WO2022209581A1 - 吸水性樹脂粒子の製造装置及び製造方法 - Google Patents

吸水性樹脂粒子の製造装置及び製造方法 Download PDF

Info

Publication number
WO2022209581A1
WO2022209581A1 PCT/JP2022/009365 JP2022009365W WO2022209581A1 WO 2022209581 A1 WO2022209581 A1 WO 2022209581A1 JP 2022009365 W JP2022009365 W JP 2022009365W WO 2022209581 A1 WO2022209581 A1 WO 2022209581A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent resin
water
water absorbent
resin precursor
resin particles
Prior art date
Application number
PCT/JP2022/009365
Other languages
English (en)
French (fr)
Inventor
良多 佐藤
博信 川津
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to KR1020237030876A priority Critical patent/KR20230164660A/ko
Priority to EP22779806.3A priority patent/EP4317262A1/en
Priority to US18/285,110 priority patent/US20240173697A1/en
Priority to JP2023510721A priority patent/JPWO2022209581A1/ja
Priority to CN202280023550.8A priority patent/CN117120519A/zh
Publication of WO2022209581A1 publication Critical patent/WO2022209581A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/04Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices according to size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/06Conditioning or physical treatment of the material to be shaped by drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B2220/00Type of materials being separated
    • B07B2220/02Plastics

