is, the downlink resources are not mapped to the REs where the PRSs are located in the resource block. In other words, the downlink resources bypass the REs where the PRSs are located when the resource blocks are mapped.
  • the second indication information is also used to indicate that the downlink resource is sent in the second resource block and the serving base station performs the second resource block.
  • Rate matching rate matching
  • the second resource block is composed of a resource block (Resource block, RB) where the SSB of the first TRP is located and a symbol
  • the first TRP is any one of the M TRPs.
  • the second indication information is further used to indicate: sending downlink resources in the second resource block and the serving base station for the second resource.
  • the block is rate matched, and the second resource block is composed of the RB and the symbol where the CSI-RS of the first TRP is located, and the first TRP is any one of the M TRPs.
  • the above-mentioned second indication information may be received after the terminal sends the above-mentioned target configuration, or after the terminal completes the above-mentioned PRS interference measurement and/or completes the corresponding reporting based on the PRS interference measurement, which is not further limited here. .
  • the method further includes:
  • the terminal sends a first request to the location server, where the first request is used to request muting of at least one PRS resource.
  • the terminal may request to mute at least one PRS resource.
  • the UE cannot handle the problem of interference, and it is hoped to reduce the interference of the adjacent TRP transmission PRS.
  • Muting the PRS resource can be understood as not sending the corresponding PRS resource.
  • the serving base station may also send a second request to the location server, and request to mute at least one PRS resource through the second request, and the second request may be sent by the serving base station after the location server sends M TRPs After the PRS interferes with the resource.
  • the above-mentioned PRS resources may include resources where the PRSs transmitted by the above-mentioned M TRPs are located.
  • the first request includes at least one of the following: PRS mute indication, configuration of PRS resources, TRP identifier, TRP identifier list, PRS resource set identifier, PRS resource set identifier list, PRS resource identifier, PRS resource identifier list , the muting pattern of the PRS resource expected by the terminal.
  • the muting pattern of the PRS resources expected by the UE may be a Bitmap, indicating whether the PRS resources in a resource set in a certain TRP among the M TRPs are expected to be sent by the UE, and each Bit in the bitmap represents whether the corresponding resource UE wants to send .
  • the length of the Bitmap is equal to the number of PRS resources in the resource set or equal to the number of PRS resources indicated in the first indication information.
  • the configuration of the PRS resources carried in the first request may be the configuration of at least part of the PRS resources in the first PRS configuration information, which is used to instruct the location server to muting the PRS corresponding to this part of the configuration. For example, if the configuration of the PRS resource carried in the first request is a certain bandwidth of the PRS resource, the request is to muting the resource of the bandwidth of the PRS resource.
  • the behavior of the terminal satisfies at least one of the following:
  • the second TRP is any one of the M TRPs, and the second resource block is composed of a resource block RB where the PRS of the second TRP is located and a symbol.
  • the behavior of the terminal satisfies at least one of the following:
  • the second TRP is any one of the M TRPs
  • the second resource block is composed of a resource block RB and a symbol where the PRS of the second TRP is located.
  • the behavior of the terminal satisfies at least one of the following:
  • the second TRP is any one of the M TRPs, and the second resource block is composed of a resource block RB where the PRS of the second TRP is located and a symbol.
  • the above-mentioned behavior restriction of the terminal may also be a behavior restriction in the case that the terminal does not support the interference cancellation of the reference signal of the adjacent cell, that is, in an embodiment, the terminal does not support the interference of the reference signal of the adjacent cell.
  • the behavior of the terminal satisfies at least one of the following:
  • the second TRP is any one of the M TRPs, and the second resource block is composed of the RB and the symbol where the PRS of the second TRP is located.
  • the behavior of the terminal satisfies at least one of the following:
  • the second TRP is any one of the M TRPs, and the second resource block is composed of RBs and symbols where the SSB of the second TRP is located.
  • the behavior of the terminal satisfies at least one of the following:
  • the second TRP is any one of the M TRPs, and the second resource block is composed of RBs and symbols where the CSI-RS of the second TRP is located.
  • the UE reports the UE capability to the location server or the serving base station, so as to assist the location server or the serving base station in determining the transmission of the PRS.
  • the method further includes:
  • the capability information includes at least one of the following:
  • the third indication information is used to indicate whether the terminal supports interference cancellation of reference signals of neighboring cells
  • the above-mentioned third indication information may include at least one of the following:
  • the modulation and coding scheme Modulation and coding scheme, MCS
  • MCS Modulation and coding scheme
  • the terminal can eliminate the adjacent cell test signal interference
  • the terminal can eliminate the interference of adjacent cells
  • the terminal can cancel the adjacent cell interference.
  • FIG. 4 is a flowchart of another interference coordination processing method provided by an embodiment of the present application. As shown in FIG. 4, the method includes the following steps:
  • Step 401 the serving base station receives the first indication information sent by the location server, where the first indication information is used to indicate that the positioning reference signal PRS transmitted by the M transmission and reception points TRP is the interference resource of the terminal, and the first indication information carries The first PRS configuration information of the M TRPs, where M is a positive integer.
  • the first PRS configuration information satisfies any of the following:
  • the first PRS configuration information is target PRS configuration information added relative to the second PRS configuration information
  • the first PRS configuration information is PRS configuration information obtained by adding the target PRS configuration information relative to the second PRS configuration information;
  • the second PRS configuration information is PRS configuration information configured by the terminal for positioning measurement.
  • the PRS configuration information of the first TRP includes: the first PRS configuration information includes: the configuration of at least one PRS resource under the first TRP, where the first TRP is any one of the M TRPs TRP.
  • the configuration of the PRS resources includes at least one of the following: PRS time domain location information, PRS frequency domain location information, PRS sequence identification information, PRS resource identification information, PRS transmission power information, and timing information of the TRP, Quasi-co-located QCL information of the PRS, SSB configuration of the cell where the TRP is located, and CSI-RS configuration of the cell where the TRP is located.
  • the method further includes:
  • the serving base station sends a second request to the location server, where the second request is used to request muting of at least one PRS resource.
  • the method further includes:
  • the serving base station sends the first indication information to the terminal.
  • the method further includes:
  • the serving base station receives the target information sent by the terminal;
  • the target information is used to indicate whether the terminal can suppress the interference of the PRS transmitted by the M TRPs; or, the target information includes the measurement result obtained by the PRS interference measurement and the interference level obtained by the PRS interference calculation at least one of them.
  • the method further includes:
  • the second indication information sent by the serving base station to the terminal where the second indication information is used to indicate that downlink resources are sent in the first resource block or rate matching is performed in the first resource block; the first resource block is determined by the The resource block RB where the PRS of the first TRP is located is composed of symbols.
  • this embodiment is an implementation of the serving base station corresponding to the embodiment shown in FIG. 3 , and the specific implementation can refer to the relevant description of the embodiment shown in FIG. 3 to achieve the same beneficial effects. In order to avoid The description is repeated and will not be repeated here.
  • FIG. 5 is a flowchart of another interference coordination processing method provided by an embodiment of the present application. As shown in FIG. 5, the method includes the following steps:
  • Step 501 the location server sends first indication information to the terminal or the serving base station, where the first indication information is used to indicate that the positioning reference signal PRS transmitted by the M transmission and reception points TRP is the interference resource of the terminal, and the first indication information carries There is first PRS configuration information of the M TRPs, where M is a positive integer.
  • the first PRS configuration information satisfies any of the following:
  • the first PRS configuration information is target PRS configuration information added relative to the second PRS configuration information
  • the first PRS configuration information is PRS configuration information obtained by adding the target PRS configuration information relative to the second PRS configuration information;
  • the second PRS configuration information is PRS configuration information configured by the terminal for positioning measurement.
  • the first PRS configuration information includes: configuration of at least one PRS resource under the first TRP, where the first TRP is any one of the M TRPs.
  • the configuration of the PRS resources includes at least one of the following: PRS time domain location information, PRS frequency domain location information, PRS sequence identification information, PRS resource identification information, PRS transmission power information, and timing information of the TRP, Quasi-co-located QCL information of the PRS, SSB configuration of the cell where the TRP is located, and CSI-RS configuration of the cell where the TRP is located.
  • the method further includes:
  • the location server receives request information sent by the terminal or the serving base station, where the request information is used for requesting to mute at least one PRS resource.
  • this embodiment is an implementation of the location server corresponding to the embodiment shown in FIG. 5 , and the specific implementation can refer to the relevant description of the embodiment shown in FIG. 5 to achieve the same beneficial effects. In order to avoid The description is repeated and will not be repeated here.
  • the execution subject may be an interference coordination processing apparatus, or a control module in the interference coordination processing apparatus for executing the interference coordination processing method.
  • an interference coordination processing method performed by an interference coordination processing apparatus is used as an example to describe the interference coordination processing apparatus provided in the embodiments of the present application.
  • FIG. 6 is a structural diagram of an interference coordination processing apparatus provided by an embodiment of the present application. As shown in FIG. 6, the interference coordination processing apparatus 600 includes:
  • the first receiving module 601 is configured to receive first indication information, where the first indication information is used to indicate that the positioning reference signal PRS transmitted by the M transmission reception points TRP is the interference resource of the terminal, and the first indication information carries the The first PRS configuration information of the M TRPs, where M is a positive integer.
  • the first PRS configuration information satisfies any of the following:
  • the first PRS configuration information is target PRS configuration information added relative to the second PRS configuration information
  • the first PRS configuration information is PRS configuration information obtained by adding the target PRS configuration information relative to the second PRS configuration information;
  • the second PRS configuration information is PRS configuration information configured by the terminal for positioning measurement.
  • the interference coordination processing apparatus 600 further includes:
  • the first sending module is configured to report the target configuration in the first PRS configuration information to the serving base station.
  • the target configuration includes: at least one of a time domain and a frequency domain location of the PRS.
  • the interference coordination processing apparatus 600 further includes: an execution module configured to execute at least one of the following: the terminal performs PRS interference measurement; the terminal performs PRS interference calculation.
  • the first sending module is further configured to: send target information to the serving base station;
  • the target information is used to indicate whether the terminal can suppress the interference of the PRS transmitted by the M TRPs; or, the target information includes the measurement result obtained by the PRS interference measurement and the interference level obtained by the PRS interference calculation at least one of them.
  • the first PRS configuration information includes: configuration of at least one PRS resource under the first TRP, where the first TRP is any one of the M TRPs.
  • the configuration of the PRS resource includes at least one of the following: PRS time domain location information, PRS frequency domain location information, PRS sequence identification information, PRS resource identification information, PRS transmission power information, TRP timing information, PRS Quasi-co-located QCL information.
