WO2022219689A1 - レーザ装置、レーザ光のスペクトルの評価方法、及び電子デバイスの製造方法 - Google Patents

レーザ装置、レーザ光のスペクトルの評価方法、及び電子デバイスの製造方法 Download PDF

Info

Publication number
WO2022219689A1
WO2022219689A1 PCT/JP2021/015233 JP2021015233W WO2022219689A1 WO 2022219689 A1 WO2022219689 A1 WO 2022219689A1 JP 2021015233 W JP2021015233 W JP 2021015233W WO 2022219689 A1 WO2022219689 A1 WO 2022219689A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
waveform
spectral
laser
laser device
Prior art date
Application number
PCT/JP2021/015233
Other languages
English (en)
French (fr)
Inventor
貴光 古巻
敏浩 大賀
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to CN202180095462.4A priority Critical patent/CN116998070A/zh
Priority to PCT/JP2021/015233 priority patent/WO2022219689A1/ja
Priority to JP2023514200A priority patent/JPWO2022219689A1/ja
Publication of WO2022219689A1 publication Critical patent/WO2022219689A1/ja
Priority to US18/467,121 priority patent/US20240003743A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J9/0246Measuring optical wavelength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08086Multiple-wavelength emission
    • H01S3/0809Two-wavelenghth emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • H01S3/137Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity for stabilising of frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J2009/0257Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods multiple, e.g. Fabry Perot interferometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10069Memorized or pre-programmed characteristics, e.g. look-up table [LUT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1055Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length one of the reflectors being constituted by a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex

Definitions

  • the present disclosure relates to a laser device, a method for evaluating the spectrum of laser light, and a method for manufacturing an electronic device.
  • a KrF excimer laser device that outputs laser light with a wavelength of about 248 nm and an ArF excimer laser device that outputs laser light with a wavelength of about 193 nm are used.
  • the spectral line width of the spontaneous oscillation light of the KrF excimer laser device and the ArF excimer laser device is as wide as 350-400 pm. Therefore, if the projection lens is made of a material that transmits ultraviolet light, such as KrF and ArF laser light, chromatic aberration may occur. As a result, resolution can be reduced. Therefore, it is necessary to narrow the spectral line width of the laser light output from the gas laser device to such an extent that the chromatic aberration can be ignored. Therefore, in the laser resonator of the gas laser device, a line narrow module (LNM) including a band narrowing element (etalon, grating, etc.) is provided in order to narrow the spectral line width.
  • LNM line narrow module
  • a gas laser device whose spectral line width is narrowed will be referred to as a band-narrowed gas laser device.
  • a laser device is a laser device that can be connected to an exposure device, and includes a spectroscope that generates a measurement waveform from an interference pattern of laser light output from the laser device, and a processor, Calculate a first spectrum waveform that indicates the relationship between wavelength and light intensity using the measured waveform, calculate a representative wavelength included in the wavelength range of the first spectrum waveform, and calculate a function of wavelength deviation from the representative wavelength and light and a processor configured to calculate an evaluation value of the first spectral waveform using a first integrated value obtained by integrating the product with the intensity over a wavelength range.
  • a laser light spectrum evaluation method generates a measured waveform from an interference pattern of laser light output from a laser device connectable to an exposure device, and uses the measured waveform to determine the wavelength and light intensity.
  • Calculate a first spectral waveform indicating the relationship between calculate a representative wavelength included in the wavelength range of the first spectral waveform, and integrate the product of the wavelength deviation function from the representative wavelength and the light intensity with respect to the wavelength range calculating an evaluation value of the first spectrum waveform using the first integrated value obtained by the above.
  • An electronic device manufacturing method includes a spectroscope that generates a measurement waveform from an interference pattern of laser light output from a laser device connectable to an exposure device, and a processor, wherein the measurement waveform is generated by: Calculate a first spectral waveform that indicates the relationship between wavelength and light intensity using, calculate a representative wavelength included in the wavelength range of the first spectral waveform, and calculate a function of wavelength deviation from the representative wavelength and light intensity and a processor configured to calculate an evaluation value of the first spectral waveform using a first integrated value obtained by integrating the product with respect to a wavelength range. It includes exposing laser light onto a photosensitive substrate in the exposure apparatus to output the light to the exposure apparatus and to manufacture the electronic device.
  • FIG. 1 schematically shows the configuration of an exposure system in a comparative example.
  • FIG. 2 schematically shows the configuration of a laser device according to a comparative example.
  • FIG. 3 is a block diagram illustrating functions of a spectrum measurement control processor in a comparative example.
  • FIG. 4 is a flow chart showing the procedure for measuring the spectral line width E95 in the comparative example.
  • FIG. 5 is a graph showing an example of an estimated spectral waveform I( ⁇ ) of laser light.
  • FIG. 6 is a graph showing another example of the spectrum waveform of laser light.
  • FIG. 7 is a graph showing the distribution of focus positions in the exposure apparatus for the laser light indicated by spectral waveform #1 shown in FIG.
  • FIG. 8 is a graph showing the focus position distribution in the exposure apparatus for the laser light indicated by spectral waveform #2 shown in FIG.
  • FIG. 9 is a graph showing the focus position distribution in the exposure apparatus for the laser light indicated by the spectrum waveform #3 shown in FIG.
  • FIG. 10 is a graph showing still another example of the spectrum waveform of laser light.
  • FIG. 11 is a graph showing still another example of the spectrum waveform of laser light.
  • FIG. 12 shows a rectangular imaging pattern used for evaluation of imaging performance.
  • FIG. 13 is a graph showing simulation results of imaging performance in the exposure apparatus.
  • FIG. 14 is a graph showing simulation results of imaging performance in the exposure apparatus.
  • FIG. 15 schematically shows the configuration of a laser device according to an embodiment of the present disclosure.
  • FIG. 16 is a flow chart showing the procedure for measuring the spectrum evaluation value V in the embodiment.
  • FIG. 17 shows an imaging pattern used for comparison of usefulness of spectral evaluation value V and spectral line width E95.
  • FIG. 18 is a graph showing the relationship between spectral line width E95 and ⁇ CD in the imaging pattern of FIG. 19 is a graph showing the relationship between the spectrum evaluation value V and ⁇ CD in the imaging pattern of FIG. 17.
  • FIG. FIG. 20 shows another imaging pattern used to compare the usefulness of spectral evaluation value V and spectral linewidth E95.
  • FIG. 21 is a graph showing the relationship between spectral line width E95 and ⁇ CD in the imaging pattern of FIG.
  • FIG. 22 is a graph showing the relationship between the spectrum evaluation value V and ⁇ CD in the imaging pattern of FIG. 20.
  • FIG. FIG. 23 is a graph showing the relationship between the spectral evaluation value V of Equation 4 and ⁇ CD in the imaging pattern of FIG.
  • FIG. 24 is a graph showing the relationship between the spectral evaluation value V of Equation 4 and ⁇ CD in the imaging pattern of FIG.
  • FIG. 25 is a flow chart showing the procedure of spectrum control in the embodiment.
  • FIG. 26 schematically shows the configuration of a modification of the spectral waveform adjuster.
  • FIG. 27 schematically shows the configuration of a modification of the spectral waveform adjuster.
  • Comparative Example FIG. 1 schematically shows the configuration of an exposure system in a comparative example.
  • the comparative examples of the present disclosure are forms known by the applicant to be known only by the applicant, and not known examples to which the applicant admits.
  • the exposure system includes a laser device 1 and an exposure device 100.
  • Laser device 1 includes a laser control processor 30 .
  • the laser control processor 30 is a processing device that includes a memory 132 storing a control program and a CPU (central processing unit) 131 that executes the control program.
  • Laser control processor 30 is specially configured or programmed to perform the various processes contained in this disclosure.
  • the laser device 1 is configured to output laser light toward the exposure device 100 .
  • Exposure apparatus 100 includes illumination optical system 101 , projection optical system 102 , and exposure control processor 110 .
  • the illumination optical system 101 illuminates a reticle pattern of a reticle (not shown) placed on the reticle stage RT with laser light incident from the laser device 1 .
  • the projection optical system 102 reduces and projects the laser beam transmitted through the reticle to form an image on a workpiece (not shown) placed on the workpiece table WT.
  • the workpiece is a photosensitive substrate such as a semiconductor wafer coated with a resist film.
  • the exposure control processor 110 is a processing device that includes a memory 112 storing a control program and a CPU 111 that executes the control program. Exposure control processor 110 is specially configured or programmed to perform the various processes contained in this disclosure. The exposure control processor 110 supervises the control of the exposure apparatus 100 and transmits/receives various data and various signals to/from the laser control processor 30 .
  • the exposure control processor 110 transmits the wavelength target value data, the pulse energy target value data, and the trigger signal to the laser control processor 30 .
  • the laser control processor 30 controls the laser device 1 according to these data and signals.
  • the exposure control processor 110 synchronously translates the reticle stage RT and the workpiece table WT in opposite directions. As a result, the workpiece is exposed with laser light reflecting the reticle pattern. A reticle pattern is transferred to the semiconductor wafer by such an exposure process. After that, an electronic device can be manufactured through a plurality of steps.
  • FIG. 2 schematically shows the configuration of a laser apparatus 1 according to a comparative example.
  • the laser device 1 includes a laser oscillator 20 , a power supply 12 , a monitor module 16 , a laser control processor 30 , a wavelength measurement controller 50 and a spectrum measurement control processor 60 .
  • the laser device 1 is connectable to the exposure device 100 .
  • the laser oscillator 20 includes a laser chamber 10, a discharge electrode 11a, a band narrowing module 14, and a spectral waveform adjuster 15a.
  • the band narrowing module 14 and the spectral waveform adjuster 15a constitute a laser resonator.
  • a laser chamber 10 is arranged in the optical path of the laser resonator. Windows 10a and 10b are provided at both ends of the laser chamber 10.
  • FIG. Inside the laser chamber 10, a discharge electrode 11a and a discharge electrode (not shown) paired therewith are arranged.
  • a discharge electrode (not shown) is positioned so as to overlap the discharge electrode 11a in the direction of the V-axis perpendicular to the paper surface.
  • the laser chamber 10 is filled with a laser gas containing, for example, argon gas or krypton gas as a rare gas, fluorine gas as a halogen gas, and neon gas as a buffer gas.
  • the power supply 12 includes a switch 13 and is connected to the discharge electrode 11a and a charger (not shown).
  • the band narrowing module 14 includes a plurality of prisms 14a and 14b and a grating 14c.
  • the prism 14b is supported by a rotating stage 14e.
  • the rotating stage 14e is configured to rotate the prism 14b about an axis parallel to the V-axis in accordance with the drive signal output from the wavelength driver 51.
  • FIG. The selected wavelength of the band narrowing module 14 is changed by rotating the prism 14b.
  • the spectral waveform adjuster 15a includes a cylindrical plano-convex lens 15b, a cylindrical plano-concave lens 15c, and a linear stage 15d.
  • a cylindrical plano-concave lens 15c is positioned between the laser chamber 10 and the cylindrical plano-convex lens 15b.
  • the cylindrical plano-convex lens 15b and the cylindrical plano-concave lens 15c are arranged so that the convex surface of the cylindrical plano-convex lens 15b faces the concave surface of the cylindrical plano-concave lens 15c.
  • the convex surface of the cylindrical plano-convex lens 15b and the concave surface of the cylindrical plano-concave lens 15c each have a focal axis parallel to the direction of the V-axis.
  • a flat surface located on the opposite side of the convex surface of the cylindrical plano-convex lens 15b is coated with a partially reflective film.
  • the monitor module 16 is arranged in the optical path of the laser light between the spectral waveform adjuster 15 a and the exposure apparatus 100 .
  • the monitor module 16 includes beam splitters 16 a , 16 b and 17 a , an energy sensor 16 c , a highly reflective mirror 17 b , a wavelength detector 18 and a spectroscope 19 .
  • the beam splitter 16a is located in the optical path of the laser light output from the spectral waveform adjuster 15a.
  • the beam splitter 16a is configured to transmit part of the laser light output from the spectral waveform adjuster 15a toward the exposure apparatus 100 with high transmittance and reflect the other part.
  • the beam splitter 16b is located in the optical path of the laser beam reflected by the beam splitter 16a.
  • the energy sensor 16c is positioned in the optical path of the laser light reflected by the beam splitter 16b.
  • the beam splitter 17a is located on the optical path of the laser light that has passed through the beam splitter 16b.
  • the high reflection mirror 17b is positioned in the optical path of the laser beam reflected by the beam splitter 17a.
  • the wavelength detector 18 is arranged in the optical path of the laser light that has passed through the beam splitter 17a.
  • the wavelength detector 18 includes a diffuser plate 18a, an etalon 18b, a condenser lens 18c, and a line sensor 18d.
  • the diffusion plate 18a is positioned on the optical path of the laser light transmitted through the beam splitter 17a.
  • the diffusion plate 18a has a large number of irregularities on its surface, and is configured to transmit and diffuse laser light.
  • the etalon 18b is positioned in the optical path of the laser light transmitted through the diffuser plate 18a.
  • Etalon 18b includes two partially reflective mirrors. The two partially reflecting mirrors face each other with an air gap of a predetermined distance, and are bonded together via spacers.
  • the condenser lens 18c is positioned on the optical path of the laser beam that has passed through the etalon 18b.
  • the line sensor 18d is located on the focal plane of the condenser lens 18c on the optical path of the laser beam that has passed through the condenser lens 18c.
  • the line sensor 18d is a light distribution sensor including a large number of light receiving elements arranged one-dimensionally.
  • an image sensor including a large number of light receiving elements arranged two-dimensionally may be used as the light distribution sensor.
  • the line sensor 18d may have a processor (not shown).
  • the line sensor 18d receives interference fringes formed by the etalon 18b and the condenser lens 18c.
  • An interference fringe is an interference pattern of laser light and has a shape of concentric circles, and the square of the distance from the center of the concentric circles is proportional to the change in wavelength.
  • a processor (not shown) may be configured to statistically process and output data reflecting the interference pattern.
  • the spectroscope 19 is arranged in the optical path of the laser beam reflected by the high reflection mirror 17b.
  • the spectroscope 19 includes a diffuser plate 19a, an etalon 19b, a condenser lens 19c, and a line sensor 19d.
  • the line sensor 19d may have a processor (not shown). These configurations are the same as those of the diffuser plate 18a, etalon 18b, condenser lens 18c, and line sensor 18d included in the wavelength detector 18, respectively.
  • etalon 19b has a smaller free spectral range than etalon 18b.
  • the condenser lens 19c has a longer focal length than the condenser lens 18c.
  • the spectrum measurement control processor 60 is a processing device including a memory 61 storing a control program, a CPU 62 executing the control program, and a counter 63 .
  • Spectral instrumentation control processor 60 is specially configured or programmed to perform various processes contained in this disclosure.
  • Spectrum measurement control processor 60 corresponds to the processor in the present disclosure.
  • the memory 61 also stores various data for calculating spectral line widths.
  • Various data include the device function S( ⁇ ) of the spectroscope 19 .
  • the counter 63 counts the number of pulses of the laser light by counting the number of times the electrical signal containing the data of the pulse energy output from the energy sensor 16c is received. Alternatively, the counter 63 may count the number of pulses of laser light by counting oscillation trigger signals output from the laser control processor 30 .
  • the wavelength measurement control unit 50 is a processing device including a memory (not shown) storing a control program, a CPU (not shown) that executes the control program, and a counter (not shown).
  • a counter included in the wavelength measurement control unit 50 also counts the number of pulses of laser light, like the counter 63 .
  • the laser control processor 30, the wavelength measurement control unit 50, and the spectrum measurement control processor 60 are described as separate components, but the laser control processor 30 includes the wavelength measurement control unit 50 and the spectrum measurement control. It may also serve as the processor 60 .
  • the laser control processor 30 receives setting data for the target pulse energy and target wavelength of laser light from the exposure control processor 110 included in the exposure apparatus 100 .
  • Laser control processor 30 receives a trigger signal from exposure control processor 110 .
  • the laser control processor 30 transmits setting data for the voltage applied to the discharge electrode 11a to the power supply 12 based on the target pulse energy.
  • the laser control processor 30 transmits target wavelength setting data to the wavelength measurement control unit 50 .
  • the laser control processor 30 transmits an oscillation trigger signal based on the trigger signal to the switch 13 included in the power supply 12 .
  • the switch 13 is turned on when receiving an oscillation trigger signal from the laser control processor 30 .
  • the power supply 12 When the switch 13 is turned on, the power supply 12 generates a pulsed high voltage from electric energy charged in a charger (not shown) and applies this high voltage to the discharge electrode 11a.
  • a discharge occurs inside the laser chamber 10 when a high voltage is applied to the discharge electrode 11a.
  • the energy of this discharge excites the laser medium inside the laser chamber 10 to shift to a high energy level.
  • the excited laser medium shifts to a lower energy level, it emits light with a wavelength corresponding to the energy level difference.
  • Light generated inside the laser chamber 10 is emitted to the outside of the laser chamber 10 through windows 10a and 10b.
  • Light emitted from the window 10a of the laser chamber 10 is expanded in beam width by the prisms 14a and 14b and enters the grating 14c.
  • Light incident on the grating 14c from the prisms 14a and 14b is reflected by the plurality of grooves of the grating 14c and diffracted in directions corresponding to the wavelength of the light.
  • Prisms 14a and 14b reduce the beam width of the diffracted light from grating 14c and return the light to laser chamber 10 through window 10a.