Definitions

  • the present invention relates to a production apparatus and production method for water-absorbing resin particles.
  • the process of producing water-absorbing resin particles includes a process of polymerizing raw material monomers to obtain a water-absorbing resin composition, and then a process of drying the water-absorbing resin composition to obtain a water-absorbing resin precursor.
  • a classifier By classifying the water absorbent resin precursor that has undergone these steps with a classifier, water absorbent resin particles having a desired particle size distribution can be produced.
  • Patent Document 1 describes a dryer for obtaining powder by drying a water-absorbent resin composition, a powder flow path member for forming a powder flow path, and a powder flow rate adjustment for discharging powder at a predetermined flow rate.
  • an apparatus for manufacturing a water absorbent resin having a discharge member and a collector According to Patent Literature 1, among powders passing through a flow path, by collecting powder lumps larger than a predetermined size with a collector, the powder lumps drive a powder flow rate adjusting discharge member. It is possible to suppress an increase in the driving load of the part, and to manufacture the water absorbent resin with high production efficiency.
  • Patent Document 1 large powder lumps may have poor properties as a water absorbent resin. For this reason, by collecting and removing large powder lumps by the collecting body, it is possible to improve the production efficiency and manufacture a water absorbent resin having excellent quality. However, even with the manufacturing apparatus disclosed in Patent Document 1, the quality of the water absorbent resin particles still varies.
  • Indicators of the quality of water-absorbing resin particles generally include various performances such as water absorption performance (water absorption speed, water absorption performance under pressure (pressure water absorption performance), etc.), impact resistance, and fluidity.
  • water absorption performance water absorption speed, water absorption performance under pressure (pressure water absorption performance), etc.
  • impact resistance impact resistance
  • fluidity fluidity
  • An object of the present invention is to provide an apparatus and method for producing water-absorbing resin particles that can produce water-absorbing resin particles in which variations in water absorption capacity under pressure and water absorption speed are suppressed.
  • the apparatus for manufacturing water-absorbent resin particles according to the first aspect includes a dryer, a classifier, and a sorter.
  • the dryer dries the water absorbent resin composition to obtain a water absorbent resin precursor.
  • the classifier classifies the water absorbent resin precursor to obtain water absorbent resin particles.
  • a sorter is arranged on a path connecting the dryer and the classifier. The sorter is configured to sort out the water absorbent resin precursor having a moisture content of 20% or more.
  • the water absorbent resin precursor after being dried by the dryer still contains a relatively large amount of water, and such a water absorbent resin precursor is fed into the classifier. If this occurs, the quality of the resulting water-absorbent resin particles, particularly the pressurized water-absorbing capacity and water-absorbing rate, tends to vary.
  • the water-absorbent resin precursor having a water content of 20% or more is sorted in the route connecting the dryer and the classifier. As a result, the selected water absorbent resin precursor having a water content of 20% or more can be removed from the route leading to the classifier, and variations in the pressurized water absorption capacity and water absorption rate of the water absorbent resin particles can be reduced. .
  • the apparatus for producing water absorbent resin particles according to the second aspect is the apparatus for producing water absorbent resin particles according to the first aspect, wherein the sorter has a surface temperature of 50 ° C. to 100 ° C. and a predetermined size. is selected as a water absorbent resin precursor having a water content of 20% or more.
  • the apparatus for producing water absorbent resin particles according to the third aspect is the apparatus for producing water absorbent resin particles according to the second aspect, wherein the sorter is loaded with the water absorbent resin precursor discharged from the dryer. and a sorting member connected to the input port and having the opening of the predetermined size.
  • the sorter is configured to send the water absorbent resin precursor that has passed through the opening among the water absorbent resin precursors introduced into the inlet to a route leading to the classifier.
  • the apparatus for producing water-absorbing resin particles according to a fourth aspect is the apparatus for producing water-absorbing resin particles according to the third aspect, wherein the sorting member comprises a net-like member in which a plurality of openings of the predetermined size are formed. be done.
  • An apparatus for producing water-absorbing resin particles according to a fifth aspect is the apparatus for producing water-absorbing resin particles according to the third aspect or the fourth aspect, wherein the sorting member includes the water-absorbent resin introduced into the inlet. configured to impart motion to the precursor;
  • the apparatus for producing water absorbent resin particles according to the sixth aspect is the apparatus for producing water absorbent resin particles according to any one of the second to fifth aspects, wherein the predetermined size is 7 mm to 15 mm.
  • An apparatus for producing water absorbent resin particles according to a seventh aspect is an apparatus for producing water absorbent resin particles according to any one of the first aspect to the sixth aspect, wherein It further comprises a cooling machine arranged thereon.
  • a cooler is configured to cool the water absorbent resin precursor that is sent from the sorter to the classifier.
  • a method for producing water absorbent resin particles according to an eighth aspect includes the following steps. - A step of drying the water absorbent resin composition to obtain a water absorbent resin precursor. - A step of selecting and removing the water absorbent resin precursor having a water content of 20% or more from the water absorbent resin precursor. - A step of classifying the remaining water absorbent resin precursor to obtain classified water absorbent resin particles.
  • the water-absorbent resin precursor after being dried by the dryer still contains a relatively large amount of water, and such a water-absorbent resin precursor is classified into water-absorbent resin particles by a classifier. It contributes to variations in the pressurized water absorption capacity and the water absorption rate of.
  • the water absorbent resin precursor having a water content of 20% or more is selected from the water absorbent resin precursors on the route connecting the dryer and the classifier. This makes it possible to remove the selected water absorbent resin precursor from the path leading to the classifier, and suppress variations in the pressurized water absorption capacity and water absorption rate of the water absorbent resin particles obtained by the classifier. can.
  • FIG. 1 is an overall configuration diagram of an apparatus for producing water-absorbent resin particles according to one embodiment;
  • An example of a mesh member An example of a mesh member.
  • An example of a mesh member An example of a mesh member.
  • An example of a plate-like member An example of a plate-like member.
  • 4A and 4B are diagrams for explaining a method of calculating an aperture ratio;
  • FIG. A configuration example of a sorting machine.
  • a configuration example of a sorting machine. A configuration example of a sorting machine.
  • a configuration example of a sorting machine A configuration example of a sorting machine.
  • 1 is a flow chart showing the flow of a method for producing water absorbent resin particles according to an embodiment. The figure which shows the structure of an experimental apparatus. Graph of pressurized water absorption obtained by experiment. Graph of evaluation index of water absorption rate obtained by experiment.
  • selecting means not only “extracting only a specific small group a from a large group X”, but also “extracting a specific small group a from a large group X Extracting while including the population b (however, the ratio (mass basis) of the small population a contained in the large population X is higher than that of the small population a).
  • FIG. 1 shows an overall configuration diagram of a production apparatus 100 for water-absorbent resin particles used for carrying out the method for producing water-absorbent resin particles according to the present embodiment.
  • Water-absorbing resin particles are used in sanitary materials such as paper diapers and sanitary products, daily necessities such as pet sheets, water-absorbing sheets for food, water stop materials for cables, industrial materials such as dew condensation prevention materials, water retention agents for greening, agriculture, and gardening. It is widely used for various purposes such as soil conditioner.
  • the water absorbent resin particles are produced by polymerizing raw material monomers to produce a polymer.
  • a water-absorbent resin particle manufacturing apparatus 100 includes a polymerization vessel 1 and a concentrator 2 .
  • the polymerization vessel 1 prepares a slurry containing a hydrogel polymer (liquid containing a hydrogel polymer) by polymerizing a monomer that is a raw material of the water absorbent resin particles.
  • the concentrator 2 distills off liquid components from the slurry sent from the polymerization vessel 1 to concentrate the slurry and prepare a water absorbent resin composition A1, which is a polymer concentrate.
  • the manufacturing apparatus 100 further includes a dryer 3, and the dryer 3 dries the water absorbent resin composition A1 sent from the concentrator 2 (that is, volatilizes the liquid component).
  • the liquid component mainly contains a hydrocarbon dispersion medium and water when a hydrogel polymer is produced by a reversed-phase suspension polymerization method, and mainly contains water when a hydrogel polymer is produced by an aqueous solution polymerization method.
  • the manufacturing apparatus 100 further includes a sorter 4, a cooler 5, and a classifier 6.
  • the sorter 4 sorts the water absorbent resin precursor A2 having a water content of 20% or more from the water absorbent resin precursor A2 sent from the dryer 3 and discharges it from the first outlet 43 . Further, the sorter 4 discharges the remaining water absorbent resin precursor A3 from another second discharge port 44 so as to send the remaining water absorbent resin precursor A3 to the cooler 5 .
  • the cooler 5 cools the water absorbent resin precursor A3 discharged from the second outlet 44 to remove the heat given by the dryer 3, and then sends the water absorbent resin precursor A3 to the classifier 6.
  • the classifier 6 classifies the water absorbent resin precursor A3 into several classes. Among the water absorbent resin precursors A3, those classified into a class that satisfies product specifications are referred to as water absorbent resin particles P1.
  • the manufacturing apparatus 100 further includes a control device 7 that controls the manufacturing process of the water absorbent resin by controlling the operations of the devices 1-6.
  • the controller 7 is typically implemented as a computer controlled by a program.
  • the control device 7 also controls the operation of the pipes and first to fourth passage members L1 to L4 that constitute the paths connecting the devices 1 to 6, and the valves that can be installed in these. may be configured to
  • the polymerization vessel 1 has a polymerization tank (not shown).
  • the polymerization tank is a container in which a monomer, which is a raw material for the water-absorbing resin particles, such as a water-soluble ethylenically unsaturated monomer, and a liquid component are accommodated so that a gas phase component is formed at the top. .
  • the monomers and the liquid component are appropriately stirred by a stirrer (not shown) and heated by a heating device (not shown), so that the polymerization reaction of the monomers proceeds and a water-containing gel-like polymer is produced.
  • stirrers and heating devices are connected to a control device 7 to control their operation.
  • the slurry containing the water-containing gel-like polymer is accommodated in the polymerization tank.
  • the slurry is discharged from the polymerization vessel 1 through a bottom opening formed in the bottom of the polymerization vessel to be sent to the concentrator 2 .
  • One end of a pipe is connected to the lower opening of the polymerization tank.
  • the other end of this pipe is connected to an opening formed in the upper portion of the concentrator 2 .
  • the slurry discharged from the polymerization vessel 1 passes through the piping and is introduced into the concentrator 2 through the opening at the top of the concentrator 2 .
  • a valve is attached to the pipe, and the opening and closing of the valve is controlled by the controller 7 to control communication of the slurry through the pipe.
  • Concentrator 2 has a thickening tank (not shown).
  • the slurry discharged from the polymerization vessel 1 flows into the thickening tank through an upper opening formed at the top of the thickening tank 2, and is stored in the thickening tank so that a gas phase component is formed in the upper part of the thickening tank.
  • the slurry is appropriately stirred by a stirrer (not shown) and heated by a heating device (not shown), thereby distilling off the liquid component contained therein and concentrating the slurry.
  • These stirrers and heating devices are connected to a control device 7 to control their operation.
  • the concentrated liquid containing the water-containing gel-like polymer is accommodated in the concentration tank.
  • the concentrated liquid containing the water-containing gel-like polymer is discharged from the concentrator 2 through a lower opening formed in the lower part of the concentrating tank so as to be sent to the dryer 3 as the water absorbent resin composition A1.
  • One end of a pipe is connected to the bottom opening of the concentration tank.
  • the other end of this pipe is connected to an upper opening formed in the upper part of the dryer 3 .
  • the water absorbent resin composition A1 discharged from the concentrator 2 passes through the pipe and is introduced into the dryer 3 through the upper opening of the dryer 3 .
  • a valve is attached to the pipe, and the opening and closing of the valve is controlled by the controller 7 so as to control communication of the water absorbent resin composition A1 through the pipe.
  • the dryer 3 has a drying chamber (not shown).
  • the water absorbent resin composition A1 discharged from the concentrator 2 flows through the upper opening of the dryer 3 into the drying chamber.
  • the dryer 3 heats the water absorbent resin composition A1 in the drying chamber with a heating device (not shown) to remove the water contained therein from the water absorbent resin composition A1.
  • a water absorbent resin precursor A2 is produced by drying the water absorbent resin composition A1.
  • the heating device is connected to a control device 7 to control its operation.
  • the heating device heats the water absorbent resin composition A1 so that the total water content (% by mass) of the water absorbent resin composition A1 accommodated in the drying chamber is preferably 20% or less, more preferably 10% or less. dry.
  • the water absorbent resin precursor A2 obtained after drying is discharged from the dryer 3 through a lower opening formed in the lower part of the drying chamber so as to be sent into a first passage member L1, which will be described later.
  • the dryer 3 may be configured to dry the slurry discharged from the polymerization vessel 1 as the water absorbent resin composition A1. That is, the production apparatus 100 may omit the concentrator 2 and the polymerization vessel 1 may be directly connected to the dryer 3 . In this case, the slurry discharged from the polymerization vessel 1 corresponds to the water absorbent resin composition A1. The dryer 3 simultaneously performs concentration and drying of the water absorbent resin composition A1.
  • the first passage member L1 is a member that defines a passage for the water absorbent resin precursor A2 to move in a predetermined direction, and together with a second passage member L2, a third passage member L3, and a fourth passage member L4, which will be described later. , constitute a route connecting the dryer 3 and the classifier 6 .
  • One end of the first passage member L1 is connected to the lower opening of the drying chamber.
  • the first passage member L1 is, but not limited to, a pipe, and the water absorbent resin precursor A2 can move in the first passage member L1 by gravity, for example.
  • a collector 30 is arranged inside the first passage member L1 so as to intersect with the moving direction of the water absorbent resin precursor A2.
  • collector 30 is installed in first passage member L1 so that its outer peripheral edge contacts the inner surface of first passage member L1.
  • the internal space of the first passage member L1 is divided into an upstream passage located on the dryer 3 side with the collector 30 interposed therebetween and a downstream passage located on the sorter 4 side with the collector 30 interposed therebetween. be done.
  • the collecting body 30 is a member for collecting powder masses B1 larger than a predetermined size from the water absorbent resin precursor A2 that has flowed into the first passage member L1 and removing them from the manufacturing apparatus 100 .
  • the powder mass B1 is, for example, a water-containing gel-like polymer adhering to the inner wall surface of the polymerization tank, the concentration tank, and the drying chamber, or the water-absorbent resin composition A1, which has grown into a mass as a core, a water-absorbent resin It is a mass or the like in which the composition A1 aggregates to form a mass.
  • the powder mass B1 cannot pass through the gap defined by the collector 30 due to its size, and does not reach the downstream passage.
  • the remaining water absorbent resin precursor A2 passes through the gap defined by the collector 30, reaches the downstream passage, and moves further in the downstream passage. Since the specific configuration of the collector 30 is disclosed in Patent Document 1, it is assumed to be described in this specification, and detailed description thereof is omitted here.
  • the powder mass B1 removed by the collector 30 is a water absorbent resin precursor larger than the water absorbent resin precursor B2 sorted by the sorting member 42 of the sorter 4, which will be described later.
  • the particle diameter of the powder mass B1 is, for example, 30 mm or more, preferably 50 mm or more.
  • a take-out opening 31 communicating with the upstream passage is formed in the first passage member L1.
  • the extraction opening 31 defines an opening for extracting the powder mass B1 collected by the collector 30 to the outside of the first passage member L1.
