WO2022217800A1 - 一种制备大尺寸掺氟石英管的方法及掺氟石英管 - Google Patents

一种制备大尺寸掺氟石英管的方法及掺氟石英管 Download PDF

Info

Publication number
WO2022217800A1
WO2022217800A1 PCT/CN2021/113720 CN2021113720W WO2022217800A1 WO 2022217800 A1 WO2022217800 A1 WO 2022217800A1 CN 2021113720 W CN2021113720 W CN 2021113720W WO 2022217800 A1 WO2022217800 A1 WO 2022217800A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
quartz tube
rod
doped
doped quartz
Prior art date
Application number
PCT/CN2021/113720
Other languages
English (en)
French (fr)
Inventor
王龙飞
李凡
顾建宏
帅小立
刘顺
冀云磊
张佚
吴林清
Original Assignee
江苏永鼎股份有限公司
江苏永鼎光纤科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏永鼎股份有限公司, 江苏永鼎光纤科技有限公司 filed Critical 江苏永鼎股份有限公司
Publication of WO2022217800A1 publication Critical patent/WO2022217800A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod

Definitions

  • the present invention is in the technical field of optical fiber manufacturing, in particular to a method for preparing a large-sized fluorine-doped quartz tube and a fluorine-doped quartz tube.
  • Quartz sleeve is the basic material for producing optical fiber preform. After decades of development, its size and quality have reached a high level. Generally, the optical quality requirements for ordinary quartz sleeves are not high, but with the continuous improvement of optical fiber performance requirements, the refractive index requirements for quartz sleeves are gradually put forward, which can be beneficial to the improvement of optical fiber performance. Among them, the quartz thin tube with low refractive index prepared by continuous melting method has occupied most of the market for a long time.
  • Patent US5837334 proposes a method for preparing a low refractive index quartz sleeve by VAD or OVD process, but the dopant will volatilize during manufacture, the refractive index range of the material is difficult to control, and the refractive index fluctuations in the radial and axial directions are relatively high. big problem.
  • Patent CN101314515A provides a method for preparing a quartz tube, which uses quartz sand to melt into a quartz ingot, and then uses the method of machining and drawing the tube to prepare a quartz tube of a certain specification.
  • This disadvantage is that only quartz tubes without optical properties can be prepared, and it is difficult to manufacture quartz tube materials with certain cross-sectional structure and refractive index distribution requirements.
  • Patent CN103553320B provides a method for preparing a low-refractive-index quartz tube by PCVD process, the relative refractive index of the quartz layer can reach -1.5% to -0.3%, and the cross-sectional structure can have various forms (CN103553320B Figure 8- Figure 12), sleeve
  • the inner diameter of the tube is equal to or greater than 24mm, and the outer diameter is less than or equal to 63mm;
  • Chinese patent CN103951182A provides an improved method of combining chemical vapor deposition (MCVD) with out-of-tube vapor deposition (OVD).
  • the refractive index difference of the sleeve with the refractive index profile can reach -0.0053 (CN103951182A Figure 3); the obvious disadvantage of the above two patents is that the relative size is small, and it is difficult to directly use the light rod larger than ⁇ 120mm and above.
  • Patent CN112266162A provides a method of pressurizing fluorine-containing gas to realize and promote the penetration and doping of fluorine. Preheating and pressurizing treatment, through the preheating and pressurizing process, the diffusion effect is realized, so that the fluorine-doped agent can diffuse to the center of the loose powder rod. After mechanical drilling, a fluorine-doped quartz tube is obtained.
  • the technical problem to be solved by the present invention is to provide a method for preparing a large-size fluorine-doped quartz tube with a simple process, which can increase the size of the fluorine-doped quartz tube and ensure the uniformity of the fluorine content.
  • the present invention provides a method for preparing a large-size fluorine-doped quartz tube, which comprises the following steps:
  • the ratio of C 2 F 6 to helium in the mixed gas 1 is 1:2-4.
  • the flow rate of the mixed gas 1 is 0-2000 sccm.
  • the ratio of C 2 F 6 to helium in the second mixed gas is 1:4-6.
  • the flow rate of the second mixed gas is 0-900 sccm.
  • step S10 silicon dioxide powder is deposited on the surface of the target rod by a VAD or OVD process.
  • step S20 0.3-3 L/min of chlorine gas is introduced for dehydration, and the dehydration temperature is 800-1500°C.
  • step S30 when the purified soot body rod is doped with fluorine, the purified soot body rod is rotated, and the rotation speed is 1-5 mm/min.
  • the flow rate of the first mixed gas is the same or different.
  • the present invention also provides a fluorine-doped quartz tube, which is obtained by any one of the above-mentioned methods for preparing a large-size fluorine-doped quartz tube.
  • the method for preparing a large-size fluorine-doped quartz tube of the present invention can increase the size of the fluorine-doped quartz tube and ensure the uniformity of fluorine content through multiple depositions and fluorine-doped loose body rods. It has the advantages of simple process and good fluorine doping effect.
  • FIG. 1 is a flow chart of a method for preparing a large-size fluorine-doped quartz tube in a preferred embodiment of the present invention.
  • FIG. 1 it is a method for preparing a large-size fluorine-doped quartz tube in a preferred embodiment of the present invention, and the method includes the following steps:
  • the outer diameter of the soot body rod is 50 mm.
  • silica powder is deposited on the surface of the target rod by a VAD or OVD process.
  • a mixed gas containing C 2 F 6 and helium gas is introduced into the sintering furnace 1, and the purified soot body rod is doped with fluorine to obtain a purified fluorine-doped loose powder rod.
  • the ratio of C 2 F 6 to helium in the mixed gas 1 is 1:2-4
  • the flow rate of the mixed gas 1 is 0-2000 sccm
  • the temperature in the sintering furnace is 800-1300° C.
  • the purified soot body rod is doped with fluorine
  • the purified soot body rod is rotated, and the rotation speed is 1-5 mm/min to ensure the uniformity of fluorine doping.
  • the mixed gas 2 containing C 2 F 6 and helium is introduced into the sintering furnace, and the purified fluorine-doped loose powder rod is sintered to be completely vitrified to obtain a sintered preform.
  • the ratio of C 2 F 6 to helium in the second mixed gas is 1:4-6
  • the flow rate of the second mixed gas is 0-900 sccm
  • the temperature in the sintering furnace is 1250-1550° C.
  • the outer diameter of the soot body rod is 10 mm.
  • the temperature is kept for 3-9 hours to obtain a sintered preform.
  • the main function of the mixed gas 2 is to avoid volatilization of the doped fluorine element.
  • the flow rate of the first mixed gas is the same or different.
  • the radial fluorine content of the preform remains unchanged; when the flow rate is different, the change of the radial fluorine content of the preform can be realized, a complex refractive index profile can be realized, and then the fluorine-doped quartz tube with a complex refractive index profile can be realized. Production.
  • the sintered preform is machined to form a hollow quartz tube with inner holes; then, the inner hole of the hollow quartz tube is ground to obtain a fluorine-doped quartz tube suitable for large-sized optical fiber preforms.
  • a preferred embodiment of the present invention also discloses a fluorine-doped quartz tube, which is obtained by any of the above-mentioned methods for preparing a large-size fluorine-doped quartz tube.
  • the method for preparing a large-size fluorine-doped quartz tube of the present invention can increase the size of the fluorine-doped quartz tube and ensure the uniformity of fluorine content through multiple depositions and fluorine-doped loose body rods. It has the advantages of simple process and good fluorine doping effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

一种制备大尺寸掺氟石英管的方法及掺氟石英管,该方法包括以下步骤:S10、在靶棒表面沉积二氧化硅粉末,得到疏松体棒;S20、将疏松体棒转移至烧结炉中,对疏松体棒进行脱水处理,得到纯化疏松体棒;S30、向烧结炉中通入含有C 2F 6和氦气的混合气体一,对纯化疏松体棒进行氟掺杂,得到纯化掺氟疏松粉棒;S40、向烧结炉中通入含有C 2F 6和氦气的混合气体二,对纯化掺氟疏松粉棒进行烧结,使其完全玻璃化,得到烧结预制棒;S50、重复步骤S10-S40n次,得到烧结预制棒成品,n为总沉积次数;S60、将烧结预制棒成品加工成石英管。通过多次沉积和氟掺杂疏松体棒,可增大掺氟石英管尺寸、保证氟含量均匀性。具有工艺简单,掺氟效果好的优点。

