WO2022229830A1 - Procédé de réalisation d'une structure d'interconnexion à plots entre microcircuits - Google Patents

Procédé de réalisation d'une structure d'interconnexion à plots entre microcircuits Download PDF

Info

Publication number
WO2022229830A1
WO2022229830A1 PCT/IB2022/053844 IB2022053844W WO2022229830A1 WO 2022229830 A1 WO2022229830 A1 WO 2022229830A1 IB 2022053844 W IB2022053844 W IB 2022053844W WO 2022229830 A1 WO2022229830 A1 WO 2022229830A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pads
metal
dielectric material
circuit
Prior art date
Application number
PCT/IB2022/053844
Other languages
English (en)
Other versions
WO2022229830A4 (fr
Inventor
Yang Ni
Original Assignee
Tangram Image Sensor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tangram Image Sensor filed Critical Tangram Image Sensor
Priority to CN202280031111.1A priority Critical patent/CN117461125A/zh
Publication of WO2022229830A1 publication Critical patent/WO2022229830A1/fr
Publication of WO2022229830A4 publication Critical patent/WO2022229830A4/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05541Structure
    • H01L2224/05547Structure comprising a core and a coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10122Auxiliary members for bump connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/10125Reinforcing structures
    • H01L2224/10126Bump collar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10122Auxiliary members for bump connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/10135Alignment aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask
    • H01L2224/1148Permanent masks, i.e. masks left in the finished device, e.g. passivation layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/116Manufacturing methods by patterning a pre-deposited material
    • H01L2224/1161Physical or chemical etching
    • H01L2224/11612Physical or chemical etching by physical means only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/116Manufacturing methods by patterning a pre-deposited material
    • H01L2224/1161Physical or chemical etching
    • H01L2224/11616Chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • H01L2224/13007Bump connector smaller than the underlying bonding area, e.g. than the under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13022Disposition the bump connector being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13184Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/1601Structure
    • H01L2224/16012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/16014Structure relative to the bonding area, e.g. bond pad the bump connector being smaller than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16112Disposition the bump connector being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26122Auxiliary members for layer connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/26145Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/81138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/81139Guiding structures on the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/81138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/81141Guiding structures both on and outside the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/81895Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically conductive surfaces, e.g. copper-copper direct bonding, surface activated bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/819Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector with the bump connector not providing any mechanical bonding
    • H01L2224/81901Pressing the bump connector against the bonding areas by means of another connector
    • H01L2224/81903Pressing the bump connector against the bonding areas by means of another connector by means of a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81909Post-treatment of the bump connector or bonding area
    • H01L2224/81948Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8336Bonding interfaces of the semiconductor or solid state body
    • H01L2224/83365Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9211Parallel connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01104Refractory metals

