WO2022209279A1 - Polarizing plate protective film - Google Patents

Polarizing plate protective film Download PDF

Info

Publication number
WO2022209279A1
WO2022209279A1 PCT/JP2022/004298 JP2022004298W WO2022209279A1 WO 2022209279 A1 WO2022209279 A1 WO 2022209279A1 JP 2022004298 W JP2022004298 W JP 2022004298W WO 2022209279 A1 WO2022209279 A1 WO 2022209279A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing plate
plate protective
protective film
mass
Prior art date
Application number
PCT/JP2022/004298
Other languages
French (fr)
Japanese (ja)
Inventor
恵美子 御子柴
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN202280025856.7A priority Critical patent/CN117120892A/en
Priority to KR1020237031795A priority patent/KR20230147667A/en
Priority to JP2023510571A priority patent/JPWO2022209279A1/ja
Publication of WO2022209279A1 publication Critical patent/WO2022209279A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission

Definitions

  • the present invention relates to a polarizing plate protective film. More specifically, it is a polarizing plate protective film containing a resin and a dye compound, and when used in a display device, particularly an organic electroluminescence display device, can protect the display element from external light and prevent light emission from the display element.
  • the present invention relates to a polarizing plate protective film that does not cause light emission loss, does not bleed out, and has excellent light resistance.
  • an optical film such as a polarizing plate protective film with the ability to cut light rays in a wide wavelength range including the ultraviolet region and short wavelength visible light
  • a method of adding an ultraviolet absorber or the like to the base material or a method of adding the base material
  • the ultraviolet absorber is contained at a high concentration in order to cut short-wave visible light, or the ultraviolet absorber is contained at a high concentration as the film becomes thinner.
  • undesirable coloring on the long wavelength side, whitening, and precipitation (bleed-out) may occur.
  • the emission region of the display element (longer wavelength side than 430 nm) ), it is necessary to ensure sufficient transmittance in this area, and there is a technology that suppresses light absorption in this area, uses materials that can sufficiently ensure light transmittance, and suppresses deterioration of the display element due to external light. is necessary.
  • Patent Document 1 describes a light selective absorption compound (such as a compound containing a merocyanine structure in the molecule) having light absorption on the short wavelength side of visible light to adjust the light absorption in a specific wavelength region. is disclosed in a resin, but there is no description regarding the light resistance of the selective light absorption compound.
  • a light selective absorption compound such as a compound containing a merocyanine structure in the molecule
  • Patent document 2 contains at least one light-absorbing material selected from a resin, an ultraviolet absorber, and a visible light-absorbing dye, and has a light transmittance of 10% or less at a light wavelength of 380 to 410 nm and a light transmittance at a light wavelength of 440 nm. It discloses a highly transparent optical film having a rate of 80% or more, no bleed-out during film formation, and excellent UV-cutting properties and sharp wavelength-cutting properties in the short wavelength region of visible light. However, in the optical film containing the light-absorbing material, similarly, there is no description regarding the light resistance of the ultraviolet absorber and the visible light-absorbing dye.
  • image display is performed by containing a specific resin (alicyclic structure-containing polymer) and an ultraviolet absorber, and by containing a dye compound capable of controlling the light transmittance of a specific wavelength.
  • An optical film is disclosed that can protect a device from ultraviolet rays and improve the hue when the image display device is viewed from the front.
  • the present invention has been made in view of the above problems and circumstances, and the problem to be solved is a polarizing plate protective film containing a resin and a dye compound, which is used in a display device, particularly an organic electroluminescence display device. It is an object of the present invention to provide a polarizing plate protective film that can protect a display element from external light, does not cause light emission loss in the light emitted from the display element, does not bleed out, and has excellent light resistance.
  • a display element is protected from external light by incorporating a compound having a specific structure shown below into a polarizing plate protective film.
  • a polarizing plate protective film containing a resin and a dye compound that is excellent in light resistance without causing luminescence loss and bleed-out with respect to the luminescence of the display element.
  • a polarizing plate protective film comprising a compound having a structure represented by Formula 1 below.
  • the polarizing plate protective film containing the resin and the dye compound can protect the display element from external light when used in a display device, particularly an organic electroluminescence display device. It is possible to provide a polarizing plate protective film which does not cause light emission loss and does not bleed out with respect to the light emitted from the polarizing plate, and which has excellent light resistance.
  • the hydrophobicity of the compound is increased, and the hydrophobicity makes it possible to interact with resins and other additives.
  • the decomposability of the compound by light can be suppressed and the light resistance (also referred to as “light fastness”) can be improved.
  • the sp value (also referred to as "solubility parameter") of the resin and the compound is compatible with each other, and even if the amount required to form the desired absorption spectrum is added, bleed out and whitening phenomenon do not occur. It does not occur and durability is improved.
  • FIG. 1 is a plan view schematically showing the schematic configuration of a diagonally stretched film manufacturing apparatus.
  • FIG. 6 is a plan view schematically showing an example of a rail pattern of a stretching section provided in the obliquely stretched film manufacturing apparatus shown in FIG.
  • the polarizing plate protective film of the present invention is characterized by containing a compound having a structure represented by Formula 1 above. This feature is a technical feature common to or corresponding to the following embodiments.
  • the polarizing plate protective film of the present invention is characterized by containing a compound having a structure represented by Formula 1 below.
  • FIG. 1 is a cross section showing a configuration example of a preferable polarizing plate 10A of the present invention, which has a polarizing plate protective film 1 of the present invention, a polarizer layer 2 and a retardation film 3 in this order from the viewing side. It is a diagram.
  • the polarizing plate protective film 1 the polarizer layer 2 and the retardation film 3 are respectively laminated, they are preferably adhered by a pressure-sensitive adhesive layer or an adhesive layer (not shown).
  • the retardation film 3 is a polarizing plate protective film that adjusts the retardation depending on the intended use of the polarizing plate.
  • the polarizing plate used in the present invention preferably has various functional layers in addition to the polarizing plate protective film 1, the polarizer layer 2 and the retardation film 3.
  • the hard coat layer 4 as a functional layer as an upper layer of the polarizing plate protective film 1 from the viewpoint of improving the scratch resistance of the outermost surface when the polarizing plate is attached to the display device.
  • the polarizing plate used in the present invention is, for example, an example using the polarizing plate 10A.
  • the pressure-sensitive adhesive layer 5 is disposed on the surface of the organic EL element 11 and adhered to the viewing side surface of the organic EL element 11 . be.
  • Dye compound The dye compound according to the present invention (hereinafter also referred to as “compound (D)”) is a compound having the structure represented by Formula 1 above.
  • the dye compound is a compound having a maximum absorption wavelength in the wavelength range of 365 to 430 nm in the absorption spectrum of the wavelength range of 300 to 460 nm.
  • the maximum absorption wavelength of the above compound can be determined by measuring the absorption spectrum of the dye compound or ultraviolet absorber in chloroform using, for example, an ultraviolet-visible spectrophotometer UV-2450 manufactured by Shimadzu Corporation.
  • the “maximum absorption wavelength” in the present invention refers to the wavelength (nm) at which the maximum and maximum absorbance (absorption intensity) is exhibited in the absorption spectrum of the compound obtained by measuring the absorption spectrum of the compound.
  • the display element is protected from external light and deterioration is suppressed, and no light emission loss occurs in the light emitted from the display element.
  • the dye compound has the above-described light absorption properties, it preferably does not have fluorescence and phosphorescence performance (photoluminescence) that impairs the display properties of the organic EL element.
  • the dye compound is contained in the polarizing plate protective film, and is useful from the viewpoint of maintaining the dispersibility and transparency in the resin component such as the base polymer, which is the film-forming component of the polarizing plate protective film. That is, the specific substituent structure substituted on the benzotriazole skeleton increases the hydrophobicity of the compound, and the hydrophobicity strengthens the interaction with the resin and other additives, suppressing the degradability of the compound by light. It is compatible with the resin from the viewpoint of the sp value of the compound, and does not cause bleeding out or whitening even when added in the amount necessary to form the desired absorption spectrum, and is durable. improve sexuality.
  • a 300 mL four-necked flask was equipped with a condenser with a ball, a thermometer, and a stirrer, and (a1) 4.0 g (0.0134 mol), toluene 200 mL, octanoic acid 7.67 g (0.0532 mol), methanesulfonic acid. 0.2 g (0.002 mol) was added and dehydrated under reflux at 110 to 115° C. for 4 hours.
  • the content of the dye compound according to the present invention is preferably in the range of 0.01 to 10 parts by weight, preferably 0.02 to 8 parts by weight, based on 100% by weight of the resin component, which is the film-forming component in the polarizing plate protective film. It is more preferable to be within the range of parts by mass.
  • the polarizing plate having the polarizing plate protective film of the present invention when used in an organic EL display device, the light in the region that does not affect the light emission of the organic EL element is sufficiently emitted. can be absorbed into the organic EL element, and deterioration of the organic EL element can be suppressed.
  • thermoplastic resins used for polarizing plate protective films include cellulose ester resins such as triacetyl cellulose (TAC), cellulose acetate propionate (CAP), and diacetyl cellulose (DAC), and cycloolefin polymers ( cyclic olefin resins such as COP and cycloolefin resins, polypropylene resins such as polypropylene (PP), acrylic resins such as polymethyl methacrylate (PMMA), and polyethylene terephthalate (PET).
  • TAC triacetyl cellulose
  • CAP cellulose acetate propionate
  • DAC diacetyl cellulose
  • cycloolefin polymers cyclic olefin resins such as COP and cycloolefin resins
  • polypropylene resins such as polypropylene (PP)
  • acrylic resins such as polymethyl methacrylate (PMMA)
  • PET polyethylene terephthalate
  • the highly hydrophobic resin has a high affinity with the dye compound according to the present invention, controls the waveform of the light absorption wavelength, and has a sharp wavelength cut property in the short wavelength region of visible light and UV cut property.
  • the effect of reducing the light emission loss of the display device can be enhanced. From that point of view, considering the polarity, hydrophilicity, and water absorption of the resin, it is possible to preferably use the cyclic olefin-based resin (cycloolefin-based resin), the acrylic resin, and the cellulose ester-based resin in this order.
  • the cycloolefin-based resin contained in the polarizing plate protective film of the present invention is a polymer of a cycloolefin monomer, or a copolymerizable monomer other than a cycloolefin monomer. It is preferably a copolymer with a polymer.
  • the cycloolefin monomer is preferably a cycloolefin monomer having a norbornene skeleton, and a cycloolefin monomer having a structure represented by the following general formula (A-1) or (A-2) It is more preferable to have
  • R 1 to R 4 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 30 carbon atoms, or a polar group.
  • p represents an integer of 0 to 2; However, all of R 1 to R 4 do not represent hydrogen atoms at the same time, R 1 and R 2 do not represent hydrogen atoms at the same time, and R 3 and R 4 do not represent hydrogen atoms at the same time. do.
  • the hydrocarbon group having 1 to 30 carbon atoms represented by R 1 to R 4 in general formula (A-1) is preferably, for example, a hydrocarbon group having 1 to 10 carbon atoms. Hydrocarbon groups of numbers 1 to 5 are more preferred.
  • a hydrocarbon group having 1 to 30 carbon atoms may further have a linking group containing, for example, a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom. Examples of such linking groups include divalent polar groups such as carbonyl groups, imino groups, ether bonds, silyl ether bonds and thioether bonds. Examples of hydrocarbon groups having 1 to 30 carbon atoms include methyl, ethyl, propyl, butyl and the like.
  • Examples of polar groups represented by R 1 to R 4 in general formula (A-1) include a carboxy group, a hydroxy group, an alkoxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amido group and a cyano group. is included. Among them, a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group are preferred, and an alkoxycarbonyl group and an aryloxycarbonyl group are preferred from the viewpoint of ensuring solubility during solution film formation.
  • p in general formula (A-1) is preferably 1 or 2. This is because when p is 1 or 2, the resulting polymer becomes bulky and the glass transition temperature tends to be improved.
  • R 5 represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms.
  • R6 represents a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amido group, a cyano group, or a halogen atom (fluorine atom, chlorine atom, bromine atom or iodine atom).
  • p represents an integer of 0 to 2;
  • R 5 in general formula (A-2) preferably represents a hydrocarbon group having 1 to 5 carbon atoms, more preferably a hydrocarbon group having 1 to 3 carbon atoms.
  • R 6 in general formula (A-2) preferably represents a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group.
  • An oxycarbonyl group is more preferred.
  • p in general formula (A-2) preferably represents 1 or 2. This is because when p is 1 or 2, the resulting polymer becomes bulky and the glass transition temperature tends to be improved.
  • a cycloolefin monomer having a structure represented by general formula (A-2) is preferable from the viewpoint of improving the solubility in organic solvents.
  • breaking the symmetry of an organic compound lowers the crystallinity, thereby improving the solubility in an organic solvent.
  • R 5 and R 6 in general formula (A-2) are substituted only on one ring-constituting carbon atom with respect to the symmetry axis of the molecule, the symmetry of the molecule is low, that is, general formula (A- Since the cycloolefin monomer having the structure represented by 2) is highly soluble, it is suitable for producing a polarizing plate protective film by a solution casting method.
  • the content of the cycloolefin monomer having the structure represented by the general formula (A-2) in the cycloolefin monomer polymer is based on the total of all cycloolefin monomers constituting the cycloolefin resin. For example, 70 mol % or more, preferably 80 mol % or more, more preferably 100 mol %.
  • the cycloolefin monomer having the structure represented by the general formula (A-2) is contained in a certain amount or more, the orientation of the resin is enhanced, so that the retardation value tends to increase.
  • cycloolefin monomers having a structure represented by general formula (A-1) are shown below in structural formulas 1 to 14, and cycloolefin monomers having a structure represented by general formula (A-2) Specific examples of the mers are shown in Structural Formulas 15-34.
  • copolymerizable monomers copolymerizable with cycloolefin monomers examples include copolymerizable monomers capable of ring-opening copolymerization with cycloolefin monomers, and addition copolymerization with cycloolefin monomers. possible copolymerizable monomers and the like.
  • copolymerizable monomers capable of ring-opening copolymerization include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene and dicyclopentadiene.
  • Examples of addition-copolymerizable copolymerizable monomers include unsaturated double bond-containing compounds, vinyl-based cyclic hydrocarbon monomers, and (meth)acrylates.
  • Examples of unsaturated double bond-containing compounds include olefinic compounds having 2 to 12 (preferably 2 to 8) carbon atoms, examples of which include ethylene, propylene, butene, and the like.
  • Examples of vinyl-based cyclic hydrocarbon monomers include vinylcyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene.
  • (meth)acrylates include C1-C20 alkyl (meth)acrylates such as methyl (meth)acrylate, 2-ethylhexyl (meth)acrylate and cyclohexyl (meth)acrylate.
  • the content of the cycloolefin monomer in the copolymer of the cycloolefin monomer and the copolymerizable monomer is, for example, 20 to 80 mol% with respect to the total of all monomers constituting the copolymer, Preferably, it can be 30 to 70 mol %.
  • the cycloolefin resin is obtained by polymerizing or polymerizing a cycloolefin monomer having a norbornene skeleton, preferably a cycloolefin monomer having a structure represented by general formula (A-1) or (A-2).
  • Polymers obtained by copolymerization examples of which include the following.
  • a ring-opening polymer of a cycloolefin monomer (2) A ring-opening copolymer of a cycloolefin monomer and a copolymerizable monomer capable of ring-opening copolymerization thereof (3) Above (1) or a hydrogenated product of the ring-opening (co)polymer of (2); Co) Polymer (5) Saturated copolymer of cycloolefin monomer and unsaturated double bond-containing compound (6) Addition copolymer of cycloolefin monomer and vinyl cyclic hydrocarbon monomer And hydrogenated products thereof (7) Alternating copolymers of cycloolefin monomers and (meth)acrylates
  • the polymers of (1) to (7) are all produced by known methods, for example, JP-A-2008- It can be obtained by the methods described in JP-A-107534 and JP-A-2005-227606.
  • the catalyst and solvent used for the ring-opening copolymerization of (2) above can be those described in paragraphs 0019 to 0024 of JP-A-2008-107534.
  • the catalyst used for hydrogenation in (3) and (6) above for example, those described in paragraphs 0025 to 0028 of JP-A-2008-107534 can be used.
  • the acidic compound used in the Friedel-Crafts reaction of (4) above for example, those described in paragraph 0029 of JP-A-2008-107534 can be used.
  • the catalyst used in the addition polymerization of (5) to (7) above for example, those described in paragraphs 0058 to 0063 of JP-A-2005-227606 can be used.
  • the alternating copolymerization reaction of (7) above can be carried out, for example, by the method described in paragraphs 0071 and 0072 of JP-A-2005-227606.
  • the polymers (1) to (3) and (5) above are preferred, and the polymers (3) and (5) above are more preferred.
  • the cycloolefin-based resin can increase the glass transition temperature of the obtained cycloolefin-based resin and can increase the light transmittance. It preferably contains at least one of the structural units represented by the following general formula (B-2), and contains only the structural unit represented by the general formula (B-2), or the general formula (B-1) It is more preferable to include both the structural unit represented by formula (B-2) and the structural unit represented by general formula (B-2).
  • the structural unit represented by general formula (B-1) is a structural unit derived from the cycloolefin monomer represented by general formula (A-1) described above, and is represented by general formula (B-2). is a structural unit derived from the cycloolefin monomer represented by the general formula (A-2) described above.
  • R 1 to R 4 and p have the same definitions as R 1 to R 4 and p in formula (A-1), respectively.
  • R 5 to R 6 and p have the same meanings as R 5 to R 6 and p in formula (A-2), respectively.
  • the cycloolefin-based resin used in the present invention may be a commercially available product.
  • Examples of commercially available cycloolefin-based resins include JSR Corporation's Arton G (e.g., G7810), Arton F, Arton R (e.g., R4500, R4900 and R5000), and Arton RX. included.
  • the intrinsic viscosity [ ⁇ ]inh of the cycloolefin resin is preferably in the range of 0.2 to 5 cm 3 /g, more preferably in the range of 0.3 to 3 cm 3 /g, as measured at 30°C. It is preferably in the range of 0.4 to 1.5 cm 3 /g, more preferably.
  • the number average molecular weight (Mn) of the cycloolefin resin is preferably in the range of 8,000 to 100,000, more preferably in the range of 10,000 to 80,000, and even more preferably in the range of 12,000 to 50,000.
  • the weight average molecular weight (Mw) of the cycloolefin resin is preferably in the range of 20,000 to 300,000, more preferably in the range of 30,000 to 250,000, even more preferably in the range of 40,000 to 200,000.
  • the number average molecular weight and weight average molecular weight of the cycloolefin resin can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
  • the glass transition temperature (Tg) of the cycloolefin resin is usually 110°C or higher, preferably in the range of 110 to 350°C, more preferably in the range of 120 to 250°C, and 120 to 220°C. is more preferably in the range of
  • Tg is 110°C or higher
  • deformation under high temperature conditions is easily suppressed.
  • the Tg is 350° C. or less
  • the molding process becomes easy, and deterioration of the resin due to heat during the molding process can be easily suppressed.
  • the content of the cycloolefin resin is preferably 70% by mass or more, more preferably 80% by mass or more, relative to the film.
  • Acrylic resin used in the present invention is a polymer of acrylic acid ester or methacrylic acid ester, including copolymers with other monomers.
  • the acrylic resins used in the present invention also include methacrylic resins.
  • the resin is not particularly limited, it contains 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith. is preferred.
  • alkyl methacrylates having an alkyl group having 2 to 18 carbon atoms alkyl acrylates having an alkyl group having 1 to 18 carbon atoms, isobornyl methacrylate, 2- Hydroxyalkyl acrylates such as hydroxyethyl acrylate, ⁇ , ⁇ -unsaturated acids such as acrylic acid and methacrylic acid, acrylamides such as acryloylmorpholine and N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, maleic acid, fumaric acid, itaconic acid unsaturated group-containing divalent carboxylic acids such as styrene, aromatic vinyl compounds such as ⁇ -methylstyrene, acrylonitrile, ⁇ , ⁇ -unsaturated nitriles such as methacrylonitrile, maleic anhydride, maleimide, N-substituted maleimide, Glutarimide, gluta
  • Examples of copolymerizable monomers forming units other than glutarimide and glutaric anhydride from the above units include monomers corresponding to the above units. That is, alkyl methacrylates having an alkyl group having 2 to 18 carbon atoms, alkyl acrylates having an alkyl group having 1 to 18 carbon atoms, isobornyl methacrylate, hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate, acrylic acid, methacrylic acid, etc.
  • ⁇ , ⁇ -unsaturated acids acryloylmorpholine, acrylamides such as N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, unsaturated group-containing divalent carboxylic acids such as maleic acid, fumaric acid, itaconic acid, styrene, ⁇ -methylstyrene monomers such as aromatic vinyl compounds such as acrylonitrile, ⁇ , ⁇ -unsaturated nitriles such as methacrylonitrile, maleic anhydride, maleimide, and N-substituted maleimide.
  • acrylamides such as N-hydroxyphenylmethacrylamide
  • N-vinylpyrrolidone unsaturated group-containing divalent carboxylic acids
  • unsaturated group-containing divalent carboxylic acids such as maleic acid, fumaric acid, itaconic acid
  • styrene ⁇ -methylstyrene monomers
  • aromatic vinyl compounds such as acrylonit
  • the glutarimide unit can be formed, for example, by reacting an intermediate polymer having (meth)acrylic acid ester units with a primary amine (imidizing agent) to imidize the intermediate polymer (see JP-A-2011-26563). ).
  • a glutaric anhydride unit can be formed, for example, by heating an intermediate polymer having a (meth)acrylate unit (see Japanese Patent No. 4961164).
  • the acrylic resin used in the present invention includes, from the viewpoint of mechanical strength, isobornyl methacrylate, acryloylmorpholine, N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, styrene, hydroxyethyl methacrylate, Particular preference is given to including maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride or glutarimide.
  • the acrylic resin used in the present invention has a viewpoint of controlling dimensional changes due to changes in environmental temperature and humidity atmosphere, peelability from a metal support during film production, drying property of organic solvents, heat resistance and mechanical strength.
  • the weight average molecular weight (Mw) is preferably in the range of 50,000 to 1,000,000, more preferably in the range of 100,000 to 1,000,000, and in the range of 200,000 to 800,000. is particularly preferred.
  • the method for producing the acrylic resin used in the present invention is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used.
  • the polymerization initiator usual peroxide-based and azo-based initiators can be used, and redox-based initiators can also be used.
  • the polymerization temperature may be 30 to 100° C. for suspension or emulsion polymerization, and 80 to 160° C. for bulk or solution polymerization.
  • the polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
  • the glass transition temperature Tg of the acrylic resin is preferably within the range of 80 to 120°C.
  • Acrylic resin used in the present invention.
  • Delpet 60N, 80N, 980N, SR8200 manufactured by Asahi Kasei Chemicals Corporation
  • Dianal BR52, BR80, BR83, BR85, BR88 EMB-143, EMB-159, EMB-160, EMB-161, EMB-218, EMB-229, EMB-270, EMB-273 (manufactured by Mitsubishi Rayon Co., Ltd.)
  • KT75, TX400S, IPX012 manufactured by Denki Kagaku Kogyo KK
  • Acrylic resin can also use 2 or more types together.
  • the acrylic resin used in the present invention preferably contains an additive.
  • the additive include acrylic particles (rubber elastic particles) described in International Publication No. WO 2010/001668. It is preferably contained for improving the strength and adjusting the dimensional change rate.
  • Commercially available examples of such multi-layered acrylic granular composites include, for example, "Metabrene W-341" manufactured by Mitsubishi Rayon Co., Ltd., "Kaneace” manufactured by Kaneka Corporation, "Paraloid” manufactured by Kureha Corporation, Rohm and "Acryloid” manufactured by Haas, "Staphyloid” manufactured by Aika, Chemisnow MR-2G, MS-300X (manufactured by Soken Chemical Co., Ltd.) and "Parapet SA” manufactured by Kuraray Co., Ltd., and the like. can be used singly or in combination of two or more.
  • the volume average particle size of the acrylic particles is 0.35 ⁇ m or less, preferably in the range of 0.01 to 0.35 ⁇ m, more preferably in the range of 0.05 to 0.30 ⁇ m. If the particle size is above a certain level, the film can be easily stretched under heating, and if the particle size is below a certain level, the transparency of the resulting film is less likely to be impaired.
  • the polarizing plate protective film of the present invention preferably has a bending elastic modulus (JIS K7171) of 1.5 GPa or less.
  • This bending elastic modulus is more preferably 1.3 GPa or less, and still more preferably 1.2 GPa or less.
  • the flexural modulus varies depending on the type and amount of acrylic resin and rubber elastic particles in the film. For example, the greater the rubber elastic particle content, the lower the flexural modulus. In general, the flexural modulus is smaller when a copolymer of alkyl methacrylate and alkyl acrylate is used than when a homopolymer of alkyl methacrylate is used as the acrylic resin.
  • cellulose ester resin used in the present invention examples include triacetyl cellulose (TAC), cellulose acetate propionate, cellulose diacetate, and cellulose acetate butyrate.
  • polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polycarbonate resins, polyolefin resins such as polyethylene and polypropylene, norbornene resins, fluororesins, cycloolefin resins, and the like may be used in combination.
  • the cellulose ester used in the polarizing plate protective film of the present invention is preferably a carboxylic acid ester having about 2 to 22 carbon atoms, and may be an ester of an aromatic carboxylic acid or a lower fatty acid ester of cellulose. is preferred.
  • the "lower fatty acid” in the lower fatty acid ester of cellulose means a fatty acid having 6 or less carbon atoms.
  • the acyl group bonded to the hydroxy group of the glucose unit constituting the cellulose ester may be a linear hydrocarbon group, a branched hydrocarbon group, or a cyclic hydrocarbon group.
  • the acyl group may be substituted with another substituent.
  • the group preferably has 2 to 6 carbon atoms, more preferably 2 to 4 carbon atoms, and still more preferably 2 to 3 carbon atoms.
  • acyl groups derived from mixed acids can also be used for the cellulose ester.
  • acyl groups having 2 and 3 carbon atoms or acyl groups having 2 and 4 carbon atoms are used.
  • Specific examples of such cellulose esters include cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate, and other mixed fatty acid esters of cellulose in which propionate groups or butyrate groups are bonded in addition to acetyl groups. can be used.
  • the butyryl group forming the butyrate may be linear or branched.
  • the cellulose ester is preferably cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, or cellulose acetate phthalate.
  • the retardation value of the protective film can be appropriately controlled by the type of acyl group contained in the cellulose ester and the degree of substitution of the acyl group to the pyranose ring of the cellulose resin skeleton.
  • the substituents that bind to the hydroxy groups of the glucose units that constitute the cellulose ester used in the protective film preferably satisfy the following formulas (a) and (b) at the same time.
  • X is the degree of substitution of the acetyl group
  • Y is the degree of substitution of the propionyl or butyryl group.
  • cellulose esters triacetyl cellulose and cellulose acetate propionate are preferably used.
  • Cellulose acetate propionate has an acetyl group substitution degree X of 1.0 ⁇ X ⁇ 2.5 and 0.1 ⁇ Y ⁇ 1.5 and 2.0 ⁇ X+Y ⁇ 3.0. preferable.
  • the method for measuring the degree of substitution of acyl groups can be measured according to ASTM-D817-96. If the degree of substitution with the acyl group is too low, the hydroxy groups of the pyranose ring constituting the skeleton of the cellulose resin will have many unreacted portions, and many of the hydroxy groups will remain. For this reason, the retardation value of the polarizing plate protective film changes depending on humidity, which is not preferable, and the ability of the polarizing plate protective film to protect the polarizer layer is lowered, which is not preferable.
  • the number average molecular weight of the cellulose ester is preferably 60,000 to 300,000, more preferably 70,000 to 200,000.
  • the mechanical strength of the polarizing plate protective film can be enhanced.
  • the number average molecular weight of this cellulose ester a value measured by high performance liquid chromatography under the following conditions is adopted.
  • Solvent Acetone Column: MPW ⁇ 1 (manufactured by Tosoh Corporation) Sample concentration: 0.2 (mass/volume)% Flow rate: 1.0 mL/min Sample injection volume: 300 ⁇ L Standard sample: Standard polystyrene Temperature: 23°C
  • the synthesis of the cellulose ester can be prepared by a conventional method.
  • the cellulose used as the raw material for the cellulose ester is not particularly limited, but cotton linter, wood pulp, kenaf and the like can be mentioned. Also, cellulose esters obtained from these materials may be mixed in an arbitrary ratio and used.
  • an acid anhydride such as acetic anhydride, propionic anhydride, or butyric anhydride
  • the reaction occurs with an organic acid such as acetic acid or an organic solvent such as dichloromethane and a protic catalyst such as sulfuric acid.
  • a protic catalyst such as sulfuric acid.
  • acid chlorides CH 3 COCl, C 2 H 5 COCl, C 3 H 7 COCl
  • basic compounds such as amines are used as catalysts.
  • Acylation of cellulose raw materials can be synthesized by the method described in JP-A-10-45804.
  • the polarizing plate protective film of the invention may further contain other additives such as antioxidants, plasticizers, fine particles, antistatic agents, release agents, and thickeners. Among them, from the viewpoint of further enhancing the effects of the present invention, it is preferable to use an antioxidant and fine particles.
  • the polarizing plate protective film of the invention preferably contains an antioxidant.
  • Antioxidants are also called anti-deterioration agents, and play a role in delaying or preventing decomposition of the film due to, for example, halogen in the amount of residual solvent in the film and phosphoric acid in the phosphoric acid-based plasticizer.
  • the effect of sharpening the light absorption waveform of the dye compound can be obtained.
  • an antioxidant a hindered phenol-based compound is particularly preferable.
  • the hindered phenol-based compound and the dye compound according to the present invention have a high affinity, and their interaction tends to make the light absorption waveform sharper, It has the effect of suppressing light absorption on the long wavelength side and suppressing light emission loss.
  • hindered phenol antioxidants examples include 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4 -hydroxyphenyl)propionate], triethylene glycol-bis[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-(3,5- di-t-butyl-4-hydroxyphenyl)propionate], 2,4-bis-(n-octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5- Triazine, 2,2-thio-diethylenebis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], octadecyl-3-(3,5-di-t-butyl-4-hydroxy phenyl)propionate
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], triethylene glycol-bis[3 -(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate] is preferred.
  • hydrazine-based metal deactivators such as N,N'-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyl]hydrazine and tris(2,4-di- Phosphorus-based processing stabilizers such as t-butylphenyl)phosphite may be used in combination.
  • the amount of these compounds added is 5% by mass or less, preferably 2% by mass or less, more preferably 0.5 to 1% by mass based on 100% by mass of the resin.
  • the polarizing plate protective film of the invention preferably contains fine particles.
  • fine particles used in the present invention include inorganic compounds such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, and hydrated silicic acid. Mention may be made of calcium, aluminum silicate, magnesium silicate and calcium phosphate. Fine particles of organic compounds can also be preferably used. Examples of organic compounds include polytetrafluoroethylene, cellulose acetate, polystyrene, polymethyl methacrylate, polypropyl methacrylate, polymethyl acrylate, polyethylene carbonate, acrylic styrene resins, silicone resins, polycarbonate resins, benzoguanamine resins, and melamine resins.
  • inorganic compounds such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, and hydrated silicic acid. Mention may be
  • polyolefin-based powder polyester-based resin, polyamide-based resin, polyimide-based resin, polyfluoroethylene-based resin, and pulverized classified products of organic polymer compounds such as starch.
  • a polymer compound synthesized by a suspension polymerization method, a polymer compound formed into a spherical shape by a spray drying method, a dispersion method, or the like, or an inorganic compound can be used.
  • the average particle diameter of the primary particles of the fine particles is preferably in the range of 5 to 400 nm, more preferably in the range of 10 to 300 nm.
  • These may be mainly contained as secondary aggregates with a particle size in the range of 0.05 to 0.3 ⁇ m, and particles with an average particle size in the range of 100 to 400 nm are included as primary particles without agglomeration. It is also preferred that
  • Fine particles containing silicon are preferable in terms of lowering the turbidity of the film, and silicon dioxide is particularly preferable. Fine particles of silicon dioxide are commercially available, for example, under the trade names of Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, and TT600 (manufactured by Nippon Aerosil Co., Ltd.), and can be used. can.
  • silicon-containing fine particles have a high affinity with the dye compound according to the present invention, and when used together, the light absorption waveform becomes sharper, the light absorption on the long wavelength side is suppressed, and the light emission loss of the display device is suppressed. can do.
  • the silicon-containing particles R812 or R972 is particularly preferable. Silicon-containing particles with higher hydrophobicity have a high affinity with the dye compound according to the present invention, and the interaction between them has the effect of reducing the emission loss. can get.
  • fine particles may be used singly or in combination of two or more.
  • the content of the fine particles is 10% by mass or less, preferably 5% by mass or less, more preferably 0.5 to 2% by mass or less with respect to 100% by mass of the resin.
  • in order to add fine particles in the manufacturing process it is preferable to perform mixing by in-line addition.
  • An in-line mixer or the like is preferably used.
  • the polarizing plate protective film of the present invention can also contain an ultraviolet absorber as another dye compound, if necessary.
  • the "ultraviolet absorber” is preferably a compound having a maximum absorption wavelength in the range of 300 to 359 nm in the absorption spectrum in the wavelength range of 300 to 460 nm, and the maximum absorption wavelength is in the wavelength range of 300 to 359 nm. It is not particularly limited as long as it exists.
  • ultraviolet absorbers examples include triazine-based ultraviolet absorbers, benzotriazole-based ultraviolet absorbers, benzophenone-based ultraviolet absorbers, oxybenzophenone-based ultraviolet absorbers, salicylic acid ester-based ultraviolet absorbers, cyanoacrylate-based ultraviolet absorbers, and the like. These can be used singly or in combination of two or more.
  • triazine-based UV absorbers and benzotriazole-based UV absorbers are preferred, triazine-based UV absorbers having two or less hydroxy groups in one molecule, and benzotriazole having one benzotriazole skeleton in one molecule.
  • At least one UV absorber selected from the group consisting of triazole-based UV absorbers is preferred.
  • These ultraviolet absorbers are preferred because they have good solubility in resin components such as base polymers, which are film-forming components of optical films containing the ultraviolet absorbers.
  • these ultraviolet absorbers are preferable because they have a high ability to absorb ultraviolet light at a wavelength of around 380 nm.
  • triazine-based UV absorbers having two or less hydroxy groups in one molecule include 2,4-bis-[ ⁇ 4-(4-ethylhexyloxy)-4-hydroxy ⁇ -phenyl]-6 -(4-methoxyphenyl)-1,3,5-triazine (Tinosorb S, manufactured by BASF), 2,4-bis[2-hydroxy-4-butoxyphenyl]-6-(2,4-dibutoxyphenyl )-1,3,5-triazine (TINUVIN 460, manufactured by BASF), 2-(4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl)-5- Reaction products of hydroxyphenyl and [(C10-C16 (mainly C12-C13) alkyloxy)methyl]oxirane (TINUVIN 400, manufactured by BASF), 2-[4,6-bis(2,4-dimethylphenyl) -1,3,5-triazin-2-yl]-5-[3-(
  • benzotriazole-based UV absorber having one benzotriazole skeleton in one molecule, 2-(2H-benzotriazol-2-yl)-6-(1-methyl-1-phenylethyl)-4- (1,1,3,3-tetramethylbutyl) phenol (TINUVIN 928, manufactured by BASF), 2-(2-hydroxy-5-tert-butylphenyl)-2H-benzotriazole (TINUVIN PS, manufactured by BASF) , an ester compound (TINUVIN 384- 2, manufactured by BASF), 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (TINUVIN 900, manufactured by BASF), methyl-3-( 3-(2H-benzotriazol-2-yl)-5-t-butyl-4-hydroxyphenyl)propionate/polyethylene glycol 300 reaction product (TINUVIN 1130, manufactured by BASF), 2-(2H-benzo
  • benzophenone-based ultraviolet absorber (benzophenone-based compound) and oxybenzophenone-based ultraviolet absorber (oxybenzophenone-based compound)
  • examples of the benzophenone-based ultraviolet absorber (benzophenone-based compound) and oxybenzophenone-based ultraviolet absorber (oxybenzophenone-based compound) include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy -4-methoxybenzophenone-5-sulfonic acid (anhydrous and trihydrate), 2-hydroxy-4-octyloxybenzophenone, 4-dodecyloxy-2-hydroxybenzophenone, 4-benzyloxy-2-hydroxybenzophenone, 2, 2',4,4'-tetrahydroxybenzophenone, 2,2'-dihydroxy-4,4-dimethoxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone (SeeSorb 106, manufactured by Shipro Kasei Co., Ltd.)
  • salicylic acid ester-based ultraviolet absorber examples include phenyl-2-acryloyloxybenzoate, phenyl-2-acryloyloxy-3-methylbenzoate, and phenyl-2-acryloyl.
  • oxy-4-methylbenzoate phenyl-2-acryloyloxy-5-methylbenzoate, phenyl-2-acryloyloxy-3-methoxybenzoate, phenyl-2-hydroxybenzoate, phenyl-2- hydroxy-3-methylbenzoate, phenyl-2-hydroxy-4-methylbenzoate, phenyl-2-hydroxy-5-methylbenzoate, phenyl 2-hydroxy-3-methoxybenzoate, 2,4-di- tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (TINUVIN120, manufactured by BASF) and the like can be mentioned.
  • TINUVIN120 2,4-di- tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate
  • cyanoacrylate-based ultraviolet absorbers examples include alkyl-2-cyanoacrylates, cycloalkyl-2-cyanoacrylates, alkoxyalkyl-2-cyanoacrylates, alkenyl-2-cyanoacrylates, alkynyl- 2-cyanoacrylate and the like can be mentioned.
  • the ultraviolet absorbers may be used alone or in combination of two or more.
  • the content of the ultraviolet absorber is shown as parts by mass of the ultraviolet absorber with respect to 100 parts by mass of the resin component that is the film-forming component of the optical film.
  • the content of the ultraviolet absorber with respect to 100 parts by weight of the constituent resin of the optical film is preferably in the range of 0.1 to 8 parts by weight, and 0.5 parts by weight. It is more preferably within the range of to 5 parts by mass.
  • the ultraviolet absorber-containing layer can sufficiently exhibit the ultraviolet absorbing function, which is preferable. Then, when the polarizing plate used in the present invention is used in an organic EL display device, the compound (D) is contained, and an ultraviolet absorber is further contained, thereby functioning to protect the organic EL display element from external light. Therefore, the quality of the organic EL display device is maintained for a long period of time.
  • the film forming method is preferably a solution casting method or a melt casting method from the viewpoint of suppressing coloring, suppressing foreign matter defects, suppressing optical defects such as die lines, etc., particularly the solution casting method. This is more preferable from the viewpoint of imparting high functionality by using various additives because the temperature in the processing step is low.
  • the "solution casting method" preferred for the present invention will be described below.
  • a production method including the following steps (1) to (3) is used to produce the polarizing plate protective film by the solution casting method. Further, the production method preferably has step (4).
  • Step of obtaining a dope containing a film-forming component containing a thermoplastic resin, a compound (D) to be added, optional additives and a solvent (2) After casting the obtained dope on a support , drying and peeling to obtain a film-like material (3) drying the obtained film-like material while stretching as necessary (4) winding the obtained polarizing plate protective film and rolling it the process of getting a body
  • a dope is prepared by dissolving or dispersing in a solvent film-forming components containing a thermoplastic resin, compound (D) to be added, and additives such as antioxidants and fine particles.
  • the solvent used for the dope contains at least an organic solvent (good solvent) capable of dissolving the thermoplastic resin.
  • the organic solvent preferably has high solubility for these additives.
  • good solvents include chlorinated organic solvents such as dichloromethane; and non-chlorinated organic solvents such as methyl acetate, ethyl acetate, acetone, tetrahydrofuran. Among them, dichloromethane is preferred.
  • the solvent used for the dope may further contain a poor solvent.
  • poor solvents include linear or branched aliphatic alcohols having 1 to 4 carbon atoms. When the ratio of alcohol in the dope becomes high, the film-like material tends to gel and is easily peeled off from the metal support.
  • linear or branched aliphatic alcohols having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol and tert-butanol. Of these, ethanol is preferred because of its dope stability, relatively low boiling point, and good drying properties.
  • Step (2) The obtained dope is cast on a support. Casting of the dope can be performed by discharging from a casting die.
  • the solvent in the dope cast on the support is evaporated and dried.
  • the dried dope is peeled off from the support to obtain a film.
  • the amount of residual solvent in the dope when peeled off from the support (the amount of residual solvent in the film-like substance when peeled) is, for example, preferably 20% by mass or more, more preferably 20 to 30% by mass.
  • the residual solvent amount at the time of peeling is 30% by mass or less, it is easy to suppress excessive stretching of the film-like material due to peeling.
  • the amount of residual solvent in the dope at the time of peeling is defined by the following formula. The same applies to the following.
  • the amount of residual solvent at the time of peeling can be adjusted by the drying temperature and drying time of the dope on the support, the temperature of the support, and so on.
  • Step (3) The resulting film-like material is dried. Drying may be performed in one step or in multiple steps. Moreover, you may perform drying, extending
  • the drying process of the film-like material includes a process of pre-drying the film-like material (pre-drying process), a process of stretching the film-like material (stretching process), and a process of drying the film-like material after stretching (main drying process). drying step).
  • the pre-drying temperature (drying temperature before stretching) can be higher than the stretching temperature.
  • the glass transition temperature of the thermoplastic resin is Tg, it is preferably (Tg-50) to (Tg+50)°C.
  • the pre-drying temperature is (Tg-50) ° C. or higher, the solvent is easily volatilized appropriately, so it is easy to improve the transportability (handling property). , the stretchability in the subsequent stretching process is less likely to be impaired.
  • the initial drying temperature can be measured as (a) the temperature inside the stretching machine or the ambient temperature such as the temperature of hot air when the film is dried by non-contact heating while being conveyed by a tenter stretching machine or rollers.
  • the stretching may be carried out according to the required optical properties, for example, the retardation value, preferably in at least one direction, and in two directions perpendicular to each other (for example, the width direction (TD direction) of the film). and biaxial stretching in the transport direction (MD direction) orthogonal thereto).
  • the draw ratio when producing the polarizing plate protective film is preferably 5 to 100%, more preferably 20 to 100%.
  • the stretching ratio in each direction is preferably within the above ranges.
  • the stretch ratio (%) is defined as (stretching direction size of the film after stretching ⁇ stretching direction size of the film before stretching)/(stretching direction size of the film before stretching) ⁇ 100.
  • the stretching temperature (drying temperature during stretching) is preferably Tg (° C.) or higher, where Tg is the glass transition temperature of the thermoplastic resin, and is (Tg+10) to (Tg+50)° C. is more preferable.
  • Tg glass transition temperature of the thermoplastic resin
  • Tg+10° C. or higher the solvent is easily volatilized appropriately, so that the stretching tension is easily adjusted to an appropriate range. does not volatilize too much, so stretchability is less likely to be impaired.
  • the stretching temperature during production of the polarizing plate protective film can be, for example, 115° C. or higher.
  • the stretching temperature it is preferable to measure (a) the ambient temperature such as the temperature inside the stretching machine, as described above.
  • the amount of residual solvent in the filmy material at the start of stretching is preferably about the same as the amount of residual solvent in the filmy material at the time of peeling, for example, preferably 20 to 30% by mass, preferably 25 to 30% by mass. % is more preferable.
  • Stretching in the TD direction (width direction) of the film can be performed, for example, by fixing both ends of the film with clips or pins and widening the distance between the clips or pins in the direction of travel (tenter method).
  • the film-like material can be stretched in the MD direction, for example, by a method (roll method) in which a plurality of rolls are provided with different peripheral speeds and the difference in peripheral speeds of the rolls is utilized.
  • the main drying temperature (drying temperature when not stretched) is preferably (Tg-50) to (Tg-30) ° C., where Tg is the glass transition temperature of the thermoplastic resin, and (Tg-40). ⁇ (Tg-30)°C is more preferable.
  • Tg glass transition temperature of the thermoplastic resin
  • Tg-40 glass transition temperature of the thermoplastic resin
  • Tg-40 glass transition temperature of the thermoplastic resin
  • Tg-40 glass transition temperature of the thermoplastic resin
  • ⁇ (Tg-30)°C is more preferable.
  • the post-drying temperature is (Tg-50)° C. or higher, the solvent can be sufficiently volatilized and removed from the film after stretching. can be suppressed to As for the actual drying temperature, it is preferable to measure (a) the ambient temperature such as the hot air temperature, as described above.
  • the obtained polarizing plate protective film is preferably elongated.
  • a long polarizing plate protective film is wound into a roll to form a roll.
  • the length of the long polarizing plate protective film is not particularly limited, but can be, for example, about 100 to 10,000 m.
  • the width of the polarizing plate protective film is preferably 1 m or more, more preferably 1.3 to 4 m.
  • the thickness of the polarizing plate protective film can be determined as appropriate, but in general, it is preferably within the range of 1 to 500 ⁇ m from the viewpoints of strength, workability such as handleability, and thinness.
  • the thickness of the polarizing plate protective film is more preferably in the range of 5 to 50 ⁇ m, still more preferably in the range of 10 to 45 ⁇ m.
  • the dye compound according to the present invention has improved compatibility with resins, does not cause bleeding out or whitening, and has improved durability. It can also be preferably applied to a thin polarizing plate protective film.
  • a thin polarizing plate can be produced using a thin polarizing plate protective film (hereinafter also referred to as a “thin polarizing plate protective film”).
  • a method for producing a thin polarizing plate protective film includes the steps of: 1) obtaining a thin polarizing plate protective film solution; and 3) removing the solvent from the thin polarizing plate protective film solution to form a thin polarizing plate protective film.
  • Step of obtaining solution for thin polarizing plate protective film The step of obtaining the solution for thin polarizing plate protective film is the same as the step of preparing the aforementioned "dope", and reference can be made to it.
  • the obtained solution for thin film polarizing plate protective film is applied to the surface of the support.
  • the obtained thin film polarizing plate protective film solution is applied to the surface of the support.
  • a laminate of a support and a thin film polarizing plate protective film is also referred to as a "laminate film".
  • the support supports the formation of the protective film for the thin polarizing plate, and usually contains a resin film.
  • the film thickness of the support is preferably 50 ⁇ m or less.
  • the film thickness of the support is preferably in the range of 15 to 45 ⁇ m, more preferably in the range of 20 to 40 ⁇ m, since the support is thin but requires a certain degree of strength (elasticity and rigidity).
  • resins examples include cellulose ester-based resins, cyclic olefin-based resins, polypropylene-based resins, acrylic-based resins, polyester-based resins, polyarylate-based resins, and styrene-based resins or composite resins thereof. It is preferable to use a polyester-based resin as a resin that is excellent in storage stability under a humid environment.
  • polyester resins examples include polyester resins (e.g., polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), etc.). and so on.
  • PET polyethylene terephthalate
  • PBT polytrimethylene terephthalate
  • PEN polybutylene terephthalate
  • PBN polybutylene naphthalate
  • a polyester resin film containing polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is preferable from the viewpoint of ease of handling.
  • the resin film may be heat-treated (heat-relaxed) or stretched.
  • the heat treatment is for reducing the residual stress of the resin film (for example, the residual stress associated with stretching), and is not particularly limited. Tg+180)°C.
  • the purpose of the stretching treatment is to increase the residual stress of the resin film, and the stretching treatment is preferably carried out, for example, in the biaxial directions of the resin film.
  • the stretching treatment can be performed under arbitrary conditions, for example, at a stretching ratio of about 120 to 900%. Whether or not the resin film is stretched can be confirmed by checking, for example, whether or not there is an in-plane slow axis (an axis extending in the direction in which the refractive index is maximized).
  • the stretching treatment may be performed before laminating the thin polarizing plate protective film or after lamination, but it is preferable that the film is stretched before lamination.
  • polyester resin film (simply referred to as a polyester film).
  • polyethylene terephthalate film TN100 (manufactured by Toyobo Co., Ltd.), MELINEX ST504 (manufactured by Teijin DuPont Films Ltd.), etc. are preferably used. can be done.
  • the support may further have a release layer provided on the surface of the resin film.
  • the release layer can facilitate peeling of the support from the thin film polarizing plate protective film when the polarizing plate is produced.
  • the release layer may contain a known release agent, and is not particularly limited.
  • release agents contained in the release layer include silicone release agents and non-silicone release agents.
  • silicone-based release agents include known silicone-based resins.
  • non-silicone release agents include long-chain alkyl pendant polymers obtained by reacting polyvinyl alcohol or ethylene-vinyl alcohol copolymer with long-chain alkyl isocyanate, olefin-based resins (e.g.
  • copolymerized polyethylene cyclic polyolefin, polymethylpentene
  • polyarylate resin e.g., polycondensate of aromatic dicarboxylic acid component and dihydric phenol component
  • fluororesin e.g., polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), PFA (copolymer of tetrafluoroethylene and perfluoroalkoxyethylene
  • FEP copolymer of tetrafluoroethylene and hexafluoropropylene
  • ETFE copolymer of tetrafluoroethylene and ethylene
  • the thickness of the release layer is not particularly limited as long as it can exhibit the desired releasability.
  • the support may contain a plasticizer as an additive.
  • a plasticizer is not particularly limited, polyhydric alcohol ester plasticizers, phthalate ester plasticizers, citric acid plasticizers, fatty acid ester plasticizers, phosphate ester plasticizers, polycarboxylic ester plasticizers It is preferably selected from the following: agents, polyester plasticizers, and the like.
  • the support can contain the above-mentioned ultraviolet absorber and fine particles.
  • the film forming method is preferably a solution casting method or a melt casting method. Furthermore, the solution casting method requires a low temperature in the processing step, so that various additives can be used to impart high functionality.
  • the thin film polarizing plate protective film of the present invention by the following method using the support produced as described above.
  • the method of applying the solution for a thin polarizing plate protective film is not particularly limited, and may be a known method such as a back roll coating method, a gravure coating method, a spin coating method, a wire bar coating method, or a roll coating method.
  • the back coating method is preferable from the viewpoint of forming a coating film having a thin and uniform film thickness.
  • Step 3 Step of forming a thin polarizing plate protective film
  • the solvent is removed from the thin polarizing plate protective film solution applied to the support to form a thin polarizing plate protective film.
  • the thin film polarizing plate protective film solution applied to the support is dried. Drying can be carried out, for example, by blowing air or heating. Above all, from the viewpoint of facilitating the suppression of curling of the protective film for thin polarizing plate, it is preferable to dry the film by blowing air.
  • the length of the strip-shaped thin film polarizing plate protective film is not particularly limited, but can be, for example, about 100 to 10,000 m.
  • the width of the strip-shaped laminated film is preferably 1 m or more, more preferably 1.1 to 4 m. From the viewpoint of improving the uniformity of the film, it is more preferably 1.3 to 2.5 m.
  • the thin film polarizing plate protective film used in the present invention can be manufactured, for example, by the manufacturing apparatus shown in FIG.
  • FIG. 4 is a schematic diagram of a manufacturing apparatus B200 for carrying out the method for manufacturing a thin polarizing plate protective film according to the present embodiment.
  • the manufacturing apparatus B200 has a supply section B210, a coating section B220, a drying section B230, a cooling section B240, and a winding section B250.
  • Ba to Bd indicate transport rolls that transport the support B110.
  • the supply unit B210 has a feeding device (not shown) that feeds out the roll B201 of the strip-shaped support B110 wound around the winding core.
  • the coating unit B220 is a coating device comprising a backup roll B221 that holds the support B110, a coating head B222 that coats the support B110 held by the backup roll B221 with a solution for a thin polarizing plate protective film, and a coating head B222. and a decompression chamber B223 provided upstream of the head B222.
  • the flow rate of the thin film polarizing plate protective film solution discharged from the coating head B222 can be adjusted by a pump (not shown).
  • the flow rate of the thin film polarizing plate protective film solution discharged from the coating head B222 is set to an amount that can stably form a coating layer of a predetermined thickness when continuously coating under the conditions of the coating head B222 adjusted in advance.
  • the decompression chamber B223 is a mechanism for stabilizing a bead (collection of coating solution) formed between the solution for thin polarizing plate protective film from the coating head B222 and the support B110 during coating. It is adjustable.
  • the decompression chamber B223 is connected to a decompression blower (not shown) so that the inside is decompressed.
  • the decompression chamber B223 is in a state without air leakage, and the gap with the backup roll is adjusted to be narrow, so that a stable bead of the coating liquid can be formed.
  • the drying section B230 is a drying device that dries the coating film applied to the surface of the support B110, and has a drying chamber B231, a drying gas inlet B232, and an outlet B233.
  • the temperature and air volume of the drying air are appropriately determined according to the type of coating film and the type of support B110.
  • the amount of residual solvent in the coating film after drying can be adjusted.
  • the amount of residual solvent in the coating film after drying can be measured by comparing the unit mass of the coating film after drying with the mass after sufficiently drying the coating film.
  • the solvent derived from the solution may remain.
  • the amount of residual solvent depends on the solvent used, the concentration of the coating solution, the wind speed applied to dry the protective film for the thin polarizer, the drying temperature and time, the conditions of the drying chamber (outside air or inside air circulation), the heating temperature of the back roll during coating, etc. controllable.