Description

一种制备大尺寸掺氟石英管的方法及掺氟石英管 技术领域
本发明光纤制造技术领域,特别涉及一种制备大尺寸掺氟石英管的方法及掺氟石英管。
背景技术
石英套管是生产光纤预制棒的基础材料,经过几十年的发展,其尺寸和质量等已达较高水平。一般对于普通石英套管的光学质量要求不高,但随着对光纤性能要求的不断提高,对石英套管逐渐提出了折射率需求,使其可以有益于光纤性能的改善。其中,以连熔法制备低折射率的石英薄皮管,长时间占据了绝大多数市场。
专利US5837334提出一种采用VAD或者OVD工艺制备低折射率石英套管的方法,但在制造时掺杂剂会发生挥发,材料折射率范围很难控制,在半径方向和轴线方向出现折射率波动较大的问题。
专利CN101314515A提供一种石英管的制备方法,其采用石英砂熔制成石英锭,再采用机械加工和拉管的方法,将其制备成一定规格的石英管。此缺点是只能制备无光学特性的石英管,很难制造有一定剖面结构和折射率分布要求的石英管材料。
专利CN103553320B提供一种采用PCVD工艺制备低折射率石英管的方法,其石英层相对折射率可达-1.5%到-0.3%,剖面结构可有多种形式(CN103553320B图8-图12),套管内径等于或大于24mm,外径小于或等于63mm;中国专利CN103951182A提供一种改进的化学气相沉积法(MCVD)与管外气相沉积法(OVD)相结合的方法,制备具有深度折射率或者复杂折射率剖面的套管,其折射率差可达-0.0053(CN103951182A图3);上述两个专利明显的缺点为相对尺寸较小,很难直接用于大于φ120mm及以上的光棒。
专利CN112266162A提供了一种向含氟气体加压的方法实现并促进氟的 渗透和掺杂,具体而言,将纯化疏松体置于900-1200℃的温度条件和60-130Pa的压力条件下进行预热加压处理,通过该预热加压过程实现扩散作用,使得掺氟剂可以扩散到疏松粉棒的中心位置处,经过一定时间的预热加压处理后,再降压进行烧结,经机械打孔后,得到掺氟石英管。
随光纤价格的持续走低,需要更大尺寸光棒降低光纤成本,光棒销售中的大尺寸光棒占比已提升至80%,小尺寸掺氟套管已不能满足使用要求,有必要开发一种制备大尺寸掺氟石英管的工艺,以满足大尺寸光棒的需求。
发明内容
本发明要解决的技术问题的是提供一种工艺简单、可增大掺氟石英管尺寸、保证氟含量均匀性的制备大尺寸掺氟石英管的方法。
为了解决上述问题,本发明提供了一种制备大尺寸掺氟石英管的方法,其包括以下步骤:
S10、在靶棒表面沉积二氧化硅粉末,得到疏松体棒;
S20、将疏松体棒转移至烧结炉中,对疏松体棒进行脱水处理,得到纯化疏松体棒;
S30、向烧结炉中通入含有C 2F 6和氦气的混合气体一,对纯化疏松体棒进行氟掺杂处理,得到纯化掺氟疏松粉棒;
S40、向烧结炉中通入含有C 2F 6和氦气的混合气体二,对纯化掺氟疏松粉棒进行烧结,使其完全玻璃化,得到烧结预制棒;
S50、重复步骤S10-S40n次,得到烧结预制棒成品,n为总沉积次数;
S60、将烧结预制棒成品加工成石英管。
作为本发明的进一步改进,所述混合气体一中C 2F 6和氦气的比例为1:2-4。
