WO2022220461A1 - 지능형 첨단 항공기 지상유도관제 시스템 및 방법 - Google Patents

지능형 첨단 항공기 지상유도관제 시스템 및 방법 Download PDF

Info

Publication number
WO2022220461A1
WO2022220461A1 PCT/KR2022/004822 KR2022004822W WO2022220461A1 WO 2022220461 A1 WO2022220461 A1 WO 2022220461A1 KR 2022004822 W KR2022004822 W KR 2022004822W WO 2022220461 A1 WO2022220461 A1 WO 2022220461A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
ground
landing
apron
guidance control
Prior art date
Application number
PCT/KR2022/004822
Other languages
English (en)
French (fr)
Inventor
최병관
Original Assignee
최병관
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최병관 filed Critical 최병관
Priority to US18/554,794 priority Critical patent/US20240119850A1/en
Priority to CN202280027835.9A priority patent/CN117157688A/zh
Priority to EP22788317.0A priority patent/EP4325464A1/en
Publication of WO2022220461A1 publication Critical patent/WO2022220461A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/06Traffic control systems for aircraft, e.g. air-traffic control [ATC] for control when on the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0026Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0043Traffic management of multiple aircrafts from the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0065Navigation or guidance aids for a single aircraft for taking-off
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0082Surveillance aids for monitoring traffic from a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/02Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data
    • G08G5/025Navigation or guidance aids
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/06Traffic control systems for aircraft, e.g. air-traffic control [ATC] for control when on the ground
    • G08G5/065Navigation or guidance aids, e.g. for taxiing or rolling