  • the collector 30 is arranged inside the first passage member L1 so that the collected powder mass B1 moves to the take-out opening 31 by gravity, for example. As a result, the powder mass B1 is taken out of the first passage member L1 through the take-out opening 31 so as not to block the gap of the collector 30 and the upstream passage.
  • the water absorbent resin precursor A2 that has flowed into the downstream passage of the first passage member L1 is sent to the sorter 4 via the second passage member L2 connected to the first passage member L1.
  • the first passage member L1 and the second passage member L2 are connected via a relay member 32 that relays the path of the water absorbent resin precursor A2, such as a hopper for temporarily storing the water absorbent resin precursor A2.
  • the second passage member L2 is a member that defines a passage for sending the water absorbent resin precursor A2 from the first passage member L1 to the sorter 4, and constitutes a passage that connects the dryer 3 and the classifier 6.
  • the transfer method for sending the water absorbent resin precursor A2 from the first passage member L1 to the sorter 4 is not particularly limited, and a transfer method by gravity, a transfer method by inert gas airflow, a transfer method by a transfer mechanism such as a conveyor, and the like are available. It can be selected as appropriate.
  • the mode of the second passage member L2 is not particularly limited, as long as it is configured to put the water absorbent resin precursor A2 into the inlet 40 of the sorter 4 according to the transfer method of the water absorbent resin precursor A2.
  • the second passage member L2 can be constructed using piping, transportation piping in which an air flow occurs, conveyors, feeders, and the like.
  • a valve whose operation is controlled by the control device 7 may be attached to the second passage member L2 to adjust the flow rate of the water absorbent resin precursor A2.
  • a surface temperature adjusting device may be arranged in the second passage member L2 so as to adjust the surface temperature of the water absorbent resin precursor A2 introduced into the sorter 4 .
  • the surface temperature adjusting device is a device (heater) that heats and/or cools the second passage member L2 from the outside and/or the inside (cooler).
  • the surface temperature adjustment device has a tubular member wrapped around the outside of the second passage member L2, and heats the second passage member L2 by passing a heat medium such as steam through the tubular member. and/or cooled.
  • the lower limit of the surface temperature of the water-absorbing resin precursor A2 introduced into the sorter may be 50°C or higher, preferably 55°C or higher, and more preferably 60°C or higher.
  • the upper limit value is 100° C. or lower, preferably 95° C. or lower, more preferably 90° C. or lower, still more preferably 85° C.
  • the surface temperature of the water absorbent resin precursor A2 introduced into the sorter may be 50°C to 100°C, and more preferably 60°C to 80°C. According to the findings of the present inventors, if the surface temperature of the water absorbent resin precursor A2 is within the above range, the water absorbent resin precursor A2 having a water content of 20% or more is efficiently sorted by the sorter (sorted It is possible to suppress the mixing rate of the water absorbent resin precursor A2 having a water content of less than 20% in the water absorbent resin precursor B2.
  • the sorter 4 can comprise, for example, a vibratory sorter, a trommel (rotary sorter), or other sieving device.
  • the sorter 4 is arranged on a route connecting the dryer 3 and the classifier 6 to sort out those having a moisture content of 20% or more from the water absorbent resin precursor A2 discharged from the dryer 3. .
  • the sorting machine 4 includes an inlet portion 41 in which an inlet 40 is formed, and a sorting member 42 .
  • the input port 40 is an opening for inputting the water absorbent resin precursor A2 discharged from the dryer 3 and sent via the second passage member L2.
  • the inlet part 41 is a casing that accommodates the sorting member 42 in this embodiment.
  • a sorting member 42 is connected to the inside of the inlet portion 41 so as to define a sorting region 45 (see FIGS. 5A to 5D) for sorting the water absorbent resin precursor A2.
  • the sorting member 42 may be connected to the inlet portion 41 via another member connected to the inlet portion 41, and the sorting region 45 includes the sorting member 42, the inlet portion 41, and other members. and at least one of the members of As will be described later, the sorting member 42 may be configured to be movable so as to impart movement to the water absorbent resin precursor A2 within the sorting region 45, and the operation thereof may be controlled by the control device 7.
  • the water-absorbent resin precursor A2 discharged from the dryer 3 is put into the sorter 4 while the surface temperature is 50°C to 100°C.
  • the water absorbent resin precursor A2 introduced into the sorting machine 4 first enters the sorting area 45 .
  • the casing is formed with a first discharge port 43 and a second discharge port 44 that allow communication between the inside and the outside.
  • the water absorbent resin precursor A2 that has entered the sorting area 45 is divided into two by the sorting member 42 and discharged out of the sorting machine 4 from one of the outlets 43 and 44 .
  • the overall shape of the sorting member 42 can be appropriately selected from planar, cylindrical, truncated conical, prismatic, and the like.
  • the sorting member 42 is formed with a plurality of openings of a predetermined size that allow communication between the inside and outside of the sorting region 45 .
  • those having a size exceeding the size of the opening of the sorting member 42 cannot pass through the opening of the sorting member 42.
  • Those of a size that pass through the opening are sorted out.
  • the sorted water absorbent resin precursor A2 is removed from the route connecting the sorter 4 and the classifier 6 for the reason described later.
  • water absorbent resin precursors A2 those that cannot pass through the openings of the screening member 42 will be referred to as water absorbent resin precursors B2, and those that can pass through the openings of the screening member 42 will be referred to as water absorbent resin precursors. It is called body A3 to be distinguished.
  • the sorting member 42 of this embodiment is composed of a mesh member 42a formed with a large number of openings (generally also referred to as "eyes").
  • the mesh member 42a is formed by weaving linear members made of metal or the like in a square grid pattern, as shown in FIG. 2A, for example.
  • the weaving method of the linear member is not particularly limited, and may be plain weave including flat top weave, or twill weave.
  • the member constituting the sorting member 42 is not limited to the square grid-like mesh member 42a as shown in FIG. 2A, and can be changed as appropriate.
  • the shape of the sorting member 42 will be described in detail below.
  • the lower limit of the wire diameter d may be 0.8 mm or more, preferably 1.0 mm or more, more preferably 1.3 mm or more, and particularly preferably 1.5 mm or more.
  • the upper limit may be 2.2 mm or less, preferably 2.0 mm or less, more preferably 1.8 mm or less, and particularly preferably 1.7 mm or less.
  • the wire diameter d may be 0.8 mm to 2.2 mm, preferably 1.0 mm to 2.0 mm, more preferably 1.3 mm to 1.8 mm, particularly preferably 1 0.5 mm to 1.7 mm.
  • the wire diameter d is within this range, the adhesion of the water absorbent resin precursor A2 to the screening member 42 can be suppressed, and the water absorbent resin particles can be produced with a high yield.
  • the lower limit of the opening E may be 7 mm or more and 8 mm or more, preferably 9 mm or more and 9.5 mm or more, and more preferably 9.8 mm or more.
  • the upper limit may be 15 mm or less, 14 mm or less, 13 mm or less, 12 mm or less, or 11 mm or less, preferably 10.5 mm or less, and more preferably 10.2 mm or less.
  • the opening E may be 7 mm to 15 mm or less, preferably 9 mm to 11 mm, more preferably 9.5 mm to 10.5 mm, and even more preferably 9.8 mm to 10.2 mm. If the opening E is within the above range, the water absorbent resin precursor A2 having a water content of 20% or more can be efficiently selected.
  • the sorting member 42 has a square lattice shape as shown in FIG. % or more, particularly preferably 70% or more.
  • the upper limit may be 90% or less, preferably 85% or less, more preferably 80% or less, and particularly preferably 77% or less.
  • Formula (2): Aperture ratio (%) (E/E+d) 2 ⁇ 100 If the open area ratio is within the above range, the water absorbent resin precursor A2 having a water content of 20% or more can be efficiently selected.
  • the member constituting the sorting member is the net-like member 42a other than the square lattice shape.
  • the distance between parallel linear members defining one opening is Among them, the minimum interval E is taken as the size of the opening.
  • the average value Em of E measured for ten different randomly selected openings in the mesh member 42a is taken as the size of the openings in the mesh member 42a.
  • a plate member 42b having a plurality of openings is formed as shown in FIGS. 3A and 3B.
  • the plate member 42b is a metal plate in which a plurality of through holes are formed by punching, for example.
  • the diameter E of the circle is the size of one opening.
  • the interval E between the parallel peripheral edges defining the opening is the size of one opening.
  • the shape of the opening of the plate-like member 42b is, for example, a rectangle, a parallelogram, a hexagon, or the like, in the same manner as for the net-like member 42a, among the intervals of the mutually parallel peripheral edges defining the opening, Let the minimum spacing E be the size of one aperture.
  • the average value Em of E measured for ten different randomly selected openings is used as the opening size of the plate-like member 42b.
  • the opening size (opening) of the sorting member 42 is preferably within the range described above.
  • FIG. 4 is a diagram for explaining a method of calculating the aperture ratio of the sorting member 42.
  • the aperture ratio is defined as the minimum rectangle R among the rectangles formed by connecting the centers of the aperture shapes in the sorting member 42 in the state of being laid out on a plane, and the total area occupied by the apertures within the area surrounded by the rectangle R. It can be the ratio of SA and the area SR of the rectangle R.
  • the aperture ratio is preferably within the range described above.
  • FIGS. 5A to 5D show configuration examples of the sorting machine 4.
  • FIGS. 5A to 5D show configuration examples of the sorting machine 4.
  • FIGS. 5A to 5D the orientation of the inlet 40 and the positional relationship between the inlet 41 and the sorting member 42 are not particularly limited and can be selected as appropriate. Further, the shape of the inlet portion 41 and the direction of the inlet 40 can be appropriately selected according to the overall shape of the sorting member 42 .
  • a first discharge port 43 formed in the sorter 4 is an opening for taking out the water absorbent resin precursor B2 from within the sorting area 45 in order to prevent clogging of the sorting member 42 .
  • the second outlet 44 formed in the sorter 4 discharges the water absorbent resin precursor A3 from the sorter 4, the third passage member L3 defining the route leading to the classifier 6, the cooler 5 and It is an opening for feeding to the fourth passage member L4.
  • FIG. 5A is an example in which the sorting member 42 is flat.
  • the sorting member 42 is connected to the inlet portion 41 via a passage member 46 defining a passageway connected to the inlet 40 .
  • the passage member 46 is connected to the inlet portion 41 and defines a sorting area 45 together with the sorting member 42 .
  • the water absorbent resin precursor A2 introduced from the inlet 40 the water absorbent resin precursor A3 passes through the plurality of openings of the sorting member 42, exits the sorting region 45, and is discharged from the second outlet 44. be.
  • the water absorbent resin precursor B2 is discharged from the first discharge port 43 .
  • the sorting member 42 may be inclined with respect to the horizontal direction so as to move the water absorbent resin precursor B2 to the first discharge port 43 more quickly. Further, the sorting member 42 may be configured to vibrate with a vibration mechanism (not shown) to impart movement to the water absorbent resin precursor A2 in order to prevent clogging due to clogging of the opening.
  • FIG. 5B is an example in which the sorting member 42 is cylindrical or rectangular.
  • both ends of the sorting member 42 in the cylinder axis direction are open. Both ends of the sorting member 42 are oriented in the horizontal direction, and are connected to the input port portion 41 so as to be connected to the input port 40 and the first discharge port 43, respectively.
  • the water absorbent resin precursor A2 introduced from the inlet 40 the water absorbent resin precursor A3 passes through the plurality of openings of the sorting member 42, exits the sorting region 45, and is discharged from the second outlet 44. be.
  • the water absorbent resin precursor B2 is discharged from the first discharge port 43 via one end of the screening member 42 .
  • the sorting member 42 may be configured to rotate about the cylinder shaft by a rotating mechanism (not shown) to impart movement to the water absorbent resin precursor A2. good.
  • the selector 4 moves the water absorbent resin precursor B2 from the end on the input port 40 side to the end of the first discharge port 43 inside the screening member 42 . It may be provided with a blade member that can move up to.
  • the sorting member 42 may be frusto-conical.
  • FIG. 5C is another example in which the sorting member 42 is cylindrical or rectangular.
  • the sorting member 42 is connected to the inlet portion 41 so that one end of the sorting member 42 in the cylinder axis direction faces vertically upward and the other end faces vertically downward.
  • the downward end (lower end) of the sorting member 42 is not open and is formed continuously with the side peripheral portion of the sorting member 42 . That is, a plurality of openings of a predetermined size are also formed at the lower end of the sorting member 42 .
  • the water absorbent resin precursor A3 passes through the plurality of openings of the sorting member 42, exits the sorting region 45, and is discharged from the second outlet 44. be.
  • the sorting member 42 is connected to a passage member 47 defining a passage connecting the sorting area 45 and the first discharge port 43 near the lower end.
  • the inner diameter of the passage of the passage member 47 is larger than the size of the water absorbent resin precursor B2.
  • the sorting member 42 may be configured to vibrate with a vibration mechanism (not shown) to impart movement to the water absorbent resin precursor A2 in order to prevent clogging due to clogging of the opening.
  • the lower end of the sorting member 42 may be inclined with respect to the horizontal direction in order to move the water absorbent resin precursor B2 to the passage member 47 more quickly.
  • the sorting member 42 may be frusto-conical.
  • FIG. 5D is yet another example of the sorting machine 4 in which the sorting member 42 is cylindrical or rectangular.
  • This example differs from the example of FIG. 5B in that the sorting member 42 is arranged so that the cylindrical axis of the sorting member 42 is inclined with respect to the horizontal direction.
  • the sorter 4 may be configured such that the tilt angle of the sorting member 42 can be varied within a certain range. Since the description of the example of FIG. 5B applies to other points, the description is omitted.
  • the sorter 4 is configured to sort the water absorbent resin precursor A2 based on the size (particle diameter) of the water absorbent resin precursor A2 having a surface temperature of 50°C to 100°C.
  • the size of the water-absorbent resin precursor A2 which serves as a criterion for sorting is the value specified as shown in FIG. Specifically, circumscribing rectangles Rx, Ry, and Rz of the projection shape of the water-absorbent resin precursor A2 onto three mutually orthogonal planes are defined, respectively, and the average value of the long sides of these circumscribing rectangles Rx, Ry, and Rz is , the size (particle diameter) of the water absorbent resin precursor A2.
  • the water absorbent resin precursor A2 has a surface temperature of 50° C. to 100° C. and the size specified in this way exceeds the size of the opening of the sorting member 42 (predetermined size). It is intended to be sorted out as precursor B2. Further, in the present embodiment, the water absorbent resin precursor A2 having a surface temperature of 50° C. to 100° C. and having the size specified in this manner equal to or smaller than the size of the opening of the sorting member 42 is the water absorbent resin precursor A3. It is intended to be sent to the classifier 6 as a.
  • the water absorbent resin precursor A2 is dried by the dryer 3 so that the overall water content is at least 20% or less.
  • the degree of drying of each water absorbent resin precursor A2 varies depending on the temperature distribution in the drying chamber.
  • the water absorbent resin precursor A2 as a solid includes those that are not sufficiently dried. According to the studies of the inventors, such a water absorbent resin precursor A2 contains a relatively large amount of water even when the temperature is relatively high after drying. It affects the quality of the water absorbent resin particles P1.
  • the presence of the water absorbent resin precursor A2 having a water content of 20% or more increases the variation in the pressurized water absorption capacity and the water absorption speed of the water absorbent resin particles P1 after classification, and increases the pressure of the water absorbent resin particles P1. It becomes more difficult to control the water absorption capacity and water absorption rate.
  • the predetermined size is determined by the size of the opening of the sorting member 42 provided in the sorter 4 . Therefore, the predetermined size of the water-absorbent resin precursor A2, which serves as a criterion for sorting, may be 7 mm to 15 mm or less, preferably 9 mm to 11 mm, as described above for the size of the opening of the sorting member 42, and 9.5 mm.
  • the water content of the water-absorbent resin precursor B2 to be screened may be 20% or more, may be 30% or more, or may be 40% or more, preferably 50% or more, and more preferably 60% or more. Moreover, the upper limit may be 85% or less, preferably 75% or less or 70% or less, and more preferably 65% or less.
  • the inventors sorted the water absorbent resin precursor A2 in a state where the surface temperature after drying is relatively high, and classified the remaining water absorbent resin precursor A3 with the classifier 6, the classified water absorbent resin
  • the variation in the pressurized water absorption capacity and the water absorption rate of the particles P1 is reduced.