Definitions

  • the present invention generally relates to a method for producing miniaturized interconnection networks based on protruding conductive micro-bumps ("micro-bumps” in English terminology) in particular in chip circuit assembly technologies. turned over (“flip-chip” in Anglo-Saxon terminology).
  • connection network between two circuits when they are assembled one above the other. These connections can be very dense, and this technique is widely used today in electronic products such as display screens, integrated circuits with a very large number of inputs-outputs, and especially CCD hybrid matrix image sensors. /C-MOS.
  • metal studs are made either on one of the two circuits, or on both, for example by one of the following techniques:
  • an adhesive of the ACA type for Anisotropic Conductive Adhesive in Anglo-Saxon terminology
  • ACA type for Anisotropic Conductive Adhesive in Anglo-Saxon terminology
  • the density and size of the conductive beads are chosen according to the pitch and the geometry of the interconnections so that at least one conductive ball is present in line with each pad; when the two circuits are assembled under high temperature, the pressure exerted on them deforms the balls and the studs and the polymerization of the adhesive is carried out at the same time to fix the two circuits together;
  • the present invention aims to provide an industrially viable solution, easily integrated into a C-MOS circuit manufacturing process, to achieve on the one hand interconnections by salient pads with very high densities, and on the other hand, during same steps, connection pads for connecting wires when integrating the circuits in a box provided with connection elements.
  • a method for manufacturing an electronic circuit in C-MOS technology is proposed for this purpose, the method comprising:
  • Steps (a) to (d) being repeated to form metal connections at different depth levels, connected by interconnection vias in the thickness of the circuit, the method being characterized in that it further comprises an iteration of step (a) to simultaneously form:
  • the conductive elements constitute interconnection pads with homologous conductive pads of the other circuit.
  • steps (b) to (d) to form a set of individualized conductive elements surmounted by columns of said interconnecting metal contained in a layer of dielectric material
  • said interconnect metal is a refractory metal or an alloy based on refractory metal.
  • said interconnect metal is tungsten or a tungsten-based alloy.
  • the dielectric material is silicon dioxide.
  • the metal deposit constituting said metal connections comprises a main layer of aluminum or cupro-aluminum and at least one secondary layer of ceramic such as titanium nitride, covering the main layer.
  • the method comprises a step of eliminating the secondary layer at the level of the bonding pads.
  • step (a) the step of eliminating the secondary layer at the level of the bonding pads is implemented before the iteration of step (a).
  • step (a) the step of eliminating the secondary layer at the level of the bonding pads is implemented after the iteration of step (a).
  • the method comprises a step of eliminating the dielectric material and the material of the secondary layer at the level of the bonding pads to form cavities where the main layer is exposed.
  • the method includes a step of depositing a layer of additional dielectric material covering the columns before the step of removing the dielectric material and the secondary layer.
  • Fig. 1 illustrates different steps implemented in a method for producing a conventional C-MOS circuit
  • FIG. 2 illustrates iterations of certain steps of a C-MOS process to produce interconnection pads with another circuit
  • FIG. 2 illustrates a variant of the steps of FIG. 2,
  • FIG. 3 is a microscopic photograph of an experimental interconnect pad structure obtained with the method of FIG. 2,
  • FIG. 4 illustrates iterations of certain steps of a C-MOS process to produce interconnection columns with another circuit
  • - Fig. 4' illustrates a variant of the steps of FIG. 4
  • - Fig. 5 is a microscopic photograph of an experimental interconnect column structure obtained with the method of FIG. 4.
  • C-MOS circuit manufacturing processes use aluminum as the bonding layer base metal within a level and a refractory metal or alloy such as tungsten as the metal for interconnection between the different levels.
  • step (A) consists in producing on a substrate of dielectric insulating material 100, typically S1O2, a layer 200 intended to form conductive tracks P at the same level of depth, this layer comprising three sandwich sub-layers namely, from bottom to top, a first layer 221 of ceramic material such as titanium nitride TiN forming an adhesion and diffusion barrier layer, a central layer 210 of aluminum-copper alloy with a high aluminum content ( it will be called in the following “aluminum layer” by convention), and second layer 222, upper, of ceramic material, here again for example TiN.
  • a first layer 221 of ceramic material such as titanium nitride TiN forming an adhesion and diffusion barrier layer
  • a central layer 210 of aluminum-copper alloy with a high aluminum content it will be called in the following “aluminum layer” by convention
  • second layer 222 upper, of ceramic material, here again for example TiN.
  • the following steps include a photolithography step to define the patterns of the interconnection tracks P to be produced, followed by a step of selective etching of the areas left free by the photolithography.
  • Step (B) consists in covering the assembly with another layer of dielectric insulating material 110, here again in S1O2, which extends layer 100 upwards over a given thickness.
  • This layer 110 undergoes a finish by chemical-mechanical polishing (CMP) in order to obtain a flat surface at the atomic scale.
  • CMP chemical-mechanical polishing
  • the next step (C) consists in producing in the layer of dielectric material 110, in positions which will determine the electrical connections between layers in the thickness of the substrate, holes 112 to a depth reaching the conductive tracks P under adjacent, by a conventional process of lithography and etching.
  • step (D) a layer of tungsten 300 is deposited so as to fill the holes at 310, overflowing in a continuous layer 320 above the free surface of the substrate 100.
  • step (E) the excess tungsten that constitutes this continuous layer 320 is typically eliminated by mechanical-chemical polishing, to leave only the parts 310 occupying the holes 112 and forming interconnection vias between spaced conductive layers in the thickness of the substrate (“W-Plug” in Anglo-Saxon terminology).
  • step (G) also includes the deposition of a layer of passivation 400 to complete the circuit.
  • This layer 400 is typically composed of a layer of dielectric insulating material in S1O2 surmounted by a layer of silicon nitride SiN in order in particular to provide protection against humidity.
  • a lithography step and an etching step make it possible to produce cavities 410 by local removal of the layers 400 and 120 of dielectric material and of the ceramic layer 222, cavities in which the metal or alloy of the underlying layer 210 is exposed to form bonding pads PB for the connection of bonding wires, typically in gold, with pins or other circuit connection elements with the external environment (“wire bonding” in Anglo-Saxon terminology).
  • One aspect of the present invention consists in relying on this conventional process to produce salient connection pads with another circuit in order to carry out a hybridization, namely the connection with a very fine pitch, for example between a C-MOS circuit obtained by a process as explained above and a circuit for example analog, more particularly a circuit of pixels accumulating electrical charges of photonic origin forming an image sensor, this being in no way limiting.
  • vias V were made at chosen positions and a subsequent and final layer 200F of TiN/Al/TiN similar to layer 200 was applied as described previously, the three thicknesses of this layer being designated by 221F, 210F and 222F.
  • step (B) the layer 222F of TiN is eliminated by selective etching to form areas 230 where the metal 210 is exposed and to form pads PB for bonding wires, generally arranged peripherally.