Definitions

  • the present invention relates to an aircraft ground-guided control system and method, and more particularly, to an aircraft ground-guided control system and method capable of accurately identifying a location where an aircraft passes, and guiding and controlling aircraft and aviation.
  • air traffic control by air traffic controllers is becoming increasingly difficult due to the enlargement of the airport, the increase in the number of departures and arrivals, and the complexity of traffic near the airport runway.
  • a radar that detects only the ground of the airport is absolutely necessary even in the case of poor visibility due to the lack of visibility.
  • the radar used for this purpose is called Airport Surface Detection Equipment (ASDE).
  • ASDE Airport Surface Detection Equipment
  • air traffic service is divided into approach control service, airfield control service, and regional control service
  • airfield control service includes apron control service.
  • the apron control service is responsible for guiding the aircraft to the ground at the apron of the airport, and is the task of controlling the movement of the apron between departure and arrival aircraft.
  • the ground controller performs this task.
  • An aerodrome such as an airport is generally divided into a movement area and a non-movement area, and the movement area consists of a maneuvering area and an apron. A part of an aerodrome used for guidance purposes.
  • Aprons are designated areas of land aerodromes where passengers, mail and cargo may be loaded and unloaded, or where refueling, parking or maintenance may be performed.
  • Non-moving areas are taxiway and apron areas that are not under air traffic control.
  • Airfield control is divided into apron control (Ramp Control) and ground control (Ground Control).
  • Apron control is a control service provided to aircraft moving within the ground apron area during the aerodrome control service, and the apron control service is performed together with the control tower that normally performs the aerodrome control service.
  • Apron control duties include engine start-up, push back, and ground movement permission for entering the taxiway and control of ground handling vehicles and personnel within the apron control area.
  • control should be transferred to the ground controller.
  • the ground controller must hand over control to the ramp controller before the aircraft exits the taxiway and enters the apron.
  • control tower acquires airport object information through radar to designate the aircraft's route, and directs the aircraft to its destination through guidance lights (aviation lights) of the designated route. induced.
  • the object received through the radar has a disadvantage in that it is difficult to quickly grasp the required information of the aircraft as it receives all the information of a plurality of objects residing on the airport runway in addition to the aircraft.
  • the present invention has been devised to solve the above-mentioned problems in the prior art, and an object of the present invention is to input and manage fixed location information GPS coordinate values of aviation, etc. to a server, and coordinate information of an aircraft moving in a radar in real time and
  • the purpose of this invention is to provide an aircraft ground guidance control system and method that can accurately identify the location where the aircraft passes when the coordinates of the fixed aerial lights are crossed, and guide and control the aircraft and the aerial lights.
  • the aircraft ground-guided control system and method for achieving the above object is to input and manage fixed location information GPS coordinate values of all aircraft that can be controlled and monitored installed in the airfield to the server, and to move from the radar in real time. It is characterized by determining whether the coordinate information of the aircraft and the coordinates of the fixed aviation, etc. are crossed, and when the coordinate information of the aircraft and the coordinates of the fixed aviation, etc. are crossed, the position of the aircraft is specified and the aircraft passing through is guided and controlled. do.
  • the GPS coordinate values are input to the server at regular intervals in the apron where the guidance lights are not installed, and the position of the aircraft is tracked when the coordinate information of the aircraft and the GPS coordinate values in the apron are crossed.
  • a zoom camera or drone camera is provided in the center of the landing pad and runway in the aerodrome, which is the take-off route and landing route of the aircraft, respectively, so that the fuselage, lights, landing gear, and engine of the aircraft taking off and landing can be checked even at low visibility. It is characterized in that it provides to the controller.
  • 5G lidar installed on the high-speed escape route of the runway and parallel taxiway, interworking with the ground monitoring radar in real time, and accurately tracking the positions of aircraft and vehicles moving on the runway, parallel taxiway, and apron.
  • the call sign is automatically attached to the aircraft to the bridge or spot. It is characterized in that the server tracks the position of the aircraft after the cycle until takeoff.
  • the infrared camera is used to monitor the stopping distance according to the aircraft type and left and right driving guidance for landing It is characterized by providing information to the pilot so that the pilot can approach safely.
  • the aircraft moving from the bridge for takeoff is detected by the camera sensor, and the aircraft moving from the spot detects a signal that the fixed coordinates and the moving GPS coordinates are crossed.
  • the server automatically tags the call sign of the turning aircraft. It is characterized in that the server tracks the position of the aircraft until takeoff.
  • tracking the location of vehicles moving within the aerodrome and apron prevents collisions between aircraft and vehicles by attaching a GPS device with two-way communication to the vehicle. characterized.
  • a system linking various aviation lights installed on the ground and navigation safety equipment (ILS, VOR, DME, GP, TACAN, AMOS, PAPI) is built on the server, and the equipment malfunctions in real time. It is characterized by providing presence and absence information to the controller.
  • the server calculates the landing time of the aircraft and the time of the aircraft taking off by linking the aerial radar and the ground surveillance radar to automatically control take-off and landing.
  • fixed position information such as aviation, etc.
  • the server and managed the coordinate information of the aircraft moving on the radar in real time and the coordinates of the fixed flight are crossed. It provides the effect of accurately identifying the location of the aircraft passing by and guiding and controlling the aircraft and aviation lights.