  • the residual solvent amount of the thin polarizing plate protective film preferably satisfies the following inequality 1 , where S1 is the residual solvent amount of the thin polarizing plate protective film.
  • the amount of residual solvent in the thin film polarizing plate protective film is more preferably less than 800 ppm, more preferably 500 to less than 700 ppm, considering the curl balance of the thin film polarizing plate protective film. Further, by selecting a solvent and a coating process in which the solvent remains on the support, the adhesiveness between the support and the protective film for thin polarizing plate is improved.
  • the residual solvent content of the support is preferably in the range of 10 to 100 ppm.
  • the amount of residual solvent in the support and thin polarizing plate protective film can be measured by headspace gas chromatography.
  • a sample is sealed in a container, heated, and with the container filled with volatile components, the gas in the container is quickly injected into the gas chromatograph, and mass spectrometry is performed to identify the compound. Volatile components are quantified while the measurement is being carried out.
  • the headspace method makes it possible to observe all peaks of volatile components by gas chromatograph, and quantifies volatile substances and monomers with high accuracy by using an analytical method that uses electromagnetic interaction. It can be done together.
  • the cooling section B240 cools the support B110 having the coating film (thin film polarizing plate protective film) obtained by drying in the drying section B230 to adjust the temperature to an appropriate temperature.
  • the cooling part B240 has a cooling chamber B241, a cooling air inlet B242, and a cooling air outlet B243.
  • the temperature and air volume of the cooling air can be appropriately determined according to the type of coating film and the type of support B110. In addition, if the proper cooling temperature can be obtained without providing the cooling part B240, the cooling part B240 may be omitted.
  • the winding unit B250 is a winding device (not shown) for winding the support B110 on which the thin polarizing plate protective film is formed to obtain a roll B251.
  • the polarizer layer is an element layer that transmits only light with a plane of polarization in a certain direction.
  • a hydrophilic polymer film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, an ethylene/vinyl acetate copolymer system partially saponified film, and a dichroic dye such as iodine or a dichroic dye are applied.
  • oriented polyene films such as dehydrated polyvinyl alcohol and dehydrochlorinated polyvinyl chloride.
  • a polarizer layer composed of a polyvinyl alcohol-based film and a dichroic substance such as iodine is suitable.
  • the thickness of these polarizer layers is not particularly limited, it is generally about 5 to 80 ⁇ m.
  • a polarizer layer obtained by dyeing a polyvinyl alcohol-based film with iodine and uniaxially stretching it can be produced, for example, by dyeing polyvinyl alcohol by immersing it in an aqueous solution of iodine and stretching it to 3 to 7 times its original length. . It can also be immersed in an aqueous solution of potassium iodide or the like, which may contain boric acid, zinc sulfate, zinc chloride or the like, if necessary. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed with water before dyeing.
  • Stretching may be performed after dyeing with iodine, stretching may be performed while dyeing, or dyeing with iodine may be performed after stretching. It can also be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • a thin polarizer layer having a thickness of 10 ⁇ m or less can also be used. From the viewpoint of thinning, the thickness is preferably 1 to 7 ⁇ m. Such a thin polarizer layer has less unevenness in thickness, excellent visibility, and less dimensional change, so it has excellent durability, and it is preferable that the thickness of the polarizing film can be reduced.
  • a thin polarizer layer typically, JP-A-51-069644, JP-A-2000-338329, International Publication No. 2010/100917, International Publication No. 2010/100917, or Japanese Patent No. 4751481
  • These thin polarizing films can be obtained by a manufacturing method including a step of stretching a laminate of a polyvinyl alcohol-based resin (hereinafter also referred to as a PVA-based resin) layer and a stretching resin substrate, and a step of dyeing. According to this manufacturing method, even if the PVA-based resin layer is thin, it can be stretched without problems such as breakage due to stretching because it is supported by the stretching resin substrate.
  • the thin polarizing film among the production methods including the step of stretching and the step of dyeing in the state of a laminate, in that it can be stretched at a high magnification and can improve the polarizing performance, International Publication 2010/100917, International Publication No. 2010/100917, or those obtained by a manufacturing method including a step of stretching in an aqueous boric acid solution as described in Japanese Patent No. 4751481 or Japanese Patent Application Laid-Open No. 2012-073563, particularly Japanese Patent No. 4751481. It is preferably obtained by a production method including a step of auxiliary stretching in the air before stretching in an aqueous boric acid solution, as described in Japanese Patent Application Laid-Open No. 2012-073563.
  • Retardation Film Any retardation film that has retardation and can function as an optical compensation layer can be used. When a transparent film having a retardation is used, the retardation property can be appropriately adjusted to a value required for optical compensation.
  • nx is the refractive index in the in-plane slow axis direction
  • ny is the refractive index in the in-plane fast axis direction
  • nz is the refractive index in the thickness direction
  • nx ny >nz
  • nx>ny nz
  • nx>nz>ny nz>nx>ny
  • nz>nx ny
  • the retardation film is preferably a 1/4 wavelength plate with in-plane retardation of 1/4 wavelength (about 100 to 170 nm).
  • the retardation film By laminating a polarizer layer and a quarter-wave plate (retardation film), it functions as an antireflection circularly polarizing plate of an organic EL display device, which is preferable.
  • This linearly polarized light is generally elliptically polarized by the retardation film, but is circularly polarized especially when the retardation film is a quarter-wave plate and the angle formed by the polarization direction with the retardation film is ⁇ /4.
  • This circularly polarized light passes through the transparent substrate, transparent electrode, and organic thin film in the organic EL panel, is reflected by the metal electrode, passes through the organic thin film, transparent electrode, and transparent substrate again, and is again linearly polarized by the retardation film. becomes. Since this linearly polarized light is orthogonal to the polarization direction of the polarizer layer, it cannot pass through the polarizer layer. As a result, the mirror surfaces of the metal electrodes can be completely shielded.
  • thermoplastic resin the same thermoplastic resins as those described as the constituent material of the polarizing plate protective film can be used.
  • the retardation film may contain other additives such as fine particles, retardation modifiers, antioxidants, plasticizers, antistatic agents, release agents, and thickeners within a range that does not impair the effects of the present embodiment. good.
  • the retardation film may be a single layer or a laminated film of two or more layers.
  • the thermoplastic resin used for forming each layer may be the same or different.
  • the method for producing the laminated film conventionally known methods can be applied without particular limitation.
  • thermoplastic resin used for forming the retardation film a polycarbonate resin is preferably used in addition to the cycloolefin resin, cellulose ester resin, and acrylic resin described above. In particular, it is preferable to use a polycarbonate resin when producing an obliquely stretched film, which will be described later.
  • a combination of a cellulose ester resin and a polycarbonate resin layer is preferable.
  • polycarbonate resin As the polycarbonate resin, various ones can be used without particular limitation. From the viewpoint of chemical properties and physical properties, aromatic polycarbonate resins are preferable, and polycarbonates having a fluorene skeleton and bisphenol A-based polycarbonate resins are particularly preferable. Among them, a bisphenol A derivative obtained by introducing a benzene ring, a cyclohexane ring, an aliphatic hydrocarbon group, or the like into bisphenol A is more preferable. Further, a polycarbonate resin having a structure in which the anisotropy within the unit molecule is reduced, which is obtained by using a derivative in which the functional group is introduced asymmetrically with respect to the central carbon of bisphenol A, is particularly preferred.
  • polycarbonate resins examples include those in which two methyl groups at the central carbon of bisphenol A are replaced with benzene rings, and hydrogen at each benzene ring position of bisphenol A replaced by a methyl group or a phenyl group at the center.
  • Polycarbonate resins obtained by using asymmetric substitution with respect to carbon are particularly preferred. Specifically, those obtained from 4,4'-dihydroxydiphenylalkanes or halogen-substituted derivatives thereof by the phosgene method or transesterification method, such as 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenyl ethane, 4,4'-dihydroxydiphenylbutane and the like.
  • the retardation film can be produced by a known molding method such as a melt casting method, a solution casting method, a calendering method, and the like, similarly to the polarizing plate protective film described above.
  • a melt casting method or a solution casting method is preferably used, and a solution casting method is particularly preferred.
  • the retardation film can be produced using a resin and optional additives in the step of obtaining the dope in (1) in the solution casting method described for the polarizing plate protective film. Further, in the solution casting method described for the polarizing plate protective film, the film substrate obtained in the step (3) or (4) can be further obliquely stretched by the following method to obtain a retardation film. .
  • FIG. 5 is a plan view schematically showing the general configuration of the obliquely stretched film manufacturing apparatus 80.
  • FIG. 6 is a plan view schematically showing an example of the rail pattern of the stretching section provided in the obliquely stretched film manufacturing apparatus 80.
  • the manufacturing apparatus 80 includes, in order from the upstream side in the transport direction of the film substrate, a film feeding section 81, a transport direction changing section 82, a guide roll 83, a stretching section 84, a guide roll 85, and a transport direction changing section 86. , and a film winding section 87 .
  • the film feeding section 81 feeds the film base material produced as described above and supplies it to the stretching section 84 .
  • the conveying direction changing section 82 changes the conveying direction of the film substrate fed out from the film feeding section 81 to the direction toward the entrance of the stretching section 84 as an oblique stretching tenter.
  • At least one guide roll 83 is provided on the upstream side of the stretching section 84 in order to stabilize the trajectory of the film substrate during travel.
  • At least one guide roll 85 is provided on the downstream side of the stretching section 84 in order to stabilize the trajectory of the film diagonally stretched in the stretching section 84 during running.
  • the conveying direction changing section 86 changes the conveying direction of the stretched film conveyed from the stretching section 84 to the direction toward the film winding section 87 .
  • the film winding section 87 winds up the film transported from the stretching section 84 via the transport direction changing section 86 .
  • the details of the extending portion 84 will be described with reference to FIG.
  • the obliquely stretched film can be produced, for example, by using a tenter (diagonal stretching machine) capable of obliquely stretching as shown in FIG.
  • This tenter is a device that heats a film substrate to an arbitrary stretchable temperature and stretches it obliquely. and a large number of grippers Ci and Co (only one set of grippers is shown in FIG. 6) for transporting the film. Details of the heating zone Z will be described later.
  • Each of the rails Ri and Ro is configured by connecting a plurality of rail portions with connecting portions (white circles in FIG. 6 are examples of connecting portions).
  • the grippers Ci and Co consist of clips that grip both ends of the film in the width direction.
  • the feeding direction D1 of the film substrate is different from the winding direction D2 of the long diagonally stretched film after stretching, and forms a feeding angle ⁇ i with the winding direction D2.
  • the delivery angle ⁇ i can be arbitrarily set to a desired angle within a range of more than 0° and less than 90°.
  • the rail pattern of the tenter has a left-right asymmetrical shape.
  • the rail pattern can be manually or automatically adjusted according to the orientation angle ⁇ given to the long obliquely stretched film to be produced, the stretching ratio, and the like.
  • both ends of the film substrate are gripped by left and right grippers Ci and Co, and are transported in the heating zone Z as the grippers Ci and Co run.
  • the left and right grippers Ci and Co face each other in a direction substantially perpendicular to the film traveling direction (feeding direction D1) at the entrance portion (position A in the figure) of the stretching portion 84, and are asymmetrical rails. It travels on Ri and Ro, respectively, and releases the gripped film at the exit portion (position B in the figure) at the end of stretching.
  • the film released from the grippers Ci and Co is wound around the winding core by the film winding section 87 described above.
  • one of the gripping tools Ci and Co which are facing each other in a direction substantially perpendicular to the film feeding direction D1 at the position A in the drawing, moves first to the position B at the end of the stretching of the film.
  • the straight line connecting the grippers Ci and Co is inclined by an angle ⁇ L with respect to the direction substantially perpendicular to the film winding direction D2.
  • the film substrate is obliquely stretched at an angle of ⁇ L with respect to the widthwise direction.
  • substantially perpendicular means within the range of 90 ⁇ 1°.
  • the heating zone Z of the stretching section 84 is composed of a preheating zone Z1, a stretching zone Z2 and a heat setting zone Z3.
  • the film gripped by the grippers Ci and Co sequentially passes through a preheating zone Z1, a stretching zone Z2, and a heat setting zone Z3.
  • the preheating zone Z1 and the drawing zone Z2 are separated by a partition wall, and the drawing zone Z2 and the heat setting zone Z3 are separated by a partition wall.
  • the preheating zone Z1 refers to a section at the entrance of the heating zone Z in which the grippers Ci and Co gripping both ends of the film travel while maintaining a constant spacing (in the film width direction) on the left and right.
  • the stretching zone Z2 refers to a section from when the gap between the grippers Ci and Co gripping both ends of the film begins to open to a predetermined gap.
  • the oblique stretching as described above is performed. That is, in the stretching zone Z2, an oblique stretching step of obtaining an obliquely stretched film by stretching a long film (film substrate) in an oblique direction that is inclined with respect to both the width direction and the longitudinal direction in the film plane. is done. Before and after the oblique stretching, the film may be stretched in the vertical direction or the horizontal direction, if necessary.
  • the thermal fixation zone Z3 is a section after the stretching zone Z2, in which the distance between the grippers Ci and Co becomes constant again, and refers to a section in which the grippers Ci and Co at both ends run parallel to each other. . That is, in the heat setting zone Z3, a heat setting process is performed in which the obliquely stretched film is conveyed while keeping the width constant.
  • the stretched film After passing through the heat setting zone Z3, the stretched film passes through a section (cooling zone) in which the temperature in the zone is set to the glass transition temperature Tg (° C.) or lower of the thermoplastic resin constituting the film. may At this time, considering shrinkage of the film due to cooling, the rail pattern may be such that the gap between the opposing grippers Ci and Co is narrowed in advance.
  • the temperature of the preheating zone Z1 is Tg to Tg+30°C
  • the temperature of the stretching zone Z2 is Tg to Tg+30°C
  • the temperature of the heat setting zone Z3 and the cooling zone is Tg-30 to Tg+20°C. It is preferable to set
  • the lengths of the preheating zone Z1, the stretching zone Z2, and the heat setting zone Z3 can be selected as appropriate.
  • the length is usually 50-100%.
  • the stretching ratio R (W/Wo) in the stretching step is preferably 1.3 to 3.0. 0, more preferably 1.5 to 2.8.
  • the above draw ratio R is equal to the ratio (W/Wo) when the distance Wo between both ends of the clip gripped at the entrance of the tenter becomes the distance W at the exit of the tenter.
  • the thickness of the retardation film can be determined as appropriate, but in general, it is preferably in the range of 1 to 500 ⁇ m in terms of optical properties, workability such as strength and handleability, and thin film properties.
  • the thickness of the retardation film is more preferably in the range of 5-100 ⁇ m, more preferably in the range of 15-80 ⁇ m.
  • the pressure-sensitive adhesive layer may be a layer obtained by drying a water-based pressure-sensitive adhesive, or a cured product layer of an actinic ray-curable pressure-sensitive adhesive. Also, the pressure-sensitive adhesive layer may contain a metallic compound filler.
  • a pressure-sensitive adhesive layer is optionally provided on the polarizing plate used in the present invention.
  • the pressure-sensitive adhesive layer workability is improved when manufacturing an organic EL display device in which the polarizing plate is attached to the viewing side of the organic EL element.
  • a polarizing plate 10A whose cross-sectional view is shown in FIG. 3 is an example of a polarizing plate having an adhesive layer.
  • the polarizing plate 10A has an adhesive layer on the side opposite to the polarizer layer of the retardation film.
  • the type of adhesive that forms the adhesive layer is not particularly limited, and examples thereof include rubber-based adhesives, acrylic-based adhesives, silicone-based adhesives, urethane-based adhesives, vinyl alkyl ether-based adhesives, Polyvinyl alcohol-based pressure-sensitive adhesives, polyvinylpyrrolidone-based pressure-sensitive adhesives, polyacrylamide-based pressure-sensitive adhesives, cellulose-based pressure-sensitive adhesives, and the like can be mentioned.
  • acrylic pressure-sensitive adhesives are preferably used because they have excellent optical transparency, exhibit appropriate adhesion, cohesiveness, and adhesive properties, and are excellent in weather resistance and heat resistance.
  • an acrylic pressure-sensitive adhesive containing a (meth)acrylic polymer as a base polymer is preferred.
  • the method for forming the pressure-sensitive adhesive layer is not particularly limited, and it can be formed by a method commonly used in this field. Specifically, a pressure-sensitive adhesive composition containing the pressure-sensitive adhesive or its raw material and a solvent is applied to at least one surface of a substrate, and a coating film formed from the pressure-sensitive adhesive composition is dried to form it, or can be formed by irradiating actinic rays such as ultraviolet rays.
  • the pressure-sensitive adhesive composition contains monomers that form the structural units of the polymer, a polymerization initiator, and a solvent.
  • the base material to which the adhesive composition is applied is, for example, a release film or a retardation film.
  • the pressure-sensitive adhesive layer is formed on the release film, the formed pressure-sensitive adhesive layer is transferred to the retardation film, and the release film is peeled off.
  • the pressure-sensitive adhesive layer may be protected with a release film until the polarizing plate 10B is put into practical use.
  • the thickness of the adhesive layer is not particularly limited, it is preferably about 10 to 75 ⁇ m, more preferably about 12 to 50 ⁇ m.
  • the polarizer layer and the polarizing plate protective film and the polarizer layer and the retardation film can also be adhered via an adhesive layer, for example.
  • the adhesive layer may be a layer obtained by drying a water-based adhesive, or a cured product layer of an actinic ray-curable adhesive. Also, the adhesive layer may contain a metallic compound filler.
  • water-based adhesives examples include isocyanate-based adhesives, polyvinyl alcohol-based adhesives, gelatin-based adhesives, vinyl-based latex-based adhesives, water-based polyurethanes, and water-based polyesters.
  • polyvinyl alcohol-based adhesives include completely saponified aqueous polyvinyl alcohol solutions (water glue).
  • Actinic ray-curable adhesives include UV-curable adhesives, electron beam-curable adhesives, and the like.
  • FIG. 10B Another embodiment of the polarizing plate has a hard coat layer as shown by polarizing plate 10B in FIG. , the retardation film 3 is obtained by stacking.
  • the hard coat layer 4 preferably exhibits a hardness of "HB" or higher in the pencil hardness test specified in JISK5600-2014, and preferably contains a cured product of an actinic ray-curable resin to obtain the hardness.
  • an actinic radiation-curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used.
  • actinic ray-curable resins include ultraviolet-curable resins and electron beam-curable resins, but resins that are cured by ultraviolet irradiation are preferable from the viewpoint of excellent mechanical film strength (scratch resistance, pencil hardness).
  • An acrylic material is preferably used as the actinic ray-curable resin.
  • the acrylic material is synthesized from a monofunctional or polyfunctional (meth)acrylate compound such as a polyhydric alcohol (meth)acrylic acid ester, a diisocyanate, a polyhydric alcohol, and a (meth)acrylic acid hydroxy ester.
  • a polyfunctional urethane (meth)acrylate compound such as can be used.
  • polyether resins, polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, etc. having acrylate-based functional groups can be used.
  • ultraviolet-curable acrylate-based resins ultraviolet-curable urethane acrylate-based resins, ultraviolet-curable polyester acrylate-based resins, ultraviolet-curable epoxy acrylate-based resins, ultraviolet-curable polyol acrylate-based resins, or ultraviolet-curable epoxy resins are preferred.
  • an ultraviolet curable acrylate resin is preferred.
  • the hard coat layer is formed, for example, using a hard coat layer-forming composition containing an actinic ray-curable resin, a polymerization initiator, and a solvent.
  • the solvent contained in the hard coat layer-forming composition is preferably a solvent that dissolves or swells the primer layer.
  • the composition for forming a hard coat layer easily permeates from the surface of the polarizing plate protective film or primer layer into the interior, thereby forming a polarizing plate protective film or primer layer. Adhesion with the hard coat layer can be improved.
  • a layer in which the resin component of the polarizing plate protective film or primer layer and the resin component of the hard coat layer are mixed is formed.
  • the refractive index of the primer layer and the hard coat layer can be graded, and the occurrence of interference unevenness can be prevented.
  • the composition for forming a hard coat layer includes properties that increase the hardness of the hard coat layer, suppress cure shrinkage, prevent blocking, control the refractive index, impart antiglare properties, and improve the properties of the hard coat layer surface.
  • properties that increase the hardness of the hard coat layer, suppress cure shrinkage, prevent blocking, control the refractive index, impart antiglare properties, and improve the properties of the hard coat layer surface.
  • conventionally known fine particles, dispersants, surfactants, antistatic agents, silane coupling agents, thickeners, anti-coloring agents, coloring agents (pigments, dyes), antifoaming agents, Leveling agents, flame retardants, tackifiers, polymerization inhibitors, antioxidants, surface modifiers and the like may be added.
  • the composition for forming a hard coat layer may also contain a photosensitizer, and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
  • the hard coat layer preferably contains fine particles.
  • the fine particles here are not particularly limited, but are preferably fine particles composed of a metal oxide (hereinafter also referred to as "metal oxide particles"). Examples of metal oxides used herein include silica, alumina, zirconia, titanium oxide, antimony pentoxide, and the like. Among these, the metal oxide particles are preferably composed of silica.
  • the silica fine particles may be hollow particles having a hollow inside.
  • the fine particles are preferably coated with a polymer silane coupling agent.
  • a polymer silane coupling agent By coating the surface of the fine particles with the polymer silane coupling agent, the fine particles can be uniformly dispersed in the composition for forming the hard coat layer.
  • the average particle diameter of the fine particles coated with the polymer silane coupling agent is preferably 5-500 nm, more preferably 10-200 nm. By using fine particles having such an average particle size, the optical properties of the hard coat layer can be enhanced.
  • the polymer silane coupling agent is prepared by reacting a polymerizable monomer and a silane coupling agent (reactive silane compound).
  • the polymerizable monomer includes a monomer having an ethylenically unsaturated double bond, preferably a monomer selected from (meth)acrylic acid and its derivatives.
  • a hydrolyzable silane compound in which three alkoxy groups and one functional group are bonded to a silicon atom is preferred.
  • Examples of functional groups bonded to silicon atoms include groups having one or more groups selected from (meth)acryloxy groups, epoxy groups (glycidide groups), urethane groups, amino groups, fluoro groups, and mercapto groups. be done.
  • the polymer silane coupling agent can be produced, for example, according to the method for producing a reaction product of a polymerizable monomer and a reactive silane compound disclosed in JP-A-11-116240.
  • the number average molecular weight of the polymer silane coupling agent is preferably 2,500 to 150,000, more preferably 2,000 to 100,000 in terms of polystyrene.
  • a dispersion is prepared by dispersing silica fine particles and a polymer silane coupling agent in an organic solvent.
  • An alkali is added to this dispersion to generate hydroxyl groups on the surface of the silica fine particles, and the polymer silane coupling agent is adsorbed on the hydroxyl groups.
  • the hydroxy group and the hydroxy group of the polymer silane coupling agent are combined by a dehydration reaction.
  • the silica fine particles to which the polymer silane coupling agent is adsorbed or bonded are separated from the dispersion and dried to obtain the silica fine particles coated with the polymer silane coupling agent.
  • the method for preparing the hard coat layer-forming composition is not particularly limited as long as the solid components contained in the hard coat layer can be uniformly mixed with the solvent. It can be prepared by mixing or dissolving using known devices such as kneaders and mixers.
  • the hard coat layer-forming composition is applied to the surface of the polarizing plate protective film or primer layer, and the hard coat layer is formed by curing the actinic ray-curable resin in the coating film.
  • a method for applying the composition for forming a hard coat layer conventionally known methods can be applied without particular limitation. For example, a micro gravure coating method is preferred when forming a uniform thin film layer, and a die coating method is preferred when a thick film layer needs to be formed.
  • a hard coat layer can be obtained by curing the actinic ray-curable resin by irradiation with actinic rays after removing the solvent from the coating film as necessary.
  • the average thickness of the hard coat layer is preferably in the range of 0.01 to 20 ⁇ m, more preferably in the range of 0.5 to 10 ⁇ m.
  • primer layer Any material that can improve adhesion and adhesiveness between the polarizing plate protective film and the hard coat layer or the polarizer layer can be used as the material constituting the primer layer. Moreover, as for the properties of the material, it is preferable that the material should be excellent in transparency, thermal stability, etc., in addition to adhesion and adhesiveness. Examples of such materials include resins composed of polyurethanes, polyolefins, polyesters, polyvinylidene chloride, acrylic polymers, modified silicone polymers, styrene-butadiene rubbers, carbodiimide compounds, isocyanates, and the like.
  • the primer layer may contain any additive as necessary.
  • additives include leveling agents, polymerization initiators, polymerization accelerators, viscosity modifiers, slip agents, dispersants, plasticizers, heat stabilizers, light stabilizers, lubricants, antioxidants, flame retardants, Colorants, antistatic agents, compatibilizers, cross-linking agents and the like can be mentioned.
  • the type and amount of additive used can be appropriately set according to the purpose.
  • the amount of the additive used is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, with respect to 100 parts by mass of the total solid content in the primer layer.
  • those containing polyurethane as a main component are preferably used as the material constituting the primer layer.
  • polyurethanes include those manufactured by DIC Corporation under the trade names of "Hydran Series" AP-201, AP-40F, HW-140SF, and WLS-202, manufactured by Daiichi Kogyo Seiyaku Co., Ltd. under the trade name of Super Flex.
  • a resin such as polyurethane having a carboxyl group in a side chain can be crosslinked with a crosslinking agent such as isocyanate, oxazoline, or carbodiimide to improve the strength of the primer layer.
  • the light transmittance of the layer containing the dye compound (compound (D)) according to the present invention is preferably within the following range.
  • Light transmittance of the layer containing the compound (D) is preferably 9% or less, more preferably 7% or less. % or less, and particularly preferably 3% or less.
  • incident ultraviolet rays can be blocked to a higher degree, and deterioration of the organic EL element can be significantly suppressed, which is preferable.
  • the light transmittance of the layer containing the compound (D) at a wavelength of 410 nm is preferably 60% or less, preferably 50% or less, and more preferably 40% or less.
  • the light transmittance at a wavelength of 410 nm is within the above range, incident ultraviolet rays can be blocked to a higher degree, and deterioration of the organic EL element can be significantly suppressed, which is preferable.
  • the light transmittance of the layer containing the compound (D) at a wavelength of 430 nm is preferably 50% or more, preferably 60% or more, and more preferably 70% or more.
  • the light transmittance at a wavelength of 430 nm is within the above range, the light emitted from the organic EL element can be sufficiently transmitted, and sufficient display performance can be secured in the organic EL display device, which is preferable.
  • the light transmittance at a wavelength of 380 nm is preferably 9% or less, more preferably 7% or less, and 5% or less. It is more preferable that the content is 3% or less, and it is particularly preferable that the content is 3% or less. Further, the light transmittance of the polarizing plate at a wavelength of 400 nm is preferably 20% or less, preferably 15% or less, and more preferably 10% or less.
  • the light transmittance of the polarizing plate used in the present invention at a wavelength of 450 nm is preferably 25% or more, preferably 30% or more, and more preferably 33% or more. Since the light transmittance at a wavelength of 450 nm is within the above range, when used in an organic EL display device, the light emitted from the organic EL element can be sufficiently transmitted, and sufficient display performance can be ensured in the organic EL display device. It is preferable because it can be done.
  • a polarizing plate provided with the polarizing plate protective film of the present invention can be used for various display devices such as a liquid crystal display device (LCD), an organic EL display device (OLED), and a touch panel.
  • LCD liquid crystal display device
  • OLED organic EL display device
  • touch panel a touch panel
  • FIG. 3 shows a cross-sectional view of one structural example of an organic EL display device equipped with the polarizing plate protective film of the present invention.
  • An organic EL display device 20 shown in FIG. 3 has an organic EL element 11 and a polarizing plate 10A or 10B according to the present invention on the viewing side thereof.
  • the organic EL display element 11 has, for example, a light reflecting electrode, a light emitting layer, a transparent electrode layer, and a transparent plastic film substrate.
  • the organic EL display device 20 when an electric current is applied between the light reflecting electrode and the transparent electrode layer, the light emitting layer emits light and can display an image. Further, all light incident on the organic EL display device from the outside is absorbed by the polarizer layer 2 of the polarizing plate 10A or 10B. It is possible to suppress deterioration of display characteristics due to reflection of the background.
  • the polarizing plate protective film preferably contains the compound (D) and further contains an ultraviolet absorber.
  • the polarizing plate covers the light emitting region (430 nm) of the organic EL element. (longer wavelength side than )) can sufficiently absorb light of shorter wavelength side to protect the organic EL device from external light.
  • the polarizing plate protective film containing a dye compound, a purple antioxidant, and fine particles in the above-mentioned specific order, internally generated heat can be easily released to the outside from the surface of the polarizing plate protective film.
  • Example 1 Measurement of maximum absorption wavelength
  • the maximum absorption wavelength of the dye compound used in the examples (hereinafter referred to as compound (D)) is determined by measuring the absorption spectrum of the dye compound in chloroform using an ultraviolet-visible spectrophotometer UV-2450 manufactured by Shimadzu Corporation. and listed in Table I.
  • “Compound 1" in the table is a compound having a structure represented by formula 1 according to the present invention.
  • the “maximum absorption wavelength” in the present invention refers to the wavelength (nm) at which the maximum and maximum absorbance (absorption intensity) is exhibited in the absorption spectrum of the compound obtained by measuring the absorption spectrum of the compound.
  • the temperature was raised from room temperature at a rate of 5°C/min, dissolved in 30 minutes, and then lowered at a rate of 3°C/min.
  • the resulting solution was filtered through Azumi Filter Paper No. 1 (Azumi Filter Paper Co., Ltd.). 244 was used to prepare the dope.
  • composition of dope COP (G7810) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Compound (D): Compound 1 6 parts by mass
  • the obtained film-like material was dried at 40°C until the amount of residual solvent reached 10% by mass, and then stretched in the width direction at a draw ratio of 1.4 times (40%). Then, the obtained film-like material was further dried at 150° C. while being conveyed by a number of rolls, to obtain a polarizing plate protective film 101 having a length of 3000 m and a thickness of 20 ⁇ m.
  • Polarizing plate protective film 102 was prepared in the same manner as in preparation of polarizing plate protective film 101 except that the following dope was used.
  • composition of dope COP (G7810) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Compound (D): Compound 1 6 parts by mass Antioxidant: Irganox 1076 (manufactured by BASF Japan Ltd.) 0.5 part by mass
  • Polarizing plate protective film 103 was prepared in the same manner as in preparation of polarizing plate protective film 101, except that the following dope was used.
  • composition of dope COP (G7810) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Compound (D): Compound 1 6 parts by mass Antioxidant: Irganox 1076 (manufactured by BASF Japan Ltd.) 0.5 part by mass fine particles: silicon dioxide dispersion (in terms of solid content) 1 part by mass
  • Silicon dioxide dispersion First, 10 parts by mass of Aerosil R812 (trade name, manufactured by Nippon Aerosil Co., Ltd.) and 90 parts by mass of ethanol were stirred and mixed with a dissolver for 30 minutes, and then silicon dioxide was dispersed in ethanol using a Manton Gaulin. 88 parts by mass of methylene chloride was added to this dispersion while stirring, and the dispersion was diluted by stirring and mixing with a dissolver for 30 minutes. A silicon dioxide dispersion was obtained by filtering this diluted dispersion through a fine particle dispersion diluent filter (manufactured by Advantech Toyo Co., Ltd.: polypropylene wound cartridge filter TCW-PPS-1N).
  • a fine particle dispersion diluent filter manufactured by Advantech Toyo Co., Ltd.: polypropylene wound cartridge filter TCW-PPS-1N).
  • a polarizing plate protective film 104 was prepared in the same manner as in the preparation of the polarizing plate protective film 101 except that the following dope was used.
  • composition of dope COP (G7810) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Compound (D): Compound 1 6 parts by mass Fine particles: Silicon dioxide dispersion (in terms of solid content) 1 part by mass
  • Polarizing plate protective films 105 to 107 were prepared in the same manner as in the preparation of polarizing plate protective films 102 to 104, except that the antioxidant described in Table II was changed to Irganox 1010 (manufactured by BASF Japan Ltd.) and the fine particles were changed to R972. made.
  • ⁇ Production of Polarizing Plate Protective Film 108 Production of Cellulose Ester Resin Film> (Preparation of dope)
  • a dope having the following composition was prepared. First, dichloromethane and ethanol were added to the pressurized dissolution tank. Then, the cellulose ester was put into a pressurized dissolution tank containing a solvent while being stirred, and was completely dissolved while being heated and stirred.
  • Triacetyl cellulose (TAC: Acetyl cellulose having a degree of acetyl substitution of 2.8, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 95 parts by mass Polycondensed ester compound N 2 parts by mass Polycondensed ester compound M 7 parts by mass Dichloromethane 540 parts by mass Ethanol 35 parts by mass Compound (D): Compound 1 6 parts by mass
  • the above additive components are put into a closed container, dissolved while stirring, and then filtered through Azumi Filter Paper No. 2 manufactured by Azumi Filter Paper Co., Ltd. 244 was used to prepare the dope.
  • the polycondensed ester compound N and the polycondensed ester compound M were prepared as follows.
  • ester compound N had an acid value of 0.30 and a number average molecular weight of 400.
  • the peeled web is evaporated at 35 ° C. to evaporate the solvent, slit to a width of 1.6 m, and then, using a tenter stretching machine, at a temperature of 160 ° C. in the width direction (TD direction) 1 .1 stretched. At this time, the amount of residual solvent was 4% by mass when stretching with a tenter was started.
  • the film is dried while being transported through a drying zone of 120°C and 140°C by a large number of rollers. By winding it around a core, a polarizing plate protective film 108 was produced.
  • the film thickness of the polarizing plate protective film 108 was 25 ⁇ m, and the winding length was 6000 m.
  • a polarizing plate protective film 109 was prepared in the same manner as in the preparation of the polarizing plate protective film 108 except that the following dope was used.
  • Triacetyl cellulose (TAC: Acetyl cellulose having a degree of acetyl substitution of 2.8, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 95 parts by mass Polycondensed ester compound N 2 parts by mass Polycondensed ester compound M 7 parts by mass Dichloromethane 540 parts by mass Ethanol 35 parts by mass Compound (D): Compound 1 6 parts by mass Antioxidant: Irganox 1076 (manufactured by BASF Japan Ltd.) 0.5 part by mass
  • a polarizing plate protective film 110 was prepared in the same manner as in the preparation of the polarizing plate protective film 108 except that the following dope was used.
  • Triacetyl cellulose (TAC: Acetyl cellulose having a degree of acetyl substitution of 2.8, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 95 parts by mass Polycondensed ester compound N 2 parts by mass Polycondensed ester compound M 7 parts by mass Dichloromethane 540 parts by mass Ethanol 35 parts by mass Compound (D): Compound 1 6 parts by mass Antioxidant: Irganox 1076 (manufactured by BASF Japan Ltd.) 0.5 parts by mass fine particles (R812): silicon dioxide dispersion (in terms of solid content) 1 part by mass
  • a polarizing plate protective film 111 was prepared in the same manner as in the preparation of the polarizing plate protective film 108 except that the following dope was used.
  • Triacetyl cellulose (TAC: Acetyl cellulose having a degree of acetyl substitution of 2.8, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 95 parts by mass Polycondensed ester compound N 2 parts by mass Polycondensed ester compound M 7 parts by mass Dichloromethane 540 parts by mass Ethanol 35 parts by mass Compound (D): Compound 1 6 parts by mass Fine particles (R812): Silicon dioxide dispersion (in terms of solid content) 1 part by mass
  • ⁇ Polarizing Plate Protective Film 112 Fabrication of Acrylic Resin Film> A dope having the following composition was prepared. First, dichloromethane and ethanol were added to a pressurized dissolution tank. The resin was then charged into a pressurized dissolution tank while stirring. Then, a rubber particle dispersion prepared below was added and completely dissolved with stirring. This was filtered using SHP150 manufactured by Roki Techno Co., Ltd. to obtain a dope.
  • composition of dope Resin ((meth)acrylic resin: Ac) 95 parts by mass Dichloromethane 200 parts by mass
  • Compound (D) Compound 1 6 parts by mass Rubber particle dispersion 200 parts by mass
  • the (meth)acrylic resin used above is methyl methacrylate (MMA)/N-phenylmaleimide (PMI)/butyl acrylate (BA to copolymer (80/10/10 mass ratio), Tg: 120°C, Mw: 2 million).
  • the glass transition temperature (Tg) of the acrylic resin was measured according to JISK7121-2012 using DSC (Differential Scanning Colorimetry).
  • the weight average molecular weight (Mw) of the acrylic resin was measured using gel permeation chromatography (HLC8220GPC manufactured by Tosoh Corporation) and a column (TSK-GELG6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series manufactured by Tosoh Corporation). 20 mg ⁇ 0.5 mg of sample was dissolved in 10 mL of tetrahydrofuran and filtered through a 0.45 mm filter. 100 mL of this solution was injected into a column (temperature of 40° C.), measured at a detector RI temperature of 40° C., and converted into styrene.
  • the rubber particle dispersion used above contains acrylic rubber particles M-210 (core part: multi-layered acrylic rubber-like polymer, shell part: methacrylic acid ester polymer containing methyl methacrylate as a main component, 10 parts by mass of the core-shell type rubber particles of the acrylic rubber-like polymer, Tg: about ⁇ 10° C., average particle diameter: 220 nm) and 190 parts by mass of dichloromethane were stirred and mixed with a dissolver for 50 minutes, followed by milder It was obtained by dispersing at 1500 rpm using a disperser (manufactured by Taihei Kiko Co., Ltd.).
  • the average particle size of the rubber particles was obtained by measuring the dispersed particle size of the rubber particles in the dispersion with a zeta potential/particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.).
  • a polarizing plate protective film 113 was prepared in the same manner as in the preparation of the polarizing plate protective film 112 except that the following dope was used.
  • composition of dope Resin ((meth)acrylic resin: Ac) 95 parts by mass Dichloromethane 200 parts by mass Compound (D): Compound 1 6 parts by mass Rubber particle dispersion 200 parts by mass Antioxidant: Irganox 1076 (manufactured by BASF Japan Ltd.) 0.5 part by mass
  • a polarizing plate protective film 114 was prepared in the same manner as in the preparation of the polarizing plate protective film 112 except that the following dope was used.
  • composition of dope Resin ((meth)acrylic resin: Ac) 95 parts by mass Dichloromethane 200 parts by mass Compound (D): Compound 1 6 parts by mass Rubber particle dispersion 200 parts by mass Antioxidant: Irganox 1076 (manufactured by BASF Japan Ltd.) 0.5 parts by mass fine particles (R812): silicon dioxide dispersion (in terms of solid content) 1 part by mass
  • a polarizing plate protective film 115 was prepared in the same manner as in the preparation of the polarizing plate protective film 112 except that the following dope was used.
  • composition of dope Resin ((meth)acrylic resin: Ac) 95 parts by mass Dichloromethane 200 parts by mass Compound (D): Compound 1 6 parts by mass Rubber particle dispersion 200 parts by mass Fine particles (R812): Silicon dioxide dispersion (in terms of solid content) 1 part by mass
  • Polarizing plate protective films 101 to 104 and polarizing plate protective films 108 to 115 were prepared in the same manner, except that the compound (D): compound 1 was changed to comparative compounds 1, 2 and 3, to prepare polarizing plate protective films 116 to 116. 127 was made.
  • PC film polycarbonate resin film
  • the oligomerized reaction liquid in the first reactor was transferred to the second reactor.
  • the temperature rise and pressure reduction in the second reactor were started, and the internal temperature was brought to 240° C. and the pressure to 0.2 kPa in 50 minutes.
  • the polymerization was allowed to proceed until a predetermined stirring power was obtained.
  • a polycarbonate resin A having a copolymer composition of 16.2 [mol %] was obtained.
  • the polycarbonate resin A had a reduced viscosity of 0.430 dL/g and a glass transition temperature of 138°C.
  • the roll body (film roll) of the PC film 1 produced above was set in the obliquely stretched film manufacturing apparatus 80 (see FIGS. 5 and 6), and the PC film 1 was fed out. Then, the PC film 1 is passed through the preheating zone Z1 of the stretching section to heat the PC film 1 to the preheating temperature, and then passed through the stretching zone Z2 to be diagonally stretched at a draw ratio of 3 times. After passing through the fixing zone Z3, an obliquely stretched PC film ( ⁇ /4 plate) having a film thickness of 50 ⁇ m, a width of 1500 mm and an orientation angle ⁇ of 45° (value at the center of the width) was produced. The obliquely stretched PC film thus produced was taken up to form a film roll.
  • the temperature T1 (preheating temperature) of the preheating zone Z1 in the stretching section is (Tg+15)° C.
  • the temperature T2 (stretching temperature) of the stretching zone Z2 is (Tg+11)° C.
  • the temperature T3 of the heat setting zone Z3 is , (Tg+9)°C.
  • polarizing plate protective films 101 to 127, the polarizer layer and the retardation film were laminated in this order to prepare the polarizing plates 101 to 127.
  • the retardation film and the polarizer layer, and the polarizing plate protective film and the polarizer layer were adhered using a completely saponified polyvinyl alcohol aqueous solution (water glue).
  • the prepared polarizing plate protective film was continuously irradiated with light from a xenon lamp (60 W/m 2 ) for 100 hours, and the absorbance of the thin film before irradiation (0 hours) and after irradiation (100 hours) was measured with a spectrophotometer. , the dye retention rate of compound (D) was measured according to the following formula (R).
  • Formula (R) Pigment residual rate (%) ⁇ (A 100 )/(A 0 ) ⁇ x 100 (However, A0 is the absorbance before xenon lamp irradiation, and A100 is the absorbance after xenon lamp irradiation.)
  • the "absorbance” represents the absorbance at the absorption maximum wavelength of each compound, and the higher the dye residual rate, the more difficult the compound is to be decomposed by light, and the higher the light resistance. Light resistance was evaluated according to the following criteria.
  • Residual dye rate is 65% or more
  • B Residual dye rate is 40% or more and less than 65%
  • C Residual dye rate is 10% or more and less than 40%
  • D Residual dye rate is less than 10%
  • No occurrence of bleeding out on the surface of the polarizing plate protective film ⁇ : Slight partial bleeding out on the surface of the polarizing plate protective film ⁇ : Bleeding out over the entire surface of the polarizing plate protective film is slightly observed ⁇ : On the surface of the polarizing plate protective film, a clear bleed-out is observed over the entire surface
  • Table II shows the structure and evaluation results of the polarizing plate protective film.
  • the polarizing plate protective films 101 to 115 using the dye compound according to the present invention are excellent in light resistance and bleed-out, and have a short wavelength side of visible light. It can be seen that the cut property of the light transmittance is excellent.
  • the light transmittance controllability of the polarizing plate protective film of the present invention was further improved by adding an antioxidant and fine particles in addition to the dye compound.
  • Example 2 Using the polarizing plate protective films 101 to 127 produced in Example 1, a primer layer was formed, a hard coat layer was formed, and a pressure-sensitive adhesive layer was provided on the surface opposite to the polarizer layer of the retardation film, and an organic An organic EL display device was produced by bonding with an EL element.
  • Primer Layer Formation of Hard Coat Layer Side Primer Layer Coating Solution
  • Thermosetting water-based polyolefin resin (Arrowbase SB-1200 (trade name), solid content 25%, manufactured by Unitika Ltd.) 100 parts by mass
  • the surface of the polarizing plate protective films 101 to 127 opposite to the polarizer layer side is coated with the primer layer coating liquid 1 prepared above with a bar coater, and dried in a drying oven at 80° C. for 40 seconds. A film was formed to form a primer layer on the hard coat layer side so that the dry film thickness was 0.4 ⁇ m.
  • the polymer-silane coupling agent-coated silica was prepared as follows. Methyl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd.: Light Ester M) 30 mL, 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.: KBM-803) 1 mL, tetrahydrofuran 100 mL as a solvent, and azo as a polymerization initiator are placed in a container. After adding 50 mg of isobutyronitrile (AIBN manufactured by Kanto Kagaku Co., Ltd.) and purging with N 2 gas, the mixture was heated at 80° C. for 3 hours to prepare a polymer silane coupling agent. The polymer silane coupling agent obtained had a molecular weight of 16,000. The molecular weight was measured using a gel permeation chromatography device.
  • silica sol manufactured by Nikki Shokubai Kasei Kogyo Co., Ltd.: Si-45P, trade name, SiO 2 concentration 30% by mass, average particle size 45 nm, dispersion medium: water
  • Si-45P trade name, SiO 2 concentration 30% by mass, average particle size 45 nm, dispersion medium: water
  • 100 g of an ethanol dispersion of fine silica particles was prepared by substituting water with ethanol by a filtration membrane method.
  • silica fine particle ethanol dispersion and 1.5 g of the polymer silane coupling agent were dispersed in 20 g (25 mL) of acetone, and 20 mg of ammonia water having a concentration of 29.8% by mass was added thereto, followed by stirring at room temperature for 30 hours.
  • a polymeric silane coupling agent was adsorbed onto silica microparticles.
  • silica particles having an average particle diameter of 5 ⁇ m were added, and the solution was stirred for 2 hours to adsorb the unadsorbed polymer silane coupling agent in the solution to the silica particles.
  • Silica particles with an average particle size of 5 ⁇ m that adsorbed the agent were removed.
  • 1,000 g of ethanol is added to the silica fine particle dispersion liquid adsorbed with the polymer silane coupling agent to precipitate the silica fine particles, which are separated, dried under reduced pressure, and then dried at 25° C. for 8 hours to obtain polymer silane coupling agent-coated silica. rice field.
  • the average particle size of the resulting polymer-silane coupling agent-coated silica was 57 nm. The average particle size was measured with a laser particle size measuring device.
  • the hard coat layer forming composition prepared above was coated with a bar coater so that the dry film thickness was 2.5 ⁇ m. and dried in a drying oven at 50° C. for 40 seconds to volatilize the solvent. In this state, while purging with nitrogen so that the atmosphere has an oxygen concentration of 1.0% by volume or less, an ultraviolet lamp is used to set the illuminance of the irradiation part to 100 mW/cm 2 and the irradiation amount to 0.2 J/cm 2 . The coating layer was cured to produce a polarizing plate protective film with a hard coat layer.
  • a polarizing plate is prepared using the polarizing plate protective film with a hard coat layer, a polarizer layer and a retardation film, and the following release films are used.
  • the organic EL display devices 201 to 227 were produced and evaluated by bonding the polarizing plate and the organic EL element via the peeled adhesive layer.
  • SAMSUNG's GALAXY S10 (trade name) equipped with an organic EL panel is disassembled, the circularly polarizing plate is peeled off from the organic EL element, and the polarizing plates 101 to 127 are placed on the peeled surface via an adhesive layer. were laminated with the hard coat layer side as the viewing side and the retardation film side as the organic EL element side to fabricate an organic EL display device.
  • 1-hydroxycyclohexylphenyl ketone (trade name: Irgacure 184, manufactured by BASF Japan Ltd.) 0.035 parts by mass, 2,2-dimethoxy-1,2-diphenylethan-1-one (trade name: Irgacure 651, manufactured by BASF Japan Co., Ltd.) 0.035 parts by mass, and then irradiated with ultraviolet rays until the viscosity (measurement conditions: BH viscometer No. 5 rotor, 10 rpm, measurement temperature 30 ° C.) reaches about 20 Pa s. As a result, a prepolymer composition (polymerization rate: 8%) in which a part of the above monomer component was polymerized was obtained.
  • acrylic pressure-sensitive adhesive composition (a) (the monomer component forming the acrylic polymer is 100 parts by mass) and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (A pressure-sensitive adhesive composition was obtained by adding 0.2 parts by mass of Irgacure 819 (trade name, manufactured by BASF Japan Ltd.) and stirring.
  • the pressure-sensitive adhesive composition was applied onto the retardation film so that the thickness of the pressure-sensitive adhesive layer after formation was 150 ⁇ m, and then a release film was attached to the surface of the pressure-sensitive adhesive composition layer. Thereafter, ultraviolet irradiation was performed under the conditions of illumination intensity of 6.5 mW/cm 2 , light quantity of 1500 mJ/cm 2 and peak wavelength of 350 nm to photo-cure the pressure-sensitive adhesive composition layer to form a pressure-sensitive adhesive layer.
  • the produced organic EL display device was continuously irradiated with light from a xenon lamp (60 W/m 2 ) for 100 hours, and the light emission luminance before irradiation (0 hours) and after irradiation (100 hours) was measured and calculated according to Equation 2 below. Emission luminance changes were measured.
  • Luminance was measured at room temperature (25° C.) under constant current density conditions of 2.5 mA/cm 2 using a spectral radiance meter CS-2000 (manufactured by Konica Minolta, Inc.). Emission luminance of the EL display device was measured.
  • Luminance change rate (%) ⁇ (A 100 )/(A 0 ) ⁇ x 100 (However, A0 is the luminescence brightness before irradiation with the xenon lamp, and A100 is the luminescence brightness after irradiation with the xenon lamp.) It should be noted that the larger the value of the "light emission luminance change rate", the higher the light resistance of the display element. Light resistance was evaluated according to the following criteria.
  • Emission luminance change rate of 90% or more B: Emission luminance change rate of 80% or more and less than 90%
  • C Emission luminance change rate of 70% or more and less than 80%
  • D Emission luminance change rate of less than 70% or more
  • the polarizing plate protective film of the present invention can protect the display element from external light, does not cause light emission loss with respect to the light emission of the display element, and does not cause bleeding. It was confirmed that the film is a polarizing plate protective film that is free from out, has excellent light resistance, and can provide a polarizing plate and an organic EL display device that are excellent in functionality and durability.
  • Example 3 ⁇ Production of polarizing plate protective film 301> (support)
  • a polyethylene terephthalate film (PET film) (TN100 manufactured by Toyobo Co., Ltd., with a release layer containing a non-silicone release agent, thickness 38 ⁇ m) was used.
  • a coating solution for the base film 301 was obtained by mixing the following components.
  • dichloromethane and ethanol were added to the pressurized dissolution tank.
  • a cycloolefin resin (COP) was put into a pressurized dissolution tank containing a mixed solution of dichloromethane and ethanol while being stirred.
  • the fine particle dispersion prepared above and compound (D): compound 1 were added, heated to 80° C., and completely dissolved with stirring.
  • the temperature was raised from room temperature at a rate of 5°C/min, dissolved in 30 minutes, and then lowered at a rate of 3°C/min.
  • the resulting solution was filtered through Azumi Filter Paper No. 1 (Azumi Filter Paper Co., Ltd.). 244 to prepare a coating solution for polarizing plate protective film 301 .
  • composition of coating solution COP (G7810) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Compound (D): Compound 1 6 parts by mass Antioxidant: Irganox 1076 (manufactured by BASF Japan Ltd.) 0.5 parts by mass fine particles (R812): silicon dioxide dispersion 1 part by mass
  • polarizing plate protective film 301 (Production of polarizing plate protective film 301) Using the coating apparatus shown in FIG. 4, the coating solution for the polarizing plate protective film 301 is coated on the release layer of the support by a back coating method using a die. A polarizing plate protective film having a thickness of 5 ⁇ m was formed by drying, and a polarizing plate protective film 301 was obtained.
  • polarizing plate protective film 302 ⁇ Production of polarizing plate protective film 302>
  • the coating solution for the polarizing plate protective film 301 is applied by a back coating method using a die, and then the base film is dried in the drying step to obtain a polarizing plate having a thickness of 10 ⁇ m.
  • a protective film was produced.
  • Tg 126 ° C.
  • a single-screw extruder equipped with a gear pump and a filter was prepared, and the resin composition was charged into the single-screw extruder and melted.
  • the melted resin composition was passed through a gear pump and then through a filter, extruded from a T-die, and passed through cooling rolls to obtain a polarizing plate protective film 303 having a thickness of 10 ⁇ m.
  • the maximum absorption wavelength was 368 nm.
  • polarizing plate protective film Using the obtained polarizing plate protective film, light resistance and durability: bleeding out were evaluated in the same manner as in Example 1.
  • the polarizing plate protective films 301 and 302 were evaluated after the support was peeled off.
  • the thin polarizing plate protective films 301 and 302 exhibit excellent light resistance (“A”) and durability (bleed-out: “ ⁇ ”), and the effects of the present invention can be obtained even with the thin polarizing plate protective films. Do you get it.
  • the polarizing plate protective film 303 was excellent in light resistance, but when 10 film samples were evaluated, the bleed-out evaluation was in the range of " ⁇ to ⁇ ", and the durability was slightly inferior.
  • the polarizing plate protective film of the present invention is a polarizing plate protective film containing a resin and a dye compound, which can protect a display element from external light, does not cause emission loss with respect to light emitted from the display element, and prevents bleeding. Since it is free from out-of-light and has excellent light resistance, it can be suitably used for display devices, particularly organic electroluminescence display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention addresses the problem of providing a polarizing plate protective film containing a resin and a pigment compound, the polarizing plate protective film being capable of protecting a display element from outside light and not causing light emission loss with respect to light emission by the display element when used in a display device and in particular in an organic electroluminescence display device, and the polarizing plate protective film additionally being free from bleed out and having excellent lightfastness. A polarizing plate protective film according to the present invention is characterized by containing a compound that has a structure represented by formula 1.