  • the spectral waveform adjuster 15a transmits and outputs part of the light emitted from the window 10b of the laser chamber 10 and reflects another part back into the laser chamber 10 through the window 10b.
  • the light emitted from the laser chamber 10 reciprocates between the band narrowing module 14 and the spectral waveform adjuster 15a, and is amplified every time it passes through the discharge space inside the laser chamber 10. This light is band-narrowed each time it is folded back by the band-narrowing module 14 .
  • the laser-oscillated and narrow-band light is output as laser light from the spectral waveform adjuster 15a.
  • a linear stage 15d included in the spectrum waveform adjuster 15a moves the cylindrical plano-concave lens 15c along the optical path between the laser chamber 10 and the cylindrical plano-convex lens 15b according to the drive signal output from the spectrum driver 64.
  • the wavefront of the light traveling from the spectral waveform adjuster 15a to the band narrowing module 14 changes.
  • a change in the wavefront causes a change in the spectral waveform and spectral linewidth of the laser light.
  • the energy sensor 16 c detects the pulse energy of the laser light and outputs pulse energy data to the laser control processor 30 , the wavelength measurement control section 50 and the spectrum measurement control processor 60 .
  • the pulse energy data is used by the laser control processor 30 to feedback-control setting data for the applied voltage applied to the discharge electrode 11a.
  • the electrical signal containing the pulse energy data can be used by the wavelength measurement controller 50 and the spectrum measurement control processor 60 to count the number of pulses, respectively.
  • the wavelength detector 18 generates interference fringe waveform data from the amount of light in each of the light receiving elements included in the line sensor 18d.
  • the wavelength detector 18 may use an integrated waveform obtained by integrating the amount of light in each of the light receiving elements as the waveform data of the interference fringes.
  • the wavelength detector 18 may generate an integrated waveform a plurality of times, and use an average waveform obtained by averaging the multiple integrated waveforms as the waveform data of the interference fringes.
  • the wavelength detector 18 transmits the waveform data of the interference fringes to the wavelength measurement control section 50 according to the data output trigger output from the wavelength measurement control section 50 .
  • the spectroscope 19 generates a raw waveform reflecting the amount of light in each of the light receiving elements included in the line sensor 19d that received the interference fringes.
  • the spectroscope 19 generates an integrated waveform Oi by integrating the raw waveform over Ni pulses.
  • the spectroscope 19 generates the integrated waveform Oi Na times, and generates an average waveform Oa by averaging the Na integrated waveforms Oi.
  • the integrated pulse number Ni is, for example, 5 pulses or more and 8 pulses or less, and the average number of times Na is, for example, 5 times or more and 8 times or less.
  • the spectrum measurement control processor 60 counts the integrated pulse number Ni and the averaged number Na, and the spectroscope 19 may generate the integrated waveform Oi and the average waveform Oa according to the trigger signal output from the spectrum measurement control processor 60 .
  • the memory 61 of the spectrum measurement control processor 60 may store setting data for the number of integrated pulses Ni and the number of times of averaging Na. At least one of the raw waveform, integrated waveform Oi, and average waveform Oa corresponds to the measured waveform in the present disclosure.
  • the spectroscope 19 extracts a partial waveform corresponding to the free spectral range from the average waveform Oa.
  • the extracted part of the waveform shows the relationship between the distance from the center of the concentric circles forming the interference fringes and the light intensity.
  • the spectroscope 19 acquires the measured spectral waveform O( ⁇ ) by coordinate-converting this waveform into the relationship between the wavelength and the light intensity. Coordinate transformation of a part of the average waveform Oa into the relationship between the wavelength and the light intensity is also called mapping to the spectral space.
  • the measured spectral waveform O( ⁇ ) corresponds to the second spectral waveform in this disclosure.
  • the spectroscope 19 transmits the measured spectrum waveform O( ⁇ ) to the spectrum measurement control processor 60 according to the data output trigger output from the spectrum measurement control processor 60 .
  • Any or all of the calculation processing of the integrated waveform Oi, the calculation processing of the average waveform Oa, and the processing of acquiring the measured spectrum waveform O( ⁇ ) by mapping to the spectral space are performed by the spectroscope 19, but the spectrum measurement control is performed. Processor 60 may do so. Both the process of generating the average waveform Oa and the process of acquiring the measured spectrum waveform O( ⁇ ) may be performed by the spectrum measurement control processor 60 instead of the spectroscope 19 .
  • the wavelength measurement control unit 50 receives target wavelength setting data from the laser control processor 30 .
  • the wavelength measurement control unit 50 also calculates the center wavelength of the laser light using the waveform data of the interference fringes output from the wavelength detector 18 .
  • the wavelength measurement control unit 50 feedback-controls the center wavelength of the laser light by outputting a control signal to the wavelength driver 51 based on the target wavelength and the calculated center wavelength.
  • Spectrum measurement control processor 60 Spectral measurement control processor 60 receives measured spectral waveform O( ⁇ ) from spectrometer 19 .
  • spectral instrumentation control processor 60 may receive raw waveforms from spectrometer 19, integrate and average the raw waveforms, map them into spectral space, and obtain a measured spectral waveform O( ⁇ ).
  • the spectrum measurement control processor 60 may receive the integrated waveform Oi from the spectroscope 19, average the integrated waveform Oi, map it to the spectral space, and acquire the measured spectral waveform O( ⁇ ).
  • the spectral instrumentation control processor 60 may receive the average waveform Oa from the spectrometer 19 and map the average waveform Oa to the spectral space to obtain the measured spectral waveform O( ⁇ ).
  • the spectrum measurement control processor 60 calculates the estimated spectrum waveform I( ⁇ ) from the measured spectrum waveform O( ⁇ ) as follows.
  • FIG. 3 is a block diagram illustrating functions of the spectrum measurement control processor 60 in the comparative example.
  • the spectroscope 19 has instrument-specific measurement characteristics, which are represented by an instrument function S( ⁇ ) as a function of the wavelength ⁇ .
  • an instrument function S( ⁇ ) as a function of the wavelength ⁇ .
  • the measured spectral waveform O( ⁇ ) is given by the following equation 1: It is represented by the convolution integral of the unknown spectrum waveform T( ⁇ ) and the instrument function S( ⁇ ) as follows.
  • a convolution integral means a composite product of two functions.
  • the convolution integral can be expressed using the symbol * as follows.
  • O( ⁇ ) T( ⁇ )*S( ⁇ )
  • the Fourier transform F(O( ⁇ )) of the measured spectral waveform O( ⁇ ) is the Fourier transform F(T( ⁇ )) and F(S ( ⁇ )).
  • F(O( ⁇ )) F(T( ⁇ )) ⁇ F(S( ⁇ )) This is called the convolution theorem.
  • the spectrum measurement control processor 60 measures the instrument function S( ⁇ ) of the spectroscope 19 in advance and stores it in the memory 61 .
  • coherent light having a wavelength substantially the same as the central wavelength of the laser light output from the laser device 1 and having a narrow spectral line width that can be regarded as a ⁇ function. is incident on the spectroscope 19 .
  • the spectral waveform of the coherent light measured by the spectroscope 19 can be used as the device function S( ⁇ ).
  • the CPU 62 included in the spectrum measurement control processor 60 deconvolves the measured spectrum waveform O( ⁇ ) of the laser light with the device function S( ⁇ ) of the spectroscope 19 .
  • Deconvolution refers to the computational process of estimating an unknown function that satisfies the convolution equation.
  • a waveform obtained by deconvolution is assumed to be an estimated spectral waveform I( ⁇ ).
  • the estimated spectral waveform I( ⁇ ) corresponds to the first spectral waveform in the present disclosure, and shows the relationship between the wavelength and light intensity of the estimated unknown spectral waveform T( ⁇ ).
  • the deconvolution integral using the Fourier transform and the inverse Fourier transform is susceptible to noise components contained in the measurement data. Therefore, it is desirable to calculate the deconvolution integral using an iterative method such as the Jacobi method or the Gauss-Seidel method that can suppress the influence of noise components.
  • FIG. 4 is a flow chart showing the procedure for measuring the spectral line width E95 in the comparative example.
  • the spectrum measurement control processor 60 generates an integrated waveform Oi and an average waveform Oa from the interference pattern of laser light as follows, and calculates an estimated spectrum waveform I( ⁇ ) and a spectrum line width E95.
  • a definition of the spectral linewidth E95 will be described later with reference to FIG.
  • the spectrum measurement control processor 60 reads the integrated pulse number Ni and the averaging number Na from the memory 61 .
  • the spectrum measurement control processor 60 receives the raw waveform reflecting the amount of light in each of the light receiving elements included in the line sensor 19d, and integrates over Ni pulses to generate an integrated waveform Oi.
  • the spectrum measurement control processor 60 generates the integrated waveform Oi Na times, and generates the average waveform Oa by averaging the Na integrated waveforms Oi.
  • the spectrum measurement control processor 60 generates the measured spectrum waveform O( ⁇ ) by mapping the average waveform Oa into the spectrum space.
  • the spectrum measurement control processor 60 reads the instrument function S( ⁇ ) of the spectroscope 19 from the memory 61 .
  • the spectral measurement control processor 60 calculates the estimated spectral waveform I( ⁇ ) by deconvoluting the measured spectral waveform O( ⁇ ) with the device function S( ⁇ ).
  • the spectral measurement control processor 60 calculates spectral line width E95 from the estimated spectral waveform I( ⁇ ). The calculated spectral linewidth may not be E95, and may be the full width at half maximum.
  • the spectrum measurement control processor 60 ends the processing of this flowchart.
  • the spectral measurement control processor 60 receives the target value of the spectral linewidth E95 from the exposure control processor 110 via the laser control processor 30. Based on the target value of the spectral linewidth E95 and the calculated spectral linewidth E95, the spectral measurement control processor 60 transmits a control signal to the spectrum driver 64 to control the spectral waveform adjuster 15a, thereby adjusting the spectral linewidth E95 is feedback controlled.
  • FIG. 5 is a graph showing an example of an estimated spectral waveform I( ⁇ ) of laser light.
  • the horizontal axis of FIG. 5 indicates the wavelength deviation ⁇ from the center wavelength.
  • the estimated spectrum waveform I( ⁇ ) is a waveform that indicates the light intensity for each wavelength component included in the wavelength range of the estimated spectrum waveform I( ⁇ ).
  • a value obtained by integrating the estimated spectral waveform I( ⁇ ) in a certain wavelength range is called spectral energy in that wavelength range.
  • the full width of the portion that occupies 95% of the spectral energy of the entire wavelength range of the estimated spectral waveform I( ⁇ ) is called spectral line width E95.
  • FIG. 5 shows an estimated spectral waveform I( ⁇ ) of laser light with a spectral linewidth E95 of 0.3 pm. Since the angle of refraction on the surface of the lens differs depending on the wavelength of the laser light, the exposure performance of the exposure apparatus 100 differs if the spectrum waveform differs. Exposure performance can be stabilized by controlling the spectral linewidth E95 based on the target value.
  • FIG. 6 is a graph showing another example of the spectrum waveform of laser light.
  • the horizontal axis of FIG. 6 indicates the wavelength deviation ⁇ from the center wavelength.
  • the spectral line widths E95 of spectral waveforms #1 to #3 shown in FIG. 6 are all 0.3 pm, but these spectral waveforms #1 to #3 have different shapes.
  • Spectral waveform #1 is a spectral distribution in which the center wavelength and peak wavelength match.
  • Spectral waveform #2 is an asymmetric spectral distribution in which the peak wavelength is shifted to the longer wavelength side than the center wavelength.
  • the center wavelength here is, for example, the center of the wavelength width having a light intensity of 1/e 2 or more of the peak intensity.
  • Spectral waveform #3 is a symmetric spectral distribution with two separate peak wavelengths.
  • FIG. 7 to 9 are graphs showing the focus position distribution in the exposure apparatus 100 of the laser light shown by the spectrum waveforms #1 to #3 shown in FIG. 7 to 9, the vertical axis indicates the focus position along the Z-axis shown in FIG. 1, and the horizontal axis indicates the light intensity of the wavelength component focused on each focus position.
  • the longitudinal chromatic aberration of the projection optical system 102 of the exposure apparatus 100 is 250 nm/pm. That is, the difference in focus position per wavelength difference of 1 pm is assumed to be 250 nm.
  • the distribution shapes of the focus positions shown in FIGS. 7 to 9 almost directly correspond to the shapes of the spectrum waveforms #1 to #3 shown in FIG.
  • the peak of the focused wavelength component has a distribution shape separated at two positions.
  • FIGS. 10 and 11 are graphs showing still other examples of spectral waveforms of laser light.
  • the horizontal axis indicates the wavelength deviation ⁇ from the central wavelength.
  • the spectral line widths E95 of spectral waveforms #4 to #6 shown in FIG. 10 and spectral waveforms #7 to #9 shown in FIG. 11 are all 0.3 pm, but these spectral waveforms #4 to #9 They differ in shape from each other.
  • Spectral waveforms #4 to #6 have an asymmetrical spectral distribution in which the peak wavelength is shifted to the longer wavelength side than the center wavelength, and the difference between the center wavelength and the peak wavelength is different from each other.
  • Spectral waveforms #7 to #9 are symmetrical, but spectral waveform #7 has a gentler curve near the peak than spectral waveform #1 (see FIG. 6) having a Gaussian distribution.
  • Spectral waveforms #8 and #9 have spectral distributions in which the peak wavelengths are separated into two, and the difference between the center wavelength and the peak wavelength is different from each other.
  • FIG. 12 shows a rectangular imaging pattern used for evaluation of imaging performance.
  • a mask designed to form a rectangular imaging pattern with a horizontal dimension of 38 nm and a vertical dimension of 76 nm on the wafer surface by the projection optical system 102 was used when Gaussian-distributed spectral waveform #1 was used.
  • the longitudinal chromatic aberration of the projection optical system 102 was set to 250 nm/pm.
  • the spectral waveforms #4 to #9 were used, the deviation ⁇ CD of the vertical dimension from 76 nm was obtained by simulation when the exposure amount was adjusted so that the horizontal dimension of the imaged pattern on the wafer surface was 38 nm. .
  • FIG. 13 and 14 are graphs showing simulation results of the imaging performance of the exposure apparatus 100.
  • FIG. FIG. 13 shows the case of using spectral waveforms #4 to #6 shown in FIG. 10, and FIG. 14 shows the case of using spectral waveforms #7 to #9 shown in FIG.
  • the greater the difference between the center wavelength and the peak wavelength and the greater the asymmetry the greater the dimensional error on the wafer surface.
  • the greater the difference from the Gaussian distribution the greater the dimensional error on the wafer surface.
  • the imaging performance in the exposure apparatus 100 may differ, and the required exposure performance may not be obtained simply by matching the spectral linewidth E95 to the target value. obtain.
  • waveform evaluation is performed in consideration of not only the spectral line width but also the shape of the spectral waveform, thereby enabling spectrum control to obtain the required exposure performance.
  • FIG. 15 schematically shows the configuration of a laser device 1a according to an embodiment of the present disclosure.
  • the memory 61 included in the spectrum measurement control processor 60 stores a spectrum evaluation value calculation program 611 .
  • the spectrum measurement control processor 60 performs the following calculations.
  • the spectrum measurement control processor 60 calculates the centroid wavelength ⁇ c of the estimated spectrum waveform I( ⁇ ) using Equation 2 below.
  • the numerator of Formula 2 is a value obtained by integrating the product of the light intensity indicated by the estimated spectral waveform I( ⁇ ) and the wavelength ⁇ with respect to the wavelength range of the estimated spectral waveform I( ⁇ ). corresponds to an integral value of 2.
  • the denominator of Equation 2 is a value obtained by integrating the light intensity indicated by the estimated spectral waveform I( ⁇ ) with respect to the wavelength region of the estimated spectral waveform I( ⁇ ), and corresponds to the third integral value in the present disclosure. do.
  • the centroid wavelength ⁇ c is an example of a representative wavelength in the present disclosure.
  • the spectrum measurement control processor 60 calculates the spectrum evaluation value V of the estimated spectrum waveform I( ⁇ ) using Equation 3 below.
  • the numerator of Equation 3 integrates the product of the light intensity indicated by the estimated spectral waveform I( ⁇ ) and the function ( ⁇ c) 2 of the wavelength deviation from the centroid wavelength ⁇ c with respect to the wavelength region of the estimated spectral waveform I( ⁇ ). and corresponds to the first integral value in the present disclosure.
  • the spectrum evaluation value V corresponds to the evaluation value in the present disclosure.
  • the denominator of Equation 3 is the product of the constant ⁇ s and the third integral value.
  • the constant ⁇ s may be any one of (1) to (4) below.
  • (1) 1 Centroid wavelength ⁇ c (3) Spectral line width E95 of estimated spectral waveform I( ⁇ ) (4) standard deviation of the Gaussian distribution shape spectral waveform having the same spectral line width E95 as the estimated spectral waveform I( ⁇ )