  • the water absorbent resin precursor B2 from the path connecting the dryer 3 and the classifier 6, it is possible to obtain the water absorbent resin particles P1 in which variations in the pressurized water absorption capacity and the water absorption rate are further suppressed. I can say.
  • the third passage member L3 is a member connected to the second discharge port 44 and the upper opening formed in the upper portion of the cooler 5 .
  • the third passage member L3 defines a passage for sending the water absorbent resin precursor A3 discharged from the second outlet 44 to the cooler 5, and constitutes a route connecting the dryer 3 and the classifier 6.
  • the transfer method for sending the water absorbent resin precursor A3 to the cooler 5 is not particularly limited, and a transfer method using gravity, a transfer method using an inert gas stream, a transfer method using a transfer mechanism such as a conveyor, etc., can be selected as appropriate. .
  • the third passage member L3 is configured so that the water absorbent resin precursor A3 is put into an upper opening formed in the upper part of the cooler 5 according to the transfer method of the water absorbent resin precursor A3, that aspect is not particularly limited.
  • the third passage member L3 can be configured using a pipe, a transport pipe in which an inert gas stream is generated, a conveyor, a feeder, or the like.
  • a valve whose operation is controlled by the control device 7 may be attached to the third passage member L3 to adjust the flow rate of the water absorbent resin precursor A2.
  • the cooler 5 is arranged on a path connecting the dryer 3 and the classifier 6, and has a cooling chamber (not shown).
  • the water absorbent resin precursor A3 discharged from the second discharge port 44 of the sorter 4 flows into the cooling chamber through the upper opening of the cooler 5 .
  • the cooler 5 cools the water absorbent resin precursor A3 in the cooling chamber with a cooling device (not shown) to remove the heat given to the water absorbent resin precursor A3 by the dryer 3 .
  • the cooling device is connected to a control device 7 to control its operation.
  • the water-absorbing resin precursor A3 after cooling is discharged from the cooler 5 through a lower opening formed in the lower part of the cooler 5 and capable of communicating with the cooling chamber so as to be sent to the classifier 6. be done.
  • the fourth passage member L4 is a member connected to the lower opening of the cooler 5 and the upper opening formed in the upper part of the classifier 6 .
  • the fourth passage member L4 defines a passage for sending the water absorbent resin precursor A3 discharged from the lower opening of the cooler 5 to the classifier 6, and constitutes a route connecting the dryer 3 and the classifier 6. do.
  • the transfer method for sending the water absorbent resin precursor A2 after cooling to the classifier 6 is not particularly limited, and a transfer method by gravity, a transfer method by inert gas airflow, a transfer method by a transfer mechanism such as a conveyor, etc., can be selected as appropriate. be able to.
  • the mode of the fourth passage member L4 is not particularly limited as long as it is configured to introduce the water absorbent resin precursor A3 into the classifier 6 from the upper opening according to the transfer method of the water absorbent resin precursor A3. .
  • a transportation pipe in which an inert gas stream is generated, a conveyor, a feeder, etc. A fourth passage member L4 can be configured.
  • a valve whose operation is controlled by the control device 7 may be attached to the fourth passage member L4 to adjust the flow rate of the water absorbent resin precursor A3.
  • the classifier 6 is a device that divides the water absorbent resin precursor A3 into groups of water absorbent resin particles having a desired particle size distribution.
  • Examples of the classifier 6 include a vibrating sieve (unbalanced weight drive type, resonance type, vibration motor type, electromagnetic type, circular vibrating type, etc.), in-plane motion sieve (horizontal motion type, horizontal circular-linear motion type, 3 dimensional circular motion type, etc.), movable mesh type sieves, forced agitation type sieves, screen vibrating sieves, wind sieves, sonic sieves, and the like.
  • the classifier 6 of this embodiment has a plurality of in-plane motion sieves.
  • a plurality of in-plane motion sieves are combined in order such that the larger mesh size is on top and the smaller mesh size is on the bottom.
  • the water absorbent resin precursor A3 sent to the classifier 6 and put into the in-plane motion sieve is classified into classes defined by the in-plane motion sieve.
  • those classified into classes conforming to product standards are obtained as water absorbent resin particles P1.
  • FIG. 7 is a flow chart showing the flow of each step performed when manufacturing water-absorbing resin particles using the manufacturing apparatus 100 .
  • Each process (step) S1 to S7 is mainly controlled by the control device .
  • step S1 the polymerization vessel 1 performs polymerization.
  • a polymerization vessel of the polymerization vessel 1 contains a monomer as a raw material of the water-absorbent resin particles and a liquid component (hydrocarbon dispersion medium).
  • a slurry containing a water-containing gel-like polymer is produced.
  • the produced slurry is sent to the concentrator 2 .
  • step S2 the concentrator 2 performs concentration.
  • the slurry sent from the polymerization vessel 1 is accommodated in the thickening tank of the thickener 2 .
  • the slurry is concentrated by being stirred and heated in the thickening tank.
  • a concentrate containing a polymer in the form of a hydrous gel, that is, a water absorbent resin composition A1 is obtained.
  • the water absorbent resin composition A1 is sent to the dryer 3.
  • step S3 the dryer 3 performs drying.
  • the water absorbent resin composition A1 sent from the concentrator 2 is accommodated in the drying chamber of the dryer 3 .
  • Water is removed from the water absorbent resin composition A1 by drying in a drying chamber to form a water absorbent resin precursor A2.
  • Step S3 is an example of "the step of drying the water absorbent resin composition to obtain a water absorbent resin precursor" of the present invention.
  • the obtained water absorbent resin precursor A2 is sent to the first passage member L1 connected to the sorter 4 .
  • step S4 the collector 30 installed in the first passage member L1 collects the aggregated powder B1 and removes it from the first passage member L1.
  • the rest of the water absorbent resin precursor A2 is sent to the sorting machine 4 with a surface temperature of 50°C to 100°C.
  • step S5 the sorter 4 sorts the water absorbent resin precursor A2 into water absorbent resin precursor B2 and water absorbent resin precursor A3.
  • the water absorbent resin precursor B2 is removed as a water absorbent resin precursor A2 having a water content of 20% or more.
  • the remaining water absorbent resin precursor A3 is sent to the cooler 5 .
  • Step S5 is an example of "the step of selecting and removing the water absorbent resin precursor having a water content of 20% or more from the water absorbent resin precursor" of the present invention.
  • step S6 the cooler 5 performs cooling.
  • the water absorbent resin precursor A3 sent from the sorter 4 is accommodated in the cooling chamber of the cooler 5 and cooled to remove the heat given to the dryer 3 .
  • the cooled water absorbent resin precursor A3 is sent to the classifier 6 .
  • step S7 the classifier 6 classifies the water absorbent resin precursor A3.
  • the water-absorbing resin particles P1 which have been classified and conform to product specifications, are obtained.
  • Step S7 is an example of "the step of classifying the remaining water absorbent resin precursor to obtain classified water absorbent resin particles" of the present invention.
  • the water absorbent resin particles P1 also include water absorbent resin particles to which additives have been added as necessary after being classified by the classifier 6 .
  • the sorting machine 4 arranged in the middle of the path connecting the dryer 3 and the classifier 6 allows the water-absorbing Selection of the resin precursor A2 is performed.
  • the water absorbent resin precursor A2 which has a relatively high water content of 20% or more even after drying, can be selected as the water absorbent resin precursor B2 and removed from the manufacturing apparatus 100.
  • FIG. 6 by classifying the water absorbent resin precursor A3 after removing the water absorbent resin precursor B2 by the classifier 6, quality such as water absorption speed according to the pressurized water absorption capacity and size of the obtained water absorbent resin particles P1 variation can be suppressed.
  • the collector 30 and step S4 may be omitted.
  • the first passage member L1 may be constructed without providing the collector 30 .
  • Cooler 5 and step S6 may be omitted. That is, the manufacturing apparatus 100 may not include the cooler 5 and may be configured such that the sorting machine 4 and the classifier 6 are directly connected.
  • the opening of the sorting member 42 may be slit-shaped.
  • the average value of the intervals of the slits corresponds to the size of the opening of the sorting member 42 .
  • the relay member 32 and the second passage member L2 may be omitted. That is, the first passage member L1 may also serve as the second passage member L2, and the other end of the first passage member L1 may be connected to the input port 40 of the sorter 4.
  • first-stage monomer aqueous solution 28.8 parts by mass of an 80% by mass acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer is added to a container for the first-stage monomer preparation, and while cooling, a 30% by mass aqueous sodium hydroxide solution is added as an alkaline neutralizer. 31.9 parts by mass of was added dropwise to neutralize so that the degree of neutralization was 76 mol % of the acid groups of the water-soluble ethylenically unsaturated monomer.
  • a polymerization vessel was charged with 90.0 parts by mass of n-heptane as a hydrocarbon dispersion medium and 2.02 parts by mass of a 10% by mass n-heptane solution of a maleic anhydride/ethylene/propylene copolymer as a dispersion stabilizer, followed by polymerization. These were agitated by an agitator attached to the vessel. Then, the entire amount of the first-stage monomer aqueous solution was added to the polymerization vessel. Further, while heating the content in the polymerization vessel, 2.02 parts by mass of a 10% by mass n-heptane solution of sucrose fatty acid ester was added to the polymerization vessel. Blowing of nitrogen into the main body of the polymerization vessel was started to replace the inside of the polymerization vessel with nitrogen.
  • a second-stage monomer aqueous solution was prepared in another container. Specifically, 41.3 parts by mass of an 80% by mass acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer was added to another container, and while cooling, a 30% by mass aqueous sodium hydroxide solution was added as an alkaline neutralizer. was added dropwise to 45.7 parts by mass, and neutralization was carried out so that the degree of neutralization was 76 mol % of the acid groups of the water-soluble ethylenically unsaturated monomer.
  • the second stage reaction mixture was transferred to a concentrator equipped with a stirrer.
  • the reaction mixture in the second step was heated to 80-90° C. while stirring with a stirrer.
  • n-heptane and water were separated by azeotropic distillation of n-heptane and water, n-heptane was returned to the concentrator, and a predetermined amount of water was extracted from the system.
  • Part of the water-absorbing resin precursor passing through the second channel member was sampled four times, and the surface temperature of each sample was measured with a waterproof digital thermometer (SK-1260, manufactured by Sato Keiki Seisakusho Co., Ltd.). , 63.1° C., 68.2° C., 77.4° C. and 78.2° C., respectively.
  • SK-1260 manufactured by Sato Keiki Seisakusho Co., Ltd.
  • the water-absorbent resin precursor transferred from the dryer was treated with a sorter (trommel sorter) to remove lumps of 10 mm or more.
  • trommel sorter has the configuration shown in FIG. 5B.
  • the trommel-type sorter has a casing and a rotatable sorting member, and the sorting member has the shape of FIG.
  • the net-like member has a tubular shape with an inner diameter of 42 cm and a length of 66 cm.
  • the sorting member is arranged so that the cylinder axis direction and the horizontal plane are substantially parallel.
  • the water-absorbing resin precursor charged from the first opening enters the second opening (the opening closest to the first discharge port of the sorter). configured to move forward.
  • a blade member is provided inside the sorting member, and the water absorbent resin precursor is propelled from the first opening toward the second opening in accordance with the rotation of the sorting member.
  • the water-absorbing resin precursor charged from the first opening of the screening member was screened while proceeding toward the second opening.
  • the water absorbent resin precursor moved to the second discharge port of the sorter is transferred to a classifier, and classified by a classifier equipped with a sieve having an opening of 298 to 805 ⁇ m to obtain water absorbent resin particles having a median particle size of 380 ⁇ m. Obtained. A method for measuring the median particle size will be described later. 0.5 parts by mass of silica as an additive was mixed with 100 parts by mass of the water absorbent resin particles to obtain the final water absorbent resin particles.
  • the mass of the water-absorbent resin particles remaining on each sieve is calculated as a mass percentage of the total amount, and by accumulating in order from the larger particle size, the opening of the sieve and the water-absorbent resin particles remaining on the sieve are calculated.
  • FIG. 8 shows a pressurized water absorption measuring device 9 .
  • the measuring device 9 comprises a burette section 90 , a conduit 91 , a measuring table 92 and a measuring section 93 .
  • the burette part 90 includes a burette 900 , a first cock 902 connected to the lower portion of the burette 900 , and an air introduction tube 901 .
  • a tip of the air introduction pipe 901 is connected to a second cock 903 .
  • the burette part 90 and the measuring table 92 are connected by a conduit 91 .
  • a through hole communicating with the conduit 91 is formed in the measurement table 92 .
  • the measuring part 93 includes a cylindrical part 930 made of Plexiglas, a nylon mesh 931 adhesively fixed to the bottom of the cylindrical part 930 , and a weight 932 .
  • the inner diameter of the through-hole of the measuring table was 2 mm, and the inner diameter of the cylindrical portion 930 was 20 mm.
  • the nylon mesh 931 used in the experiment had an opening of 57 ⁇ m (255 mesh).
  • the weight 932 had a diameter of 19 mm and a mass of 60 g. The weight 932 is placed on the sample of the water absorbent resin particles P2 or P3 so as to apply a load of 0.3 PSI to the water absorbent resin particles P2 and P3.
  • the first cock 902 and the second cock 903 were closed, and 0.9% by mass saline adjusted to 25° C. was poured into the burette 900 through the upper opening of the burette 900 . After that, the upper opening of the burette 900 was closed with a rubber stopper. Subsequently, the first cock 902 and the second cock 903 are opened to adjust the height of the measuring table 92 so that the height of the water surface of the 0.9 mass % saline solution in the through-hole of the measuring table 92 and the height of the water surface of the measuring table 92 so that the height of the top surface of the
  • a measurement unit 93 was prepared for each sample of the water absorbent resin particles P2 and P3 and placed on the measurement table 92. Specifically, 0.1000 ⁇ 0.0002 g of water-absorbing resin particles P2 or P3 are evenly dispersed on the nylon mesh 931, and the measurement unit 93 with the weight 932 placed thereon is placed on the measurement table 92. placed in The measuring part 93 was aligned so that the cylinder axis of the cylindrical part 930 passed through the through hole of the measuring table 92 .
  • the amount W (ml) of 0.9% by mass saline solution that has decreased from inside the burette 900 indicates the amount of 0.9% by mass saline solution absorbed by the water absorbent resin particles P2 or P3.
  • W (ml) was read, and the pressurized water absorption amount AUL (ml/g) of the water absorbent resin particles P2 or P3 60 minutes after the water absorbent resin particles P2 or P3 started to absorb water was calculated according to the following formula. Calculated.
  • AUL W/0.1000
  • the water absorption rate is a parameter that is affected by the particle size of the water-absorbing resin particles (generally, the larger the particle size, the slower the water absorption rate). Therefore, as a water absorption rate evaluation index for the water absorbent resin particles P2 and P3, V/MPS, which is a value obtained by dividing the water absorption rate (V (sec)) by the respective median particle size (MPS ( ⁇ m)), was used for convenience.
  • V/MPS which is a value obtained by dividing the water absorption rate (V (sec)) by the respective median particle size (MPS ( ⁇ m)
  • FIGS. 9A and 9B show the measurement results of three samples of the water absorbent resin particles P2 and P3, respectively.
  • FIG. 9A is a graph of pressurized water absorption AUL (ml/g). As can be seen from FIG. 9A, in the water absorbent resin particles P2 according to the example, the variation in the pressurized water absorption amount AUL was smaller than in the water absorbent resin particles P3 according to the comparative example. In addition, in the water absorbent resin particles P2 according to the example, the value of the pressurized water absorption AUL was generally higher.
  • the average value of the pressurized water absorption AUL of the water absorbent resin particles P2 for the three samples was 34.7
  • the average value of the pressurized water absorption AUL of the water absorbent resin particles P3 for the three samples was The average value was 32.
  • the water absorbent resin particles P2 according to the example had a pressurized water absorption AUL that was improved by 2.7 (ml/g) compared to the water absorbent resin particles P3 according to the comparative example.
  • FIG. 9B is a graph of the water absorption rate evaluation index V/MPS.
  • the water-absorbent resin particles P2 according to the example showed less variation in the water absorption rate evaluation index V/MPS than the water-absorbent resin particles P3 according to the comparative example.
  • the dispersion of the water absorption rate evaluation index V/MPS for the water absorbent resin particles P2 for the three samples was 0.0003, whereas the water absorption rate evaluation index V for the water absorbent resin particles P3 for the three samples was 0.0003.
  • /MPS variance was 0.004.
  • the water-absorbent resin particles P2 according to the example had less variation than the water-absorbent resin particles P3 according to the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