Description

偏光板保護フィルムPolarizer protective film
 本発明は、偏光板保護フィルムに関する。より詳しくは、樹脂と色素化合物を含有する偏光板保護フィルムであって、表示装置、特には有機エレクトロルミネッセンス表示装置に用いた際に、表示素子を外光から保護できるとともに、表示素子の発光に対して発光ロスを生じず、かつ、ブリードアウトがなく、耐光性に優れた偏光板保護フィルムに関する。 The present invention relates to a polarizing plate protective film. More specifically, it is a polarizing plate protective film containing a resin and a dye compound, and when used in a display device, particularly an organic electroluminescence display device, can protect the display element from external light and prevent light emission from the display element. In contrast, the present invention relates to a polarizing plate protective film that does not cause light emission loss, does not bleed out, and has excellent light resistance.
 一般に、紫外線領域及び短波長の可視光を含む広い波長範囲の光線のカット性を偏光板保護フィルムなどの光学フィルムに付与するには、紫外線吸収剤等を基材に添加する方法、又は基材上に別層として設ける方法などがある。その際に短波長の可視光の光をカットするために紫外線吸収剤を高濃度に含有させたり、フィルムの薄膜化に伴い、当該紫外線吸収剤を高濃度に含有させたりする場合があるが、高濃度に含有させることで、長波長側に望まない着色を生じることや、白化現象、析出(ブリードアウト)が生じることがある。これらを解決するために、低濃度の含有でも短波長の可視光の光を吸収(カット)できるような材料が求められている。 In general, in order to provide an optical film such as a polarizing plate protective film with the ability to cut light rays in a wide wavelength range including the ultraviolet region and short wavelength visible light, a method of adding an ultraviolet absorber or the like to the base material, or a method of adding the base material There is also a method of providing a separate layer on top. At that time, there are cases where the ultraviolet absorber is contained at a high concentration in order to cut short-wave visible light, or the ultraviolet absorber is contained at a high concentration as the film becomes thinner. When it is contained in a high concentration, undesirable coloring on the long wavelength side, whitening, and precipitation (bleed-out) may occur. In order to solve these problems, there is a demand for a material that can absorb (cut) short-wavelength visible light even when it is contained at a low concentration.
 一方、有機エレクトロルミネッセンス(Electroluminescence:以下「EL」ともいう。)表示装置に用いられる表示素子の発光に対して発光ロスを生じさせないためには、当該表示素子の発光領域(430nmよりも長波長側)の透過率を十分に確保する必要があり、この領域の光吸収を抑え、光透過率を十分に確保することができる材料を用い、かつ、表示素子の外光による劣化を抑制する技術が必要である。 On the other hand, in order not to cause emission loss in the light emission of a display element used in an organic electroluminescence (Electroluminescence: hereinafter also referred to as "EL") display device, the emission region of the display element (longer wavelength side than 430 nm) ), it is necessary to ensure sufficient transmittance in this area, and there is a technology that suppresses light absorption in this area, uses materials that can sufficiently ensure light transmittance, and suppresses deterioration of the display element due to external light. is necessary.
 例えば、特許文献1には、特定の波長領域に対する光吸収性を調整するのに、可視光の短波長側の光吸収性を具備する光選択吸収化合物(分子内にメロシアニン構造を含む化合物等)を樹脂中に含有する技術が開示されているが、当該光選択吸収化合物の耐光性に係る記載はない。 For example, Patent Document 1 describes a light selective absorption compound (such as a compound containing a merocyanine structure in the molecule) having light absorption on the short wavelength side of visible light to adjust the light absorption in a specific wavelength region. is disclosed in a resin, but there is no description regarding the light resistance of the selective light absorption compound.
 特許文献2には、樹脂、紫外線吸収剤及び可視光線吸収色素の少なくとも1種の光吸収性材料を含有し、光波長380~410nmにおける光線透過率が10%以下で、光波長440nmにおける光線透過率が80%以上であり、製膜時のブリードアウトがなく、紫外線カット性と可視光短波長領域のシャープな波長カット性に優れた高透明な光学フィルムが開示されている。しかしながら、当該光吸収性材料を含有する光学フィルムにおいては、同様に、当該紫外線吸収剤及び可視光線吸収色素に係る耐光性に関する記載はない。 Patent document 2 contains at least one light-absorbing material selected from a resin, an ultraviolet absorber, and a visible light-absorbing dye, and has a light transmittance of 10% or less at a light wavelength of 380 to 410 nm and a light transmittance at a light wavelength of 440 nm. It discloses a highly transparent optical film having a rate of 80% or more, no bleed-out during film formation, and excellent UV-cutting properties and sharp wavelength-cutting properties in the short wavelength region of visible light. However, in the optical film containing the light-absorbing material, similarly, there is no description regarding the light resistance of the ultraviolet absorber and the visible light-absorbing dye.
 また、特許文献3には、特定の樹脂(脂環式構造含有重合体)と紫外線吸収剤とを含み、かつ、特定波長の光透過率を制御可能な色素化合物を含有することで、画像表示装置を、紫外線から保護すると共に、画像表示装置を正面方向から観察した場合の色相を改善できる光学フィルムについて開示されている。しかしながら、当該光学フィルムのブリードアウトに係る耐久性についての記載はなく、フィルムの一層の薄膜化に伴い、耐久性の向上への要望は大きい。 Further, in Patent Document 3, image display is performed by containing a specific resin (alicyclic structure-containing polymer) and an ultraviolet absorber, and by containing a dye compound capable of controlling the light transmittance of a specific wavelength. An optical film is disclosed that can protect a device from ultraviolet rays and improve the hue when the image display device is viewed from the front. However, there is no description about the durability of the optical film against bleeding out, and there is a great demand for improved durability as the film becomes thinner.
特開2019-8293号公報JP 2019-8293 A 特開2017-187619号公報JP 2017-187619 A 国際公開第2020/158468号WO2020/158468
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、樹脂と色素化合物を含有する偏光板保護フィルムであって、表示装置、特には有機エレクトロルミネッセンス表示装置に用いた際に、表示素子を外光から保護できるとともに、表示素子の発光に対して発光ロスを生じず、かつ、ブリードアウトがなく、耐光性に優れた偏光板保護フィルムを提供することである。 The present invention has been made in view of the above problems and circumstances, and the problem to be solved is a polarizing plate protective film containing a resin and a dye compound, which is used in a display device, particularly an organic electroluminescence display device. It is an object of the present invention to provide a polarizing plate protective film that can protect a display element from external light, does not cause light emission loss in the light emitted from the display element, does not bleed out, and has excellent light resistance.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、以下に示す特定の構造を有する化合物を偏光板保護フィルムに含有させることで、表示素子を外光から保護できるとともに、表示素子の発光に対して発光ロスを生じず、かつ、ブリードアウトがなく、耐光性に優れた樹脂と色素化合物を含有する偏光板保護フィルムが得られることを見出した。 In order to solve the above problems, the present inventors, in the process of studying the causes of the above problems, have found that a display element is protected from external light by incorporating a compound having a specific structure shown below into a polarizing plate protective film. In addition, it is possible to obtain a polarizing plate protective film containing a resin and a dye compound that is excellent in light resistance without causing luminescence loss and bleed-out with respect to the luminescence of the display element.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above problems related to the present invention are solved by the following means.
 1.下記式1で表される構造を有する化合物を含有することを特徴とする偏光板保護フィルム。
Figure JPOXMLDOC01-appb-C000002
1. A polarizing plate protective film comprising a compound having a structure represented by Formula 1 below.
Figure JPOXMLDOC01-appb-C000002
 本発明の上記手段により、樹脂と色素化合物を含有する偏光板保護フィルムであって、表示装置、特には有機エレクトロルミネッセンス表示装置に用いた際に、表示素子を外光から保護できるとともに、表示素子の発光に対して発光ロスを生じず、かつ、ブリードアウトがなく、耐光性に優れた偏光板保護フィルムを提供することができる。 By the above means of the present invention, the polarizing plate protective film containing the resin and the dye compound can protect the display element from external light when used in a display device, particularly an organic electroluminescence display device. It is possible to provide a polarizing plate protective film which does not cause light emission loss and does not bleed out with respect to the light emitted from the polarizing plate, and which has excellent light resistance.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 Although the expression mechanism or action mechanism of the effects of the present invention has not been clarified, it is speculated as follows.
 前記式1で表される構造を有する化合物である、ベンゾトリアゾール骨格に特定の置換基構造を付与することによって、化合物の疎水性が高まり、当該疎水性によって、樹脂や他の添加剤との相互作用を強くし、当該相互作用の強化により、光による化合物の分解性を抑制して耐光性(「光堅牢性」ともいう。)を向上できる。さらに、樹脂と当該化合物のsp値(「溶解度パラメータ」ともいう。)の観点から相溶性がよく、所望の吸収スペクトルを形成するのに必要な量を添加しても、ブリードアウトや白化現象を生じず、耐久性が向上する。 By imparting a specific substituent structure to the benzotriazole skeleton, which is the compound having the structure represented by the formula 1, the hydrophobicity of the compound is increased, and the hydrophobicity makes it possible to interact with resins and other additives. By increasing the action and strengthening the interaction, the decomposability of the compound by light can be suppressed and the light resistance (also referred to as “light fastness”) can be improved. Furthermore, the sp value (also referred to as "solubility parameter") of the resin and the compound is compatible with each other, and even if the amount required to form the desired absorption spectrum is added, bleed out and whitening phenomenon do not occur. It does not occur and durability is improved.
本発明の偏光板保護フィルムを用いた偏光板10Aの構成例を示す断面図A cross-sectional view showing a configuration example of a polarizing plate 10A using the polarizing plate protective film of the present invention. 本発明の別の態様である偏光板10Bの構成例を示す断面図Sectional view showing a configuration example of a polarizing plate 10B that is another aspect of the present invention 本発明の偏光板保護フィルムを用いた有機EL表示装置20の構成例を示す断面図Sectional view showing a configuration example of an organic EL display device 20 using the polarizing plate protective film of the present invention 本発明の一実施の形態に係る薄膜偏光板保護フィルムの製造方法を示す模式図Schematic diagrams showing a method for manufacturing a thin polarizing plate protective film according to an embodiment of the present invention. 斜め延伸フィルムの製造装置の概略の構成を模式的に示す平面図FIG. 1 is a plan view schematically showing the schematic configuration of a diagonally stretched film manufacturing apparatus. 図5に示す斜め延伸フィルムの製造装置が備える延伸部のレールパターンの一例を模式的に示す平面図FIG. 6 is a plan view schematically showing an example of a rail pattern of a stretching section provided in the obliquely stretched film manufacturing apparatus shown in FIG.
 本発明の偏光板保護フィルムは、前記式1で表される構造を有する化合物を含有することを特徴とする。この特徴は、下記実施態様に共通する又は対応する技術的特徴である。 The polarizing plate protective film of the present invention is characterized by containing a compound having a structure represented by Formula 1 above. This feature is a technical feature common to or corresponding to the following embodiments.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 The following is a detailed description of the present invention, its components, and the forms and modes for carrying out the present invention. In the present application, "-" is used to mean that the numerical values before and after it are included as the lower limit and the upper limit.
 ≪本発明の偏光板保護フィルムの概要≫
 本発明の偏光板保護フィルムは、下記式1で表される構造を有する化合物を含有することを特徴とする。
<<Outline of the polarizing plate protective film of the present invention>>
The polarizing plate protective film of the present invention is characterized by containing a compound having a structure represented by Formula 1 below.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 以下、本発明の偏光板保護フィルムの構成を詳細に説明する。なお、前記式1で表される構造を有する化合物を、本発明では「色素化合物」という。 The configuration of the polarizing plate protective film of the present invention will be described in detail below. In the present invention, the compound having the structure represented by Formula 1 is referred to as "dye compound".
〔1〕偏光板の構成
 図1は、本発明の偏光板保護フィルム1、偏光子層2及び位相差フィルム3を視認側からこの順に有する、本発明の好ましい偏光板10Aの構成例を示す断面図である。前記偏光板保護フィルム1、偏光子層2及び位相差フィルム3を各々積層する際は、粘着剤層又は接着剤層(不図示)によって接着されていることが好ましい。位相差フィルム3は、偏光板の使用目的によって、位相差を調整する偏光板保護フィルムをいう。
[1] Configuration of Polarizing Plate FIG. 1 is a cross section showing a configuration example of a preferable polarizing plate 10A of the present invention, which has a polarizing plate protective film 1 of the present invention, a polarizer layer 2 and a retardation film 3 in this order from the viewing side. It is a diagram. When the polarizing plate protective film 1, the polarizer layer 2 and the retardation film 3 are respectively laminated, they are preferably adhered by a pressure-sensitive adhesive layer or an adhesive layer (not shown). The retardation film 3 is a polarizing plate protective film that adjusts the retardation depending on the intended use of the polarizing plate.
 本発明に用いられる偏光板は、前記偏光板保護フィルム1、偏光子層2及び位相差フィルム3以外にも種々の機能性層を有することが好ましい。図2は、偏光板を表示装置に装着する際の最表面の耐傷性を向上する観点から機能性層としてハードコート層4を、偏光板保護フィルム1の上層として配置することも好ましい。また表示装置との接着機能を有する粘着剤層5を位相差フィルムの下層として有する偏光板10Bの構成をとることも好ましい態様である。 The polarizing plate used in the present invention preferably has various functional layers in addition to the polarizing plate protective film 1, the polarizer layer 2 and the retardation film 3. In FIG. 2, it is also preferable to dispose the hard coat layer 4 as a functional layer as an upper layer of the polarizing plate protective film 1 from the viewpoint of improving the scratch resistance of the outermost surface when the polarizing plate is attached to the display device. Further, it is also a preferred embodiment to employ a configuration of the polarizing plate 10B having the pressure-sensitive adhesive layer 5 having an adhesive function with the display device as a lower layer of the retardation film.
 本発明に用いられる偏光板は、例えば、偏光板10Aを用いた例として説明すると、図3に断面図が示される有機EL表示装置20のように、偏光板10Aの位相差フィルム3に隣接して粘着剤層5が配され、有機EL素子11の視認側の面に接着される態様であることが、本発明の偏光板保護フィルム1に期待される効果を発現する観点から、好ましい態様である。 The polarizing plate used in the present invention is, for example, an example using the polarizing plate 10A. Like the organic EL display device 20 whose cross-sectional view is shown in FIG. From the viewpoint of expressing the effects expected of the polarizing plate protective film 1 of the present invention, it is preferable that the pressure-sensitive adhesive layer 5 is disposed on the surface of the organic EL element 11 and adhered to the viewing side surface of the organic EL element 11 . be.
〔2〕色素化合物
 本発明に係る色素化合物(以下、「化合物(D)」ともいう。)は、前記式1で表される構造を有する化合物である。
[2] Dye compound The dye compound according to the present invention (hereinafter also referred to as “compound (D)”) is a compound having the structure represented by Formula 1 above.
 当該色素化合物は、300~460nmの波長領域の吸収スペクトルにおいて最大吸収波長が365~430nmの波長領域に存在する化合物である。 The dye compound is a compound having a maximum absorption wavelength in the wavelength range of 365 to 430 nm in the absorption spectrum of the wavelength range of 300 to 460 nm.
 (最大吸収波長の測定)
 上記化合物の最大吸収波長は、例えば、株式会社島津製作所製紫外可視分光光度計UV-2450を用いて、色素化合物や紫外線吸収剤のクロロホルム中での吸収スペクトルを測定することによって求めることができる。
(Measurement of maximum absorption wavelength)
The maximum absorption wavelength of the above compound can be determined by measuring the absorption spectrum of the dye compound or ultraviolet absorber in chloroform using, for example, an ultraviolet-visible spectrophotometer UV-2450 manufactured by Shimadzu Corporation.
 なお、本発明における「最大吸収波長」とは、上記化合物の吸収スペクトルを測定したとき得られる化合物の吸収スペクトルにおいて、最大かつ極大の吸光度(吸収強度)を示す波長(nm)をいう。 The "maximum absorption wavelength" in the present invention refers to the wavelength (nm) at which the maximum and maximum absorbance (absorption intensity) is exhibited in the absorption spectrum of the compound obtained by measuring the absorption spectrum of the compound.
 当該色素化合物の最大吸収波長が、前記波長領域に存在することで、表示素子を外光から保護して劣化を抑制すると共に、表示素子の発光に対して発光ロスを生じない。当該色素化合物は、上記吸光特性を有するものであるが、有機EL素子の表示性を阻害するような、蛍光及び燐光性能(フォトルミネセンス)を有しないことが好ましい。 By having the maximum absorption wavelength of the dye compound in the above wavelength range, the display element is protected from external light and deterioration is suppressed, and no light emission loss occurs in the light emitted from the display element. Although the dye compound has the above-described light absorption properties, it preferably does not have fluorescence and phosphorescence performance (photoluminescence) that impairs the display properties of the organic EL element.
 当該色素化合物は、偏光板保護フィルムに含有されるものであり、当該偏光板保護フィルムの成膜成分であるベースポリマー等の樹脂成分への分散性と透明性の維持の観点か有用である。すなわち、ベンゾトリアゾール骨格に置換した特定の置換基構造によって、化合物の疎水性が高まり、当該疎水性によって、樹脂や他の添加剤との相互作用の強化により、光による化合物の分解性を抑制して耐光性を向上でき、樹脂と当該化合物のsp値の観点から相溶性がよく、所望の吸収スペクトルを形成するのに必要な量を添加しても、ブリードアウトや白化現象を生じず、耐久性が向上する。 The dye compound is contained in the polarizing plate protective film, and is useful from the viewpoint of maintaining the dispersibility and transparency in the resin component such as the base polymer, which is the film-forming component of the polarizing plate protective film. That is, the specific substituent structure substituted on the benzotriazole skeleton increases the hydrophobicity of the compound, and the hydrophobicity strengthens the interaction with the resin and other additives, suppressing the degradability of the compound by light. It is compatible with the resin from the viewpoint of the sp value of the compound, and does not cause bleeding out or whitening even when added in the amount necessary to form the desired absorption spectrum, and is durable. improve sexuality.
 <合成例>
 色素化合物(化合物1)の合成
<Synthesis example>
Synthesis of dye compound (compound 1)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 300mLの4つ口フラスコに玉付きコンデンサー、温度計、撹拌装置を取り付け、(a1)4.0g(0.0134モル)、トルエン200mL、オクタン酸7.67g(0.0532モル)、メタンスルホン酸0.2g(0.002モル)を加えて、110~115℃で4時間還流脱水した。温水100mLで2回洗浄し、活性炭0.2gを加え、還流撹拌して脱色させた後に熱時にろ過し、ろ液を5℃まで冷却し、析出する結晶をろ過し、トルエンで洗浄した後、60℃で乾燥し、化合物1を5.2g(収率91%)得た。 A 300 mL four-necked flask was equipped with a condenser with a ball, a thermometer, and a stirrer, and (a1) 4.0 g (0.0134 mol), toluene 200 mL, octanoic acid 7.67 g (0.0532 mol), methanesulfonic acid. 0.2 g (0.002 mol) was added and dehydrated under reflux at 110 to 115° C. for 4 hours. Wash twice with 100 mL of hot water, add 0.2 g of activated carbon, stir under reflux to decolorize, filter while hot, cool the filtrate to 5°C, filter the precipitated crystals, filter and wash with toluene, After drying at 60° C., 5.2 g of compound 1 was obtained (yield 91%).
 本発明に係る色素化合物の含有量は、偏光板保護フィルムにおける成膜成分である樹脂成分100質量%に対し、0.01~10質量部の範囲内であることが好ましく、0.02~8質量部範囲内であることがより好ましい。 The content of the dye compound according to the present invention is preferably in the range of 0.01 to 10 parts by weight, preferably 0.02 to 8 parts by weight, based on 100% by weight of the resin component, which is the film-forming component in the polarizing plate protective film. It is more preferable to be within the range of parts by mass.
 当該色素化合物の含有量を上記範囲とすることで、本発明の偏光板保護フィルムを具備する偏光板を有機EL表示装置に用いた場合に、有機EL素子の発光に影響しない領域の光を十分に吸収することができ、有機EL素子の劣化を抑制することができる。 By setting the content of the dye compound in the above range, when the polarizing plate having the polarizing plate protective film of the present invention is used in an organic EL display device, the light in the region that does not affect the light emission of the organic EL element is sufficiently emitted. can be absorbed into the organic EL element, and deterioration of the organic EL element can be suppressed.
〔3〕樹脂
 本発明に用いられる樹脂は、熱可塑性樹脂材料であることが好ましく、製膜後フィルムとして扱えるものであれば限定はない。例えば、偏光板保護フィルム用途として使用されている熱可塑性樹脂としては、トリアセチルセルロース(TAC)、セルロースアセテートプロピオネート(CAP)、ジアセチルセルロース(DAC)などのセルロースエステル系樹脂やシクロオレフィンポリマー(以下、COP、シクロオレフィン系樹脂ともいう。)などの環状オレフィン系樹脂、ポリプロピレン(PP)などのポリプロピレン系樹脂、ポリメチルメタクリレート(PMMA)などのアクリル系樹脂、及びポリエチレンテレフターレート(PET)などのポリエステル系樹脂が適用できる。
[3] Resin The resin used in the present invention is preferably a thermoplastic resin material, and is not limited as long as it can be treated as a film after film formation. For example, thermoplastic resins used for polarizing plate protective films include cellulose ester resins such as triacetyl cellulose (TAC), cellulose acetate propionate (CAP), and diacetyl cellulose (DAC), and cycloolefin polymers ( cyclic olefin resins such as COP and cycloolefin resins, polypropylene resins such as polypropylene (PP), acrylic resins such as polymethyl methacrylate (PMMA), and polyethylene terephthalate (PET). can be applied.
 中でも、疎水性の高い樹脂であることが、本発明に係る色素化合物との親和性が高く、光吸収波長の波形を制御し、紫外線カット性と可視光短波長領域のシャープな波長カット性に優れ、かつ、表示装置の発光ロスを低減する効果を高めることができる。その観点からは、樹脂の極性、親水性及び含水性を考慮すると、環状オレフィン系樹脂(シクロオレフィン系樹脂)、アクリル系樹脂、セルロースエステル系樹脂の順に好ましく用いることができる。 Among them, the highly hydrophobic resin has a high affinity with the dye compound according to the present invention, controls the waveform of the light absorption wavelength, and has a sharp wavelength cut property in the short wavelength region of visible light and UV cut property. In addition, the effect of reducing the light emission loss of the display device can be enhanced. From that point of view, considering the polarity, hydrophilicity, and water absorption of the resin, it is possible to preferably use the cyclic olefin-based resin (cycloolefin-based resin), the acrylic resin, and the cellulose ester-based resin in this order.
〔3.1〕シクロオレフィン系樹脂
 本発明の偏光板保護フィルムに含有されるシクロオレフィン系樹脂は、シクロオレフィン単量体の重合体、又はシクロオレフィン単量体とそれ以外の共重合性単量体との共重合体であることが好ましい。
[3.1] Cycloolefin-based resin The cycloolefin-based resin contained in the polarizing plate protective film of the present invention is a polymer of a cycloolefin monomer, or a copolymerizable monomer other than a cycloolefin monomer. It is preferably a copolymer with a polymer.
 シクロオレフィン単量体としては、ノルボルネン骨格を有するシクロオレフィン単量体であることが好ましく、下記一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体であることがより好ましい。 The cycloolefin monomer is preferably a cycloolefin monomer having a norbornene skeleton, and a cycloolefin monomer having a structure represented by the following general formula (A-1) or (A-2) It is more preferable to have
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(A-1)中、R1~R4は、各々独立して、水素原子、炭素原子数1~30の炭化水素基、又は極性基を表す。pは、0~2の整数を表す。ただし、R1~R4の全てが同時に水素原子を表すことはなく、R1とR2が同時に水素原子を表すことはなく、R3とR4が同時に水素原子を表すことはないものとする。 In general formula (A-1), R 1 to R 4 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 30 carbon atoms, or a polar group. p represents an integer of 0 to 2; However, all of R 1 to R 4 do not represent hydrogen atoms at the same time, R 1 and R 2 do not represent hydrogen atoms at the same time, and R 3 and R 4 do not represent hydrogen atoms at the same time. do.
 一般式(A-1)においてR1~R4で表される炭素原子数1~30の炭化水素基としては、例えば、炭素原子数1~10の炭化水素基であることが好ましく、炭素原子数1~5の炭化水素基であることがより好ましい。炭素原子数1~30の炭化水素基は、例えば、ハロゲン原子、酸素原子、窒素原子、硫黄原子又はケイ素原子を含む連結基をさらに有していても良い。そのような連結基の例には、カルボニル基、イミノ基、エーテル結合、シリルエーテル結合、チオエーテル結合等の2価の極性基が含まれる。炭素原子数1~30の炭化水素基の例には、メチル基、エチル基、プロピル基及びブチル基等が含まれる。 The hydrocarbon group having 1 to 30 carbon atoms represented by R 1 to R 4 in general formula (A-1) is preferably, for example, a hydrocarbon group having 1 to 10 carbon atoms. Hydrocarbon groups of numbers 1 to 5 are more preferred. A hydrocarbon group having 1 to 30 carbon atoms may further have a linking group containing, for example, a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom. Examples of such linking groups include divalent polar groups such as carbonyl groups, imino groups, ether bonds, silyl ether bonds and thioether bonds. Examples of hydrocarbon groups having 1 to 30 carbon atoms include methyl, ethyl, propyl, butyl and the like.
 一般式(A-1)においてR1~R4で表される極性基の例には、カルボキシ基、ヒドロキシ基、アルコキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基及びシアノ基が含まれる。中でも、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましい。 Examples of polar groups represented by R 1 to R 4 in general formula (A-1) include a carboxy group, a hydroxy group, an alkoxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amido group and a cyano group. is included. Among them, a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group are preferred, and an alkoxycarbonyl group and an aryloxycarbonyl group are preferred from the viewpoint of ensuring solubility during solution film formation.
 一般式(A-1)におけるpは、偏光板保護フィルムの耐熱性を高める観点から、1又は2であることが好ましい。pが1又は2であると、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。 From the viewpoint of increasing the heat resistance of the polarizing plate protective film, p in general formula (A-1) is preferably 1 or 2. This is because when p is 1 or 2, the resulting polymer becomes bulky and the glass transition temperature tends to be improved.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(A-2)中、R5は、水素原子、炭素数1~5の炭化水素基、又は炭素数1~5のアルキル基を有するアルキルシリル基を表す。R6は、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基、シアノ基、又はハロゲン原子(フッ素原子、塩素原子、臭素原子若しくはヨウ素原子)を表す。pは、0~2の整数を表す。 In general formula (A-2), R 5 represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms. R6 represents a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amido group, a cyano group, or a halogen atom (fluorine atom, chlorine atom, bromine atom or iodine atom). p represents an integer of 0 to 2;
 一般式(A-2)におけるR5は、炭素数1~5の炭化水素基を表すことが好ましく、炭素数1~3の炭化水素基を表すことがより好ましい。 R 5 in general formula (A-2) preferably represents a hydrocarbon group having 1 to 5 carbon atoms, more preferably a hydrocarbon group having 1 to 3 carbon atoms.
 一般式(A-2)におけるR6は、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基を表すことが好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基がより好ましい。 R 6 in general formula (A-2) preferably represents a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group. An oxycarbonyl group is more preferred.
 一般式(A-2)におけるpは、偏光板保護フィルムの耐熱性を高める観点から、1又は2を表すことが好ましい。pが1又は2を表すと、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。 From the viewpoint of enhancing the heat resistance of the polarizing plate protective film, p in general formula (A-2) preferably represents 1 or 2. This is because when p is 1 or 2, the resulting polymer becomes bulky and the glass transition temperature tends to be improved.
 一般式(A-2)で表される構造を有するシクロオレフィン単量体は、有機溶媒への溶解性を向上させる点から好ましい。一般的に有機化合物は対称性を崩すことによって結晶性が低下するため、有機溶媒への溶解性が向上する。一般式(A-2)におけるR5及びR6は、分子の対称軸に対して片側の環構成炭素原子のみに置換されているので、分子の対称性が低く、すなわち、一般式(A-2)で表される構造を有するシクロオレフィン単量体は溶解性が高いため、偏光板保護フィルムを溶液流延法によって製造する場合に適している。 A cycloolefin monomer having a structure represented by general formula (A-2) is preferable from the viewpoint of improving the solubility in organic solvents. In general, breaking the symmetry of an organic compound lowers the crystallinity, thereby improving the solubility in an organic solvent. Since R 5 and R 6 in general formula (A-2) are substituted only on one ring-constituting carbon atom with respect to the symmetry axis of the molecule, the symmetry of the molecule is low, that is, general formula (A- Since the cycloolefin monomer having the structure represented by 2) is highly soluble, it is suitable for producing a polarizing plate protective film by a solution casting method.
 シクロオレフィン単量体の重合体における一般式(A-2)で表される構造を有するシクロオレフィン単量体の含有割合は、シクロオレフィン系樹脂を構成する全シクロオレフィン単量体の合計に対して例えば、70モル%以上、好ましくは80モル%以上、より好ましくは100モル%とし得る。一般式(A-2)で表される構造を有するシクロオレフィン単量体を一定以上含むと、樹脂の配向性が高まるため、位相差(リターデーション)値が上昇しやすい。 The content of the cycloolefin monomer having the structure represented by the general formula (A-2) in the cycloolefin monomer polymer is based on the total of all cycloolefin monomers constituting the cycloolefin resin. For example, 70 mol % or more, preferably 80 mol % or more, more preferably 100 mol %. When the cycloolefin monomer having the structure represented by the general formula (A-2) is contained in a certain amount or more, the orientation of the resin is enhanced, so that the retardation value tends to increase.
 以下、一般式(A-1)で表される構造を有するシクロオレフィン単量体の具体例を構造式1~14に示し、一般式(A-2)で表される構造を有するシクロオレフィン単量体の具体例を構造式15~34に示す。 Specific examples of cycloolefin monomers having a structure represented by general formula (A-1) are shown below in structural formulas 1 to 14, and cycloolefin monomers having a structure represented by general formula (A-2) Specific examples of the mers are shown in Structural Formulas 15-34.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 シクロオレフィン単量体と共重合可能な共重合性単量体の例には、シクロオレフィン単量体と開環共重合可能な共重合性単量体、及びシクロオレフィン単量体と付加共重合可能な共重合性単量体等が含まれる。 Examples of copolymerizable monomers copolymerizable with cycloolefin monomers include copolymerizable monomers capable of ring-opening copolymerization with cycloolefin monomers, and addition copolymerization with cycloolefin monomers. possible copolymerizable monomers and the like.
 開環共重合可能な共重合性単量体の例には、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン及びジシクロペンタジエン等のシクロオレフィンが含まれる。 Examples of copolymerizable monomers capable of ring-opening copolymerization include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene and dicyclopentadiene.
 付加共重合可能な共重合性単量体の例には、不飽和二重結合含有化合物、ビニル系環状炭化水素単量体及び(メタ)アクリレート等が含まれる。不飽和二重結合含有化合物の例には、炭素原子数2~12(好ましくは2~8)のオレフィン系化合物が含まれ、その例には、エチレン、プロピレン及びブテン等が含まれる。ビニル系環状炭化水素単量体の例には、4-ビニルシクロペンテン及び2-メチル-4-イソプロペニルシクロペンテン等のビニルシクロペンテン系単量体が含まれる。(メタ)アクリレートの例には、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート及びシクロヘキシル(メタ)アクリレート等の炭素原子数1~20のアルキル(メタ)アクリレートが含まれる。 Examples of addition-copolymerizable copolymerizable monomers include unsaturated double bond-containing compounds, vinyl-based cyclic hydrocarbon monomers, and (meth)acrylates. Examples of unsaturated double bond-containing compounds include olefinic compounds having 2 to 12 (preferably 2 to 8) carbon atoms, examples of which include ethylene, propylene, butene, and the like. Examples of vinyl-based cyclic hydrocarbon monomers include vinylcyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene. Examples of (meth)acrylates include C1-C20 alkyl (meth)acrylates such as methyl (meth)acrylate, 2-ethylhexyl (meth)acrylate and cyclohexyl (meth)acrylate.
 シクロオレフィン単量体と共重合性単量体との共重合体におけるシクロオレフィン単量体の含有割合は、共重合体を構成する全単量体の合計に対して例えば、20~80mol%、好ましくは30~70mol%とし得る。 The content of the cycloolefin monomer in the copolymer of the cycloolefin monomer and the copolymerizable monomer is, for example, 20 to 80 mol% with respect to the total of all monomers constituting the copolymer, Preferably, it can be 30 to 70 mol %.
 シクロオレフィン系樹脂は、前述のとおり、ノルボルネン骨格を有するシクロオレフィン単量体、好ましくは一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体を重合又は共重合して得られる重合体であり、その例には、以下のものが含まれる。 As described above, the cycloolefin resin is obtained by polymerizing or polymerizing a cycloolefin monomer having a norbornene skeleton, preferably a cycloolefin monomer having a structure represented by general formula (A-1) or (A-2). Polymers obtained by copolymerization, examples of which include the following.
 (1)シクロオレフィン単量体の開環重合体
 (2)シクロオレフィン単量体と、それと開環共重合可能な共重合性単量体との開環共重合体
 (3)上記(1)又は(2)の開環(共)重合体の水素添加物
 (4)上記(1)又は(2)の開環(共)重合体をフリーデルクラフツ反応により環化した後、水素添加した(共)重合体
 (5)シクロオレフィン単量体と、不飽和二重結合含有化合物との飽和共重合体
 (6)シクロオレフィン単量体のビニル系環状炭化水素単量体との付加共重合体及びその水素添加物
 (7)シクロオレフィン単量体と、(メタ)アクリレートとの交互共重合体
 上記(1)~(7)の重合体は、いずれも公知の方法、例えば、特開2008-107534号公報や特開2005-227606号公報に記載の方法で得ることができる。例えば、上記(2)の開環共重合に用いられる触媒や溶媒は、例えば、特開2008-107534号公報の段落0019~0024に記載のものを使用できる。上記(3)及び(6)の水素添加に用いられる触媒は、例えば、特開2008-107534号公報の段落0025~0028に記載のものを使用できる。上記(4)のフリーデルクラフツ反応に用いられる酸性化合物は、例えば、特開2008-107534号公報の段落0029に記載のものを使用できる。上記(5)~(7)の付加重合に用いられる触媒は、例えば、特開2005-227606号公報の段落0058~0063に記載のものを使用できる。上記(7)の交互共重合反応は、例えば、特開2005-227606号公報の段落0071及び0072に記載の方法で行うことができる。
(1) A ring-opening polymer of a cycloolefin monomer (2) A ring-opening copolymer of a cycloolefin monomer and a copolymerizable monomer capable of ring-opening copolymerization thereof (3) Above (1) or a hydrogenated product of the ring-opening (co)polymer of (2); Co) Polymer (5) Saturated copolymer of cycloolefin monomer and unsaturated double bond-containing compound (6) Addition copolymer of cycloolefin monomer and vinyl cyclic hydrocarbon monomer And hydrogenated products thereof (7) Alternating copolymers of cycloolefin monomers and (meth)acrylates The polymers of (1) to (7) are all produced by known methods, for example, JP-A-2008- It can be obtained by the methods described in JP-A-107534 and JP-A-2005-227606. For example, the catalyst and solvent used for the ring-opening copolymerization of (2) above can be those described in paragraphs 0019 to 0024 of JP-A-2008-107534. As the catalyst used for hydrogenation in (3) and (6) above, for example, those described in paragraphs 0025 to 0028 of JP-A-2008-107534 can be used. As the acidic compound used in the Friedel-Crafts reaction of (4) above, for example, those described in paragraph 0029 of JP-A-2008-107534 can be used. As the catalyst used in the addition polymerization of (5) to (7) above, for example, those described in paragraphs 0058 to 0063 of JP-A-2005-227606 can be used. The alternating copolymerization reaction of (7) above can be carried out, for example, by the method described in paragraphs 0071 and 0072 of JP-A-2005-227606.
 中でも、上記(1)~(3)及び(5)の重合体が好ましく、上記(3)及び(5)の重合体がより好ましい。すなわち、シクロオレフィン系樹脂は、得られるシクロオレフィン系樹脂のガラス転移温度を高くし、かつ光透過率を高くすることができる点で、下記一般式(B-1)で表される構造単位と下記一般式(B-2)で表される構造単位の少なくとも一方を含むことが好ましく、一般式(B-2)で表される構造単位のみを含むか、又は一般式(B-1)で表される構造単位と一般式(B-2)で表される構造単位の両方を含むことがより好ましい。一般式(B-1)で表される構造単位は、前述の一般式(A-1)で表されるシクロオレフィン単量体由来の構造単位であり、一般式(B-2)で表される構造単位は、前述の一般式(A-2)で表されるシクロオレフィン単量体由来の構造単位である。 Among them, the polymers (1) to (3) and (5) above are preferred, and the polymers (3) and (5) above are more preferred. That is, the cycloolefin-based resin can increase the glass transition temperature of the obtained cycloolefin-based resin and can increase the light transmittance. It preferably contains at least one of the structural units represented by the following general formula (B-2), and contains only the structural unit represented by the general formula (B-2), or the general formula (B-1) It is more preferable to include both the structural unit represented by formula (B-2) and the structural unit represented by general formula (B-2). The structural unit represented by general formula (B-1) is a structural unit derived from the cycloolefin monomer represented by general formula (A-1) described above, and is represented by general formula (B-2). is a structural unit derived from the cycloolefin monomer represented by the general formula (A-2) described above.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(B-1)中、Xは、-CH=CH-又は-CH2CH2-を表す。R1~R4及びpは、それぞれ一般式(A-1)のR1~R4及びpと同義である。 In general formula (B-1), X represents -CH=CH- or -CH 2 CH 2 -. R 1 to R 4 and p have the same definitions as R 1 to R 4 and p in formula (A-1), respectively.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(B-2)中、Xは、-CH=CH-又は-CH2CH2-を表す。R5~R6及びpは、それぞれ一般式(A-2)のR5~R6及びpと同義である。 In general formula (B-2), X represents -CH=CH- or -CH 2 CH 2 -. R 5 to R 6 and p have the same meanings as R 5 to R 6 and p in formula (A-2), respectively.
 本発明に用いられるシクロオレフィン系樹脂は、市販品であっても良い。シクロオレフィン系樹脂の市販品の例には、JSR(株)製のアートン(Arton)G(例えば、G7810等)、アートンF、アートンR(例えば、R4500、R4900及びR5000等)、及びアートンRXが含まれる。 The cycloolefin-based resin used in the present invention may be a commercially available product. Examples of commercially available cycloolefin-based resins include JSR Corporation's Arton G (e.g., G7810), Arton F, Arton R (e.g., R4500, R4900 and R5000), and Arton RX. included.
 シクロオレフィン系樹脂の固有粘度〔η〕inhは、30℃の測定において、0.2~5cm3/gの範囲であることが好ましく、0.3~3cm3/gの範囲であることがより好ましく、0.4~1.5cm3/gの範囲であることがさらに好ましい。 The intrinsic viscosity [η]inh of the cycloolefin resin is preferably in the range of 0.2 to 5 cm 3 /g, more preferably in the range of 0.3 to 3 cm 3 /g, as measured at 30°C. It is preferably in the range of 0.4 to 1.5 cm 3 /g, more preferably.
 シクロオレフィン系樹脂の数平均分子量(Mn)は、8000~100000の範囲であることが好ましく、10000~80000の範囲であることがより好ましく、12000~50000の範囲であることがさらに好ましい。シクロオレフィン系樹脂の重量平均分子量(Mw)は、20000~300000の範囲であることが好ましく、30000~250000の範囲であることがより好ましく、40000~200000の範囲であることがさらに好ましい。シクロオレフィン系樹脂の数平均分子量や重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)にてポリスチレン換算にて測定することができる。 The number average molecular weight (Mn) of the cycloolefin resin is preferably in the range of 8,000 to 100,000, more preferably in the range of 10,000 to 80,000, and even more preferably in the range of 12,000 to 50,000. The weight average molecular weight (Mw) of the cycloolefin resin is preferably in the range of 20,000 to 300,000, more preferably in the range of 30,000 to 250,000, even more preferably in the range of 40,000 to 200,000. The number average molecular weight and weight average molecular weight of the cycloolefin resin can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
 <ゲルパーミエーションクロマトグラフィー>
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0mL/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=500~2800000の範囲内の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
<Gel permeation chromatography>
Solvent: methylene chloride Column: Shodex K806, K805, K803G (3 columns manufactured by Showa Denko Co., Ltd. were connected and used)
Column temperature: 25°C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Science)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 mL/min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation) A calibration curve with 13 samples within the range of Mw = 500 to 2800000 was used. The 13 samples are preferably used at approximately equal intervals.
 固有粘度〔η〕inh、数平均分子量及び重量平均分子量が上記範囲にあると、シクロオレフィン系樹脂の耐熱性、耐水性、耐薬品性、機械的特性、及びフィルムとしての成形加工性が良好となる。 When the intrinsic viscosity [η] inh, number average molecular weight, and weight average molecular weight are within the above ranges, the heat resistance, water resistance, chemical resistance, mechanical properties, and moldability as a film of the cycloolefin resin are good. Become.
 シクロオレフィン系樹脂のガラス転移温度(Tg)は、通常、110℃以上であり、110~350℃の範囲であることが好ましく、120~250℃の範囲であることがより好ましく、120~220℃の範囲であることがさらに好ましい。Tgが110℃以上であると、高温条件下での変形を抑制しやすい。一方、Tgが350℃以下であると、成形加工が容易となり、成形加工時の熱による樹脂の劣化も抑制しやすい。 The glass transition temperature (Tg) of the cycloolefin resin is usually 110°C or higher, preferably in the range of 110 to 350°C, more preferably in the range of 120 to 250°C, and 120 to 220°C. is more preferably in the range of When Tg is 110°C or higher, deformation under high temperature conditions is easily suppressed. On the other hand, when the Tg is 350° C. or less, the molding process becomes easy, and deterioration of the resin due to heat during the molding process can be easily suppressed.
 シクロオレフィン系樹脂の含有量は、フィルムに対して70質量%以上であることが好ましく、80質量%以上であることがより好ましい。 The content of the cycloolefin resin is preferably 70% by mass or more, more preferably 80% by mass or more, relative to the film.
〔3.2〕アクリル系樹脂
 本発明に用いられるアクリル系樹脂は、アクリル酸エステル又はメタアクリル酸エステルの重合体であって、ほかのモノマーとの共重合体も含まれる。
[3.2] Acrylic resin The acrylic resin used in the present invention is a polymer of acrylic acid ester or methacrylic acid ester, including copolymers with other monomers.
 したがって、本発明に用いられるアクリル系樹脂には、メタクリル樹脂も含まれる。樹脂としては特に制限されるものではないが、メチルメタクリレート単位が50~99質量%の範囲内、及びこれと共重合可能なほかの単量体単位が1~50質量%の範囲内からなるものが好ましい。 Therefore, the acrylic resins used in the present invention also include methacrylic resins. Although the resin is not particularly limited, it contains 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith. is preferred.
 共重合で形成されるアクリル系樹脂を構成するほかの単位としては、アルキル基の炭素数が2~18のアルキルメタクリレート、アルキル基の炭素数が1~18のアルキルアクリレート、メタクリル酸イソボルニル、2-ヒドロキシエチルアクリレート等のヒドロキシアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、アクリロイルモルホリン、N-ヒドロキシフェニルメタクリルアミド等のアクリルアミド、N-ビニルピロリドン、マレイン酸、フマル酸、イタコン酸等の不飽和基含有2価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタルイミド、グルタル酸無水物等が挙げられる。 Other units constituting the acrylic resin formed by copolymerization include alkyl methacrylates having an alkyl group having 2 to 18 carbon atoms, alkyl acrylates having an alkyl group having 1 to 18 carbon atoms, isobornyl methacrylate, 2- Hydroxyalkyl acrylates such as hydroxyethyl acrylate, α,β-unsaturated acids such as acrylic acid and methacrylic acid, acrylamides such as acryloylmorpholine and N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, maleic acid, fumaric acid, itaconic acid unsaturated group-containing divalent carboxylic acids such as styrene, aromatic vinyl compounds such as α-methylstyrene, acrylonitrile, α,β-unsaturated nitriles such as methacrylonitrile, maleic anhydride, maleimide, N-substituted maleimide, Glutarimide, glutaric anhydride and the like can be mentioned.
 上記単位より、グルタルイミド及びグルタル酸無水物を除いた単位を形成する共重合可能な単量体としては、上記単位に対応した単量体が挙げられる。すなわち、アルキル基の炭素数が2~18のアルキルメタクリレート、アルキル基の炭素数が1~18のアルキルアクリレート、メタクリル酸イソボルニル、2-ヒドロキシエチルアクリレート等のヒドロキシアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、アクリロイルモルホリン、Nヒドロキシフェニルメタクリルアミド等のアクリルアミド、N-ビニルピロリドン、マレイン酸、フマル酸、イタコン酸等の不飽和基含有2価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、等の単量体が挙げられる。 Examples of copolymerizable monomers forming units other than glutarimide and glutaric anhydride from the above units include monomers corresponding to the above units. That is, alkyl methacrylates having an alkyl group having 2 to 18 carbon atoms, alkyl acrylates having an alkyl group having 1 to 18 carbon atoms, isobornyl methacrylate, hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate, acrylic acid, methacrylic acid, etc. α,β-unsaturated acids, acryloylmorpholine, acrylamides such as N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, unsaturated group-containing divalent carboxylic acids such as maleic acid, fumaric acid, itaconic acid, styrene, α-methylstyrene monomers such as aromatic vinyl compounds such as acrylonitrile, α,β-unsaturated nitriles such as methacrylonitrile, maleic anhydride, maleimide, and N-substituted maleimide.
 また、グルタルイミド単位は、例えば(メタ)アクリル酸エステル単位を有する中間体ポリマーに1級アミン(イミド化剤)を反応させてイミド化することにより形成できる(特開2011-26563号公報参照。)。 Further, the glutarimide unit can be formed, for example, by reacting an intermediate polymer having (meth)acrylic acid ester units with a primary amine (imidizing agent) to imidize the intermediate polymer (see JP-A-2011-26563). ).
 グルタル酸無水物単位は、例えば(メタ)アクリル酸エステル単位を有する中間体ポリマーを加熱することにより形成することができる(特許第4961164号公報参照。)。 A glutaric anhydride unit can be formed, for example, by heating an intermediate polymer having a (meth)acrylate unit (see Japanese Patent No. 4961164).
 本発明に用いられるアクリル系樹脂には、上記の構成単位の中でも、機械的強度の観点から、メタクリル酸イソボルニル、アクリロイルモルホリン、N-ヒドロキシフェニルメタクリルアミド、N-ビニルピロリドン、スチレン、ヒドロキシエチルメタクリレート、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物又はグルタルイミドが含まれることが、特に好ましい。 Among the above structural units, the acrylic resin used in the present invention includes, from the viewpoint of mechanical strength, isobornyl methacrylate, acryloylmorpholine, N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, styrene, hydroxyethyl methacrylate, Particular preference is given to including maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride or glutarimide.
 本発明に用いられるアクリル系樹脂は、環境の温湿度雰囲気の変化に対する寸法変化を制御する観点や、フィルム生産時の金属支持体からの剥離性、有機溶媒の乾燥性、耐熱性及び機械的強度の改善の観点から、重量平均分子量(Mw)が5万~100万の範囲内であることが好ましく、10万~100万の範囲内であることがより好ましく、20万~80万の範囲内であることが特に好ましい。 The acrylic resin used in the present invention has a viewpoint of controlling dimensional changes due to changes in environmental temperature and humidity atmosphere, peelability from a metal support during film production, drying property of organic solvents, heat resistance and mechanical strength. From the viewpoint of improvement, the weight average molecular weight (Mw) is preferably in the range of 50,000 to 1,000,000, more preferably in the range of 100,000 to 1,000,000, and in the range of 200,000 to 800,000. is particularly preferred.
 5万以上であれば、耐熱性及び機械的強度が優れ、100万以下であれば、金属支持体からの剥離性及び有機溶媒の乾燥性に優れる。 When it is 50,000 or more, the heat resistance and mechanical strength are excellent, and when it is 1,000,000 or less, the peelability from the metal support and the drying property of the organic solvent are excellent.