  • step (C) the combination of a photolithography and etching step makes it possible to selectively remove the 200F layer to leave on the free surface of the substrate a set of projecting pads PL for interconnection with another circuit, as well as than the PB studs for connecting wires.
  • a circuit is produced equipped on its free face with a portion of pads PB for connecting wires, devoid of the upper layer of TiN 222F to allow the soldering of the son, and on the other hand salient interconnection pads PL for the hybridization of the circuit with another circuit.
  • the flatness of the hybridization pads PL is here excellent due to the nature of the steps implemented, and in particular due to the fact that the surface 110 on which the final metallic layer 200F has been deposited has been the subject of mechanical-chemical polishing and that the deposition of the layers 221F, 210F and 222 of the sandwich can be carried out with excellent precision in thickness.
  • the ceramic layer 222F such as TiN which covers each of the pads PL is reputed to have excellent chemical stability. Thus, even in the case where these PL pads are exposed before carrying out the hybridization, their free surface is not subject to oxidation.
  • step (B') photolithography and etching made it possible to delimit the bonding pad PB and the hybridization pads PL
  • step (C') the upper layer 222F of TiN was partially eliminated at the bonding pad PB to allow a bonding wire to be welded.
  • Fig. 2 will generally be preferred because in this case the lithography and etching steps to remove the 222F layer from the bond pads are performed on a flat surface, with easier and more efficient spin-coating, both said and that in the approach of Fig. 2’ we must work with an irregular surface, more prone to manufacturing defects.
  • Fig. 3 is a scanning electron microscopy (SEM) view of a hybrid circuit with the pads produced according to the method of FIG. 2.
  • steps derived from those used in C-MOS technology are again used to produce hybridization pads having very good flatness and at the same time an excellent ability to compensate for flatness defects in the other circuit.
  • step (A) at the level of the last conductive layer, a set of conductive pads P′” was produced, with two pads intended to be connected to hybridization pads and one pad intended to form a pad PB for bond wire welding.
  • CO columns were also produced by the same process as that implemented to produce the vias V, above the two hybridization pads, by deposition of tungsten to fill the cavities 112 formed in the last layer 140 of dielectric material (part 310 of the deposited metal) and overflow above the dielectric material (part 320 of the deposited metal), this latter part having been eliminated by mechanical-chemical polishing.
  • the flatness of the free faces of the CO column vias is thus excellent.
  • the pellet intended to form a bonding pad PB is itself, at this stage, completely embedded in the dielectric insulating material 140.
  • step (B) a cavity 141 is hollowed out by lithography and etching above the bonding pad PB so as to remove in this zone the entire thickness of the dielectric material 140 as well as the upper layer 222F of TiN thereby exposing layer 210F to which a bonding wire can be soldered.
  • step (C) part of the thickness of the dielectric insulator 140 is removed, by dry etching or chemical etching, chosen to preserve the tungsten parts 310, so as to make the columns CO protruding above above the remaining dielectric material and thus form narrow, protruding tungsten pads for interconnection with the other circuit.
  • This removal of the dielectric material 140 can be done up to an intermediate level between the upper face and the lower face of the pads conductors P'”.
  • the etching conditions are also chosen to preserve the material of the layers 221F and 222F (TiN typically) and 210 (aluminum or aluminum copper alloy typically). It is possible, for example, to choose etching with hydrofluoric acid vapor or etching of the BOE (“Buffered Oxide Etch”) type.
  • the conductive pads can be left entirely embedded in the dielectric material.
  • the fact that the base of the CO columns is retained in the dielectric material can contribute to their mechanical robustness when assembling the two circuits.
  • the CO columns thus form hybridization pads of great hardness and low cross-section, with at the same time excellent flatness of their vertices, to thus achieve a quality contact with the other circuit during the contacting phase.
  • the process described allows the tops of the columns to deviate at most by a distance of the order of 50 to 2000 nm from an “ideal” common plane.
  • the small cross-section of the columns CO and their high hardness makes it possible to some extent to overcome flatness defects at the level of the contacts of the other circuit.
  • the two circuits are brought closer to each other with a view to assembling them, by exerting a certain pressure force between them, the columns CO come into contact with the contact pads of the other circuit, generally made with a more ductile metal.
  • This variant is illustrated in Fig. 4'. It consists in step (A') of producing a layer of dielectric material 150 above the free layer obtained after the mechanical-chemical polishing which followed the deposition of tungsten.
  • the cavity 141 is then hollowed out in the layers 150 then 140, also removing the layer 222F (step (B′)) to form the cavity, to obtain the same configuration of bonding pad PB as in the case of FIG. 4.
  • Fig. 5 represents, by way of illustration, a P’” pellet surmounted by two CO columns in scanning electron microscopy.
  • the present invention makes it possible to produce high density hybridization plots
  • two or more CO columns can be provided in line with each pair of conductive pads of the other circuit. This in particular makes it possible to further limit the cross-section of each column and to facilitate the deformation of the pads of the other circuit when it is made necessary by columns projecting beyond the ideal plane.
  • the permanent attachment of the circuits to each other can be achieved for example by applying an adhesive polymer interposed between the two circuits, or simply by molecular bonding thanks to the Van der Vais forces generated by a surface contact between the circuits.
  • the method may comprise an additional step consisting in making trenches by etching between the contact pads PL (Figs. 2 and 2') or the columns CO (Figs. 4 and 4'), in particular so as to facilitate the escape of excess adhesive, without it does not obstruct the proper assembly and proper contacting of the two circuits.
  • an annealing step can be provided to reinforce the covalent bonds between the two surfaces and therefore the strength of the assembly.
  • the minimum dimension of the conductive pads and therefore of the PL hybridization pads in the embodiments of Figs. 2 and 2′ is of the order of 0.28 ⁇ m, while the dimension of the interlevel contact vias and therefore of the columns CO In the embodiments of Figs. 4 and 4' is generally 0.24 ⁇ m to 0.28 ⁇ m.
  • the conductive pads of the other circuit are made of gold.
  • the Young's modulus of gold being 78 Gpa, then for a column with a cross section of 0.3 ⁇ m x 0.3 ⁇ m, the insertion force necessary for each stud so as to compensate for the inequalities of height between the tops of the columns can be estimated at 0.07 mN (millinewton).
  • the total force required is only of the order of 70 N.
  • the conductive pads of the other circuit can be made of aluminum or copper.
  • the conductive pads of the other circuit can be made of aluminum or copper.
  • its Young's modulus being 69 Gpa, the effect obtained in terms of force reduction is even better than that obtained for gold.
  • the invention applies in particular to the assembly and connection of all circuits requiring high-density electrical connections, in particular hybrid circuits combining an analog circuit (for example, but not limited to, an analog circuit of sensors accumulating charges of photonic origin) with a reading and processing circuit in C-MOS technology.
  • an analog circuit for example, but not limited to, an analog circuit of sensors accumulating charges of photonic origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