  • the spectrum evaluation value V is the dimension of the square of the wavelength ⁇ , whereas the function of the wavelength ⁇ as in (2) to (4) above By dividing by the constant ⁇ s obtained from , the spectrum evaluation value V can be made the dimension of the wavelength ⁇ .
  • FIG. 16 is a flowchart showing the procedure for measuring the spectrum evaluation value V in the embodiment.
  • the processing of S331 to S336 in FIG. 16 is the same as the corresponding processing in FIG.
  • the spectrum measurement control processor 60 advances the process to S338.
  • the spectrum measurement control processor 60 calculates the barycenter wavelength ⁇ c of the estimated spectrum waveform I( ⁇ ) using Equation (2).
  • the spectrum measurement control processor 60 calculates the spectrum evaluation value V of the estimated spectrum waveform I( ⁇ ) using Equation (3).
  • the spectrum measurement control processor 60 ends the processing of this flowchart.
  • FIG. 17 shows an imaging pattern used for comparison of usefulness of spectral evaluation value V and spectral line width E95.
  • the imaging patterns shown in FIG. 17 include two types of patterns, a DENCE pattern in which a plurality of exposure areas are densely arranged, and an ISO pattern in which the exposure areas are separated from other exposure areas.
  • ⁇ CD be the deviation from the standard dimension of the ISO pattern when the exposure amount is adjusted so that the dimension of the DENCE pattern is 45 nm.
  • the standard dimension of the ISO pattern is the dimension of the ISO pattern when the spectral line width E95 is 0.01 pm.
  • FIG. 18 is a graph showing the relationship between the spectral line width E95 and ⁇ CD in the imaging pattern of FIG. 17, and FIG. 19 is a graph showing the relationship between the spectral evaluation value V and ⁇ CD in the imaging pattern of FIG. be.
  • simulations were performed using a number of variations including the spectral waveforms illustrated in FIGS. 10 and 11, and ⁇ CD was plotted.
  • FIG. 18 two trends are observed in the rate of change in ⁇ CD with respect to change in spectral linewidth E95. Therefore, even if the spectral line width E95 is measured, it may not be possible to accurately know the imaging performance on the wafer surface.
  • the relationship between the spectral evaluation value V and ⁇ CD is substantially linear. Therefore, by measuring the spectrum evaluation value V, it is possible to know the imaging performance on the wafer surface. By controlling the spectral evaluation value V to a constant target evaluation value, the required imaging performance can be achieved.
  • FIG. 20 shows another imaging pattern used to compare the usefulness of spectral evaluation value V and spectral line width E95.
  • the imaging patterns shown in FIG. 20 include two types of patterns, a LINE pattern imitating wiring and a SPACE pattern imitating a gap between adjacent wirings.
  • ⁇ CD be the deviation of the SPACE pattern from the standard dimension when the exposure amount is adjusted so that the dimension of the LINE pattern is 100 nm.
  • FIG. 21 is a graph showing the relationship between the spectral line width E95 and ⁇ CD in the imaging pattern of FIG. 20, and FIG. 22 is a graph showing the relationship between the spectral evaluation value V and ⁇ CD in the imaging pattern of FIG. be.
  • simulations were performed using a number of variations including the spectral waveforms illustrated in Figures 10 and 11, and ⁇ CD was plotted.
  • Equation 3 the square of the wavelength deviation ⁇ c from the centroid wavelength ⁇ c ( ⁇ c) 2 is used, but the present disclosure is not limited to this.
  • the spectrum evaluation value V may be calculated by Equation 4 below.
  • Equation 4 differs from Equation 3 in that instead of squaring the wavelength deviation ⁇ c in Equation 3, the absolute value of the wavelength deviation ⁇ c is raised to the Nth power.
  • the exponent N is a positive number. Equation 4 when the exponent N is set to 2 is equivalent to Equation 3 when ⁇ s is set to 1.
  • FIG. 23 is a graph showing the relationship between the spectral evaluation value V of Equation 4 and ⁇ CD in the imaging pattern of FIG.
  • FIG. 24 is a graph showing the relationship between the spectral evaluation value V of Equation 4 and ⁇ CD in the imaging pattern of FIG.
  • the simulation results when the value of the exponent N in Equation 4 is 1, 2, and 3 are shown together with the respective regression lines.
  • a correlation is recognized between the spectrum evaluation value V and ⁇ CD in any case where the value of the exponent N is set to 1, 2, or 3.
  • the coefficient of determination which indicates the goodness of fit of the regression line, is the highest when the value of the exponent N is 2 in both FIGS. It is preferable that the value of exponent N be 1.9 or more and 2.1 or less.
  • FIG. 25 is a flow chart showing the procedure of spectrum control in the embodiment.
  • the spectrum measurement control processor 60 controls the spectrum waveform adjuster 15a using the spectrum evaluation value V and the target evaluation value Vt as follows.
  • the spectrum measurement control processor 60 sets the target evaluation value Vt.
  • the spectral measurement control processor 60 receives data on the optical characteristics of the exposure apparatus 100 from the exposure apparatus 100 and sets the target evaluation value Vt calculated from this optical characteristic.
  • the spectrum measurement control processor 60 determines whether an oscillation trigger signal has been output from the laser control processor 30 . If the oscillation trigger signal has not been output (S32: NO), the spectrum measurement control processor 60 waits until the oscillation trigger signal is output. When the oscillation trigger signal is output (S32: YES), the laser oscillator 20 outputs laser light. The spectrum measurement control processor 60 advances the process to S33.
  • the spectrum measurement control processor 60 measures the spectrum evaluation value V using the laser light output from the laser oscillator 20 .
  • the processing of S33 is performed according to the procedure described with reference to FIG.
  • the spectrum measurement control processor 60 compares the spectrum evaluation value V with the target evaluation value Vt, and determines whether the spectrum evaluation value V is within the allowable range. For example, it is determined whether or not the absolute value of the difference between the spectrum evaluation value V and the target evaluation value Vt is smaller than the allowable error Ve.
  • the spectrum measurement control processor 60 proceeds to S35.
  • the spectrum measurement control processor 60 controls the spectrum waveform adjuster 15 a by transmitting a control signal to drive the spectrum driver 64 .
  • the spectrum waveform adjuster 15a is controlled to reduce the spectrum line width
  • the spectrum waveform adjuster 15a is controlled to reduce the spectrum line width.
  • the spectral waveform adjuster 15a is controlled to increase the line width.
  • the spectrum measurement control processor 60 terminates the processing of this flowchart. Thereafter, the laser device 1a continues to output laser light while fixing the setting of the spectrum waveform adjuster 15a. Alternatively, the spectrum measurement control processor 60 may return the process to S32 and repeat measurement and determination of the spectrum evaluation value V while continuing to output laser light.
  • FIGS. 26 and 27 schematically show the configuration of a variant of the spectral waveform adjuster.
  • the band narrowing device 141 constitutes a spectral waveform adjuster.
  • 26 shows the band narrowing device 141 viewed in the -V direction
  • FIG. 27 shows the band narrowing device 141 viewed in the -H direction.
  • Band narrowing device 141 includes a grating system 14h instead of grating 14c (see FIG. 2).
  • Grating system 14h includes gratings 14i and 14j.
  • the gratings 14i and 14j are arranged at different positions in the V-axis direction. The direction of each groove of the gratings 14i and 14j coincides with the direction of the V-axis.
  • the gratings 14i and 14j are supported by a holder 14k. However, the grating 14i is supported so as to maintain a fixed posture, while the grating 14j is rotatable about an axis parallel to the V-axis by a rotating mechanism 14m.
  • the band narrowing device 141 includes a beam splitting optical system 14n between the prism 14b and the grating system 14h.
  • the beam splitting optical system 14n includes a plane-parallel substrate 14o.
  • the plane-parallel substrate 14o is arranged so as to partially overlap the cross section of the optical path of the light beam that has passed through the prism 14b.
  • a plane-parallel substrate 14o is placed in the optical path of the light beam between the prism 14b and the grating 14j.
  • a parallel plane substrate 14o is supported by a holder 14p.
  • the plane-parallel substrate 14o is configured to be movable in a direction parallel to the V-axis by a linear stage 14q.
  • the plane-parallel substrate 14o has an incident surface 14r on which part of the light beam that has passed through the prism 14b is incident, and the light incident on the plane-parallel substrate 14o through the incident surface 14r is directed from the inside of the plane-parallel substrate 14o toward the grating 14j. and an exit surface 14s for exiting through. Both the entrance surface 14r and the exit surface 14s are parallel to the H-axis, and the entrance surface 14r and the exit surface 14s are parallel to each other. The entrance surface 14r and the exit surface 14s are inclined with respect to the incident direction of the light beam so as to refract the light beam.
  • the normal vector 14v of the incident surface 14r is parallel to the VZ plane, and the normal vector 14v has directional components in the -V and +Z directions.
  • the plane-parallel substrate 14o further includes an end surface 14t facing the first portion B1 of the light beam.
  • the end surface 14t forms an acute angle with the exit surface 14s.
  • the end face 14t may be parallel to the HZ plane.
  • the prism 14a is supported by a holder 14f.
  • Prism 14b is supported by holder 14g.
  • the prism 14b may be directly supported by the rotating stage 14e without the holder 14g, as in FIG.
  • a first portion B1 of the light beam that has passed through the prism 14b passes outside the plane-parallel substrate 14o and enters the grating 14i.
  • a second portion B2 of the light beam is transmitted through the parallel plane substrate 14o and enters the grating 14j.
  • the plane-parallel substrate 14o shifts the optical path axis of the second portion B2 of the light beam in the +V direction with respect to the optical path axis of the first portion B1.
  • the optical path axis means the central axis of the optical path.
  • the plane-parallel substrate 14o separates the second portion B2 from the first portion B1 of the light beam by transmitting a portion of the light beam.
  • the light incident on the gratings 14i and 14j is reflected by the plurality of grooves of each of the gratings 14i and 14j and diffracted in directions corresponding to the wavelength of the light.
  • the light reflected by the plurality of grooves of each of the gratings 14i and 14j is dispersed within the plane parallel to the HZ plane.
  • the grating 14i is arranged in a Littrow arrangement so that the incident angle of the light beam incident on the grating 14i from the prism 14b and the diffraction angle of the desired diffracted light of the first wavelength match.
  • the grating 14j is Littrow arranged so that the incident angle of the light beam incident on the grating 14j from the prism 14b and the diffraction angle of the diffracted light of the desired second wavelength match.
  • the incident angles of the light beams incident on the gratings 14i and 14j from the prism 14b are different from each other, the first wavelength of the diffracted light returned from the grating 14i to the prism 14b and the second wavelength of the diffracted light returned to the prism 14b from the grating 14j.
  • the dashed arrows indicating the light beams indicate only the direction from the prism 14a to the gratings 14i and 14j. from the gratings 14i and 14j to the prism 14a.
  • Prisms 14a and 14b reduce the beam width of the light returned from gratings 14i and 14j in a plane parallel to the HZ plane and redirect the light into the laser chamber through window 10a (see FIGS. 2 and 15). Return within 10.
  • the rotating mechanism 14m slightly rotates the grating 14j the incident angle of the light beam entering the grating 14i from the prism 14b does not change, but the incident angle of the light beam entering the grating 14j from the prism 14b slightly changes. Therefore, the wavelength difference between the first wavelength and the second wavelength changes.
  • the first wavelength and the second wavelength of the light beam emitted from the window 10a of the laser chamber 10 are selected and returned into the laser chamber 10.
  • the laser device 1a can output laser light including two peak wavelengths.
  • the first wavelength and the second wavelength can be set separately.
  • the linear stage 14q changes the position of the plane-parallel substrate 14o in the direction of the V-axis, thereby changing the energy ratio between the first portion B1 and the second portion B2.
  • the amount of light incident on the grating 14j increases. Therefore, the energy of the second wavelength component contained in the laser light is increased.
  • By moving the plane-parallel substrate 14o in the +V direction to reduce the second portion B2 of the light beam incident on the plane-parallel substrate 14o less light is incident on the grating 14j. Therefore, the energy of the second wavelength component contained in the laser light is reduced.
  • laser light including two peak wavelengths illustrated in FIG. 11 and laser light having an asymmetric spectral waveform illustrated in FIG. 10 can be output, and the spectral waveform of the laser light can be controlled. .
  • the prism 14b is replaced with a first prism (not shown) arranged at positions different from each other in the V direction.
  • a second prism may be substituted.
  • a first mirror and a second mirror are placed between the prism 14b and the grating 14c. They may be arranged at different positions in the V direction.
  • the first and second wavelengths can be individually controlled.
  • the energy ratio between the first wavelength component and the second wavelength component can be controlled by making the first mirror and the second mirror integrally movable in the direction parallel to the V-axis.
  • the laser device 1a connectable to the exposure device 100 includes the spectroscope 19 that obtains the average waveform Oa from the interference pattern of the laser light output from the laser device 1a. and a spectrum measurement control processor 60 .
  • the spectral measurement control processor 60 calculates an estimated spectral waveform I( ⁇ ) representing the relationship between the wavelength ⁇ and the light intensity using the average waveform Oa, and calculates a representative wavelength included in the wavelength range of the estimated spectral waveform I( ⁇ ).
  • the spectral measurement control processor 60 maps the average waveform Oa to the spectral space to generate the measured spectral waveform O( ⁇ ), and maps the measured spectral waveform O( ⁇ ) to the device of the spectroscope 19.
  • An estimated spectrum waveform I( ⁇ ) is calculated by performing deconvolution integration with the function S( ⁇ ). According to this, the influence of the device function S( ⁇ ) of the spectroscope 19 can be removed, and the exposure performance of the exposure device 100 can be properly evaluated.
  • the representative wavelength is the centroid wavelength ⁇ c of the estimated spectral waveform I( ⁇ ). This makes it possible to appropriately evaluate the exposure performance of the exposure apparatus 100 even with an asymmetric spectral waveform having a different central wavelength and centroid wavelength ⁇ c.
  • the spectrum measurement control processor 60 calculates the second integrated value obtained by integrating the product of the wavelength ⁇ and the light intensity indicated by the estimated spectrum waveform I( ⁇ ) with respect to the wavelength range. , and divides the light intensity indicated by the estimated spectral waveform I( ⁇ ) by the third integrated value obtained by integrating the wavelength region, thereby calculating the centroid wavelength ⁇ c. According to this, the exposure performance of the exposure apparatus 100 can be evaluated appropriately even with an asymmetric spectral waveform having different center wavelengths and centroid wavelengths ⁇ c, or a spectral waveform with a plurality of peaks.
  • the function of the wavelength deviation ⁇ - ⁇ c is the power of the absolute value
  • V the spectrum evaluation value
  • the exponent N is 1.9 or more and 2.1 or less. According to this, the exposure performance of the exposure apparatus 100 can be evaluated more appropriately using the spectrum evaluation value V.
  • FIG. 1 the spectrum evaluation value V.
  • the spectrum measurement control processor 60 calculates the spectrum evaluation value V by dividing the first integral value by the third integral value. According to this, by dividing by the third integral value, it is possible to evaluate the exposure performance according to the spectral waveform regardless of the amount of light.
  • the spectrum measurement control processor 60 divides the first integrated value by the product of the third integrated value and a constant ⁇ s obtained from a function of the wavelength ⁇ included in the wavelength range. , the spectral evaluation value V is calculated. According to this, the dimension of the wavelength ⁇ included in the spectrum evaluation value V can be lowered to appropriately evaluate the exposure performance.
  • the spectral waveform adjuster 15a that adjusts the spectral waveform of the laser light incident on the spectroscope 19 is further provided.
  • the spectrum measurement control processor 60 controls the spectrum waveform adjuster 15a using the comparison result between the spectrum evaluation value V and the target evaluation value Vt. According to this, the required exposure performance can be realized by the control using the spectrum evaluation value V and the target evaluation value Vt.
  • the spectral waveform adjuster 15a is configured to adjust the spectral linewidth of the laser light.
  • the spectrum measurement control processor 60 controls the spectrum waveform adjuster 15a so as to reduce the spectral line width when the spectrum evaluation value V is greater than the target evaluation value Vt, and when the spectrum evaluation value V is less than the target evaluation value Vt.
  • the spectral waveform adjuster 15a is controlled so as to increase the spectral line width. According to this, the spectral evaluation value V can be decreased by decreasing the spectral line width, and the spectral evaluation value V can be increased by increasing the spectral line width.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