  • the first receiving module 601 is further configured to receive second indication information sent by the serving base station; wherein the second indication information is used to indicate: sending downlink resources in the first resource block and the serving base station to all The first resource block is rate matched, and the first resource block is composed of a resource block RB and a symbol where the PRS of the first TRP is located, and the first TRP is any one of the M TRPs.
  • the first sending module is further configured to: send a first request to the location server, where the first request is used to request to mute at least one PRS resource.
  • the first request includes at least one of the following: PRS mute indication; PRS resource configuration, TRP identifier, TRP identifier list, PRS resource set identifier, PRS resource set identifier list, PRS resource identifier, PRS resource identifier list , the muting pattern of the PRS resource expected by the terminal.
  • the behavior of the terminal satisfies at least one of the following:
  • the second TRP is any one of the M TRPs, and the second resource block is composed of a resource block RB where the PRS of the second TRP is located and a symbol.
  • the behavior of the terminal satisfies at least one of the following:
  • the second TRP is any one of the M TRPs, and the second resource block is composed of the RB and the symbol where the PRS of the second TRP is located.
  • the first sending module is further configured to: report capability information;
  • the capability information includes at least one of the following:
  • the third indication information is used to indicate whether the terminal supports interference cancellation of reference signals of neighboring cells
  • the interference coordination processing apparatus provided in the embodiment of the present application can implement each process implemented by the terminal in the method embodiment of FIG. 3 , and to avoid repetition, details are not described here.
  • FIG. 7 is a structural diagram of an interference coordination processing apparatus provided by an embodiment of the present application. As shown in FIG. 7, the interference coordination processing apparatus 700 includes:
  • the second receiving module 701 is configured to receive first indication information sent by the location server, where the first indication information is used to indicate that the positioning reference signal PRS transmitted by the M transmission receiving points TRP is the interference resource of the terminal, and the first indication The information carries the first PRS configuration information of the M TRPs, where M is a positive integer.
  • the first PRS configuration information satisfies any of the following:
  • the first PRS configuration information is target PRS configuration information added relative to the second PRS configuration information
  • the first PRS configuration information is PRS configuration information obtained by adding the target PRS configuration information relative to the second PRS configuration information;
  • the second PRS configuration information is PRS configuration information configured by the terminal for positioning measurement.
  • the PRS configuration information of the first TRP includes: the first PRS configuration information includes: the configuration of at least one PRS resource under the first TRP, where the first TRP is any one of the M TRPs TRP.
  • the configuration of the PRS resource includes at least one of the following: PRS time domain location information, PRS frequency domain location information, PRS sequence identification information, PRS resource identification information, PRS transmission power information, and timing information of the TRP, Quasi-co-located QCL information of the PRS, SSB configuration of the cell where the TRP is located, and CSI-RS configuration of the cell where the TRP is located.
  • the interference coordination processing apparatus 700 further includes:
  • the second sending module is configured to send a second request to the location server, where the second request is used to request to mute at least one PRS resource.
  • the second sending module is further configured to send the first indication information to the terminal.
  • the second receiving module 701 is further configured to: receive target information sent by the terminal;
  • the target information is used to indicate whether the terminal can suppress the interference of the PRS transmitted by the M TRPs; or, the target information includes the measurement result obtained by the PRS interference measurement and the interference level obtained by the PRS interference calculation at least one of them.
  • the first sending module is further configured to: send second indication information to the terminal;
  • the second indication information is used to indicate that the downlink resource is sent in the first resource block and the serving base station performs rate matching on the first resource block, and the first resource block is the resource where the PRS of the first TRP is located.
  • a block RB and a symbol are composed, and the first TRP is any one of the M TRPs.
  • the interference coordination processing apparatus provided in this embodiment of the present application can implement each process implemented by the serving base station in the method embodiment of FIG. 4 , and to avoid repetition, details are not described here.
  • FIG. 8 is a structural diagram of an interference coordination processing apparatus provided by an embodiment of the present application.
  • the interference coordination processing apparatus 800 includes:
  • the third sending module 801 is configured to send first indication information to the terminal or the serving base station, where the first indication information is used to indicate that the positioning reference signal PRS transmitted by the M transmission and reception points TRP is the interference resource of the terminal, and the first indication information
  • the indication information carries the first PRS configuration information of the M TRPs, where M is a positive integer.
  • the first PRS configuration information satisfies any of the following:
  • the first PRS configuration information is target PRS configuration information added relative to the second PRS configuration information
  • the first PRS configuration information is PRS configuration information obtained by adding the target PRS configuration information relative to the second PRS configuration information;
  • the second PRS configuration information is PRS configuration information configured by the terminal for positioning measurement.
  • the first PRS configuration information includes: configuration of at least one PRS resource under the first TRP, where the first TRP is any one of the M TRPs.
  • the configuration of the PRS resource includes at least one of the following: PRS time domain location information, PRS frequency domain location information, PRS sequence identification information, PRS resource identification information, PRS transmission power information, and timing information of the TRP, Quasi-co-located QCL information of the PRS, SSB configuration of the cell where the TRP is located, and CSI-RS configuration of the cell where the TRP is located.
  • the interference coordination processing apparatus 800 further includes:
  • the third receiving module is configured to receive request information sent by the terminal or the serving base station, where the request information is used to request to mute at least one PRS resource.
  • the interference coordination processing apparatus provided in the embodiment of the present application can implement each process implemented by the location server in the method embodiment of FIG. 5 , and to avoid repetition, details are not described here.
  • the interference coordination processing apparatus in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the interference coordination processing apparatus in this embodiment of the present application may be an apparatus having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the interference coordination processing apparatus provided by the embodiments of the present application can implement the various processes implemented by the method embodiments in FIG. 3 to FIG. 5 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • an embodiment of the present application further provides a communication device 900, including a processor 901, a memory 902, a program or instruction stored in the memory 902 and executable on the processor 901,
  • a communication device 900 including a processor 901, a memory 902, a program or instruction stored in the memory 902 and executable on the processor 901,
  • the program or instruction is executed by the processor 901
  • each process of the above-mentioned embodiment of the interference coordination processing method can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal implementing various embodiments of the present application.
  • the terminal 1000 includes but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, a processor 1010 and other components.
  • the terminal 1000 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 1010 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 10 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1004 may include a graphics processor (Graphics Processing Unit, GPU) 10041 and a microphone 10042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1006 may include a display panel 10061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes a touch panel 10071 and other input devices 10072 .
  • the touch panel 10071 is also called a touch screen.
  • the touch panel 10071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 10072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1001 receives the downlink data from the network side device, and then processes it to the processor 1010; in addition, sends the uplink data to the serving base station.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1009 may be used to store software programs or instructions as well as various data.
  • the memory 109 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1009 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1010.
  • the radio frequency unit 1001 is configured to receive first indication information, where the first indication information is used to indicate that the positioning reference signals PRS transmitted by the M transmission and reception points TRP are interference resources, and the first indication information carries the M TRPs
  • the first PRS configuration information, M is a positive integer.
  • the above-mentioned processor 1010 and the radio frequency unit 1001 can implement each process implemented by the terminal in the method embodiment of FIG. 3 , which is not repeated here to avoid repetition.
  • the serving base station 1100 includes: an antenna 1101 , a radio frequency device 1102 , and a baseband device 1103 .
  • the antenna 1101 is connected to the radio frequency device 1102 .
  • the radio frequency device 1102 receives information through the antenna 1101, and sends the received information to the baseband device 1103 for processing.
  • the baseband device 1103 processes the information to be sent and sends it to the radio frequency device 1102
  • the radio frequency device 1102 processes the received information and sends it out through the antenna 1101 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 1103, and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 1103, where the baseband apparatus 1103 includes a processor 1104 and a memory 1105.
  • the baseband device 1103 may include, for example, at least one baseband board on which multiple chips are arranged, as shown in FIG. 11 , one of the chips is, for example, the processor 1104 , which is connected to the memory 1105 to call the program in the memory 1105 to execute The serving base station shown in the above method embodiments operates.
  • the baseband device 1103 may further include a network interface 1106 for exchanging information with the radio frequency device 1102, and the interface is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present application further includes: instructions or programs that are stored in the memory 1105 and run on the processor 1104, and the processor 1104 invokes the instructions or programs in the memory 1105 to execute the modules shown in FIG. 4 .
  • the serving base station 1200 includes: an antenna 1201 , a radio frequency device 1202 , and a baseband device 1203 .
  • the antenna 1201 is connected to the radio frequency device 1202 .
  • the radio frequency device 1202 receives information through the antenna 1201, and sends the received information to the baseband device 1203 for processing.
  • the baseband device 1203 processes the information to be sent and sends it to the radio frequency device 1202
  • the radio frequency device 1202 processes the received information and sends it out through the antenna 1201 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 1203 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 1203 .
  • the baseband apparatus 1203 includes a processor 1204 and a memory 1205 .
  • the baseband device 1203 may include, for example, at least one baseband board on which a plurality of chips are arranged, as shown in FIG. 12 , one of the chips is, for example, the processor 1204 , which is connected to the memory 1205 to call the program in the memory 1205 to execute The serving base station shown in the above method embodiments operates.
  • the baseband device 1203 may further include a network interface 1206 for exchanging information with the radio frequency device 1202, and the interface is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present application further includes: instructions or programs that are stored in the memory 1205 and run on the processor 1204 , and the processor 1204 calls the instructions or programs in the memory 1205 to execute the modules shown in FIG. 5 .
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the above-mentioned embodiment of the interference coordination processing method is implemented, and can achieve The same technical effect, in order to avoid repetition, will not be repeated here.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used for running network-side device programs or instructions to implement the above interference coordination processing
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used for running network-side device programs or instructions to implement the above interference coordination processing
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种干扰协调处理方法及相关设备,该方法包括:接收第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为干扰资源,所述第一指示信息携带有M个TRP的第一PRS配置信息,M为正整数。