  • FIG. 1 is a view showing an aircraft ground guidance control system according to the present invention.
  • FIG. 2 is a view showing a landing pad and a runway of an aircraft ground guidance control system according to the present invention.
  • FIG 3 is a view showing a state in which the 5g lidar is applied to the aircraft ground guidance control system according to the present invention.
  • FIG. 4 is a view showing the apron of the aircraft ground guidance control system according to the present invention.
  • FIG. 5 is a view showing a 3D image of the aircraft ground guidance control system according to the present invention.
  • FIG. 1 is a view showing an aircraft ground guidance control system according to the present invention
  • FIG. 2 is a view showing a landing pad and a runway of an aircraft ground guidance control system according to the present invention
  • FIG. 3 is an aircraft ground guidance control system according to the present invention. It is a view showing a state in which 5g lidar is applied to the control system
  • FIG. 4 is a view showing the apron of the aircraft ground guided control system according to the present invention
  • FIG. 5 is a 3D image of the aircraft ground guided control system according to the present invention is a diagram showing
  • the aircraft ground guided control system according to the present invention, the SSR secondary surveillance radar (100, SSR: Secondary Surveillance Radar) for monitoring the aircraft, and the ASDE ground surveillance radar for monitoring the aircraft (200).
  • SSR Secondary Surveillance Radar
  • ASDE ASDE ground surveillance radar
  • control unit 300 for receiving the position data of the aircraft from the SSR secondary surveillance radar 100 and the ASDE ground surveillance radar 200 is further provided.
  • control unit 300 monitors the equipment status such as navigation safety equipment (ALS, VOR, DME, TACAN, ILS) and weather information (AMOS) interlocking with the aviation system, and immediately delivers information to the controller when an abnormality occurs.
  • equipment status such as navigation safety equipment (ALS, VOR, DME, TACAN, ILS) and weather information (AMOS) interlocking with the aviation system, and immediately delivers information to the controller when an abnormality occurs.
  • AMOS weather information
  • a zoom camera 500 or a drone camera 600 is provided on a landing pad in an aerodrome that is a take-off path and a landing path of an aircraft, as shown in FIG. 2 .
  • the 5G lidar 700 is provided on the high-speed escape route parallel to the runway as shown in FIG.
  • an infrared camera 810 and a monitor 820 are provided in the apron.
  • a 3D image 900 that can accurately determine the situation of the apron in real time with the runway and the parallel taxiway is provided to the controller.
  • the fixed location information GPS coordinate values of all aircraft that can be controlled and monitored installed in the aerodrome are input to the server 400 and managed, and the coordinate information of the aircraft moving from the radar 100 and 200 in real time and the fixed aviation lights It is determined whether the coordinates of are crossed, and when the coordinate information of the aircraft and the coordinates of the fixed aviation light are crossed, the position of the aircraft is specified, and the control unit 300 guides and controls the flight light through which the aircraft passes.
  • the GPS coordinate values are input to the server at regular intervals in the apron where the guidance lights are not installed, and when the coordinate information of the aircraft and the GPS coordinate values in the apron are crossed, the position of the aircraft is tracked.
  • the arrival and departure of the aircraft on the bridge or spot without the aviation lights in the apron are tracked in real time.
  • a zoom camera 500 or a drone camera 600 is provided at the center of the landing pad and runway in the aerodrome that is the take-off path and landing path of the aircraft, respectively, so that even at low visibility, the fuselage and lights of the landing aircraft, landing gear, and engine video information that can be checked is provided to the controller.
  • the 5G lidar 700 is installed on the high-speed escape route with the runway and the parallel taxiway, and it is linked with the ground monitoring radar 200 in real time to accurately track the positions of aircraft and vehicles moving on the runway and the parallel taxiway and the apron. .
  • the SSR2 secondary surveillance radar 100 by linking the SSR2 secondary surveillance radar 100, the ground surveillance radar 200, and the 5G lidar 700 to track the call sign of the aircraft that has received landing permission from the air, the call sign is automatically signed even if the landing aircraft turns off the transponder.
  • the server After the aircraft is parked on a bridge or spot, the server tracks the position of the aircraft until it takes off.
  • the infrared camera 810 is used to guide the stopping distance according to the aircraft type and left and right driving guidance for landing to provide information to the monitor 820 so that the pilot can safely approach it.
  • the aircraft moving from the bridge for takeoff is detected by the camera sensor, and the aircraft moving from the spot detects a signal that the fixed coordinates and the moving GPS coordinates cross.
  • the server automatically tags the call sign of the turning aircraft The server tracks the position of the aircraft until takeoff.
  • the location tracking of the vehicle moving within the aerodrome and apron prevents collisions between aircraft and vehicles by attaching a two-way communication GPS device to the vehicle, and in the event of an aircraft accident, fire trucks and ambulances entering from the outside are guided to the accident site.
  • a system linking various aviation lights installed on the ground and navigation safety equipment (ILS, VOR, DME, GP, TACAN, AMOS, PAPI) is built on the server 400 and real-time Provides information on the presence or absence of equipment abnormalities to the controller.
  • the server 400 calculates the landing time of the aircraft and the time of the aircraft taking off by interlocking the SSR secondary surveillance radar 100 and the ground surveillance radar 200 to automatically control take-off and landing.
  • a 3D image 900 that can accurately determine the situation of the apron in real time on the runway and the parallel taxiway is provided to the controller.
  • fixed location information such as aviation, etc.
  • GPS coordinate values are input to the server and managed, and when the coordinate information of an aircraft moving in the radar and the coordinates of a fixed flight light are crossed in real time, the position of the aircraft is accurately identified and It guides and controls aircraft and aviation lights.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Traffic Control Systems (AREA)