露光装置に接続可能なレーザ装置は、レーザ装置から出力されるレーザ光の干渉パターンから計測波形を生成する分光器と、プロセッサであって、計測波形を用いて波長と光強度との関係を示す第1のスペクトル波形を算出し、第1のスペクトル波形の波長域に含まれる代表波長を算出し、代表波長からの波長偏差の関数と光強度との積を波長域に関して積分して得られた第1の積分値を用いて第1のスペクトル波形の評価値を算出するように構成されたプロセッサと、を備える。

Description

レーザ装置、レーザ光のスペクトルの評価方法、及び電子デバイスの製造方法
 本開示は、レーザ装置、レーザ光のスペクトルの評価方法、及び電子デバイスの製造方法に関する。
 近年、半導体露光装置においては、半導体集積回路の微細化及び高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。たとえば、露光用のガスレーザ装置としては、波長約248nmのレーザ光を出力するKrFエキシマレーザ装置、ならびに波長約193nmのレーザ光を出力するArFエキシマレーザ装置が用いられる。
 KrFエキシマレーザ装置及びArFエキシマレーザ装置の自然発振光のスペクトル線幅は、350~400pmと広い。そのため、KrF及びArFレーザ光のような紫外線を透過させる材料で投影レンズを構成すると、色収差が発生してしまう場合がある。その結果、解像力が低下し得る。そこで、ガスレーザ装置から出力されるレーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。そのため、ガスレーザ装置のレーザ共振器内には、スペクトル線幅を狭帯域化するために、狭帯域化素子(エタロンやグレーティング等)を含む狭帯域化モジュール(Line Narrow Module:LNM)が備えられる場合がある。以下では、スペクトル線幅が狭帯域化されるガスレーザ装置を狭帯域化ガスレーザ装置という。
米国特許出願公開第2011/200922号明細書 米国特許出願公開第2012/057144号明細書
概要
 本開示の1つの観点に係るレーザ装置は、露光装置に接続可能なレーザ装置であって、レーザ装置から出力されるレーザ光の干渉パターンから計測波形を生成する分光器と、プロセッサであって、計測波形を用いて波長と光強度との関係を示す第1のスペクトル波形を算出し、第1のスペクトル波形の波長域に含まれる代表波長を算出し、代表波長からの波長偏差の関数と光強度との積を波長域に関して積分して得られた第1の積分値を用いて第1のスペクトル波形の評価値を算出するように構成されたプロセッサと、を備える。
 本開示の1つの観点に係るレーザ光のスペクトルの評価方法は、露光装置に接続可能なレーザ装置から出力されるレーザ光の干渉パターンから計測波形を生成し、計測波形を用いて波長と光強度との関係を示す第1のスペクトル波形を算出し、第1のスペクトル波形の波長域に含まれる代表波長を算出し、代表波長からの波長偏差の関数と光強度との積を波長域に関して積分して得られた第1の積分値を用いて第1のスペクトル波形の評価値を算出することを含む。
 本開示の1つの観点に係る電子デバイスの製造方法は、露光装置に接続可能なレーザ装置から出力されるレーザ光の干渉パターンから計測波形を生成する分光器と、プロセッサであって、計測波形を用いて波長と光強度との関係を示す第1のスペクトル波形を算出し、第1のスペクトル波形の波長域に含まれる代表波長を算出し、代表波長からの波長偏差の関数と光強度との積を波長域に関して積分して得られた第1の積分値を用いて第1のスペクトル波形の評価値を算出するように構成されたプロセッサと、を備えるレーザ装置によってレーザ光を生成し、レーザ光を露光装置に出力し、電子デバイスを製造するために、露光装置内で感光基板上にレーザ光を露光することを含む。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、比較例における露光システムの構成を概略的に示す。 図2は、比較例に係るレーザ装置の構成を模式的に示す。 図3は、比較例におけるスペクトル計測制御プロセッサの機能を説明するブロック図である。 図4は、比較例におけるスペクトル線幅E95の計測の手順を示すフローチャートである。 図5は、レーザ光の推定スペクトル波形I(λ)の例を示すグラフである。 図6は、レーザ光のスペクトル波形の他の例を示すグラフである。 図7は、図6に示されるスペクトル波形#1で示されるレーザ光の露光装置におけるフォーカス位置の分布を示すグラフである。 図8は、図6に示されるスペクトル波形#2で示されるレーザ光の露光装置におけるフォーカス位置の分布を示すグラフである。 図9は、図6に示されるスペクトル波形#3で示されるレーザ光の露光装置におけるフォーカス位置の分布を示すグラフである。 図10は、レーザ光のスペクトル波形のさらに他の例を示すグラフである。 図11は、レーザ光のスペクトル波形のさらに他の例を示すグラフである。 図12は、結像性能の評価に用いられた長方形の結像パターンを示す。 図13は、露光装置における結像性能のシミュレーション結果を示すグラフである。 図14は、露光装置における結像性能のシミュレーション結果を示すグラフである。 図15は、本開示の実施形態に係るレーザ装置の構成を模式的に示す。 図16は、実施形態におけるスペクトル評価値Vの計測の手順を示すフローチャートである。 図17は、スペクトル評価値V及びスペクトル線幅E95の有用性の比較に用いられた結像パターンを示す。 図18は、図17の結像パターンにおけるスペクトル線幅E95とΔCDとの関係を示すグラフである。 図19は、図17の結像パターンにおけるスペクトル評価値VとΔCDとの関係を示すグラフである。 図20は、スペクトル評価値V及びスペクトル線幅E95の有用性の比較に用いられた別の結像パターンを示す。 図21は、図20の結像パターンにおけるスペクトル線幅E95とΔCDとの関係を示すグラフである。 図22は、図20の結像パターンにおけるスペクトル評価値VとΔCDとの関係を示すグラフである。 図23は、図17の結像パターンにおける式4のスペクトル評価値VとΔCDとの関係を示すグラフである。 図24は、図20の結像パターンにおける式4のスペクトル評価値VとΔCDとの関係を示すグラフである。 図25は、実施形態におけるスペクトル制御の手順を示すフローチャートである。 図26は、スペクトル波形調整器の変形例の構成を概略的に示す。 図27は、スペクトル波形調整器の変形例の構成を概略的に示す。
実施形態
<内容>
1.比較例
 1.1 露光装置100の構成
 1.2 露光装置100の動作
 1.3 レーザ装置1の構成
  1.3.1 レーザ発振器20
  1.3.2 モニタモジュール16
  1.3.3 各種処理装置
 1.4 動作
  1.4.1 レーザ制御プロセッサ30
  1.4.2 レーザ発振器20
  1.4.3 モニタモジュール16
  1.4.4 波長計測制御部50
  1.4.5 スペクトル計測制御プロセッサ60
 1.5 比較例の課題
2.推定スペクトル波形I(λ)と波長偏差の関数(λ-λc)との積を積分してスペクトル評価値Vを算出するレーザ装置1a
 2.1 構成
 2.2 スペクトル評価値Vの計測動作
 2.3 スペクトル線幅E95との比較
 2.4 スペクトル評価値Vの変形例
 2.5 スペクトル制御の動作
 2.6 スペクトル波形調整器の変形例
  2.6.1 構成
  2.6.2 動作
  2.6.3 他の構成例
 2.7 作用
3.その他
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.比較例
 図1は、比較例における露光システムの構成を概略的に示す。本開示の比較例とは、出願人のみによって知られていると出願人が認識している形態であって、出願人が自認している公知例ではない。
 露光システムは、レーザ装置1と、露光装置100と、を含む。レーザ装置1は、レーザ制御プロセッサ30を含む。レーザ制御プロセッサ30は、制御プログラムが記憶されたメモリ132と、制御プログラムを実行するCPU(central processing unit)131と、を含む処理装置である。レーザ制御プロセッサ30は本開示に含まれる各種処理を実行するために特別に構成又はプログラムされている。レーザ装置1は、レーザ光を露光装置100に向けて出力するように構成されている。
 1.1 露光装置100の構成
 露光装置100は、照明光学系101と、投影光学系102と、露光制御プロセッサ110と、を含む。
 照明光学系101は、レーザ装置1から入射したレーザ光によって、レチクルステージRT上に配置された図示しないレチクルのレチクルパターンを照明する。
 投影光学系102は、レチクルを透過したレーザ光を、縮小投影してワークピーステーブルWT上に配置された図示しないワークピースに結像させる。ワークピースはレジスト膜が塗布された半導体ウエハ等の感光基板である。
 露光制御プロセッサ110は、制御プログラムが記憶されたメモリ112と、制御プログラムを実行するCPU111と、を含む処理装置である。露光制御プロセッサ110は本開示に含まれる各種処理を実行するために特別に構成又はプログラムされている。露光制御プロセッサ110は、露光装置100の制御を統括するとともに、レーザ制御プロセッサ30との間で各種データ及び各種信号を送受信する。
 1.2 露光装置100の動作
 露光制御プロセッサ110は、波長の目標値のデータ、パルスエネルギーの目標値のデータ、及びトリガ信号をレーザ制御プロセッサ30に送信する。レーザ制御プロセッサ30は、これらのデータ及び信号に従ってレーザ装置1を制御する。
 露光制御プロセッサ110は、レチクルステージRTとワークピーステーブルWTとを同期して互いに逆方向に平行移動させる。これにより、レチクルパターンを反映したレーザ光でワークピースが露光される。
 このような露光工程によって半導体ウエハにレチクルパターンが転写される。その後、複数の工程を経ることで電子デバイスを製造することができる。
 1.3 レーザ装置1の構成
 図2は、比較例に係るレーザ装置1の構成を模式的に示す。レーザ装置1は、レーザ発振器20と、電源12と、モニタモジュール16と、レーザ制御プロセッサ30と、波長計測制御部50と、スペクトル計測制御プロセッサ60と、を含む。レーザ装置1は露光装置100に接続可能とされている。
  1.3.1 レーザ発振器20
 レーザ発振器20は、レーザチャンバ10と、放電電極11aと、狭帯域化モジュール14と、スペクトル波形調整器15aと、を含む。
 狭帯域化モジュール14とスペクトル波形調整器15aとが、レーザ共振器を構成する。レーザチャンバ10は、レーザ共振器の光路に配置されている。レーザチャンバ10の両端にはウインドウ10a及び10bが設けられている。レーザチャンバ10の内部に、放電電極11a及びこれと対をなす図示しない放電電極が配置されている。図示しない放電電極は、紙面に垂直なV軸の方向において放電電極11aと重なるように位置している。レーザチャンバ10には、例えばレアガスとしてアルゴンガス又はクリプトンガス、ハロゲンガスとしてフッ素ガス、バッファガスとしてネオンガス等を含むレーザガスが封入される。
 電源12は、スイッチ13を含むとともに、放電電極11aと図示しない充電器とに接続されている。
 狭帯域化モジュール14は、複数のプリズム14a及び14bとグレーティング14cとを含む。プリズム14bは、回転ステージ14eに支持されている。回転ステージ14eは、波長ドライバ51から出力される駆動信号に従ってプリズム14bをV軸に平行な軸周りに回転させるように構成されている。プリズム14bを回転させることにより狭帯域化モジュール14の選択波長が変化する。
 スペクトル波形調整器15aは、シリンドリカル平凸レンズ15bと、シリンドリカル平凹レンズ15cと、リニアステージ15dと、を含む。レーザチャンバ10とシリンドリカル平凸レンズ15bとの間に、シリンドリカル平凹レンズ15cが位置する。
 シリンドリカル平凸レンズ15b及びシリンドリカル平凹レンズ15cは、シリンドリカル平凸レンズ15bの凸面とシリンドリカル平凹レンズ15cの凹面とが向かい合うように配置されている。シリンドリカル平凸レンズ15bの凸面とシリンドリカル平凹レンズ15cの凹面はそれぞれV軸の方向に平行な焦点軸を有する。シリンドリカル平凸レンズ15bの凸面の反対側に位置する平らな面は、部分反射膜でコーティングされている。
  1.3.2 モニタモジュール16
 モニタモジュール16は、スペクトル波形調整器15aと露光装置100との間のレーザ光の光路に配置されている。モニタモジュール16は、ビームスプリッタ16a、16b、及び17aと、エネルギーセンサ16cと、高反射ミラー17bと、波長検出器18と、分光器19と、を含む。
 ビームスプリッタ16aは、スペクトル波形調整器15aから出力されたレーザ光の光路に位置する。ビームスプリッタ16aは、スペクトル波形調整器15aから出力されたレーザ光の一部を露光装置100に向けて高い透過率で透過させるとともに、他の一部を反射するように構成されている。ビームスプリッタ16bは、ビームスプリッタ16aによって反射されたレーザ光の光路に位置する。エネルギーセンサ16cは、ビームスプリッタ16bによって反射されたレーザ光の光路に位置する。
 ビームスプリッタ17aは、ビームスプリッタ16bを透過したレーザ光の光路に位置する。高反射ミラー17bは、ビームスプリッタ17aによって反射されたレーザ光の光路に位置する。
 波長検出器18は、ビームスプリッタ17aを透過したレーザ光の光路に配置されている。波長検出器18は、拡散プレート18aと、エタロン18bと、集光レンズ18cと、ラインセンサ18dと、を含む。
 拡散プレート18aは、ビームスプリッタ17aを透過したレーザ光の光路に位置する。拡散プレート18aは、表面に多数の凹凸を有し、レーザ光を透過させるとともに拡散させるように構成されている。
 エタロン18bは、拡散プレート18aを透過したレーザ光の光路に位置する。エタロン18bは、2枚の部分反射ミラーを含む。2枚の部分反射ミラーは、所定距離のエアギャップを有して対向し、スペーサを介して貼り合わせられている。
 集光レンズ18cは、エタロン18bを透過したレーザ光の光路に位置する。
 ラインセンサ18dは、集光レンズ18cを透過したレーザ光の光路であって、集光レンズ18cの焦点面に位置する。ラインセンサ18dは、一次元に配列された多数の受光素子を含む光分布センサである。あるいは、ラインセンサ18dの代わりに、二次元に配列された多数の受光素子を含むイメージセンサが光分布センサとして用いられてもよい。ラインセンサ18dは、図示しないプロセッサを備えてもよい。
 ラインセンサ18dは、エタロン18b及び集光レンズ18cによって形成される干渉縞を受光する。干渉縞はレーザ光の干渉パターンであって、同心円状の形状を有し、この同心円の中心からの距離の2乗は波長の変化に比例する。図示しないプロセッサは、干渉パターンを反映したデータを統計処理して出力するよう構成されてもよい。
 分光器19は、高反射ミラー17bによって反射されたレーザ光の光路に配置されている。分光器19は、拡散プレート19aと、エタロン19bと、集光レンズ19cと、ラインセンサ19dと、を含む。ラインセンサ19dは、図示しないプロセッサを備えてもよい。これらの構成は、波長検出器18に含まれる拡散プレート18a、エタロン18b、集光レンズ18c、及びラインセンサ18dとそれぞれ同様である。但し、エタロン19bはエタロン18bよりも小さいフリースペクトラルレンジを有する。また、集光レンズ19cは集光レンズ18cよりも長い焦点距離を有する。
  1.3.3 各種処理装置
 スペクトル計測制御プロセッサ60は、制御プログラムが記憶されたメモリ61と、制御プログラムを実行するCPU62と、カウンタ63と、を含む処理装置である。スペクトル計測制御プロセッサ60は本開示に含まれる各種処理を実行するために特別に構成又はプログラムされている。スペクトル計測制御プロセッサ60は本開示におけるプロセッサに相当する。
 メモリ61は、スペクトル線幅を算出するための各種データも記憶している。各種データは分光器19の装置関数S(λ)を含む。カウンタ63は、エネルギーセンサ16cから出力されるパルスエネルギーのデータを含む電気信号の受信回数をカウントすることにより、レーザ光のパルス数をカウントする。あるいは、カウンタ63は、レーザ制御プロセッサ30から出力される発振トリガ信号をカウントすることにより、レーザ光のパルス数をカウントしてもよい。
 波長計測制御部50は、制御プログラムが記憶された図示しないメモリと、制御プログラムを実行する図示しないCPUと、図示しないカウンタと、を含む処理装置である。波長計測制御部50に含まれるカウンタも、カウンタ63と同様に、レーザ光のパルス数をカウントする。
 本開示では、レーザ制御プロセッサ30と、波長計測制御部50と、スペクトル計測制御プロセッサ60と、を別々の構成要素として説明しているが、レーザ制御プロセッサ30が波長計測制御部50及びスペクトル計測制御プロセッサ60を兼ねていてもよい。
 1.4 動作
  1.4.1 レーザ制御プロセッサ30
 レーザ制御プロセッサ30は、レーザ光の目標パルスエネルギー及び目標波長の設定データを露光装置100に含まれる露光制御プロセッサ110から受信する。
 レーザ制御プロセッサ30は、露光制御プロセッサ110からトリガ信号を受信する。
 レーザ制御プロセッサ30は、目標パルスエネルギーに基づいて、放電電極11aに印加される印加電圧の設定データを電源12に送信する。レーザ制御プロセッサ30は、目標波長の設定データを波長計測制御部50に送信する。また、レーザ制御プロセッサ30は、トリガ信号に基づく発振トリガ信号を電源12に含まれるスイッチ13に送信する。
  1.4.2 レーザ発振器20
 スイッチ13は、レーザ制御プロセッサ30から発振トリガ信号を受信するとオン状態となる。電源12は、スイッチ13がオン状態となると、図示しない充電器に充電された電気エネルギーからパルス状の高電圧を生成し、この高電圧を放電電極11aに印加する。
 放電電極11aに高電圧が印加されると、レーザチャンバ10の内部に放電が起こる。この放電のエネルギーにより、レーザチャンバ10の内部のレーザ媒質が励起されて高エネルギー準位に移行する。励起されたレーザ媒質が、その後低エネルギー準位に移行するとき、そのエネルギー準位差に応じた波長の光を放出する。
 レーザチャンバ10の内部で発生した光は、ウインドウ10a及び10bを介してレーザチャンバ10の外部に出射する。レーザチャンバ10のウインドウ10aから出射した光は、プリズム14a及び14bによってビーム幅を拡大させられて、グレーティング14cに入射する。
 プリズム14a及び14bからグレーティング14cに入射した光は、グレーティング14cの複数の溝によって反射されるとともに、光の波長に応じた方向に回折させられる。
 プリズム14a及び14bは、グレーティング14cからの回折光のビーム幅を縮小させるとともに、その光を、ウインドウ10aを介してレーザチャンバ10に戻す。
 スペクトル波形調整器15aは、レーザチャンバ10のウインドウ10bから出射した光のうちの一部を透過させて出力し、他の一部を反射してウインドウ10bを介してレーザチャンバ10の内部に戻す。
 このようにして、レーザチャンバ10から出射した光は、狭帯域化モジュール14とスペクトル波形調整器15aとの間で往復し、レーザチャンバ10の内部の放電空間を通過する度に増幅される。この光は、狭帯域化モジュール14で折り返される度に狭帯域化される。こうしてレーザ発振し狭帯域化された光が、スペクトル波形調整器15aからレーザ光として出力される。
 スペクトル波形調整器15aに含まれるリニアステージ15dは、スペクトルドライバ64から出力される駆動信号に従って、レーザチャンバ10とシリンドリカル平凸レンズ15bとの間の光路に沿ってシリンドリカル平凹レンズ15cを移動させる。これにより、スペクトル波形調整器15aから狭帯域化モジュール14へ向かう光の波面が変化する。波面が変化することにより、レーザ光のスペクトル波形及びスペクトル線幅が変化する。
  1.4.3 モニタモジュール16
 エネルギーセンサ16cは、レーザ光のパルスエネルギーを検出し、パルスエネルギーのデータをレーザ制御プロセッサ30、波長計測制御部50、及びスペクトル計測制御プロセッサ60に出力する。パルスエネルギーのデータは、レーザ制御プロセッサ30が放電電極11aに印加される印加電圧の設定データをフィードバック制御するのに用いられる。また、パルスエネルギーのデータを含む電気信号は、波長計測制御部50及びスペクトル計測制御プロセッサ60がそれぞれパルス数をカウントするのに用いることができる。
 波長検出器18は、ラインセンサ18dに含まれる受光素子の各々における光量から干渉縞の波形データを生成する。波長検出器18は、受光素子の各々における光量を積算した積算波形を干渉縞の波形データとしてもよい。波長検出器18は、積算波形を複数回生成し、複数個の積算波形を平均した平均波形を干渉縞の波形データとしてもよい。
 波長検出器18は、波長計測制御部50から出力されるデータ出力トリガに従って、干渉縞の波形データを波長計測制御部50に送信する。
 分光器19は、干渉縞を受光したラインセンサ19dに含まれる受光素子の各々における光量を反映した生波形を生成する。あるいは、分光器19は、生波形をNiパルスにわたって積算した積算波形Oiを生成する。分光器19は、積算波形OiをNa回生成し、Na個の積算波形Oiを平均した平均波形Oaを生成する。積算パルス数Niは例えば5パルス以上8パルス以下であり、平均化回数Naは例えば5回以上8回以下である。
 積算パルス数Niと平均化回数Naのカウントはスペクトル計測制御プロセッサ60が行い、分光器19はスペクトル計測制御プロセッサ60から出力されるトリガ信号に従って積算波形Oi及び平均波形Oaを生成してもよい。スペクトル計測制御プロセッサ60のメモリ61が、積算パルス数Ni及び平均化回数Naの設定データを記憶していてもよい。生波形、積算波形Oi、及び平均波形Oaの少なくとも1つが、本開示における計測波形に相当する。
 分光器19は、平均波形Oaからフリースペクトラルレンジに相当する一部分の波形を抽出する。抽出された一部分の波形は、干渉縞を構成する同心円の中心からの距離と光強度との関係を示している。分光器19は、この波形を波長と光強度との関係に座標変換することにより、計測スペクトル波形O(λ)を取得する。平均波形Oaの一部を波長と光強度との関係に座標変換することをスペクトル空間へのマッピングともいう。計測スペクトル波形O(λ)は本開示における第2のスペクトル波形に相当する。
 分光器19は、スペクトル計測制御プロセッサ60から出力されるデータ出力トリガに従って、計測スペクトル波形O(λ)をスペクトル計測制御プロセッサ60に送信する。
 積算波形Oiの算出処理、平均波形Oaの算出処理、及びスペクトル空間へのマッピングにより計測スペクトル波形O(λ)を取得する処理のいずれか又はすべてを、分光器19が行うのではなくスペクトル計測制御プロセッサ60が行ってもよい。平均波形Oaを生成する処理と計測スペクトル波形O(λ)を取得する処理との両方を、分光器19が行うのではなくスペクトル計測制御プロセッサ60が行ってもよい。
  1.4.4 波長計測制御部50
 波長計測制御部50は、目標波長の設定データをレーザ制御プロセッサ30から受信する。また、波長計測制御部50は、波長検出器18から出力される干渉縞の波形データを用いてレーザ光の中心波長を算出する。波長計測制御部50は、目標波長と算出された中心波長とに基づいて波長ドライバ51に制御信号を出力することにより、レーザ光の中心波長をフィードバック制御する。
  1.4.5 スペクトル計測制御プロセッサ60
 スペクトル計測制御プロセッサ60は、分光器19から計測スペクトル波形O(λ)を受信する。あるいはスペクトル計測制御プロセッサ60は、分光器19から生波形を受信して、生波形を積算及び平均化し、スペクトル空間へのマッピングを行い、計測スペクトル波形O(λ)を取得してもよい。あるいは、スペクトル計測制御プロセッサ60は、分光器19から積算波形Oiを受信し、積算波形Oiを平均化してスペクトル空間へのマッピングを行い、計測スペクトル波形O(λ)を取得してもよい。あるいは、スペクトル計測制御プロセッサ60は、分光器19から平均波形Oaを受信し、平均波形Oaをスペクトル空間へマッピングして、計測スペクトル波形O(λ)を取得してもよい。
 スペクトル計測制御プロセッサ60は、計測スペクトル波形O(λ)から以下のようにして推定スペクトル波形I(λ)を算出する。
 図3は、比較例におけるスペクトル計測制御プロセッサ60の機能を説明するブロック図である。
 分光器19は、装置固有の計測特性を有しており、その計測特性は波長λの関数として装置関数S(λ)で表される。ここで、未知のスペクトル波形T(λ)を有するレーザ光が装置関数S(λ)を有する分光器19に入射して計測された場合の計測スペクトル波形O(λ)は、以下の式1のように未知のスペクトル波形T(λ)と装置関数S(λ)との畳み込み積分で表される。
Figure JPOXMLDOC01-appb-M000001
 すなわち、畳み込み積分とは、2つの関数の合成積を意味する。
 畳み込み積分は記号*を用いて以下のように表すことができる。
   O(λ)=T(λ)*S(λ)
 計測スペクトル波形O(λ)のフーリエ変換F(O(λ))は、以下のように2つの関数T(λ)及びS(λ)それぞれのフーリエ変換F(T(λ))及びF(S(λ))の積に等しい。
   F(O(λ))=F(T(λ))×F(S(λ))
これを畳み込みの定理という。
 スペクトル計測制御プロセッサ60は、分光器19の装置関数S(λ)を予め測定し、メモリ61に保持している。装置関数S(λ)を測定するには、レーザ装置1から出力されるレーザ光の中心波長とほぼ同じ波長を有し、かつ、ほぼδ関数とみなすことのできる狭いスペクトル線幅を有するコヒーレント光を、分光器19に入射させる。分光器19によるコヒーレント光の計測スペクトル波形を装置関数S(λ)とすることができる。
 スペクトル計測制御プロセッサ60に含まれるCPU62は、レーザ光の計測スペクトル波形O(λ)を分光器19の装置関数S(λ)により逆畳み込み積分する。逆畳み込み積分とは、畳み込み積分の式を満たす未知の関数を推定する演算処理を意味する。逆畳み込み積分によって得られる波形を推定スペクトル波形I(λ)とする。推定スペクトル波形I(λ)は本開示における第1のスペクトル波形に相当し、推定された未知のスペクトル波形T(λ)の波長と光強度との関係を示す。推定スペクトル波形I(λ)は逆畳み込み積分を表す記号*-1を用いて以下のように表される。
   I(λ)=O(λ)*-1S(λ)
 逆畳み込み積分は、理論上は以下のように算出することができる。まず、畳み込みの定理から以下の式が導かれる。
   F(I(λ))=F(O(λ))/F(S(λ))
この式の両辺をフーリエ逆変換することにより、逆畳み込み積分の算出結果が得られる。すなわち、フーリエ逆変換の記号をF-1とすると推定スペクトル波形I(λ)は以下のように表される。
   I(λ)=F-1(F(O(λ))/F(S(λ)))
 但し、実際の数値計算においては、フーリエ変換及びフーリエ逆変換を用いた逆畳み込み積分は、計測データに含まれるノイズ成分の影響を受けやすい。このためヤコビ法(Jacobi Method)、ガウス・ザイデル法(Gauss-Seidel Method)等の、ノイズ成分の影響を抑制し得る反復法を用いて逆畳み込み積分を算出することが望ましい。
 図4は、比較例におけるスペクトル線幅E95の計測の手順を示すフローチャートである。スペクトル計測制御プロセッサ60は、以下のようにしてレーザ光の干渉パターンから積算波形Oi及び平均波形Oaを生成し、推定スペクトル波形I(λ)及びスペクトル線幅E95を算出する。スペクトル線幅E95の定義については図5を参照しながら後述する。
 S331において、スペクトル計測制御プロセッサ60は、メモリ61から積算パルス数Ni及び平均化回数Naを読み込む。
 S332において、スペクトル計測制御プロセッサ60は、ラインセンサ19dに含まれる受光素子の各々における光量を反映した生波形を受信し、Niパルスにわたって積算することにより、積算波形Oiを生成する。
 S333において、スペクトル計測制御プロセッサ60は、積算波形OiをNa回生成し、Na個の積算波形Oiを平均した平均波形Oaを生成する。
 S334において、スペクトル計測制御プロセッサ60は、平均波形Oaをスペクトル空間にマッピングすることにより、計測スペクトル波形O(λ)を生成する。
 S335において、スペクトル計測制御プロセッサ60は、メモリ61から分光器19の装置関数S(λ)を読み込む。
 S336において、スペクトル計測制御プロセッサ60は、計測スペクトル波形O(λ)を装置関数S(λ)により逆畳み込み積分することにより、推定スペクトル波形I(λ)を算出する。
 S337において、スペクトル計測制御プロセッサ60は、推定スペクトル波形I(λ)からスペクトル線幅E95を算出する。算出されるスペクトル線幅はE95でなくてもよく、半値全幅でもよい。
 S337の後、スペクトル計測制御プロセッサ60は、本フローチャートの処理を終了する。
 スペクトル計測制御プロセッサ60は、スペクトル線幅E95の目標値を、露光制御プロセッサ110からレーザ制御プロセッサ30を介して受信する。スペクトル計測制御プロセッサ60は、スペクトル線幅E95の目標値と算出されたスペクトル線幅E95とに基づいてスペクトルドライバ64に制御信号を送信してスペクトル波形調整器15aを制御することにより、スペクトル線幅E95をフィードバック制御する。
 図5は、レーザ光の推定スペクトル波形I(λ)の例を示すグラフである。図5の横軸は中心波長からの波長偏差Δλを示す。推定スペクトル波形I(λ)は、推定スペクトル波形I(λ)の波長域に含まれる波長成分ごとの光強度を示す波形である。推定スペクトル波形I(λ)をある波長範囲で積分して得られた値を、その波長範囲におけるスペクトルエネルギーという。推定スペクトル波形I(λ)の波長域全体のスペクトルエネルギーのうちの95%を占める部分の全幅をスペクトル線幅E95という。図5には、スペクトル線幅E95が0.3pmであるレーザ光の推定スペクトル波形I(λ)が示されている。
 レーザ光の波長に応じてレンズの表面での屈折角が異なるため、スペクトル波形が異なると露光装置100における露光性能が異なってくる。スペクトル線幅E95を目標値に基づいて制御することで、露光性能を安定化し得る。
 1.5 比較例の課題
 図6は、レーザ光のスペクトル波形の他の例を示すグラフである。図6の横軸は中心波長からの波長偏差Δλを示す。図6に示されるスペクトル波形#1~#3のスペクトル線幅E95はいずれも0.3pmであるが、これらのスペクトル波形#1~#3は互いに形状が異なる。スペクトル波形#1は中心波長とピーク波長とが一致するスペクトル分布である。スペクトル波形#2は中心波長よりも長波長側にピーク波長がずれた非対称なスペクトル分布である。ここでいう中心波長は、例えば、ピーク強度の1/e以上の光強度を有する波長幅の中心である。スペクトル波形#3は対称形であるがピーク波長が2つに分離したスペクトル分布である。
 図7~図9は、図6に示されるスペクトル波形#1~#3で示されるレーザ光の露光装置100におけるフォーカス位置の分布を示すグラフである。図7~図9の各々において、縦軸は図1に示されるZ軸に沿ったフォーカス位置を示し、横軸は各フォーカス位置にフォーカスする波長成分の光強度を示す。露光装置100の投影光学系102の縦色収差を250nm/pmとする。すなわち、波長差1pmあたりのフォーカス位置の差を250nmとする。
 図7~図9に示されるフォーカス位置の分布形状は、ほぼそのまま図6に示されるスペクトル波形#1~#3の形状に対応している。図7においてはZ=0の位置にフォーカスする波長成分が最も多い分布形状となる。図8においては、Z=0よりも+方向側の位置にフォーカス重心が位置する非対称の分布形状となる。図9においてはフォーカスする波長成分のピークが2箇所の位置に分離した分布形状となる。
 このようにスペクトル線幅E95が同一であっても、露光装置100におけるフォーカス位置の分布形状が異なり、露光性能が異なる場合がある。
 図10及び図11は、レーザ光のスペクトル波形のさらに他の例を示すグラフである。図10及び図11の各々において、横軸は中心波長からの波長偏差Δλを示す。図10に示されるスペクトル波形#4~#6及び図11に示されるスペクトル波形#7~#9のスペクトル線幅E95はいずれも0.3pmであるが、これらのスペクトル波形#4~#9は互いに形状が異なる。スペクトル波形#4~#6は中心波長よりも長波長側にピーク波長がずれた非対称なスペクトル分布を有し、中心波長とピーク波長との差が互いに異なる。スペクトル波形#7~#9は対称形であるが、スペクトル波形#7はガウス分布状のスペクトル波形#1(図6参照)と比べてピーク付近における曲線が緩やかである。スペクトル波形#8及び#9はピーク波長が2つに分離したスペクトル分布を有し、中心波長とピーク波長との差が互いに異なる。
 スペクトル波形#4~#9を用いて露光装置100における結像性能を以下のように評価した。
 図12は、結像性能の評価に用いられた長方形の結像パターンを示す。ガウス分布状のスペクトル波形#1を用いた場合に、ウエハ面に横寸法38nm、縦寸法76nmの長方形の結像パターンが投影光学系102によって形成されるように設計されたマスクを用いた。投影光学系102の縦色収差を250nm/pmとした。スペクトル波形#4~#9を用いた場合に、ウエハ面における結像パターンの横寸法が38nmとなるように露光量が調整された場合の、縦寸法の76nmからのずれΔCDをシミュレーションによって求めた。
 図13及び図14は、露光装置100における結像性能のシミュレーション結果を示すグラフである。図13は図10に示されるスペクトル波形#4~#6を用いた場合を示し、図14は図11に示されるスペクトル波形#7~#9を用いた場合を示す。
 図13に示されるように、中心波長とピーク波長との差が大きくなり、非対称性が大きくなるほど、ウエハ面における寸法誤差が大きくなり得る。また図14に示されるように、対称形のスペクトル分布であっても、ガウス分布との違いが大きくなるほど、ウエハ面における寸法誤差が大きくなり得る。
 このように、スペクトル線幅E95が同じであっても露光装置100における結像性能が異なる場合があり、スペクトル線幅E95を目標値に合わせるだけでは、求められる露光性能を得られないことがあり得る。
 以下に説明する実施形態においては、スペクトル線幅だけでなく、スペクトル波形の形状を考慮した波形評価をすることで、求められる露光性能を得るためのスペクトル制御を可能としている。
2.推定スペクトル波形I(λ)と波長偏差の関数(λ-λc)との積を積分してスペクトル評価値Vを算出するレーザ装置1a
 2.1 構成
 図15は、本開示の実施形態に係るレーザ装置1aの構成を模式的に示す。レーザ装置1aにおいて、スペクトル計測制御プロセッサ60に含まれるメモリ61は、スペクトル評価値算出プログラム611を記憶している。
 CPU62がスペクトル評価値算出プログラム611を実行することで、スペクトル計測制御プロセッサ60は以下の計算を行う。
 スペクトル計測制御プロセッサ60は、推定スペクトル波形I(λ)の重心波長λcを以下の式2により算出する。
Figure JPOXMLDOC01-appb-M000002
 式2の分子は、推定スペクトル波形I(λ)で示される光強度と波長λとの積を推定スペクトル波形I(λ)の波長域に関して積分して得られた値であり、本開示における第2の積分値に相当する。式2の分母は、推定スペクトル波形I(λ)で示される光強度を推定スペクトル波形I(λ)の波長域に関して積分して得られた値であり、本開示における第3の積分値に相当する。重心波長λcは本開示における代表波長の一例である。
 スペクトル計測制御プロセッサ60は、推定スペクトル波形I(λ)のスペクトル評価値Vを以下の式3により算出する。
Figure JPOXMLDOC01-appb-M000003
 式3の分子は、推定スペクトル波形I(λ)で示される光強度と重心波長λcからの波長偏差の関数(λ-λc)との積を推定スペクトル波形I(λ)の波長域に関して積分して得られた値であり、本開示における第1の積分値に相当する。スペクトル評価値Vは本開示における評価値に相当する。
 式3の分母は、定数λsと第3の積分値との積である。定数λsは、以下の(1)~(4)のいずれでもよい。
(1)1
(2)重心波長λc
(3)推定スペクトル波形I(λ)のスペクトル線幅E95
(4)推定スペクトル波形I(λ)と同じスペクトル線幅E95を有するガウス分布形状のスペクトル波形の標準偏差
 上記(1)のように定数λsを1とした場合には、スペクトル評価値Vが波長λの2乗の次元となるのに対し、上記(2)~(4)のように波長λの関数から得られる定数λsで除算することにより、スペクトル評価値Vを波長λの次元とすることができる。
 2.2 スペクトル評価値Vの計測動作
 図16は、実施形態におけるスペクトル評価値Vの計測の手順を示すフローチャートである。図16のS331~S336の処理は、図4において対応する処理と同様である。S336の後、スペクトル計測制御プロセッサ60はS338に処理を進める。
 S338において、スペクトル計測制御プロセッサ60は、推定スペクトル波形I(λ)の重心波長λcを式2により算出する。
 S339において、スペクトル計測制御プロセッサ60は、推定スペクトル波形I(λ)のスペクトル評価値Vを式3により算出する。
 S339の後、スペクトル計測制御プロセッサ60は、本フローチャートの処理を終了する。
 2.3 スペクトル線幅E95との比較
 次に、スペクトル評価値V及びこれを用いた評価方法の有用性について、スペクトル線幅E95と比較しながら説明する。以下に説明するように、スペクトル評価値Vは様々な結像パターンの形状に適用できる。
 図17は、スペクトル評価値V及びスペクトル線幅E95の有用性の比較に用いられた結像パターンを示す。図17に示される結像パターンは、複数の露光領域が密集したDENCEパターンと、他の露光領域から離れた位置にあるISOパターンとの2種類のパターンを含む。DENCEパターンの寸法が45nmとなるように露光量が調整された場合の、ISOパターンの基準寸法からのずれをΔCDとする。ISOパターンの基準寸法は、スペクトル線幅E95を0.01pmとした場合のISOパターンの寸法である。
 図18は、図17の結像パターンにおけるスペクトル線幅E95とΔCDとの関係を示すグラフであり、図19は、図17の結像パターンにおけるスペクトル評価値VとΔCDとの関係を示すグラフである。図18及び図19の各々について、図10及び図11に例示されたスペクトル波形を含む多数のバリエーションを用いてシミュレーションを行い、ΔCDをプロットした。
 図18においては、スペクトル線幅E95の変化に対するΔCDの変化の割合に2通りの傾向が認められる。このため、スペクトル線幅E95を測定しても、ウエハ面における結像性能を正確に知ることができない場合がある。
 図19においては、スペクトル評価値VとΔCDとの関係がほぼ1本の直線状となっている。このため、スペクトル評価値Vを測定することで、ウエハ面における結像性能を知ることができる。スペクトル評価値Vを一定の目標評価値に制御することで、求められる結像性能を達成し得る。
 図20は、スペクトル評価値V及びスペクトル線幅E95の有用性の比較に用いられた別の結像パターンを示す。図20に示される結像パターンは、配線を模したLINEパターンと、隣の配線との間隙を模したSPACEパターンとの2種類のパターンを含む。LINEパターンの寸法が100nmとなるように露光量が調整された場合の、SPACEパターンの基準寸法からのずれをΔCDとする。
 図21は、図20の結像パターンにおけるスペクトル線幅E95とΔCDとの関係を示すグラフであり、図22は、図20の結像パターンにおけるスペクトル評価値VとΔCDとの関係を示すグラフである。図21及び図22の各々について、図10及び図11に例示されたスペクトル波形を含む多数のバリエーションを用いてシミュレーションを行い、ΔCDをプロットした。
 図21においては、スペクトル線幅E95の変化に対するΔCDの変化の割合に2通りの傾向が認められる。このため、スペクトル線幅E95を測定しても、ウエハ面における結像性能を正確に知ることができない場合がある。
 図22においては、スペクトル評価値VとΔCDとの関係がほぼ1本の直線状となっている。このため、スペクトル評価値Vを測定することで、ウエハ面における結像性能を知ることができる。スペクトル評価値Vを一定の目標評価値に制御することで、求められる結像性能を達成し得る。
 2.4 スペクトル評価値Vの変形例
 式3においては、重心波長λcからの波長偏差λ-λcの2乗(λ-λc)が用いられているが、本開示はこれに限定されない。スペクトル評価値Vは以下の式4により算出されてもよい。
Figure JPOXMLDOC01-appb-M000004
 式4は、式3において波長偏差λ-λcを2乗した代わりに、波長偏差λ-λcの絶対値をN乗した点で式3と異なる。べき指数Nは正数である。べき指数Nの値を2とした場合の式4は、λsを1とした場合の式3と等価である。
 図23は、図17の結像パターンにおける式4のスペクトル評価値VとΔCDとの関係を示すグラフである。図24は、図20の結像パターンにおける式4のスペクトル評価値VとΔCDとの関係を示すグラフである。図23及び図24においては、式4におけるべき指数Nの値を1、2、及び3とした場合のシミュレーション結果がそれぞれの回帰直線とともに示されている。べき指数Nの値を1、2、及び3とした場合のいずれにおいてもスペクトル評価値VとΔCDとの間に相関が認められる。このようなスペクトル評価値Vを測定することで、ウエハ面における結像性能を知ることができる。
 回帰直線の当てはまりの良さを示す決定係数は、図23及び図24のいずれにおいてもべき指数Nの値が2である場合に最も高い。べき指数Nの値は1.9以上、2.1以下とすることが好ましい。
 2.5 スペクトル制御の動作
 図25は、実施形態におけるスペクトル制御の手順を示すフローチャートである。スペクトル計測制御プロセッサ60は、以下のようにしてスペクトル評価値Vと目標評価値Vtとを用いてスペクトル波形調整器15aを制御する。
 S31において、スペクトル計測制御プロセッサ60は、目標評価値Vtを設定する。例えば、スペクトル計測制御プロセッサ60は、露光装置100の光学的特性のデータを露光装置100から受信し、この光学的特性から算出された目標評価値Vtを設定する。
 S32において、スペクトル計測制御プロセッサ60は、レーザ制御プロセッサ30から発振トリガ信号が出力されたか否かを判定する。
 発振トリガ信号が出力されていない場合(S32:NO)、スペクトル計測制御プロセッサ60は発振トリガ信号が出力されるまで待機する。
 発振トリガ信号が出力された場合(S32:YES)、レーザ発振器20からレーザ光が出力される。スペクトル計測制御プロセッサ60は、S33に処理を進める。
 S33において、スペクトル計測制御プロセッサ60は、レーザ発振器20から出力されたレーザ光を用いてスペクトル評価値Vを計測する。S33の処理は、図16を参照しながら説明した手順で行われる。
 S34において、スペクトル計測制御プロセッサ60は、スペクトル評価値Vと目標評価値Vtとを比較し、スペクトル評価値Vが許容範囲内か否かを判定する。例えば、スペクトル評価値Vと目標評価値Vtとの差の絶対値が許容誤差Veより小さいか否かを判定する。
 S34においてスペクトル評価値Vが許容範囲内ではない場合(S34:NO)、スペクトル計測制御プロセッサ60は、S35に処理を進める。
 S35において、スペクトル計測制御プロセッサ60は、制御信号を送信してスペクトルドライバ64を駆動することによりスペクトル波形調整器15aを制御する。例えば、スペクトル評価値Vが目標評価値Vtよりも大きい場合にはスペクトル線幅を小さくするようにスペクトル波形調整器15aを制御し、スペクトル評価値Vが目標評価値Vtよりも小さい場合にはスペクトル線幅を大きくするようにスペクトル波形調整器15aを制御する。
 S35の後、スペクトル計測制御プロセッサ60は、S32に処理を戻す。
 S34においてスペクトル評価値Vが許容範囲内である場合(S34:YES)、スペクトル計測制御プロセッサ60は、本フローチャートの処理を終了する。その後、レーザ装置1aはスペクトル波形調整器15aの設定を固定したままレーザ光の出力を続ける。あるいは、スペクトル計測制御プロセッサ60は、S32に処理を戻し、レーザ光の出力を続けながらスペクトル評価値Vの計測と判定を繰り返し行ってもよい。
 2.6 スペクトル波形調整器の変形例
  2.6.1 構成
 図26及び図27は、スペクトル波形調整器の変形例の構成を概略的に示す。この変形例においては狭帯域化装置141がスペクトル波形調整器を構成する。図26は、-V方向に見た狭帯域化装置141を示し、図27は、-H方向に見た狭帯域化装置141を示す。
 狭帯域化装置141は、グレーティング14c(図2参照)の代わりにグレーティングシステム14hを含む。グレーティングシステム14hは、グレーティング14i及び14jを含む。
 グレーティング14i及び14jは、V軸の方向において互いに異なる位置に配置されている。グレーティング14i及び14jの各々の溝の方向は、V軸の方向に一致している。
 グレーティング14i及び14jは、ホルダ14kによって支持されている。但し、グレーティング14iは一定の姿勢を維持するように支持されているのに対し、グレーティング14jは、回転機構14mにより、V軸に平行な軸周りに回転可能となっている。
 狭帯域化装置141は、プリズム14bとグレーティングシステム14hとの間にビーム分離光学系14nを含む。ビーム分離光学系14nは、平行平面基板14oを含む。
 平行平面基板14oは、プリズム14bを通過した光ビームの光路の断面の一部と重なるように配置されている。平行平面基板14oは、プリズム14bとグレーティング14jとの間の光ビームの光路に配置される。平行平面基板14oは、ホルダ14pによって支持されている。平行平面基板14oは、リニアステージ14qによって、V軸に平行な方向に移動できるように構成されている。
 平行平面基板14oは、プリズム14bを通過した光ビームの一部が入射する入射表面14rと、入射表面14rを通って平行平面基板14oに入射した光が平行平面基板14oの内部からグレーティング14jに向けて出射する出射表面14sと、を含む。入射表面14rと出射表面14sとは、いずれもH軸に平行であり、入射表面14rと出射表面14sとは、互いに平行である。入射表面14r及び出射表面14sは、光ビームを屈折させるように光ビームの入射方向に対して傾いている。具体的には、入射表面14rの法線ベクトル14vが、VZ面に平行であり、さらにこの法線ベクトル14vが-V方向及び+Z方向の方向成分を有している。
 平行平面基板14oは、光ビームの第1の部分B1に面した端面14tをさらに含む。端面14tは、出射表面14sと鋭角をなす。端面14tは、HZ面と平行でもよい。
 プリズム14aはホルダ14fに支持されている。プリズム14bはホルダ14gに支持されている。あるいは、プリズム14bは、図2と同様にホルダ14gを介さずに回転ステージ14eに直接支持されてもよい。
  2.6.2 動作
 プリズム14bを通過した光ビームのうちの第1の部分B1は、平行平面基板14oの外側を通過してグレーティング14iに入射する。光ビームの第2の部分B2は、平行平面基板14oの内部を透過してグレーティング14jに入射する。このとき、平行平面基板14oは、光ビームの第2の部分B2の光路軸を第1の部分B1の光路軸に対して+V方向にシフトさせる。光路軸とは光路の中心軸をいう。このように、平行平面基板14oは、光ビームの一部を透過させることにより、光ビームの第1の部分B1から第2の部分B2を分離させる。
 グレーティング14i及び14jに入射した光は、グレーティング14i及び14jの各々の複数の溝によって反射されるとともに、光の波長に応じた方向に回折させられる。これにより、グレーティング14i及び14jの各々の複数の溝によって反射された光はHZ面に平行な面内で分散させられる。グレーティング14iは、プリズム14bからグレーティング14iに入射する光ビームの入射角と、所望の第1の波長の回折光の回折角と、が一致するようにリトロー配置とされる。グレーティング14jは、プリズム14bからグレーティング14jに入射する光ビームの入射角と、所望の第2の波長の回折光の回折角と、が一致するようにリトロー配置とされる。プリズム14bからグレーティング14i及び14jに入射する光ビームの入射角が互いに異なる場合、グレーティング14iからプリズム14bに戻される回折光の第1の波長と、グレーティング14jからプリズム14bに戻される回折光の第2の波長との間に波長差が生じる。
 図26及び図27において、光ビームを示す破線矢印はプリズム14aからグレーティング14i及び14jに向かう方向のみを示しているが、狭帯域化装置141による選択波長の光ビームは、これらの破線矢印と逆の経路でグレーティング14i及び14jからプリズム14aへ向かう。
 プリズム14a及び14bは、グレーティング14i及び14jから戻された光のビーム幅をHZ面に平行な面内で縮小させるとともに、その光を、ウインドウ10a(図2及び図15参照)を介してレーザチャンバ10内に戻す。
 回転ステージ14eがプリズム14bを僅かに回転させると、プリズム14bからグレーティング14i及び14jに向けて出射する光ビームの進行方向がHZ面に平行な面内で僅かに変化する。これにより、プリズム14bからグレーティング14i及び14jに入射する光ビームの入射角が僅かに変化する。よって、第1の波長と第2の波長との両方が変化する。
 回転機構14mがグレーティング14jを僅かに回転させると、プリズム14bからグレーティング14iに入射する光ビームの入射角は変化しないが、プリズム14bからグレーティング14jに入射する光ビームの入射角が僅かに変化する。よって、第1の波長と第2の波長との波長差が変化する。
 以上の構成及び動作により、レーザチャンバ10のウインドウ10aから出射した光ビームのうちの第1の波長と第2の波長とが選択されて、レーザチャンバ10内に戻される。これにより、レーザ装置1aは、2つのピーク波長を含むレーザ光を出力することができる。回転ステージ14e及び回転機構14mを制御することにより、第1の波長と第2の波長とを別々に設定することもできる。
 また、リニアステージ14qがV軸の方向における平行平面基板14oの位置を変化させることにより、第1の部分B1と第2の部分B2とのエネルギー比率が変化する。
 平行平面基板14oを-V方向に移動させることにより、光ビームのうちの平行平面基板14oに入射する第2の部分B2を多くすると、グレーティング14jに入射する光が多くなる。従って、レーザ光に含まれる第2の波長成分のエネルギーが大きくなる。
 平行平面基板14oを+V方向に移動させることにより、光ビームのうちの平行平面基板14oに入射する第2の部分B2を少なくすると、グレーティング14jに入射する光が少なくなる。従って、レーザ光に含まれる第2の波長成分のエネルギーが小さくなる。
 これによれば、図11に例示された2つのピーク波長を含むレーザ光や、図10に例示された非対称のスペクトル波形を有するレーザ光を出力し、レーザ光のスペクトル波形を制御することができる。
  2.6.3 他の構成例
 図26及び図27を参照しながら説明した構成の代わりに、以下の(1)又は(2)の構成が採用されてもよい。
 (1)グレーティング14c(図2参照)をV方向に互いに異なる位置に配置されたグレーティング14i及び14jに置き換える代わりに、プリズム14bを、V方向に互いに異なる位置に配置された図示しない第1プリズム及び第2プリズムに置き換えてもよい。第1プリズム及び第2プリズムをV軸に平行な軸周りにそれぞれ回転可能とすることにより、第1の波長及び第2の波長を個別に制御し得る。第1プリズム及び第2プリズムを一体としてV軸に平行な方向に移動可能とすることにより、第1の波長成分と第2の波長成分とのエネルギー比率を制御し得る。
 (2)グレーティング14c(図2参照)をV方向に互いに異なる位置に配置されたグレーティング14i及び14jに置き換える代わりに、プリズム14bとグレーティング14cとの間に、図示しない第1ミラー及び第2ミラーをV方向に互いに異なる位置に配置してもよい。第1ミラー及び第2ミラーをV軸に平行な軸周りにそれぞれ回転可能とすることにより、第1の波長及び第2の波長を個別に制御し得る。第1ミラー及び第2ミラーを一体としてV軸に平行な方向に移動可能とすることにより、第1の波長成分と第2の波長成分とのエネルギー比率を制御し得る。
 2.7 作用
 (1)本開示の実施形態によれば、露光装置100に接続可能なレーザ装置1aは、レーザ装置1aから出力されるレーザ光の干渉パターンから平均波形Oaを取得する分光器19と、スペクトル計測制御プロセッサ60と、を備える。スペクトル計測制御プロセッサ60は、平均波形Oaを用いて波長λと光強度との関係を示す推定スペクトル波形I(λ)を算出し、推定スペクトル波形I(λ)の波長域に含まれる代表波長を算出し、代表波長からの波長偏差λ-λcの関数と推定スペクトル波形I(λ)で示される光強度との積を波長域に関して積分して得られた第1の積分値を用いてスペクトル評価値Vを算出するように構成されている。
 これによれば、ガウス分布状のスペクトル波形と異なるスペクトル波形を有するレーザ光であっても露光装置100における露光性能を適切に評価することができる。また、スペクトル評価値Vは様々な結像パターンの形状に適用できる。このため、求められる露光性能を実現するためのスペクトル制御を適切に行うことができる。
 (2)実施形態によれば、スペクトル計測制御プロセッサ60は、平均波形Oaをスペクトル空間にマッピングして計測スペクトル波形O(λ)を生成し、計測スペクトル波形O(λ)を分光器19の装置関数S(λ)で逆畳み込み積分することにより推定スペクトル波形I(λ)を算出する。
 これによれば、分光器19の装置関数S(λ)の影響を取り除いて、露光装置100における露光性能を適切に評価することができる。
 (3)実施形態によれば、代表波長は推定スペクトル波形I(λ)の重心波長λcである。
 これによれば、中心波長と重心波長λcとが異なる非対称なスペクトル波形であっても、露光装置100における露光性能を適切に評価することができる。
 (4)実施形態によれば、スペクトル計測制御プロセッサ60は、波長λと推定スペクトル波形I(λ)で示される光強度との積を波長域に関して積分して得られた第2の積分値を、推定スペクトル波形I(λ)で示される光強度を波長域に関して積分して得られた第3の積分値で除算することにより、重心波長λcを算出する。
 これによれば、中心波長と重心波長λcとが異なる非対称なスペクトル波形や、複数のピークを有するスペクトル波形であっても、露光装置100における露光性能を適切に評価することができる。
 (5)実施形態によれば、波長偏差λ-λcの関数は、べき指数Nを正数とする波長偏差λ-λcの絶対値|λ-λc|のべき乗である。
 これによれば、スペクトル評価値Vを用いて露光装置100における露光性能を適切に評価し得る。
 (6)実施形態によれば、べき指数Nは、1.9以上、2.1以下である。
 これによれば、スペクトル評価値Vを用いて露光装置100における露光性能をより適切に評価し得る。
 (7)実施形態によれば、スペクトル計測制御プロセッサ60は、第1の積分値を第3の積分値で除算することにより、スペクトル評価値Vを算出する。
 これによれば、第3の積分値で除算することで、光量に関わらずスペクトル波形に応じた露光性能の評価を行うことができる。
 (8)実施形態によれば、スペクトル計測制御プロセッサ60は、第1の積分値を第3の積分値と波長域に含まれる波長λの関数から得られる定数λsとの積で除算することにより、スペクトル評価値Vを算出する。
 これによれば、スペクトル評価値Vに含まれる波長λの次元を下げて、露光性能を適切に評価し得る。
 (9)実施形態によれば、分光器19に入射するレーザ光のスペクトル波形を調整するスペクトル波形調整器15aをさらに備える。スペクトル計測制御プロセッサ60は、スペクトル評価値Vと目標評価値Vtとの比較結果を用いてスペクトル波形調整器15aを制御する。
 これによれば、スペクトル評価値Vと目標評価値Vtとを用いた制御により、求められる露光性能を実現することができる。
 (10)実施形態によれば、スペクトル波形調整器15aは、レーザ光のスペクトル線幅を調整するように構成される。スペクトル計測制御プロセッサ60は、スペクトル評価値Vが目標評価値Vtより大きい場合にスペクトル線幅を小さくするようにスペクトル波形調整器15aを制御し、スペクトル評価値Vが目標評価値Vtより小さい場合にスペクトル線幅を大きくするようにスペクトル波形調整器15aを制御する。
 これによれば、スペクトル線幅を小さくすることによりスペクトル評価値Vを小さくすることができ、スペクトル線幅を大きくすることによりスペクトル評価値Vを大きくすることができる。
3.その他
 上述の説明は、制限ではなく単なる例示を意図している。従って、特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかである。また、本開示の実施形態を組み合わせて使用することも当業者には明らかである。
 本明細書及び特許請求の範囲全体で使用される用語は、明記が無い限り「限定的でない」用語と解釈されるべきである。たとえば、「含む」、「有する」、「備える」、「具備する」などの用語は、「記載されたもの以外の構成要素の存在を除外しない」と解釈されるべきである。また、修飾語「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきである。さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。

Claims (20)

  1.  露光装置に接続可能なレーザ装置であって、
     前記レーザ装置から出力されるレーザ光の干渉パターンから計測波形を生成する分光器と、
     プロセッサであって、
      前記計測波形を用いて波長と光強度との関係を示す第1のスペクトル波形を算出し、
      前記第1のスペクトル波形の波長域に含まれる代表波長を算出し、
      前記代表波長からの波長偏差の関数と前記光強度との積を前記波長域に関して積分して得られた第1の積分値を用いて前記第1のスペクトル波形の評価値を算出するように構成された前記プロセッサと、
    を備えるレーザ装置。
  2.  請求項1記載のレーザ装置であって、
     前記プロセッサは、
      前記計測波形をスペクトル空間にマッピングして第2のスペクトル波形を生成し、
      前記第2のスペクトル波形を前記分光器の装置関数で逆畳み込み積分することにより前記第1のスペクトル波形を算出する、
    レーザ装置。
  3.  請求項1記載のレーザ装置であって、
     前記代表波長は前記第1のスペクトル波形の重心波長である、
    レーザ装置。
  4.  請求項3記載のレーザ装置であって、
     前記プロセッサは、前記波長と前記光強度との積を前記波長域に関して積分して得られた第2の積分値を、前記光強度を前記波長域に関して積分して得られた第3の積分値で除算することにより、前記重心波長を算出する、
    レーザ装置。
  5.  請求項1記載のレーザ装置であって、
     前記関数は、べき指数を正数とする前記波長偏差の絶対値のべき乗である、
    レーザ装置。
  6.  請求項5記載のレーザ装置であって、
     前記べき指数は、1.9以上、2.1以下である、
    レーザ装置。
  7.  請求項1記載のレーザ装置であって、
     前記プロセッサは、前記第1の積分値を、前記光強度を前記波長域に関して積分して得られた第3の積分値で除算することにより、前記評価値を算出する、
    レーザ装置。
  8.  請求項1記載のレーザ装置であって、
     前記プロセッサは、前記第1の積分値を、前記光強度を前記波長域に関して積分して得られた第3の積分値と前記波長域に含まれる前記波長の関数との積で除算することにより、前記評価値を算出する、
    レーザ装置。
  9.  請求項1記載のレーザ装置であって、
     前記分光器に入射する前記レーザ光のスペクトル波形を調整するスペクトル波形調整器をさらに備え、
     前記プロセッサは、前記評価値と目標評価値との比較結果を用いて前記スペクトル波形調整器を制御する、
    レーザ装置。
  10.  請求項9記載のレーザ装置であって、
     前記スペクトル波形調整器は、前記レーザ光のスペクトル線幅を調整するように構成され、
     前記プロセッサは、前記評価値が前記目標評価値より大きい場合に前記スペクトル線幅を小さくするように前記スペクトル波形調整器を制御し、前記評価値が前記目標評価値より小さい場合に前記スペクトル線幅を大きくするように前記スペクトル波形調整器を制御する、
    レーザ装置。
  11.  露光装置に接続可能なレーザ装置から出力されるレーザ光の干渉パターンから計測波形を生成し、
     前記計測波形を用いて波長と光強度との関係を示す第1のスペクトル波形を算出し、
     前記第1のスペクトル波形の波長域に含まれる代表波長を算出し、
     前記代表波長からの波長偏差の関数と前記光強度との積を前記波長域に関して積分して得られた第1の積分値を用いて前記第1のスペクトル波形の評価値を算出する
    ことを含む、レーザ光のスペクトルの評価方法。
  12.  請求項11記載の評価方法であって、
     前記計測波形をスペクトル空間にマッピングして第2のスペクトル波形を生成し、
     前記第2のスペクトル波形を前記計測波形を生成した分光器の装置関数で逆畳み込み積分することにより前記第1のスペクトル波形を算出する、
    評価方法。
  13.  請求項11記載の評価方法であって、
     前記代表波長は前記第1のスペクトル波形の重心波長である、
    評価方法。
  14.  請求項13記載の評価方法であって、
     前記波長と前記光強度との積を前記波長域に関して積分して得られた第2の積分値を、前記光強度を前記波長域に関して積分して得られた第3の積分値で除算することにより、前記重心波長を算出する、
    評価方法。
  15.  請求項11記載の評価方法であって、
     前記関数は、べき指数を正数とする前記波長偏差の絶対値のべき乗である、
    評価方法。
  16.  請求項15記載の評価方法であって、
     前記べき指数は、1.9以上、2.1以下である、
    評価方法。
  17.  請求項11記載の評価方法であって、
     前記第1の積分値を、前記光強度を前記波長域に関して積分して得られた第3の積分値で除算することにより、前記評価値を算出する、
    評価方法。
  18.  請求項11記載の評価方法であって、
     前記第1の積分値を、前記光強度を前記波長域に関して積分して得られた第3の積分値と前記波長域に含まれる前記波長の関数との積で除算することにより、前記評価値を算出する、
    評価方法。
  19.  請求項11記載の評価方法であって、
     前記評価値と目標評価値との比較結果を用いて前記レーザ光のスペクトル波形を調整する、
    評価方法。
  20.  電子デバイスの製造方法であって、
     露光装置に接続可能なレーザ装置から出力されるレーザ光の干渉パターンから計測波形を生成する分光器と、
     プロセッサであって、
      前記計測波形を用いて波長と光強度との関係を示す第1のスペクトル波形を算出し、
      前記第1のスペクトル波形の波長域に含まれる代表波長を算出し、
      前記代表波長からの波長偏差の関数と前記光強度との積を前記波長域に関して積分して得られた第1の積分値を用いて前記第1のスペクトル波形の評価値を算出するように構成された前記プロセッサと、
    を備える前記レーザ装置によって前記レーザ光を生成し、
     前記レーザ光を前記露光装置に出力し、
     前記電子デバイスを製造するために、前記露光装置内で感光基板上に前記レーザ光を露光する
    ことを含む電子デバイスの製造方法。
PCT/JP2021/015233 2021-04-12 2021-04-12 レーザ装置、レーザ光のスペクトルの評価方法、及び電子デバイスの製造方法 WO2022219689A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180095462.4A CN116998070A (zh) 2021-04-12 2021-04-12 激光装置、激光的谱的评价方法和电子器件的制造方法
PCT/JP2021/015233 WO2022219689A1 (ja) 2021-04-12 2021-04-12 レーザ装置、レーザ光のスペクトルの評価方法、及び電子デバイスの製造方法
JP2023514200A JPWO2022219689A1 (ja) 2021-04-12 2021-04-12
US18/467,121 US20240003743A1 (en) 2021-04-12 2023-09-14 Laser device, evaluation method for laser light spectrum, and electronic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015233 WO2022219689A1 (ja) 2021-04-12 2021-04-12 レーザ装置、レーザ光のスペクトルの評価方法、及び電子デバイスの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/467,121 Continuation US20240003743A1 (en) 2021-04-12 2023-09-14 Laser device, evaluation method for laser light spectrum, and electronic device manufacturing method

Publications (1)

Publication Number Publication Date
WO2022219689A1 true WO2022219689A1 (ja) 2022-10-20

Family

ID=83639842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015233 WO2022219689A1 (ja) 2021-04-12 2021-04-12 レーザ装置、レーザ光のスペクトルの評価方法、及び電子デバイスの製造方法

Country Status (4)

Country Link
US (1) US20240003743A1 (ja)
JP (1) JPWO2022219689A1 (ja)
CN (1) CN116998070A (ja)
WO (1) WO2022219689A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024855A (ja) * 2004-07-09 2006-01-26 Komatsu Ltd 狭帯域化レーザ装置
JP2007536498A (ja) * 2003-06-26 2007-12-13 サイマー インコーポレイテッド 改善された帯域幅の推定法
WO2017098625A1 (ja) * 2015-12-10 2017-06-15 ギガフォトン株式会社 狭帯域化レーザ装置及びスペクトル線幅計測装置
WO2019111315A1 (ja) * 2017-12-05 2019-06-13 ギガフォトン株式会社 エキシマレーザ装置、及び電子デバイスの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536498A (ja) * 2003-06-26 2007-12-13 サイマー インコーポレイテッド 改善された帯域幅の推定法
JP2006024855A (ja) * 2004-07-09 2006-01-26 Komatsu Ltd 狭帯域化レーザ装置
WO2017098625A1 (ja) * 2015-12-10 2017-06-15 ギガフォトン株式会社 狭帯域化レーザ装置及びスペクトル線幅計測装置
WO2019111315A1 (ja) * 2017-12-05 2019-06-13 ギガフォトン株式会社 エキシマレーザ装置、及び電子デバイスの製造方法

Also Published As

Publication number Publication date
JPWO2022219689A1 (ja) 2022-10-20
US20240003743A1 (en) 2024-01-04
CN116998070A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
US6160831A (en) Wavelength calibration tool for narrow band excimer lasers
KR101302244B1 (ko) 노광 장치, 노광 방법 및 디바이스 제조 방법, 및 시스템
CN108352673B (zh) 窄带化激光装置和谱线宽度计测装置
JP5157004B2 (ja) 狭帯域化レーザのスペクトル幅調整方法
JP7244436B2 (ja) エキシマレーザ装置、及び電子デバイスの製造方法
US10615565B2 (en) Line narrowed laser apparatus
WO2015008365A1 (ja) 露光装置
JP6113426B2 (ja) マスタオシレータシステムおよびレーザ装置
JP2007005538A (ja) 多波長発振狭帯域レーザ装置
JP7461498B2 (ja) レーザスペクトルオンライン測定装置及びレーザスペクトルオンライン測定方法
US10283927B2 (en) Line narrowed laser apparatus
JPH11266045A (ja) 狭帯域モジュールの検査装置
WO2003016841A1 (en) Convolution method for measuring laser bandwidth
JP3905111B2 (ja) レーザ装置及び波長検出方法
WO2022219689A1 (ja) レーザ装置、レーザ光のスペクトルの評価方法、及び電子デバイスの製造方法
WO2022219690A1 (ja) スペクトル波形の制御方法、レーザ装置、露光装置、及び電子デバイスの製造方法
JP5730428B2 (ja) 狭帯域化レーザ装置及びそのスペクトル幅調整方法
WO2022172382A1 (ja) レーザシステム、スペクトル波形算出方法、及び電子デバイスの製造方法
JP5580256B2 (ja) 狭帯域化レーザのスペクトル幅調整方法
WO2021186740A1 (ja) 狭帯域化ガスレーザ装置、その制御方法、及び電子デバイスの製造方法
WO2023166583A1 (ja) レーザ装置、スペクトル線幅の計測方法、及び電子デバイスの製造方法
WO2022157897A1 (ja) レーザシステムの制御方法、レーザシステム、及び電子デバイスの製造方法
WO2023007685A1 (ja) 放電励起型レーザ装置の制御方法、放電励起型レーザ装置、及び電子デバイスの製造方法
WO2024047871A1 (ja) 狭帯域化レーザ装置、及び電子デバイスの製造方法
WO2022249444A1 (ja) 波長計測装置、狭帯域化レーザ装置、及び電子デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936892

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180095462.4

Country of ref document: CN

Ref document number: 2023514200

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936892

Country of ref document: EP

Kind code of ref document: A1