Description

干扰协调处理方法及相关设备
相关申请的交叉引用
本申请主张在2020年7月28日在中国提交的中国专利申请号No.202010739889.0的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,尤其涉及一种干扰协调处理方法及相关设备。
背景技术
随着通信技术的发展,在无线通信***,如新空口(New Radio,NR)***中,引入按需(On demand)定位需求。这样,可以按照区域增加或减少定位参考信号(Positioning reference signal,PRS)配置。然而,增加或减少PRS配置会对区域边缘的终端(User Equipment,UE)的接收造成干扰。因此,现有技术中存在on demand PRS发送,对终端接收数据的干扰较大的问题。
发明内容
本申请实施例的目的是提供一种干扰协调处理方法及相关设备,能够解决现有技术中on demand PRS发送,对终端接收数据的干扰较大的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,提供了一种干扰协调处理方法,包括:
终端接收第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为干扰资源,所述第一指示信息携带有M个TRP的第一PRS配置信息,M为正整数。
第二方面,提供了一种干扰协调处理方法,包括:
服务基站接收位置服务器发送的第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为终端的干扰资源,所述第一指示信息携带有M个TRP的第一PRS配置信息,M为正整数。
第三方面,提供了一种干扰协调处理方法,包括:
位置服务器向终端或者服务基站发送第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为终端的干扰资源,所述第一指示信息携带有M个TRP的第一PRS配置信息,M为正整数。
第四方面,提供了一种干扰协调处理装置,包括:
第一接收模块,用于接收第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为终端的干扰资源,所述第一指示信息携带有M个TRP的第一PRS配置信息,M为正整数。
第五方面,提供了一种干扰协调处理装置,包括:
第二接收模块,用于接收位置服务器发送的第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为终端的干扰资源,所述第一指示信息携带有M个TRP的第一PRS配置信息,M为正整数。
第六方面,提供了一种干扰协调处理装置,包括:
第三发送模块,用于向终端或者位置服务器发送第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为终端的干扰资源,所述第一指示信息携带有M个TRP的第一PRS配置信息,M为正整数。
第七方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第八方面,提供了一种服务基站,该服务基站包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第九方面,提供了一种位置服务器,该位置服务器包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面至第三方面所述的方法的步骤。
第十一方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现如第二方面或第三方面所述的方法。
第十二方面,提供了一种干扰协调处理方法,包括:
终端接收第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的下行参考信号为干扰资源,所述第一指示信息携带有M个传输接收点TRP的第一下行参考信号配置信息,M为正整数。
第十三方面,提供了一种干扰协调处理方法,包括:
向终端发送第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的下行参考信号为终端的干扰资源,所述第一指示信息携带有M个传输接收点TRP的第一下行参考信号配置信息,M为正整数。
第十四方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第十二方面所述的方法的步骤。
第十五方面,提供了一种服务基站,该服务基站包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第十三方面所述的方法的步骤。
本申请实施例通过接收第一指示信息,通过第一指示信息指示M个TRP传输的PRS为干扰资源,且在第一指示信息中携带M个TRP的第一PRS配置信息,这样可以便于终端进行干扰协调,以减小on demand PRS对终端接收数据的干扰。
附图说明
图1是本申请实施例可应用的一种网络***的结构图;
图2是本申请实施例可应用的一种区域划分示例图;
图3是本申请实施例提供的一种干扰协调处理方法的流程图之一;
图4是本申请实施例提供的一种干扰协调处理方法的流程图之二;
图5是本申请实施例提供的一种干扰协调处理方法的流程图之三;
图6是本申请实施例提供的一种干扰协调处理装置的结构图之一;
图7是本申请实施例提供的一种干扰协调处理装置的结构图之二;
图8是本申请实施例提供的一种干扰协调处理装置的结构图之三;
图9是本申请实施例提供的一种通信设备的结构图;
图10是本申请实施例提供的一种终端的结构图;
图11是本申请实施例提供的一种服务基站的结构图;
图12是本申请实施例提供的一种位置服务器的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR 术语,尽管这些技术也可应用于NR***应用以外的应用,如第6代(6th Generation,6G)通信***。
图1示出本申请实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网设备,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例,但是并不限定基站的具体类型。其中,核心网设备可以为位置服务器,可以是LTE中的位置服务器(Evolved Serving Mobile Location Centre,E-SMLC),也可以是NR中的位置服务器(Location Management Function,LMF),也可以是后续演进版本中的位置服务器。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
一、NR重新设计了基于NR***的下行(Downlink,DL)PRS。
1、PRS支持在频率范围(Frequency range,FR)1最大100M以及FR2最大400M传输。NR PRS带宽配置与带宽部分(Bandwidth Part,BWP)配置无关,当PRS带宽大于BWP带宽时,支持UE使用测量间隙(Measurement Gap)对PRS进行测量。
2、PRS支持波束赋形,引入了PRS资源(resource)的概念。PRS resource标识(ID)可以对应1个TRP中的1个波束。1个或多个PRS resource可以组成1个PRS资源集(resource set),或者说1个PRS resource set内可以包含1个或多个PRS resource。一个TRP可以包含1个或多个PRS resource。同时,为了增加UE的可听性,支持PRS波束扫描以及PRS波束重复。另外,支持PRS参考邻小区RS作为空间准共址(Quasi co-location,QCL)参考信号。
3、PRS支持交错的模式(pattern)并且支持灵活的pattern配置。PRS resource的梳(comb)结构可以支持{2,4,6,12};符号(symbol)数至少可以支持{2,4,6,12}。目前支持的symbol数与comb大小(size)的组合如下:
  2symbols 4symbols 6symbols 12symbols
Comb-2 {0,1} {0,1,0,1} {0,1,0,1,0,1} {0,1,0,1,0,1,0,1,0,1,0,1}
Comb-4 NA {0,2,1,3} NA {0,2,1,3,0,2,1,3,0,2,1,3}}
Comb-6 NA NA {0,3,1,4,2,5} {0,3,1,4,2,5,0,3,1,4,2,5}
Comb-12 NA NA NA {0,6,3,9,1,7,4,10,2,8,5,11}
二、关于DL PRS重复(repetition)。
引入了2个新的参数:DL PRS资源重复因子(DL-PRS-ResourceRepetitionFactor)和:DL PRS资源时间间隔(DL-PRS-ResourceTimeGap)。
其中,DL-PRS-ResourceRepetitionFactor用于控制DL PRS resource重复的次数,次数可以为1、2、4、6、8、16和32。重复的DL PRS resource的resource ID相同。
‘DL-PRS-ResourceTimeGap’表示2个重复的DL PRS resource之间的间隔,取值可以为1、2、4、6、8、16和32,单位为时隙(slot)。这个参数只有在‘DL-PRS-ResourceRepetitionFactor’被配置了且取值大于1时才提供给UE。
1个PRS resource set包含重复的DL PRS resource的时间跨度不应该超过DL PRS的周期。
三、DL PRS静音(muting),或称为DL PRS抑制。
为了减小小区中干扰,引入了PRS muting的机制。当某2个小区的PRS频域位置相同时,服务基站可以配置其中一个邻小区的PRS在某段时间内muting(即不发送任何PRS信号),这样可以保证UE可以准确接收另一个小区的PRS信号而不受到小区间干扰。
NR重新定义muting的配置方式,具体地:
PRS muting可配置在‘DL PRS resource set’level,可以通过bitmap表示,并支持以下选项(Option):
Option1:位图(bitmap)中的每1个bit对应DL PRS resource set的1个或多个连续的周期是否muting。第1个bit可以表示DL PRS resource set开始的1个或多个周期是否muting,第2个bit表示DL PRS resource set后续的1个或多个周期是否muting,依次类推。当这个bit设为0,UE可认为这段时间内所有的DL PRS resource都muting。
其中,连续的周期长度由高层参数‘DL-PRS-MutingBitRepetitionFactor’指示。
Option2:bitmap的长度等于‘DL-PRS-ResourceRepetitionFactor’。Bitmap中某个比特(bit)代表多个重复的DL PRS resource中的某个resource是否muting。
四、关于TRP。
传输点(TP):一个小区,一个小区的一部分或一个仅DL-PRS的TP的一组地理上共处的发射天线(例如天线阵列,该天线阵列带有一个或多个天线单元)。传输点可以包括基站(ng-eNB或gNB)天线,远程无线电头,基站的远程天线,仅DL-PRS TP的天线等。一个小区可以包括一个或多个传输点。对于同构部署,每个传输点可以对应一个小区。
接收点(RP):一个小区,一个小区的一部分或一个仅用于UL-SRS的RP的一组地理位置上共处一处的接收天线(例如天线阵列)。接收点可以包括基站(ng-eNB或gNB)天线,远程无线电头,基站的远程天线,仅上行探测参考信号(UL-SRS)RP的天线等。一个小区可以包括一个或多个接收点。对于同构部署,每个接收点可以对应一个小区。
仅PRS的TP:一种TP,仅发送PRS信号用于基于PRS的TBS定位, 并且不与小区相关联。
传输接收点(TRP):支持TP和/或RP功能的一组地理位置在同一地点的天线(例如天线阵列)。
五、按需(On demand)PRS。
通常的,PRS发送以广播的形式发送,PRS配置相对固定,不支持灵活地更改PRS配置,这可能会造成一些资源的浪费。例如,服务基站在某个区域内配置了128个TRP发送带宽较大的PRS,而在这个区域内,只有一部分UE的定位精度要求较高,或者只有一部分UE有定位需求,那么为了这一部分UE而使得整个区域内覆盖大带宽的PRS是不值得的。又比如,为了减少开销,某区域内配置了带宽较小的PRS,而其中一些UE有较强的定位精度、时延需求或功耗需求,现有协议无法支持灵活地配置满足这些UE需求的PRS。
专门针对某个或某些UE的定位需求,灵活增加或减少PRS配置。例如,网络开始部署带宽较小的PRS,而对于某个定位精度要求较高的UE,通过信令为该UE配置专门的带宽较大的PRS。为此,讨论是否引入on demand PRS。
若引入on demand PRS,On demand PRS配置后遇到的干扰问题:如图2所示,比如一个区域201(也可以称为on demand定位区域)内,在原PRS配置基础上,增加PRS配置(例如增加带宽,PRS中心频点不变,带宽由20MHz变为100MHz),变为on demand PRS配置。那么在这个区域内TRP均以100MHz的带宽发送PRS。而在这个区域外(例如区域202),由于没有on demand定位需求,TRP发送的PRS仍然按照常规PRS的配置20MHz发送。
在这个区域边缘的TRP的resources,由于配置改变(增加带宽至100M)就会对区域202的终端2造成一定干扰。因为对区域202的TRP仍然按照20M带宽发送PRS,终端2仍然按照20M带宽接收PRS,而区域201边缘100M带宽的PRS则会对终端2的20M带宽外的其他信号传输(比如数据传输)造成干扰。为此提出本申请的干扰协调处理方法。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的干扰协调处理方法进行详细地说明。
本申请实施例提供的一种干扰协调处理方法,包括以下步骤:终端接收 第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的下行参考信号为干扰资源,所述第一指示信息携带有M个传输接收点TRP的第一下行参考信号配置信息,M为正整数。其中,下行参考信号包括:PRS、CSI-RS或SSB。下面以PRS为例进行说明,CSI-RS或SSB可以通过相似的方式实现。
可选地,若参考信号包含SSB,则某个TRP下的SSB的配置至少包含以下之一:SSB所在小区的物理小区标识PCI、SSB绝对频点位置、SSB半帧指示、SSB周期、SSB子载波间隔、SSB监听时间窗(SMTC)、SSB在SSB burst中的位置(ssb-PositionsInBurst,是个bitmap,用于指示SSB Burst中某个SSB是否发送,0代表不发送,1代表发送)、SSB发送功率、SSB的SFN偏移(SFN-SSBoffset with values{0,1,2,…15})、SSB index、TRP的定时信息等。那么本申请方案中的干扰协调处理方法中对PRS干扰抑制同样适用于的SSB。
可选地,若下行参考信号包含CSI-RS,则某个TRP下的CSI-RS的配置至少包含以下之一:CSI-RS index、CSI-RS所在小区的PCI、CSI-RS参考点pointA位置、CSI-RS起始PRB位置、CSI-RS带宽RB数、CSI-RS子载波间隔、CSI-RS周期、CSI-RS映射图样、CSI-RS发送功率、TRP的定时信息等。那么本申请方案中的干扰协调处理方法中对PRS干扰抑制同样适用于的CSI-RS。
其中,TRP的定时信息可以为:发送PRS的TRP的SFN0的时隙0与UE服务小区的SFN0时隙0的偏移,或者TRP所在小区的SFN0的时隙0与UE服务小区的SFN0时隙0的偏移。
请参见图3,图3是本申请实施例提供的一种干扰协调处理方法的流程图,如图3所示,包括以下步骤:
步骤301,终端接收第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为干扰资源,所述第一指示信息携带有所述M个TRP的第一PRS配置信息,M为正整数。
本申请实施例中,上述M个TRP可以理解为某个定位区域内的TRP,例如该定位区域可以为on demand定位区域P,在这个on demand定位区域 内的定位参考信号可以是On demand PRS,此时,上述第一PRS配置信息可以理解为On demand PRS配置信息。上述终端可以理解为位于该定位区域的外部边缘的终端,也就是说,所述终端位于所述定位区域外,且距离所述定位区域的边缘的距离小于预设值。
应理解,上述M个TRP可以理解为该终端邻近的TRP。即将终端邻近的TRP配置信息通过第一指示信息发送给该终端。终端邻近的TRP可以理解为距离终端小于预设值的TRP。该预设值的大小可以根据实际需要进行设置,在此不做进一步的限定。
可选地,一实施例中,可以在第一指示信息中携带指示标识,通过指示标识显示指示M个TRP传输的PRS为干扰资源。在另一实施例中,还可以直接通过M个TRP的第一PRS配置信息隐性的指示M个传输接收点TRP传输的PRS为干扰资源。即终端可以基于该第一PRS配置信息可以确定当前接收的第一指示信息中M个TRP传输的PRS是否为干扰资源。
在终端收到上述第一指示信息后,可以根据该根据第一指示信息执行干扰协调计算,而不是执行定位测量,因此也无需向定位服务器上报定位测量结果。例如,当终端接收到该指示后,根据该指示判断,终端不执行On demand定位测量。
应理解,上述第一指示信息可以服务基站进行发送,也可以由位置服务器进行发送。当第一指示信息由服务基站进行发送时,服务基站可以首先接收位置服务器发送的第一指示信息,然后向终端转发该第一指示信息。其中,位置服务器向服务基站发送的第一指示信息与服务基站向终端发送的第一指示信息可以相同,也可以调整其中的部分参数,在此不做进一步的限定。
可选地,位置服务器与UE之间的信令包含但不限于以下之一:
LTE定位协议(LTE Positioning Protocol,LPP)、NR定位协议(NR Positioning Protocol,NRPP)、NRPPa与第一信令的组合以及LPPa与第一信令的组合。其中第一信令为服务基站与终端之间的信令。服务基站可以通过第一信令发送第一指示信息给终端。
可选地,服务基站与终端之间的信令包括但不限于以下之一:无线资源控制(Radio Resource Control,RRC)、媒体接入控制控制单元(Medium Access  Control Control Element,MAC CE)、下行控制信息(Downlink Control Information,DCI)、消息(Msg)1、Msg3、广播信令和寻呼(Paging)。
可选地,上述位置服务器与服务基站之间的通信信令包括但不限于以下之一:
LTE定位协议A(LTE Positioning Protocol A,LPPa)、NR定位协议A(NR Positioning Protocol A,NRPPa)。
其中,一实施例中,上述位置服务器可以通过LPPa指示邻近TRP或邻近TRP关联的gNB,邻近TRP或邻近TRP关联的gNB将邻近TRP的PRS配置通过Xn接口发送给gNB。
另一实施例中,位置服务器可以通过核心网接口将邻近TRP的PRS配置发送给服务gNB或UE所在的位置服务器,再通过LPPa信令发送至服务gNB。
本申请实施例通过接收第一指示信息,通过第一指示信息指示M个TRP传输的PRS为干扰资源,且在第一指示信息中携带M个TRP的第一PRS配置信息,这样可以便于终端进行干扰协调,以减小on demand PRS对终端接收数据的干扰。
可选地,在一实施例中,所述第一PRS配置信息满足以下任一项:
所述第一PRS配置信息为相对于第二PRS配置信息增加的目标PRS配置信息;
所述第一PRS配置信息为相对于第二PRS配置信息增加所述目标PRS配置信息后的PRS配置信息;
其中,所述第二PRS配置信息为所述终端配置用于定位测量的PRS配置信息。
在一实施例中,终端当前没有任何PRS配置信息,则第二PRS配置信息为空集,此时可以理解为终端没有M个传输接收点TRP的PRS配置信息,则M个传输接收点TRP的任何PRS配置都为增加的配置信息,上述第一PRS配置信息可以为M个传输接收点TRP的全部PRS配置信息。
在另一实施例中,终端当前的PRS配置信息包含部分该M个传输接收点TRP的PRS配置信息,此时第一PRS配置信息可以为M个TRP的全部 配置或者相对于第二PRS配置信息增加的PRS配置信息。例如,终端现有配置的第二PRS配置信息为:M个TRP的某个PRS resource带宽为20M的配置,那么指示的第一PRS配置信息为该PRS resource带宽变为100M增加或增加后的配置。或者,终端现有配置的第二PRS配置信息为:邻近TRP的某个resource周期为160ms的配置,那么指示的第一PRS配置信息为该PRS resource周期变为80ms后增加或增加后的配置。
可选地,在一实施例中,第一PRS配置信息包括:第一TRP下至少1个PRS资源的配置,其中,所述第一TRP为所述M个TRP中任一个TRP。
应理解,上述第一PRS配置信息包括了每一TRP对应的PRS配置信息,其中,各个TRP对应的PRS配置信息可以存在部分或者全部的PRS配置信息相同,也可以所有的TRP对应的PRS配置信息均不同,在此不做进一步的限定。
本实施例中,上述第一PRS配置信息可以是某个PRS资源的配置,也可以是多个PRS资源的配置,还可以是某个PRS资源集中的全部或者该第一TRP下全部PRS资源的配置。也就是说,上述第一PRS配置信息包括以下任一项:
某N个PRS资源的配置,N为正整数,其中N个PRS资源可以来自同一个资源集或不同的资源集;
某PRS资源集中的全部PRS资源的配置;
所述第一TRP关联的全部PRS资源的配置。
应理解,PRS资源的配置可以包含该PRS资源特有的配置,也可包含一个资源集、一个TRP或者一个定位频率层(positioning frequency layer)的公共配置。上述PRS资源的配置具体包含的信息可以根据实际需要进行设置,例如,在一实施例中,上述PRS资源的配置包括以下至少一项:PRS时域位置信息,PRS频域位置信息,PRS序列标识信息,PRS资源标识信息,PRS发送功率信息,TRP的定时信息,PRS的准共址(Quasi co-location,QCL)信息,TRP所在小区的SSB配置,TRP所在小区的CSI-RS配置。
其中,PRS资源标识信息包括NR小区全球标识符(NR Cell Global Identifier,NCGI)、物理小区标识符(Physical Cell Identifier,PCI)、TRP标 识(Identifier,ID)、resource set ID和resource ID其中至少之一。PRS发送功率信息可以为绝对功率,也可以为相对功率。QCL信息中QCL参考信号包含但不限于邻小区的同步信号块(Synchronization Signal and PBCH block,SSB)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)和邻小区的其他定位参考信号PRS至少之一。
其中,PRS时域位置信息包含但不限于以下至少之一:PRS周期、周期偏移、PRS资源重复因子、PRS资源重复间隔、PRS静音图样(muting pattern)、PRS传输小区与参考小区的***帧号(System frame number,SFN)0时隙0的偏移、PRS资源时隙偏移、PRS符号数、PRS符号起始位置等。PRS频域位置信息包含但不限于以下至少之一:PRS子载波间隔、PRS CP类型、PRS参考点A、PRS梳状结构类型、PRS带宽的RB数、PRS频域起始RB位置、PRS起始资源粒子(Resource element,RE)偏移、定位频率层标识等。
其中,TRP的定时信息可以为:发送PRS的TRP的SFN0的时隙0与UE服务小区的SFN0时隙0的偏移,或者TRP所在小区的SFN0的时隙0与UE服务小区的SFN0时隙0的偏移。
可选地,在一实施例中,PRS资源的配置中可以包含TRP所在小区的SSB配置(PRS配置中直接包含的SSB配置或者PRS配置中QCL信息中包含的SSB配置)。其中,SSB配置包含但不限于以下之一:SSB所在小区的物理小区标识PCI、SSB绝对频点位置、SSB半帧指示、SSB周期、SSB子载波间隔、SSB监听时间窗(SMTC)、SSB在SSB burst中的位置(ssb-PositionsInBurst,是个bitmap,用于指示SSB Burst中某个SSB是否发送,0代表不发送,1代表发送)、SSB发送功率、SSB的SFN偏移(SFN-SSBoffset with values{0,1,2,…15})和SSB index等。
可选地,在一实施例中,PRS资源的配置中可以包含TRP所在小区的CSI-RS(如CSI-RS for mobility,用于移动性管理的CSI-RS)配置(PRS配置中直接包含的CSI-RS配置或者PRS配置中QCL信息中包含的CSI-RS配置),则该CSI-RS配置包含但不限于以下之一:CSI-RS index、CSI-RS所在小区的PCI、CSI-RS参考点pointA位置、CSI-RS起始PRB位置、CSI-RS带宽RB数、CSI-RS子载波间隔、CSI-RS周期、CSI-RS映射图样、CSI-RS发 送功率等。
可选地,若PRS资源的配置中包含TRP所在小区的SSB配置,则隐式指示了SSB也为干扰资源(UE或服务基站也应假设SSB为干扰资源)。那么本申请方案中的干扰协调处理方法中对PRS干扰抑制同样适用于TRP所在小区的SSB。
可选地,若PRS资源的配置中包含TRP所在小区的CSI-RS配置,则隐式指示了SSB也为干扰资源(UE或服务基站也应假设CSI-RS为干扰资源)。那么本申请方案中的干扰协调处理方法中对PRS干扰抑制同样适用于TRP所在小区的CSI-RS。
可选地,在所述第一指示信息由位置服务器发送的情况下,所述接收第一指示信息之后,所述方法还包括:
终端将所述第一PRS配置信息中的目标配置上报服务基站。
上述目标配置包括但不限于:PRS的时域和频域位置其中至少之一。上述目标配置用于辅助服务基站在确定M个TRP的时频位置后,确定干扰协调的处理行为。例如,可以包括以下至少一项:确定是否发送下行资源;确定如何发送下行资源;确定是否配置下行资源;确定是否发送下行资源;确定是否调度下行资源;确定如何调度下行资源。其中,该下行资源可以包括但不限于以下至少之一:物理下行共享信道(Physical downlink shared channel,PDSCH)、物理下行控制信道(Physical downlink control channel,PDCCH)和其他下行参考信号(如CSI-RS、DMRS等)。
可选的,若PRS资源的配置中包含了TRP所在小区的SSB的配置,终端还将至少部分SSB的配置上报服务基站。
可选的,若PRS资源的配置中包含了TRP所在小区的CSI-RS的配置,终端还将至少部分CSI-RS的配置上报服务基站。
本实施例中,终端上报目标配置给服务基站,从而可以辅助服务基站分配服务小区的下行资源。此外,还可以由服务基站根据该目标配置向位置服务器发送请求,以请求对M个TPR中的至少一个TRP传输的PRS资源进行静音。
可选地,在一实施例中,所述接收第一指示信息之后,所述方法还包括 以下至少一项:终端执行PRS干扰测量;终端执行PRS干扰计算。
本申请实施例中,上述PRS干扰测量可以包括以下至少一项:参考信号接收功率(Reference Signal Received Power,RSRP)测量、参考信号接收质量(Reference Signal Received Quality,RSRQ)测量、接收信号强度指示(Received Signal Strength Indication,RSSI)测量、信号与干扰加噪声比(signal-to-noise and interference ratio,SINR)测量和到达时间(time of arrival,ToA)测量。
可选的,若PRS资源的配置中包含了TRP所在小区的SSB的配置,接收到第一指示信息后,终端还执行SSB的干扰测量和SSB的干扰计算其中之一。
可选的,若PRS资源的配置中包含了TRP所在小区的CSI-RS的配置,接收到第一指示信息后,终端还执行CSI-RS的干扰测量和SSB的干扰计算其中之一。
进一步的,在执行PRS干扰测量PRS干扰测量之后,所述方法还包括:
终端向服务基站发送目标信息;
其中,所述目标信息用于指示所述终端是否能够抑制所述M个TRP传输的PRS的干扰;或者,所述目标信息包括所述PRS干扰测量获得的测量结果和PRS干扰计算获得的干扰水平其中至少之一。
可选的,若PRS资源的配置中包含了TRP所在小区的SSB的配置,目标信息中还包含是否能够抑制SSB的干扰,或者目标信息包括所述SSB干扰测量获得的测量结果和SSB干扰计算获得的干扰水平其中至少之一。
可选的,若PRS资源的配置中包含了TRP所在小区的CSI-RS的配置,目标信息中还包含是否能够抑制CSI-RS的干扰,或者目标信息包括所述CSI-RS干扰测量获得的测量结果和CSI-RS干扰计算获得的干扰水平其中至少之一。
本实施例中,当目标信息指示所述终端是否能够抑制所述M个TRP传输的PRS的干扰,可以理解为由终端确定是否抑制PRS干扰。当目标信息包括所述PRS干扰测量获得的测量结果和PRS干扰计算获得的干扰水平其中至少之一时,可以理解为由服务基站决定是否抑制PRS干扰和/或发送下行资 源。
可选的,终端在发送目标信息前,可以收到来自服务基站的请求信令,用于请求终端发送目标信息。
可选地,所述终端接收第一指示信息之后,所述方法还包括:
终端接收服务基站发送的第二指示信息,其中,所述第二指示信息用于指示:在第一资源块发送下行资源以及服务基站对所述第一资源块进行了速率匹配(rate matching),所述第一资源块由第一TRP的PRS所在的资源块(Resource block,RB)和符号组成,所述第一TRP为所述M个TRP中任一个TRP。即下行资源不映射该资源块中PRS所在的RE上,换句话说,下行资源在该资源块映射时绕开了PRS所在的RE位置。
可选的,若PRS资源的配置中包含了TRP所在小区的SSB的配置,述第二指示信息还用于指示:在第二资源块发送下行资源以及服务基站对所述第二资源块进行了速率匹配(rate matching),所述第二资源块由第一TRP的SSB所在的资源块(Resource block,RB)和符号组成,所述第一TRP为所述M个TRP中任一个TRP。
可选的,若PRS资源的配置中包含了TRP所在小区的CSI-RS的配置,所述第二指示信息还用于指示:在第二资源块发送下行资源以及服务基站对所述第二资源块进行了速率匹配,所述第二资源块由第一TRP的CSI-RS所在的RB和符号组成,所述第一TRP为所述M个TRP中任一个TRP。
本实施例中,上述第二指示信息的接收可以在终端发送上述目标配置之后,也可以在终端完成上述PRS干扰测量和/或基于PRS干扰测量完成对应的上报之后,在此不做进一步的限定。
进一步的,所述终端接收第一指示信息之后,所述方法还包括:
终端向位置服务器发送第一请求,所述第一请求用于请求对至少一个PRS资源进行静音(muting)。
本实施例中,在终端期望对一个或者多个PRS资源进行静音时,可以由终端请求对至少一个PRS资源进行静音。例如,UE无法处理干扰的问题,希望减少邻近TRP传输PRS的干扰。对PRS资源进行静音可以理解为不发送对应的PRS资源。当然在其他实施例中还可以由服务基站向位置服务器发 送第二请求,通过第二请求进行请求对至少一个PRS资源进行静音,所述第二请求可以在服务基站收到位置服务器发送M个TRP的PRS干扰资源后。
上述PRS资源可以包括上述M个TRP传输的PRS所在的资源。
可选地,所述第一请求包括以下至少一项:PRS静音指示,PRS资源的配置,TRP标识,TRP标识列表,PRS资源集标识,PRS资源集标识列表,PRS资源标识,PRS资源标识列表,终端期望的PRS资源静音图样。
其中,UE期望的PRS资源的静音图样可以是一个Bitmap,表示M个TRP中某个TRP中某个资源集中的PRS资源UE期望是否发送的情况,bitmap中每Bit代表对应的资源UE是否期望发送。Bitmap长度等于该资源集中PRS资源的数量或者等于第一指示信息中指示的PRS资源的数量。
本实施例中,第一请求中携带的PRS资源的配置可以为第一PRS配置信息中的至少部分PRS资源的配置,用于指示位置服务器,muting掉这部分配置对应的PRS。比如,第一请求中携带的PRS资源的配置为PRS resource某段带宽,则请求muting掉该PRS resource这段带宽的resource。
进一步的,在所述第一PRS配置信息包括第二TRP的PRS时频位置的情况下,所述终端的行为满足以下至少一项:
不期望在第二资源块接收下行资源;
不期望在所述第二TRP的PRS所在的资源粒子RE位置接收下行资源;
不期望在所述第二TRP的PRS所在的符号上接收下行资源;
期望在所述第二资源块执行速率匹配;
其中,所述第二TRP为所述M个TRP中的任一个TRP,所述第二资源块为由所述第二TRP的PRS所在的资源块RB和符号组成。
可选的,在所述第一PRS配置信息包括第二TRP的SSB时频位置的情况下,所述终端的行为满足以下至少一项:
不期望在第二资源块接收下行资源;
不期望在所述第二TRP的SSB所在的资源粒子RE位置接收下行资源;
不期望在所述第二TRP的SSB所在的符号上接收下行资源;
期望在所述第二资源块执行速率匹配;
其中,所述第二TRP为所述M个TRP中的任一个TRP,所述第二资源 块为由所述第二TRP的PRS所在的资源块RB和符号组成。
可选的,在所述第一PRS配置信息包括第二TRP的CSI-RS时频位置的情况下,所述终端的行为满足以下至少一项:
不期望在第二资源块接收下行资源;
不期望在所述第二TRP的CSI-RS所在的资源粒子RE位置接收下行资源;
不期望在所述第二TRP的CSI-RS所在的符号上接收下行资源;
期望在所述第二资源块执行速率匹配;
其中,所述第二TRP为所述M个TRP中的任一个TRP,所述第二资源块为由所述第二TRP的PRS所在的资源块RB和符号组成。
进一步地,还可以上述终端的行为限制还可以是在终端不支持邻小区参考信号干扰消除的情况下的行为限制,也就是说,一实施例中,在所述终端不支持邻小区参考信号干扰消除、且所述第一PRS配置信息包括第二TRP的PRS时频位置情况下,终端的行为满足以下至少一项:
不期望在第二资源块接收下行资源;
不期望在所述第二TRP的PRS所在的RE位置接收下行资源;
不期望在所述第二TRP的PRS所在的符号上接收下行资源;
期望在所述第二资源块执行速率匹配;
其中,所述第二TRP为所述M个TRP中的任一个TRP,所述第二资源块为由所述第二TRP的PRS所在的RB和符号组成。
可选地,在所述终端不支持邻小区参考信号干扰消除、且所述第一PRS配置信息包括第二TRP的SSB时频位置情况下,终端的行为满足以下至少一项:
不期望在第二资源块接收下行资源;
不期望在所述第二TRP的SSB所在的RE位置接收下行资源;
不期望在所述第二TRP的SSB所在的符号上接收下行资源;
期望在所述第二资源块执行速率匹配;
其中,所述第二TRP为所述M个TRP中的任一个TRP,所述第二资源块为由所述第二TRP的SSB所在的RB和符号组成。
可选地,在所述终端不支持邻小区参考信号干扰消除、且所述第一PRS配置信息包括第二TRP的CSI-RS时频位置情况下,终端的行为满足以下至少一项:
不期望在第二资源块接收下行资源;
不期望在所述第二TRP的CSI-RS所在的RE位置接收下行资源;
不期望在所述第二TRP的CSI-RS所在的符号上接收下行资源;
期望在所述第二资源块执行速率匹配;
其中,所述第二TRP为所述M个TRP中的任一个TRP,所述第二资源块为由所述第二TRP的CSI-RS所在的RB和符号组成。
需要说明的是,终端的上述行为限制可以由协议约定或者服务基站指示,在此不做进一步的限定。
进一步的,UE在接收邻近TRP的PRS配置之前或之后,向位置服务器或服务基站上报UE能力,以辅助位置服务器或服务基站确定PRS的传输。具体的,本实施例中,所述方法还包括:
终端上报能力信息;
其中,所述能力信息包括以下至少一项:
第三指示信息,用于指示所述终端是否支持邻小区参考信号干扰消除;
邻小区参考信号接收功率门限;
邻小区参考信号干扰消除时间偏移(time offset)门限;
邻小区参考信号干扰消除频率偏移(frequency offset)门限。
上述第三指示信息可以包括以下至少之一:
是否邻小区参考信号与服务小区数据碰撞时的邻小区参考信号干扰消除;
若支持邻小区参考信号与服务小区数据碰撞时的参考信号干扰消除,UE支持的数据的调制和编码方案(Modulation and coding scheme,MCS)等级和/或层数;
是否支持邻小区参考信号与服务小区参考信号碰撞时的邻小区参考信号干扰消除。
本申请实施例中,针对邻小区参考信号接收功率门限,在邻区考信号功率比服务小区数据高N dB的情况下,可以理解为终端能够消除邻小区考信号 干扰;
针对邻小区参考信号干扰消除时间偏移门限,在邻区时间与服务小区时间偏移不超过X个时间单位(比如X us)的情况下,可以理解为终端能够消除邻小区干扰;
针对邻小区参考信号干扰消除频率偏移门限,在邻区频偏不超过K Hz的情况下,可以理解为终端能够消除邻小区干扰。
请参见图4,图4是本申请实施例提供的另一种干扰协调处理方法的流程图,如图4所示,包括以下步骤:
步骤401,服务基站接收位置服务器发送的第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为终端的干扰资源,所述第一指示信息携带有所述M个TRP的第一PRS配置信息,M为正整数。
可选地,所述第一PRS配置信息满足以下任一项:
所述第一PRS配置信息为相对于第二PRS配置信息增加的目标PRS配置信息;
所述第一PRS配置信息为相对于第二PRS配置信息增加所述目标PRS配置信息后的PRS配置信息;
其中,所述第二PRS配置信息为所述终端配置用于定位测量的PRS配置信息。
可选地,第一TRP的PRS配置信息包括:所述第一PRS配置信息包括:第一TRP下至少1个PRS资源的配置,其中,所述第一TRP为所述M个TRP中任一个TRP。
可选地,所述PRS资源的配置包括以下至少一项:PRS时域位置信息,PRS频域位置信息,PRS序列标识信息,PRS资源标识信息,PRS发送功率信息,所述TRP的定时信息,PRS的准共址QCL信息,TRP所在小区的SSB配置,TRP所在小区的CSI-RS配置。
可选地,所述服务基站接收位置服务器发送的第一指示信息之后,所述方法还包括:
服务基站向位置服务器发送第二请求,所述第二请求用于请求对至少一 个PRS资源进行静音。
可选地,所述服务基站接收位置服务器发送的第一指示信之后,所述方法还包括:
服务基站向终端发送所述第一指示信息。
可选地,所述服务基站向终端发送所述第一指示信息之后,所述方法还包括:
服务基站接收所述终端发送的目标信息;
其中,所述目标信息用于指示所述终端是否能够抑制所述M个TRP传输的PRS的干扰;或者,所述目标信息包括所述PRS干扰测量获得的测量结果和PRS干扰计算获得的干扰水平其中至少之一。
可选地,所述服务基站向终端发送所述第一指示信息之后,所述方法还包括:
服务基站向所述终端发送的第二指示信息,所述第二指示信息用于指示在第一资源块发送下行资源或者在所述第一资源块速率匹配;所述第一资源块由所述第一TRP的PRS所在的资源块RB和符号组成。
需要说明的是,本实施例作为图3所示的实施例对应的服务基站的实施方式,其具体的实施方式可以参见图3所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
请参见图5,图5是本申请实施例提供的另一种干扰协调处理方法的流程图,如图5所示,包括以下步骤:
步骤501,位置服务器向终端或者服务基站发送第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为终端的干扰资源,所述第一指示信息携带有所述M个TRP的第一PRS配置信息,M为正整数。
可选地,所述第一PRS配置信息满足以下任一项:
所述第一PRS配置信息为相对于第二PRS配置信息增加的目标PRS配置信息;
所述第一PRS配置信息为相对于第二PRS配置信息增加所述目标PRS配置信息后的PRS配置信息;
其中,所述第二PRS配置信息为所述终端配置用于定位测量的PRS配置信息。
可选地,所述第一PRS配置信息包括:第一TRP下至少1个PRS资源的配置,其中,所述第一TRP为所述M个TRP中任一个TRP。
可选地,所述PRS资源的配置包括以下至少一项:PRS时域位置信息,PRS频域位置信息,PRS序列标识信息,PRS资源标识信息,PRS发送功率信息,所述TRP的定时信息,PRS的准共址QCL信息,TRP所在小区的SSB配置,TRP所在小区的CSI-RS配置。
可选地,所述位置服务器向终端或者位置服务器发送第一指示信息之后,所述方法还包括:
位置服务器接收终端或服务基站发送的请求信息,所述请求信息用于请求对至少一个PRS资源进行静音。
需要说明的是,本实施例作为图5所示的实施例对应的位置服务器的实施方式,其具体的实施方式可以参见图5所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
需要说明的是,本申请实施例提供的干扰协调处理方法,执行主体可以为干扰协调处理装置,或者,该干扰协调处理装置中的用于执行干扰协调处理方法的控制模块。本申请实施例中以干扰协调处理装置执行干扰协调处理方法为例,说明本申请实施例提供的干扰协调处理装置。
请参见图6,图6是本申请实施例提供的一种干扰协调处理装置的结构图,如图6所示,干扰协调处理装置600包括:
第一接收模块601,用于接收第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为终端的干扰资源,所述第一指示信息携带有所述M个TRP的第一PRS配置信息,M为正整数。
可选地,所述第一PRS配置信息满足以下任一项:
所述第一PRS配置信息为相对于第二PRS配置信息增加的目标PRS配置信息;
所述第一PRS配置信息为相对于第二PRS配置信息增加所述目标PRS配置信息后的PRS配置信息;
其中,所述第二PRS配置信息为所述终端配置用于定位测量的PRS配置信息。
可选地,在所述第一指示信息由位置服务器发送的情况下,所述干扰协调处理装置600还包括:
第一发送模块,用于将所述第一PRS配置信息中的目标配置上报服务基站。
可选地,所述目标配置包括:PRS的时域和频域位置其中至少之一。
可选地,所述干扰协调处理装置600还包括:执行模块,用于执行以下至少一项:终端执行PRS干扰测量;终端执行PRS干扰计算。
可选地,所述第一发送模块还用于:向服务基站发送目标信息;
其中,所述目标信息用于指示所述终端是否能够抑制所述M个TRP传输的PRS的干扰;或者,所述目标信息包括所述PRS干扰测量获得的测量结果和PRS干扰计算获得的干扰水平其中至少之一。
可选地,第一PRS配置信息包括:第一TRP下至少1个PRS资源的配置,其中,所述第一TRP为所述M个TRP中任一个TRP。
可选地,所述PRS资源的配置包括以下至少一项:PRS时域位置信息,PRS频域位置信息,PRS序列标识信息,PRS资源标识信息,PRS发送功率信息,TRP的定时信息,PRS的准共址QCL信息。
可选地,所述第一接收模块601,还用于接收服务基站发送的第二指示信息;其中,所述第二指示信息用于指示:在第一资源块发送下行资源以及服务基站对所述第一资源块进行了速率匹配,所述第一资源块由第一TRP的PRS所在的资源块RB和符号组成,所述第一TRP为所述M个TRP中任一个TRP。
可选地,所述第一发送模块还用于:向位置服务器发送第一请求,所述第一请求用于请求对至少一个PRS资源进行静音。
可选地,所述第一请求包括以下至少一项:PRS静音指示;PRS资源的配置,TRP标识,TRP标识列表,PRS资源集标识,PRS资源集标识列表,PRS资源标识,PRS资源标识列表,终端期望的PRS资源静音图样。
可选地,在所述第一PRS配置信息包括第二TRP的PRS时频位置的情 况下,所述终端的行为满足以下至少一项:
不期望在第二资源块接收下行资源;
不期望在所述第二TRP的PRS所在的资源粒子RE位置接收下行资源;
不期望在所述第二TRP的PRS所在的符号上接收下行资源;
期望在所述第二资源块执行速率匹配;
其中,所述第二TRP为所述M个TRP中的任一个TRP,所述第二资源块为由所述第二TRP的PRS所在的资源块RB和符号组成。
可选地,在所述终端不支持邻小区参考信号干扰消除、且所述第一PRS配置信息包括第二TRP的PRS时频位置情况下,终端的行为满足以下至少一项:
不期望在第二资源块接收下行资源;
不期望在所述第二TRP的PRS所在的RE位置接收下行资源;
不期望在所述第二TRP的PRS所在的符号上接收下行资源;
期望在所述第二资源块执行速率匹配;
其中,所述第二TRP为所述M个TRP中的任一个TRP,所述第二资源块为由所述第二TRP的PRS所在的RB和符号组成。
可选地,所述第一发送模块还用于:上报能力信息;
其中,所述能力信息包括以下至少一项:
第三指示信息,用于指示所述终端是否支持邻小区参考信号干扰消除;
邻小区参考信号接收功率门限;
邻小区参考信号干扰消除时间偏移门限;
邻小区参考信号干扰消除频率偏移门限。
本申请实施例提供的干扰协调处理装置能够实现图3的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
请参见图7,图7是本申请实施例提供的一种干扰协调处理装置的结构图,如图7所示,干扰协调处理装置700包括:
第二接收模块701,用于接收位置服务器发送的第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为终端的干扰资源,所述第一指示信息携带有所述M个TRP的第一PRS配置信息, M为正整数。
可选地,所述第一PRS配置信息满足以下任一项:
所述第一PRS配置信息为相对于第二PRS配置信息增加的目标PRS配置信息;
所述第一PRS配置信息为相对于第二PRS配置信息增加所述目标PRS配置信息后的PRS配置信息;
其中,所述第二PRS配置信息为所述终端配置用于定位测量的PRS配置信息。
可选地,第一TRP的PRS配置信息包括:所述第一PRS配置信息包括:第一TRP下至少1个PRS资源的配置,其中,所述第一TRP为所述M个TRP中任一个TRP。
可选地,所述PRS资源的配置包括以下至少一项:PRS时域位置信息,PRS频域位置信息,PRS序列标识信息,PRS资源标识信息,PRS发送功率信息,所述TRP的定时信息,PRS的准共址QCL信息,TRP所在小区的SSB配置,TRP所在小区的CSI-RS配置。
可选地,所述干扰协调处理装置700还包括:
第二发送模块,用于向位置服务器发送第二请求,所述第二请求用于请求对至少一个PRS资源进行静音。
可选地,所述第二发送模块,还用于向终端发送所述第一指示信息。
可选地,所述第二接收模块701还用于:接收所述终端发送的目标信息;
其中,所述目标信息用于指示所述终端是否能够抑制所述M个TRP传输的PRS的干扰;或者,所述目标信息包括所述PRS干扰测量获得的测量结果和PRS干扰计算获得的干扰水平其中至少之一。
可选地,所述第一发送模块还用于:向所述终端发送的第二指示信息;
其中,所述第二指示信息用于指示:在第一资源块发送下行资源以及服务基站对所述第一资源块进行了速率匹配,所述第一资源块由第一TRP的PRS所在的资源块RB和符号组成,所述第一TRP为所述M个TRP中任一个TRP。
本申请实施例提供的干扰协调处理装置能够实现图4的方法实施例中服 务基站实现的各个过程,为避免重复,这里不再赘述。
请参见图8,图8是本申请实施例提供的一种干扰协调处理装置的结构图,如图8所示,干扰协调处理装置800包括:
第三发送模块801,用于向终端或者服务基站发送第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为终端的干扰资源,所述第一指示信息携带有所述M个TRP的第一PRS配置信息,M为正整数。
可选地,所述第一PRS配置信息满足以下任一项:
所述第一PRS配置信息为相对于第二PRS配置信息增加的目标PRS配置信息;
所述第一PRS配置信息为相对于第二PRS配置信息增加所述目标PRS配置信息后的PRS配置信息;
其中,所述第二PRS配置信息为所述终端配置用于定位测量的PRS配置信息。
可选地,第一PRS配置信息包括:第一TRP下至少1个PRS资源的配置,其中,所述第一TRP为所述M个TRP中任一个TRP。
可选地,所述PRS资源的配置包括以下至少一项:PRS时域位置信息,PRS频域位置信息,PRS序列标识信息,PRS资源标识信息,PRS发送功率信息,所述TRP的定时信息,PRS的准共址QCL信息,TRP所在小区的SSB配置,TRP所在小区的CSI-RS配置。
可选地,所述干扰协调处理装置800还包括:
第三接收模块,用于接收终端或服务基站发送的请求信息,所述请求信息用于请求对至少一个PRS资源进行静音。
本申请实施例提供的干扰协调处理装置能够实现图5的方法实施例中位置服务器实现的各个过程,为避免重复,这里不再赘述。
本申请实施例中的干扰协调处理装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计 算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的干扰协调处理装置可以为具有操作***的装置。该操作***可以为安卓(Android)操作***,可以为ios操作***,还可以为其他可能的操作***,本申请实施例不作具体限定。
本申请实施例提供的干扰协调处理装置能够实现图3至图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图9所示,本申请实施例还提供一种通信设备900,包括处理器901,存储器902,存储在存储器902上并可在所述处理器901上运行的程序或指令,该程序或指令被处理器901执行时实现上述干扰协调处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图10为实现本申请各个实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009以及处理器1010等部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理***与处理器1010逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理器(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001将来自网络侧设备的下行数据接收后,给处理器1010处理;另外,将上行的数据发送给服务基站。通常,射频单元1001包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作***、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1010可包括一个或多个处理单元;可选的,处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,射频单元1001,用于接收第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为干扰资源,所述第一指示信息携带有M个TRP的第一PRS配置信息,M为正整数。
应理解,本实施例中,上述处理器1010和射频单元1001能够实现图3的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图11所示,该服务基站1100包括:天线1101、射频装置1102、基带装置1103。天线1101与射频装置1102连接。在上行方向上,射频装置1102通过天线1101接收信息,将接收的信息发送给基带装置1103进行处理。在下行方向上,基带装置1103对要发送的信息进行处理,并发送给射频装置1102,射频装置1102对收到的信息进行处理后经过天线1101发送出去。
上述频带处理装置可以位于基带装置1103中,以上实施例中网络侧设备 执行的方法可以在基带装置1103中实现,该基带装置1103包括处理器1104和存储器1105。
基带装置1103例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图11所示,其中一个芯片例如为处理器1104,与存储器1105连接,以调用存储器1105中的程序,执行以上方法实施例中所示的服务基站操作。
该基带装置1103还可以包括网络接口1106,用于与射频装置1102交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器1105上并可在处理器1104上运行的指令或程序,处理器1104调用存储器1105中的指令或程序执行图4所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图12所示,该服务基站1200包括:天线1201、射频装置1202、基带装置1203。天线1201与射频装置1202连接。在上行方向上,射频装置1202通过天线1201接收信息,将接收的信息发送给基带装置1203进行处理。在下行方向上,基带装置1203对要发送的信息进行处理,并发送给射频装置1202,射频装置1202对收到的信息进行处理后经过天线1201发送出去。
上述频带处理装置可以位于基带装置1203中,以上实施例中网络侧设备执行的方法可以在基带装置1203中实现,该基带装置1203包括处理器1204和存储器1205。
基带装置1203例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图12所示,其中一个芯片例如为处理器1204,与存储器1205连接,以调用存储器1205中的程序,执行以上方法实施例中所示的服务基站操作。
该基带装置1203还可以包括网络接口1206,用于与射频装置1202交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器1205上并可在处理器1204上运行的指令或程序,处理器1204调用存储器1205中的指令或程序执行图5所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述干扰协调处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述干扰协调处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片、***芯片、芯片***或片上***芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空 调器,或者基站等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (35)