吸水性樹脂粒子の製造装置は、乾燥機と、分級器と、選別機とを備える。乾燥機は、吸水性樹脂組成物を乾燥させて吸水性樹脂前駆体を得る。分級器は、吸水性樹脂前駆体を分級して吸水性樹脂粒子を得る。選別機は、乾燥機と前記分級器とを繋ぐ経路上に配置される。選別機は、含水率20%以上の吸水性樹脂前駆体を選別するように構成される。

Description

吸水性樹脂粒子の製造装置及び製造方法
 本発明は、吸水性樹脂粒子の製造装置及び製造方法に関する。
 吸水性樹脂粒子の製造工程は、原料となるモノマーを重合させて吸水性樹脂組成物を得る工程、及びその後に吸水性樹脂組成物を乾燥させて吸水性樹脂前駆体を得る工程を含む。これらの工程を経た吸水性樹脂前駆体を分級器により分級することで、目的の粒子径分布を有する吸水性樹脂粒子を製造することができる。
 特許文献1は、吸水性樹脂組成物を乾燥させて粉体を得る乾燥機と、粉体の流路を形成する粉体流路部材と、粉体を所定の流量で排出する粉体流量調整排出部材と、捕集体とを有する吸水性樹脂の製造装置を開示する。特許文献1によれば、流路を通過する粉体のうち、予め定める大きさよりも大きな粉体塊状物を捕集体により捕集することで、粉体塊状物が粉体流量調整排出部材の駆動部の駆動負荷を増大させることが抑制され、吸水性樹脂を高い生産効率で製造することができる。
特許第6738979号
 特許文献1によれば、大きな粉体塊状物は吸水性樹脂としての特性が劣ることがある。このため、大きな粉体塊状物を捕集体により捕集して除去することにより、生産効率が向上するとともに品質の優れた吸水性樹脂を製造することができる。しかしながら、特許文献1に開示される製造装置によっても、吸水性樹脂粒子の品質のばらつきは依然として生じる。
 吸水性樹脂粒子の品質を表す指標として、一般的に、吸水性能(吸水速度、加圧下における吸水能(加圧吸水能)など)、耐衝性、流動性など種々の性能が挙げられる。本発明者らが検討したところ、特に加圧吸水能と吸水速度にばらつきが生じ易いことが分かった。このため、加圧吸水能及び吸水速度といった品質のばらつきが一層抑えられた吸水性樹脂粒子を製造することができる装置が望まれていた。
 本発明は、加圧吸水能及び吸水速度のばらつきが抑制された吸水性樹脂粒子を製造することができる吸水性樹脂粒子の製造装置及び製造方法を提供することを目的とする。
 第1観点に係る吸水性樹脂粒子の製造装置は、乾燥機と、分級器と、選別機とを備える。乾燥機は、吸水性樹脂組成物を乾燥させて吸水性樹脂前駆体を得る。分級器は、前記吸水性樹脂前駆体を分級して吸水性樹脂粒子を得る。選別機は、乾燥機と前記分級器とを繋ぐ経路上に配置される。前記選別機は、含水率20%以上の前記吸水性樹脂前駆体を選別するように構成される。
 発明者らの検討によれば、乾燥機によって乾燥された後の吸水性樹脂前駆体には、依然として水分を比較的多く含むものが含まれ、このような吸水性樹脂前駆体が分級器に送り込まれると、得られる吸水性樹脂粒子の品質、特に加圧吸水能及び吸水速度にばらつきが生じやすくなる。上記観点に係る吸水性樹脂粒子の製造装置によれば、乾燥機と分級器とを繋ぐ経路において、含水率20%以上の吸水性樹脂前駆体が選別される。これにより、選別された含水率20%以上の吸水性樹脂前駆体を、分級器に繋がる経路から取り除くことができ、吸水性樹脂粒子の加圧吸水能及び吸水速度のばらつきを低減させることができる。
 第2観点に係る吸水性樹脂粒子の製造装置は、第1観点に係る吸水性樹脂粒子の製造装置であって、前記選別機は、表面温度が50℃~100℃であり、かつ所定のサイズを超える前記吸水性樹脂前駆体を、前記含水率20%以上の吸水性樹脂前駆体として選別するように構成される。
 第3観点に係る吸水性樹脂粒子の製造装置は、第2観点に係る吸水性樹脂粒子の製造装置であって、前記選別機は、前記乾燥機から排出された前記吸水性樹脂前駆体が投入される投入口が形成された投入口部と、前記投入口部に連結され、前記所定のサイズの開口が形成された選別部材とを含む。前記選別機は、前記投入口に投入された前記吸水性樹脂前駆体のうち、前記開口を通過した前記吸水性樹脂前駆体を前記分級器に繋がる経路に送るように構成される。
 第4観点に係る吸水性樹脂粒子の製造装置は、第3観点に係る吸水性樹脂粒子の製造装置であって、前記選別部材は、前記所定のサイズの開口が複数形成された網状部材から構成される。
 第5観点に係る吸水性樹脂粒子の製造装置は、第3観点または第4観点に係る吸水性樹脂粒子の製造装置であって、前記選別部材は、前記投入口に投入された前記吸水性樹脂前駆体に動きを付与するように構成される。
 第6観点に係る吸水性樹脂粒子の製造装置は、第2観点から第5観点のいずれかに係る吸水性樹脂粒子の製造装置であって、前記所定のサイズは、7mm~15mmである。
 第7観点に係る吸水性樹脂粒子の製造装置は、第1観点から第6観点のいずれかに係る吸水性樹脂粒子の製造装置であって、前記選別機と前記分級器とを繋ぐ経路上に配置された冷却機をさらに備える。冷却機は、前記選別機から前記分級器に繋がる経路に送られる前記吸水性樹脂前駆体を冷却するように構成される。
 第8観点に係る吸水性樹脂粒子の製造方法は、以下のステップを含む。
・吸水性樹脂組成物を乾燥させて吸水性樹脂前駆体を得るステップ。
・前記吸水性樹脂前駆体から、含水率20%以上の前記吸水性樹脂前駆体を選別して除去するステップ。
・残りの前記吸水性樹脂前駆体を分級して分級済みの吸水性樹脂粒子を得るステップ。
 乾燥機によって乾燥させた後の吸水性樹脂前駆体には、依然として水分を比較的多く含むものが含まれ、このような吸水性樹脂前駆体が、分級器により分級された後の吸水性樹脂粒子の加圧吸水能及び吸水速度をばらつかせる一因となる。上記観点によれば、吸水性樹脂前駆体の中から、含水率20%以上の吸水性樹脂前駆体が、乾燥機と分級器とを繋ぐ経路上で選別される。これにより、選別された吸水性樹脂前駆体を分級器に繋がる経路から除去することが可能になり、分級器により得られる吸水性樹脂粒子の加圧吸水能及び吸水速度のばらつきを抑制することができる。
一実施形態に係る吸水性樹脂粒子の製造装置の全体構成図。 網状部材の例。 網状部材の例。 網状部材の例。 網状部材の例。 板状部材の例。 板状部材の例。 開口率の算出方法を説明する図。 選別機の構成例。 選別機の構成例。 選別機の構成例。 選別機の構成例。 吸水性樹脂前駆体のサイズの特定方法を説明する図。 一実施形態に係る吸水性樹脂粒子の製造方法の流れを示すフローチャート。 実験装置の構成を示す図。 実験により得られた加圧吸水量のグラフ。 実験により得られた吸水速度の評価指標のグラフ。
 以下、図面を参照しつつ、本発明の一実施形態に係る吸水性樹脂粒子の製造装置及び吸水性樹脂粒子の製造方法について説明する。
 なお、本明細書において「選別する」とは、「ある大集団Xから特定の小集団aのみを抽出する」ことだけでなく、「ある大集団Xから特定の小集団aをそれ以外の小集団bを含みつつ(但し、大集団Xに含まれる小集団aの割合(質量基準)よりも高くなるよう)抽出する」ことを含む。
 <1.吸水性樹脂粒子の製造装置>
 図1に、本実施形態に係る吸水性樹脂粒子の製造方法の実施に使用される吸水性樹脂粒子の製造装置100の全体構成図を示す。吸水性樹脂粒子は、紙おむつや生理用品等の衛生材料、ペットシート等の日用品、食品用吸水シートやケーブル用止水材、結露防止材等の工業材料、緑化や農業、園芸用の保水剤や土壌改良剤等、様々な用途で幅広く用いられる。吸水性樹脂粒子は、原料となるモノマーを重合させて重合体を作製することにより製造される。
 図1に示す通り、吸水性樹脂粒子の製造装置100は、重合器1と、濃縮器2とを備える。重合器1は、吸水性樹脂粒子の原料となるモノマーを重合させることにより、含水ゲル状の重合体を含有するスラリー(含水ゲル状の重合体を含む液)を作製する。濃縮器2は、重合器1から送られてくるスラリーから液体成分を留去することにより、スラリーを濃縮し、重合体の濃縮液である吸水性樹脂組成物A1を作製する。製造装置100は、乾燥機3をさらに備え、乾燥機3は、濃縮器2から送られてくる吸水性樹脂組成物A1を乾燥させる(即ち、液体成分を揮発させる)。これにより、製品としての吸水性樹脂粒子P1となる前の段階の吸水性樹脂前駆体A2が得られる。液体成分は、逆相懸濁重合法で含水ゲル状の重合体を作製する場合、主として炭化水素分散媒及び水を含み、水溶液重合法で含水ゲル状の重合体を作製する場合、主として水を含む。
 図1に示す通り、製造装置100は、選別機4と、冷却機5と、分級器6とをさらに備える。選別機4は、乾燥機3から送られてくる吸水性樹脂前駆体A2から、含水率が20%以上の吸水性樹脂前駆体A2を選別し、これを第1排出口43から排出する。また、選別機4は、残った吸水性樹脂前駆体A3を冷却機5に送るべく、残った吸水性樹脂前駆体A3を別の第2排出口44から排出する。冷却機5は、第2排出口44から排出された吸水性樹脂前駆体A3を冷却し、乾燥機3により与えられた熱を取り除いた後、吸水性樹脂前駆体A3を分級器6に送る。分級器6は、吸水性樹脂前駆体A3をいくつかのクラスに分級する。吸水性樹脂前駆体A3のうち、製品としての仕様を満たすクラスに分級されたものを吸水性樹脂粒子P1と称する。
 また、図1に示す通り、製造装置100は、各機器1~6の動作を制御することにより、吸水性樹脂の製造工程を制御する制御装置7をさらに有する。制御装置7は、典型的には、プログラムにより制御されるコンピュータとして実現される。制御装置7は、各機器1~6の動作の他、各機器1~6を繋ぐ経路を構成する配管及び第1~第4通路部材L1~L4、並びにこれらに設置され得るバルブの動作も制御するように構成されてもよい。
 <2.各機器の構成>
 以下、各機器1~6の詳細について、これらの各機器1~6に接続される各種装置についても適宜触れつつ、順に説明する。
 [重合器]
 重合器1は、図示されない重合槽を有する。重合槽は、吸水性樹脂粒子の原料となるモノマー、例えば、水溶性エチレン性不飽和単量体と、液体成分とが、上部に気相成分が形成されるように収容される収容器である。重合槽内では、適宜、モノマー及び液体成分が図示されない撹拌機より攪拌され、図示されない加熱装置により加熱されることにより、モノマーの重合反応が進み、含水ゲル状の重合体が作製される。これらの撹拌機及び加熱装置は、制御装置7に接続され、その動作が制御される。以上により、重合槽内には、含水ゲル状の重合体を含有するスラリーが収容される。スラリーは、濃縮器2に送られるべく、重合槽の下部に形成された下部開口を介して重合器1から排出される。
 重合槽の下部開口には、配管の一端が接続されている。この配管の他端は、濃縮器2の上部に形成された開口に接続されている。重合器1から排出されたスラリーは、配管内を通り、濃縮器2の上部の開口を介して濃縮器2内に投入される。配管には、バルブが取り付けられており、バルブの開閉は、配管を介してのスラリーの連通を制御すべく、制御装置7により制御される。
 [濃縮器]
 濃縮器2は、図示されない濃縮槽を有する。重合器1から排出されたスラリーは、濃縮器2の上部に形成される上部開口を介して濃縮槽内に流入し、濃縮槽内の上部に気相成分が形成されるように収容される。濃縮槽内では、適宜、スラリーが図示されない撹拌機より攪拌され、図示されない加熱装置により加熱されることにより、これに含まれる液体成分が留去され、スラリーが濃縮される。これらの撹拌機及び加熱装置は、制御装置7に接続され、その動作が制御される。以上により、濃縮槽内には、含水ゲル状の重合体を含有する濃縮液が収容される。含水ゲル状の重合体を含有する濃縮液は、吸水性樹脂組成物A1として乾燥機3に送られるべく、濃縮槽の下部に形成された下部開口を介して濃縮器2から排出される。
 濃縮槽の下部開口には、配管の一端が接続されている。この配管の他端は、乾燥機3の上部に形成された上部開口に接続されている。濃縮器2から排出された吸水性樹脂組成物A1は、配管内を通り、乾燥機3の上部開口を介して乾燥機3内に投入される。配管には、バルブが取り付けられており、バルブの開閉は、配管を介しての吸水性樹脂組成物A1の連通を制御すべく、制御装置7により制御される。
 [乾燥機]
 乾燥機3は、図示されない乾燥室を有する。濃縮器2から排出された吸水性樹脂組成物A1は、乾燥機3の上部開口を介して乾燥室内に流入する。乾燥機3は、図示されない加熱装置により乾燥室内の吸水性樹脂組成物A1を加熱し、吸水性樹脂組成物A1からこれに含まれる水分を除去する。これにより、吸水性樹脂組成物A1を乾燥させた吸水性樹脂前駆体A2が作製される。加熱装置は、制御装置7に接続され、その動作が制御される。加熱装置は、乾燥室内に収容される吸水性樹脂組成物A1の全体としての含水率(質量%)が、好ましくは20%以下、より好ましくは10%以下となるように吸水性樹脂組成物A1を乾燥させる。乾燥後に得られる吸水性樹脂前駆体A2は、後述する第1通路部材L1内へと送られるべく、乾燥室の下部に形成された下部開口を介して乾燥機3から排出される。
 乾燥機3は、重合器1から排出されたスラリーを吸水性樹脂組成物A1として乾燥させるように構成されてもよい。すなわち、製造装置100は、濃縮器2が省略され、重合器1が乾燥機3に直接接続されていてもよい。この場合、重合器1から排出されたスラリーが吸水性樹脂組成物A1に相当する。そして、乾燥機3は、吸水性樹脂組成物A1の濃縮及び乾燥を同時に行うことになる。
 [第1通路部材]
 第1通路部材L1は、吸水性樹脂前駆体A2が所定の方向へ移動するための通路を画定する部材であり、後述する第2通路部材L2、第3通路部材L3及び第4通路部材L4とともに、乾燥機3と分級器6とを繋ぐ経路を構成する。第1通路部材L1の一端は、乾燥室の下部開口に接続されている。第1通路部材L1は、これに限定されないが、配管で構成され、吸水性樹脂前駆体A2は例えば重力により第1通路部材L1内を移動することができる。第1通路部材L1の内部には、吸水性樹脂前駆体A2の移動方向と交差するように捕集体30が配置されている。より具体的には、捕集体30は、その外周縁端が、第1通路部材L1の内面に接触するように第1通路部材L1に設置される。これにより、第1通路部材L1の内部空間は、捕集体30を挟んで乾燥機3側に位置する上流側通路と、捕集体30を挟んで選別機4側に位置する下流側通路とに分けられる。
 捕集体30は、第1通路部材L1内へ流入した吸水性樹脂前駆体A2から、予め定める大きさよりも大きな粉体塊状物B1を捕集して製造装置100から取り除くための部材である。粉体塊状物B1は、例えば重合槽、濃縮槽及び乾燥室の内壁面に付着した含水ゲル状の重合体や吸水性樹脂組成物A1が核となって塊状に成長した塊状物、吸水性樹脂組成物A1が凝集して塊状となった塊状物等である。粉体塊状物B1は、その大きさによって捕集体30が画定する隙間を通過することができず、下流側通路へ到達しない。一方、残りの吸水性樹脂前駆体A2は、捕集体30が画定する隙間を通過して下流側通路へと到達し、下流側通路をさらに移動する。捕集体30の具体的な構成については、特許文献1に開示されているため、本明細書に記載されているものとみなし、ここでは詳細な説明を省略する。
 捕集体30によって取り除かれる粉体塊状物B1は、後述する選別機4の選別部材42によって選別される吸水性樹脂前駆体B2よりも大きな吸水性樹脂前駆体である。粉体塊状物B1の粒子径は、例えば、30mm以上、好ましくは50mm以上である。
 第1通路部材L1には、上流側通路に連通する取出し開口部31が形成される。取出し開口部31は、捕集体30に捕集された粉体塊状物B1を第1通路部材L1の外部に取り出すための開口を画定する。捕集体30は、捕集した粉体塊状物B1が、例えば重力により取出し開口部31へと移動するように第1通路部材L1内部に配置される。これにより、粉体塊状物B1は、捕集体30の隙間及び上流側通路を閉塞することがないように、取出し開口部31を介して第1通路部材L1の外部へと取り出される。
 第1通路部材L1の下流側通路に流入した吸水性樹脂前駆体A2は、第1通路部材L1に接続される第2通路部材L2を介して選別機4に送られる。第1通路部材L1と第2通路部材L2とは、例えば吸水性樹脂前駆体A2を一時的に貯留するためのホッパー等、吸水性樹脂前駆体A2の経路を中継する中継部材32を介して接続されてもよい。
 [第2通路部材]
 第2通路部材L2は、吸水性樹脂前駆体A2を第1通路部材L1から選別機4に送るための通路を画定する部材であり、乾燥機3と分級器6とを繋ぐ経路を構成する。吸水性樹脂前駆体A2を第1通路部材L1から選別機4に送る移送方法は特に限定されず、重力による移送方法、不活性ガスの気流による移送方法、コンベア等の移送機構による移送方法等を適宜選択することができる。第2通路部材L2は、吸水性樹脂前駆体A2の移送方法に応じて、選別機4の投入口40に吸水性樹脂前駆体A2を投入するように構成される限り、その態様は特に限定されない。例えば、配管、気流がその中に生じる輸送配管、コンベア、フィーダ等を用いて第2通路部材L2を構成することができる。第2通路部材L2には、吸水性樹脂前駆体A2の流量を調整するべく制御装置7によって動作を制御されるバルブが取り付けられてもよい。また、第2通路部材L2には、選別機4に投入される吸水性樹脂前駆体A2の表面温度を調整すべく、表面温度調整装置が配置されていてもよい。表面温度調整装置は、第2通路部材L2を外側及び/又は内側から加熱する装置(ヒーター)及び/又は冷却する装置(クーラー)である。例えば、表面温度調整装置は、第2通路部材L2の外側に巻装された管状部材を有しており、該管状部材の内部に水蒸気などの熱媒体を通すことで第2通路部材L2を加熱及び/又は冷却することができる。
 選別機に導入される吸水性樹脂前駆体A2の表面温度の下限値は50℃以上であればよく、好ましくは55℃以上、より好ましくは60℃以上である。また、その上限値は100℃以下であればよく、好ましくは95℃以下、より好ましくは90℃以下、よりさらに好ましくは85℃以下、特に好ましくは80℃以下である。これらを総括すると、選別機に導入される吸水性樹脂前駆体A2の表面温度は、50℃~100℃であってよく、60℃~80℃であることがより好ましい。
 本発明者らの知見によれば、吸水性樹脂前駆体A2の表面温度が上記範囲内であれば、選別機によって含水率20%以上の吸水性樹脂前駆体A2を効率よく選別する(選別した吸水性樹脂前駆体B2中における含水率20%未満の吸水性樹脂前駆体A2の混入率を低く抑える)ことができる。
 [選別機]