Abstract

항공기 지상유도관제 시스템 및 방법은, 비행장내에 설치된 제어 및 감시가 가능한 모든 항공등의 고정된 위치정보 GPS 좌표값을 서버에 입력하여 관리하며, 실시간으로 레이더에서 이동하는 항공기의 좌표정보와 고정된 항공등의 좌표가 크로스 되는지를 판단하며, 항공기의 좌표정보와 고정된 항공등의 좌표가 크로스 되면 항공기의 위치를 특정하며 항공기가 지나는 항공등을 유도 제어하는 것을 특징으로 한다. 이에 따라, 항공등의 고정된 위치정보 GPS 좌표값을 서버에 입력하여 관리하며 실시간으로 레이더에서 이동하는 항공기의 좌표정보와 고정된 항공등의 좌표가 크로스 되면 항공기가 지나가는 위치를 정확하게 파악하고 항공기와 항공등을 유도 및 제어 할 수 있는 효과를 제공한다.

Description

지능형 첨단 항공기 지상유도관제 시스템 및 방법
본 발명은 항공기 지상유도관제 시스템 및 방법에 관한 것으로, 더욱 상세하게는 항공기가 지나가는 위치를 정확하게 파악하고 항공기와 항공등을 유도 및 제어 할 수 있는 항공기 지상유도관제 시스템 및 방법에 관한 것이다.
항공기를 이용하는 사람들이 점점 많아짐에 따라 공항의 대규모화, 항공기의 발착회수 증대, 공항 활주로 부근에서 교통의 복잡화 등으로 인하여 관제원의 운용에 의한 항공관제는 점점 곤란하여지고 있으며, 더욱이 야간이나 악천후에 의한 시계불량에서도 공항 지상만을 전담하여 탐지하는 레이더가 절대 필요하게 되었다.
이와 같은 목적에 사용되는 레이더를 공항 지상감시레이더(Airport Surface Detection Equipment: ASDE)라 한다.
한편, 항공교통 업무는 접근 관제 업무, 비행장 관제 업무, 지역 관제 업무로 구분되며, 비행장 관제 업무는 계류장 관제 업무를 포함한다. 계류장 관제 업무는 공항의 계류장에서 항공기에 대한 지상 유도를 담당하는 업무이며, 출발 항공기와 도착 항공기의 계류장 이동을 관제하는 업무이다.
또한, 계류장 관제사가 없는 경우에는 지상 관제사가 이 업무를 수행한다.
공항 등의 비행장은 일반적으로 이동지역(Movement Area)과 비이동지역(Nonmovement Area)으로 나누어지며, 이동지역은 기동지역(Manuvering Area)과 계류장(Apron)으로 구성되며, 항공기의 이륙, 착륙 및 지상 유도용으로 사용되는 비행장 내의 한 부분이다.
관제탑이 있는 공항/헬리포트에서 이동지역으로 진입을 위한 특정 허가는 항공교통관계기관에서 득하여야 한다.
계류장은 승객, 우편물 및 화물을 싣고 내리거나 급유, 주기 또는 정비를 수행할 수 있는 육상 비행장의 지정된 구역이다. 비이동 지역은 항공교통 관제 하에 있지 않은 유도로와 주기장지역이다.
비행장 관제는 계류장 관제(Ramp Control)와 지상 관제(Ground Control)로 나누어진다. 계류장 관제는 비행장 관제 업무 중에 지상 계류장 구역 내에서 이동하는 항공기에게 제공되는 관제 업무로서, 통상 비행장 관제업무를 수행하는 관제탑에서 계류장 관제 업무를 함께 수행한다.
계류장 관제 업무는 계류장 관제권 내 항공기의 엔진 시동(Engine start-up), 후방 견인(Push back), 유도로(Taxiway) 진입을 위한 지상 이동 허가 및 지상 조업 차량, 인원에 대한 통제이며, 계류장 관제사는 항공기가 계류장을 벗어나 지상 관제사의 관제권인 유도로(Taxiway)에 진입하기 이전에 지상 관제사에게 관제권을 이양해야 한다. 마찬가지로 지상 관제사(Ground Controller)는 항공기가 유도로를 벗어나 계류장에 진입하기 이전에 계류장 관제사(Ramp Controller)에게 관제권을 이양해야 한다.
이와 같은 공항은 안전성을 확보하기 위하여 여러 가지 첨단 기술과 장비, 그리고 새로운 운용시스템을 구축하고 있다.
그러나, 항공기는 예상치 못한 기상과 장비의 결함, 관제사와 조종사의 실수등 여러 가지 요인에 의하여 크고작은 사고가 아직도 빈번하게 일어나고 있다.
따라서, 항공기의 안전성을 확보하기 위하여 2중, 3중으로 시스템을 보완하고 업그레이드함으로써 항공기와 탑승객을 보호하고 공항 내의 교통 흐름을 원활하게 하는 것이 필수적으로 필요하다.
또한, 기존의 공항 활주로 상에 항공기가 이륙 및 착륙할 경우, 관제탑에서 레이더를 통해 공항의 물체 정보를 획득하여 항공기의 경로를 지정하고, 상기 지정된 경로의 유도등(항공등)을 통해 항공기를 목적지까지 유도하였다.
그러나, 레이더를 통해 수신되는 물체는 항공기 외에 공항 활주로 상에 상주되는 다수의 물체 정보를 모두 수신함에 따라 필요로 하는 항공기의 정보를 빠르게 파악하기 힘든 단점이 있다.
따라서, 항공기의 위치 정보를 빠르게 파악할 수 있도록 개선된 형태의 항공기 지상유도관제 시스템 및 방법의 개발이 요구되고 있는 실정이다.
본 발명은 전술한 종래의 제반 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 항공등의 고정된 위치정보 GPS 좌표값을 서버에 입력하여 관리하며 실시간으로 레이더에서 이동하는 항공기의 좌표정보와 고정된 항공등의 좌표가 크로스 되면 항공기가 지나가는 위치를 정확하게 파악하고 항공기와 항공등을 유도 및 제어 할 수 있는 항공기 지상유도관제 시스템 및 방법을 제공하는 데 있다.