  1. 一种干扰协调处理方法,包括:
    终端接收第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为干扰资源,所述第一指示信息携带有所述M个TRP的第一PRS配置信息,M为正整数。
  2. 根据权利要求1所述的方法,其中,所述第一PRS配置信息满足以下任一项:
    所述第一PRS配置信息为相对于第二PRS配置信息增加的目标PRS配置信息;
    所述第一PRS配置信息为相对于第二PRS配置信息增加所述目标PRS配置信息后的PRS配置信息;
    其中,所述第二PRS配置信息为所述终端配置用于定位测量的PRS配置信息。
  3. 根据权利要求1所述的方法,其中,在所述第一指示信息由位置服务器发送的情况下,所述终端接收第一指示信息之后,所述方法还包括:
    终端将所述第一PRS配置信息中的目标配置上报服务基站。
  4. 根据权利要求3所述的方法,其中,所述目标配置包括:PRS的时域和频域位置其中至少之一。
  5. 根据权利要求1所述的方法,其中,所述接收第一指示信息之后,所述方法还包括以下至少一项:终端执行PRS干扰测量;终端执行PRS干扰计算。
  6. 根据权利要求5所述的方法,其中,在终端执行PRS干扰测量PRS干扰测量之后,所述方法还包括:
    终端向服务基站发送目标信息;
    其中,所述目标信息用于指示所述终端是否能够抑制所述M个TRP传输的PRS的干扰;或者,所述目标信息包括所述PRS干扰测量获得的测量结果和PRS干扰计算获得的干扰水平其中至少之一。
  7. 根据权利要求1所述的方法,其中,所述第一PRS配置信息包括:第 一TRP下至少1个PRS资源的配置,其中,所述第一TRP为所述M个TRP中任一个TRP。
  8. 根据权利要求7所述的方法,其中,所述PRS资源的配置包括以下至少一项:PRS时域位置信息,PRS频域位置信息,PRS序列标识信息,PRS资源标识信息,PRS发送功率信息,TRP的定时信息,PRS的准共址QCL信息。
  9. 根据权利要求1所述的方法,其中,所述终端接收第一指示信息之后,所述方法还包括:
    终端接收服务基站发送的第二指示信息;
    其中,所述第二指示信息用于指示:在第一资源块发送下行资源以及服务基站对所述第一资源块进行了速率匹配,所述第一资源块由第一TRP的PRS所在的资源块RB和符号组成,所述第一TRP为所述M个TRP中任一个TRP。
  10. 根据权利要求1所述的方法,其中,所述终端接收第一指示信息之后,所述方法还包括:
    终端向位置服务器发送第一请求,所述第一请求用于请求对至少一个PRS资源进行静音。
  11. 根据权利要求10所述的方法,其中,所述第一请求包括以下至少一项:PRS静音指示,PRS资源的配置,TRP标识,TRP标识列表,PRS资源集标识,PRS资源集标识列表,PRS资源标识,PRS资源标识列表,终端期望的PRS资源静音图样。
  12. 根据权利要求1所述的方法,其中,在所述第一PRS配置信息包括第二TRP的PRS时频位置的情况下,所述终端的行为满足以下至少一项:
    不期望在第二资源块接收下行资源;
    不期望在所述第二TRP的PRS所在的资源粒子RE位置接收下行资源;
    不期望在所述第二TRP的PRS所在的符号上接收下行资源;
    期望在所述第二资源块执行速率匹配;
    其中,所述第二TRP为所述M个TRP中的任一个TRP,所述第二资源块为由所述第二TRP的PRS所在的资源块RB和符号组成。
  13. 根据权利要求1所述的方法,其中,在所述终端不支持邻小区参考信号干扰消除、且所述第一PRS配置信息包括第二TRP的PRS时频位置情况下,终端的行为满足以下至少一项:
    不期望在第二资源块接收下行资源;
    不期望在所述第二TRP的PRS所在的RE位置接收下行资源;
    不期望在所述第二TRP的PRS所在的符号上接收下行资源;
    期望在所述第二资源块执行速率匹配;
    其中,所述第二TRP为所述M个TRP中的任一个TRP,所述第二资源块为由所述第二TRP的PRS所在的RB和符号组成。
  14. 根据权利要求1所述的方法,还包括:
    终端上报能力信息;
    其中,所述能力信息包括以下至少一项:
    第三指示信息,用于指示所述终端是否支持邻小区参考信号干扰消除;
    邻小区参考信号接收功率门限;
    邻小区参考信号干扰消除时间偏移门限;
    邻小区参考信号干扰消除频率偏移门限。
  15. 一种干扰协调处理方法,包括:
    服务基站接收位置服务器发送的第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为终端的干扰资源,所述第一指示信息携带有所述M个TRP的第一PRS配置信息,M为正整数。
  16. 根据权利要求15所述的方法,其中,所述第一PRS配置信息满足以下任一项:
    所述第一PRS配置信息为相对于第二PRS配置信息增加的目标PRS配置信息;
    所述第一PRS配置信息为相对于第二PRS配置信息增加所述目标PRS配置信息后的PRS配置信息;
    其中,所述第二PRS配置信息为所述终端配置用于定位测量的PRS配置信息。
  17. 根据权利要求15所述的方法,其中,所述第一PRS配置信息包括: 第一TRP下至少1个PRS资源的配置,其中,所述第一TRP为所述M个TRP中任一个TRP。
  18. 根据权利要求17所述的方法,其中,所述PRS资源的配置包括以下至少一项:PRS时域位置信息,PRS频域位置信息,PRS序列标识信息,PRS资源标识信息,PRS发送功率信息,所述TRP的定时信息,PRS的准共址QCL信息。
  19. 根据权利要求15所述的方法,其中,所述服务基站接收位置服务器发送的第一指示信息之后,所述方法还包括:
    服务基站向位置服务器发送第二请求,所述第二请求用于请求对至少一个PRS资源进行静音。
  20. 根据权利要求15所述的方法,其中,所述服务基站接收位置服务器发送的第一指示信之后,所述方法还包括:
    服务基站向终端发送所述第一指示信息。
  21. 根据权利要求20所述的方法,其中,所述服务基站向终端发送所述第一指示信息之后,所述方法还包括:
    服务基站接收所述终端发送的目标信息;
    其中,所述目标信息用于指示所述终端是否能够抑制所述M个TRP传输的PRS的干扰;或者,所述目标信息包括所述PRS干扰测量获得的测量结果和PRS干扰计算获得的干扰水平其中至少之一。
  22. 根据权利要求21所述的方法,其中,所述向终端发送所述第一指示信息之后,所述方法还包括:
    服务基站向所述终端发送的第二指示信息;
    其中,所述第二指示信息用于指示:在第一资源块发送下行资源以及服务基站对所述第一资源块进行了速率匹配,所述第一资源块由第一TRP的PRS所在的资源块RB和符号组成,所述第一TRP为所述M个TRP中任一个TRP。
  23. 一种干扰协调处理方法,包括:
    位置服务器向终端或者服务基站发送第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为终端的干扰资源, 所述第一指示信息携带有M个TRP的第一PRS配置信息,M为正整数。
  24. 根据权利要求23所述的方法,其中,所述第一PRS配置信息满足以下任一项:
    所述第一PRS配置信息为相对于第二PRS配置信息增加的目标PRS配置信息;
    所述第一PRS配置信息为相对于第二PRS配置信息增加所述目标PRS配置信息后的PRS配置信息;
    其中,所述第二PRS配置信息为所述终端配置用于定位测量的PRS配置信息。
  25. 根据权利要求23所述的方法,其中,所述第一PRS配置信息包括:第一TRP下至少1个PRS资源的配置,其中,所述第一TRP为所述M个TRP中任一个TRP。
  26. 根据权利要求25所述的方法,其中,所述PRS资源的配置包括以下至少一项:PRS时域位置信息,PRS频域位置信息,PRS序列标识信息,PRS资源标识信息,PRS发送功率信息,所述TRP的定时信息,PRS的准共址QCL信息。
  27. 根据权利要求23所述的方法,其中,所述位置服务器向终端或者位置服务器发送第一指示信息之后,所述方法还包括:
    位置服务器接收终端或服务基站发送的请求信息,所述请求信息用于请求对至少一个PRS资源进行静音。
  28. 一种干扰协调处理装置,包括:
    第一接收模块,用于接收第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为终端的干扰资源,所述第一指示信息携带有所述M个TRP的第一PRS配置信息,M为正整数。
  29. 根据权利要求28所述的装置,其中,所述第一PRS配置信息满足以下任一项:
    所述第一PRS配置信息为相对于第二PRS配置信息增加的目标PRS配置信息;
    所述第一PRS配置信息为相对于第二PRS配置信息增加所述目标PRS 配置信息后的PRS配置信息;
    其中,所述第二PRS配置信息为所述终端配置用于定位测量的PRS配置信息。
  30. 一种干扰协调处理装置,包括:
    第二接收模块,用于接收位置服务器发送的第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为终端的干扰资源,所述第一指示信息携带有所述M个TRP的第一PRS配置信息,M为正整数。
  31. 根据权利要求30所述的装置,其中,所述第一PRS配置信息满足以下任一项:
    所述第一PRS配置信息为相对于第二PRS配置信息增加的目标PRS配置信息;
    所述第一PRS配置信息为相对于第二PRS配置信息增加所述目标PRS配置信息后的PRS配置信息;
    其中,所述第二PRS配置信息为所述终端配置用于定位测量的PRS配置信息。
  32. 一种干扰协调处理装置,包括:
    第三发送模块,用于向终端或者位置服务器发送第一指示信息,所述第一指示信息用于指示M个传输接收点TRP传输的定位参考信号PRS为终端的干扰资源,所述第一指示信息携带有所述M个TRP的第一PRS配置信息,M为正整数。
  33. 根据权利要求32所述的装置,其中,所述第一PRS配置信息满足以下任一项:
    所述第一PRS配置信息为相对于第二PRS配置信息增加的目标PRS配置信息;
    所述第一PRS配置信息为相对于第二PRS配置信息增加所述目标PRS配置信息后的PRS配置信息;
    其中,所述第二PRS配置信息为所述终端配置用于定位测量的PRS配置信息。
  34. 一种通信设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至27中任一项所述的干扰协调处理方法中的步骤。
  35. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指被处理器执行时实现如权利要求1至27中任一项所述的干扰协调处理方法的步骤。
PCT/CN2021/108856 2020-07-28 2021-07-28 干扰协调处理方法及相关设备 WO2022022553A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010739889.0A CN114007213B (zh) 2020-07-28 2020-07-28 干扰协调处理方法及相关设备
CN202010739889.0 2020-07-28

Publications (1)

Publication Number Publication Date
WO2022022553A1 true WO2022022553A1 (zh) 2022-02-03

Family

ID=79920657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108856 WO2022022553A1 (zh) 2020-07-28 2021-07-28 干扰协调处理方法及相关设备

Country Status (2)

Country Link
CN (1) CN114007213B (zh)
WO (1) WO2022022553A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110235482A (zh) * 2017-02-02 2019-09-13 高通股份有限公司 用于按需用户装备定位的方法和装置
US20200028648A1 (en) * 2018-07-19 2020-01-23 Qualcomm Incorporated On-demand positioning reference signal (prs)
US20200107286A1 (en) * 2018-09-28 2020-04-02 Qualcomm Incorporated Systems and methods for network procedures for on-demand random access channel (rach)
US20200154240A1 (en) * 2018-10-31 2020-05-14 Qualcomm Incorporated Methods and systems for on-demand transmission of a positioning reference signal in a wireless network

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9002354B2 (en) * 2009-06-12 2015-04-07 Google Technology Holdings, LLC Interference control, SINR optimization and signaling enhancements to improve the performance of OTDOA measurements
US9119102B2 (en) * 2011-04-04 2015-08-25 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node and method for using positioning gap indication for enhancing positioning performance
US9282558B2 (en) * 2012-01-06 2016-03-08 Lg Electronics Inc. Method for transmitting and receiving signal using time division duplex mode in wireless access system, and apparatus therefor
CN103209475B (zh) * 2012-01-16 2016-05-25 华为技术有限公司 定位方法、定位服务器、终端和基站
CN104219724A (zh) * 2013-05-31 2014-12-17 中兴通讯股份有限公司 一种小区间协作进行干扰测量的方法和节点
US10536904B2 (en) * 2016-05-09 2020-01-14 Ofinno, Llc Parallel transmission in a wireless device and wireless network
CN111277385B (zh) * 2019-03-22 2021-10-22 维沃移动通信有限公司 定位参考信号配置方法、网络设备及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110235482A (zh) * 2017-02-02 2019-09-13 高通股份有限公司 用于按需用户装备定位的方法和装置
US20200028648A1 (en) * 2018-07-19 2020-01-23 Qualcomm Incorporated On-demand positioning reference signal (prs)
US20200107286A1 (en) * 2018-09-28 2020-04-02 Qualcomm Incorporated Systems and methods for network procedures for on-demand random access channel (rach)
US20200154240A1 (en) * 2018-10-31 2020-05-14 Qualcomm Incorporated Methods and systems for on-demand transmission of a positioning reference signal in a wireless network

Also Published As

Publication number Publication date
CN114007213A (zh) 2022-02-01
CN114007213B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
EP3817479B1 (en) Communication method and communication apparatus
US10574304B2 (en) Method, system and apparatus of beam selection
US11129191B2 (en) Signal transmission method and device
CN114071611B (zh) 测量上报方法、装置及设备
US10952168B2 (en) Method for transmitting downlink control signal and apparatus
WO2022171129A1 (zh) 信号参数上报方法、装置及设备
CN114071615B (zh) 小区切换方法和终端
WO2022022505A1 (zh) 参考信号传输方法、装置及通信设备
WO2019028589A1 (en) SPECIFIC NETWORK TRENCH MEANS FOR WIRELESS NETWORKS
WO2022117021A1 (zh) 随机接入方法、装置、终端及网络侧设备
US20240196388A1 (en) Transmission processing method and apparatus, and device
WO2022117087A1 (zh) 副链路sl上的定位方法、装置及终端
WO2022028475A1 (zh) 参考信号测量方法、终端及网络侧设备
WO2022068755A1 (zh) 信息传输方法、终端及网络侧设备
WO2022063318A1 (zh) 处理参考信号资源的方法、装置、设备及可读存储介质
US20240129089A1 (en) Positioning method and apparatus, and related device
US20230189042A1 (en) Rs measurement method and apparatus, and communications device
JP2023513291A (ja) データ伝送方法及び装置
WO2023011349A1 (zh) 定位参考信号处理方法、终端及网络侧设备
WO2023025017A1 (zh) 传输处理方法、装置及设备
WO2022143808A1 (zh) 速率匹配方法和设备
WO2022078311A1 (zh) 定位方法、终端及网络侧设备
WO2022143644A1 (zh) Ue行为的确定方法、装置及ue
WO2022022553A1 (zh) 干扰协调处理方法及相关设备
WO2019006882A1 (zh) 一种训练传输波束的方法、装置及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21848857

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21848857

Country of ref document: EP

Kind code of ref document: A1