作为本发明的进一步改进,所述混合气体一的流量为0-2000sccm。
作为本发明的进一步改进,所述混合气体二中C 2F 6和氦气的比例为1:4-6。
作为本发明的进一步改进,所述混合气体二的流量为0-900sccm。
作为本发明的进一步改进,步骤S10中,通过VAD或OVD工艺在靶棒表 面沉积二氧化硅粉末。
作为本发明的进一步改进,步骤S20中,通入0.3-3L/min的氯气进行脱水,脱水的温度为800-1500℃。
作为本发明的进一步改进,步骤S30中,在对纯化疏松体棒进行氟掺杂时,使纯化疏松体棒旋转,旋转速度为1-5mm/min。
作为本发明的进一步改进,在重复的步骤S30中,所述混合气体一的流量相同或不同。
为了解决上述问题,本发明还提供了一种掺氟石英管,其通过上述任一所述的制备大尺寸掺氟石英管的方法得到。
本发明的有益效果:
本发明制备大尺寸掺氟石英管的方法通过多次沉积和氟掺杂疏松体棒,可增大掺氟石英管尺寸、保证氟含量均匀性。具有工艺简单,掺氟效果好的优点。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1是本发明优选实施例中制备大尺寸掺氟石英管的方法的流程图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
如图1所示,为本发明优选实施例中制备大尺寸掺氟石英管的方法,该方法包括以下步骤:
S10、在靶棒表面沉积二氧化硅粉末,得到疏松体棒。在其中一实施例中,疏松体棒的外径为50mm。可选的,通过VAD或OVD工艺在靶棒表面沉积二氧化硅粉末。
S20、将疏松体棒转移至烧结炉中,对疏松体棒进行脱水处理,得到纯化疏松体棒。可选的,通入0.3-3L/min的氯气进行脱水,脱水的温度为800-1500℃。
S30、向烧结炉中通入含有C 2F 6和氦气的混合气体一,对纯化疏松体棒进行氟掺杂,得到纯化掺氟疏松粉棒。可选的,所述混合气体一中C 2F 6和氦气的比例为1:2-4,所述混合气体一的流量为0-2000sccm,烧结炉中温度为800-1300℃。进一步的,在对纯化疏松体棒进行氟掺杂时,使纯化疏松体棒旋转,旋转速度为1-5mm/min,保证掺氟均匀性。
S40、向烧结炉中通入含有C 2F 6和氦气的混合气体二,对纯化掺氟疏松粉棒进行烧结,使其完全玻璃化,得到烧结预制棒。可选的,所述混合气体二中C 2F 6和氦气的比例为1:4-6,所述混合气体二的流量为0-900sccm,烧结炉中温度为1250-1550℃。在其中一实施例中,疏松体棒的外径为10mm。可选的,玻璃化结束后保温3-9小时,得到烧结预制棒。其中,混合气体二的主要作用是避免掺杂的氟元素挥发。
S50、重复步骤S10-S40n次,得到烧结预制棒成品,n为总沉积次数。可选的,在重复的步骤S30中,所述混合气体一的流量相同或不同。当流量相同时,预制棒径向氟含量保持不变;当流量不同时,可实现预制棒径向氟含量的变化,实现复杂折射率剖面,进而实现具有复杂折射率剖面的掺氟石英管的生产。