상기와 같은 목적을 달성하기 위한 항공기 지상유도관제 시스템 및 방법은, 비행장내에 설치된 제어 및 감시가 가능한 모든 항공등의 고정된 위치정보 GPS 좌표값을 서버에 입력하여 관리하며, 실시간으로 레이더에서 이동하는 항공기의 좌표정보와 고정된 항공등의 좌표가 크로스 되는지를 판단하며, 항공기의 좌표정보와 고정된 항공등의 좌표가 크로스 되면 항공기의 위치를 특정하며 항공기가 지나는 항공등을 유도 제어하는 것을 특징으로 한다.
또한, 유도등화가 설치되지 않은 계류장 내에 일정한 간격으로 GPS 좌표값을 서버에 입력하고, 항공기의 좌표정보와 계류장 내 GPS 좌표값이 크로스 되면 항공기의 위치를 추적하는 것을 특징으로 한다.
또한, 항공기를 감시하는 레이더로부터 전송되는 위도, 경도 좌표를 GPS정보로 환산하여 계류장내 항공등이 없는 브릿지나 스파트에 있는 항공기의 도착과 이탈을 실시간으로 위치를 추적하는 것을 특징으로 한다.
또한, 항공기의 이륙 경로, 착륙 경로인 비행장 내의 착륙대와 활주로 중심부에는 각각 줌 카메라 또는 드론 카메라를 구비하여 저시정시에도 이, 착륙하는 항공기의 동체와 라이트, 랜딩기어, 엔진을 확인할 수 있는 영상정보를 관제사에게 제공하는 것을 특징으로 한다.
또한, 활주로와 평행유도로 고속탈출로에 5G 라이다를 설치하여 실시간으로 지상감시 레이더와 연동하며 활주로와 평행유도로, 계류장에서 이동하는 항공기와 차량의 위치를 정확하게 추적하는 것을 특징으로 한다.
또한, SSR2차감시 레이더와 지상감시 레이더, 5G 라이다를 연계하여 공중에서부터 착륙허가를 받은 항공기의 콜싸인을 추적하여 착륙하는 항공기가 트랜스 폰더를 OFF 하더라도 자동으로 콜싸인을 부착하여 항공기가 브릿지나 스파트에 주기 후 이륙할 때까지 서버에서 항공기의 위치를 추적하는 것을 특징으로 한다.
또한, 터치다운된 항공기가 활주로에서 고속탈출로 - 유도로 - 평행유도로 - 계류장 - 접현 장치에 접근하면 적외선 카메라를 이용하여 항공기 기종에 따른 정지거 리와 접현을 위한 좌, 우측 주행안내를 모니터에 정보를 제공하여 조종사가 안전 하게 접현 할수 있는 것을 특징으로 한다.
또한, 이륙을 위하여 브릿지에서 이동하는 항공기는 카메라 센서에 감지되고 스파트에서 이동하는 항공기는 고정좌표와 이동하는 GPS좌표가 크로스 되는 신호를 감 지하며 이때에는 회항하는 항공기의 콜싸인을 서버에서 자동으로 테그하여 이륙할 때까지 서버에서 항공기 위치를 추적하는 것을 특징으로 한다.
또한, 비행장과 계류장내에서 이동하는 차량의 위치추적은 양방향통신의 GPS장치를 차량에 부착하여 항공기와 차량의 충돌을 예방하고 항공기 사고시에는 외부로부터 진입하는 소방차와 구급차량을 사고현장으로 유도하는 것을 특징으로 한다.
또한, 항공기를 자동으로 안전하게 유도하기 위하여 지상에 설치한 각종항공등화와 항행안전장비(ILS, VOR, DME, GP, TACAN, AMOS, PAPI)를 연동하는 시스템을 서버에 구축하고 실시간으로 장비의 이상유, 무 정보를 관제사에게 제공하는 것을 특징으로 한다.
또한, 공중레이더와 지상감시레이더를 연동하여 항공기의 착륙시간과 이륙하는 항공기의 시간을 서버에서 계산하여 자동으로 이, 착륙을 관제하는 것을 특징으로 한다.
또한, 관제사에게 활주로와 평행유도로, 계류장의 상황을 실시간으로 정확하게 판단할 수 있는 3D영상을 제공하는 것을 특징으로 한다.
본 발명에 따른 항공기 지상유도관제 시스템 및 방법에 따르면, 항공등의 고정된 위치정보 GPS 좌표값을 서버에 입력하여 관리하며 실시간으로 레이더에서 이동하는 항공기의 좌표정보와 고정된 항공등의 좌표가 크로스 되면 항공기가 지나가는 위치를 정확하게 파악하고 항공기와 항공등을 유도 및 제어 할 수 있는 효과를 제공한다.
도 1은 본 발명에 따른 항공기 지상유도관제 시스템을 도시한 도면이다.
도 2는 본 발명에 따른 항공기 지상유도관제 시스템의 착륙대와 활주로를 도시한 도면이다.
도 3은 본 발명에 따른 항공기 지상유도관제 시스템에 5g 라이다를 적용한 상태를 도시한 도면이다.
도 4는 본 발명에 따른 항공기 지상유도관제 시스템의 계류장을 도시한 도면이다.
도 5는 본 발명에 따른 항공기 지상유도관제 시스템의 3D영상을 도시한 도면이다.
이하, 본 발명의 바람직한 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 본 발명에 따른 항공기 지상유도관제 시스템을 도시한 도면이고, 도 2는 본 발명에 따른 항공기 지상유도관제 시스템의 착륙대와 활주로를 도시한 도면이며, 도 3은 본 발명에 따른 항공기 지상유도관제 시스템에 5g 라이다를 적용한 상태를 도시한 도면이고, 도 4는 본 발명에 따른 항공기 지상유도관제 시스템의 계류장을 도시한 도면이며, 도 5는 본 발명에 따른 항공기 지상유도관제 시스템의 3D영상을 도시한 도면이다.
도 1 내지 도 5에 도시한 바와 같이, 본 발명에 따른 항공기 지상유도관제 시스템은, 항공기를 감시하는 SSR 2차감시레이더(100, SSR:Secondary Surveillance Radar)와, 항공기를 감시하는 ASDE 지상감시레이더(200)로 구성된다.