 本発明に用いられるアクリル系樹脂の製造方法としては、特に制限はなく、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系及びアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁又は乳化重合では30~100℃の範囲内、塊状又は溶液重合では80~160℃の範囲内で実施しうる。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。 The method for producing the acrylic resin used in the present invention is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used. Here, as the polymerization initiator, usual peroxide-based and azo-based initiators can be used, and redox-based initiators can also be used. The polymerization temperature may be 30 to 100° C. for suspension or emulsion polymerization, and 80 to 160° C. for bulk or solution polymerization. In order to control the reduced viscosity of the resulting copolymer, the polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
 アクリル系樹脂のガラス転移温度Tgは、80~120℃の範囲内であることが、フィルムの機械的強度を保持する観点から、好ましい。 From the viewpoint of maintaining the mechanical strength of the film, the glass transition temperature Tg of the acrylic resin is preferably within the range of 80 to 120°C.
 本発明に用いられるアクリル系樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N、980N、SR8200(以上、旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80、BR83、BR85、BR88、EMB-143、EMB-159、EMB-160、EMB-161、EMB-218、EMB-229、EMB-270、EMB-273(以上、三菱レイヨン(株)製)、KT75、TX400S、IPX012(以上、電気化学工業(株)製)等が挙げられる。アクリル系樹脂は2種以上を併用することもできる。 Commercially available products can also be used as the acrylic resin used in the present invention. For example, Delpet 60N, 80N, 980N, SR8200 (manufactured by Asahi Kasei Chemicals Corporation), Dianal BR52, BR80, BR83, BR85, BR88, EMB-143, EMB-159, EMB-160, EMB-161, EMB-218, EMB-229, EMB-270, EMB-273 (manufactured by Mitsubishi Rayon Co., Ltd.), KT75, TX400S, IPX012 (manufactured by Denki Kagaku Kogyo KK) and the like. Acrylic resin can also use 2 or more types together.
 本発明に用いられるアクリル系樹脂は、添加剤を含有することが好ましく、添加剤の一例としては、国際公開第2010/001668号に記載のアクリル粒子(ゴム弾性体粒子)を、フィルムの機械的強度向上や寸法変化率の調整のために含有することが好ましい。このような多層構造アクリル系粒状複合体の市販品の例としては、例えば、三菱レイヨン社製の「メタブレンW-341」、カネカ社製の「カネエース」、クレハ社製の「パラロイド」、ロームアンドハース社製の「アクリロイド」、アイカ社製の「スタフィロイド」、ケミスノーMR-2G、MS-300X(以上、綜研化学(株)製)及びクラレ社製の「パラペットSA」などが挙げられ、これらは、単独ないし2種以上を用いることができる。 The acrylic resin used in the present invention preferably contains an additive. Examples of the additive include acrylic particles (rubber elastic particles) described in International Publication No. WO 2010/001668. It is preferably contained for improving the strength and adjusting the dimensional change rate. Commercially available examples of such multi-layered acrylic granular composites include, for example, "Metabrene W-341" manufactured by Mitsubishi Rayon Co., Ltd., "Kaneace" manufactured by Kaneka Corporation, "Paraloid" manufactured by Kureha Corporation, Rohm and "Acryloid" manufactured by Haas, "Staphyloid" manufactured by Aika, Chemisnow MR-2G, MS-300X (manufactured by Soken Chemical Co., Ltd.) and "Parapet SA" manufactured by Kuraray Co., Ltd., and the like. can be used singly or in combination of two or more.
 アクリル粒子の体積平均粒子径は0.35μm以下であり、好ましくは0.01~0.35μmの範囲であり、より好ましくは0.05~0.30μmの範囲である。粒子径が一定以上であれば、フィルムを加熱下で伸びやすくでき、粒子径が一定以下であれば、得られるフィルムの透明性を損ないにくい。 The volume average particle size of the acrylic particles is 0.35 μm or less, preferably in the range of 0.01 to 0.35 μm, more preferably in the range of 0.05 to 0.30 μm. If the particle size is above a certain level, the film can be easily stretched under heating, and if the particle size is below a certain level, the transparency of the resulting film is less likely to be impaired.
 本発明の偏光板保護フィルムは、柔軟性の観点から、曲げ弾性率(JIS K7171)が1.5GPa以下であることが好ましい。この曲げ弾性率は、より好ましくは1.3GPa以下であり、さらに好ましくは1.2GPa以下である。この曲げ弾性率は、フィルム中のアクリル系樹脂やゴム弾性体粒子の種類や量などによって変動し、例えば、ゴム弾性体粒子の含有量が多いほど、一般に曲げ弾性率は小さくなる。また、アクリル系樹脂として、メタクリル酸アルキルの単独重合体を用いるよりも、メタクリル酸アルキルとアクリル酸アルキル等との共重合体を用いる方が、一般に曲げ弾性率は小さくなる。 From the viewpoint of flexibility, the polarizing plate protective film of the present invention preferably has a bending elastic modulus (JIS K7171) of 1.5 GPa or less. This bending elastic modulus is more preferably 1.3 GPa or less, and still more preferably 1.2 GPa or less. The flexural modulus varies depending on the type and amount of acrylic resin and rubber elastic particles in the film. For example, the greater the rubber elastic particle content, the lower the flexural modulus. In general, the flexural modulus is smaller when a copolymer of alkyl methacrylate and alkyl acrylate is used than when a homopolymer of alkyl methacrylate is used as the acrylic resin.
〔3.3〕セルロースエステル系樹脂
 本発明で用いられるセルロースエステル樹脂としては、例えば、トリアセチルセルロース(TAC)、セルロースアセテートプロピオネート、セルロースジアセテート、セルロースアセテートブチレート等が挙げられる。また、セルロースエステル樹脂と共に、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂、ポリカーボネート樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ノルボルネン樹脂、フッ素樹脂、シクロオレフィン樹脂等を併用してもよい。
[3.3] Cellulose Ester Resin Examples of the cellulose ester resin used in the present invention include triacetyl cellulose (TAC), cellulose acetate propionate, cellulose diacetate, and cellulose acetate butyrate. Moreover, together with the cellulose ester resin, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polycarbonate resins, polyolefin resins such as polyethylene and polypropylene, norbornene resins, fluororesins, cycloolefin resins, and the like may be used in combination.
 本発明の偏光板保護フィルムに用いるセルロースエステルは、炭素数2~22程度のカルボン酸エステルであることが好ましく、芳香族カルボン酸のエステルであってもよいし、セルロースの低級脂肪酸エステルであることが好ましい。ここで、セルロースの低級脂肪酸エステルにおける「低級脂肪酸」とは、炭素原子数が6以下の脂肪酸を意味する。 The cellulose ester used in the polarizing plate protective film of the present invention is preferably a carboxylic acid ester having about 2 to 22 carbon atoms, and may be an ester of an aromatic carboxylic acid or a lower fatty acid ester of cellulose. is preferred. Here, the "lower fatty acid" in the lower fatty acid ester of cellulose means a fatty acid having 6 or less carbon atoms.
 また、セルロースエステルを構成するグルコース単位のヒドロキシ基に結合するアシル基は、直鎖炭化水素基であってもよいし、分岐炭化水素基であってもよいし、環状構造の炭化水素基であってもよいし、アシル基に対して別の置換基が置換していてもよい。セルロースエステルのヒドロキシ基に結合する置換基の置換度が同じ場合、低級脂肪酸の炭素数が7を超えると、複屈折性が低下するため、セルロースエステルを構成するグルコース単位のヒドロキシ基に結合するアシル基の炭素数は2~6が好ましく、この炭素数は2~4がより好ましく、さらに好ましくは炭素数が2~3である。 Further, the acyl group bonded to the hydroxy group of the glucose unit constituting the cellulose ester may be a linear hydrocarbon group, a branched hydrocarbon group, or a cyclic hydrocarbon group. Alternatively, the acyl group may be substituted with another substituent. When the degree of substitution of the substituents bonded to the hydroxy group of the cellulose ester is the same, if the lower fatty acid has more than 7 carbon atoms, the birefringence decreases. The group preferably has 2 to 6 carbon atoms, more preferably 2 to 4 carbon atoms, and still more preferably 2 to 3 carbon atoms.
 本発明において、セルロースエステルは、混合酸由来のアシル基を用いることもできる。好ましくは炭素数が2と3のアシル基、または炭素数が2と4のアシル基を用いることである。このようなセルロースエステルの具体例として、セルロースアセテートプロピオネート、セルロースアセテートブチレート、または、セルロースアセテートプロピオネートブチレート等のアセチル基の他にプロピオネート基またはブチレート基が結合したセルロースの混合脂肪酸エステルを用いることができる。なお、ブチレートを形成するブチリル基は、直鎖状であってもよいし、分岐状であってもよい。セルロースエステルは、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート、またはセルロースアセテートフタレートであることが好ましい。 In the present invention, acyl groups derived from mixed acids can also be used for the cellulose ester. Preferably, acyl groups having 2 and 3 carbon atoms or acyl groups having 2 and 4 carbon atoms are used. Specific examples of such cellulose esters include cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate, and other mixed fatty acid esters of cellulose in which propionate groups or butyrate groups are bonded in addition to acetyl groups. can be used. The butyryl group forming the butyrate may be linear or branched. The cellulose ester is preferably cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, or cellulose acetate phthalate.
 上記保護フィルムのリターデーション値は、セルロースエステルに含まれるアシル基の種類とセルロース樹脂骨格のピラノース環へのアシル基の置換度等によって適宜制御することができる。 The retardation value of the protective film can be appropriately controlled by the type of acyl group contained in the cellulose ester and the degree of substitution of the acyl group to the pyranose ring of the cellulose resin skeleton.
 保護フィルムに用いられるセルロースエステルを構成するグルコース単位のヒドロキシ基に結合する置換基は、下記式(a)及び式(b)を同時に満足するものが好ましい。 The substituents that bind to the hydroxy groups of the glucose units that constitute the cellulose ester used in the protective film preferably satisfy the following formulas (a) and (b) at the same time.
 式(a):2.0≦X+Y≦3.0
 式(b):0≦Y≦2.0
 上記式(a)中、Xはアセチル基の置換度であり、式(a)及び式(b)中、Yはプロピオニル基またはブチリル基の置換度である。上記2式を満足することにより、優れた光学特性を示す偏光板保護フィルムを製造することができる。上記セルロースエステルの中で、トリアセチルセルロース、セルロースアセテートプロピオネートが好ましく用いられる。セルロースアセテートプロピオネートは、アセチル基の置換度Xが1.0≦X≦2.5であり、かつ0.1≦Y≦1.5、2.0≦X+Y≦3.0であることが好ましい。
Formula (a): 2.0≤X+Y≤3.0
Formula (b): 0≤Y≤2.0
In formula (a) above, X is the degree of substitution of the acetyl group, and in formulas (a) and (b), Y is the degree of substitution of the propionyl or butyryl group. By satisfying the above two formulas, it is possible to produce a polarizing plate protective film exhibiting excellent optical properties. Among the above cellulose esters, triacetyl cellulose and cellulose acetate propionate are preferably used. Cellulose acetate propionate has an acetyl group substitution degree X of 1.0≦X≦2.5 and 0.1≦Y≦1.5 and 2.0≦X+Y≦3.0. preferable.
 アシル基の置換度の測定方法は、ASTM-D817-96に準じて測定することができる。アシル基の置換度が低過ぎると、セルロース樹脂の骨格を構成するピラノース環のヒドロキシ基に対して未反応部分が多くなり、該ヒドロキシ基が多く残存する。このため、偏光板保護フィルムのリターデーション値が湿度によって変化してしまうため好ましくなく、偏光板保護フィルムとして偏光子層を保護する能力が低下するため好ましくない。 The method for measuring the degree of substitution of acyl groups can be measured according to ASTM-D817-96. If the degree of substitution with the acyl group is too low, the hydroxy groups of the pyranose ring constituting the skeleton of the cellulose resin will have many unreacted portions, and many of the hydroxy groups will remain. For this reason, the retardation value of the polarizing plate protective film changes depending on humidity, which is not preferable, and the ability of the polarizing plate protective film to protect the polarizer layer is lowered, which is not preferable.
 上記セルロースエステルの数平均分子量は60000~300000が好ましく、より好ましくは70000~200000である。このような数平均分子量のセルロースエステルを用いることにより偏光板保護フィルムの機械的強度を高めることができる。このセルロースエステルの数平均分子量は、高速液体クロマトグラフィーにより下記条件で測定した値を採用するものとする。 The number average molecular weight of the cellulose ester is preferably 60,000 to 300,000, more preferably 70,000 to 200,000. By using a cellulose ester having such a number average molecular weight, the mechanical strength of the polarizing plate protective film can be enhanced. As the number average molecular weight of this cellulose ester, a value measured by high performance liquid chromatography under the following conditions is adopted.
 溶媒:アセトン
 カラム:MPW×1(東ソー株式会社製)
 試料濃度:0.2(質量/容量)%
 流量:1.0mL/分
 試料注入量:300μL
 標準試料:標準ポリスチレン
 温度:23℃
Solvent: Acetone Column: MPW × 1 (manufactured by Tosoh Corporation)
Sample concentration: 0.2 (mass/volume)%
Flow rate: 1.0 mL/min Sample injection volume: 300 μL
Standard sample: Standard polystyrene Temperature: 23°C
 上記セルロースエステルの合成は常法によって調製することができる。
 例えば、セルロースエステルの原料となるセルロースは、特に限定されないが、綿花リンター、木材パルプ、ケナフなどを挙げることができる。またこれらの材料から得られたセルロースエステルはそれぞれ任意の割合で混合して使用してもよい。
The synthesis of the cellulose ester can be prepared by a conventional method.
For example, the cellulose used as the raw material for the cellulose ester is not particularly limited, but cotton linter, wood pulp, kenaf and the like can be mentioned. Also, cellulose esters obtained from these materials may be mixed in an arbitrary ratio and used.
 上記セルロース原料のアシル化剤として、無水酢酸、無水プロピオン酸、無水酪酸等の酸無水物を用いる場合、酢酸等の有機酸またはジクロロメタン等の有機溶媒と、硫酸等のプロトン性触媒とによって反応が行われる。アシル化剤として酸クロライド(CH3COCl、C25COCl、C37COCl)を用いる場合、触媒としてアミン等の塩基性化合物が用いられる。セルロース原料のアシル化は、特開平10-45804号公報に記載の方法により合成することができる。 When an acid anhydride such as acetic anhydride, propionic anhydride, or butyric anhydride is used as the acylating agent for the cellulose raw material, the reaction occurs with an organic acid such as acetic acid or an organic solvent such as dichloromethane and a protic catalyst such as sulfuric acid. done. When acid chlorides (CH 3 COCl, C 2 H 5 COCl, C 3 H 7 COCl) are used as acylating agents, basic compounds such as amines are used as catalysts. Acylation of cellulose raw materials can be synthesized by the method described in JP-A-10-45804.
〔4〕その他の添加剤
 本発明の偏光板保護フィルムは、さらに酸化防止剤、可塑剤、微粒子、帯電防止剤、剥離剤、増粘剤等のその他の添加剤を含んでもよい。
 中でも、本発明の効果をより高める観点から、酸化防止剤及び微粒子を用いることが好ましい。
[4] Other Additives The polarizing plate protective film of the invention may further contain other additives such as antioxidants, plasticizers, fine particles, antistatic agents, release agents, and thickeners.
Among them, from the viewpoint of further enhancing the effects of the present invention, it is preferable to use an antioxidant and fine particles.
 〈酸化防止剤〉
 本発明の偏光板保護フィルムは、酸化防止剤を含有することが好ましい。酸化防止剤は劣化防止剤ともいわれ、例えば、フィルム中の残留溶媒量のハロゲンやリン酸系可塑剤のリン酸等によりフィルムが分解するのを遅らせたり、防いだりする役割を有する。
<Antioxidant>
The polarizing plate protective film of the invention preferably contains an antioxidant. Antioxidants are also called anti-deterioration agents, and play a role in delaying or preventing decomposition of the film due to, for example, halogen in the amount of residual solvent in the film and phosphoric acid in the phosphoric acid-based plasticizer.
 本発明においては、本発明に係る色素化合物と酸化防止剤とを併用することで、当該色素化合物の光吸収波形がよりシャープになる効果が得られる。当該酸化防止剤としては、ヒンダートフェノール系化合物が特に好ましく、ヒンダートフェノール系化合物と本発明に係る色素化合物とは親和性が高く、その相互作用によって、光吸収波形がよりシャープになりやすく、長波長側の光吸収が抑えられて、発光ロスを抑制することができる効果がある。 In the present invention, by using the dye compound according to the present invention in combination with an antioxidant, the effect of sharpening the light absorption waveform of the dye compound can be obtained. As the antioxidant, a hindered phenol-based compound is particularly preferable. The hindered phenol-based compound and the dye compound according to the present invention have a high affinity, and their interaction tends to make the light absorption waveform sharper, It has the effect of suppressing light absorption on the long wavelength side and suppressing light emission loss.
 このようなヒンダードフェノール系の酸化防止剤としては、例えば、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N′-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト等を挙げることができる。 Examples of such hindered phenol antioxidants include 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4 -hydroxyphenyl)propionate], triethylene glycol-bis[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-(3,5- di-t-butyl-4-hydroxyphenyl)propionate], 2,4-bis-(n-octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5- Triazine, 2,2-thio-diethylenebis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], octadecyl-3-(3,5-di-t-butyl-4-hydroxy phenyl)propionate, N,N'-hexamethylenebis(3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), 1,3,5-trimethyl-2,4,6-tris(3 ,5-di-t-butyl-4-hydroxybenzyl)benzene, tris-(3,5-di-t-butyl-4-hydroxybenzyl)-isocyanurate and the like.
 特に、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕が好ましい。また、例えば、N,N′-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4-ジ-t-ブチルフェニル)フォスファイト等のリン系加工安定剤を併用してもよい。 In particular, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], triethylene glycol-bis[3 -(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate] is preferred. Further, for example, hydrazine-based metal deactivators such as N,N'-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyl]hydrazine and tris(2,4-di- Phosphorus-based processing stabilizers such as t-butylphenyl)phosphite may be used in combination.
 好ましいヒンダードフェノール系酸化防止剤としては、市販品を用いることができ、BASFジャパン(株)より、Irganox1076及びIrganox1010を例示することができる。 Commercially available products can be used as preferred hindered phenol-based antioxidants, and Irganox 1076 and Irganox 1010 from BASF Japan Ltd. can be exemplified.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 これらの化合物の添加量は、樹脂100質量%に対して、5質量%以下、好ましくは2質量%以下、より好ましくは0.5~1質量%の範囲で用いる。 The amount of these compounds added is 5% by mass or less, preferably 2% by mass or less, more preferably 0.5 to 1% by mass based on 100% by mass of the resin.
 〈微粒子〉
 本発明の偏光板保護フィルムは、微粒子を含有することが好ましい。
<Fine particles>
The polarizing plate protective film of the invention preferably contains fine particles.
 本発明に使用される微粒子としては、無機化合物の例として、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。また、有機化合物の微粒子も好ましく使用することができる。有機化合物の例としてはポリテトラフルオロエチレン、セルロースアセテート、ポリスチレン、ポリメチルメタクリレート、ポリプピルメタクリレート、ポリメチルアクリレート、ポリエチレンカーボネート、アクリルスチレン系樹脂、シリコーン系樹脂、ポリカーボネート樹脂、ベンゾグアナミン系樹脂、メラミン系樹脂、ポリオレフィン系粉末、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、あるいはポリフッ化エチレン系樹脂、澱粉等の有機高分子化合物の粉砕分級物も挙げられる。あるいは又懸濁重合法で合成した高分子化合物、スプレードライ法あるいは分散法等により球型にした高分子化合物、又は無機化合物を用いることができる。 Examples of fine particles used in the present invention include inorganic compounds such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, and hydrated silicic acid. Mention may be made of calcium, aluminum silicate, magnesium silicate and calcium phosphate. Fine particles of organic compounds can also be preferably used. Examples of organic compounds include polytetrafluoroethylene, cellulose acetate, polystyrene, polymethyl methacrylate, polypropyl methacrylate, polymethyl acrylate, polyethylene carbonate, acrylic styrene resins, silicone resins, polycarbonate resins, benzoguanamine resins, and melamine resins. , polyolefin-based powder, polyester-based resin, polyamide-based resin, polyimide-based resin, polyfluoroethylene-based resin, and pulverized classified products of organic polymer compounds such as starch. Alternatively, a polymer compound synthesized by a suspension polymerization method, a polymer compound formed into a spherical shape by a spray drying method, a dispersion method, or the like, or an inorganic compound can be used.
 微粒子の一次粒子の平均粒径は5~400nmの範囲が好ましく、更に好ましいのは10~300nmの範囲である。 The average particle diameter of the primary particles of the fine particles is preferably in the range of 5 to 400 nm, more preferably in the range of 10 to 300 nm.
 これらは主に粒径0.05~0.3μmの範囲の二次凝集体として含有されていてもよく、平均粒径100~400nmの範囲の粒子であれば凝集せずに一次粒子として含まれていることも好ましい。 These may be mainly contained as secondary aggregates with a particle size in the range of 0.05 to 0.3 μm, and particles with an average particle size in the range of 100 to 400 nm are included as primary particles without agglomeration. It is also preferred that
 微粒子はケイ素を含むものがフィルムの濁度を低くする点で好ましく、特に二酸化ケイ素が好ましい。二酸化ケイ素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。 Fine particles containing silicon are preferable in terms of lowering the turbidity of the film, and silicon dioxide is particularly preferable. Fine particles of silicon dioxide are commercially available, for example, under the trade names of Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, and TT600 (manufactured by Nippon Aerosil Co., Ltd.), and can be used. can.
 特に、ケイ素含有微粒子は本発明にかかる色素化合物との親和性が高く、併用することで光吸収波形がよりシャープになり、長波長側の光吸収が抑えられて、表示装置の発光ロスを抑制することができる。ケイ素含有粒子としては、中でも上記R812又はR972などが好ましく、より疎水性の高いケイ素含有粒子と本発明に係る色素化合物とは親和性が高く、その相互作用によって、上記発光ロスを低減する効果が得られる。 In particular, silicon-containing fine particles have a high affinity with the dye compound according to the present invention, and when used together, the light absorption waveform becomes sharper, the light absorption on the long wavelength side is suppressed, and the light emission loss of the display device is suppressed. can do. As the silicon-containing particles, R812 or R972 is particularly preferable. Silicon-containing particles with higher hydrophobicity have a high affinity with the dye compound according to the present invention, and the interaction between them has the effect of reducing the emission loss. can get.
 これらの微粒子は1種を単独で用いてもよく2種以上を併用してもよい。微粒子の含有量は、樹脂100質量%に対して10質量%以下、好ましくは5質量%以下、より好ましくは0.5~2質量%以下の範囲で用いる。 These fine particles may be used singly or in combination of two or more. The content of the fine particles is 10% by mass or less, preferably 5% by mass or less, more preferably 0.5 to 2% by mass or less with respect to 100% by mass of the resin.
 本発明において製造工程内で微粒子を添加するには、インライン添加による混合を行うことが好ましいが、例えば、スタチックミキサー(東レエンジニアリング製)、SWJ(東レ静止型管内混合器 Hi-Mixer)等のインラインミキサー等が好ましく用いられる。 In the present invention, in order to add fine particles in the manufacturing process, it is preferable to perform mixing by in-line addition. An in-line mixer or the like is preferably used.
 〈紫外線吸収剤〉
 本発明の偏光板保護フィルムは必要に応じて、他の色素化合物として紫外線吸収剤を含有することもできる。
<Ultraviolet absorber>
The polarizing plate protective film of the present invention can also contain an ultraviolet absorber as another dye compound, if necessary.
 前記「紫外線吸収剤」とは、300~460nmの波長領域の吸収スペクトルにおいて最大吸収波長が300~359nmの範囲内に存在する化合物であることが好ましく、最大吸収波長が300~359nmの波長領域に存在するものであれば、特に限定されない。 The "ultraviolet absorber" is preferably a compound having a maximum absorption wavelength in the range of 300 to 359 nm in the absorption spectrum in the wavelength range of 300 to 460 nm, and the maximum absorption wavelength is in the wavelength range of 300 to 359 nm. It is not particularly limited as long as it exists.
 用いられる紫外線吸収剤としては、例えば、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、オキシベンゾフェノン系紫外線吸収剤、サリチル酸エステル系紫外線吸収剤、シアノアクリレート系紫外線吸収剤等を挙げることができ、これらを1種単独で又は2種以上を組み合わせて用いることができる。 Examples of ultraviolet absorbers used include triazine-based ultraviolet absorbers, benzotriazole-based ultraviolet absorbers, benzophenone-based ultraviolet absorbers, oxybenzophenone-based ultraviolet absorbers, salicylic acid ester-based ultraviolet absorbers, cyanoacrylate-based ultraviolet absorbers, and the like. These can be used singly or in combination of two or more.
 これらの中でも、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤が好ましく、1分子中にヒドロキシ基を2個以下有するトリアジン系紫外線吸収剤、及び、1分子中にベンゾトリアゾール骨格を1個有するベンゾトリアゾール系紫外線吸収剤からなる群から選択される少なくとも1種の紫外線吸収剤であることが好ましい。これらの紫外線吸収剤は、該紫外線吸収剤が含有される光学フィルムの成膜成分であるベースポリマー等の樹脂成分への溶解性が良好であり好ましい。さらに、これらの紫外線吸収剤は、波長380nm付近での紫外線吸収能力が高いため好ましい。 Among these, triazine-based UV absorbers and benzotriazole-based UV absorbers are preferred, triazine-based UV absorbers having two or less hydroxy groups in one molecule, and benzotriazole having one benzotriazole skeleton in one molecule. At least one UV absorber selected from the group consisting of triazole-based UV absorbers is preferred. These ultraviolet absorbers are preferred because they have good solubility in resin components such as base polymers, which are film-forming components of optical films containing the ultraviolet absorbers. Furthermore, these ultraviolet absorbers are preferable because they have a high ability to absorb ultraviolet light at a wavelength of around 380 nm.
 1分子中にヒドロキシ基を2個以下有するトリアジン系紫外線吸収剤としては、具体的には、2,4-ビス-[{4-(4-エチルヘキシルオキシ)-4-ヒドロキシ}-フェニル]-6-(4-メトキシフェニル)-1,3,5-トリアジン(Tinosorb S、BASF社製)、2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン(TINUVIN 460、BASF社製)、2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヒドロキシフェニルと[(C10-C16(主としてC12-C13)アルキルオキシ)メチル]オキシランとの反応生成物(TINUVIN 400、BASF社製)、2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-[3-(ドデシルオキシ)-2-ヒドロキシプロポキシ]フェノール)、2-(2,4-ジヒドロキシフェニル)-4,6-ビス-(2,4-ジメチルフェニル)-1,3,5-トリアジンと(2-エチルヘキシル)-グリシド酸エステルの反応生成物(TINUVIN 405、BASF社製)、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール(TINUVIN1577、BASF社製)、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイルオキシ)エトキシ]-フェノール(ADK STAB LA46、(株)ADEKA製)、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン(TINUVIN 479、BASF社製)、6,6′,6′′-(1,3,5-トリアジン-2,4,6-トリイル)トリス(3-ヘキシルオキシ-2-メチルフェノール)(LA-F70、(株)ADEKA製)等を挙げることができる。 Specific examples of triazine-based UV absorbers having two or less hydroxy groups in one molecule include 2,4-bis-[{4-(4-ethylhexyloxy)-4-hydroxy}-phenyl]-6 -(4-methoxyphenyl)-1,3,5-triazine (Tinosorb S, manufactured by BASF), 2,4-bis[2-hydroxy-4-butoxyphenyl]-6-(2,4-dibutoxyphenyl )-1,3,5-triazine (TINUVIN 460, manufactured by BASF), 2-(4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl)-5- Reaction products of hydroxyphenyl and [(C10-C16 (mainly C12-C13) alkyloxy)methyl]oxirane (TINUVIN 400, manufactured by BASF), 2-[4,6-bis(2,4-dimethylphenyl) -1,3,5-triazin-2-yl]-5-[3-(dodecyloxy)-2-hydroxypropoxy]phenol), 2-(2,4-dihydroxyphenyl)-4,6-bis-( 2,4-dimethylphenyl)-1,3,5-triazine and (2-ethylhexyl)-glycidate reaction product (TINUVIN 405, BASF), 2-(4,6-diphenyl-1,3 ,5-triazin-2-yl)-5-[(hexyl)oxy]-phenol (TINUVIN1577, manufactured by BASF), 2-(4,6-diphenyl-1,3,5-triazin-2-yl)- 5-[2-(2-ethylhexanoyloxy)ethoxy]-phenol (ADK STAB LA46, manufactured by ADEKA Corporation), 2-(2-hydroxy-4-[1-octyloxycarbonylethoxy]phenyl)-4 ,6-bis(4-phenylphenyl)-1,3,5-triazine (TINUVIN 479, manufactured by BASF), 6,6′,6″-(1,3,5-triazine-2,4,6 -triyl)tris(3-hexyloxy-2-methylphenol) (LA-F70, manufactured by ADEKA Corporation) and the like.
 また、1分子中にベンゾトリアゾール骨格を1個有するベンゾトリアゾール系紫外線吸収剤としては、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール(TINUVIN 928、BASF社製)、2-(2-ヒドロキシ-5-tert-ブチルフェニル)-2H-ベンゾトリアゾール(TINUVIN PS、BASF社製)、ベンゼンプロパン酸及び3-(2H-ベンゾトリアゾール-2-イル)-5-(1,1-ジメチルエチル)-4-ヒドロキシ(C7-9側鎖及び直鎖アルキル)のエステル化合物(TINUVIN 384-2、BASF社製)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(TINUVIN 900、BASF社製)、メチル-3-(3-(2H-ベンゾトリアゾール-2-イル)-5-t-ブチル-4-ヒドロキシフェニル)プロピオネート/ポリエチレングリコール300の反応生成物(TINUVIN 1130、BASF社製)、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール(TINUVIN P、BASF社製)、2(2H-ベンゾトリアゾール-2-イル)-4-6-ビス(1-メチル-1-フェニルエチル)フェノール(TINUVIN 234、BASF社製)、2-〔5-クロロ(2H)-ベンゾトリアゾール-2-イル〕-4-メチル-6-(tert-ブチル)フェノール(TINUVIN326、BASF社製)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール(TINUVIN 328、BASF社製)、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(TINUVIN 329、BASF社製)、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネートとポリエチレングリコール300との反応生成物(TINUVIN 213、BASF社製)、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール(TINUVIN 571、BASF社製)、2-[2-ヒドロキシ-3-(3、4、5,6-テトラヒドロフタルイミドーメチル)-5-メチルフェニル]ベンゾトリアゾール(Sumisorb250、住友化学工業(株)製)、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール(SeeSorb703、シプロ化成(株)製、又は、KEMISORB 73、シプロ化成(株)製)等を挙げることができる。 Further, as a benzotriazole-based UV absorber having one benzotriazole skeleton in one molecule, 2-(2H-benzotriazol-2-yl)-6-(1-methyl-1-phenylethyl)-4- (1,1,3,3-tetramethylbutyl) phenol (TINUVIN 928, manufactured by BASF), 2-(2-hydroxy-5-tert-butylphenyl)-2H-benzotriazole (TINUVIN PS, manufactured by BASF) , an ester compound (TINUVIN 384- 2, manufactured by BASF), 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (TINUVIN 900, manufactured by BASF), methyl-3-( 3-(2H-benzotriazol-2-yl)-5-t-butyl-4-hydroxyphenyl)propionate/polyethylene glycol 300 reaction product (TINUVIN 1130, manufactured by BASF), 2-(2H-benzotriazole- 2-yl)-p-cresol (TINUVIN P, manufactured by BASF), 2(2H-benzotriazol-2-yl)-4-6-bis(1-methyl-1-phenylethyl)phenol (TINUVIN 234, BASF company), 2-[5-chloro (2H)-benzotriazol-2-yl]-4-methyl-6-(tert-butyl)phenol (TINUVIN326, manufactured by BASF), 2-(2H-benzotriazole- 2-yl)-4,6-di-tert-pentylphenol (TINUVIN 328, manufactured by BASF), 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethyl Butyl)phenol (TINUVIN 329, manufactured by BASF), reaction product of methyl 3-(3-(2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyphenyl)propionate and polyethylene glycol 300 (TINUVIN 213, manufactured by BASF), 2-(2H-benzotriazol-2-yl)-6-dodecyl-4-methylphenol (TINUVIN 571, manufactured by BASF), 2-[2-hydroxy-3-(3 , 4,5,6-tetrahydrophthalimido-methyl)-5-methylphenyl ] Benzotriazole (Sumisorb250, manufactured by Sumitomo Chemical Co., Ltd.), 2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-5-chlorobenzotriazole (SeeSorb703, manufactured by Cipro Kasei Co., Ltd., or , KEMISORB 73, manufactured by Shipro Kasei Co., Ltd.), and the like.
 また、上記ベンゾフェノン系紫外線吸収剤(ベンゾフェノン系化合物)、オキシベンゾフェノン系紫外線吸収剤(オキシベンゾフェノン系化合物)としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸(無水及び三水塩)、2-ヒドロキシ-4-オクチルオキシベンゾフェノン、4-ドデシルオキシ-2-ヒドロキシベンゾフェノン、4-ベンジルオキシ-2-ヒドロキシベンゾフェノン、2,2′,4,4′-テトラヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4,4-ジメトキシベンゾフェノン、2,2′,4,4′-テトラヒドロキシベンゾフェノン(SeeSorb 106、シプロ化成(株)製)、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン(KEMISORB 111、ケミプロ化成(株)製)等を挙げることができる。 Examples of the benzophenone-based ultraviolet absorber (benzophenone-based compound) and oxybenzophenone-based ultraviolet absorber (oxybenzophenone-based compound) include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy -4-methoxybenzophenone-5-sulfonic acid (anhydrous and trihydrate), 2-hydroxy-4-octyloxybenzophenone, 4-dodecyloxy-2-hydroxybenzophenone, 4-benzyloxy-2-hydroxybenzophenone, 2, 2',4,4'-tetrahydroxybenzophenone, 2,2'-dihydroxy-4,4-dimethoxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone (SeeSorb 106, manufactured by Shipro Kasei Co., Ltd.) , 2,2'-dihydroxy-4-methoxybenzophenone (KEMISORB 111, manufactured by Chemipro Kasei Co., Ltd.) and the like.
 また、上記サリチル酸エステル系紫外線吸収剤(サリチル酸エステル系化合物)としては、例えば、フェニル-2-アクリロイルオキシベンゾエ-ト、フェニル-2-アクロリイルオキシ-3-メチルベンゾエ-ト、フェニル-2-アクリロイルオキシ-4-メチルベンゾエ-ト、フェニル-2-アクリロイルオキシ-5-メチルベンゾエ-ト、フェニル-2-アクリロイルオキシ-3-メトキシベンゾエ-ト、フェニル-2-ヒドロキシベンゾエ-ト、フェニル-2-ヒドロキシ-3-メチルベンゾエ-ト、フェニル-2-ヒドロキシ-4メチルベンゾエ-ト、フェニル-2-ヒドロキシ-5-メチルベンゾエ-ト、フェニル2-ヒドロキシ-3-メトキシベンゾエ-ト、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート(TINUVIN120、BASF社製)等を挙げることができる。 Examples of the salicylic acid ester-based ultraviolet absorber (salicylic acid ester-based compound) include phenyl-2-acryloyloxybenzoate, phenyl-2-acryloyloxy-3-methylbenzoate, and phenyl-2-acryloyl. oxy-4-methylbenzoate, phenyl-2-acryloyloxy-5-methylbenzoate, phenyl-2-acryloyloxy-3-methoxybenzoate, phenyl-2-hydroxybenzoate, phenyl-2- hydroxy-3-methylbenzoate, phenyl-2-hydroxy-4-methylbenzoate, phenyl-2-hydroxy-5-methylbenzoate, phenyl 2-hydroxy-3-methoxybenzoate, 2,4-di- tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (TINUVIN120, manufactured by BASF) and the like can be mentioned.
 上記シアノアクリレート系紫外線吸収剤(シアノアクリレート系化合物)としては、例えば、アルキル-2-シアノアクリレート、シクロアルキル-2-シアノアクリレート、アルコキシアルキル-2-シアノアクリレート、アルケニル-2-シアノアクリレート、アルキニル-2-シアノアクリレート等を挙げることができる。 Examples of the cyanoacrylate-based ultraviolet absorbers (cyanoacrylate-based compounds) include alkyl-2-cyanoacrylates, cycloalkyl-2-cyanoacrylates, alkoxyalkyl-2-cyanoacrylates, alkenyl-2-cyanoacrylates, alkynyl- 2-cyanoacrylate and the like can be mentioned.
 紫外線吸収剤は、単独で使用してもよく、また2種以上を混合して使用してもよい。紫外線吸収剤の含有量は、光学フィルムの成膜成分である樹脂成分の100質量部に対する紫外線吸収剤の質量部として示される。 The ultraviolet absorbers may be used alone or in combination of two or more. The content of the ultraviolet absorber is shown as parts by mass of the ultraviolet absorber with respect to 100 parts by mass of the resin component that is the film-forming component of the optical film.
 例えば、紫外線吸収剤が光学フィルムに含有される場合、光学フィルムの構成樹脂100質量部に対する紫外線吸収剤の含有量は、0.1~8質量部の範囲内であることが好ましく、0.5~5質量部の範囲内であることがより好ましい。 For example, when an ultraviolet absorber is contained in the optical film, the content of the ultraviolet absorber with respect to 100 parts by weight of the constituent resin of the optical film is preferably in the range of 0.1 to 8 parts by weight, and 0.5 parts by weight. It is more preferably within the range of to 5 parts by mass.
 紫外線吸収剤の含有量を上記範囲とすることで、紫外線吸収剤含有層が紫外線吸収機能を十分に発揮することできるため、好ましい。そして、本発明に用いられる偏光板を有機EL表示装置に用いた場合に、上記化合物(D)を含有し、さらに紫外線吸収剤を含有することで、外光から有機EL表示素子を保護する機能によって、有機EL表示装置は長期に亘って品質が保持される。 By setting the content of the ultraviolet absorber within the above range, the ultraviolet absorber-containing layer can sufficiently exhibit the ultraviolet absorbing function, which is preferable. Then, when the polarizing plate used in the present invention is used in an organic EL display device, the compound (D) is contained, and an ultraviolet absorber is further contained, thereby functioning to protect the organic EL display element from external light. Therefore, the quality of the organic EL display device is maintained for a long period of time.
〔5〕偏光板保護フィルムの製造
 本発明の偏光板保護フィルムの製造方法としては、通常のインフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できるが、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点から製膜方法は、溶液流延法と溶融流延法が好ましく、特に溶液流延法であることが、加工工程での温度が低く、このため種々の添加剤を用いることによる高機能化付与の観点からより好ましい。以下、本発明に好ましい「溶液流延法」について説明する。
[5] Production of polarizing plate protective film As the production method of the polarizing plate protective film of the present invention, the usual inflation method, T-die method, calendering method, cutting method, casting method, emulsion method, hot press method and the like can be used. Although any manufacturing method can be used, the film forming method is preferably a solution casting method or a melt casting method from the viewpoint of suppressing coloring, suppressing foreign matter defects, suppressing optical defects such as die lines, etc., particularly the solution casting method. This is more preferable from the viewpoint of imparting high functionality by using various additives because the temperature in the processing step is low. The "solution casting method" preferred for the present invention will be described below.
 偏光板保護フィルムを溶液流延法で製造するには、具体的には、以下の(1)~(3)の工程を含む製造方法が用いられる。さらに、該製造方法は、好ましくは(4)の工程を有する。
(1)熱可塑性樹脂を含む成膜成分と、添加される化合物(D)及び任意の添加剤と溶媒とを含むドープを得る工程
(2)得られたドープを支持体上に流延した後、乾燥及び剥離して、膜状物を得る工程
(3)得られた膜状物を、必要に応じて延伸しながら乾燥させる工程
(4)得られた偏光板保護フィルムを巻き取って、ロール体を得る工程
Specifically, a production method including the following steps (1) to (3) is used to produce the polarizing plate protective film by the solution casting method. Further, the production method preferably has step (4).
(1) Step of obtaining a dope containing a film-forming component containing a thermoplastic resin, a compound (D) to be added, optional additives and a solvent (2) After casting the obtained dope on a support , drying and peeling to obtain a film-like material (3) drying the obtained film-like material while stretching as necessary (4) winding the obtained polarizing plate protective film and rolling it the process of getting a body
 (1)の工程について
 熱可塑性樹脂を含む成膜成分と、添加される化合物(D)及び酸化防止剤や微粒子等の添加剤を溶媒に溶解又は分散させて、ドープを調製する。
Regarding Step (1) A dope is prepared by dissolving or dispersing in a solvent film-forming components containing a thermoplastic resin, compound (D) to be added, and additives such as antioxidants and fine particles.
 ドープに用いられる溶媒は、少なくとも熱可塑性樹脂を溶解させうる有機溶媒(良溶媒)を含む。化合物(D)を含有する場合は、有機溶媒はこれらの添加剤に対しても溶解性が高いことが好ましい。良溶媒の例には、ジクロロメタンなどの塩素系有機溶媒や;酢酸メチル、酢酸エチル、アセトン、テトラヒドロフランなどの非塩素系有機溶媒が含まれる。中でも、ジクロロメタンが好ましい。 The solvent used for the dope contains at least an organic solvent (good solvent) capable of dissolving the thermoplastic resin. When compound (D) is contained, the organic solvent preferably has high solubility for these additives. Examples of good solvents include chlorinated organic solvents such as dichloromethane; and non-chlorinated organic solvents such as methyl acetate, ethyl acetate, acetone, tetrahydrofuran. Among them, dichloromethane is preferred.
 ドープに用いられる溶媒は、貧溶媒をさらに含んでいてもよい。貧溶媒の例には、炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールが含まれる。ドープ中のアルコールの比率が高くなると、膜状物がゲル化しやすく、金属支持体からの剥離が容易になりやすい。炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらのうちドープの安定性、沸点も比較的低く、乾燥性もよいことなどからエタノールが好ましい。 The solvent used for the dope may further contain a poor solvent. Examples of poor solvents include linear or branched aliphatic alcohols having 1 to 4 carbon atoms. When the ratio of alcohol in the dope becomes high, the film-like material tends to gel and is easily peeled off from the metal support. Examples of linear or branched aliphatic alcohols having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol and tert-butanol. Of these, ethanol is preferred because of its dope stability, relatively low boiling point, and good drying properties.
 (2)の工程について
 得られたドープを、支持体上に流延する。ドープの流延は、流延ダイから吐出させて行うことができる。
Regarding Step (2) The obtained dope is cast on a support. Casting of the dope can be performed by discharging from a casting die.
 次いで、支持体上に流延されたドープ中の溶媒を蒸発させ、乾燥させる。乾燥されたドープを支持体から剥離して、膜状物を得る。 Then, the solvent in the dope cast on the support is evaporated and dried. The dried dope is peeled off from the support to obtain a film.
 支持体から剥離する際のドープの残留溶媒量(剥離時の膜状物の残留溶媒量)は、例えば20質量%以上であることが好ましく、20~30質量%であることがより好ましい。剥離時の残留溶媒量が30質量%以下であると、剥離による膜状物が伸びすぎるのを抑制しやすい。 The amount of residual solvent in the dope when peeled off from the support (the amount of residual solvent in the film-like substance when peeled) is, for example, preferably 20% by mass or more, more preferably 20 to 30% by mass. When the residual solvent amount at the time of peeling is 30% by mass or less, it is easy to suppress excessive stretching of the film-like material due to peeling.
 剥離時のドープの残留溶媒量は、下記式で定義される。以下においても同様である。 The amount of residual solvent in the dope at the time of peeling is defined by the following formula. The same applies to the following.
 ドープの残留溶媒量(質量%)=(ドープの加熱処理前質量-ドープの加熱処理後質量)/ドープの加熱処理後質量×100
 なお、残留溶媒量を測定する際の加熱処理とは、140℃、30分の加熱処理をいう。
Amount of residual solvent in dope (% by mass)=(mass of dope before heat treatment−mass of dope after heat treatment)/mass of dope after heat treatment×100
Note that the heat treatment for measuring the amount of residual solvent means heat treatment at 140° C. for 30 minutes.
 剥離時の残留溶媒量は、支持体上でのドープの乾燥温度や乾燥時間、支持体の温度などによって調整することができる。 The amount of residual solvent at the time of peeling can be adjusted by the drying temperature and drying time of the dope on the support, the temperature of the support, and so on.
 (3)の工程について
 得られた膜状物を乾燥させる。乾燥は、一段階で行ってもよいし、多段階で行ってもよい。また、乾燥は、必要に応じて延伸しながら行ってもよい。
Regarding Step (3) The resulting film-like material is dried. Drying may be performed in one step or in multiple steps. Moreover, you may perform drying, extending|stretching as needed.
 例えば、膜状物の乾燥工程は、膜状物を予備乾燥させる工程(予備乾燥工程)と、膜状物を延伸する工程(延伸工程)と、延伸後の膜状物を乾燥させる工程(本乾燥工程)とを含んでもよい。 For example, the drying process of the film-like material includes a process of pre-drying the film-like material (pre-drying process), a process of stretching the film-like material (stretching process), and a process of drying the film-like material after stretching (main drying process). drying step).
 (予備乾燥工程)
 予備乾燥温度(延伸前の乾燥温度)は、延伸温度よりも高い温度でありうる。具体的には、熱可塑性樹脂のガラス転移温度をTgとしたとき(Tg-50)~(Tg+50)℃であることが好ましい。予備乾燥温度が(Tg-50)℃以上であると、溶媒を適度に揮発させやすいため、搬送性(ハンドリング性)を高めやすく、(Tg+50)℃以下であると、溶媒が揮発しすぎないため、この後の延伸工程における延伸性が損なわれにくい。初期乾燥温度は、(a)テンター延伸機やローラーで搬送しながら非接触加熱型で乾燥させる場合は、延伸機内温度又は熱風温度などの雰囲気温度として測定されうる。
(Pre-drying step)
The pre-drying temperature (drying temperature before stretching) can be higher than the stretching temperature. Specifically, when the glass transition temperature of the thermoplastic resin is Tg, it is preferably (Tg-50) to (Tg+50)°C. When the pre-drying temperature is (Tg-50) ° C. or higher, the solvent is easily volatilized appropriately, so it is easy to improve the transportability (handling property). , the stretchability in the subsequent stretching process is less likely to be impaired. The initial drying temperature can be measured as (a) the temperature inside the stretching machine or the ambient temperature such as the temperature of hot air when the film is dried by non-contact heating while being conveyed by a tenter stretching machine or rollers.
 (延伸工程)
 延伸は、求められる光学特性、例えばリターデーション値に応じて行えばよく、少なくとも一方の方向に延伸することが好ましく、互いに直交する二方向に延伸(例えば、膜状物の幅方向(TD方向)と、それと直交する搬送方向(MD方向)の二軸延伸)してもよい。
(Stretching process)
The stretching may be carried out according to the required optical properties, for example, the retardation value, preferably in at least one direction, and in two directions perpendicular to each other (for example, the width direction (TD direction) of the film). and biaxial stretching in the transport direction (MD direction) orthogonal thereto).
 偏光板保護フィルムを製造する際の延伸倍率は、5~100%であることが好ましく、20~100%であることがより好ましい。二軸延伸する場合は、各方向にける延伸倍率が、それぞれ上記範囲内であることが好ましい。 The draw ratio when producing the polarizing plate protective film is preferably 5 to 100%, more preferably 20 to 100%. In the case of biaxial stretching, the stretching ratio in each direction is preferably within the above ranges.
 延伸倍率(%)は、(延伸後のフィルムの延伸方向大きさ-延伸前のフィルムの延伸方向大きさ)/(延伸前のフィルムの延伸方向大きさ)×100として定義される。なお、二軸延伸を行う場合は、TD方向とMD方向のそれぞれについて、上記延伸倍率とすることが好ましい。 The stretch ratio (%) is defined as (stretching direction size of the film after stretching−stretching direction size of the film before stretching)/(stretching direction size of the film before stretching)×100. In addition, when biaxially stretching, it is preferable to set it as the said draw ratio about each of TD direction and MD direction.
 延伸温度(延伸時の乾燥温度)は、前述と同様に、熱可塑性樹脂のガラス転移温度をTgとしたとき、Tg(℃)以上であることが好ましく、(Tg+10)~(Tg+50)℃であることがより好ましい。延伸温度がTg(℃)以上、好ましくは(Tg+10)℃以上であると、溶媒を適度に揮発させやすいため、延伸張力を適切な範囲に調整しやすく、(Tg+50)℃以下であると、溶媒が揮発しすぎないため、延伸性が損なわれにくい。偏光板保護フィルムの製造時における延伸温度は、例えば115℃以上としうる。延伸温度は、前述と同様に、(a)延伸機内温度などの雰囲気温度を測定することが好ましい。 The stretching temperature (drying temperature during stretching) is preferably Tg (° C.) or higher, where Tg is the glass transition temperature of the thermoplastic resin, and is (Tg+10) to (Tg+50)° C. is more preferable. When the stretching temperature is Tg (° C.) or higher, preferably (Tg+10)° C. or higher, the solvent is easily volatilized appropriately, so that the stretching tension is easily adjusted to an appropriate range. does not volatilize too much, so stretchability is less likely to be impaired. The stretching temperature during production of the polarizing plate protective film can be, for example, 115° C. or higher. As for the stretching temperature, it is preferable to measure (a) the ambient temperature such as the temperature inside the stretching machine, as described above.
 延伸開始時の膜状物中の残留溶媒量は、剥離時の膜状物中の残留溶媒量と同程度であることが好ましく、例えば20~30質量%であることが好ましく、25~30質量%であることがより好ましい。 The amount of residual solvent in the filmy material at the start of stretching is preferably about the same as the amount of residual solvent in the filmy material at the time of peeling, for example, preferably 20 to 30% by mass, preferably 25 to 30% by mass. % is more preferable.
 膜状物のTD方向(幅方向)の延伸は、例えば膜状物の両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げる方法(テンター法)で行うことができる。膜状物のMD方向の延伸は、例えば複数のロールに周速差をつけ、その間でロール周速差を利用する方法(ロール法)で行うことができる。 Stretching in the TD direction (width direction) of the film can be performed, for example, by fixing both ends of the film with clips or pins and widening the distance between the clips or pins in the direction of travel (tenter method). The film-like material can be stretched in the MD direction, for example, by a method (roll method) in which a plurality of rolls are provided with different peripheral speeds and the difference in peripheral speeds of the rolls is utilized.
 (本乾燥工程)
 残留溶媒量をより低減させる観点から、延伸後に得られた膜状物をさらに乾燥させることが好ましい。例えば、延伸後に得られた膜状物を、ロールなどで搬送しながらさらに乾燥させることが好ましい。
(Main drying process)
From the viewpoint of further reducing the amount of residual solvent, it is preferable to further dry the film-like material obtained after stretching. For example, it is preferable to further dry the film-like material obtained after the stretching while transporting it with a roll or the like.
 本乾燥温度(未延伸の場合は乾燥温度)は、熱可塑性樹脂のガラス転移温度をTgとしたとき、(Tg-50)~(Tg-30)℃であることが好ましく、(Tg-40)~(Tg-30)℃であることがより好ましい。後乾燥温度が(Tg-50)℃以上であると、延伸後の膜状物から溶媒を十分に揮発除去しやすく、(Tg-30)℃以下であると、膜状物の変形などを高度に抑制しうる。本乾燥温度は、前述と同様に、(a)熱風温度などの雰囲気温度を測定することが好ましい。 The main drying temperature (drying temperature when not stretched) is preferably (Tg-50) to (Tg-30) ° C., where Tg is the glass transition temperature of the thermoplastic resin, and (Tg-40). ~(Tg-30)°C is more preferable. When the post-drying temperature is (Tg-50)° C. or higher, the solvent can be sufficiently volatilized and removed from the film after stretching. can be suppressed to As for the actual drying temperature, it is preferable to measure (a) the ambient temperature such as the hot air temperature, as described above.
 (4)の工程について
 得られた偏光板保護フィルムは、長尺状であることが好ましい。長尺状の偏光板保護フィルムは、ロール状に巻き取られて、ロール体となる。
Regarding Step (4) The obtained polarizing plate protective film is preferably elongated. A long polarizing plate protective film is wound into a roll to form a roll.
 長尺状の偏光板保護フィルムの長さは、特に制限されないが、例えば100~10000m程度でありうる。また、偏光板保護フィルムの幅は、1m以上であることが好ましく、1.3~4mであることがより好ましい。 The length of the long polarizing plate protective film is not particularly limited, but can be, for example, about 100 to 10,000 m. The width of the polarizing plate protective film is preferably 1 m or more, more preferably 1.3 to 4 m.
 偏光板保護フィルムの厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、薄膜性等の点より1~500μmの範囲内にあるのが好ましい。偏光板保護フィルムの厚さは、5~50μmの範囲内にあるのがより好ましく、10~45μmの範囲内にあるのがさらに好ましい。 The thickness of the polarizing plate protective film can be determined as appropriate, but in general, it is preferably within the range of 1 to 500 μm from the viewpoints of strength, workability such as handleability, and thinness. The thickness of the polarizing plate protective film is more preferably in the range of 5 to 50 μm, still more preferably in the range of 10 to 45 μm.
 また、本発明に係る前記色素化合物は、樹脂との相溶性が向上し、ブリードアウトや白化現象を生じず、耐久性が向上することから、偏光板保護フィルムの厚さが、1μm以上10μm未満である薄膜な偏光板保護フィルムにも好ましく適用できる。薄膜な偏光板保護フィルム(以下、「薄膜偏光板保護フィルム」ともいう。)によって、薄膜な偏光板を作製することが可能である。 In addition, the dye compound according to the present invention has improved compatibility with resins, does not cause bleeding out or whitening, and has improved durability. It can also be preferably applied to a thin polarizing plate protective film. A thin polarizing plate can be produced using a thin polarizing plate protective film (hereinafter also referred to as a “thin polarizing plate protective film”).
 <薄膜偏光板保護フィルムの製造>
 本発明の別の実施形態である薄膜偏光板保護フィルムの製造方法は、1)薄膜偏光板保護フィルム用溶液を得る工程と、2)得られた薄膜偏光板保護フィルム用溶液を、支持体の表面に付与する工程と、3)付与された薄膜偏光板保護フィルム用溶液から溶媒を除去して、薄膜偏光板保護フィルムを形成する工程とを有する。
<Production of thin film polarizing plate protective film>
A method for producing a thin polarizing plate protective film, which is another embodiment of the present invention, includes the steps of: 1) obtaining a thin polarizing plate protective film solution; and 3) removing the solvent from the thin polarizing plate protective film solution to form a thin polarizing plate protective film.
 1)薄膜偏光板保護フィルム用溶液を得る工程
 薄膜偏光板保護フィルム用溶液を得る工程は、前述の「ドープ」を調製する工程と同じであり、参照することができる。
1) Step of obtaining solution for thin polarizing plate protective film The step of obtaining the solution for thin polarizing plate protective film is the same as the step of preparing the aforementioned "dope", and reference can be made to it.
 2)薄膜偏光板保護フィルム用溶液を付与する工程
 次いで、得られた薄膜偏光板保護フィルム用溶液を、支持体の表面に付与する。具体的には、得られた薄膜偏光板保護フィルム用溶液を、支持体の表面に塗布する。支持体と薄膜偏光板保護フィルムの積層体は、「積層フィルム」ともいう。
2) Step of Applying Solution for Thin Film Polarizing Plate Protective Film Next, the obtained solution for thin film polarizing plate protective film is applied to the surface of the support. Specifically, the obtained thin film polarizing plate protective film solution is applied to the surface of the support. A laminate of a support and a thin film polarizing plate protective film is also referred to as a "laminate film".
 〈支持体〉
 支持体は、薄膜偏光板保護フィルム形成時に支持するものであり、通常、樹脂フィルムを含む。支持体の膜厚は、50μm以下であることが好ましい。支持体の膜厚は、薄膜だがある程度の強度(腰や剛性)が支持体として必要であることから、好ましくは、15~45μmの範囲であり、より好ましくは20~40μmの範囲内である。
<Support>
The support supports the formation of the protective film for the thin polarizing plate, and usually contains a resin film. The film thickness of the support is preferably 50 μm or less. The film thickness of the support is preferably in the range of 15 to 45 μm, more preferably in the range of 20 to 40 μm, since the support is thin but requires a certain degree of strength (elasticity and rigidity).
 用いられる樹脂としては、セルロースエステル系樹脂、環状オレフィン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアリレート系樹脂、及びスチレン系樹脂又はその複合樹脂を挙げることができるが、中でも高湿度環境下での保存性に優れる樹脂として、ポリエステル系樹脂を使用することが好ましい。 Examples of resins that can be used include cellulose ester-based resins, cyclic olefin-based resins, polypropylene-based resins, acrylic-based resins, polyester-based resins, polyarylate-based resins, and styrene-based resins or composite resins thereof. It is preferable to use a polyester-based resin as a resin that is excellent in storage stability under a humid environment.
 樹脂フィルムの例には、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)など)などが含まれる。中でも、扱いやすさの観点から、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)を含むポリエステル系樹脂フィルムが好ましい。 Examples of resin films include polyester resins (e.g., polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), etc.). and so on. Among them, a polyester resin film containing polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is preferable from the viewpoint of ease of handling.
 樹脂フィルムは、熱処理(熱緩和)されたものであってもよいし、延伸処理されたものであってもよい。 The resin film may be heat-treated (heat-relaxed) or stretched.
 熱処理は、樹脂フィルムの残留応力(例えば延伸に伴う残留応力など)を低減させるためであり、特に制限されないが、樹脂フィルムを構成する樹脂のガラス転移温度をTgとしたとき、(Tg+60)~(Tg+180)℃で行うことができる。 The heat treatment is for reducing the residual stress of the resin film (for example, the residual stress associated with stretching), and is not particularly limited. Tg+180)°C.
 延伸処理は、樹脂フィルムの残留応力を増加させるためであり、延伸処理は、例えば樹脂フィルムの2軸方向に行うことが好ましい。延伸処理は、任意の条件で行うことができ、例えば延伸倍率120~900%程度で行うことができる。樹脂フィルムが延伸されているかどうかは、例えば面内遅層軸(屈折率が最大となる方向に延びた軸)があるかどうかによって確認することができる。延伸処理は、薄膜偏光板保護フィルムを積層する前にされてもよいし、積層した後にされてもよいが、積層する前に延伸されていることが好ましい。 The purpose of the stretching treatment is to increase the residual stress of the resin film, and the stretching treatment is preferably carried out, for example, in the biaxial directions of the resin film. The stretching treatment can be performed under arbitrary conditions, for example, at a stretching ratio of about 120 to 900%. Whether or not the resin film is stretched can be confirmed by checking, for example, whether or not there is an in-plane slow axis (an axis extending in the direction in which the refractive index is maximized). The stretching treatment may be performed before laminating the thin polarizing plate protective film or after lamination, but it is preferable that the film is stretched before lamination.
 ポリエステル系樹脂フィルム(簡単に、ポリエステルフィルムともいう。)は市販品を用いることができ、例えば、ポリエチレンテレフタレートフィルムTN100(東洋紡社製)、MELINEX ST504(帝人デュポンフィルム社製)等を好適に用いることができる。 A commercial product can be used as the polyester resin film (simply referred to as a polyester film). For example, polyethylene terephthalate film TN100 (manufactured by Toyobo Co., Ltd.), MELINEX ST504 (manufactured by Teijin DuPont Films Ltd.), etc. are preferably used. can be done.
 支持体は、樹脂フィルムの表面に設けられた離型層をさらに有していてもよい。離型層は、偏光板を作製する際に、支持体を薄膜偏光板保護フィルムから剥離しやすくしうる。 The support may further have a release layer provided on the surface of the resin film. The release layer can facilitate peeling of the support from the thin film polarizing plate protective film when the polarizing plate is produced.
 離型層は、公知の剥離剤を含むものであってよく、特に制限されない。離型層に含まれる剥離剤の例には、シリコーン系剥離剤、及び、非シリコーン系剥離剤が含まれる。 The release layer may contain a known release agent, and is not particularly limited. Examples of release agents contained in the release layer include silicone release agents and non-silicone release agents.
 シリコーン系剥離剤の例には、公知のシリコーン系樹脂が含まれる。非シリコーン系剥離剤の例には、ポリビニルアルコール又はエチレン-ビニルアルコール共重合体などに長鎖アルキルイソシアネートを反応させた長鎖アルキルペンダント型重合体、オレフィン系樹脂(例えば共重合ポリエチレン、環状ポリオレフィン、ポリメチルペンテン)、ポリアリレート樹脂(例えば、芳香族ジカルボン酸成分と二価フェノール成分との重縮合物)、フッ素樹脂(例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、PFA(四フッ化エチレンとパーフルオロアルコキシエチレンとの共重合体)、FEP(テトラフルオロエチレンとヘキサフルオロプロピレンの共重合体)、ETFE(テトラフルオロエチレンとエチレンの共重合体))などが含まれる。 Examples of silicone-based release agents include known silicone-based resins. Examples of non-silicone release agents include long-chain alkyl pendant polymers obtained by reacting polyvinyl alcohol or ethylene-vinyl alcohol copolymer with long-chain alkyl isocyanate, olefin-based resins (e.g. copolymerized polyethylene, cyclic polyolefin, polymethylpentene), polyarylate resin (e.g., polycondensate of aromatic dicarboxylic acid component and dihydric phenol component), fluororesin (e.g., polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), PFA (copolymer of tetrafluoroethylene and perfluoroalkoxyethylene), FEP (copolymer of tetrafluoroethylene and hexafluoropropylene), ETFE (copolymer of tetrafluoroethylene and ethylene)) and so on.
 離型層の厚さは、所望の剥離性を発現しうる程度であればよく、特に制限されないが、例えば0.1~1.0μmの範囲内であることが好ましい。 The thickness of the release layer is not particularly limited as long as it can exhibit the desired releasability.
 支持体には、添加剤として、可塑剤を含有してもよい。可塑剤としては特に限定されないが、多価アルコールエステル系可塑剤、フタル酸エステル系可塑剤、クエン酸系可塑剤、脂肪酸エステル系可塑剤、リン酸エステル系可塑剤、多価カルボン酸エステル系可塑剤、及びポリエステル系可塑剤等から選択されることが好ましい。 The support may contain a plasticizer as an additive. Although the plasticizer is not particularly limited, polyhydric alcohol ester plasticizers, phthalate ester plasticizers, citric acid plasticizers, fatty acid ester plasticizers, phosphate ester plasticizers, polycarboxylic ester plasticizers It is preferably selected from the following: agents, polyester plasticizers, and the like.
 また、支持体は前述の紫外線吸収剤や微粒子を含有することもできる。 In addition, the support can contain the above-mentioned ultraviolet absorber and fine particles.
 本発明に用いられる支持体の製造方法としては、通常のインフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できるが、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点から製膜方法は、溶液流延法と溶融流延法が好ましい。さらに、溶液流延法であると、加工工程での温度が低く、このため種々の添加剤を用いることによる高機能化を付与することができる。 As a method for manufacturing the support used in the present invention, a normal manufacturing method such as inflation method, T-die method, calendering method, cutting method, casting method, emulsion method, hot press method, etc. can be used. From the viewpoint of suppressing foreign matter defects and suppressing optical defects such as die lines, the film forming method is preferably a solution casting method or a melt casting method. Furthermore, the solution casting method requires a low temperature in the processing step, so that various additives can be used to impart high functionality.
 以上のようにして製造された支持体を用いて、本発明の薄膜偏光板保護フィルムを下記方法によって、形成することが好ましい。 It is preferable to form the thin film polarizing plate protective film of the present invention by the following method using the support produced as described above.
 薄膜偏光板保護フィルム用溶液の塗布方法は、特に制限されず、例えばバックロールコート法、グラビアコート法、スピンコート法、ワイヤーバーコート法、ロールコート法などでの公知の方法でありうる。中でも、薄くかつ均一な膜厚の塗膜を形成しうる観点から、バックコート法が好ましい。 The method of applying the solution for a thin polarizing plate protective film is not particularly limited, and may be a known method such as a back roll coating method, a gravure coating method, a spin coating method, a wire bar coating method, or a roll coating method. Among them, the back coating method is preferable from the viewpoint of forming a coating film having a thin and uniform film thickness.
 3)薄膜偏光板保護フィルムを形成する工程
 次いで、支持体に付与された薄膜偏光板保護フィルム用溶液から溶媒を除去して、薄膜偏光板保護フィルムを形成する。
3) Step of forming a thin polarizing plate protective film Next, the solvent is removed from the thin polarizing plate protective film solution applied to the support to form a thin polarizing plate protective film.
 具体的には、支持体に付与された薄膜偏光板保護フィルム用溶液を乾燥させる。乾燥は、例えば送風又は加熱により行うことができる。中でも、薄膜偏光板保護フィルムのカールなどを抑制しやすくする観点では、送風により乾燥させることが好ましい。 Specifically, the thin film polarizing plate protective film solution applied to the support is dried. Drying can be carried out, for example, by blowing air or heating. Above all, from the viewpoint of facilitating the suppression of curling of the protective film for thin polarizing plate, it is preferable to dry the film by blowing air.
 4)薄膜偏光板保護フィルムフィルムを巻き取り、ロール体を得る工程
 得られた帯状の薄膜偏光板保護フィルムを、その幅方向に直交する方向にロール状に巻き取り、ロール体とする。
4) Step of Winding the Thin Film Polarizing Plate Protective Film to Obtain a Roll Body The strip-shaped thin film polarizing plate protective film thus obtained is wound into a roll in a direction orthogonal to the width direction thereof to form a roll.
 帯状の薄膜偏光板保護フィルムの長さは、特に制限されないが、例えば100~10000m程度でありうる。また、帯状の積層フィルムの幅は、1m以上であることが好ましく、1.1~4mであることがより好ましい。フィルムの均一性を高める観点では、より好ましくは1.3~2.5mである。 The length of the strip-shaped thin film polarizing plate protective film is not particularly limited, but can be, for example, about 100 to 10,000 m. The width of the strip-shaped laminated film is preferably 1 m or more, more preferably 1.1 to 4 m. From the viewpoint of improving the uniformity of the film, it is more preferably 1.3 to 2.5 m.
 [製造装置]
 本発明に用いられる薄膜偏光板保護フィルムの製造は、例えば図4に示される製造装置によって行うことができる。
[manufacturing device]
The thin film polarizing plate protective film used in the present invention can be manufactured, for example, by the manufacturing apparatus shown in FIG.
 図4は、本実施の形態に係る薄膜偏光板保護フィルムの製造方法を実施するための製造装置B200の模式図である。製造装置B200は、供給部B210と、塗布部B220と、乾燥部B230と、冷却部B240と、巻き取り部B250とを有する。Ba~Bdは、支持体B110を搬送する搬送ロールを示す。 FIG. 4 is a schematic diagram of a manufacturing apparatus B200 for carrying out the method for manufacturing a thin polarizing plate protective film according to the present embodiment. The manufacturing apparatus B200 has a supply section B210, a coating section B220, a drying section B230, a cooling section B240, and a winding section B250. Ba to Bd indicate transport rolls that transport the support B110.
 供給部B210は、巻き芯に巻かれた帯状の支持体B110のロール体B201を繰り出す繰り出し装置(不図示)を有する。 The supply unit B210 has a feeding device (not shown) that feeds out the roll B201 of the strip-shaped support B110 wound around the winding core.
 塗布部B220は、塗布装置であって、支持体B110を保持するバックアップロールB221と、バックアップロールB221で保持された支持体B110に、薄膜偏光板保護フィルム用溶液を塗布する塗布ヘッドB222と、塗布ヘッドB222の上流側に設けられた減圧室B223とを有する。 The coating unit B220 is a coating device comprising a backup roll B221 that holds the support B110, a coating head B222 that coats the support B110 held by the backup roll B221 with a solution for a thin polarizing plate protective film, and a coating head B222. and a decompression chamber B223 provided upstream of the head B222.
 塗布ヘッドB222から吐出される薄膜偏光板保護フィルム用溶液の流量は、不図示のポンプにより調整可能となっている。塗布ヘッドB222から吐出する薄膜偏光板保護フィルム用溶液の流量は、予め調整した塗布ヘッドB222の条件で連続塗布したときに、安定して所定の膜厚の塗布層を形成できる量に設定されている。 The flow rate of the thin film polarizing plate protective film solution discharged from the coating head B222 can be adjusted by a pump (not shown). The flow rate of the thin film polarizing plate protective film solution discharged from the coating head B222 is set to an amount that can stably form a coating layer of a predetermined thickness when continuously coating under the conditions of the coating head B222 adjusted in advance. there is
 減圧室B223は、塗布時に塗布ヘッドB222からの薄膜偏光板保護フィルム用溶液と支持体B110との間に形成されるビード(塗布液の溜まり)を安定化するための機構であり、減圧度を調整可能となっている。減圧室B223は、減圧ブロワ(不図示)に接続されており、内部が減圧されるようになっている。減圧室B223は、空気漏れがない状態になっており、かつ、バックアップロールとの間隙も狭く調整され、安定した塗布液のビードを形成できるようになっている。 The decompression chamber B223 is a mechanism for stabilizing a bead (collection of coating solution) formed between the solution for thin polarizing plate protective film from the coating head B222 and the support B110 during coating. It is adjustable. The decompression chamber B223 is connected to a decompression blower (not shown) so that the inside is decompressed. The decompression chamber B223 is in a state without air leakage, and the gap with the backup roll is adjusted to be narrow, so that a stable bead of the coating liquid can be formed.
 乾燥部B230は、支持体B110の表面に塗布された塗膜を乾燥させる乾燥装置であって、乾燥室B231と、乾燥用気体の導入口B232と、排出口B233とを有する。乾燥風の温度及び風量は、塗膜の種類及び支持体B110の種類により適宜決められる。乾燥部B230で乾燥風の温度及び風量、乾燥時間などの条件を設定することにより、乾燥後の塗膜の残留溶媒量を調整することができる。乾燥後の塗膜の残留溶媒量は、乾燥後の塗膜の単位質量と、該塗膜を十分に乾燥した後の質量を比較することにより測定することができる。 The drying section B230 is a drying device that dries the coating film applied to the surface of the support B110, and has a drying chamber B231, a drying gas inlet B232, and an outlet B233. The temperature and air volume of the drying air are appropriately determined according to the type of coating film and the type of support B110. By setting conditions such as the temperature and air volume of the drying air and the drying time in the drying section B230, the amount of residual solvent in the coating film after drying can be adjusted. The amount of residual solvent in the coating film after drying can be measured by comparing the unit mass of the coating film after drying with the mass after sufficiently drying the coating film.
 (残留溶媒量)
 薄膜偏光板保護フィルムは、薄膜偏光板保護フィルム用溶液を塗布して得られることから、当該溶液に由来する溶媒が残留していることがある。残留溶媒量は、使用溶媒・塗布液濃度、薄膜偏光板保護フィルムの乾燥に当てる風速、乾燥温度・時間、乾燥室の条件(外気か内気循環か)、塗布時のバックロールの加熱温度等によって制御しうる。
(Residual solvent amount)
Since the thin polarizing plate protective film is obtained by applying a thin polarizing plate protective film solution, the solvent derived from the solution may remain. The amount of residual solvent depends on the solvent used, the concentration of the coating solution, the wind speed applied to dry the protective film for the thin polarizer, the drying temperature and time, the conditions of the drying chamber (outside air or inside air circulation), the heating temperature of the back roll during coating, etc. controllable.
 前述のとおり、高速乾燥になると膜が疎になって表面状態を制御することができる。 As mentioned above, high-speed drying makes the film sparse and the surface condition can be controlled.
 薄膜偏光板保護フィルムの残留溶媒量は、前記薄膜偏光板保護フィルムの残留溶媒量をS1としたときに、下記不等式1を満たすことが、薄膜偏光板保護フィルムのカールバランスの観点から好ましい。 From the viewpoint of curl balance of the thin polarizing plate protective film, the residual solvent amount of the thin polarizing plate protective film preferably satisfies the following inequality 1 , where S1 is the residual solvent amount of the thin polarizing plate protective film.
 式1 10<S1<1000(ppm)
 具体的には、薄膜偏光板保護フィルムの残留溶媒量は、800ppm未満であることがより好ましく、500~700ppm未満であることが、薄膜偏光板保護フィルムのカールバランスを考慮するとより好ましい。また、支持体にも溶媒が残存するような溶媒・塗布プロセスを選ぶことで、支持体と薄膜偏光板保護フィルムとの接着性が向上する。支持体の残存溶媒量としては10~100ppmの範囲が好ましい。
Formula 1 10<S 1 <1000 (ppm)
Specifically, the amount of residual solvent in the thin film polarizing plate protective film is more preferably less than 800 ppm, more preferably 500 to less than 700 ppm, considering the curl balance of the thin film polarizing plate protective film. Further, by selecting a solvent and a coating process in which the solvent remains on the support, the adhesiveness between the support and the protective film for thin polarizing plate is improved. The residual solvent content of the support is preferably in the range of 10 to 100 ppm.
 支持体及び薄膜偏光板保護フィルムの残留溶媒量は、ヘッドスペースガスクロマトグラフィーにより測定することができる。ヘッドスペースガスクロマトグラフィー法では、サンプルを容器に封入し、加熱し、容器中に揮発成分が充満した状態で速やかに容器中のガスをガスクロマトグラフに注入し、質量分析を行って化合物の同定を行いながら揮発成分を定量するものである。ヘッドスペース法では、ガスクロマトグラフにより、揮発成分の全ピークを観測することを可能にするとともに、電磁気的相互作用を利用した分析法を用いることによって、高精度で揮発性物質やモノマーなどの定量も併せて行うことができる。 The amount of residual solvent in the support and thin polarizing plate protective film can be measured by headspace gas chromatography. In the headspace gas chromatography method, a sample is sealed in a container, heated, and with the container filled with volatile components, the gas in the container is quickly injected into the gas chromatograph, and mass spectrometry is performed to identify the compound. Volatile components are quantified while the measurement is being carried out. The headspace method makes it possible to observe all peaks of volatile components by gas chromatograph, and quantifies volatile substances and monomers with high accuracy by using an analytical method that uses electromagnetic interaction. It can be done together.
 冷却部B240は、乾燥部B230で乾燥させて得られる塗膜(薄膜偏光板保護フィルム)を有する支持体B110の温度を冷却し、適切な温度に調整する。冷却部B240は、冷却室B241と、冷却風入口B242と、冷却風出口B243とを有する。冷却風の温度及び風量は、塗膜の種類及び支持体B110の種類により適宜決めうる。また、冷却部B240を設けなくても、適正な冷却温度になる場合は、冷却部B240はなくてもよい。 The cooling section B240 cools the support B110 having the coating film (thin film polarizing plate protective film) obtained by drying in the drying section B230 to adjust the temperature to an appropriate temperature. The cooling part B240 has a cooling chamber B241, a cooling air inlet B242, and a cooling air outlet B243. The temperature and air volume of the cooling air can be appropriately determined according to the type of coating film and the type of support B110. In addition, if the proper cooling temperature can be obtained without providing the cooling part B240, the cooling part B240 may be omitted.
 巻き取り部B250は、薄膜偏光板保護フィルムが形成された支持体B110を巻き取り、ロール体B251を得るための巻き取り装置(不図示)である。 The winding unit B250 is a winding device (not shown) for winding the support B110 on which the thin polarizing plate protective film is formed to obtain a roll B251.
〔6〕偏光子層
 偏光子層は、一定方向の偏波面の光だけを通す素子層である。偏光子層としては、例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらの中でも、ポリビニルアルコール系フィルムとヨウ素等の二色性物質からなる偏光子層が好適である。これらの偏光子層の厚さは特に制限されないが、一般的に5~80μm程度である。
[6] Polarizer Layer The polarizer layer is an element layer that transmits only light with a plane of polarization in a certain direction. As the polarizer layer, for example, a hydrophilic polymer film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, an ethylene/vinyl acetate copolymer system partially saponified film, and a dichroic dye such as iodine or a dichroic dye are applied. oriented polyene films such as dehydrated polyvinyl alcohol and dehydrochlorinated polyvinyl chloride. Among these, a polarizer layer composed of a polyvinyl alcohol-based film and a dichroic substance such as iodine is suitable. Although the thickness of these polarizer layers is not particularly limited, it is generally about 5 to 80 μm.
 ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子層は、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製することができる。必要に応じてホウ酸や硫酸亜鉛、塩化亜鉛等を含んでいても良いヨウ化カリウム等の水溶液に浸漬することもできる。さらに必要に応じて染色前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラ等の不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸しても良いし、また延伸してからヨウ素で染色しても良い。ホウ酸やヨウ化カリウム等の水溶液や水浴中でも延伸することができる。 A polarizer layer obtained by dyeing a polyvinyl alcohol-based film with iodine and uniaxially stretching it can be produced, for example, by dyeing polyvinyl alcohol by immersing it in an aqueous solution of iodine and stretching it to 3 to 7 times its original length. . It can also be immersed in an aqueous solution of potassium iodide or the like, which may contain boric acid, zinc sulfate, zinc chloride or the like, if necessary. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed with water before dyeing. By washing the polyvinyl alcohol film with water, dirt and anti-blocking agents on the surface of the polyvinyl alcohol film can be washed away, and by swelling the polyvinyl alcohol film, uneven dyeing can be prevented. be. Stretching may be performed after dyeing with iodine, stretching may be performed while dyeing, or dyeing with iodine may be performed after stretching. It can also be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
 また、本発明においては、厚さが10μm以下の薄型偏光子層も用いることができる。薄型化の観点から言えば当該厚さは1~7μmであるのが好ましい。このような薄型の偏光子層は、厚さムラが少なく、視認性が優れており、また寸法変化が少ないため耐久性に優れ、さらには偏光フィルムとしての厚さも薄型化が図れる点が好ましい。 Further, in the present invention, a thin polarizer layer having a thickness of 10 μm or less can also be used. From the viewpoint of thinning, the thickness is preferably 1 to 7 μm. Such a thin polarizer layer has less unevenness in thickness, excellent visibility, and less dimensional change, so it has excellent durability, and it is preferable that the thickness of the polarizing film can be reduced.
 薄型の偏光子層としては、代表的には、特開昭51-069644号公報や特開2000-338329号公報や、国際公開第2010/100917号、国際公開第2010/100917号、又は特許4751481号公報や特開2012-073563号公報に記載されている薄型偏光膜を挙げることができる。これら薄型偏光膜は、ポリビニルアルコール系樹脂(以下、PVA系樹脂ともいう)層と延伸用樹脂基材を積層体の状態で延伸する工程と染色する工程を含む製法により得ることができる。この製法であれば、PVA系樹脂層が薄くても、延伸用樹脂基材に支持されていることにより延伸による破断等の不具合なく延伸することが可能となる。 As a thin polarizer layer, typically, JP-A-51-069644, JP-A-2000-338329, International Publication No. 2010/100917, International Publication No. 2010/100917, or Japanese Patent No. 4751481 A thin polarizing film described in JP-A-2012-073563 and JP-A-2012-073563 can be mentioned. These thin polarizing films can be obtained by a manufacturing method including a step of stretching a laminate of a polyvinyl alcohol-based resin (hereinafter also referred to as a PVA-based resin) layer and a stretching resin substrate, and a step of dyeing. According to this manufacturing method, even if the PVA-based resin layer is thin, it can be stretched without problems such as breakage due to stretching because it is supported by the stretching resin substrate.
 前記薄型偏光膜としては、積層体の状態で延伸する工程と染色する工程を含む製法の中でも、高倍率に延伸できて偏光性能を向上させることのできる点で、国際公開第2010/100917号、国際公開第2010/100917号、又は特許4751481号公報や特開2012-073563号公報に記載のあるようなホウ酸水溶液中で延伸する工程を含む製法で得られるものが好ましく、特に特許4751481号明細書や特開2012-073563号公報に記載のあるホウ酸水溶液中で延伸する前に補助的に空中延伸する工程を含む製法により得られるものが好ましい。 As for the thin polarizing film, among the production methods including the step of stretching and the step of dyeing in the state of a laminate, in that it can be stretched at a high magnification and can improve the polarizing performance, International Publication 2010/100917, International Publication No. 2010/100917, or those obtained by a manufacturing method including a step of stretching in an aqueous boric acid solution as described in Japanese Patent No. 4751481 or Japanese Patent Application Laid-Open No. 2012-073563, particularly Japanese Patent No. 4751481. It is preferably obtained by a production method including a step of auxiliary stretching in the air before stretching in an aqueous boric acid solution, as described in Japanese Patent Application Laid-Open No. 2012-073563.
〔7〕位相差フィルム
 位相差フィルムは、位相差を有し、光学補償層として機能し得るもののいずれも用いることができる。位相差を有する透明フィルムを用いる場合、その位相差特性は、光学補償に必要とされる値に適宜調整することができる。
[7] Retardation Film Any retardation film that has retardation and can function as an optical compensation layer can be used. When a transparent film having a retardation is used, the retardation property can be appropriately adjusted to a value required for optical compensation.
 位相差フィルムとしては、例えば、面内の遅相軸方向の屈折率をnx、面内の進相軸方向の屈折率をny、厚さ方向の屈折率をnzとした場合に、nx=ny>nz、nx>ny>nz、nx>ny=nz、nx>nz>ny、nz=nx>ny、nz>nx>ny、nz>nx=ny、の関係を満足するものが、各種用途に応じて選択して用いられる。なお、nx=nyとは、nxとnyが完全に同一である場合だけでなく、実質的にnxとnyが同じ場合も含む。また、ny=nzとは、nyとnzが完全に同一である場合だけでなく、実質的にnyとnzが同じ場合も含む。 As a retardation film, for example, when nx is the refractive index in the in-plane slow axis direction, ny is the refractive index in the in-plane fast axis direction, and nz is the refractive index in the thickness direction, nx = ny >nz, nx>ny>nz, nx>ny=nz, nx>nz>ny, nz=nx>ny, nz>nx>ny, nz>nx=ny Select and use accordingly. Note that nx=ny includes not only the case where nx and ny are completely the same, but also the case where nx and ny are substantially the same. Moreover, ny=nz includes not only the case where ny and nz are completely the same, but also the case where ny and nz are substantially the same.
 偏光板を、有機EL表示装置に用いる場合、位相差フィルムは、面内リターデーションを1/4波長(約100~170nm)とした1/4波長板であることが好ましい。偏光子層と1/4波長板(位相差フィルム)を積層することで、有機EL表示装置の反射防止用の円偏光板として機能するため好ましい。 When the polarizing plate is used in an organic EL display device, the retardation film is preferably a 1/4 wavelength plate with in-plane retardation of 1/4 wavelength (about 100 to 170 nm). By laminating a polarizer layer and a quarter-wave plate (retardation film), it functions as an antireflection circularly polarizing plate of an organic EL display device, which is preferable.
 すなわち、この有機EL表示装置に入射する外部光は、偏光子層により直線偏光成分のみが透過する。この直線偏光は位相差フィルムにより一般に楕円偏光となるが、特に、位相差フィルムが1/4波長板で、しかも位相差フィルムとの偏光方向のなす角がπ/4のときには円偏光となる。 That is, only the linearly polarized component of external light incident on this organic EL display device is transmitted by the polarizer layer. This linearly polarized light is generally elliptically polarized by the retardation film, but is circularly polarized especially when the retardation film is a quarter-wave plate and the angle formed by the polarization direction with the retardation film is π/4.
 この円偏光は、有機ELパネル中の透明基板、透明電極、有機薄膜を透過し、金属電極で反射して、再び有機薄膜、透明電極、透明基板を透過して、位相差フィルムで再び直線偏光となる。そして、この直線偏光は、偏光子層の偏光方向と直交しているので、偏光子層を透過できない。その結果、金属電極の鏡面を完全に遮蔽することができる。 This circularly polarized light passes through the transparent substrate, transparent electrode, and organic thin film in the organic EL panel, is reflected by the metal electrode, passes through the organic thin film, transparent electrode, and transparent substrate again, and is again linearly polarized by the retardation film. becomes. Since this linearly polarized light is orthogonal to the polarization direction of the polarizer layer, it cannot pass through the polarizer layer. As a result, the mirror surfaces of the metal electrodes can be completely shielded.
 位相差フィルムとしては、熱可塑性樹脂を成膜成分とする膜を延伸した延伸フィルムを好適に用いることができる。熱可塑性樹脂としては、上記偏光板保護フィルムの構成材料として記載したのと同様の熱可塑性樹脂を用いることができる。 A stretched film obtained by stretching a film containing a thermoplastic resin as a film-forming component can be suitably used as the retardation film. As the thermoplastic resin, the same thermoplastic resins as those described as the constituent material of the polarizing plate protective film can be used.
 位相差フィルムは、本実施形態の効果を損なわない範囲で、微粒子、位相差調整剤、酸化防止剤、可塑剤、帯電防止剤、剥離剤、及び増粘剤等のその他の添加剤を含んでもよい。 The retardation film may contain other additives such as fine particles, retardation modifiers, antioxidants, plasticizers, antistatic agents, release agents, and thickeners within a range that does not impair the effects of the present embodiment. good.
 位相差フィルムは、単層若しくは2層以上の積層フィルムであってもよい。なお、位相差フィルムが積層フィルムである場合、各層の形成に用いる熱可塑性樹脂は、同じであっても異なってもよい。積層フィルムの製造方法としては、従来公知の方法が特に制限なく適用できる。 The retardation film may be a single layer or a laminated film of two or more layers. When the retardation film is a laminated film, the thermoplastic resin used for forming each layer may be the same or different. As the method for producing the laminated film, conventionally known methods can be applied without particular limitation.
 位相差フィルムの形成に用いる熱可塑性樹脂としては、上記したシクロオレフィン樹脂、セルロースエステル樹脂、及びアクリル樹脂の他に、ポリカーボネート樹脂が好ましく用いられる。特に、後述する斜め延伸フィルムを製造する場合に、ポリカーボネート樹脂を用いることが好ましい。位相差フィルムを積層フィルムとする場合、例えば、セルロースエステル樹脂とポリカーボネート樹脂層の組み合わせが好ましい。 As the thermoplastic resin used for forming the retardation film, a polycarbonate resin is preferably used in addition to the cycloolefin resin, cellulose ester resin, and acrylic resin described above. In particular, it is preferable to use a polycarbonate resin when producing an obliquely stretched film, which will be described later. When the retardation film is used as a laminated film, for example, a combination of a cellulose ester resin and a polycarbonate resin layer is preferable.
 (ポリカーボネート樹脂)
 ポリカーボネート樹脂としては、特に限定なく種々のものを使用でき、化学的性質及び物性の点から、芳香族ポリカーボネート樹脂が好ましく、特に、フルオレン骨格を有するポリカーボネートや、ビスフェノールA系ポリカーボネート樹脂が好ましい。その中でも、ビスフェノールAにベンゼン環、シクロヘキサン環、及び脂肪族炭化水素基等を導入したビスフェノールA誘導体を用いたものがより好ましい。さらに、ビスフェノールAの中央の炭素に対して、非対称に上記官能基が導入された誘導体を用いて得られた、単位分子内の異方性を減少させた構造のポリカーボネート樹脂が特に好ましい。
(polycarbonate resin)
As the polycarbonate resin, various ones can be used without particular limitation. From the viewpoint of chemical properties and physical properties, aromatic polycarbonate resins are preferable, and polycarbonates having a fluorene skeleton and bisphenol A-based polycarbonate resins are particularly preferable. Among them, a bisphenol A derivative obtained by introducing a benzene ring, a cyclohexane ring, an aliphatic hydrocarbon group, or the like into bisphenol A is more preferable. Further, a polycarbonate resin having a structure in which the anisotropy within the unit molecule is reduced, which is obtained by using a derivative in which the functional group is introduced asymmetrically with respect to the central carbon of bisphenol A, is particularly preferred.
 このようなポリカーボネート樹脂としては、例えば、ビスフェノールAの中央の炭素の2個のメチル基をベンゼン環に置き換えたもの、ビスフェノールAのそれぞれのベンゼン環の位置の水素をメチル基やフェニル基などで中央炭素に対し非対称に置換したものを用いて得られるポリカーボネート樹脂が特に好ましい。具体的には、4,4′-ジヒドロキシジフェニルアルカン又はこれらのハロゲン置換体からホスゲン法又はエステル交換法によって得られるものであり、例えば、4,4′-ジヒドロキシジフェニルメタン、4,4′-ジヒドロキシジフェニルエタン、4,4′-ジヒドロキシジフェニルブタン等が挙げられる。また、この他にも、具体的なポリカーボネート樹脂をあえて例示すれば、例えば、特開2006-215465号公報、特開2006-91836号公報、特開2005-121813号公報、特開2003-167121号公報、特開2009-126128号公報、特開2012-67300号公報、国際公開第2000/026705号等に記載されているポリカーボネート樹脂が挙げられる。 Examples of such polycarbonate resins include those in which two methyl groups at the central carbon of bisphenol A are replaced with benzene rings, and hydrogen at each benzene ring position of bisphenol A replaced by a methyl group or a phenyl group at the center. Polycarbonate resins obtained by using asymmetric substitution with respect to carbon are particularly preferred. Specifically, those obtained from 4,4'-dihydroxydiphenylalkanes or halogen-substituted derivatives thereof by the phosgene method or transesterification method, such as 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenyl ethane, 4,4'-dihydroxydiphenylbutane and the like. In addition, if you dare to exemplify a specific polycarbonate resin, for example, JP 2006-215465, JP 2006-91836, JP 2005-121813, JP 2003-167121 JP, 2009-126128, JP 2012-67300, JP 2000/026705, etc. polycarbonate resins described in the publication.
 (位相差フィルムの製造)
 位相差フィルムは、上で説明した偏光板保護フィルムと同様に、溶融流延法、溶液流延法、カレンダー成形法等の公知の成形方法により製造できる。溶融流延法、溶液流延法を用いることが好ましく、溶液流延法が特に好ましい。
(Production of retardation film)
The retardation film can be produced by a known molding method such as a melt casting method, a solution casting method, a calendering method, and the like, similarly to the polarizing plate protective film described above. A melt casting method or a solution casting method is preferably used, and a solution casting method is particularly preferred.
 位相差フィルムは、偏光板保護フィルムで説明した溶液流延法において、(1)のドープを得る工程で、樹脂及び任意の添加剤を用いて製造できる。また、偏光板保護フィルムで説明した溶液流延法において、(3)又は(4)の工程で得られたフィルム基材を、さらに以下の方法で斜め延伸して位相差フィルムとすることができる。 The retardation film can be produced using a resin and optional additives in the step of obtaining the dope in (1) in the solution casting method described for the polarizing plate protective film. Further, in the solution casting method described for the polarizing plate protective film, the film substrate obtained in the step (3) or (4) can be further obliquely stretched by the following method to obtain a retardation film. .
 フィルム基材を用いて長尺状の斜め延伸フィルムを製造するには、例えば、図5及び図6に概略の構成を模式的に示す装置を用いる。図5は、斜め延伸フィルムの製造装置80の概略の構成を模式的に示す平面図である。図6は斜め延伸フィルムの製造装置80が備える延伸部のレールパターンの一例を模式的に示す平面図である。製造装置80は、フィルム基材の搬送方向上流側から順に、フィルム繰り出し部81と、搬送方向変更部82と、ガイドロール83と、延伸部84と、ガイドロール85と、搬送方向変更部86と、フィルム巻き取り部87とを備えている。 In order to manufacture a long obliquely stretched film using a film substrate, for example, an apparatus whose schematic configuration is schematically shown in FIGS. 5 and 6 is used. FIG. 5 is a plan view schematically showing the general configuration of the obliquely stretched film manufacturing apparatus 80. As shown in FIG. FIG. 6 is a plan view schematically showing an example of the rail pattern of the stretching section provided in the obliquely stretched film manufacturing apparatus 80. As shown in FIG. The manufacturing apparatus 80 includes, in order from the upstream side in the transport direction of the film substrate, a film feeding section 81, a transport direction changing section 82, a guide roll 83, a stretching section 84, a guide roll 85, and a transport direction changing section 86. , and a film winding section 87 .
 フィルム繰り出し部81は、上述のようにして作製したフィルム基材を繰り出して延伸部84に供給するものである。搬送方向変更部82は、フィルム繰り出し部81から繰り出されるフィルム基材の搬送方向を、斜め延伸テンターとしての延伸部84の入口に向かう方向に変更するものである。ガイドロール83は、フィルム基材の走行時の軌道を安定させるために、延伸部84の上流側に少なくとも1本設けられている。ガイドロール85は、延伸部84にて斜め延伸されたフィルムの走行時の軌道を安定させるために、延伸部84の下流側に少なくとも1本設けられている。搬送方向変更部86は、延伸部84から搬送される延伸後のフィルムの搬送方向を、フィルム巻き取り部87に向かう方向に変更するものである。フィルム巻き取り部87は、延伸部84から搬送方向変更部86を介して搬送されるフィルムを巻き取るものである。 The film feeding section 81 feeds the film base material produced as described above and supplies it to the stretching section 84 . The conveying direction changing section 82 changes the conveying direction of the film substrate fed out from the film feeding section 81 to the direction toward the entrance of the stretching section 84 as an oblique stretching tenter. At least one guide roll 83 is provided on the upstream side of the stretching section 84 in order to stabilize the trajectory of the film substrate during travel. At least one guide roll 85 is provided on the downstream side of the stretching section 84 in order to stabilize the trajectory of the film diagonally stretched in the stretching section 84 during running. The conveying direction changing section 86 changes the conveying direction of the stretched film conveyed from the stretching section 84 to the direction toward the film winding section 87 . The film winding section 87 winds up the film transported from the stretching section 84 via the transport direction changing section 86 .
 延伸部84の詳細について、図6に基づいて説明する。斜め延伸フィルムの製造は、例えば、延伸部84として、図6に示すような斜め延伸可能なテンター(斜め延伸機)を用いて行うことができる。このテンターは、フィルム基材を、延伸可能な任意の温度に加熱し、斜め延伸する装置であり、加熱ゾーンZと、左右で一対のレールRi・Roと、レールRi・Roに沿って走行してフィルムを搬送する多数の把持具Ci・Co(図6では、1組の把持具のみを図示)とを備えている。なお、加熱ゾーンZの詳細については後述する。レールRi・Roは、それぞれ、複数のレール部を連結部で連結して構成されている(図6中の白丸は連結部の一例である)。把持具Ci・Coは、フィルムの幅手方向の両端を把持するクリップで構成されている。 The details of the extending portion 84 will be described with reference to FIG. The obliquely stretched film can be produced, for example, by using a tenter (diagonal stretching machine) capable of obliquely stretching as shown in FIG. This tenter is a device that heats a film substrate to an arbitrary stretchable temperature and stretches it obliquely. and a large number of grippers Ci and Co (only one set of grippers is shown in FIG. 6) for transporting the film. Details of the heating zone Z will be described later. Each of the rails Ri and Ro is configured by connecting a plurality of rail portions with connecting portions (white circles in FIG. 6 are examples of connecting portions). The grippers Ci and Co consist of clips that grip both ends of the film in the width direction.
 図6において、フィルム基材の繰出方向D1は、延伸後の長尺斜め延伸フィルムの巻取方向D2と異なっており、巻取方向D2との間で繰出角度θiを成している。繰出角度θiは0°を超え90°未満の範囲で、所望の角度に任意に設定することができる。 In FIG. 6, the feeding direction D1 of the film substrate is different from the winding direction D2 of the long diagonally stretched film after stretching, and forms a feeding angle θi with the winding direction D2. The delivery angle θi can be arbitrarily set to a desired angle within a range of more than 0° and less than 90°.
 繰出方向D1と巻取方向D2とが異なっているため、テンターのレールパターンは左右で非対称な形状となっている。そして、製造すべき長尺斜め延伸フィルムに与える配向角θ、延伸倍率等に応じて、レールパターンを手動又は自動で調整できるようになっている。本実施形態の製造方法で用いられる斜め延伸機では、レールRi・Roを構成する各レール部及びレール連結部の位置を自由に設定し、レールパターンを任意に変更できることが好ましい。これにより、フィルムの配向角を自在に設定できる。 Because the delivery direction D1 and the winding direction D2 are different, the rail pattern of the tenter has a left-right asymmetrical shape. The rail pattern can be manually or automatically adjusted according to the orientation angle θ given to the long obliquely stretched film to be produced, the stretching ratio, and the like. In the oblique stretching machine used in the manufacturing method of the present embodiment, it is preferable to freely set the positions of the rail portions and the rail connecting portions that constitute the rails Ri and Ro, and to arbitrarily change the rail pattern. Thereby, the orientation angle of the film can be freely set.
 延伸部84において、フィルム基材は、その両端を左右の把持具Ci・Coによって把持され、加熱ゾーンZ内を把持具Ci・Coの走行に伴って搬送される。左右の把持具Ci・Coは、延伸部84の入口部(図中Aの位置)において、フィルムの進行方向(繰出方向D1)に対して略垂直な方向に相対しており、左右非対称なレールRi・Ro上をそれぞれ走行し、延伸終了時の出口部(図中Bの位置)で把持したフィルムを開放する。把持具Ci・Coから開放されたフィルムは、前述したフィルム巻き取り部87にて巻芯に巻き取られる。 In the stretching section 84, both ends of the film substrate are gripped by left and right grippers Ci and Co, and are transported in the heating zone Z as the grippers Ci and Co run. The left and right grippers Ci and Co face each other in a direction substantially perpendicular to the film traveling direction (feeding direction D1) at the entrance portion (position A in the figure) of the stretching portion 84, and are asymmetrical rails. It travels on Ri and Ro, respectively, and releases the gripped film at the exit portion (position B in the figure) at the end of stretching. The film released from the grippers Ci and Co is wound around the winding core by the film winding section 87 described above.
 レールRi・Roは左右非対称であるため、図6の例では、図中Aの位置で相対していた左右の把持具Ci・Coは、レールRi・Ro上を走行するにつれて、レールRi側(インコース側)を走行する把持具CiがレールRo側(アウトコース側)を走行する把持具Coに対して先行する位置関係となる。 Since the rails Ri and Ro are left-right asymmetrical, in the example of FIG. The gripping tool Ci running on the in-course side) precedes the gripping tool Co running on the rail Ro side (out-course side).
 すなわち、図中Aの位置でフィルムの繰出方向D1に対して略垂直な方向に相対していた把持具Ci・Coのうち、一方の把持具Ciがフィルムの延伸終了時の位置Bに先に到達したときには、把持具Ci・Coを結んだ直線がフィルムの巻取方向D2に略垂直な方向に対して、角度θLだけ傾斜している。以上の所作をもって、フィルム基材が幅手方向に対してθLの角度で斜め延伸されることとなる。ここで、略垂直とは、90±1°の範囲にあることを示す。 That is, one of the gripping tools Ci and Co, which are facing each other in a direction substantially perpendicular to the film feeding direction D1 at the position A in the drawing, moves first to the position B at the end of the stretching of the film. When it arrives, the straight line connecting the grippers Ci and Co is inclined by an angle θL with respect to the direction substantially perpendicular to the film winding direction D2. With the above steps, the film substrate is obliquely stretched at an angle of θL with respect to the widthwise direction. Here, "substantially perpendicular" means within the range of 90±1°.
 延伸部84の加熱ゾーンZは、予熱ゾーンZ1、延伸ゾーンZ2及び熱固定ゾーンZ3で構成されている。延伸部84では、把持具Ci・Coによって把持されたフィルムは、予熱ゾーンZ1、延伸ゾーンZ2、熱固定ゾーンZ3を順に通過する。本実施形態では、予熱ゾーンZ1と延伸ゾーンZ2とは隔壁で区切られており、延伸ゾーンZ2と熱固定ゾーンZ3とは隔壁で区切られている。 The heating zone Z of the stretching section 84 is composed of a preheating zone Z1, a stretching zone Z2 and a heat setting zone Z3. In the stretching section 84, the film gripped by the grippers Ci and Co sequentially passes through a preheating zone Z1, a stretching zone Z2, and a heat setting zone Z3. In this embodiment, the preheating zone Z1 and the drawing zone Z2 are separated by a partition wall, and the drawing zone Z2 and the heat setting zone Z3 are separated by a partition wall.
 予熱ゾーンZ1とは、加熱ゾーンZの入口部において、フィルムの両端を把持した把持具Ci・Coが、左右で(フィルム幅方向に)一定の間隔を保ったまま走行する区間を指す。 The preheating zone Z1 refers to a section at the entrance of the heating zone Z in which the grippers Ci and Co gripping both ends of the film travel while maintaining a constant spacing (in the film width direction) on the left and right.
 延伸ゾーンZ2とは、フィルムの両端を把持した把持具Ci・Coの間隔が開き出し、所定の間隔になるまでの区間を指す。これによって上述のような斜め延伸が行われる。すなわち、延伸ゾーンZ2では、フィルム面内で幅手方向及び長手方向の両方向に対して傾斜する斜め方向に長尺フィルム(フィルム基材)を延伸することにより、斜め延伸フィルムを取得する斜め延伸工程が行われる。なお、斜め延伸の前後において、必要に応じて縦方向又は横方向の延伸を行ってもよい。 The stretching zone Z2 refers to a section from when the gap between the grippers Ci and Co gripping both ends of the film begins to open to a predetermined gap. As a result, the oblique stretching as described above is performed. That is, in the stretching zone Z2, an oblique stretching step of obtaining an obliquely stretched film by stretching a long film (film substrate) in an oblique direction that is inclined with respect to both the width direction and the longitudinal direction in the film plane. is done. Before and after the oblique stretching, the film may be stretched in the vertical direction or the horizontal direction, if necessary.
 熱固定ゾーンZ3とは、延伸ゾーンZ2より後の、把持具Ci・Coの間隔が再び一定となる区間であって、両端の把持具Ci・Coが互いに平行を保ったまま走行する区間を指す。すなわち、熱固定ゾーンZ3では、幅を一定に保持しながら斜め延伸フィルムを搬送する熱固定工程が行われる。 The thermal fixation zone Z3 is a section after the stretching zone Z2, in which the distance between the grippers Ci and Co becomes constant again, and refers to a section in which the grippers Ci and Co at both ends run parallel to each other. . That is, in the heat setting zone Z3, a heat setting process is performed in which the obliquely stretched film is conveyed while keeping the width constant.
 なお、延伸後のフィルムは、熱固定ゾーンZ3を通過した後に、ゾーン内の温度がフィルムを構成する熱可塑性樹脂のガラス転移温度Tg(℃)以下に設定される区間(冷却ゾーン)を通過してもよい。このとき、冷却によるフィルムの縮みを考慮して、予め対向する把持具Ci・Coの間隔を狭めるようなレールパターンとしてもよい。 After passing through the heat setting zone Z3, the stretched film passes through a section (cooling zone) in which the temperature in the zone is set to the glass transition temperature Tg (° C.) or lower of the thermoplastic resin constituting the film. may At this time, considering shrinkage of the film due to cooling, the rail pattern may be such that the gap between the opposing grippers Ci and Co is narrowed in advance.
 熱可塑性樹脂のガラス転移温度Tgに対し、予熱ゾーンZ1の温度はTg~Tg+30℃、延伸ゾーンZ2の温度はTg~Tg+30℃、熱固定ゾーンZ3及び冷却ゾーンの温度はTg-30~Tg+20℃に設定することが好ましい。 With respect to the glass transition temperature Tg of the thermoplastic resin, the temperature of the preheating zone Z1 is Tg to Tg+30°C, the temperature of the stretching zone Z2 is Tg to Tg+30°C, and the temperature of the heat setting zone Z3 and the cooling zone is Tg-30 to Tg+20°C. It is preferable to set
 なお、予熱ゾーンZ1、延伸ゾーンZ2及び熱固定ゾーンZ3の長さは適宜選択でき、延伸ゾーンZ2の長さに対して、予熱ゾーンZ1の長さは通常100~150%、熱固定ゾーンZ3の長さは通常50~100%である。 The lengths of the preheating zone Z1, the stretching zone Z2, and the heat setting zone Z3 can be selected as appropriate. The length is usually 50-100%.
 また、延伸前のフィルムの幅をWo(mm)とし、延伸後のフィルムの幅をW(mm)とすると、延伸工程における延伸倍率R(W/Wo)は、好ましくは1.3~3.0、より好ましくは1.5~2.8である。延伸倍率がこの範囲にあると、フィルムの幅方向の厚さムラが小さくなるので好ましい。斜め延伸テンターの延伸ゾーンZ2において、幅方向で延伸温度に差を付けると、幅方向厚さムラをさらに良好なレベルにすることが可能になる。なお、上記の延伸倍率Rは、テンター入口部で把持したクリップ両端の間隔Woがテンター出口部において間隔Wとなったときの倍率(W/Wo)に等しい。 Further, if the width of the film before stretching is Wo (mm) and the width of the film after stretching is W (mm), the stretching ratio R (W/Wo) in the stretching step is preferably 1.3 to 3.0. 0, more preferably 1.5 to 2.8. When the draw ratio is within this range, thickness unevenness in the width direction of the film is reduced, which is preferable. In the stretching zone Z2 of the diagonal stretching tenter, if the stretching temperature is differentiated in the width direction, it is possible to bring the thickness unevenness in the width direction to a better level. The above draw ratio R is equal to the ratio (W/Wo) when the distance Wo between both ends of the clip gripped at the entrance of the tenter becomes the distance W at the exit of the tenter.
 位相差フィルムの厚さは、適宜に決定しうるが、一般には光学特性、強度や取扱性等の作業性、薄膜性等の点より1~500μmの範囲内にあるのが好ましい。位相差フィルムの厚さは、5~100μmの範囲内にあるのがより好ましく、15~80μmの範囲内にあるのがさらに好ましい。 The thickness of the retardation film can be determined as appropriate, but in general, it is preferably in the range of 1 to 500 μm in terms of optical properties, workability such as strength and handleability, and thin film properties. The thickness of the retardation film is more preferably in the range of 5-100 μm, more preferably in the range of 15-80 μm.
〔8〕偏光板の製造
 偏光子層と偏光板保護フィルム及び偏光子層と位相差フィルムとは、例えば、後述する粘着剤層を介して接着されることが好ましい。粘着剤層は、水系粘着剤を乾燥させて得られる層であってもよいし、活性線硬化性粘着剤の硬化物層であってもよい。また、粘着剤層には、金属化合物フィラーを含有させることができる。
[8] Production of Polarizing Plate It is preferable that the polarizer layer and the polarizing plate protective film and the polarizer layer and the retardation film are adhered via, for example, an adhesive layer to be described later. The pressure-sensitive adhesive layer may be a layer obtained by drying a water-based pressure-sensitive adhesive, or a cured product layer of an actinic ray-curable pressure-sensitive adhesive. Also, the pressure-sensitive adhesive layer may contain a metallic compound filler.
 [粘着剤層]
 粘着剤層は、本発明に用いられる偏光板に任意に設けられる。粘着剤層を有することで、当該偏光板を有機EL素子の視認側に貼合した有機EL表示装置を作製する際の作業性が向上する。図3に断面図を示す偏光板10Aは、偏光板が粘着剤層を有する場合の一例である。偏光板10Aは、位相差フィルムの偏光子層とは反対側に粘着剤層を有する。
[Adhesive layer]
A pressure-sensitive adhesive layer is optionally provided on the polarizing plate used in the present invention. By having the pressure-sensitive adhesive layer, workability is improved when manufacturing an organic EL display device in which the polarizing plate is attached to the viewing side of the organic EL element. A polarizing plate 10A whose cross-sectional view is shown in FIG. 3 is an example of a polarizing plate having an adhesive layer. The polarizing plate 10A has an adhesive layer on the side opposite to the polarizer layer of the retardation film.
 粘着剤層を形成する粘着剤の種類としては、特に限定されるものではなく、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルアルコール系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤等を挙げることができる。これら粘着剤の中でも、光学的透明性に優れ、適宜な密着性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性等に優れる点から、アクリル系粘着剤が好ましく使用される。本発明においては、(メタ)アクリル系ポリマーをベースポリマーとして含有するアクリル系粘着剤であることが好ましい。 The type of adhesive that forms the adhesive layer is not particularly limited, and examples thereof include rubber-based adhesives, acrylic-based adhesives, silicone-based adhesives, urethane-based adhesives, vinyl alkyl ether-based adhesives, Polyvinyl alcohol-based pressure-sensitive adhesives, polyvinylpyrrolidone-based pressure-sensitive adhesives, polyacrylamide-based pressure-sensitive adhesives, cellulose-based pressure-sensitive adhesives, and the like can be mentioned. Among these pressure-sensitive adhesives, acrylic pressure-sensitive adhesives are preferably used because they have excellent optical transparency, exhibit appropriate adhesion, cohesiveness, and adhesive properties, and are excellent in weather resistance and heat resistance. . In the present invention, an acrylic pressure-sensitive adhesive containing a (meth)acrylic polymer as a base polymer is preferred.
 粘着剤層の形成方法としては、特に限定されるものではなく、通常本分野において用いられる方法により形成することができる。具体的には、上記粘着剤又はその原料と溶媒を含有する粘着剤組成物を基材の少なくとも片面に塗工し、粘着剤組成物から形成される塗膜を乾燥して形成するか、又は、紫外線等の活性線を照射して形成することができる。アクリル系粘着剤の場合、粘着剤組成物にはポリマーの構造単位となるモノマー、重合開始剤、溶媒が含まれる。 The method for forming the pressure-sensitive adhesive layer is not particularly limited, and it can be formed by a method commonly used in this field. Specifically, a pressure-sensitive adhesive composition containing the pressure-sensitive adhesive or its raw material and a solvent is applied to at least one surface of a substrate, and a coating film formed from the pressure-sensitive adhesive composition is dried to form it, or can be formed by irradiating actinic rays such as ultraviolet rays. In the case of an acrylic pressure-sensitive adhesive, the pressure-sensitive adhesive composition contains monomers that form the structural units of the polymer, a polymerization initiator, and a solvent.
 粘着剤組成物を塗布する基材は、例えば、離型フィルム、又は位相差フィルムである。離型フィルム上に粘着剤層を形成する場合、形成された粘着剤層を位相差フィルムに転写し、離型フィルムを剥離する。なお、偏光板10Bが実用に供されるまで離型フィルムで粘着剤層を保護してもよい。 The base material to which the adhesive composition is applied is, for example, a release film or a retardation film. When the pressure-sensitive adhesive layer is formed on the release film, the formed pressure-sensitive adhesive layer is transferred to the retardation film, and the release film is peeled off. The pressure-sensitive adhesive layer may be protected with a release film until the polarizing plate 10B is put into practical use.
 粘着剤層の厚さとしては、特に限定されるものではないが、10~75μm程度であることが好ましく、12~50μm程度であることがより好ましい。 Although the thickness of the adhesive layer is not particularly limited, it is preferably about 10 to 75 μm, more preferably about 12 to 50 μm.
 [接着剤層]
 偏光子層と偏光板保護フィルム及び偏光子層と位相差フィルムとは、例えば、接着剤層を介して接着されることもできる。接着剤層は、水系接着剤を乾燥させて得られる層であってもよいし、活性線硬化性接着剤の硬化物層であってもよい。また、接着剤層には、金属化合物フィラーを含有させることができる。
[Adhesive layer]
The polarizer layer and the polarizing plate protective film and the polarizer layer and the retardation film can also be adhered via an adhesive layer, for example. The adhesive layer may be a layer obtained by drying a water-based adhesive, or a cured product layer of an actinic ray-curable adhesive. Also, the adhesive layer may contain a metallic compound filler.
 水系接着剤としては、イソシアネート系接着剤、ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリウレタン、水系ポリエステル等を例示できる。ポリビニルアルコール系接着剤として、具体的には、完全鹸化型ポリビニルアルコール水溶液(水糊)が挙げられる。活性線硬化性接着剤としては、紫外線硬化型接着剤、電子線硬化型接着剤等が挙げられる。 Examples of water-based adhesives include isocyanate-based adhesives, polyvinyl alcohol-based adhesives, gelatin-based adhesives, vinyl-based latex-based adhesives, water-based polyurethanes, and water-based polyesters. Specific examples of polyvinyl alcohol-based adhesives include completely saponified aqueous polyvinyl alcohol solutions (water glue). Actinic ray-curable adhesives include UV-curable adhesives, electron beam-curable adhesives, and the like.
 [偏光板のその他の機能層]
 偏光板の別の実施態様としては、図2の偏光板10Bで示すようにハードコート層を有し、当該偏光板は、視認側からハードコート層4、偏光板保護フィルム1、偏光子層2、位相差フィルム3となるように積層することで得られる。
[Other functional layers of the polarizing plate]
Another embodiment of the polarizing plate has a hard coat layer as shown by polarizing plate 10B in FIG. , the retardation film 3 is obtained by stacking.
 (ハードコート層)
 ハードコート層4は、JISK5600-2014に規定される鉛筆硬度試験で「HB」以上の硬度を示すことが好ましく、該硬度を得るために活性線硬化性樹脂の硬化物を含有することが好ましい。活性線硬化性樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられる。活性線硬化性樹脂としては、紫外線硬化性樹脂や電子線硬化性樹脂が挙げられるが、紫外線照射により硬化する樹脂が、機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。
(Hard coat layer)
The hard coat layer 4 preferably exhibits a hardness of "HB" or higher in the pencil hardness test specified in JISK5600-2014, and preferably contains a cured product of an actinic ray-curable resin to obtain the hardness. As the actinic radiation-curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used. Examples of actinic ray-curable resins include ultraviolet-curable resins and electron beam-curable resins, but resins that are cured by ultraviolet irradiation are preferable from the viewpoint of excellent mechanical film strength (scratch resistance, pencil hardness).
 活性線硬化性樹脂としては、アクリル系材料が好ましく用いられる。アクリル系材料としては、多価アルコールの(メタ)アクリル酸エステルのような単官能又は多官能の(メタ)アクリレート化合物、ジイソシアネートと多価アルコール及び(メタ)アクリル酸のヒドロキシエステル等から合成されるような多官能のウレタン(メタ)アクリレート化合物を使用することができる。また、これらの他にも、アクリレート系の官能基を有するポリエーテル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等を使用することができる。 An acrylic material is preferably used as the actinic ray-curable resin. The acrylic material is synthesized from a monofunctional or polyfunctional (meth)acrylate compound such as a polyhydric alcohol (meth)acrylic acid ester, a diisocyanate, a polyhydric alcohol, and a (meth)acrylic acid hydroxy ester. A polyfunctional urethane (meth)acrylate compound such as can be used. In addition to these, polyether resins, polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, etc. having acrylate-based functional groups can be used.
 特に、紫外線硬化型アクリレート系樹脂、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等が好ましく用いられ、中でも紫外線硬化型アクリレート系樹脂が好ましい。 In particular, ultraviolet-curable acrylate-based resins, ultraviolet-curable urethane acrylate-based resins, ultraviolet-curable polyester acrylate-based resins, ultraviolet-curable epoxy acrylate-based resins, ultraviolet-curable polyol acrylate-based resins, or ultraviolet-curable epoxy resins are preferred. Among them, an ultraviolet curable acrylate resin is preferred.
 ハードコート層は、例えば、活性線硬化性樹脂と、重合開始剤と、溶媒を含有するハードコート層形成用組成物を用いて形成される。ハードコート層形成用組成物に含まれる溶媒としては、偏光板保護フィルム又は偏光板保護フィルムが後述するプライマー層を有する場合にはプライマー層を溶解又は膨潤させる溶媒が好ましい。溶媒が偏光板保護フィルム又はプライマー層を溶解又は膨潤させることにより、ハードコート層形成用組成物が偏光板保護フィルム又はプライマー層の表面から内部に浸透し易くなり、偏光板保護フィルム又はプライマー層とハードコート層との密着性を向上させることができる。 The hard coat layer is formed, for example, using a hard coat layer-forming composition containing an actinic ray-curable resin, a polymerization initiator, and a solvent. When the polarizing plate protective film or the polarizing plate protective film has a primer layer described later, the solvent contained in the hard coat layer-forming composition is preferably a solvent that dissolves or swells the primer layer. When the solvent dissolves or swells the polarizing plate protective film or primer layer, the composition for forming a hard coat layer easily permeates from the surface of the polarizing plate protective film or primer layer into the interior, thereby forming a polarizing plate protective film or primer layer. Adhesion with the hard coat layer can be improved.
 また、偏光板保護フィルム又はプライマー層の表層近傍で、偏光板保護フィルム又はプライマー層の樹脂成分とハードコート層の樹脂成分とが混在した層が形成され、この層の作用により、偏光板保護フィルム又はプライマー層とハードコート層との屈折率を傾斜させることができ、干渉ムラの発生を防ぐことができる。 In the vicinity of the surface layer of the polarizing plate protective film or primer layer, a layer in which the resin component of the polarizing plate protective film or primer layer and the resin component of the hard coat layer are mixed is formed. Alternatively, the refractive index of the primer layer and the hard coat layer can be graded, and the occurrence of interference unevenness can be prevented.
 又はハードコート層形成用組成物には、ハードコート層の硬度を高くする、硬化収縮を抑える、ブロッキングを防止する、屈折率を制御する、防眩性を付与する、ハードコート層表面の性質を制御する等の目的に応じて、従来公知の微粒子、分散剤、界面活性剤、帯電防止剤、シランカップリング剤、増粘剤、着色防止剤、着色剤(顔料、染料)、消泡剤、レベリング剤、難燃剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤等を添加していてもよい。また、上記ハードコート層形成用組成物は、光増感剤を含んでもよく、その具体例としては、n-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホソフィン等が挙げられる。 Alternatively, the composition for forming a hard coat layer includes properties that increase the hardness of the hard coat layer, suppress cure shrinkage, prevent blocking, control the refractive index, impart antiglare properties, and improve the properties of the hard coat layer surface. Depending on the purpose such as control, conventionally known fine particles, dispersants, surfactants, antistatic agents, silane coupling agents, thickeners, anti-coloring agents, coloring agents (pigments, dyes), antifoaming agents, Leveling agents, flame retardants, tackifiers, polymerization inhibitors, antioxidants, surface modifiers and the like may be added. The composition for forming a hard coat layer may also contain a photosensitizer, and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
 特に、ハードコート層は微粒子を含有することが好ましい。微粒子の含有量は、微粒子:活性線硬化性樹脂=100:100~400:100であることが好ましい。このような含有量で微粒子を含むことにより、ハードコート層の寸法変動を低くすることができる。ここでの微粒子は、特に制限されないが、金属酸化物によって構成された微粒子(以下、「金属酸化物粒子」とも記す)であることが好ましい。ここでの金属酸化物としては、シリカ、アルミナ、ジルコニア、酸化チタン、五酸化アンチモン等が挙げられる。これらの中で、金属酸化物粒子は、シリカで構成されていることが好ましい。シリカ微粒子は、内部に空洞が形成された中空粒子であってもよい。 In particular, the hard coat layer preferably contains fine particles. The content of fine particles is preferably fine particles: actinic radiation curable resin=100:100 to 400:100. By including the fine particles in such a content, the dimensional variation of the hard coat layer can be reduced. The fine particles here are not particularly limited, but are preferably fine particles composed of a metal oxide (hereinafter also referred to as "metal oxide particles"). Examples of metal oxides used herein include silica, alumina, zirconia, titanium oxide, antimony pentoxide, and the like. Among these, the metal oxide particles are preferably composed of silica. The silica fine particles may be hollow particles having a hollow inside.
 上記微粒子は、ポリマーシランカップリング剤によって被覆されていることが好ましい。微粒子の表面をポリマーシランカップリング剤で被覆することにより、ハードコート層形成用組成物中で微粒子を均一に分散させることができる。ポリマーシランカップリング剤で被覆した微粒子の平均粒子径は、5~500nmであることが好ましく、より好ましくは10~200nmである。このような平均粒子径の微粒子を用いることにより、ハードコート層の光学特性を高めることができる。 The fine particles are preferably coated with a polymer silane coupling agent. By coating the surface of the fine particles with the polymer silane coupling agent, the fine particles can be uniformly dispersed in the composition for forming the hard coat layer. The average particle diameter of the fine particles coated with the polymer silane coupling agent is preferably 5-500 nm, more preferably 10-200 nm. By using fine particles having such an average particle size, the optical properties of the hard coat layer can be enhanced.
 上記ポリマーシランカップリング剤は、重合性モノマーとシランカップリング剤(反応性シラン化合物)とを反応することによって調製される。重合性モノマーとしては、エチレン性不飽和二重結合を有するモノマーが挙げられ、(メタ)アクリル酸及びその誘導体から選ばれるモノマーが好ましい。反応性シラン化合物としては、ケイ素原子に3個のアルコキシ基と1個の官能基が結合した加水分解性シラン化合物が好ましい。ケイ素原子に結合する官能基としては、(メタ)アクリロキシ基、エポキシ基(グリシド基)、ウレタン基、アミノ基、フルオロ基、メルカプト基から選ばれる1種又は2種以上の基を有する基が挙げられる。 The polymer silane coupling agent is prepared by reacting a polymerizable monomer and a silane coupling agent (reactive silane compound). The polymerizable monomer includes a monomer having an ethylenically unsaturated double bond, preferably a monomer selected from (meth)acrylic acid and its derivatives. As the reactive silane compound, a hydrolyzable silane compound in which three alkoxy groups and one functional group are bonded to a silicon atom is preferred. Examples of functional groups bonded to silicon atoms include groups having one or more groups selected from (meth)acryloxy groups, epoxy groups (glycidide groups), urethane groups, amino groups, fluoro groups, and mercapto groups. be done.
 ポリマーシランカップリング剤は、例えば、特開平11-116240号公報に開示された重合性モノマーと反応性シラン化合物との反応物の製法に準じて作製することができる。ポリマーシランカップリング剤の数平均分子量は、ポリスチレン換算で2500~150000であることが好ましく、より好ましくは2000~100000である。 The polymer silane coupling agent can be produced, for example, according to the method for producing a reaction product of a polymerizable monomer and a reactive silane compound disclosed in JP-A-11-116240. The number average molecular weight of the polymer silane coupling agent is preferably 2,500 to 150,000, more preferably 2,000 to 100,000 in terms of polystyrene.
 微粒子の表面をポリマーシランカップリング剤で被覆する方法について、シリカ微粒子を例に説明する。まず、シリカ微粒子とポリマーシランカップリング剤とを有機溶媒に分散させた分散液を作製する。この分散液に対してアルカリを添加してシリカ微粒子の表面にヒドロキシ基を生成させ、該ヒドロキシ基にポリマーシランカップリング剤を吸着させる。又は、該ヒドロキシ基とポリマーシランカップリング剤のヒドロキシ基とを脱水反応によって結合させる。最後に、ポリマーシランカップリング剤が吸着又は結合したシリカ微粒子を分散液から分離して、乾燥することによってポリマーシランカップリング剤で被覆したシリカ微粒子が得られる。 The method of coating the surface of fine particles with a polymer silane coupling agent will be explained using silica fine particles as an example. First, a dispersion is prepared by dispersing silica fine particles and a polymer silane coupling agent in an organic solvent. An alkali is added to this dispersion to generate hydroxyl groups on the surface of the silica fine particles, and the polymer silane coupling agent is adsorbed on the hydroxyl groups. Alternatively, the hydroxy group and the hydroxy group of the polymer silane coupling agent are combined by a dehydration reaction. Finally, the silica fine particles to which the polymer silane coupling agent is adsorbed or bonded are separated from the dispersion and dried to obtain the silica fine particles coated with the polymer silane coupling agent.
 上記ハードコート層形成用組成物の調製方法としては、ハードコート層が含有する固形成分を溶媒に均一に混合できれば、特に限定されず、例えば、上記各固形成分と溶媒を、ペイントシェーカー、ビーズミル、ニーダー、ミキサー等の公知の装置を用いて混合あるいは溶解して、調製することができる。 The method for preparing the hard coat layer-forming composition is not particularly limited as long as the solid components contained in the hard coat layer can be uniformly mixed with the solvent. It can be prepared by mixing or dissolving using known devices such as kneaders and mixers.
 ハードコート層形成用組成物は、偏光板保護フィルム又はプライマー層の表面に塗工され、塗膜中の活性線硬化性樹脂を硬化することでハードコート層が形成される。ハードコート層形成用組成物の塗工方法としては、従来公知の方法が特に制限なく適用できる。例えば、均一な薄膜層を形成する場合には、マイクログラビアコーティング法が好ましく、また、厚膜層を形成する必要がある場合にはダイコーティング法が好ましい。必要に応じて塗膜から溶媒を除去後、活性線照射により活性線硬化性樹脂を硬化することでハードコート層が得られる。 The hard coat layer-forming composition is applied to the surface of the polarizing plate protective film or primer layer, and the hard coat layer is formed by curing the actinic ray-curable resin in the coating film. As a method for applying the composition for forming a hard coat layer, conventionally known methods can be applied without particular limitation. For example, a micro gravure coating method is preferred when forming a uniform thin film layer, and a die coating method is preferred when a thick film layer needs to be formed. A hard coat layer can be obtained by curing the actinic ray-curable resin by irradiation with actinic rays after removing the solvent from the coating film as necessary.
 ハードコート層の厚さは、平均の厚さとして0.01~20μmの範囲内にあることが好ましく、0.5~10μmの範囲内にあることが好ましい。 The average thickness of the hard coat layer is preferably in the range of 0.01 to 20 µm, more preferably in the range of 0.5 to 10 µm.
 (プライマー層)
 プライマー層を構成する材料としては、偏光板保護フィルムとハードコート層又は偏光子層との密着性及び接着性を改善し得る任意の材料を用いることができる。また、材料の特性としては、密着性・接着性以外に、透明性、熱安定性などに優れることが好ましい。このような材料としては、ポリウレタン、ポリオレフィン、ポリエステル、ポリ塩化ビニリデン、アクリル系ポリマー、変性シリコーン系ポリマー、スチレンブタジエンゴム、カルボジイミド化合物、イソシアネート等で構成される樹脂が挙げられる。
(primer layer)
Any material that can improve adhesion and adhesiveness between the polarizing plate protective film and the hard coat layer or the polarizer layer can be used as the material constituting the primer layer. Moreover, as for the properties of the material, it is preferable that the material should be excellent in transparency, thermal stability, etc., in addition to adhesion and adhesiveness. Examples of such materials include resins composed of polyurethanes, polyolefins, polyesters, polyvinylidene chloride, acrylic polymers, modified silicone polymers, styrene-butadiene rubbers, carbodiimide compounds, isocyanates, and the like.
 上記プライマー層は、必要に応じて任意の添加剤を含むこともできる。添加剤の具体例としては、レベリング剤、重合開始剤、重合促進剤、粘度調整剤、スリップ剤、分散剤、可塑剤、熱安定剤、光安定剤、滑材、抗酸化剤、難燃剤、着色剤、帯電防止剤、相溶化剤、架橋剤等が挙げられる。使用される添加剤の種類及び量は、目的に応じて適宜設定され得る。例えば、添加剤の使用量は、プライマー層中の全固形分100質量部に対して、好ましくは30質量部以下であり、さらに好ましくは20質量部以下である。 The primer layer may contain any additive as necessary. Specific examples of additives include leveling agents, polymerization initiators, polymerization accelerators, viscosity modifiers, slip agents, dispersants, plasticizers, heat stabilizers, light stabilizers, lubricants, antioxidants, flame retardants, Colorants, antistatic agents, compatibilizers, cross-linking agents and the like can be mentioned. The type and amount of additive used can be appropriately set according to the purpose. For example, the amount of the additive used is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, with respect to 100 parts by mass of the total solid content in the primer layer.
 上記プライマー層を構成する材料としては、上記の樹脂の中でも、ポリウレタンを主成分とするものが好ましく用いられる。ポリウレタンの具体例としては、DIC(株)製、商品名「ハイドランシリーズ」AP-201、AP-40F、HW-140SF、WLS-202、第一工業製薬(株)製、商品名「スーパーフレックスシリーズ」SF-210、SF460、SF870、SF420、SF-420NS、三井化学(株)製、商品名「タケラックシリーズ」W-615、W6010、W-6020、W-6061、W-405、W-5030、W-5661、W-512A-6、W-635、WPB-6601、WS-6021、WS-5000、WS-5100、WS-4000、WSA-5920、WF-764、アデカ(株)製、開発品「SPX-0882」などが挙げられる。なお、側鎖にカルボキシル基を持ったポリウレタン等の樹脂は、イソシアネートやオキサゾリン、カルボジイミド等の架橋剤で架橋することで、プライマー層の強度向上を図ることができる。 Among the above resins, those containing polyurethane as a main component are preferably used as the material constituting the primer layer. Specific examples of polyurethanes include those manufactured by DIC Corporation under the trade names of "Hydran Series" AP-201, AP-40F, HW-140SF, and WLS-202, manufactured by Daiichi Kogyo Seiyaku Co., Ltd. under the trade name of Super Flex. Series "SF-210, SF460, SF870, SF420, SF-420NS, manufactured by Mitsui Chemicals, Inc., trade name "Takelac Series" W-615, W6010, W-6020, W-6061, W-405, W- 5030, W-5661, W-512A-6, W-635, WPB-6601, WS-6021, WS-5000, WS-5100, WS-4000, WSA-5920, WF-764, manufactured by Adeka Corporation, Developed product "SPX-0882" etc. can be mentioned. A resin such as polyurethane having a carboxyl group in a side chain can be crosslinked with a crosslinking agent such as isocyanate, oxazoline, or carbodiimide to improve the strength of the primer layer.
 [偏光板の光学特性]
 本発明に用いられる偏光板において、本発明に係る色素化合物(化合物(D))を含有する層の光透過率は以下の範囲にあることが好ましい。
[Optical Characteristics of Polarizing Plate]
In the polarizing plate used in the present invention, the light transmittance of the layer containing the dye compound (compound (D)) according to the present invention is preferably within the following range.
 (i)化合物(D)を含む層の光透過率
 化合物(D)を含む層の波長390nmにおける光透過率は、9%以下であることが好ましく、7%以下であることがより好ましく、5%以下であることがさらに好ましく、3%以下であることが特に好ましい。波長390nmにおける光透過率が前記範囲であることにより、入射する紫外線をより高度に遮断することができるため、有機EL素子の劣化を著しく抑制することができるため、好ましい。
(i) Light transmittance of the layer containing the compound (D) The light transmittance of the layer containing the compound (D) at a wavelength of 390 nm is preferably 9% or less, more preferably 7% or less. % or less, and particularly preferably 3% or less. When the light transmittance at a wavelength of 390 nm is within the above range, incident ultraviolet rays can be blocked to a higher degree, and deterioration of the organic EL element can be significantly suppressed, which is preferable.
 また、化合物(D)を含む層の波長410nmにおける光透過率は、60%以下であることが好ましく、50%以下であることが好ましく、40%以下であることがより好ましい。波長410nmにおける光透過率が前記範囲であることにより、入射する紫外線をより高度に遮断することができるため、有機EL素子の劣化を著しく抑制することができるため、好ましい。 In addition, the light transmittance of the layer containing the compound (D) at a wavelength of 410 nm is preferably 60% or less, preferably 50% or less, and more preferably 40% or less. When the light transmittance at a wavelength of 410 nm is within the above range, incident ultraviolet rays can be blocked to a higher degree, and deterioration of the organic EL element can be significantly suppressed, which is preferable.
 また、化合物(D)を含む層の波長430nmにおける光透過率は、50%以上であることが好ましく、60%以上であることが好ましく、70%以上であることがより好ましい。波長430nmにおける光透過率が前記範囲であることにより、有機EL素子の発光を十分に透過することができ、有機EL表示装置において十分な表示性能を確保できるため好ましい。 In addition, the light transmittance of the layer containing the compound (D) at a wavelength of 430 nm is preferably 50% or more, preferably 60% or more, and more preferably 70% or more. When the light transmittance at a wavelength of 430 nm is within the above range, the light emitted from the organic EL element can be sufficiently transmitted, and sufficient display performance can be secured in the organic EL display device, which is preferable.
 (ii)偏光板の光透過率
 本発明に用いられる偏光板においては、波長380nmにおける光透過率が、9%以下であることが好ましく、7%以下であることがより好ましく、5%以下であることがさらに好ましく、3%以下であることが特に好ましい。また、偏光板の波長400nmにおける光透過率は、20%以下であることが好ましく、15%以下であることが好ましく、10%以下であることがより好ましい。
(ii) Light transmittance of polarizing plate In the polarizing plate used in the present invention, the light transmittance at a wavelength of 380 nm is preferably 9% or less, more preferably 7% or less, and 5% or less. It is more preferable that the content is 3% or less, and it is particularly preferable that the content is 3% or less. Further, the light transmittance of the polarizing plate at a wavelength of 400 nm is preferably 20% or less, preferably 15% or less, and more preferably 10% or less.
 偏光板の波長380nmにおける光透過率が上記範囲であること、及び波長400nmにおける光透過率が上記範囲であることにより、入射する紫外線をより高度に遮断することができる。これにより、偏光板を有機EL表示装置に用いた場合に、入射する紫外線をより高度に遮断することができる。 When the light transmittance of the polarizing plate at a wavelength of 380 nm is within the above range and the light transmittance at a wavelength of 400 nm is within the above range, incident ultraviolet rays can be blocked to a higher degree. As a result, when the polarizing plate is used in an organic EL display device, incident ultraviolet rays can be blocked to a higher degree.
 また、本発明に用いられる偏光板の波長450nmにおける光透過率は、25%以上であることが好ましく、30%以上であることが好ましく、33%以上であることがより好ましい。波長450nmにおける光透過率が上記範囲であることにより、有機EL表示装置に用いた場合に、有機EL素子の発光を十分に透過することができ、該有機EL表示装置において十分な表示性能を確保できるため好ましい。 In addition, the light transmittance of the polarizing plate used in the present invention at a wavelength of 450 nm is preferably 25% or more, preferably 30% or more, and more preferably 33% or more. Since the light transmittance at a wavelength of 450 nm is within the above range, when used in an organic EL display device, the light emitted from the organic EL element can be sufficiently transmitted, and sufficient display performance can be ensured in the organic EL display device. It is preferable because it can be done.
〔9〕有機EL表示装置
 本発明の偏光板保護フィルムを具備した偏光板は、液晶表示装置(LCD)、有機EL表示装置(OLED)やタッチパネル等の各種表示装置に用いることができる。特に、有機EL表示装置の円偏光板として本発明に係る偏光板を用いることが好ましい。
[9] Organic EL Display Device A polarizing plate provided with the polarizing plate protective film of the present invention can be used for various display devices such as a liquid crystal display device (LCD), an organic EL display device (OLED), and a touch panel. In particular, it is preferable to use the polarizing plate according to the present invention as a circularly polarizing plate for an organic EL display device.
 本発明の偏光板保護フィルムを具備した有機EL表示装置の一構成例の断面図を図3に示す。図3に示す有機EL表示装置20は、有機EL素子11とその視認側に本発明に係る偏光板10A又は10Bを有する。有機EL表示素子11は、例えば、光反射電極と、発光層と、透明電極層と、透明プラスチックフィルム基板とを有する。 FIG. 3 shows a cross-sectional view of one structural example of an organic EL display device equipped with the polarizing plate protective film of the present invention. An organic EL display device 20 shown in FIG. 3 has an organic EL element 11 and a polarizing plate 10A or 10B according to the present invention on the viewing side thereof. The organic EL display element 11 has, for example, a light reflecting electrode, a light emitting layer, a transparent electrode layer, and a transparent plastic film substrate.
 有機EL表示装置20は、光反射電極と透明電極層との間を通電させると、発光層が発光し、画像を表示することができる。さらに、有機EL表示装置に外部から入射する光は、すべて偏光板10A又は10Bの偏光子層2に吸収されるため、有機EL素子11の光反射電極で反射しても外部に出射せず、背景の映り込みによる表示特性の低下を抑制できる。 In the organic EL display device 20, when an electric current is applied between the light reflecting electrode and the transparent electrode layer, the light emitting layer emits light and can display an image. Further, all light incident on the organic EL display device from the outside is absorbed by the polarizer layer 2 of the polarizing plate 10A or 10B. It is possible to suppress deterioration of display characteristics due to reflection of the background.
 有機EL表示装置20において、偏光板保護フィルムが化合物(D)を含有し、さらに紫外線吸収剤を含有することが好ましい。 In the organic EL display device 20, the polarizing plate protective film preferably contains the compound (D) and further contains an ultraviolet absorber.
 このように、色素化合物、さらに酸化防止剤や微粒子を含有する偏光板保護フィルムを具備する偏光板を、有機EL素子の視認側に配置することで、偏光板が有機EL素子の発光領域(430nmよりも長波長側)より短波長側の波長の光を十分に吸収して、有機EL素子を外光から保護することができる。また、色素化合物、さらに紫酸化防止剤や微粒子を含有する偏光板保護フィルムを上記特定の順番で配置することで、内部発生する熱が偏光板保護フィルム表面から外部へ放出されやすくなり、これによって、化合物(D)や紫外線吸収剤の発熱による位相差フィルムの光学値の変動等の劣化及び偏光子層の収縮等の劣化を抑制できるという利点もある。 Thus, by arranging the polarizing plate provided with the polarizing plate protective film containing a dye compound, an antioxidant, and fine particles on the viewing side of the organic EL element, the polarizing plate covers the light emitting region (430 nm) of the organic EL element. (longer wavelength side than )) can sufficiently absorb light of shorter wavelength side to protect the organic EL device from external light. In addition, by arranging the polarizing plate protective film containing a dye compound, a purple antioxidant, and fine particles in the above-mentioned specific order, internally generated heat can be easily released to the outside from the surface of the polarizing plate protective film. There is also an advantage that it is possible to suppress deterioration such as fluctuation of the optical value of the retardation film and deterioration such as shrinkage of the polarizer layer due to heat generation of the compound (D) and the ultraviolet absorber.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these. In the examples, "parts" or "%" are used, but "mass parts" or "mass%" are indicated unless otherwise specified.
 実施例1
 (最大吸収波長の測定)
 実施例で用いる色素化合物(以下、化合物(D)という。)の最大吸収波長は、株式会社島津製作所製紫外可視分光光度計UV-2450を用いて、色素化合物のクロロホルム中での吸収スペクトルを測定することによって求め、表Iに記載した。表中「化合物1」とは、本発明に係る式1で表される構造を有する化合物である。
Example 1
(Measurement of maximum absorption wavelength)
The maximum absorption wavelength of the dye compound used in the examples (hereinafter referred to as compound (D)) is determined by measuring the absorption spectrum of the dye compound in chloroform using an ultraviolet-visible spectrophotometer UV-2450 manufactured by Shimadzu Corporation. and listed in Table I. "Compound 1" in the table is a compound having a structure represented by formula 1 according to the present invention.
 なお、本発明における「最大吸収波長」とは、上記化合物の吸収スペクトルを測定したとき得られる化合物の吸収スペクトルにおいて、最大かつ極大の吸光度(吸収強度)を示す波長(nm)をいう。 The "maximum absorption wavelength" in the present invention refers to the wavelength (nm) at which the maximum and maximum absorbance (absorption intensity) is exhibited in the absorption spectrum of the compound obtained by measuring the absorption spectrum of the compound.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 なお、表I記載の比較化合物1~3の構造を以下に示す。 The structures of Comparative Compounds 1 to 3 described in Table I are shown below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 [1]偏光板保護フィルムの作製
 <偏光板保護フィルム101:シクロオレフィン樹脂フィルムの作製>
 (ドープの調製)
 下記組成のドープを調製した。まず、加圧溶解タンクにジクロロメタンとエタノールを添加した。ジクロロメタンとエタノールの混合溶液の入った加圧溶解タンクに、シクロオレフィン系樹脂(COP):アートンG7810(JSR(株)製ARTON G7810、Mw:14万、カルボン酸基を有するシクロオレフィン系樹脂)JSR株式会社製)と化合物(D)として化合物1を撹拌しながら投入した。更に、溶媒投入開始後15分後に、下記で調製した微粒子添加液を投入して、これを80℃に加熱し、撹拌しながら、完全に溶解した。このとき、室温から5℃/minの昇温し、30分間で溶解した後、3℃/minで降温した。得られた溶液を安積濾紙(株)製の安積濾紙No.244を使用して濾過し、ドープを調製した。
[1] Production of polarizing plate protective film <Polarizing plate protective film 101: Production of cycloolefin resin film>
(Preparation of dope)
A dope having the following composition was prepared. First, dichloromethane and ethanol were added to a pressurized dissolution tank. Cycloolefin resin (COP): Arton G7810 (ARTON G7810 manufactured by JSR Corporation, Mw: 140,000, cycloolefin resin having a carboxylic acid group) JSR Co., Ltd.) and compound 1 as compound (D) were added while stirring. Furthermore, 15 minutes after the start of adding the solvent, the microparticle addition liquid prepared below was added, heated to 80° C., and completely dissolved with stirring. At this time, the temperature was raised from room temperature at a rate of 5°C/min, dissolved in 30 minutes, and then lowered at a rate of 3°C/min. The resulting solution was filtered through Azumi Filter Paper No. 1 (Azumi Filter Paper Co., Ltd.). 244 was used to prepare the dope.
 (ドープの組成)
 COP(G7810)                100質量部
 ジクロロメタン                   200質量部
 エタノール                      10質量部
 化合物(D):化合物1                 6質量部
(Composition of dope)
COP (G7810) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Compound (D): Compound 1 6 parts by mass
 (偏光板保護フィルム101の製膜)
 得られたドープを30℃に保ち、30℃に保温された金属支持体であるステンレスベルト上にドープを均一に流延した。そして、流延したドープを、残留溶媒量が30質量%になるまで乾燥させた後、ステンレスベルト上から剥離して膜状物を得た。
(Formation of polarizing plate protective film 101)
The obtained dope was kept at 30°C and uniformly cast on a stainless steel belt which was a metal support kept at 30°C. The cast dope was dried until the amount of residual solvent reached 30% by mass, and then peeled off from the stainless belt to obtain a film.
 次いで、得られた膜状物を、残留溶媒量が10質量%となるまで40℃で乾燥させた後、幅方向に延伸倍率1.4倍(40%)で延伸した。そして、得られた膜状物を、多数のロールで搬送させながら150℃でさらに乾燥させて、長さ3000m、厚さ20μmの偏光板保護フィルム101を得た。 Next, the obtained film-like material was dried at 40°C until the amount of residual solvent reached 10% by mass, and then stretched in the width direction at a draw ratio of 1.4 times (40%). Then, the obtained film-like material was further dried at 150° C. while being conveyed by a number of rolls, to obtain a polarizing plate protective film 101 having a length of 3000 m and a thickness of 20 μm.
 <偏光板保護フィルム102の作製>
 偏光板保護フィルム101の作製において、以下のドープを用いた以外は同様にして、偏光板保護フィルム102を作製した。
<Production of polarizing plate protective film 102>
Polarizing plate protective film 102 was prepared in the same manner as in preparation of polarizing plate protective film 101 except that the following dope was used.
 (ドープの組成)
 COP(G7810)                100質量部
 ジクロロメタン                   200質量部
 エタノール                      10質量部
 化合物(D):化合物1                 6質量部
 酸化防止剤:Irganox1076(BASFジャパン(株)製)
                           0.5質量部
(Composition of dope)
COP (G7810) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Compound (D): Compound 1 6 parts by mass Antioxidant: Irganox 1076 (manufactured by BASF Japan Ltd.)
0.5 part by mass
 <偏光板保護フィルム103の作製>
 偏光板保護フィルム101の作製において、以下のドープを用いた以外は同様にして、偏光板保護フィルム103を作製した。
<Production of polarizing plate protective film 103>
Polarizing plate protective film 103 was prepared in the same manner as in preparation of polarizing plate protective film 101, except that the following dope was used.
 (ドープの組成)
 COP(G7810)                100質量部
 ジクロロメタン                   200質量部
 エタノール                      10質量部
 化合物(D):化合物1                 6質量部
 酸化防止剤:Irganox1076(BASFジャパン(株)製)
                           0.5質量部
 微粒子:二酸化ケイ素分散液(固形分換算)        1質量部
(Composition of dope)
COP (G7810) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Compound (D): Compound 1 6 parts by mass Antioxidant: Irganox 1076 (manufactured by BASF Japan Ltd.)
0.5 part by mass fine particles: silicon dioxide dispersion (in terms of solid content) 1 part by mass
 (二酸化ケイ素分散液)
 まず、10質量部のアエロジルR812(商品名、日本アエロジル株式会社製)と、90質量部のエタノールとをディゾルバーで30分間撹拌混合した後、マントンゴーリンでエタノール中に二酸化ケイ素を分散させた。この分散液に88質量部のメチレンクロライドを撹拌しながら投入し、ディゾルバーで30分間撹拌混合することにより分散液を希釈した。この希釈した分散液を微粒子分散希釈液濾過器(アドバンテック東洋株式会社製:ポリプロピレンワインドカートリッジフィルターTCW-PPS-1N)で濾過することにより二酸化ケイ素分散液を得た。
(Silicon dioxide dispersion)
First, 10 parts by mass of Aerosil R812 (trade name, manufactured by Nippon Aerosil Co., Ltd.) and 90 parts by mass of ethanol were stirred and mixed with a dissolver for 30 minutes, and then silicon dioxide was dispersed in ethanol using a Manton Gaulin. 88 parts by mass of methylene chloride was added to this dispersion while stirring, and the dispersion was diluted by stirring and mixing with a dissolver for 30 minutes. A silicon dioxide dispersion was obtained by filtering this diluted dispersion through a fine particle dispersion diluent filter (manufactured by Advantech Toyo Co., Ltd.: polypropylene wound cartridge filter TCW-PPS-1N).
 <偏光板保護フィルム104の作製>
 偏光板保護フィルム101の作製において、以下のドープを用いた以外は同様にして、偏光板保護フィルム104を作製した。
<Production of polarizing plate protective film 104>
A polarizing plate protective film 104 was prepared in the same manner as in the preparation of the polarizing plate protective film 101 except that the following dope was used.
 (ドープの組成)
 COP(G7810)                100質量部
 ジクロロメタン                   200質量部
 エタノール                      10質量部
 化合物(D):化合物1                 6質量部
 微粒子:二酸化ケイ素分散液(固形分換算)        1質量部
(Composition of dope)
COP (G7810) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Compound (D): Compound 1 6 parts by mass Fine particles: Silicon dioxide dispersion (in terms of solid content) 1 part by mass
 <偏光板保護フィルム105~107の作製>
 偏光板保護フィルム102~104の作製において、表II記載の酸化防止剤をIrganox1010(BASFジャパン(株)製)に、微粒子をR972に変更した以外は同様にして、偏光板保護フィルム105~107を作製した。
<Preparation of polarizing plate protective films 105 to 107>
Polarizing plate protective films 105 to 107 were prepared in the same manner as in the preparation of polarizing plate protective films 102 to 104, except that the antioxidant described in Table II was changed to Irganox 1010 (manufactured by BASF Japan Ltd.) and the fine particles were changed to R972. made.
 <偏光板保護フィルム108の作製:セルロースエステル樹脂フィルムの作製>
 (ドープの調製)
 下記組成のドープを調製した。すなわち、まず加圧溶解タンクにジクロロメタンとエタノールを添加した。そして、溶媒の入った加圧溶解タンクにセルロースエステルを撹拌しながら投入し、これを加熱し、撹拌しながら完全に溶解した。
<Production of Polarizing Plate Protective Film 108: Production of Cellulose Ester Resin Film>
(Preparation of dope)
A dope having the following composition was prepared. First, dichloromethane and ethanol were added to the pressurized dissolution tank. Then, the cellulose ester was put into a pressurized dissolution tank containing a solvent while being stirred, and was completely dissolved while being heated and stirred.
 (ドープの組成)
 トリアセチルセルロース(TAC:アセチル置換度2.8のアセチルセルロース、富士フイルム和光純薬(株)製)         95質量部
 重縮合エステル化合物N                 2質量部
 重縮合エステル化合物M                 7質量部
 ジクロロメタン                   540質量部
 エタノール                      35質量部
 化合物(D):化合物1                 6質量部
(Composition of dope)
Triacetyl cellulose (TAC: Acetyl cellulose having a degree of acetyl substitution of 2.8, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 95 parts by mass Polycondensed ester compound N 2 parts by mass Polycondensed ester compound M 7 parts by mass Dichloromethane 540 parts by mass Ethanol 35 parts by mass Compound (D): Compound 1 6 parts by mass
 更に上記添加剤成分を密閉容器に投入し、撹拌しながら溶解して、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、ドープを調製した。 Furthermore, the above additive components are put into a closed container, dissolved while stirring, and then filtered through Azumi Filter Paper No. 2 manufactured by Azumi Filter Paper Co., Ltd. 244 was used to prepare the dope.
 なお、重縮合エステル化合物N、及び重縮合エステル化合物Mは以下のようにして作製した。 The polycondensed ester compound N and the polycondensed ester compound M were prepared as follows.
 (エステル化合物N)
 まず、1,2-プロピレングリコール251g、テレフタル酸354g、p-トロイル酸680g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込んだ。次に、四つ口フラスコ内に窒素気流を吹き込んで、溶液の温度が230℃になるまで溶液を撹拌しながら徐々に溶液を昇温させて重合度を観察しながら脱水縮合反応させた。反応終了後に、200℃で未反応の1,2-プロピレングリコールを減圧留去することにより重縮合エステル化合物Nを得た。このエステル化合物Nは、酸価0.30、数平均分子量400であった。
(Ester compound N)
First, 251 g of 1,2-propylene glycol, 354 g of terephthalic acid, 680 g of p-toroyl acid, and 0.191 g of tetraisopropyl titanate as an esterification catalyst were added to a 2 L four-necked flask equipped with a thermometer, a stirrer, and a slow cooling tube. planted in Next, a stream of nitrogen was blown into the four-necked flask, and the temperature of the solution was gradually raised while stirring until the temperature of the solution reached 230° C., and dehydration condensation reaction was carried out while observing the degree of polymerization. After completion of the reaction, unreacted 1,2-propylene glycol was distilled off under reduced pressure at 200° C. to obtain a polycondensed ester compound N. This ester compound N had an acid value of 0.30 and a number average molecular weight of 400.
 (エステル化合物M)
 まず、1,2-プロピレングリコール251g、無水フタル酸244g、アジピン酸103g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込んだ。次に、四つ口フラスコ内に窒素気流を吹き込んで、溶液の温度が230℃になるまで溶液を撹拌しながら徐々に溶液を昇温させることにより重合度を観察しながら脱水縮合反応させた。反応終了後に、200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステル化合物Mを得た。このエステル化合物Mは、酸価0.10、数平均分子量450であった。
(Ester compound M)
First, 251 g of 1,2-propylene glycol, 244 g of phthalic anhydride, 103 g of adipic acid, 610 g of benzoic acid, and 0.191 g of tetraisopropyl titanate as an esterification catalyst were added to a 2-liter four-way flask equipped with a thermometer, a stirrer, and a slow cooling tube. Poured into a 1-necked flask. Next, a stream of nitrogen was blown into the four-necked flask, and the temperature of the solution was gradually raised while stirring until the temperature of the solution reached 230° C., thereby conducting a dehydration-condensation reaction while observing the degree of polymerization. After completion of the reaction, unreacted 1,2-propylene glycol was distilled off under reduced pressure at 200° C. to obtain a polycondensed ester compound M. This ester compound M had an acid value of 0.10 and a number average molecular weight of 450.
 (偏光板保護フィルム108の製膜)
 上記調製したドープを、ベルト流延装置を用い、温度22℃、1.8m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶媒量が20%になるまで溶媒を蒸発させ、ステンレスバンド支持体上からドープ膜(ウェブ)を剥離した。
(Formation of polarizing plate protective film 108)
The dope prepared above was uniformly cast on a stainless steel band support at a temperature of 22° C. and a width of 1.8 m using a belt casting apparatus. A stainless steel band support was used to evaporate the solvent until the residual solvent amount reached 20%, and the dope film (web) was peeled off from the stainless steel band support.
 次いで、剥離したウェブを35℃で溶媒を蒸発させ、1.6m幅にスリットし、その後、テンター延伸機を用いて、160℃の温度で幅手方向(TD方向)に元幅に対して1.1倍延伸をした。このとき、テンターによる延伸を開始したときの残留溶媒量は、4質量%であった。 Next, the peeled web is evaporated at 35 ° C. to evaporate the solvent, slit to a width of 1.6 m, and then, using a tenter stretching machine, at a temperature of 160 ° C. in the width direction (TD direction) 1 .1 stretched. At this time, the amount of residual solvent was 4% by mass when stretching with a tenter was started.
 その後、120℃、140℃の乾燥ゾーンを多数のローラーで搬送させながら乾燥を終了させ、1.3m幅にスリットし、フィルム両端に幅10mm、高さ2.5μmのナーリング加工を施した後、コアに巻取り、偏光板保護フィルム108を作製した。偏光板保護フィルム108の膜厚は25μm、巻きの長さは6000mであった。 After that, the film is dried while being transported through a drying zone of 120°C and 140°C by a large number of rollers. By winding it around a core, a polarizing plate protective film 108 was produced. The film thickness of the polarizing plate protective film 108 was 25 μm, and the winding length was 6000 m.
 <偏光板保護フィルム109の作製>
 偏光板保護フィルム108の作製において、以下のドープを用いた以外は同様にして、偏光板保護フィルム109を作製した。
<Production of polarizing plate protective film 109>
A polarizing plate protective film 109 was prepared in the same manner as in the preparation of the polarizing plate protective film 108 except that the following dope was used.
 (ドープの組成)
 トリアセチルセルロース(TAC:アセチル置換度2.8のアセチルセルロース、富士フィルム和光純薬(株)製)         95質量部
 重縮合エステル化合物N                 2質量部
 重縮合エステル化合物M                 7質量部
 ジクロロメタン                   540質量部
 エタノール                      35質量部
 化合物(D):化合物1                 6質量部
 酸化防止剤:Irganox1076(BASFジャパン(株)製)
                           0.5質量部
(Composition of dope)
Triacetyl cellulose (TAC: Acetyl cellulose having a degree of acetyl substitution of 2.8, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 95 parts by mass Polycondensed ester compound N 2 parts by mass Polycondensed ester compound M 7 parts by mass Dichloromethane 540 parts by mass Ethanol 35 parts by mass Compound (D): Compound 1 6 parts by mass Antioxidant: Irganox 1076 (manufactured by BASF Japan Ltd.)
0.5 part by mass
 <偏光板保護フィルム110の作製>
 偏光板保護フィルム108の作製において、以下のドープを用いた以外は同様にして、偏光板保護フィルム110を作製した。
<Production of polarizing plate protective film 110>
A polarizing plate protective film 110 was prepared in the same manner as in the preparation of the polarizing plate protective film 108 except that the following dope was used.
 (ドープの組成)
 トリアセチルセルロース(TAC:アセチル置換度2.8のアセチルセルロース、富士フィルム和光純薬(株)製)         95質量部
 重縮合エステル化合物N                 2質量部
 重縮合エステル化合物M                 7質量部
 ジクロロメタン                   540質量部
 エタノール                      35質量部
 化合物(D):化合物1                 6質量部
 酸化防止剤:Irganox1076(BASFジャパン(株)製)
                           0.5質量部
 微粒子(R812):二酸化ケイ素分散液(固形分換算)  1質量部
(Composition of dope)
Triacetyl cellulose (TAC: Acetyl cellulose having a degree of acetyl substitution of 2.8, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 95 parts by mass Polycondensed ester compound N 2 parts by mass Polycondensed ester compound M 7 parts by mass Dichloromethane 540 parts by mass Ethanol 35 parts by mass Compound (D): Compound 1 6 parts by mass Antioxidant: Irganox 1076 (manufactured by BASF Japan Ltd.)
0.5 parts by mass fine particles (R812): silicon dioxide dispersion (in terms of solid content) 1 part by mass
 <偏光板保護フィルム111の作製>
 偏光板保護フィルム108の作製において、以下のドープを用いた以外は同様にして、偏光板保護フィルム111を作製した。
<Production of polarizing plate protective film 111>
A polarizing plate protective film 111 was prepared in the same manner as in the preparation of the polarizing plate protective film 108 except that the following dope was used.
 (ドープの組成)
 トリアセチルセルロース(TAC:アセチル置換度2.8のアセチルセルロース、富士フィルム和光純薬(株)製)         95質量部
 重縮合エステル化合物N                 2質量部
 重縮合エステル化合物M                 7質量部
 ジクロロメタン                   540質量部
 エタノール                      35質量部
 化合物(D):化合物1                 6質量部
 微粒子(R812):二酸化ケイ素分散液(固形分換算)  1質量部
(Composition of dope)
Triacetyl cellulose (TAC: Acetyl cellulose having a degree of acetyl substitution of 2.8, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 95 parts by mass Polycondensed ester compound N 2 parts by mass Polycondensed ester compound M 7 parts by mass Dichloromethane 540 parts by mass Ethanol 35 parts by mass Compound (D): Compound 1 6 parts by mass Fine particles (R812): Silicon dioxide dispersion (in terms of solid content) 1 part by mass
 <偏光板保護フィルム112:アクリル樹脂フィルムの作製>
 下記組成のドープを調製した。まず、加圧溶解タンクにジクロロメタン、及びエタノールを添加した。次いで、加圧溶解タンクに、樹脂を撹拌しながら投入した。次いで、下記調製したゴム粒子分散液を投入して、これを撹拌しながら、完全に溶解させた。これを、(株)ロキテクノ製のSHP150を使用して濾過し、ドープを得た。
<Polarizing Plate Protective Film 112: Fabrication of Acrylic Resin Film>
A dope having the following composition was prepared. First, dichloromethane and ethanol were added to a pressurized dissolution tank. The resin was then charged into a pressurized dissolution tank while stirring. Then, a rubber particle dispersion prepared below was added and completely dissolved with stirring. This was filtered using SHP150 manufactured by Roki Techno Co., Ltd. to obtain a dope.
 (ドープの組成)
 樹脂((メタ)アクリル系樹脂:Ac)         95質量部
 ジクロロメタン                   200質量部
 化合物(D):化合物1                 6質量部
 ゴム粒子分散液                   200質量部
(Composition of dope)
Resin ((meth)acrylic resin: Ac) 95 parts by mass Dichloromethane 200 parts by mass Compound (D): Compound 1 6 parts by mass Rubber particle dispersion 200 parts by mass
 上記で用いた(メタ)アクリル系樹脂は、メチルメタクリレート(MMA)/N-フェニルマレイミド(PMI)/アクリル酸ブチル(BA~共重合体(80/10/10質量比)、Tg:120℃、Mw:200万)である。 The (meth)acrylic resin used above is methyl methacrylate (MMA)/N-phenylmaleimide (PMI)/butyl acrylate (BA to copolymer (80/10/10 mass ratio), Tg: 120°C, Mw: 2 million).
 なお、アクリル樹脂のガラス転移温度(Tg)は、DSC(DifferentialScanningColorimetry:示差走査熱量法)を用いて、JISK7121-2012に準拠して測定した。 The glass transition temperature (Tg) of the acrylic resin was measured according to JISK7121-2012 using DSC (Differential Scanning Colorimetry).
 また、アクリル樹脂の重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(東ソー社製HLC8220GPC)、カラム(東ソー社製TSK-GELG6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL直列)を用いて測定した。試料20mg±0.5mgをテトラヒドロフラン10mLに溶解し、0.45mmのフィルターで濾過した。この溶液をカラム(温度40℃)に100mL注入し、検出器RI温度40℃で測定し、スチレン換算した値を用いた。 In addition, the weight average molecular weight (Mw) of the acrylic resin was measured using gel permeation chromatography (HLC8220GPC manufactured by Tosoh Corporation) and a column (TSK-GELG6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series manufactured by Tosoh Corporation). 20 mg±0.5 mg of sample was dissolved in 10 mL of tetrahydrofuran and filtered through a 0.45 mm filter. 100 mL of this solution was injected into a column (temperature of 40° C.), measured at a detector RI temperature of 40° C., and converted into styrene.
 上記で用いたゴム粒子分散液は、アクリル系ゴム粒子M-210(コア部:多層構造のアクリル系ゴム状重合体、シェル部:メタアクリル酸メチルを主成分とするメタクリル酸エステル系重合体、のコアシェル型のゴム粒子、アクリル系ゴム状重合体のTg:約-10℃、平均粒子径:220nm)10質量部と、190質量部のジクロロメタンとを、ディゾルバーで50分間撹拌混合した後、マイルダー分散機(大平洋機工株式会社製)を用いて1500rpm条件下で分散して得たものである。 The rubber particle dispersion used above contains acrylic rubber particles M-210 (core part: multi-layered acrylic rubber-like polymer, shell part: methacrylic acid ester polymer containing methyl methacrylate as a main component, 10 parts by mass of the core-shell type rubber particles of the acrylic rubber-like polymer, Tg: about −10° C., average particle diameter: 220 nm) and 190 parts by mass of dichloromethane were stirred and mixed with a dissolver for 50 minutes, followed by milder It was obtained by dispersing at 1500 rpm using a disperser (manufactured by Taihei Kiko Co., Ltd.).
 なお、ゴム粒子の平均粒子径は、分散液中のゴム粒子の分散粒径を、ゼータ電位・粒径測定システム(大塚電子株式会社製 ELSZ-2000ZS)で測定して得た。 The average particle size of the rubber particles was obtained by measuring the dispersed particle size of the rubber particles in the dispersion with a zeta potential/particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.).
 <偏光板保護フィルム113の作製>
 偏光板保護フィルム112の作製において、以下のドープを用いた以外は同様にして、偏光板保護フィルム113を作製した。
<Production of polarizing plate protective film 113>
A polarizing plate protective film 113 was prepared in the same manner as in the preparation of the polarizing plate protective film 112 except that the following dope was used.
 (ドープの組成)
 樹脂((メタ)アクリル系樹脂:Ac)         95質量部
 ジクロロメタン                   200質量部
 化合物(D):化合物1                 6質量部
 ゴム粒子分散液                   200質量部
 酸化防止剤:Irganox1076(BASFジャパン(株)製)
                           0.5質量部
(Composition of dope)
Resin ((meth)acrylic resin: Ac) 95 parts by mass Dichloromethane 200 parts by mass Compound (D): Compound 1 6 parts by mass Rubber particle dispersion 200 parts by mass Antioxidant: Irganox 1076 (manufactured by BASF Japan Ltd.)
0.5 part by mass
 <偏光板保護フィルム114の作製>
 偏光板保護フィルム112の作製において、以下のドープを用いた以外は同様にして、偏光板保護フィルム114を作製した。
<Production of polarizing plate protective film 114>
A polarizing plate protective film 114 was prepared in the same manner as in the preparation of the polarizing plate protective film 112 except that the following dope was used.
 (ドープの組成)
 樹脂((メタ)アクリル系樹脂:Ac)         95質量部
 ジクロロメタン                   200質量部
 化合物(D):化合物1                 6質量部
 ゴム粒子分散液                   200質量部
 酸化防止剤:Irganox1076(BASFジャパン(株)製)
                           0.5質量部
 微粒子(R812):二酸化ケイ素分散液(固形分換算)  1質量部
(Composition of dope)
Resin ((meth)acrylic resin: Ac) 95 parts by mass Dichloromethane 200 parts by mass Compound (D): Compound 1 6 parts by mass Rubber particle dispersion 200 parts by mass Antioxidant: Irganox 1076 (manufactured by BASF Japan Ltd.)
0.5 parts by mass fine particles (R812): silicon dioxide dispersion (in terms of solid content) 1 part by mass
 <偏光板保護フィルム115の作製>
 偏光板保護フィルム112の作製において、以下のドープを用いた以外は同様にして、偏光板保護フィルム115を作製した。
<Production of polarizing plate protective film 115>
A polarizing plate protective film 115 was prepared in the same manner as in the preparation of the polarizing plate protective film 112 except that the following dope was used.
 (ドープの組成)
 樹脂((メタ)アクリル系樹脂:Ac)         95質量部
 ジクロロメタン                   200質量部
 化合物(D):化合物1                 6質量部
 ゴム粒子分散液                   200質量部
 微粒子(R812):二酸化ケイ素分散液(固形分換算)  1質量部
(Composition of dope)
Resin ((meth)acrylic resin: Ac) 95 parts by mass Dichloromethane 200 parts by mass Compound (D): Compound 1 6 parts by mass Rubber particle dispersion 200 parts by mass Fine particles (R812): Silicon dioxide dispersion (in terms of solid content) 1 part by mass
 <偏光板保護フィルム116~127の作製>
 偏光板保護フィルム101~104、偏光板保護フィルム108~115の作製において、化合物(D):化合物1を、比較化合物1、2及び3に変更した以外は同様にして、偏光板保護フィルム116~127を作製した。
<Preparation of polarizing plate protective films 116 to 127>
Polarizing plate protective films 101 to 104 and polarizing plate protective films 108 to 115 were prepared in the same manner, except that the compound (D): compound 1 was changed to comparative compounds 1, 2 and 3, to prepare polarizing plate protective films 116 to 116. 127 was made.
 [2]偏光板の作製
 <偏光子層の作製>
 厚さ25μmのポリビニルアルコール系フィルムを、35℃の水で膨潤させた。得られたフィルムを、ヨウ素0.075g、ヨウ化カリウム5g及び水100gからなる水溶液に60秒間浸漬し、さらにヨウ化カリウム3g、ホウ酸7.5g及び水100gからなる45℃の水溶液に浸漬した。得られたフィルムを、延伸温度55℃、延伸倍率5倍の条件で一軸延伸した。この一軸延伸フィルムを、水洗した後、乾燥させて、厚さ12μmの偏光子層を得た。
[2] Production of polarizing plate <Production of polarizer layer>
A polyvinyl alcohol-based film having a thickness of 25 µm was swollen with water at 35°C. The resulting film was immersed in an aqueous solution of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and further immersed in an aqueous solution of 3 g of potassium iodide, 7.5 g of boric acid and 100 g of water at 45°C. . The obtained film was uniaxially stretched under conditions of a stretching temperature of 55° C. and a stretching ratio of 5 times. This uniaxially stretched film was washed with water and then dried to obtain a polarizer layer with a thickness of 12 μm.
 <位相差フィルムの作製>
 ポリカーボネート樹脂フィルム(PCフィルム)を、以下の製造方法(溶融流延製膜法)によって作製した。
<Preparation of retardation film>
A polycarbonate resin film (PC film) was produced by the following manufacturing method (melt casting film forming method).
 撹拌翼及び100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。9,9-[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BHEPF)、イソソルビド(ISB)、ジエチレングリコール(DEG)、ジフェニルカーボネート(DPC)、及び酢酸マグネシウム4水和物を、モル比率でBHEPF/ISB/DEG/DPC/酢酸マグネシウム=0.348/0.490/0.162/1.005/1.00×10-5になるように仕込んだ。反応器内を十分に窒素置換した後(酸素濃度0.0005~0.001vol%)、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気を45℃の凝縮器に導いて回収した。 Polymerization was carried out using a batch polymerization apparatus consisting of two vertical reactors equipped with stirring blades and a reflux condenser controlled at 100°C. 9,9-[4-(2-hydroxyethoxy)phenyl]fluorene (BHEPF), isosorbide (ISB), diethylene glycol (DEG), diphenyl carbonate (DPC), and magnesium acetate tetrahydrate in molar ratios of BHEPF/ They were prepared so that ISB/DEG/DPC/magnesium acetate=0.348/0.490/0.162/1.005/1.00×10 −5 . After the interior of the reactor was sufficiently replaced with nitrogen (oxygen concentration 0.0005 to 0.001 vol%), heating was performed with a heating medium, and stirring was started when the internal temperature reached 100°C. After 40 minutes from the start of heating, the internal temperature was allowed to reach 220°C, and the pressure was reduced at the same time as controlling to maintain this temperature. Phenol vapor produced as a by-product of the polymerization reaction was led to a reflux condenser at 100°C, a small amount of monomer components contained in the phenol vapor was returned to the reactor, and uncondensed phenol vapor was led to a condenser at 45°C and recovered.
 第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温及び減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の撹拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、反応液をストランドの形態で抜出し、回転式カッターでペレット化を行い、BHEPF/ISB/DEG=34.8/49.0/16.2[mol%]の共重合組成のポリカーボネート樹脂Aを得た。このポリカーボネート樹脂Aの還元粘度は、0.430dL/g、ガラス転移温度は138℃であった。 After nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Next, the temperature rise and pressure reduction in the second reactor were started, and the internal temperature was brought to 240° C. and the pressure to 0.2 kPa in 50 minutes. After that, the polymerization was allowed to proceed until a predetermined stirring power was obtained. When the predetermined power is reached, nitrogen is introduced into the reactor to restore the pressure, the reaction liquid is extracted in the form of strands, pelletized with a rotary cutter, and BHEPF/ISB/DEG = 34.8/49.0/. A polycarbonate resin A having a copolymer composition of 16.2 [mol %] was obtained. The polycarbonate resin A had a reduced viscosity of 0.430 dL/g and a glass transition temperature of 138°C.
 得られたポリカーボネート樹脂Aを80℃で5時間真空乾燥をした後、単軸押出機(いすず化工機社製、スクリュー径25mm、シリンダー設定温度:220℃)、Tダイ(幅900mm、設定温度:220℃)、チルロール(設定温度:120~130℃)及び巻取機を備えたフィルム製膜装置を用い、厚さ130μmのポリカーボネート樹脂フィルム(PCフィルム1)を長尺フィルムのロール体(フィルムロール)として作製した。 After vacuum drying the obtained polycarbonate resin A at 80 ° C. for 5 hours, a single screw extruder (manufactured by Isuzu Kakoki Co., Ltd., screw diameter 25 mm, cylinder set temperature: 220 ° C.), T die (width 900 mm, set temperature: 220 ° C.), a chill roll (set temperature: 120 to 130 ° C.), and a winder, a polycarbonate resin film (PC film 1) with a thickness of 130 μm is made into a long film roll (film roll ) was prepared as.
 上記で作製したPCフィルム1のロール体(フィルムロール)を、斜め延伸フィルムの製造装置80(図5、図6参照)にセットしてPCフィルム1を繰り出した。そして、このPCフィルム1を、延伸部の予熱ゾーンZ1を通過させて予熱温度までPCフィルム1を加熱し、その後、延伸ゾーンZ2を通過させて延伸倍率3倍で斜め延伸し、続いて、熱固定ゾーンZ3を通過させて、膜厚50μm、幅1500mm、配向角θ=45°(幅手中央部での値)の斜め延伸PCフィルム(λ/4板)を作製した。作製した斜め延伸PCフィルムは、巻き取ってフィルムロールとした。なお、延伸部での予熱ゾーンZ1の温度T1(予熱温度)は、(Tg+15)℃とし、延伸ゾーンZ2の温度T2(延伸温度)は、(Tg+11)℃とし、熱固定ゾーンZ3の温度T3は、(Tg+9)℃とした。 The roll body (film roll) of the PC film 1 produced above was set in the obliquely stretched film manufacturing apparatus 80 (see FIGS. 5 and 6), and the PC film 1 was fed out. Then, the PC film 1 is passed through the preheating zone Z1 of the stretching section to heat the PC film 1 to the preheating temperature, and then passed through the stretching zone Z2 to be diagonally stretched at a draw ratio of 3 times. After passing through the fixing zone Z3, an obliquely stretched PC film (λ/4 plate) having a film thickness of 50 μm, a width of 1500 mm and an orientation angle θ of 45° (value at the center of the width) was produced. The obliquely stretched PC film thus produced was taken up to form a film roll. The temperature T1 (preheating temperature) of the preheating zone Z1 in the stretching section is (Tg+15)° C., the temperature T2 (stretching temperature) of the stretching zone Z2 is (Tg+11)° C., and the temperature T3 of the heat setting zone Z3 is , (Tg+9)°C.
 <偏光板の作製>
 上記偏光板保護フィルム101~127、偏光子層及び位相差フィルムを各々この順に積層して、偏光板101~127を作製した。なお、位相差フィルムと偏光子層の間、偏光板保護フィルムと偏光子層の間は完全鹸化型ポリビニルアルコール水溶液(水糊)を用いて接着した。
<Preparation of polarizing plate>
The polarizing plate protective films 101 to 127, the polarizer layer and the retardation film were laminated in this order to prepare the polarizing plates 101 to 127. The retardation film and the polarizer layer, and the polarizing plate protective film and the polarizer layer were adhered using a completely saponified polyvinyl alcohol aqueous solution (water glue).
 ≪評価≫
 〈1〉耐光性試験
 上記作製した偏光板保護フィルム101~127について、耐光性試験を行った。
≪Evaluation≫
<1> Light Resistance Test The polarizing plate protective films 101 to 127 prepared above were subjected to a light resistance test.
 作製した偏光板保護フィルムにキセノンランプ(60W/m2)の光を連続的に100時間照射し、照射前(0時間)、照射後(100時間)の薄膜の吸光度を分光光度計で測定し、下記式(R)に従って化合物(D)の色素残存率を測定した。 The prepared polarizing plate protective film was continuously irradiated with light from a xenon lamp (60 W/m 2 ) for 100 hours, and the absorbance of the thin film before irradiation (0 hours) and after irradiation (100 hours) was measured with a spectrophotometer. , the dye retention rate of compound (D) was measured according to the following formula (R).
 式(R) 色素残存率(%)={(A100)/(A0)}×100
(ただし、A0はキセノンランプ照射前の吸光度、A100はキセノンランプ照射後の吸光度である。)
Formula (R) Pigment residual rate (%) = {(A 100 )/(A 0 )} x 100
(However, A0 is the absorbance before xenon lamp irradiation, and A100 is the absorbance after xenon lamp irradiation.)
 なお、「吸光度」とは、各化合物の吸収極大波長における吸光度を表しており、色素残存率が高い程、化合物が光によって分解されにくく、耐光性が高いことを示す。耐光性は、下記基準により評価した。 The "absorbance" represents the absorbance at the absorption maximum wavelength of each compound, and the higher the dye residual rate, the more difficult the compound is to be decomposed by light, and the higher the light resistance. Light resistance was evaluated according to the following criteria.
 A:色素残存率が65%以上
 B:色素残存率が40%以上、65%未満
 C:色素残存率が10%以上、40%未満
 D:色素残存率が10%未満
A: Residual dye rate is 65% or more B: Residual dye rate is 40% or more and less than 65% C: Residual dye rate is 10% or more and less than 40% D: Residual dye rate is less than 10%
 〈2〉耐久性:ブリードアウトの評価
 各偏光板保護フィルムを、60℃、90%RHの高温高湿雰囲気下で1000時間放置後、偏光板保護フィルム表面のブリードアウト(結晶析出)の有無を目視観察で行い、下記に記載の基準に従ってブリードアウトの評価を行った。
<2> Durability: Evaluation of Bleed-out Each polarizing plate protective film was left in a high-temperature, high-humidity atmosphere of 60° C. and 90% RH for 1000 hours. Visual observation was performed, and bleed out was evaluated according to the criteria described below.
 ◎:偏光板保護フィルム表面にブリードアウトの発生が全く認められない
 ○:偏光板保護フィルム表面で、部分的なブリードアウトが僅かに認められる
 △:偏光板保護フィルム表面で、全面に亘りブリードアウトが僅かに認められる
 ×:偏光板保護フィルム表面で、全面に亘り明確なブリードアウトが認められる
◎: No occurrence of bleeding out on the surface of the polarizing plate protective film ○: Slight partial bleeding out on the surface of the polarizing plate protective film △: Bleeding out over the entire surface of the polarizing plate protective film is slightly observed ×: On the surface of the polarizing plate protective film, a clear bleed-out is observed over the entire surface
 〈3〉光透過率の評価
 上記作製した偏光板保護フィルムの光透過率を、測定波長を変えて(390nm、410nm及び430nm)、分光光度計(日立ハイテクサイエンス製U-3300)を用いて測定した。得られた結果を表IIに示す。
<3> Evaluation of light transmittance The light transmittance of the polarizing plate protective film prepared above is measured using a spectrophotometer (U-3300 manufactured by Hitachi High-Tech Science) at different measurement wavelengths (390 nm, 410 nm and 430 nm). did. The results obtained are shown in Table II.
以上、偏光板保護フィルムの構成及び評価結果を表IIに示す。 Table II shows the structure and evaluation results of the polarizing plate protective film.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表IIに示す作製した偏光板保護フィルムの評価結果から、本発明に係る色素化合物を用いた偏光板保護フィルム101~115は、耐光性及びブリードアウトに優れ、かつ、可視光の短波長側の光透過率のカット性に優れていることが分かる。 From the evaluation results of the produced polarizing plate protective films shown in Table II, the polarizing plate protective films 101 to 115 using the dye compound according to the present invention are excellent in light resistance and bleed-out, and have a short wavelength side of visible light. It can be seen that the cut property of the light transmittance is excellent.
 また、色素化合物に加えて、酸化防止剤及び微粒子を加える構成によって、本発明の偏光板保護フィルムの光透過率制御性がより向上することが分かった。 In addition, it was found that the light transmittance controllability of the polarizing plate protective film of the present invention was further improved by adding an antioxidant and fine particles in addition to the dye compound.
 実施例2
 実施例1で作製した偏光板保護フィルム101~127を用いて、プライマー層の形成、ハードコート層の形成、及び位相差フィルムの偏光子層とは反対側の面に粘着剤層を設け、有機EL素子と貼合して、有機EL表示装置を作製した。
Example 2
Using the polarizing plate protective films 101 to 127 produced in Example 1, a primer layer was formed, a hard coat layer was formed, and a pressure-sensitive adhesive layer was provided on the surface opposite to the polarizer layer of the retardation film, and an organic An organic EL display device was produced by bonding with an EL element.
 (1)プライマー層の形成
 (ハードコート層側プライマー層塗工液の調液)
 熱硬化性の水系ポリオレフィン系樹脂(アローベースSB-1200(商品名)、固形分25%、ユニチカ株式会社製)100質量部と、オキサゾリン系架橋剤(WS-700、株式会社日本触媒製)8質量部とを、希釈剤(水/メタノール=30/70(質量%))で固形分濃度が5%となるまで希釈した後、室温で撹拌し、プライマー層塗工液1を調液した。
(1) Formation of Primer Layer (Preparation of Hard Coat Layer Side Primer Layer Coating Solution)
Thermosetting water-based polyolefin resin (Arrowbase SB-1200 (trade name), solid content 25%, manufactured by Unitika Ltd.) 100 parts by mass, and oxazoline-based cross-linking agent (WS-700, manufactured by Nippon Shokubai Co., Ltd.) 8 parts by mass were diluted with a diluent (water/methanol=30/70 (mass %)) until the solid content concentration reached 5%, and then stirred at room temperature to prepare a primer layer coating solution 1.
 (ハードコート層側プライマー層の形成)
 偏光板保護フィルム101~127の偏光子層側とは反対側の面に、上記で調液したプライマー層塗工液1をバーコーターで塗布し、80℃の乾燥炉で40秒間ドライヤー乾燥させて造膜し、ドライ膜厚が0.4μmになるようにハードコート層側プライマー層を形成した。
(Formation of hard coat layer side primer layer)
The surface of the polarizing plate protective films 101 to 127 opposite to the polarizer layer side is coated with the primer layer coating liquid 1 prepared above with a bar coater, and dried in a drying oven at 80° C. for 40 seconds. A film was formed to form a primer layer on the hard coat layer side so that the dry film thickness was 0.4 μm.
 (2)ハードコート層の形成
 (ハードコート層形成用組成物の調液)
 ハードコート樹脂;
 ペンタエリスリトールトリ/テトラアクリレート(NKエステルA-TMM-3L、商品名、新中村化学工業(株)製)      100質量部
 光重合開始剤;
 イルガキュア184(商品名、BASFジャパン(株)製) 9質量部
 溶媒;
 プロピレングリコールモノメチルエーテル        20質量部
 酢酸メチル                      30質量部
 メチルエチルケトン                  70質量部
 添加剤;
 界面活性剤;KF-351A(商品名、ポリエーテル変性シリコーンオイル、信越化学工業株式会社製)               2質量部
 微粒子;ポリマーシランカップリング剤被覆シリカ   100質量部
(2) Formation of hard coat layer (Preparation of composition for forming hard coat layer)
hard coat resin;
Pentaerythritol tri/tetraacrylate (NK Ester A-TMM-3L, trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.) 100 parts by mass Photopolymerization initiator;
Irgacure 184 (trade name, manufactured by BASF Japan Ltd.) 9 parts by mass Solvent;
Propylene glycol monomethyl ether 20 parts by mass Methyl acetate 30 parts by mass Methyl ethyl ketone 70 parts by mass Additive;
Surfactant; KF-351A (trade name, polyether-modified silicone oil, manufactured by Shin-Etsu Chemical Co., Ltd.) 2 parts by mass Fine particles; polymer silane coupling agent-coated silica 100 parts by mass
 (微粒子の調製)
 上記ポリマーシランカップリング剤被覆シリカは次のように作製した。容器にメタクリル酸メチル(共栄社化学(株)製:ライトエステルM)30mL、3-メルカプトプロピルトリメトキシシラン(信越化学(株)製:KBM-803)1mLと溶媒としてテトラヒドロフラン100mL、重合開始剤としてアゾイソブチロニトリル(関東化学(株)製:AIBN)50mgを添加し、N2ガスで置換した後、80℃で3時間加熱してポリマーシランカップリング剤を調製した。得られたポリマーシランカップリング剤の分子量は16000であった。なお、分子量の測定は、ゲルパーミエーションクロマトグラフィー装置で測定した。
(Preparation of fine particles)
The polymer-silane coupling agent-coated silica was prepared as follows. Methyl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd.: Light Ester M) 30 mL, 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.: KBM-803) 1 mL, tetrahydrofuran 100 mL as a solvent, and azo as a polymerization initiator are placed in a container. After adding 50 mg of isobutyronitrile (AIBN manufactured by Kanto Kagaku Co., Ltd.) and purging with N 2 gas, the mixture was heated at 80° C. for 3 hours to prepare a polymer silane coupling agent. The polymer silane coupling agent obtained had a molecular weight of 16,000. The molecular weight was measured using a gel permeation chromatography device.
 次に、シリカゾル(日揮触媒化成工業(株)製:Si-45P、商品名、SiO2濃度30質量%、平均粒子径45nm、分散媒:水)をイオン交換樹脂にてイオン交換し、限外濾過膜法で水をエタノールに溶媒置換してシリカ微粒子のエタノール分散液100g(SiO2濃度30質量%)を調製した。 Next, silica sol (manufactured by Nikki Shokubai Kasei Kogyo Co., Ltd.: Si-45P, trade name, SiO 2 concentration 30% by mass, average particle size 45 nm, dispersion medium: water) is ion-exchanged with an ion-exchange resin, 100 g of an ethanol dispersion of fine silica particles (SiO 2 concentration: 30% by mass) was prepared by substituting water with ethanol by a filtration membrane method.
 このシリカ微粒子エタノール分散液100gとポリマーシランカップリング剤1.5gとをアセトン20g(25mL)に分散し、これに濃度29.8質量%のアンモニア水20mgを添加し、室温で30時間撹拌してポリマーシランカップリング剤をシリカ微粒子に吸着させた。 100 g of this silica fine particle ethanol dispersion and 1.5 g of the polymer silane coupling agent were dispersed in 20 g (25 mL) of acetone, and 20 mg of ammonia water having a concentration of 29.8% by mass was added thereto, followed by stirring at room temperature for 30 hours. A polymeric silane coupling agent was adsorbed onto silica microparticles.
 その後、平均粒子径5μmのシリカ粒子を添加し、2時間撹拌して溶液中の未吸着のポリマーシランカップリング剤をシリカ粒子に吸着させ、ついで、遠心分離により未吸着であったポリマーシランカップリング剤を吸着した平均粒子径5μmのシリカ粒子を除去した。ポリマーシランカップリング剤を吸着したシリカ微粒子分散液にエタノール1000g加え、シリカ微粒子を沈降させ、これを分離、減圧乾燥し、ついで、25℃で8時間乾燥してポリマーシランカップリング剤被覆シリカを得た。得られたポリマーシランカップリング剤被覆シリカの平均粒子径は57nmであった。平均粒子径はレーザー粒子径測定装置により測定した。 Thereafter, silica particles having an average particle diameter of 5 μm were added, and the solution was stirred for 2 hours to adsorb the unadsorbed polymer silane coupling agent in the solution to the silica particles. Silica particles with an average particle size of 5 μm that adsorbed the agent were removed. 1,000 g of ethanol is added to the silica fine particle dispersion liquid adsorbed with the polymer silane coupling agent to precipitate the silica fine particles, which are separated, dried under reduced pressure, and then dried at 25° C. for 8 hours to obtain polymer silane coupling agent-coated silica. rice field. The average particle size of the resulting polymer-silane coupling agent-coated silica was 57 nm. The average particle size was measured with a laser particle size measuring device.
 (ハードコート層の形成)
 上記で作製したプライマー層付きの偏光板保護フィルムのハードコート層側プライマー層上に、上記で調液したハードコート層形成用組成物をバーコーターでドライ膜厚が2.5μmになるように塗布し、50℃の乾燥炉で40秒間ドライヤー乾燥させて溶媒を揮発させた。そして、この状態で酸素濃度が1.0体積%以下の雰囲気になるよう窒素パージしながら、紫外線ランプを用いて照射部の照度が100mW/cm2で、照射量を0.2J/cm2として塗布層を硬化させ、ハードコート層付き偏光板保護フィルムを作製した。
(Formation of hard coat layer)
On the primer layer on the hard coat layer side of the polarizing plate protective film with the primer layer prepared above, the hard coat layer forming composition prepared above was coated with a bar coater so that the dry film thickness was 2.5 μm. and dried in a drying oven at 50° C. for 40 seconds to volatilize the solvent. In this state, while purging with nitrogen so that the atmosphere has an oxygen concentration of 1.0% by volume or less, an ultraviolet lamp is used to set the illuminance of the irradiation part to 100 mW/cm 2 and the irradiation amount to 0.2 J/cm 2 . The coating layer was cured to produce a polarizing plate protective film with a hard coat layer.
 (3)有機EL表示装置の作製
 実施例1と同様にして、上記ハードコート層付き偏光板保護フィルム、偏光子層及び位相差フィルムを用いて偏光板を作製し、それぞれ以下の離型フィルムを剥離した粘着剤層を介して、偏光板と有機EL素子と貼合し、有機EL表示装置201~227を作製し評価した。
(3) Preparation of organic EL display device In the same manner as in Example 1, a polarizing plate is prepared using the polarizing plate protective film with a hard coat layer, a polarizer layer and a retardation film, and the following release films are used. The organic EL display devices 201 to 227 were produced and evaluated by bonding the polarizing plate and the organic EL element via the peeled adhesive layer.
 具体的には、有機ELパネル搭載のSAMSUNG社製GALAXY S10(商品名)を分解し、有機EL素子から円偏光板を剥離して、剥離した面に粘着剤層を介して偏光板101~127を、それぞれハードコート層側を視認側、位相差フィルム側を有機EL素子側にして貼合し、有機EL表示装置を作製した。 Specifically, SAMSUNG's GALAXY S10 (trade name) equipped with an organic EL panel is disassembled, the circularly polarizing plate is peeled off from the organic EL element, and the polarizing plates 101 to 127 are placed on the peeled surface via an adhesive layer. were laminated with the hard coat layer side as the viewing side and the retardation film side as the organic EL element side to fabricate an organic EL display device.
 (粘着剤組成物の調製)
 アクリル酸2-エチルヘキシル(2EHA)78質量部、N-ビニル-2-ピロリドン(NVP)18質量部、及びアクリル酸2-ヒドロキシエチル(HEA)15質量部から構成されるモノマー混合物に、光重合開始剤として、1-ヒドロキシシクロヘキシルフェニルケトン(商品名:イルガキュア184、BASFジャパン(株)製)0.035質量部、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名:イルガキュア651、BASFジャパン(株)製)0.035質量部を配合した後、粘度(計測条件:BH粘度計No.5ローター、10rpm、測定温度30℃)が約20Pa・sになるまで紫外線を照射して、上記モノマー成分の一部が重合したプレポリマー組成物(重合率:8%)を得た。次に、該プレポリマー組成物に、ヘキサンジオールジアクリレート(HDDA)0.15質量部、シランカップリング剤(商品名:KBM-403、信越化学工業(株)製)0.3質量部を添加して混合し、アクリル系粘着剤組成物(a)を得た。
(Preparation of adhesive composition)
A monomer mixture composed of 78 parts by mass of 2-ethylhexyl acrylate (2EHA), 18 parts by mass of N-vinyl-2-pyrrolidone (NVP), and 15 parts by mass of 2-hydroxyethyl acrylate (HEA) was photopolymerized. As agents, 1-hydroxycyclohexylphenyl ketone (trade name: Irgacure 184, manufactured by BASF Japan Ltd.) 0.035 parts by mass, 2,2-dimethoxy-1,2-diphenylethan-1-one (trade name: Irgacure 651, manufactured by BASF Japan Co., Ltd.) 0.035 parts by mass, and then irradiated with ultraviolet rays until the viscosity (measurement conditions: BH viscometer No. 5 rotor, 10 rpm, measurement temperature 30 ° C.) reaches about 20 Pa s. As a result, a prepolymer composition (polymerization rate: 8%) in which a part of the above monomer component was polymerized was obtained. Next, 0.15 parts by mass of hexanediol diacrylate (HDDA) and 0.3 parts by mass of a silane coupling agent (trade name: KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) are added to the prepolymer composition. and mixed to obtain an acrylic pressure-sensitive adhesive composition (a).
 得られたアクリル系粘着剤組成物(a)に対して(アクリル系ポリマーを形成するモノマー成分を100質量部とする)と、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(商品名:イルガキュア819、BASFジャパン(株)製)0.2質量部を添加し撹拌することにより粘着剤組成物を得た。 With respect to the obtained acrylic pressure-sensitive adhesive composition (a) (the monomer component forming the acrylic polymer is 100 parts by mass) and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide ( A pressure-sensitive adhesive composition was obtained by adding 0.2 parts by mass of Irgacure 819 (trade name, manufactured by BASF Japan Ltd.) and stirring.
 (粘着剤層の形成)
 粘着剤組成物を、位相差フィルム上に、粘着剤層形成後の厚さが150μmとなるように塗布し、次いで、該粘着剤組成物層の表面に、離型フィルムを貼り合わせた。その後、照度:6.5mW/cm2、光量:1500mJ/cm2、ピーク波長:350nmの条件で紫外線照射を行い、粘着剤組成物層を光硬化させて、粘着剤層を形成した。
(Formation of adhesive layer)
The pressure-sensitive adhesive composition was applied onto the retardation film so that the thickness of the pressure-sensitive adhesive layer after formation was 150 μm, and then a release film was attached to the surface of the pressure-sensitive adhesive composition layer. Thereafter, ultraviolet irradiation was performed under the conditions of illumination intensity of 6.5 mW/cm 2 , light quantity of 1500 mJ/cm 2 and peak wavelength of 350 nm to photo-cure the pressure-sensitive adhesive composition layer to form a pressure-sensitive adhesive layer.
 ≪評価≫
 〈4〉発光ロスの評価
 光透過率は、JIS K 7375:2008「プラスチック-全光線透過率及び全光線反射率の求め方」に従って、分光光度計(日立ハイテクサイエンス製U-3300)を用いて測定した。なお、光透過率が85%以上であるときに「◎」とし、80%以上85%未満であるときに「〇」とし、80%未満のときは「△」とした。光透過率が80%以上であるときは、発光ロスが小さいといえる。
≪Evaluation≫
<4> Evaluation of luminescence loss Light transmittance is measured using a spectrophotometer (U-3300 manufactured by Hitachi High-Tech Science) in accordance with JIS K 7375: 2008 “Plastics-How to determine total light transmittance and total light reflectance”. It was measured. In addition, when the light transmittance was 85% or more, it was evaluated as “⊚”, when it was 80% or more and less than 85%, it was evaluated as “◯”, and when it was less than 80%, it was evaluated as “Δ”. When the light transmittance is 80% or more, it can be said that the light emission loss is small.
 〈5〉耐光性試験
 上記作製した有機EL表示装置について、耐光性試験を行った。
<5> Light resistance test A light resistance test was performed on the organic EL display device produced above.
 作製した有機EL表示装置にキセノンランプ(60W/m2)の光を連続的に100時間照射し、照射前(0時間)、照射後(100時間)の発光輝度を測定し、下記式2に従って発光輝度変化を測定した。 The produced organic EL display device was continuously irradiated with light from a xenon lamp (60 W/m 2 ) for 100 hours, and the light emission luminance before irradiation (0 hours) and after irradiation (100 hours) was measured and calculated according to Equation 2 below. Emission luminance changes were measured.
 発光輝度の測定は、室温(25℃)で、2.5mA/cm2の定電流密度条件下による点灯を行い、分光放射輝度計CS-2000(コニカミノルタ株式会社製)を用いて、各有機EL表示装置の発光輝度を測定した。 Luminance was measured at room temperature (25° C.) under constant current density conditions of 2.5 mA/cm 2 using a spectral radiance meter CS-2000 (manufactured by Konica Minolta, Inc.). Emission luminance of the EL display device was measured.
 式2 発光輝度変化率(%)={(A100)/(A0)}×100
(ただし、A0はキセノンランプ照射前の発光輝度、A100はキセノンランプ照射後の発光輝度である。)
 なお、「発光輝度変化率」は値が大きいほど、表示素子の耐光性が高いことを示す。耐光性は、下記基準により評価した。
Formula 2 Luminance change rate (%) = {(A 100 )/(A 0 )} x 100
(However, A0 is the luminescence brightness before irradiation with the xenon lamp, and A100 is the luminescence brightness after irradiation with the xenon lamp.)
It should be noted that the larger the value of the "light emission luminance change rate", the higher the light resistance of the display element. Light resistance was evaluated according to the following criteria.
 A:発光輝度変化率が90%以上
 B:発光輝度変化率が80%以上、90%未満
 C:発光輝度変化率が70%以上、80%未満
 D:発光輝度変化率が70%未満
 以上の層構成及び評価結果を、下記表IIIに示す。
A: Emission luminance change rate of 90% or more B: Emission luminance change rate of 80% or more and less than 90% C: Emission luminance change rate of 70% or more and less than 80% D: Emission luminance change rate of less than 70% or more The layer structure and evaluation results are shown in Table III below.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表IIIで示す評価結果から、本発明の偏光板保護フィルムを用いた有機EL表示装置201~215は発光ロスが生じず、表示素子の耐光性に優れていることが分かった。 From the evaluation results shown in Table III, it was found that the organic EL display devices 201 to 215 using the polarizing plate protective film of the present invention had no emission loss and had excellent light resistance of the display element.
 さらに、表II及び表IIIで示す評価結果を総合すると、本発明の偏光板保護フィルムは、表示素子を外光から保護できるとともに、表示素子の発光に対して発光ロスを生じず、かつ、ブリードアウトがなく、耐光性に優れた偏光板保護フィルムであり、機能性や耐久性に優れた偏光板及び有機EL表示装置を提供できることが確認された。 Furthermore, when the evaluation results shown in Tables II and III are summarized, the polarizing plate protective film of the present invention can protect the display element from external light, does not cause light emission loss with respect to the light emission of the display element, and does not cause bleeding. It was confirmed that the film is a polarizing plate protective film that is free from out, has excellent light resistance, and can provide a polarizing plate and an organic EL display device that are excellent in functionality and durability.
 実施例3
 <偏光板保護フィルム301の作製>
 (支持体)
 支持体として、ポリエチレンテレフタレートフィルム(PETフィルム):(東洋紡社製TN100、ノンシリコーン系剥離剤を含む離型層あり、厚さ38μm)を用いた。
Example 3
<Production of polarizing plate protective film 301>
(support)
As a support, a polyethylene terephthalate film (PET film) (TN100 manufactured by Toyobo Co., Ltd., with a release layer containing a non-silicone release agent, thickness 38 μm) was used.
 (偏光板保護フィルム301用塗布溶液の調製)
 下記成分を混合して、基材フィルム301用塗布溶液を得た。
(Preparation of coating solution for polarizing plate protective film 301)
A coating solution for the base film 301 was obtained by mixing the following components.
 まず、加圧溶解タンクにジクロロメタンとエタノールを添加した。ジクロロメタンとエタノールの混合溶液の入った加圧溶解タンクに、シクロオレフィン系樹脂(COP)を撹拌しながら投入した。更に、溶媒投入開始後15分後に、上記で調製した微粒子分散液、及び化合物(D):化合物1を投入して、これを80℃に加熱し、撹拌しながら、完全に溶解した。このとき、室温から5℃/minの昇温し、30分間で溶解した後、3℃/minで降温した。得られた溶液を安積濾紙(株)製の安積濾紙No.244を使用して濾過し、偏光板保護フィルム301用塗布溶液を調製した。 First, dichloromethane and ethanol were added to the pressurized dissolution tank. A cycloolefin resin (COP) was put into a pressurized dissolution tank containing a mixed solution of dichloromethane and ethanol while being stirred. Furthermore, 15 minutes after the start of adding the solvent, the fine particle dispersion prepared above and compound (D): compound 1 were added, heated to 80° C., and completely dissolved with stirring. At this time, the temperature was raised from room temperature at a rate of 5°C/min, dissolved in 30 minutes, and then lowered at a rate of 3°C/min. The resulting solution was filtered through Azumi Filter Paper No. 1 (Azumi Filter Paper Co., Ltd.). 244 to prepare a coating solution for polarizing plate protective film 301 .
 (塗布溶液の組成)
 COP(G7810)                100質量部
 ジクロロメタン                   200質量部
 エタノール                      10質量部
 化合物(D):化合物1                 6質量部
 酸化防止剤:Irganox1076(BASFジャパン(株)製)
                           0.5質量部
 微粒子(R812):二酸化ケイ素分散液         1質量部
(Composition of coating solution)
COP (G7810) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Compound (D): Compound 1 6 parts by mass Antioxidant: Irganox 1076 (manufactured by BASF Japan Ltd.)
0.5 parts by mass fine particles (R812): silicon dioxide dispersion 1 part by mass
 (偏光板保護フィルム301の作製)
 図4で示す塗布装置を用いて、上記支持体の離型層上に、偏光板保護フィルム301用塗布溶液を、バックコート法によりダイを用いて塗布した後、下記の乾燥ステップで基材フィルムの乾燥を行うことで厚さ5μmの偏光板保護フィルムを形成し、偏光板保護フィルム301を得た。
(Production of polarizing plate protective film 301)
Using the coating apparatus shown in FIG. 4, the coating solution for the polarizing plate protective film 301 is coated on the release layer of the support by a back coating method using a die. A polarizing plate protective film having a thickness of 5 μm was formed by drying, and a polarizing plate protective film 301 was obtained.
 第1ステップ:40℃で1分
 第2ステップ:70℃で1分
 第3ステップ:100℃で1分
 第4ステップ:130℃で2分
1st step: 1 minute at 40°C 2nd step: 1 minute at 70°C 3rd step: 1 minute at 100°C 4th step: 2 minutes at 130°C
 <偏光板保護フィルム302の作製>
 偏光板保護フィルム301の作製において、偏光板保護フィルム301用塗布溶液を、バックコート法によりダイを用いて塗布した後、前記乾燥ステップで基材フィルムの乾燥を行うことで厚さ10μmの偏光板保護フィルムを作製した。
<Production of polarizing plate protective film 302>
In the production of the polarizing plate protective film 301, the coating solution for the polarizing plate protective film 301 is applied by a back coating method using a die, and then the base film is dried in the drying step to obtain a polarizing plate having a thickness of 10 μm. A protective film was produced.
 <偏光板保護フィルム303の作製>
 シクロオレフィン樹脂(日本ゼオン社製「ゼオノア」、ガラス転移温度Tg=126℃)を100質量部と、下記化合物(a2)を6質量部とを、二軸押出機を用いて混合して、樹脂組成物を得た。
<Production of polarizing plate protective film 303>
100 parts by mass of a cycloolefin resin (“Zeonor” manufactured by Nippon Zeon Co., Ltd., glass transition temperature Tg = 126 ° C.) and 6 parts by mass of the following compound (a2) are mixed using a twin-screw extruder to obtain a resin A composition was obtained.
 次いで、ギアポンプ及びフィルターを備えた単軸押出機を用意し、この単軸押出機に、前記樹脂組成物を投入し、溶融させた。溶融した樹脂組成物を、ギアポンプ次いでフィルターを通過させ、Tダイから押し出して、冷却ロールを通過させて厚さ10μmの偏光板保護フィルム303を得た。 Next, a single-screw extruder equipped with a gear pump and a filter was prepared, and the resin composition was charged into the single-screw extruder and melted. The melted resin composition was passed through a gear pump and then through a filter, extruded from a T-die, and passed through cooling rolls to obtain a polarizing plate protective film 303 having a thickness of 10 μm.
 (化合物(a2)の合成:6-(5-メチルカルボニルオキシエチル-2H-ベンゾトリアゾール-2-イル)ベンゾ[1,3]ジオキソール-5-オール) (Synthesis of compound (a2): 6-(5-methylcarbonyloxyethyl-2H-benzotriazol-2-yl)benzo[1,3]dioxol-5-ol)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 200mLの4つ口フラスコに玉付きコンデンサー、温度計、撹拌装置を取り付け、6-(5-ヒドロキシエチル-2H-ベンゾトリアゾール-2-イル)ベンゾ[1,3]ジオキソール-5-オール2.0g(0.0067モル)、トルエン50mL、酢酸1.6g(0.0266モル)、メタンスルホン酸0.1g(0.0010モル)を入れて、110~115℃で4時間還流脱水した。温水50mLで3回洗浄し、活性炭0.1gを加え、還流撹拌して脱色させた。熱時にろ過し、析出した結晶をろ過し、トルエン10mLで洗浄した後、60℃で乾燥し、化合物(a2)を2.2g得た。6-(5-ヒドロキシエチル-2H-ベンゾトリアゾール-2-イル)ベンゾ[1,3]ジオキソール-5-オールからの収率は96%であった。 2.0 g of 6-(5-hydroxyethyl-2H-benzotriazol-2-yl)benzo[1,3]dioxol-5-ol was placed in a 200 mL four-necked flask equipped with a ball condenser, thermometer, and stirrer. (0.0067 mol), 50 mL of toluene, 1.6 g (0.0266 mol) of acetic acid and 0.1 g (0.0010 mol) of methanesulfonic acid were added and dehydrated under reflux at 110 to 115° C. for 4 hours. After washing three times with 50 mL of warm water, 0.1 g of activated carbon was added and stirred under reflux to decolorize. Filtration was performed while hot, and the precipitated crystals were filtered, washed with 10 mL of toluene, and dried at 60° C. to obtain 2.2 g of compound (a2). The yield from 6-(5-hydroxyethyl-2H-benzotriazol-2-yl)benzo[1,3]dioxol-5-ol was 96%.
 また、化合物(a2)の紫外~可視吸収スペクトルを測定したところ、最大吸収波長は368nmであった。 Also, when the ultraviolet-visible absorption spectrum of compound (a2) was measured, the maximum absorption wavelength was 368 nm.
 得られた偏光板保護フィルムを用いて、実施例1と同様にして、耐光性及び耐久性:ブリードアウトを評価した。評価に当たっては、偏光板保護フィルム301及び302は上記支持体を剥離した状態で行った。 Using the obtained polarizing plate protective film, light resistance and durability: bleeding out were evaluated in the same manner as in Example 1. The polarizing plate protective films 301 and 302 were evaluated after the support was peeled off.
 薄膜な偏光板保護フィルム301及び302は優れた耐光性(「A」)及び耐久性(ブリードアウト:「◎」)を示し、薄膜な偏光板保護フィルムにおいても本発明の効果が得られることが分かった。一方、偏光板保護フィルム303は、耐光性に優れていたが、フィルム試料10枚の評価をしたところ、ブリードアウト評価が「△~○」の範囲にあり、耐久性がやや劣っていた。 The thin polarizing plate protective films 301 and 302 exhibit excellent light resistance (“A”) and durability (bleed-out: “⊚”), and the effects of the present invention can be obtained even with the thin polarizing plate protective films. Do you get it. On the other hand, the polarizing plate protective film 303 was excellent in light resistance, but when 10 film samples were evaluated, the bleed-out evaluation was in the range of "Δ to ◯", and the durability was slightly inferior.
 本発明の偏光板保護フィルムは、樹脂と色素化合物を含有する偏光板保護フィルムであって、表示素子を外光から保護できるとともに、表示素子の発光に対して発光ロスを生じず、かつ、ブリードアウトがなく、耐光性に優れていることにより、表示装置、特には有機エレクトロルミネッセンス表示装置に好適に利用することができる。 The polarizing plate protective film of the present invention is a polarizing plate protective film containing a resin and a dye compound, which can protect a display element from external light, does not cause emission loss with respect to light emitted from the display element, and prevents bleeding. Since it is free from out-of-light and has excellent light resistance, it can be suitably used for display devices, particularly organic electroluminescence display devices.
 10A、10B 偏光板
 1 偏光板保護フィルム
 2 偏光子層
 3 位相差フィルム
 4 ハードコート層
 5 粘着剤層
 20 有機EL表示装置
 11 有機EL素子
 80 斜め延伸フィルムの製造装置
 81 フィルム繰り出し部
 82、86 搬送方向変更部
 83、85 ガイドロール
 84 延伸部
 87 フィルム巻き取り部
 B200 製造装置
 B210 供給部
 B220 塗布部
 B230 乾燥部
 B240 冷却部
 B250 巻き取り部
10A, 10B polarizing plate 1 polarizing plate protective film 2 polarizer layer 3 retardation film 4 hard coat layer 5 pressure-sensitive adhesive layer 20 organic EL display device 11 organic EL element 80 diagonally stretched film manufacturing apparatus 81 film delivery unit 82, 86 transport Direction changing section 83, 85 Guide roll 84 Stretching section 87 Film winding section B200 Manufacturing apparatus B210 Supply section B220 Coating section B230 Drying section B240 Cooling section B250 Winding section

Claims (1)

  1.  下記式1で表される構造を有する化合物を含有することを特徴とする偏光板保護フィルム。
    Figure JPOXMLDOC01-appb-C000001
    A polarizing plate protective film comprising a compound having a structure represented by Formula 1 below.
    Figure JPOXMLDOC01-appb-C000001
PCT/JP2022/004298 2021-03-31 2022-02-03 Polarizing plate protective film WO2022209279A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280025856.7A CN117120892A (en) 2021-03-31 2022-02-03 Polarizer protective film
KR1020237031795A KR20230147667A (en) 2021-03-31 2022-02-03 Polarizer Protective Film
JP2023510571A JPWO2022209279A1 (en) 2021-03-31 2022-02-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-059205 2021-03-31
JP2021059205 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209279A1 true WO2022209279A1 (en) 2022-10-06

Family

ID=83458789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004298 WO2022209279A1 (en) 2021-03-31 2022-02-03 Polarizing plate protective film

Country Status (5)

Country Link
JP (1) JPWO2022209279A1 (en)
KR (1) KR20230147667A (en)
CN (1) CN117120892A (en)
TW (1) TWI831132B (en)
WO (1) WO2022209279A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025811A (en) * 2010-07-21 2012-02-09 Shinnakamura Kagaku Kogyo Kk Ultraviolet absorptive benzotriazole-based (co)polymer, coating including the same, and film coated with the coating
JP2012041333A (en) * 2010-07-21 2012-03-01 Shipro Kasei Kaisha Ltd Benzotriazole derivative compound
JP2017162669A (en) * 2016-03-09 2017-09-14 大日本印刷株式会社 Organic EL display device
JP2019019301A (en) * 2016-11-28 2019-02-07 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
JP2019137809A (en) * 2018-02-14 2019-08-22 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
WO2020158468A1 (en) * 2019-01-31 2020-08-06 日本ゼオン株式会社 Optical film, polarizing plate, and image display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6753118B2 (en) 2016-04-06 2020-09-09 東レ株式会社 Optical film
WO2019004042A1 (en) 2017-06-27 2019-01-03 住友化学株式会社 Optical film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025811A (en) * 2010-07-21 2012-02-09 Shinnakamura Kagaku Kogyo Kk Ultraviolet absorptive benzotriazole-based (co)polymer, coating including the same, and film coated with the coating
JP2012041333A (en) * 2010-07-21 2012-03-01 Shipro Kasei Kaisha Ltd Benzotriazole derivative compound
JP2017162669A (en) * 2016-03-09 2017-09-14 大日本印刷株式会社 Organic EL display device
JP2019019301A (en) * 2016-11-28 2019-02-07 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
JP2019137809A (en) * 2018-02-14 2019-08-22 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
WO2020158468A1 (en) * 2019-01-31 2020-08-06 日本ゼオン株式会社 Optical film, polarizing plate, and image display device

Also Published As

Publication number Publication date
CN117120892A (en) 2023-11-24
KR20230147667A (en) 2023-10-23
JPWO2022209279A1 (en) 2022-10-06
TW202239837A (en) 2022-10-16
TWI831132B (en) 2024-02-01

Similar Documents

Publication Publication Date Title
KR101573973B1 (en) Optical laminate and method for producing optical laminate
JP5884915B2 (en) Display device with touch panel
JP5272055B2 (en) Polarizer protective film, polarizing plate and image display device
WO2014171479A1 (en) Polarizing plate and image display device
US20160209548A1 (en) Method for manufacturing polarizing plate
JP6226762B2 (en) OPTICAL POLYESTER FILM, POLARIZING PLATE, IMAGE DISPLAY DEVICE, OPTICAL POLYESTER FILM MANUFACTURING METHOD, AND COMPOSITION FOR Easily Adhesive Layer
TWI830848B (en) Optical films, polarizing plates, image display devices
JP2009163216A (en) Set of polarizing plate, and liquid crystal panel and liquid crystal display using the same
WO2022059465A1 (en) Cover member, base film for cover member, and display device provided with same
JP5258016B2 (en) Set of polarizing plates, and liquid crystal panel and liquid crystal display device using the same
JP2012118479A (en) Method for manufacturing optical film
JP7099440B2 (en) A polarizing plate and a display device equipped with the polarizing plate.
JP2007233374A (en) Hard coat film, polarizing plate using the same, and image display device
JP6683415B2 (en) Optical film and its use
JP6591166B2 (en) Optical film, use thereof and manufacturing method thereof
WO2022209279A1 (en) Polarizing plate protective film
JP2012008557A (en) Polarizer protective film, polarizing plate and liquid crystal display element
WO2022131062A1 (en) Optical film, polarizing plate, and organic electroluminescence display device
WO2021171930A1 (en) Polarizing plate and organic electroluminescent display device
WO2021200622A1 (en) Polarizing plate and organic electroluminescent display device
JP2019066884A (en) Optical film and use of the same
JP2019091040A (en) Laminated film
WO2021172179A1 (en) Optical film, polarizing plate, and organic electroluminescence image display device
CN117590509A (en) Polarizing plate and image display device using the same
TW202303201A (en) Polarizing plate and organic EL display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510571

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237031795

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237031795

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779508

Country of ref document: EP

Kind code of ref document: A1