S60、将烧结预制棒成品加工成石英管。具体的,对烧结预制棒进行机械加工,形成具有内孔的空心石英管;然后,对空心石英管的内孔进行研磨处理,得到适用于大尺寸光纤预制棒的掺氟石英管。
本发明优选实施例中还公开了一种掺氟石英管,其通过上述任一所述的制备大尺寸掺氟石英管的方法得到。
本发明制备大尺寸掺氟石英管的方法通过多次沉积和氟掺杂疏松体棒,可增大掺氟石英管尺寸、保证氟含量均匀性。具有工艺简单,掺氟效果好的优点。
以上实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种制备大尺寸掺氟石英管的方法,其特征在于,包括以下步骤:
    S10、在靶棒表面沉积二氧化硅粉末,得到疏松体棒;
    S20、将疏松体棒转移至烧结炉中,对疏松体棒进行脱水处理,得到纯化疏松体棒;
    S30、向烧结炉中通入含有C 2F 6和氦气的混合气体一,对纯化疏松体棒进行氟掺杂,得到纯化掺氟疏松粉棒;
    S40、向烧结炉中通入含有C 2F 6和氦气的混合气体二,对纯化掺氟疏松粉棒进行烧结,使其完全玻璃化,得到烧结预制棒;
    S50、重复步骤S10-S40n次,得到烧结预制棒成品,n为总沉积次数;
    S60、将烧结预制棒成品加工成石英管。
  2. 如权利要求1所述的制备大尺寸掺氟石英管的方法,其特征在于,所述混合气体一中C 2F 6和氦气的比例为1:2-4。
  3. 如权利要求2所述的制备大尺寸掺氟石英管的方法,其特征在于,所述混合气体一的流量为0-2000sccm。
  4. 如权利要求1所述的制备大尺寸掺氟石英管的方法,其特征在于,所述混合气体二中C 2F 6和氦气的比例为1:4-6。
  5. 如权利要求4所述的制备大尺寸掺氟石英管的方法,其特征在于,所述混合气体二的流量为0-900sccm。
  6. 如权利要求1所述的制备大尺寸掺氟石英管的方法,其特征在于,步骤S10中,通过VAD或OVD工艺在靶棒表面沉积二氧化硅粉末。
  7. 如权利要求1所述的制备大尺寸掺氟石英管的方法,其特征在于,步骤S20中,通入0.3-3L/min的氯气进行脱水,脱水的温度为800-1500℃。
  8. 如权利要求1所述的制备大尺寸掺氟石英管的方法,其特征在于,步骤S30中,在对纯化疏松体棒进行氟掺杂时,使纯化疏松体棒旋转,旋转速度为1-5mm/min。
  9. 如权利要求1所述的制备大尺寸掺氟石英管的方法,其特征在于,在重 复的步骤S30中,所述混合气体一的流量相同或不同。
  10. 一种掺氟石英管,其特征在于,通过如权利要求1-9任一所述的制备大尺寸掺氟石英管的方法得到。
PCT/CN2021/113720 2021-04-13 2021-08-20 一种制备大尺寸掺氟石英管的方法及掺氟石英管 WO2022217800A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110393643.7 2021-04-13
CN202110393643.7A CN113264670A (zh) 2021-04-13 2021-04-13 一种制备大尺寸掺氟石英管的方法及掺氟石英管