 選別機4は、例えば振動式選別機、トロンメル(回転式選別機)、その他の篩装置から構成することができる。選別機4は、乾燥機3から排出された後の吸水性樹脂前駆体A2から、含水率が20%以上のものを選別するべく乾燥機3と分級器6とを繋ぐ経路上に配置される。選別機4は、投入口40が形成された投入口部41と、選別部材42とを備える。投入口40は、乾燥機3から排出され、第2通路部材L2を介して送られてきた吸水性樹脂前駆体A2を投入するための開口である。投入口部41は、本実施形態では選別部材42を収容するケーシングである。投入口部41の内側には、吸水性樹脂前駆体A2を選別するための選別領域45(図5A~5D参照)を画定するように、選別部材42が連結される。後述するように、選別部材42は投入口部41に連結される他の部材を介して投入口部41に連結されていてもよく、選別領域45は選別部材42と、投入口部41及び他の部材の少なくとも一方とにより画定されればよい。後述するように、選別部材42は選別領域45内の吸水性樹脂前駆体A2に動きを付与すべく可動式に構成されていてもよく、その動作は制御装置7によって制御されてもよい。
 乾燥機3から排出された後の吸水性樹脂前駆体A2は、表面温度が50℃~100℃の状態で、選別機4に投入される。選別機4内に投入された吸水性樹脂前駆体A2は、まず選別領域45内に入る。ケーシングには、その内外を連通させる第1排出口43及び第2排出口44が形成されている。選別領域45内に入った吸水性樹脂前駆体A2は、選別部材42によって2通りに分けられ、いずれかの排出口43,44から選別機4の外に排出される。
 [選別部材]
 選別部材42の全体的な形状は、平面形、円筒形、円錐台形、角筒形等、適宜選択することができる。選別部材42には、選別領域45の内外を連通させる所定のサイズの開口が複数形成される。これにより、選別領域45内に入った吸水性樹脂前駆体A2のうち、選別部材42の開口のサイズを超えるサイズのものは、選別部材42の開口を通過することができず、選別部材42の開口を通過するサイズのものと選別される。選別された吸水性樹脂前駆体A2は、後述する理由により、選別機4と分級器6とを繋ぐ経路から除去される。以下、吸水性樹脂前駆体A2のうち、選別部材42の開口を通過することができないものを吸水性樹脂前駆体B2と称し、選別部材42の開口を通過することができるものを吸水性樹脂前駆体A3と、区別して称する。
 本実施形態の選別部材42は、多数の開口(一般に、「目」とも称される)が形成された網状部材42aから構成される。網状部材42aは、例えば図2Aに示すように、金属等で構成される線状部材を正方形の格子状に織ることにより形成されている。図2Aに示す例において、線状部材の織り方は特に限定されず、フラットトップ式を含む平織であってもよく、綾織であってもよい。
 もっとも、選別部材42を構成する部材は図2Aに示すような正方形の格子状の網状部材42aに限定されず、適宜変更することが可能である。以下、選別部材42の形状について詳述する。
 <選別部材42を構成する部材が正方形の格子状の網状部材42aである場合>
 選別部材42を構成する部材が図2Aで示される正方形の格子状の網状部材42aである場合、網状部材42aの開口のサイズは、1インチ当たりの開口数と線状部材の線径により依存する目開きEで定義される。具体的には、選別部材2の目開きEは下記式(1)によって定義される。
式(1)…E(mm)=(25.4/M)-d(mm)
 式(1)において、Mは1インチ(25.4mm)当たりの開口数を表し、dは線状部材の線径を表す。
 線径dの下限値は、0.8mm以上であってよく、1.0mm以上が好ましく、1.3mm以上がより好ましく、1.5mm以上が特に好ましい。また、その上限値は2.2mm以下であってよく、2.0mm以下が好ましく、1.8mm以下がより好ましく、1.7mm以下が特に好ましい。これらを総括すると、線径dは0.8mm~2.2mmであってよく、好ましくは1.0mm~2.0mmであり、より好ましくは1.3mm~1.8mmであり、特に好ましくは1.5mm~1.7mmである。線径dがこの範囲であれば、吸水性樹脂前駆体A2が選別部材42に付着することを抑制でき、歩留まりよく吸水性樹脂粒子を作製することができる。
 また、目開きEの下限値は、7mm以上、8mm以上であってよく、9mm以上、9.5mm以上が好ましく、9.8mm以上がより好ましい。また、その上限値は15mm以下、14mm以下、13mm以下、12mm以下、11mm以下であってよく、10.5mm以下が好ましく、10.2mm以下がより好ましい。これらを総括すると、目開きEは7mm~15mm以下であってよく、9mm~11mmが好ましく、9.5mm~10.5mmがより好ましく、9.8mm~10.2mmであることがさらに好ましい。目開きEが上記範囲内であれば、含水率20%以上の吸水性樹脂前駆体A2を効率よく選別することができる。
 また、選別部材42が図2Aで示される正方形の格子状である場合、下記式(2)によって定義される開口率は、55%以上であってよく、好ましくは60%以上、より好ましくは65%以上、特に好ましくは70%以上である。また、その上限値は、90%以下であってよく、好ましくは85%以下、より好ましくは80%以下、特に好ましくは77%以下である。
 式(2)…開口率(%)=(E/E+d)2×100
 開口率が、上記範囲内にあれば、含水率20%以上の吸水性樹脂前駆体A2を効率よく選別することができる。
 <選別部材を構成する部材が正方形格子状以外の網状部材42aである場合>
 また、例えば図2B~2Dに示すように、網状部材42aの開口の形状が例えば長方形、平行四辺形、六角形等である場合には、1つの開口を画定する、互いに平行な線状部材間隔のうち、最小の間隔Eをその開口のサイズとする。この場合、網状部材42aにおいて、ランダムに選定された異なる10か所の開口について計測されたEの平均値Emを、網状部材42aの開口のサイズとする。
 選別部材42を構成する部材の他の態様としては、例えば図3A及び3Bに示すような、複数の開口(網状部材42aと同様、「目」とも称される)が形成された板状部材42bが挙げられる。板状部材42bは、例えばパンチング加工により複数の貫通孔が形成された金属板である。例えば図3Aのように、平面に展開された状態の板状部材42bの開口の形状が円である場合は、円の径Eを1つの開口のサイズとする。また、例えば図3Bのように、板状部材42bの開口の形状が長丸である場合は、開口を画定する互いに平行な周縁の間隔Eを1つの開口のサイズとする。さらに、板状部材42bの開口の形状が例えば長方形、平行四辺形、六角形等である場合には、網状部材42aと同様の要領で、その開口を画定する互いに平行な周縁の間隔のうち、最小の間隔Eを1つの開口のサイズとする。板状部材42bについても、網状部材42aと同様に、ランダムに選定された異なる10か所の開口について計測されたEの平均値Emを板状部材42bの開口のサイズとする。
 選別部材42が図2B~図3Bに例示される網状部材42aまたは板状部材42bから構成される場合でも、選別部材42の開口のサイズ(目開き)は、上述の範囲であることが好ましい。
 また、選別部材42が図2B~図3Bに例示される網状部材42aまたは板状部材42bから構成される場合、選別部材42の開口率は、選別部材42の全体的な形状により適宜選択することができる。図4は選別部材42の開口率の算出方法を説明する図である。開口率は、平面に展開された状態の選別部材42において、開口形状の中心を結んでできる長方形のうち、最小の長方形Rを定義し、長方形Rで囲まれる領域内で開口が占める合計の面積SAと、長方形Rの面積SRとの比とすることができる。図4では、選別部材42の開口が正六角形の場合が例示されているが、上述の開口率の算出方法は、他の形状の開口が形成された選別部材42にも適用可能である。
 選別部材42が図2B~図3Bに例示される網状部材42aまたは板状部材42bから構成される場合でも、その開口率は上述の範囲であることが好ましい。
 [選別機の構成例]
 図5A~図5Dに、選別機4の構成例を示す。図5A~図5Dに示すように、投入口40の向き及び投入口部41と選別部材42との位置関係は特に限定されず、適宜選択することができる。また、選別部材42の全体的な形状に応じて投入口部41の形状及び投入口40の向き等も適宜選択することができる。選別機4に形成される第1排出口43は、選別部材42の目詰まりを防ぐべく、選別領域45内から吸水性樹脂前駆体B2を取り出すための開口である。また、選別機4に形成される第2排出口44は、吸水性樹脂前駆体A3を選別機4から排出し、分級器6に繋がる経路を画定する第3通路部材L3、ひいては冷却機5及び第4通路部材L4に送るための開口である。
 図5Aは、選別部材42が平板形である場合の例である。この例では、選別部材42は、投入口40に接続される通路を画定する通路部材46を介して投入口部41に連結されている。通路部材46は、投入口部41に連結されており、選別部材42とともに選別領域45を画定する。投入口40から投入された吸水性樹脂前駆体A2のうち、吸水性樹脂前駆体A3は選別部材42の複数の開口を通過し、選別領域45外に出て、第2排出口44から排出される。一方、吸水性樹脂前駆体B2は、第1排出口43から排出される。なお、選別部材42は、吸水性樹脂前駆体B2をより速やかに第1排出口43に移動させるべく、水平方向に対して傾斜していてもよい。また、選別部材42は、開口が閉塞されて目詰まりが生じることを防止するべく、図示しない振動機構によって振動し、吸水性樹脂前駆体A2に動きを付与するように構成されてもよい。
 図5Bは、選別部材42が円筒形または角筒形である場合の例である。この例では、選別部材42の筒軸方向の両端が開放されている。選別部材42は、両端が水平方向に向けられ、それぞれが投入口40及び第1排出口43に繋がるように投入口部41に連結される。投入口40から投入された吸水性樹脂前駆体A2のうち、吸水性樹脂前駆体A3は選別部材42の複数の開口を通過し、選別領域45外に出て、第2排出口44から排出される。一方、吸水性樹脂前駆体B2は、選別部材42の一端を介して第1排出口43から排出される。選別部材42は、開口が閉塞されて目詰まりが生じることを防止するべく、図示しない回転機構により筒軸を基準として回転し、吸水性樹脂前駆体A2に動きを付与するように構成されてもよい。また、選別機4は、吸水性樹脂前駆体B2をより速やかに第1排出口43まで移動させるため、選別部材42の内部において、投入口40側の端部から第1排出口43の端部まで移動可能な羽根部材を備えていてもよい。さらに、選別部材42は、円錐台形であってもよい。
 図5Cは、選別部材42が円筒形または角筒形である場合の別の例である。この例では、選別部材42の筒軸方向の一端が鉛直方向上を向き、他端が鉛直方向下を向くように選別部材42が投入口部41に連結される。選別部材42の下向きの端(下端)は開放されておらず、選別部材42の側周部と連続的に構成される。すなわち、選別部材42の下端にも所定のサイズの開口が複数形成されている。投入口40から投入された吸水性樹脂前駆体A2のうち、吸水性樹脂前駆体A3は選別部材42の複数の開口を通過し、選別領域45外に出て、第2排出口44から排出される。選別部材42は、下端付近において選別領域45と第1排出口43とを繋ぐ通路を画定する通路部材47に連結されている。通路部材47の通路の内径は、吸水性樹脂前駆体B2のサイズよりも大きい。これにより、吸水性樹脂前駆体B2は、通路部材47の通路を通り、第1排出口43から排出される。選別部材42は、開口が閉塞されて目詰まりが生じることを防止するべく、図示しない振動機構によって振動し、吸水性樹脂前駆体A2に動きを付与するように構成されてもよい。また、選別部材42の下端は吸水性樹脂前駆体B2をより速やかに通路部材47に移動させるべく、水平方向に対して傾斜していてもよい。さらに、選別部材42は、円錐台形であってもよい。
 図5Dは、選別機4は、選別部材42が円筒形または角筒形である場合のさらに別の例である。この例は、選別部材42の筒軸が水平方向に対して傾斜するように選別部材42が配置されている点で、図5Bの例と異なる。選別機4は、選別部材42の傾斜角が一定の範囲内で変化できるように構成されてもよい。その他の点においては、図5Bの例についての説明が当てはまるため、説明を省略する。
 以上のように、選別機4は、表面温度が50℃~100℃の吸水性樹脂前駆体A2のサイズ(粒子径)を基準として吸水性樹脂前駆体A2を選別するように構成される。本明細書では、便宜上、選別の基準となる吸水性樹脂前駆体A2のサイズは、図6に示すように特定される値であるものとする。具体的には、互いに直交する3つの平面への吸水性樹脂前駆体A2の投影形状の外接長方形Rx,Ry,Rzをそれぞれ定義し、これら外接長方形Rx,Ry,Rzの長辺の平均値を、吸水性樹脂前駆体A2のサイズ(粒子径)とする。本実施形態では、表面温度が50℃~100℃であり、かつこのように特定されたサイズが選別部材42の開口のサイズ(所定のサイズ)を超える吸水性樹脂前駆体A2が、吸水性樹脂前駆体B2として選別されることが図られる。また、本実施形態では、表面温度が50℃~100℃であり、このように特定されたサイズが選別部材42の開口のサイズ以下である吸水性樹脂前駆体A2が、吸水性樹脂前駆体A3として分級器6へと送られることが図られる。
 [吸水性樹脂前駆体を選別する理由]
 以下、含水率20%以上の吸水性樹脂前駆体A2を選別する理由と、表面温度が50℃~100℃であり、かつ選別部材42の開口のサイズを超える吸水性樹脂前駆体B2が、含水率20%以上の吸水性樹脂前駆体A2として効率よく選別される理由を説明する。
 吸水性樹脂前駆体A2は、乾燥機3により全体としては含水率が少なくとも20%以下となるように乾燥される。しかし、乾燥室内の温度分布により、個々の吸水性樹脂前駆体A2の乾燥度合いにはばらつきが生じる。このため、個体としての吸水性樹脂前駆体A2には、乾燥が十分でないものが含まれる。発明者らの検討によると、このような吸水性樹脂前駆体A2は、乾燥後の比較的温度が高い状態であっても水分を比較的多く含んでいるため、加圧吸水能及び吸水速度といった吸水性樹脂粒子P1としての品質に影響を及ぼす。つまり、含水率が20%以上である吸水性樹脂前駆体A2の存在により、分級後の吸水性樹脂粒子P1の加圧吸水能及び吸水速度のばらつきが大きくなり、吸水性樹脂粒子P1の加圧吸水能及び吸水速度の制御がより困難となる。
 発明者らは、乾燥後の表面温度が50℃~100℃である吸水性樹脂前駆体A2の中から、そのサイズが所定のサイズを超えるものを選別機4により選別すると、含水率20%以上の吸水性樹脂前駆体A2が効率良く選別されることを、後述する実験により確認した。所定のサイズは、選別機4が備える選別部材42の開口のサイズにより定められる。従って、選別の基準となる吸水性樹脂前駆体A2の所定のサイズは、選別部材42の開口のサイズについて上述したように、7mm~15mm以下であってよく、9mm~11mmが好ましく、9.5mm~10.5mmがより好ましく、9.8mm~10.2mmであることがよりさらに好ましい。後述する実験によれば、サイズが10mmの開口が形成された選別部材42を有する選別機4を用いて選別された吸水性樹脂前駆体B2の含水率は、60%以上であることが確認された。このように、乾燥機3から排出された後の吸水性樹脂前駆体A2を選別機4で選別すると、その中でも比較的含水率が高いものが吸水性樹脂前駆体B2として選別されるといえる。
 選別される吸水性樹脂前駆体B2の含水率は20%以上であればよく、30%以上又は40%以上であってもよく、50%以上が好ましく、60%以上がより好ましい。また、その上限値は85%以下であってよく、75%以下又は70%以下が好ましく、65%以下がより好ましい。
 また、発明者らは、乾燥後の表面温度が比較的高い状態で吸水性樹脂前駆体A2を選別し、残りの吸水性樹脂前駆体A3を分級器6で分級すると、分級済みの吸水性樹脂粒子P1の加圧吸水能及び吸水速度のばらつきがより小さくなることを実験により確認した。以上により、吸水性樹脂前駆体B2を乾燥機3と分級器6とを繋ぐ経路から除去することで、加圧吸水能及び吸水速度のばらつきがより抑制された吸水性樹脂粒子P1が得られるといえる。
 [第3通路部材]
 第3通路部材L3は、第2排出口44及び冷却機5の上部に形成される上部開口と接続される部材である。第3通路部材L3は、第2排出口44から排出された吸水性樹脂前駆体A3を冷却機5に送るための通路を画定し、乾燥機3と分級器6とを繋ぐ経路を構成する。吸水性樹脂前駆体A3を冷却機5に送る移送方法は特に限定されず、重力による移送方法、不活性ガスの気流による移送方法、コンベア等の移送機構による移送方法等を適宜選択することができる。第3通路部材L3は、吸水性樹脂前駆体A3の移送方法に応じて、冷却機5の上部に形成される上部開口に吸水性樹脂前駆体A3を投入するように構成される限り、その態様は特に限定されない。例えば、配管、不活性ガスの気流がその中に生じる輸送配管、コンベア、フィーダ等を用いて第3通路部材L3を構成することができる。第3通路部材L3には、吸水性樹脂前駆体A2の流量を調整するべく制御装置7によって動作を制御されるバルブが取り付けられてもよい。
 [冷却機]
 冷却機5は、乾燥機3と分級器6とを繋ぐ経路上に配置されており、図示されない冷却室を有する。選別機4の第2排出口44から排出された吸水性樹脂前駆体A3は、冷却機5の上部開口を介して冷却室内に流入する。冷却機5は、図示されない冷却装置により冷却室内の吸水性樹脂前駆体A3を冷却し、吸水性樹脂前駆体A3に乾燥機3により付与された熱を除去する。冷却装置は、制御装置7に接続され、その動作が制御される。冷却後の吸水性樹脂前駆体A3は、分級器6へと送られるべく、冷却機5の下部に形成される開口であって、冷却室と連通可能な下部開口を介して冷却機5から排出される。
 [第4通路部材]
 第4通路部材L4は、冷却機5の下部開口及び分級器6の上部に形成される上部開口と接続される部材である。第4通路部材L4は、冷却機5の下部開口から排出された吸水性樹脂前駆体A3を分級器6へと送るための通路を画定し、乾燥機3と分級器6とを繋ぐ経路を構成する。冷却後の吸水性樹脂前駆体A2を分級器6に送る移送方法は特に限定されず、重力による移送方法、不活性ガスの気流による移送方法、コンベア等の移送機構による移送方法等を適宜選択することができる。第4通路部材L4は、吸水性樹脂前駆体A3の移送方法に応じて、分級器6内に上部開口から吸水性樹脂前駆体A3を投入するように構成される限り、その態様は特に限定されない。例えば、一端が冷却機5の下部開口に接続され、他端が分級器6の上部開口に接続される配管、不活性ガスの気流がその中に生じる輸送配管、コンベア、及びフィーダ等を用いて第4通路部材L4を構成することができる。第4通路部材L4には、吸水性樹脂前駆体A3の流量を調整するべく制御装置7によって動作を制御されるバルブが取り付けられてもよい。