On propose selon l'invention un procédé de fabrication d'un circuit électronique en technologie C-MOS, le procédé comprenant : (a) une étape de dépôt métallique (200) et de gravure pour former des liaisons métalliques (P, P',...) à un premier niveau dans un substrat, (b) une étape de dépôt d'une couche de matériau diélectrique (110,...) recouvrant les liaisons métalliques, (c) une étape de réalisation de passages traversants (112) dans l'épaisseur du matériau diélectrique, (d) une étape de remplissage de ces passages avec un métal d'interconnexion (300), pour former des vias (V) de connexion entre niveaux, Les étapes (a) à (d) étant répétées pour former des liaisons métalliques (P, P',...) à différents niveaux de profondeurs, reliés par des vias (V) d'interconnexion dans l'épaisseur du circuit, Selon l'invention, le procédé comprend en outre une itération de l'étape (a) pour former simultanément : * un ensemble de d'éléments conducteurs individualisés (PL, P'") aux fins de connexion dudit circuit électronique avec des plots conducteurs homologues d'un autre circuit par rapprochement et pression entre les circuits, et * un ensemble de plots de liaison (PB) pour fils de bonding.

Description

Titre : « Procédé de réalisation d’une structure d’interconnexion à plots entre microcircuits »
Domaine de l’invention
La présente invention concerne d’une façon générale un procédé de réalisation de réseaux d’interconnexion miniaturisés basés sur des micro-plots conducteurs saillants (« micro-bumps » en terminologie anglo-saxonne) notamment dans des technologies d’assemblages de circuits à puce retournée (« flip-chip » en terminologie anglo-saxonne).
Etat de la technique
On sait réaliser un réseau de connexion entre deux circuits lors de leur assemblage l’un au-dessus de l’autre. Ces connexions peuvent être très denses, et cette technique est largement utilisée aujourd’hui dans des produits électroniques tel que les écrans d’affichage, circuits intégrés à très grand nombre d’entrées-sorties, et surtout des capteurs d’image matriciels hybrides CCD/C-MOS.
Pour connecter les points de connexion du circuit supérieur aux points de connexion du circuit inférieur, des plots métalliques sont réalisés soit sur l’un des deux circuits, ou sur les deux, par exemple par l’une des techniques suivantes :
- électroplacage de cuivre, le plomb ou le platine, ou encore différents alliages ;
- billes de soudure sur chaque plot : lorsque les deux circuits sont mis en contact avec une certaine pression et une température élevée, ces billes fondent, ce qui permet de gommer les éventuelles disparités de hauteur des plots ;
- utilisation d’un adhésif de type ACA (pour Anisotropic Conductive Adhesive en terminologie anglo-saxonne), à savoir une matrice adhésive dans laquelle sont dispersées de façon homogène des billes conductrices : la densité et la taille des billes conductrices sont choisies en fonction du pas et de la géométrie des interconnexions de telle sorte qu’au moins une bille conductrice soit présente au droit de chaque plot ; lorsque les deux circuits sont assemblés sous température élevée, la pression exercée sur eux déforme les billes et les plots et on réalise en même temps la polymérisation de l’adhésif pour fixer les deux circuits ensemble ;
- plots à déformation progressive, en pointe et typiquement de forme pyramidale, réalisés en un métal de ductilité élevée comme de l’or par exemple : ceci permet aux plots les plus saillants de s’écraser par leur sommet sous l’effet de la pression appliquée lors de la mise en contact, les différences de hauteur entre les différents plots pouvant ainsi être absorbées dans certaines limites.
Ces techniques ont démontré leur efficacité dans l’industrie de l’assemblage électronique depuis un certain nombre d’années.
Toutefois, elles nécessitent toutes des étapes spécifiques plus ou moins complexes à mettre en œuvre, et ne permettent pas de réaliser en même temps des plots pour fils de liaison (« wire bonding » en terminologie anglosaxonne).
Résumé de l’invention
La présente invention vise à apporter une solution industriellement viable, facilement intégrable à un processus de fabrication de circuits C-MOS, pour réaliser d’une part des interconnexions par plots saillants avec de très fortes densités, et d’autre part, au cours des mêmes étapes, des plots de connexion pour fils de liaison lors de l’intégration es circuits dans un boîtier doté d’éléments de connexion.
On propose à cet effet un procédé de fabrication d’un circuit électronique en technologie C-MOS, le procédé comprenant :
(a) une étape de dépôt métallique et de gravure pour former des liaisons métalliques à un premier niveau dans un substrat,
(b) une étape de dépôt d’une couche de matériau diélectrique recouvrant les liaisons métalliques,
(c) une étape de réalisation de passages traversants dans l’épaisseur du matériau diélectrique, (d) une étape de remplissage de ces passages avec un métal d’interconnexion, pour former des vias de connexion entre niveaux,
Les étapes (a) à (d) étant répétées pour former des liaisons métalliques à différents niveaux de profondeurs, reliés par des vias d’interconnexion dans l’épaisseur du circuit, le procédé étant caractérisé en ce qu’il comprend en outre une itération de l’étape (a) pour former simultanément :
* un ensemble de d’éléments conducteurs individualisés aux fins de connexion dudit circuit électronique avec des plots conducteurs homologues d’un autre circuit par rapprochement et pression entre les circuits, et
* un ensemble de plots de liaison pour fils de bonding.
Ce procédé comprend avantageusement mais facultativement les caractéristiques additionnelles suivantes, prises individuellement ou en toutes combinaisons que l’homme du métier appréhendera comme étant techniquement compatibles entre elles :
- les éléments conducteurs constituent des plots d’interconnexion avec des plots conducteurs homologues de l’autre circuit.
- le procédé comprend en outre après l’itération de l’étape (a) :
- une itération des étapes (b) à (d) pour former un ensemble d’éléments conducteurs individualisés surmontés de colonnettes dudit métal d’interconnexion contenues dans une couche de matériau diélectrique, et
- l’enlèvement au moins partiel de ladite couche de matériau diélectrique pour que lesdites colonnettes débordent de ladite couche et constituent des plots saillants d’interconnexion avec des plots conducteurs homologues de l’autre circuit.
- ledit métal d’interconnexion est un métal réfractaire ou un alliage à base de métal réfractaire.
- ledit métal d’interconnexion est du tungstène ou un alliage à base de tungstène.
- le matériau diélectrique est du dioxyde de silicium. - le dépôt métallique constituant lesdites liaisons métalliques comprend une couche principale en aluminium ou cupro-aluminium et au moins une couche secondaire en céramique telle que le nitrure de titane, recouvrant la couche principale.
- le procédé comprend une étape d’élimination de la couche secondaire au niveau des plots de liaison.
- l’étape d’élimination de la couche secondaire au niveau des plots de liaison est mise en œuvre avant l’itération de l’étape (a).
- l’étape d’élimination de la couche secondaire au niveau des plots de liaison est mise en œuvre après l’itération de l’étape (a).
- le procédé comprend une étape d’élimination du matériau diélectrique et du matériau de la couche secondaire au niveau des plots de liaison pour former des cavités où la couche principale est exposée.
- le procédé comprend une étape de dépôt d’une couche de matériau diélectrique supplémentaire recouvrant les colonnettes avant l’étape d’élimination du matériau diélectrique et de la couche secondaire.
Brève description des dessins
D’autres aspects, buts et avantages de la présente invention apparaîtront mieux à la lecture de la description détaillée suivante de formes de réalisation préférées de celle-ci, donnée à titre d’exemple non limitatif et faite en référence aux dessins annexés. Sur les dessins :
- la Fig. 1 illustre différentes étapes mises en œuvre dans un procédé de réalisation d’un circuit C-MOS conventionnel,
- la Fig. 2 illustre des itérations de certaines étapes d’un procédé C- MOS pour réaliser des plots d’interconnexion avec un autre circuit,
- la Fig. 2’ illustre une variante des étapes de la Fig. 2,
- la Fig. 3 est une photographie microscopique d’une structure de plot d’interconnexion expérimentale obtenue avec le procédé de la Fig. 2,
- la Fig. 4 illustre des itérations de certaines étapes d’un procédé C- MOS pour réaliser des colonnettes d’interconnexion avec un autre circuit,
- la Fig. 4’ illustre une variante des étapes de la Fig. 4, et - la Fig. 5 est une photographie microscopique d’une structure de colonnette d’interconnexion expérimentale obtenue avec le procédé de la Fig. 4.
Description détaillée de formes de réalisation
On va maintenant décrire un procédé et une structure d’interconnexion à haute densité entre deux circuits selon l’invention.
La plupart des procédés de fabrication de circuits C-MOS utilisent l’aluminium comme métal de base de couche de liaison au sein d’un niveau et un métal ou alliage réfractaire tel que le tungstène comme métal pour l’interconnexion entre les différents niveaux.
En référence tout d’abord à la Fig. 1 , l’étape (A) consiste à réaliser sur un substrat en matériau isolant diélectrique 100, typiquement en S1O2, une couche 200 destinée à former des pistes conductrices P à un même niveau de profondeur, cette couche comprenant trois sous-couches en sandwich à savoir, du bas vers le haut, une première couche 221 de matériau céramique tel que le nitrure de titane TiN formant couche d’adhésion et de barrière de diffusion, une couche centrale 210 d’alliage aluminium-cuivre avec forte teneur en aluminium (on la nommera dans la suite « couche d’aluminium » par convention), et deuxième couche 222, supérieure, de matériau céramique, ici encore par exemple du TiN.
Les étapes suivantes comprennent une étape de photolithographie pour définir les motifs des pistes d’interconnexion P à réaliser, suivie d’une étape de gravure sélective des zones laissées libres par la photolithographie.
On réalise ainsi comme illustré sur la partie (A) de la Fig. 1 des pistes conductrices P au-dessus du substrat 100.
L’étape (B) consiste à recouvrir l’ensemble d’une autre couche de matériau isolant diélectrique 110, ici à nouveau en S1O2, qui prolonge la couche 100 vers le haut sur une épaisseur donnée. Cette couche 110 subit une finition par polissage mécano-chimique (CMP) afin d’obtenir une surface plane à l’échelle atomique. L’étape suivante (C) consiste à réaliser dans la couche de matériau diélectrique 110, en des positions qui détermineront les liaisons électriques entre couches dans l’épaisseur du substrat, des trous 112 jusqu’à une profondeur atteignant les pistes conductrices P sous-jacentes, par un procédé conventionnel de lithographie et de gravure.
A l’étape (D), une couche de tungstène 300 est déposée de manière à remplir les trous en 310, en débordant en une couche continue 320 au-dessus de la surface libre du substrat 100.
A l’étape (E), l’excès de tungstène que constitue cette couche 320 continue est éliminé typiquement par polissage mécano-chimique, pour ne laisser que les parties 310 occupant les trous 112 et formant des vias d’interconnexion entre couches conductrices espacées dans l’épaisseur du substrat (« W-Plug » en terminologie anglo-saxonne).
Les étapes ci-dessus sont répétées avec une étape (F) de formation de pistes conductrices P’ de niveau suivant et une étape (G) de dépôt d’une nouvelle couche 120 de matériau isolant diélectrique, les étapes (C) à (E) pouvant être répétées de façon non illustrée pour obtenir une pluralité de couches conductrices de niveaux différents et formant des pistes P, P’, P”, P’”, reliées de façon appropriée par des vias V, V’, V” entre deux couches successives séparées par le matériau d’électrique.
Dans le présent exemple, les pistes P’ sont les pistes de dernier niveau, et l’étape (G) comprend également le dépôt d’une couche de de passivation 400 pour terminer le circuit. Cette couche 400 est typiquement composée d’une couche de matériau isolant diélectrique en S1O2 surmontée d’une couche de nitrure de silicium SiN afin notamment d’assurer une protection contre l’humidité.
A l’étape (H), une étape de lithographie et une étape de gravure permettent de réaliser des cavités 410 par enlèvement local des couches 400 et 120 de matériau diélectrique et de la couche de céramique 222, cavités dans lesquels le métal ou alliage de la couche 210 sous-jacente est exposé pour former des plots PB de liaison pour la connexion de fils de liaison, typiquement en or, avec des broches ou autres éléments de raccordement du circuit avec l’environnement extérieur (« wire bonding » en terminologie anglosaxonne).
L’enlèvement de la couche supérieure de TiN 222 est ici nécessaire car sa présence empêcherait la soudure du fil de liaison.
Un aspect de la présente invention consiste à s’appuyer sur ce process conventionnel pour réaliser des plots saillants de connexion avec un autre circuit pour réaliser une hybridation, à savoir la mise en connexion à pas très fin par exemple entre un circuit C-MOS obtenu par un process tel qu’expliqué ci-dessus et un circuit par exemple analogique, plus particulièrement un circuit de pixels accumulant des charges électriques d’origine photonique formant un capteur d’image, ceci n’étant nullement limitatif.
Selon un premier exemple de réalisation, et en référence maintenant à la Fig. 2, au-dessus de la dernière couche de pistes conductrices ici notées P”, on a réalisé des vias V en des positions choisies et on a appliqué une couche subséquente et finale 200F de TiN/AI/TiN analogue à la couche 200 telle que décrite précédemment, les trois épaisseurs de cette couche étant désignées par 221 F, 210F et 222F.
A l’étape (B), la couche 222F de TiN est éliminée par gravure sélective pour former des zones 230 où le métal 210 est exposé et former des plots PB pour fils de liaison, en général disposés périphériquement.
Puis à l’étape (C) la combinaison d’une étape de photolithographie et de gravure permet d’éliminer sélectivement la couche 200F pour laisser à la surface libre du substrat un ensemble de plots saillants PL d’interconnexion avec une autre circuit, ainsi que les plots PB pour fils de liaison.
On réalise ainsi, en s’appuyant sur des étapes standard du procédé C- MOS, un circuit doté sur sa face libre d’une part de plots PB pour fils de liaison, dépourvus de la couche supérieure de TiN 222F pour permettre la soudure des fils, et d’autre part de plots saillants d’interconnexion PL pour l’hybridation du circuit avec un autre circuit. On notera ici que la planéité des plots d’hybridation PL est ici excellente de par la nature des étapes mises en œuvre, et notamment par le fait que la surface 110 sur laquelle la couche métallique finale 200F a été déposée a fait l’objet d’un polissage mécano-chimique et que le dépôt des couches 221F, 210F et 222 du sandwich peut être réalisé avec une excellente précision en épaisseur.
Par ailleurs, la couche 222F de céramique telle que TiN qui recouvre chacun des plots PL est réputée pour avoir une excellente stabilité chimique. Ainsi, même dans le cas où ces plots PL sont exposés avant réalisation de l’hybridation, leur surface libre n’est pas sujette à l’oxydation.
On va maintenant décrire en référence à la Fig. 2’ une variante de la réalisation de la Fig. 2. Selon cette variante, les étapes d’élimination de la couche supérieure 222F de TiN au niveau du plot de liaison PB et de réalisation des plots saillants d’hybridation PL par lithographie et gravure sont inversées. Ainsi à l’étape (B’) la photolithographie et la gravure ont permis de délimiter le plot de liaison PB et les plots d’hybridation PL, tandis qu’à l’étape (C’) la couche supérieure 222F de TiN a été partiellement éliminée au niveau du plot de liaison PB pour permettre de souder un fil de liaison.
On notera que l’approche de la Fig. 2 sera en général préférée car dans ce cas les étapes de lithographie et de gravure pour enlever la couche 222F des plots de liaison s’effectuent sur une surface plane, avec un spin-coating plus facile et plus efficace, tant dis que celui dans l’approche de la Fig. 2’ on doit travailler avec une surface irrégulière, plus propice à des défauts de fabrication.
La Fig. 3 est une prise de vue par microscopie à balayage électronique (MEB) d’un circuit hybride avec les pastilles réalisés selon le procédé de la Fig. 2.
On comprend que dans les formes de réalisation des Figs. 2 et 2’, pour une hybridation par contact direct (sans apport de soudure), la planéité des plots saillants PL est critique. Ainsi l’assemblage mécanique et électrique des deux circuits peut nécessiter d’exposer l’ensemble à une pression relativement importante si les dépôts métalliques des couches 221 F, 210F et 222F ne sont pas suffisamment uniformes.
Dans une autre approche que l’on va maintenant décrire en référence à la Fig. 4, on utilise à nouveau des étapes dérivées de celles utilisées en technologie C-MOS pour réaliser des plots d’hybridation ayant une très bonne planéité et en même temps une excellente faculté à compenser les défauts de planéité de l’autre circuit.
A l’étape (A), on a réalisé au niveau de la dernière couche conductrice un ensemble de pastilles conductrices P’”, avec deux pastilles destinées à être reliées à des plots d’hybridation et une pastille destinée à former un plot PB pour soudage de fil de liaison. On a également réalisé des colonnettes CO par le même processus que celui mis en œuvre pour réaliser les vias V, au-dessus des deux plots d’hybridation, par dépôt de tungstène pour remplir les cavités 112 formées dans la dernière couche 140 de matériau diélectrique (partie 310 du métal déposé) et déborder au-dessus du matériau diélectrique (partie 320 du métal déposé), cette dernière partie étant ayant été éliminée par polissage mécano-chimique. La planéité des faces libre des vias colonnettes CO est ainsi excellente. La pastille destinée à former un plot de liaison PB est quant à elle, à ce stade, entièrement noyée dans le matériau isolant diélectrique 140.
A l’étape (B), on creuse par lithographie et gravure une cavité 141 au- dessus du plot de liaison PB de manière à enlever dans cette zone la totalité de l’épaisseur du matériau diélectrique 140 ainsi que la couche supérieure 222F de TiN pour ainsi exposer la couche 210F sur laquelle un fil de liaison pourra être soudé.
Enfin à l’étape (C), on enlève une partie de l’épaisseur de l’isolant diélectrique 140, par gravure sèche ou gravure chimique, choisie pour préserver les parties de tungstène 310, de manière à rendre les colonnettes CO saillantes au-dessus du matériau diélectrique restant et former ainsi des plots de tungstène étroits et saillants pour l’interconnexion avec l’autre circuit. Cet enlèvement du matériau diélectrique 140 peut se faire jusqu’à un niveau intermédiaire entre la face supérieure et la face inférieure des pastilles conductrices P’”. Dans ce cas, les conditions de gravure sont également choisies pour préserver le matériau des couches 221F et 222F (TiN typiquement) et 210 (aluminium ou alliage aluminium cuivre typiquement). On peut choisie par exemple une gravure à la vapeur d’acide fluorhydrique ou gravure de type BOE (« Buffered Oxide Etch » en anglais).
En variante, on peut laisser les pastilles conductrices entièrement noyées dans le matériau diélectrique. Dans ce cas, le fait que la base des colonnettes CO soit retenue dans le matériau diélectrique peut contribuer à leur robustesse mécanique lors de l’assemblage des deux circuits.
Les colonnettes CO forment ainsi des plots d’hybridation de grande dureté et de faible section transversale, avec en même temps une excellente planéité de leurs sommets, pour ainsi réaliser un contact de qualité avec l’autre circuit lors de la phase de mise en contact. Typiquement, le procédé décrit permet que les sommets des colonnettes s’écartent au maximum d’une distance de l’ordre de 50 à 2000 nm d’un plan commun « idéal ».
On notera que la faible section transversale des colonnettes CO et leur dureté élevée permet dans une certaine mesure de s’affranchir de défauts de planéité au niveau des contacts de l’autre circuit. Ainsi, lorsque les deux circuits sont rapprochés l’un de l’autre en vue de les assembler, en exerçant entre eux une certaine force de pression les colonnettes CO viennent contacter les pastilles de contact de l’autre circuit, en général réalisées avec un métal plus ductile. Du fait de la dureté plus élevée du métal ou alliage des colonnettes CO par rapport au métal ou alliage des pastilles de l’autre circuit, chaque colonnette plus saillante que les autres, sous l’effet de la pression, va pouvoir exercer sur la pastille conductrice homologue une déformation plastique locale, en s’encastrant partiellement dans celle-ci. On garantit ainsi que les écarts de hauteur inhérents au procédé de fabrication des interconnexions ne viennent pas empêcher certaines colonnettes CO moins saillantes de venir contacter leur pastille conductrice PC1 homologue, garantissant ainsi que toutes les interconnexions électriques soient réalisées lors de cet assemblage. On va maintenant décrire une variante de réalisation de cette approche, destinée à éviter que les agents de gravure utilisés pour la réalisation de la cavité 141 au-dessus du plot de liaison PB soient susceptibles d’endommager le matériau, typiquement le tungstène, constituant les parties 310.
Cette variante est illustrée sur la Fig. 4’. Elle consiste à l’étape (A’) à réaliser une couche de matériau diélectrique 150 au-dessus de la couche libre obtenue après le polissage mécano-chimique qui a suivi le dépôt de tungstène.
La cavité 141 est alors creusée dans les couches 150 puis 140, enlevant également la couche 222F (étape (B’)) pour former la cavité, pour obtenir la même configuration de plot de liaison PB que dans le cas de la Fig. 4.
La Fig. 5 représente à titre illustratif une pastille P’” surmontée de deux colonnettes CO en microscopie à balayage électronique.
La présente invention permet de réaliser des plots d’hybridation de densité élevée
Selon une variante de réalisation, on peut prévoir deux colonnettes CO ou davantage au droit de chaque paire de pastilles conductrices de l’autre circuit. Ceci permet notamment de limiter encore la section transversale de chaque colonnette et de faciliter la déformation des pastilles de l’autre circuit lorsqu’elle est rendue nécessaire par des colonnettes débordant par rapport au plan idéal.
La fixation permanente des circuits l’un à l’autre peut être réalisée par exemple en appliquant un polymère adhésif interposé entre les deux circuits, ou simplement par collage moléculaire grâce aux forces de Van der Vais générées par un contact surfacique entre les circuits.
Dans le premier cas, le procédé peut comprendre une étape additionnelle consistant à réaliser par gravure des tranchées entre les plots de contact PL (Figs. 2 et 2’) ou les colonnettes CO (Figs. 4 et 4’), de manière notamment à faciliter l’échappement de l’adhésif en excès, sans que celui-ci ne fasse obstacle au bon assemblage et à la bonne mise en contact des deux circuits.
Dans le deuxième cas, on peut prévoir une étape de recuit destiné à renforcer les liaisons covalentes entre les deux surfaces et donc la solidité de l’assemblage.
Les procédés selon chacune des deux approches décrites ci-dessus sont avantageux en ce qu’ils peuvent s’intégrer très facilement dans un processus de fabrication de circuits en technologie C-MOS, comme on l’a expliqué.
Par exemple dans un processus C-MOS de génération récente au standard 180nm, la dimension minimale des pastilles conductrices et donc des plots d’hybridation PL dans les formes de réalisation des Figs. 2 et 2’ est de l’ordre de 0,28 pm, tandis que la dimension des vias de contact inter-niveaux et donc des colonnettes CO Dans les formes de réalisation des Figs. 4 et 4’ est en général de 0,24 pm à 0,28 pm.
Dans un exemple particulier d’un circuit hybride, les pastilles conductrices de l’autre circuit sont réalisées en or. Le module d’Young de l’or étant de 78 Gpa, alors pour une colonnette d’une section transversale de 0,3 pm x 0,3 pm, la force d’insertion nécessaire pour chaque plot de manière à compenser les inégalités de hauteur entre les sommets des colonnettes peut être estimée à 0,07 mN (millinewton). Ainsi, pour une matrice de 1000x1000 plots, la force totale nécessaire est seulement de l’ordre de 70 N.
Alternativement, les pastilles conductrices de l’autre circuit peuvent être réalisées en aluminium ou en cuivre. Dans le cas de l’aluminium, son module de Young étant de 69 Gpa, l’effet obtenu en matière de réduction de force est encore meilleur que celui obtenu pour de l’or.
On sait que le comportement des techniques à billes de soudure et à plots en pointe de l’art antérieur sont sensibles à une erreur de parallélisme entre les circuits reliés ensemble.
Ainsi une telle erreur de parallélisme peut conduire, avant remise en parallèle à la fin de l’assemblage (du fait de l’équilibrage des forces), à écraser excessivement des billes de soudure ou des plots en pointe situés au voisinage d’un bord des circuits, et donc à une mise en contact défectueuse.
Avec une structure où l’un des deux circuits possède des colonnettes CO de tungstène, on observe que lorsqu’une colonnette CO s’est complètement encastrée dans la pastille conductrice homologue de l’autre circuit, la venue en contact de la couche de matériau diélectrique de surface importante du circuit équipé de colonnettes avec l’autre circuit permet de freiner l’inclinaison mutuelle des deux circuits et d’induire une auto restauration du parallélisme entre les deux circuits C1 et C2. On élimine ainsi l’un des problèmes les plus difficiles dans la technologie « flip-chip » à plots saillants, à savoir des connexions défectueuses provoquées par l’écrasement des micro-plots marginaux du fait d’une erreur de parallélisme comme illustré sur la Fig. 9.
L’invention s’applique en particulier à l’assemblage et la connexion de tous circuits nécessitant des connexions électriques à forte densité, notamment circuits hybrides combinant un circuit analogique (par exemple mais de façon non limitative un circuit analogique de capteurs accumulant des charges d’origine photonique) avec un circuit de lecture et de traitement en technologie C-MOS.

Claims

Revendications
1. Procédé de fabrication d’un circuit électronique en technologie C-MOS, le procédé comprenant : (a) une étape de dépôt métallique (200) et de gravure pour former des liaisons métalliques (P, P’, ...) à un premier niveau dans un substrat,
(b) une étape de dépôt d’une couche de matériau diélectrique (110, ...) recouvrant les liaisons métalliques,
(c) une étape de réalisation de passages traversants (112) dans l’épaisseur du matériau diélectrique,
(d) une étape de remplissage de ces passages avec un métal d’interconnexion (300), pour former des vias (V) de connexion entre niveaux, Les étapes (a) à (d) étant répétées pour former des liaisons métalliques (P, P’, ...) à différents niveaux de profondeurs, reliés par des vias (V) d’interconnexion dans l’épaisseur du circuit, le procédé étant caractérisé en ce qu’il comprend en outre une itération de l’étape (a) pour former simultanément :
* un ensemble de d’éléments conducteurs individualisés (PL, P’”) aux fins de connexion dudit circuit électronique avec des plots conducteurs homologues d’un autre circuit par rapprochement et pression entre les circuits, et
* un ensemble de plots de liaison (PB) pour fils de bonding.
2. Procédé selon la revendication 1, caractérisé en ce que les éléments conducteurs constituent des plots (PL) d’interconnexion avec des plots conducteurs homologues de l’autre circuit.
3. Procédé selon la revendication 1, caractérisé en ce qu’il comprend en outre après l’itération de l’étape (a) : - une itération des étapes (b) à (d) pour former un ensemble d’éléments conducteurs individualisés (P’”) surmontés de colonnettes (CO) dudit métal d’interconnexion (300) contenues dans une couche (140) de matériau diélectrique, et
- l’enlèvement au moins partiel de ladite couche (140) de matériau diélectrique pour que lesdites colonnettes débordent de ladite couche et constituent des plots saillants (CO) d’interconnexion avec des plots conducteurs homologues de l’autre circuit.
4. Procédé selon l’une des revendications 1 à 3, caractérisé en ce que ledit métal d’interconnexion (300) est un métal réfractaire ou un alliage à base de métal réfractaire.
5. Procédé selon la revendication 4, caractérisé en ce que ledit métal d’interconnexion est du tungstène ou un alliage à base de tungstène.
6. Procédé selon l’une des revendications 1 à 5, caractérisé en ce que le matériau diélectrique (100, 110, ...) est du dioxyde de silicium.
7. Procédé selon l’une des revendications 1 à 6, caractérisé en ce que le dépôt métallique (200) constituant lesdites liaisons métalliques (P, P’ , ...) comprend une couche principale (210, 210F) en aluminium ou cupro- aluminium et au moins une couche secondaire (222, 222F) en céramique telle que le nitrure de titane, recouvrant la couche principale.
8. Procédé selon la revendication 7 prise en combinaison avec la revendication 2, caractérisé en ce qu’il comprend une étape d’élimination de la couche secondaire (222F) au niveau des plots de liaison (PB).
9. Procédé selon la revendication 8, caractérisé en ce que l’étape d’élimination de la couche secondaire (222F) au niveau des plots de liaison est mise en œuvre avant l’itération de l’étape (a) (Fig. 2).
10. Procédé selon la revendication 8, caractérisé en ce que l’étape d’élimination de la couche secondaire (222F) au niveau des plots de liaison est mise en œuvre après l’itération de l’étape (a) (Fig. 2).
11. Procédé selon les revendications 3 et 7 prises en combinaison, caractérisé en ce qu’il comprend une étape d’élimination du matériau diélectrique et du matériau de la couche secondaire au niveau des plots de liaison (PB) pour former des cavités (141) où la couche principale (210F) est exposée.
12. Procédé selon la revendication 11 , caractérisé en ce qu’il comprend une étape de dépôt d’une couche de matériau diélectrique supplémentaire (150) recouvrant les colonnettes avant l’étape d’élimination du matériau diélectrique (140) et de la couche secondaire (222F).
PCT/IB2022/053844 2021-04-26 2022-04-26 Procédé de réalisation d'une structure d'interconnexion à plots entre microcircuits WO2022229830A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280031111.1A CN117461125A (zh) 2021-04-26 2022-04-26 微电路之间基于块的互连结构的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2104301 2021-04-26
FRFR2104301 2021-04-26

Publications (2)

Publication Number Publication Date
WO2022229830A1 true WO2022229830A1 (fr) 2022-11-03
WO2022229830A4 WO2022229830A4 (fr) 2023-02-02

Family

ID=76807751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/053844 WO2022229830A1 (fr) 2021-04-26 2022-04-26 Procédé de réalisation d'une structure d'interconnexion à plots entre microcircuits

Country Status (2)

Country Link
CN (1) CN117461125A (fr)
WO (1) WO2022229830A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160021743A1 (en) * 2014-07-17 2016-01-21 Siliconware Precision Industries Co., Ltd. Coreless packaging substrate and fabrication method thereof
WO2016064510A1 (fr) * 2014-10-22 2016-04-28 Sandisk Technologies Inc. Boîtier de semi-conducteur avec des interconnexions électriques doubles de deuxième niveau
US20210035878A1 (en) * 2019-07-31 2021-02-04 Samsung Electronics Co., Ltd. Semiconductor package
US20210111125A1 (en) * 2019-10-09 2021-04-15 Industrial Technology Research Institute Multi-chip package and manufacture method thereof
US20210118786A1 (en) * 2019-10-16 2021-04-22 Taiwan Semiconductor Manufacturing Co., Ltd. Conductive structure, semiconductor package and methods of forming the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160021743A1 (en) * 2014-07-17 2016-01-21 Siliconware Precision Industries Co., Ltd. Coreless packaging substrate and fabrication method thereof
WO2016064510A1 (fr) * 2014-10-22 2016-04-28 Sandisk Technologies Inc. Boîtier de semi-conducteur avec des interconnexions électriques doubles de deuxième niveau
US20210035878A1 (en) * 2019-07-31 2021-02-04 Samsung Electronics Co., Ltd. Semiconductor package
US20210111125A1 (en) * 2019-10-09 2021-04-15 Industrial Technology Research Institute Multi-chip package and manufacture method thereof
US20210118786A1 (en) * 2019-10-16 2021-04-22 Taiwan Semiconductor Manufacturing Co., Ltd. Conductive structure, semiconductor package and methods of forming the same

Also Published As

Publication number Publication date
CN117461125A (zh) 2024-01-26
WO2022229830A4 (fr) 2023-02-02

Similar Documents

Publication Publication Date Title
EP2192612B1 (fr) Procédé pour empiler et interconnecter des circuits intégrés
EP2255383B1 (fr) Composant de connexion muni d'inserts creux et son procede de realisation
EP1365444B1 (fr) Condensateur en tranchées dans un substrat avec deux électrodes flottantes et indépendantes du substrat
FR3021455A1 (fr) Procede d'aplanissement d'evidements remplis de cuivre
EP3261116B1 (fr) Procede de fabrication collective de modules electroniques 3d
EP2816597A2 (fr) Procédé de réalisation d'un dispositif microélectronique mécaniquement autonome
EP4002441A2 (fr) Circuit electronique pour un collage moleculaire hybride
FR2990297A1 (fr) Empilement de structures semi-conductrices et procede de fabrication correspondant
WO2005086232A1 (fr) Dispositif microelectronique d'interconnexion a tiges conductrices localisees
WO2005067054A1 (fr) Procede de fabrication de puces electroniques en silicium aminci
WO2022229830A1 (fr) Procédé de réalisation d'une structure d'interconnexion à plots entre microcircuits
FR3095719A1 (fr) Procédé de collage moléculaire hybride et circuit électronique pour la mise en oeuvre d'un tel procédé
EP3742478B1 (fr) Procédé d'auto-assemblage avec collage moléculaire hybride
EP3913657A2 (fr) Procédé de traitement d'un circuit électronique pour un collage moléculaire hybride
FR2782841A1 (fr) Procede permettant de former des plots de contact et, en meme temps, de rendre plane une surface de substrat dans des circuits integres
US20240213037A1 (en) Method for producing a structure for stud-based interconnection between microcircuits
WO2007066037A1 (fr) Resistance dans un circuit integre
FR2813142A1 (fr) Fabrication de condensateurs a armatures metalliques
FR2958076A1 (fr) Procede de formation de vias electriques
EP2246890B1 (fr) Mode de réalisation d'un module de capture d'images
EP4152373A2 (fr) Procede de fabrication d'un circuit electronique pour auto-assemblage a un autre circuit electronique
EP3886159A1 (fr) Puce d'interconnexion
FR2978606A1 (fr) Surfaces de liaison améliorées pour le collage direct de structures semi-conductrices
FR2993399A1 (fr) Dispositifs d'interposition comprenant des microcanaux fluidiques et structures associées et procédés
FR3099848A1 (fr) Procédé de fabrication de vias traversant un substrat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22725298

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18557292

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280031111.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22725298

Country of ref document: EP

Kind code of ref document: A1