Publications (1)

Publication Number Publication Date
WO2022217800A1 true WO2022217800A1 (zh) 2022-10-20

Family

ID=77228755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113720 WO2022217800A1 (zh) 2021-04-13 2021-08-20 一种制备大尺寸掺氟石英管的方法及掺氟石英管

Country Status (2)

Country Link
CN (1) CN113264670A (zh)
WO (1) WO2022217800A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113264670A (zh) * 2021-04-13 2021-08-17 江苏永鼎股份有限公司 一种制备大尺寸掺氟石英管的方法及掺氟石英管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100034998A1 (en) * 2007-01-19 2010-02-11 Gerhard Schoetz Quartz glass tube as a semifinished product for preform and fiber manufacture, and method for making the quartz glass tube
CN112266162A (zh) * 2020-11-03 2021-01-26 江苏亨通光导新材料有限公司 一种适用于大尺寸光纤预制棒的掺氟石英管及其制备方法
CN113264670A (zh) * 2021-04-13 2021-08-17 江苏永鼎股份有限公司 一种制备大尺寸掺氟石英管的方法及掺氟石英管

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232229A (ja) * 1985-04-08 1986-10-16 Sumitomo Electric Ind Ltd 弗素を添加した高純度石英ガラスパイプの製造方法
JPS61262708A (ja) * 1985-05-17 1986-11-20 Sumitomo Electric Ind Ltd 1.5ミクロン帯用シングルモ−ド光フアイバ
JPS6265945A (ja) * 1985-09-17 1987-03-25 Furukawa Electric Co Ltd:The 合成石英管の製造方法
JP5148367B2 (ja) * 2007-05-29 2013-02-20 信越化学工業株式会社 高周波誘導熱プラズマトーチを用いた光ファイバプリフォームの製造方法
CN101891380B (zh) * 2010-07-13 2012-07-04 长飞光纤光缆有限公司 一种大尺寸光纤预制棒及其光纤的制造方法
CN102249533B (zh) * 2011-04-28 2013-09-11 长飞光纤光缆有限公司 一种制造大型低水峰光纤预制棒的方法
CN103553320B (zh) * 2013-11-06 2017-02-08 长飞光纤光缆股份有限公司 一种用于大尺寸光纤预制棒的石英套管及其制造方法
CN106116135B (zh) * 2016-06-21 2019-01-18 浙江富通光纤技术有限公司 一种纯硅芯低损耗光纤的制造方法
CN109665713B (zh) * 2019-01-29 2021-09-03 江苏永鼎股份有限公司 一种低水峰大尺寸光纤预制棒及其制造方法
CN112573816B (zh) * 2019-09-29 2021-09-14 中天科技精密材料有限公司 掺氟石英套管及制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100034998A1 (en) * 2007-01-19 2010-02-11 Gerhard Schoetz Quartz glass tube as a semifinished product for preform and fiber manufacture, and method for making the quartz glass tube
CN112266162A (zh) * 2020-11-03 2021-01-26 江苏亨通光导新材料有限公司 一种适用于大尺寸光纤预制棒的掺氟石英管及其制备方法
CN113264670A (zh) * 2021-04-13 2021-08-17 江苏永鼎股份有限公司 一种制备大尺寸掺氟石英管的方法及掺氟石英管

Also Published As

Publication number Publication date
CN113264670A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
KR900003449B1 (ko) 분산 시프트싱글모우드 광파이버 및 그 제조방법
WO2015107931A1 (ja) 光ファイバ母材の製造方法および光ファイバの製造方法
JP2013035722A (ja) 光ファイバ母材および光ファイバの製造方法
CN102757179B (zh) 一种大规格光纤预制棒的制备方法
CN109650712B (zh) 一种大尺寸低损耗的光纤预制棒及其制备方法
EP3041801B1 (en) Method of making updoped cladding by using silicon tertrachloride as the dopant
CN109553295B (zh) 一种大尺寸低损耗的光纤预制棒及其制造方法
CN113213752B (zh) 一种外气相沉积法制备超低损耗光纤预制棒及光纤的方法
WO2022217800A1 (zh) 一种制备大尺寸掺氟石英管的方法及掺氟石英管
CN111646689A (zh) 一种纯二氧化硅芯光纤预制棒的制备方法
CN109942182B (zh) 一种基于套管法的光纤预制棒制造方法
CN109399910B (zh) 大芯径光纤预制棒和光纤的制备方法
CN112266162B (zh) 一种适用于大尺寸光纤预制棒的掺氟石英管及其制备方法
WO2020177352A1 (zh) 一种基于连熔石英套管的光纤预制棒及其制造方法
US20090260400A1 (en) Method for Producing a Tubular Semifinished Product From Fluorine-Doped Quartz Glass
CN113716861A (zh) 一种采用外气相沉积法制备弯曲不敏感光纤的方法
US6928841B2 (en) Optical fiber preform manufacture using improved VAD
CN110845133A (zh) 一种渐变隔离层来制备掺硼应力棒的方法
JP2021035891A (ja) 光ファイバ母材の製造方法及びこれを用いた光ファイバの製造方法
WO2002049977A9 (en) Method of doping an optical fiber preform with fluorine
CN114075036B (zh) 一种超低损耗光纤预制棒及其制造方法
KR100800813B1 (ko) 광섬유 모재의 제조 방법, 이 방법에 의해 제조된 광섬유모재 및 광섬유
CN116119919A (zh) 一种锥形光纤的制备方法与锥形光纤
CN116081939A (zh) 一种椭圆芯保偏光纤的制备方法
JP3407683B2 (ja) クラッドに屈折率不均一層を有する光ファイバプリフォームおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936672

Country of ref document: EP

Kind code of ref document: A1