 [分級器]
 分級器6は、吸水性樹脂前駆体A3を、所望の粒子径分布を有する吸水性樹脂粒子のグループに分ける装置である。分級器6としては、例えば振動篩(アンバランスウェイト駆動式、共振式、振動モータ式、電磁式、円型振動式等)、面内運動篩(水平運動式、水平円-直線運動式、3次元円運動式等)、可動網式篩、強制撹拌式篩、網面振動式篩、風力篩、音波篩等が挙げられる。本実施形態の分級器6は、複数の面内運動篩を有する。複数の面内運動篩は、目のサイズがより大きいものが上に、目のサイズがより小さいものが下になるような順番で組み合わせられている。これにより、分級器6に送られ、面内運動篩に投入された吸水性樹脂前駆体A3が、面内運動篩が規定するクラスにそれぞれ分級される。このうち、製品としての規格に適合するクラスに分級されたものが、吸水性樹脂粒子P1として得られる。
 <3.吸水性樹脂粒子の製造方法>
 以下、図面を参照しつつ、本発明の一実施形態に係る吸水性樹脂粒子の製造方法について説明する。図7は、製造装置100を使用した吸水性樹脂粒子の製造時に行われる、各工程の流れを示すフローチャートである。各工程(ステップ)S1~S7は、主として制御装置7により制御される。
 ステップS1では、重合器1が重合を行う。重合器1の重合槽には吸水性樹脂粒子の原料となるモノマーと液体成分(炭化水素分散媒)とが収容される。これらが重合槽内で撹拌及び加熱されることによりモノマーの重合反応が進み、含水ゲル状の重合体を含有するスラリーが作製される。作製されたスラリーは、濃縮器2に送られる。
 ステップS2では、濃縮器2が濃縮を行う。重合器1から送られてきたスラリーは、濃縮器2の濃縮槽内に収容される。スラリーは、濃縮槽内で撹拌及び加熱されることにより、濃縮される。これにより、含水ゲル状の重合体を含有する濃縮液、つまり吸水性樹脂組成物A1が得られる。吸水性樹脂組成物A1は、乾燥機3に送られる。
 ステップS3では、乾燥機3が乾燥を行う。濃縮器2から送られてきた吸水性樹脂組成物A1は、乾燥機3の乾燥室に収容される。吸水性樹脂組成物A1は、乾燥室内で乾燥されることにより水分を除かれ、吸水性樹脂前駆体A2となる。ステップS3は本発明の「吸水性樹脂組成物を乾燥させて吸水性樹脂前駆体を得るステップ」の一例である。得られた吸水性樹脂前駆体A2は、選別機4に繋がる第1通路部材L1に送られる。
 ステップS4では、第1通路部材L1に設置された捕集体30により粉体塊状物B1を捕集し、第1通路部材L1からこれを除去する。残りの吸水性樹脂前駆体A2は、表面温度が50℃~100℃の状態で、選別機4に送られる。
 ステップS5では、選別機4が、吸水性樹脂前駆体A2を吸水性樹脂前駆体B2と吸水性樹脂前駆体A3とに選別する。吸水性樹脂前駆体B2は、含水率20%以上の吸水性樹脂前駆体A2として除去される。残りの吸水性樹脂前駆体A3は、冷却機5に送られる。ステップS5は本発明の「吸水性樹脂前駆体から、含水率20%以上の吸水性樹脂前駆体を選別して除去するステップ」の一例である。
 ステップS6では、冷却機5が冷却を行う。選別機4から送られてきた吸水性樹脂前駆体A3は、冷却機5の冷却室に収容され、乾燥機3に与えられた熱を除くべく冷却される。冷却後の吸水性樹脂前駆体A3は、分級器6に送られる。
 ステップS7では、分級器6が吸水性樹脂前駆体A3を分級する。これにより、分級済みとなり、製品としての規格に適合する吸水性樹脂粒子P1が得られる。ステップS7は本発明の「残りの吸水性樹脂前駆体を分級して分級済みの吸水性樹脂粒子を得るステップ」の一例である。なお、吸水性樹脂粒子P1には、分級器6による分級後、さらに必要に応じて添加剤が添加された吸水性樹脂粒子も含まれる。
 <4.特徴>
 上記実施形態に係る製造装置100、及び製造装置100を使用した吸水性樹脂粒子の製造方法によれば、乾燥機3と分級器6とを繋ぐ経路途中に配置された選別機4により、吸水性樹脂前駆体A2の選別が行われる。これにより、乾燥後であっても含水率が20%以上と比較的高い吸水性樹脂前駆体A2を吸水性樹脂前駆体B2として選別し、製造装置100から除去することができる。そして、吸水性樹脂前駆体B2を除去した後の吸水性樹脂前駆体A3を分級器6で分級することで、得られる吸水性樹脂粒子P1の加圧吸水能及びサイズに応じた吸水速度といった品質のばらつきを抑制することができる。
 <5.変形例>
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。例えば、以下の変更が可能である。
 (1)
 捕集体30、及びステップS4は省略されてもよい。つまり、捕集体30を設けずに第1通路部材L1を構成してもよい。
 (2)
 冷却機5、及びステップS6は省略されてもよい。つまり、製造装置100は、冷却機5を備えていなくてもよく、選別機4と分級器6とが直接繋がるように構成されてもよい。
 (3)
 選別部材42の開口は、スリット状であってもよい。この場合、スリットの間隔の平均値が選別部材42の開口のサイズに該当する。
 (4)
 中継部材32及び第2通路部材L2は、省略されてもよい。すなわち、第1通路部材L1が第2通路部材L2を兼ね、第1通路部材L1の他端が選別機4の投入口40に接続されていてもよい。
 以下、本発明の実施例について説明するが、本発明は、以下の実施例に限定されない。
 <実験1>
 上記実施形態に係る製造装置100と同様の製造装置を用意し、これを使用して上記実施形態に係る製造方法で吸水性樹脂粒子を製造した。そして、製造装置100から除去されるべく選別された吸水性樹脂前駆体及び分級器に送られた吸水性樹脂前駆体の含水率をそれぞれ後述する方法で測定した。以下に吸水性樹脂粒子の詳細な製造方法を説明する。
 [1.1段目のモノマー水溶液の調製]
 1段目モノマー調製用の容器に、水溶性エチレン性不飽和単量体として80質量%アクリル酸水溶液28.8質量部を加え、冷却しながら、アルカリ性中和剤として30質量%水酸化ナトリウム水溶液を31.9質量部滴下して、中和度が水溶性エチレン性不飽和単量体の酸基の76モル%となるように中和を行った。次いで、ラジカル重合開始剤として過硫酸カリウムの2質量%水溶液を1.15質量部、架橋剤としてエチレングリコールジグリシジルエーテルの3質量%水溶液を0.14質量部、水を11.0質量部加えて溶解し、1段目のモノマー水溶液を調製し、20~21℃の温度で保持した。
 [2.重合器への移送と添加剤の投入]
 重合器に、炭化水素分散媒としてn-ヘプタンを90.0質量部、分散安定剤として無水マレイン酸・エチレン・プロピレン共重合体の10質量%n-ヘプタン溶液2.02質量部を仕込み、重合器に備え付けられた攪拌装置によってこれらを攪拌した。次いで、1段目のモノマー水溶液の全量を重合器に加えた。さらに重合器内の内容物を加熱しながら、ショ糖脂肪酸エステルの10質量%n-ヘプタン溶液2.02質量部を重合器に加えた。重合器本体内部への窒素の吹き込みを開始し、重合器内を窒素置換した。
 [3.1段目の重合反応]
 次いで、重合器内の内容物を64℃になるまで加熱し、1段目の重合反応を開始させ、1段目の反応混合物を得た。
 [4.2段目のモノマー水溶液の調製]
 一方、別の容器に、2段目のモノマー水溶液を調製した。具体的には、別の容器に、水溶性エチレン性不飽和単量体として80質量%アクリル酸水溶液41.3質量部を加え、冷却しながら、アルカリ性中和剤として30質量%水酸化ナトリウム水溶液を45.7質量部滴下して、中和度が水溶性エチレン性不飽和単量体の酸基の76モル%となるように中和を行った。次いで、ラジカル重合開始剤として過硫酸カリウムの2質量%水溶液を1.45質量部、架橋剤としてエチレングリコールジグリシジルエーテルの3質量%水溶液を0.12質量部、水を1.51質量部加えて溶解し、2段目のモノマー水溶液を調製した。
 [5.2段目モノマー水溶液の投入]
 次いで、2段目のモノマー水溶液の全量を重合器に加えた。重合器内部への窒素の吹き込みを開始し、重合器内を窒素置換した。
 [6.2段目の重合反応]
 次いで、重合器内の内容物が57℃になるまで加熱し、2段目の重合反応を開始させた。重合反応が終了した後、2段目の反応混合物(含水ゲル状の重合体を含有するスラリー)が得られた。
 [7.濃縮工程]
 2段目の反応混合物を攪拌装置を備えた濃縮器に移送した。2段目の反応混合物を、攪拌装置により攪拌しながら、80~90℃になるように加熱した。n-ヘプタンと水との共沸蒸留によりn-ヘプタンと水を分離し、n-ヘプタンは濃縮器内へ戻し、所定量の水を系外へ抜き出した。
 [8.乾燥工程]
 濃縮後に得られた吸水性樹脂組成物を攪拌装置を備えた乾燥機に移送した。吸水性樹脂組成物を、撹拌装置により撹拌しながら、乾燥機内が80~110℃になるように加熱し、n-ヘプタンと水との共沸蒸留によりn-ヘプタンと水を系外へ抜き出した。所定量の水を系外へ抜き出した後、後架橋剤としてエチレングリコールジグリシジルエーテルの3質量%水溶液を1.4質量部加え、さらに加熱及び脱水することで、後架橋された吸水性樹脂(吸水性樹脂前駆体)を得た。
 [9.吸水性樹脂前駆体の移送及び表面温度の調整]
 乾燥機から排出された吸水性樹脂前駆体を、第1及び第2流路部材である配管を通じて選別機にまで移送した。その際、配管をヒーター(表面温度調整装置)によって約80℃で加温することにより、配管内部を移動する吸水性樹脂前駆体の表面温度が60℃以上となるように調整した。
 第2流路部材を通過する吸水性樹脂前駆体の一部を4回サンプリングし、防水型デジタル温度計(SK-1260、株式会社佐藤計量器製作所製)によって各サンプルの表面温度を測定したところ、それぞれ63.1℃、68.2℃、77.4℃、78.2℃であった。
 [10.選別工程]
 乾燥機から移送された吸水性樹脂前駆体を選別機(トロンメル式選別機)にて処理し、10mm以上の塊状物を除去した。
 具体的には、トロンメル式選別機は、図5Bに示す構成を有する。
 トロンメル式選別機は、ケーシングと回転可能な選別部材とを有しており、選別部材は、図2Aの形状(正方形の格子状、線径1.6mm、目開き10mm、開口率74%)を有する網状部材であって、内径42cm×長さ66cmの筒状に構成された網状部材から構成されている。選別部材は、筒軸方向と水平面が略平行になるように配置されている。選別部材は、その第1開口部(選別機の投入口に最も近い開口部)から投入された吸水性樹脂前駆体が第2開口部(選別機の第1排出口に最も近い開口部)に向かって進むように構成されている。具体的には、選別部材の内部には、羽根部材が設けられており、選別部材の回転に合わせて吸水性樹脂前駆体は第1開口部から第2開口部に向かって推進する。
 選別部材の第1開口部から投入された吸水性樹脂前駆体は、第2開口部に向かって進むうちに選別された。つまり、吸水性樹脂前駆体のうち粒子径(サイズ)が小さいものは、選別部材の網の目を通って選別機の第2排出口に移動する一方、粒子径(サイズ)の大きなもの(塊状物)は、選別部材の網の目を通らず選別機の第1排出口に移動した。
 [11.分級工程]
 選別機の第2排出口に移動した吸水性樹脂前駆体を分級機に移送し、目開き298~805μmの篩を備える分級器で分級し、中位粒子径が380μmである吸水性樹脂粒子を得た。なお、中位粒子径の測定方法は、後述する。この吸水性樹脂粒子100質量部に対し、添加剤としてシリカを0.5質量部混合して最終品である吸水性樹脂粒子を得た。
 [含水率の測定方法]
 吸水性樹脂前駆体2.0gを、あらかじめ恒量(Wa(g))としたステンレスシャーレにとり精秤した(Wb(g))。前記前駆体を、内温を105℃に設定した熱風乾燥機(ADVANTEC社製)で2時間乾燥させた後、デシケーター中で放冷して、乾燥後の質量(Wc(g))を測定した。以下の式から、吸水性樹脂前駆体の含水率を算出した。
 含水率(質量%)=[(Wb-Wa)-(Wc-Wa)]/(Wb-Wa)×100
 [中位粒子径の測定方法]
 JIS標準篩を上から、目開き850μmの篩、目開き600μmの篩、目開き500μmの篩、目開き400μmの篩、目開き300μmの篩、目開き250μmの篩、目開き150μmの篩及び受け皿の順に組み合わせ、組み合わせた最上の篩に、上記シリカを添加する前の吸水性樹脂粒子を100g入れ、ロータップ式振とう器を用いて10分間振とうさせて分級した。分級後、各篩上に残った吸水性樹脂粒子の質量を全量に対する質量百分率として計算し、粒子径の大きい方から順に積算することにより、篩の目開きと篩上に残った吸水性樹脂粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を、吸水性樹脂粒子の中位粒子径(μm)とした。
 <結果>
 [10.選別工程]において、第1排出口に移動した吸水性樹脂前駆体の一部を2回サンプリングし、各サンプルの含水率を測定した。その結果、それぞれ60.1質量%、64.8質量%であった。なお、第2排出口に移動した吸水性樹脂前駆体の含水率も同様に測定したところ、含水率は20質量%未満であったため、選別工程により有効に含水率の高い吸水性樹脂前駆体が選別されたことが確認された。
 <実験2>
 実験1に係る方法で製造された最終品である吸水性樹脂粒子P2(実施例)、及び選別工程を省略した以外は実験1と同様の方法で製造された、中位粒子径が365μmの吸水性樹脂粒子P3(比較例)とを用意し、それぞれについて3回サンプリングを行った。各サンプルについて、加圧吸水能を示す加圧吸水量及び吸水速度をそれぞれ測定した。
 [加圧吸水量の測定方法]
 図8に、加圧吸水量の測定装置9を示す。測定装置9は、ビュレット部90、導管91、測定台92及び測定部93を備える。ビュレット部90は、ビュレット900と、ビュレット900の下部に連結される第1コック902と空気導入管901とを含む。空気導入管901の先端は、第2コック903に連結されている。ビュレット部90と測定台92とは、導管91により連結されている。測定台92には、導管91と連通する貫通孔が形成される。測定部93は、プレキシグラス製の円筒状の円筒部930と、円筒部930の底部に接着固定されたナイロンメッシュ931と、おもり932とを含む。
 測定台の貫通孔の内径は2mmであり、円筒部930の内径は20mmであった。実験で使用されたナイロンメッシュ931の目開きは57μm(255メッシュ)であった。また、おもり932は、直径19mm、質量60gであった。おもり932は、吸水性樹脂粒子P2またはP3のサンプル上に置かれ、吸水性樹脂粒子P2、P3に対して0.3PSIの荷重を加えることができるようになっている。
 測定は、25℃の室内で行った。まず第1コック902及び第2コック903を閉め、25℃に調節された0.9質量%食塩水をビュレット900の上部開口を介してビュレット900内に注いだ。その後、ゴム栓でビュレット900の上部開口を閉塞した。続いて、第1コック902及び第2コック903を開け、測定台92の高さを調節して、測定台92の貫通孔内の0.9質量%食塩水の水面の高さと、測定台92の上面の高さとが同じになるようにした。
 別途、吸水性樹脂粒子P2及びP3の各サンプルについて測定部93を用意し、測定台92上に置いた。具体的には、ナイロンメッシュ931の上に0.1000±0.0002gの吸水性樹脂粒子P2またはP3を均一に散布し、その上におもり932を載せた状態の測定部93を測定台92上に置いた。測定部93は、円筒部930の筒軸が測定台92の貫通孔を通過するように位置合わせされた。
 ビュレット900内から減少した0.9質量%食塩水の量W(ml)は、吸水性樹脂粒子P2またはP3が吸水した0.9質量%食塩水の量を示す。W(ml)を読み取り、吸水性樹脂粒子P2またはP3が吸水を開始してから60分経過後の吸水性樹脂粒子P2またはP3の加圧吸水量AUL(ml/g)を、以下の式に従って算出した。
AUL=W/0.1000
 [吸水速度の測定方法]
 恒温水槽にて25±0.2℃の温度に調整した生理食塩水50±0.1gを内容積100mLのビーカーに量りとった。次に、マグネチックスターラーバー(8mmφ×30mm、リング無し)を用いて回転数600rpm(従来Vortex法)で撹拌することにより渦を発生させた。2.0±0.002gの吸水性樹脂粒子P2及びP3をそれぞれ生理食塩水中に一度に添加した。吸水性樹脂粒子P2及びP3の添加後から、液面の渦が収束する時点までの時間[秒]を測定し、当該時間を吸水性樹脂粒子P2及びP3の吸水速度として得た。なお、吸水速度は吸水性樹脂粒子の粒子径に影響されるパラメータである(一般的に、粒子径が大きければ吸水速度は遅くなる)。よって、吸水性樹脂粒子P2及びP3の吸水速度評価指標として、便宜上吸水速度(V(秒))をそれぞれの中位粒子径(MPS(μm))で除した値、V/MPSを用いた。中位粒子径の測定方法は実施例1で既に述べた通りである。
 <結果>
 3サンプル分の吸水性樹脂粒子P2及びP3についての測定結果を、図9A及び9Bのグラフにそれぞれ示す。図9Aは、加圧吸水量AUL(ml/g)のグラフである。図9Aから分かるように、実施例に係る吸水性樹脂粒子P2においては、比較例に係る吸水性樹脂粒子P3においてよりも加圧吸水量AULのばらつきが小さくなった。また、実施例に係る吸水性樹脂粒子P2においては、全体的に加圧吸水量AULの数値がより高くなった。具体的には、3サンプル分の吸水性樹脂粒子P2の加圧吸水量AULの平均値は34.7であったのに対し、3サンプル分の吸水性樹脂粒子P3の加圧吸水量AULの平均値は32であった。つまり、実施例に係る吸水性樹脂粒子P2では、比較例に係る吸水性樹脂粒子P3と比較して加圧吸水量AULが2.7(ml/g)向上したことが確認された。
 また、図9Bは、吸水速度評価指標V/MPSのグラフである。図9Bから分かるように、実施例に係る吸水性樹脂粒子P2においては、比較例に係る吸水性樹脂粒子P3においてよりも吸水速度評価指標V/MPSのばらつきが小さくなった。具体的には、3サンプル分の吸水性樹脂粒子P2の吸水速度評価指標V/MPSの分散が0.0003であったのに対し、3サンプル分の吸水性樹脂粒子P3の吸水速度評価指標V/MPSの分散は0.004であった。これにより、実施例に係る吸水性樹脂粒子P2では、比較例に係る吸水性樹脂粒子P3と比較してばらつきが低減されたことが確認された。
 1 重合器
 2 濃縮器
 3 乾燥機
 4 選別機
 5 冷却機
 6 分級器
 40 投入口
 41 投入口部
 42 選別部材
 42a 網状部材
 42b 板状部材
 100 製造装置
 A1 吸水性樹脂組成物
 A2 吸水性樹脂前駆体
 A3 吸水性樹脂前駆体