또한, 상기 SSR 2차감시레이더(100)와 ASDE 지상감시레이더(200)로부터 항공기의 위치데이터를 전송받는 제어부가(300)가 더 구비된다.
이러한, 제어부(300)는 항공 시스템과 연동하는 항행안전장비(ALS, VOR, DME, TACAN, ILS)와 기상정보(AMOS) 등의 장비상태를 감시하며 이상발생시 즉시 관제사에게 정보를 전달하는 역할을 수행하는 시스템 서버(400)로서 비행장에 접근하는 항공기의 안전에 만전을 기하게 된다.
그리고, 항공기의 이륙 경로, 착륙 경로인 비행장 내의 착륙대에는 도 2와 같이 줌 카메라(500) 또는 드론 카메라가(600)가 구비된다.
한편, 도 3과 같이 활주로와 평행유도로 고속탈출로에 5G 라이다(700)가 구비된다.
또한, 도 4와 같이 계류장에는 적외선 카메라(810)와 모니터(820)가 구비된다.
그리고, 도 5와 같이 관제사에게 활주로와 평행유도로, 계류장의 상황을 실시간으로 정확하게 판단할 수 있는 3D영상(900)을 제공한다.
이하, 본 발명에 따른 항공기 지상유도관제 방법을 설명한다.
먼저, 비행장내에 설치된 제어 및 감시가 가능한 모든 항공등의 고정된 위치정보 GPS 좌표값을 서버(400)에 입력하여 관리하며, 실시간으로 레이더(100,200)에서 이동하는 항공기의 좌표정보와 고정된 항공등의 좌표가 크로스 되는지를 판단하며, 항공기의 좌표정보와 고정된 항공등의 좌표가 크로스 되면 항공기의 위치를 특정하며 제어부(300)는 항공기가 지나는 항공등을 유도 제어한다.
그리고, 유도등화가 설치되지 않은 계류장 내에 일정한 간격으로 GPS 좌표값을 서버에 입력하고, 항공기의 좌표정보와 계류장 내 GPS 좌표값이 크로스 되면 항공기의 위치를 추적한다.
다음, 항공기를 감시하는 레이더(100,200)로부터 전송되는 위도, 경도 좌표를 GPS정보로 환산하여 계류장내 항공등이 없는 브릿지나 스파트에 있는 항공기의 도착과 이탈을 실시간으로 위치를 추적한다.
그리고, 항공기의 이륙 경로, 착륙 경로인 비행장 내의 착륙대와 활주로 중심부에는 각각 줌 카메라(500) 또는 드론 카메라(600)를 구비하여 저시정시에도 이, 착륙하는 항공기의 동체와 라이트, 랜딩기어, 엔진을 확인할 수 있는 영상정보를 관제사에게 제공한다.
다음, 활주로와 평행유도로 고속탈출로에 5G 라이다(700)를 설치하여 실시간으로 지상감시 레이더(200)와 연동하며 활주로와 평행유도로, 계류장에서 이동하는 항공기와 차량의 위치를 정확하게 추적한다.
그리고, SSR2차감시 레이더(100)와 지상감시 레이더(200), 5G 라이다(700)를 연계하여 공중에서부터 착륙허가를 받은 항공기의 콜싸인을 추적하여 착륙하는 항공기가 트랜스 폰더를 OFF 하더라도 자동으로 콜싸인을 부착하여 항공기가 브릿지나 스파트에 주기 후 이륙할 때까지 서버에서 항공기의 위치를 추적한다.
다음, 터치다운된 항공기가 활주로에서 고속탈출로 - 유도로 - 평행유도로 - 계류장 - 접현 장치에 접근하면 적외선 카메라(810)를 이용하여 항공기 기종에 따른 정지거리와 접현을 위한 좌, 우측 주행안내를 모니터(820)에 정보를 제공하여 조종사가 안전하게 접현하게 한다.
그리고, 이륙을 위하여 브릿지에서 이동하는 항공기는 카메라 센서에 감지되고 스파트에서 이동하는 항공기는 고정좌표와 이동하는 GPS좌표가 크로스 되는 신호를 감지하며 이때에는 회항하는 항공기의 콜싸인을 서버에서 자동으로 테그하여 이륙할 때까지 서버에서 항공기 위치를 추적한다.
다음, 비행장과 계류장내에서 이동하는 차량의 위치추적은 양방향통신의 GPS장치를 차량에 부착하여 항공기와 차량의 충돌을 예방하고 항공기 사고시에는 외부로부터 진입하는 소방차와 구급차량을 사고현장으로 유도한다.
그리고, 항공기를 자동으로 안전하게 유도하기 위하여 지상에 설치한 각종항공등화와 항행안전장비(ILS, VOR, DME, GP, TACAN, AMOS, PAPI)를 연동하는 시스템을 서버(400)에 구축하고 실시간으로 장비의 이상 유, 무 정보를 관제사에게 제공한다.
다음, SSR 2차감시 레이더(100)와 지상감시레이더(200)를 연동하여 항공기의 착륙시간과 이륙하는 항공기의 시간을 서버(400)에서 계산하여 자동으로 이, 착륙을 관제한다.
그리고, 관제사에게 활주로와 평행유도로, 계류장의 상황을 실시간으로 정확하게 판단할 수 있는 3D영상(900)을 제공한다.
본 발명에 따르면, 항공등의 고정된 위치정보 GPS 좌표값을 서버에 입력하여 관리하며 실시간으로 레이더에서 이동하는 항공기의 좌표정보와 고정된 항공등의 좌표가 크로스 되면 항공기가 지나가는 위치를 정확하게 파악하고 항공기와 항공등을 유도 및 제어 한다.
이상, 본 발명의 바람직한 실시 예에 대하여 상세히 설명하였으나, 본 발명의 기술적 범위는 전술한 실시 예에 한정되지 않고 특허청구범위에 의하여 해석되어야 할 것이다. 이때, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 고려해야 할 것이다.

Claims (12)

  1. 비행장내에 설치된 제어 및 감시가 가능한 모든 항공등의 고정된 위치정보 GPS 좌표값을 서버에 입력하여 관리하며,
    실시간으로 레이더에서 이동하는 항공기의 좌표정보와 고정된 항공등의 좌표가 크로스 되는지를 판단하며,
    항공기의 좌표정보와 고정된 항공등의 좌표가 크로스 되면 항공기의 위치를 특정하며 항공기가 지나는 항공등을 유도 제어하는 것을 특징으로 하는 항공기 지상유도관제 방법.
  2. 제 1항에 있어서,
    유도등화가 설치되지 않은 계류장 내에 일정한 간격으로 GPS 좌표값을 서버에 입력하고,
    항공기의 좌표정보와 계류장 내 GPS 좌표값이 크로스 되면 항공기의 위치를 추적하는 것을 특징으로 하는 항공기 지상유도관제 방법.
  3. 제 2항에 있어서,
    항공기를 감시하는 레이더로부터 전송되는 위도, 경도 좌표를 GPS정보로 환산하여 계류장내 항공등이 없는 브릿지나 스파트에 있는 항공기의 도착과 이탈을 실시간으로 위치를 추적하는 것을 특징으로 하는 항공기 지상유도관제 방법.
  4. 제 1항에 있어서,
    항공기의 이륙 경로, 착륙 경로인 비행장 내의 착륙대와 활주로 중심부에는 각각 줌 카메라 또는 드론 카메라를 구비하여 저시정시에도 이, 착륙하는 항공기의 동체와 라이트, 랜딩기어, 엔진을 확인할 수 있는 영상정보를 관제사에게 제공하는 것을 특징으로 하는 항공기 지상유도관제 방법.
  5. 제 1항에 있어서,
    활주로와 평행유도로 고속탈출로에 5G 라이다를 설치하여 실시간으로 지상감시 레이더와 연동하며 활주로와 평행유도로, 계류장에서 이동하는 항공기와 차량의 위치를 정확하게 추적하는 것을 특징으로 하는 항공기 지상유도관제 방법.
  6. 제 5항에 있어서,
    SSR2차감시 레이더와 지상감시 레이더, 5G 라이다를 연계하여 공중에서부터 착륙허가를 받은 항공기의 콜싸인을 추적하여 착륙하는 항공기가 트랜스 폰더를 OFF 하더라도 자동으로 콜싸인을 부착하여 항공기가 브릿지나 스파트에 주기 후 이륙할 때까지 서버에서 항공기의 위치를 추적하는 것을 특징으로 하는 항공기 지상유도관제 방법.
  7. 제 6항에 있어서,
    터치다운된 항공기가 활주로에서 고속탈출로 - 유도로 - 평행유도로 - 계류장 - 접현 장치에 접근하면 적외선 카메라를 이용하여 항공기 기종에 따른 정지거 리와 접현을 위한 좌, 우측 주행안내를 모니터에 정보를 제공하여 조종사가 안전 하게 접현 할수 있는 것을 특징으로 하는 항공기 지상유도관제 방법.
  8. 제 7항에 있어서,
    이륙을 위하여 브릿지에서 이동하는 항공기는 카메라 센서에 감지되고 스파트에서 이동하는 항공기는 고정좌표와 이동하는 GPS좌표가 크로스 되는 신호를 감 지하며 이때에는 회항하는 항공기의 콜싸인을 서버에서 자동으로 테그하여 이륙할 때까지 서버에서 항공기 위치를 추적하는 것을 특징으로 하는 항공기 지상유도관제 방법.
  9. 제 8항에 있어서,
    비행장과 계류장내에서 이동하는 차량의 위치추적은 양방향통신의 GPS장치를 차량에 부착하여 항공기와 차량의 충돌을 예방하고 항공기 사고시에는 외부로부터 진입하는 소방차와 구급차량을 사고현장으로 유도하는 것을 특징으로 하는 항공기 지상유도관제 방법.
  10. 제 9항에 있어서,
    항공기를 자동으로 안전하게 유도하기 위하여 지상에 설치한 각종항공등화와 항행안전장비(ILS, VOR, DME, GP, TACAN, AMOS, PAPI)를 연동하는 시스템을 서버에 구축하고 실시간으로 장비의 이상유, 무 정보를 관제사에게 제공하는 것을 특징으로 하는 항공기 지상유도관제 방법.
  11. 제 10항에 있어서,
    공중레이더와 지상감시레이더를 연동하여 항공기의 착륙시간과 이륙하는 항공기의 시간을 서버에서 계산하여 자동으로 이, 착륙을 관제하는 것을 특징으로 하는 항공기 지상유도관제 방법.
  12. 제 11항에 있어서,
    관제사에게 활주로와 평행유도로, 계류장의 상황을 실시간으로 정확하게 판단할 수 있는 3D영상을 제공하는 것을 특징으로 하는 항공기 지상유도관제 방법.
PCT/KR2022/004822 2021-04-15 2022-04-05 지능형 첨단 항공기 지상유도관제 시스템 및 방법 WO2022220461A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/554,794 US20240119850A1 (en) 2021-04-15 2022-04-05 Intelligent high-tech system and method for aircraft ground guidance and control
CN202280027835.9A CN117157688A (zh) 2021-04-15 2022-04-05 智能型尖端飞机地面引导管制***及方法
EP22788317.0A EP4325464A1 (en) 2021-04-15 2022-04-05 Intelligent high-tech system and method for aircraft ground guidance and control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0049131 2021-04-15
KR1020210049131A KR102315546B1 (ko) 2021-04-15 2021-04-15 지능형 첨단 항공기 지상유도관제 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2022220461A1 true WO2022220461A1 (ko) 2022-10-20

Family

ID=78268840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004822 WO2022220461A1 (ko) 2021-04-15 2022-04-05 지능형 첨단 항공기 지상유도관제 시스템 및 방법

Country Status (5)

Country Link
US (1) US20240119850A1 (ko)
EP (1) EP4325464A1 (ko)
KR (1) KR102315546B1 (ko)
CN (1) CN117157688A (ko)
WO (1) WO2022220461A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102315546B1 (ko) * 2021-04-15 2021-10-21 최병관 지능형 첨단 항공기 지상유도관제 시스템 및 방법
TWI828368B (zh) * 2022-10-14 2024-01-01 訊力科技股份有限公司 用於偵測航空器於停機坪的行為的方法與其系統

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240190A (ja) * 2006-03-06 2007-09-20 Toshiba Corp 空港用気象レーダ装置とその運用方法
WO2016017883A1 (ko) * 2014-07-29 2016-02-04 한국공항공사 능동형 항공등화 장치 및 능동형 항공등화 방법
KR20160090483A (ko) * 2015-01-22 2016-08-01 엘에스산전 주식회사 항공등화제어 및 지상유도관제 시스템
KR101650905B1 (ko) * 2016-04-04 2016-08-24 선진조명 주식회사 드론을 이용한 항공기 지상유도관제 시스템 및 방법
KR101656280B1 (ko) * 2016-04-05 2016-09-09 선진조명 주식회사 드론을 이용한 첨단 항공기 지상유도관제 시스템 및 방법
KR102315546B1 (ko) * 2021-04-15 2021-10-21 최병관 지능형 첨단 항공기 지상유도관제 시스템 및 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100898820B1 (ko) 2007-10-08 2009-05-22 벽산정보통신(주) 공항 활주로 지상 이동 유도 시스템 및 유도 방법
KR101574206B1 (ko) 2014-01-02 2015-12-04 주식회사 엠케이항공 비행장의 관제 신호등

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240190A (ja) * 2006-03-06 2007-09-20 Toshiba Corp 空港用気象レーダ装置とその運用方法
WO2016017883A1 (ko) * 2014-07-29 2016-02-04 한국공항공사 능동형 항공등화 장치 및 능동형 항공등화 방법
KR20160090483A (ko) * 2015-01-22 2016-08-01 엘에스산전 주식회사 항공등화제어 및 지상유도관제 시스템
KR101650905B1 (ko) * 2016-04-04 2016-08-24 선진조명 주식회사 드론을 이용한 항공기 지상유도관제 시스템 및 방법
KR101656280B1 (ko) * 2016-04-05 2016-09-09 선진조명 주식회사 드론을 이용한 첨단 항공기 지상유도관제 시스템 및 방법
KR102315546B1 (ko) * 2021-04-15 2021-10-21 최병관 지능형 첨단 항공기 지상유도관제 시스템 및 방법

Also Published As

Publication number Publication date
EP4325464A1 (en) 2024-02-21
KR102315546B1 (ko) 2021-10-21
CN117157688A (zh) 2023-12-01
US20240119850A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
KR100351343B1 (ko) 공항지상교통안내및제어시스템
WO2022220461A1 (ko) 지능형 첨단 항공기 지상유도관제 시스템 및 방법
RU2560220C1 (ru) Способ и устройство для управления наземным движением мобильных объектов на аэродроме
US7113202B2 (en) Autotiller control system for aircraft utilizing camera sensing
EP2660152B1 (en) Method for identifying an airplane in connection with parking of the airplane at a stand
CN111613095B (zh) 面向商用飞机远程驾驶***的起飞前场面运行控制方法
WO2013058452A1 (ko) 공항 또는 항만 교통용 네비게이션 시스템
KR101656280B1 (ko) 드론을 이용한 첨단 항공기 지상유도관제 시스템 및 방법
KR101650905B1 (ko) 드론을 이용한 항공기 지상유도관제 시스템 및 방법
CN111445727A (zh) 监测机场跑道侵入的***及方法
WO2019225863A1 (ko) 드론을 이용한 항공기 지상유도관제 시스템 및 방법
JP2002245600A (ja) 航空機地上走行誘導管制システム
US20080158041A1 (en) Airport Surface Detector and Control System
US20210139165A1 (en) Airport parking system for electric taxi driven aircraft
US20190257656A1 (en) Method and system for automating and configuring an aircraft de-icing pad facility
Cassell et al. Development of required navigation performance (RNP) requirements for airport surface movement guidance and control
Dippe A Taxi and Ramp Management and Control System (TARMAC)
CN115294805B (zh) 一种基于视频图像的机场场面航空器冲突预警***及方法
CN212032370U (zh) 机场场面运行要素的多源感知探测***
KR20160007090A (ko) 항공기용 지상 이동 안내 및 제어 시스템
JP4634177B2 (ja) 航空機の地上走行誘導装置
Kazda et al. Aircraft Ground Handling
WO2020207934A1 (en) Airliner
Harrison Ground Movement Guidance and Control at Major Airports in Low Visibility
Borković et al. Traffic management system on airport manoeuvring areas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788317

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18554794

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022788317

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022788317

Country of ref document: EP

Effective date: 20231115