Claims (8)

  1.  吸水性樹脂組成物を乾燥させて吸水性樹脂前駆体を得る乾燥機と、
     前記吸水性樹脂前駆体を分級して吸水性樹脂粒子を得る分級器と、
     前記乾燥機と前記分級器とを繋ぐ経路上に配置された選別機と、
    を備え、
     前記選別機は、含水率20%以上の前記吸水性樹脂前駆体を選別するように構成される、
    吸水性樹脂粒子の製造装置。
  2.  前記選別機は、表面温度が50℃~100℃であり、かつ所定のサイズを超える前記吸水性樹脂前駆体を、前記含水率20%以上の吸水性樹脂前駆体として選別するように構成される、
    請求項1に記載の吸水性樹脂粒子の製造装置。
  3.  前記選別機は、前記乾燥機から排出された前記吸水性樹脂前駆体が投入される投入口が形成された投入口部と、前記投入口部に連結され、前記所定のサイズの開口が形成された選別部材とを含み、
     前記選別機は、前記投入口に投入された前記吸水性樹脂前駆体のうち、前記開口を通過した前記吸水性樹脂前駆体を前記分級器に繋がる経路に送るように構成される、
    請求項2に記載の吸水性樹脂粒子の製造装置。
  4.  前記選別部材は、前記所定のサイズの開口が複数形成された網状部材から構成される、請求項3に記載の吸水性樹脂粒子の製造装置。
  5.  前記選別部材は、前記投入口に投入された前記吸水性樹脂前駆体に動きを付与するように構成される、
    請求項3または請求項4に記載の吸水性樹脂粒子の製造装置。
  6.  前記所定のサイズは、7mm~15mmである、
    請求項2から請求項5のいずれかに記載の吸水性樹脂粒子の製造装置。
  7.  前記選別機と前記分級器とを繋ぐ経路上に配置された冷却機
    をさらに備え、
     前記冷却機は、前記選別機から前記分級器に繋がる経路に送られる前記吸水性樹脂前駆体を冷却するように構成される、
    請求項1から請求項6のいずれかに記載の吸水性樹脂粒子の製造装置。
  8.  吸水性樹脂組成物を乾燥させて吸水性樹脂前駆体を得るステップと、
     前記吸水性樹脂前駆体から、含水率20%以上の前記吸水性樹脂前駆体を選別して除去するステップと、
     残りの前記吸水性樹脂前駆体を分級して分級済みの吸水性樹脂粒子を得るステップと、
    を含む、
    吸水性樹脂粒子の製造方法。
PCT/JP2022/009365 2021-03-31 2022-03-04 吸水性樹脂粒子の製造装置及び製造方法 WO2022209581A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237030876A KR20230164660A (ko) 2021-03-31 2022-03-04 흡수성 수지 입자의 제조 장치 및 제조 방법
EP22779806.3A EP4317262A1 (en) 2021-03-31 2022-03-04 Device and method for producing water-absorbent resin particles
US18/285,110 US20240173697A1 (en) 2021-03-31 2022-03-04 Device and method for producing water-absorbent resin particles
JP2023510721A JPWO2022209581A1 (ja) 2021-03-31 2022-03-04
CN202280023550.8A CN117120519A (zh) 2021-03-31 2022-03-04 吸水性树脂颗粒的制造装置及制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061218 2021-03-31
JP2021-061218 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209581A1 true WO2022209581A1 (ja) 2022-10-06

Family

ID=83458616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009365 WO2022209581A1 (ja) 2021-03-31 2022-03-04 吸水性樹脂粒子の製造装置及び製造方法

Country Status (6)

Country Link
US (1) US20240173697A1 (ja)
EP (1) EP4317262A1 (ja)
JP (1) JPWO2022209581A1 (ja)
KR (1) KR20230164660A (ja)
CN (1) CN117120519A (ja)
WO (1) WO2022209581A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292919A (ja) * 1998-04-07 1999-10-26 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法
JP2007077393A (ja) * 2005-08-17 2007-03-29 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法および吸水性樹脂、並びにその利用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3263607B1 (en) 2015-02-24 2019-06-05 Sumitomo Seika Chemicals CO. LTD. Water-absorbent resin production apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292919A (ja) * 1998-04-07 1999-10-26 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法
JP2007077393A (ja) * 2005-08-17 2007-03-29 Nippon Shokubai Co Ltd 吸水性樹脂の製造方法および吸水性樹脂、並びにその利用

Also Published As

Publication number Publication date
CN117120519A (zh) 2023-11-24
KR20230164660A (ko) 2023-12-04
EP4317262A1 (en) 2024-02-07
JPWO2022209581A1 (ja) 2022-10-06
US20240173697A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
CN105164186B (zh) 吸水性树脂组合物的制造方法
US8443982B2 (en) Method for grading water-absorbent polymer particles
CN101516530B (zh) 吸水性聚合物颗粒的分级方法
CN102666670B (zh) 再润湿表面后交联的吸水性聚合物颗粒的方法
CN101679760B (zh) 包覆吸水性聚合物颗粒的方法
JPH10202187A (ja) 粒子状親水性重合体の分級方法およびふるい分け装置
WO2008037672A1 (de) Verfahren zum klassieren wasserabsorbierender polymerpartikel
EP2398597B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP3279239A1 (en) Method for producing particulate water-absorbing agent that has polyacrylic acid (salt)-based water-absorbing resin as main component
JP2002192017A (ja) 分離装置
JP5850841B2 (ja) 表面後架橋された吸水性ポリマー粒子の後給湿方法
WO2022209581A1 (ja) 吸水性樹脂粒子の製造装置及び製造方法
CN110799275A (zh) 超吸收性聚合物颗粒的分级方法
US8663733B2 (en) Method for coating water-absorbing polymer particles
JP6738979B2 (ja) 吸水性樹脂製造装置
JPH08113653A (ja) 高吸水性樹脂粉末の造粒法
JP3968527B2 (ja) エチレンオキシド−ブチレンオキシド系共重合体樹脂ペレットの選別方法
TWI826359B (zh) 超吸收性聚合物顆粒的填充方法
JPH07256211A (ja) 粉粒体の分級方法及びその装置
Prasad Sieving and its Application in Dairy and Food Industry
TH17293A (th) การรวมกลุ่มผงละเอียดมาก

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779806

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510721

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18285110

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022779806

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022779806

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE