WO2022209164A1 - Heat dissipation module - Google Patents

Heat dissipation module Download PDF

Info

Publication number
WO2022209164A1
WO2022209164A1 PCT/JP2022/001595 JP2022001595W WO2022209164A1 WO 2022209164 A1 WO2022209164 A1 WO 2022209164A1 JP 2022001595 W JP2022001595 W JP 2022001595W WO 2022209164 A1 WO2022209164 A1 WO 2022209164A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
liquid
heat
sheet
working fluid
Prior art date
Application number
PCT/JP2022/001595
Other languages
French (fr)
Japanese (ja)
Inventor
春俊 萩野
洋司 川原
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2022209164A1 publication Critical patent/WO2022209164A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure

Definitions

  • the present invention relates to a heat dissipation module.
  • This application claims priority based on Japanese Patent Application No. 2021-055457 filed in Japan on March 29, 2021, the contents of which are incorporated herein.
  • the working fluid is heated and vaporized on the hot side of the container, the vaporized working fluid (vapor) travels through the vapor flow path to the cold side where it condenses.
  • the condensed working fluid returns to the high temperature side due to the capillary force of the wick.
  • wick materials include mesh and sintered powder.
  • mesh has low efficiency in transporting liquid due to weak capillary force. Therefore, there is a problem that the heat transport capacity of the vapor chamber is low.
  • a wick formed from a sintered body of powder produces a high capillary force, but the liquid moves in random paths between particles in the wick, resulting in a long liquid flow path. As a result, there is a problem that the heat transport capacity is lowered.
  • the present invention has been made in consideration of such circumstances, and an object thereof is to provide a heat dissipation module with improved heat transport capability.
  • a heat dissipation module includes a container in which a working fluid is enclosed, and at least two porous sheets accommodated in the container, wherein the container contains: Vapor flow paths are formed in and gaps are formed between the porous sheets to generate capillary force in the working fluid.
  • the working fluid that has become liquid on the low temperature side flows into the gaps between the porous sheets through the pores of the porous sheets. Gaps between porous sheets create capillary forces.
  • this gap By using this gap as a liquid channel, the length of the liquid channel from the low temperature side to the high temperature side can be shortened. Therefore, the liquid is efficiently transported to the high temperature side, and the heat transport capability of the heat dissipation module can be improved.
  • the porous sheet may be a sintered body of powder.
  • each of the plurality of porous sheets may be movable relative to each other.
  • the container has a top plate and a bottom plate that are joined together, the top plate has a top plate and a plurality of pillars projecting from the top plate toward the bottom plate, and the plurality of A gap between the pillars may be the vapor channel, and a portion of the porous sheet may be compressed by the plurality of pillars.
  • FIG. 4 is a cross-sectional view showing the vapor chamber according to the first embodiment after liquid injection
  • FIG. 4 is a cross-sectional view showing the vapor chamber according to the first embodiment before liquid injection
  • FIG. 5 is a cross-sectional view showing the vapor chamber according to the second embodiment before heat bonding.
  • FIG. 5 is a cross-sectional view showing the vapor chamber according to the second embodiment after heat bonding.
  • FIG. 4 is a plan view of vapor chambers according to Examples and Comparative Examples.
  • the vapor chamber 1A includes a container 10 containing working fluid W and a wick 20 housed within the container 10 .
  • the container 10 has a top plate 11 and a bottom plate 12 joined together.
  • a heat source H is in contact with the outer surface of the bottom plate 12 .
  • a direction in which the top plate 11 and the bottom plate 12 face each other is called a thickness direction Z.
  • the direction from the bottom plate 12 toward the top plate 11 along the thickness direction Z is called the +Z direction or upward.
  • the direction opposite to the +Z direction is called the -Z direction or down.
  • a direction orthogonal to the thickness direction Z is called a first direction X, and a direction orthogonal to both the first direction X and the thickness direction Z is called a second direction Y.
  • the heat source H is in contact with one end of the container 10 in the first direction X.
  • One end of the container 10 that is in contact with the heat source H is referred to as a first end 10a
  • the end opposite to the first end 10a is referred to as a second end 10b.
  • the first end 10a side (heat source H side, +X side) of the container 10 in the first direction X is called the high temperature side
  • the second end 10b side ( ⁇ X side) is called the low temperature side.
  • the heat may be transported in the second direction Y as well.
  • the working fluid W is a well-known substance that undergoes a phase change, and undergoes a phase change between a gas phase and a liquid phase inside the container 10 .
  • the working fluid W water (pure water), alcohol, ammonia, or the like can be used.
  • the gas-phase working fluid is sometimes called "vapor W1"
  • the liquid-phase working fluid is sometimes called "liquid W2”.
  • the gas phase and the liquid phase are not particularly distinguished, they are sometimes simply referred to as a working fluid W.
  • the container 10 is a closed hollow container.
  • a material having a high thermal conductivity such as copper is desirable, but a material other than copper may be used.
  • the top plate 11 has an upper plate 11a, a plurality of pillars 11b, and an upper side wall portion 11c.
  • the upper side wall portion 11c protrudes downward from the outer peripheral edge of the upper plate 11a.
  • a plurality of pillars 11b protrude downward from the top plate 11a and are surrounded by an upper side wall portion 11c.
  • Steam flow paths G are formed in gaps between the plurality of pillars 11b. Although illustration is omitted, the steam flow path G is formed so that the steam W1 can flow in the first direction X. As shown in FIG.
  • a plurality of columnar or prismatic pillars 11b may be arranged side by side in both the first direction X and the second direction Y.
  • each pillar 11b may extend radially around the heat source H when viewed from the thickness direction Z.
  • the bottom plate 12 has a bottom plate 12a and a lower side wall portion 12b.
  • the lower side wall portion 12b protrudes upward from the outer peripheral edge of the bottom plate 12a.
  • the top plate 11 and the bottom plate 12 can be formed by etching a copper plate, for example, but they may be formed by a method other than etching.
  • Top plate 11 and bottom plate 12 are joined to each other by joining upper side wall portion 11 c and lower side wall portion 12 b via joint portion 13 .
  • the material of the joining portion 13 is brazing material (BAg-8), and the joining is performed by heating the container 10 to 850° C. in a nitrogen atmosphere.
  • the material of the joint portion 13 may not be a brazing material, and may be, for example, a solder alloy, an adhesive, or the like.
  • a configuration in which the upper side wall portion 11c and the lower side wall portion 12b are directly joined by, for example, laser joining or ultrasonic joining without providing the joining portion 13 may be employed.
  • the wick 20 has two porous sheets 21 and a gap 22 formed between the two porous sheets 21 .
  • the porous sheets 21 may be called “first sheet 21A” and “second sheet 21B" in order from the top for ease of explanation.
  • the first sheet 21A and the second sheet 21B are stacked vertically so as to be movable relative to each other.
  • the second seat 21B may or may not be fixed to the bottom plate 12 .
  • the number of porous sheets 21 may be three or more.
  • the porous sheet 21 is a sintered body obtained by sintering metal powder such as copper into a sheet.
  • metal powder for example, atomized powder produced by a so-called atomizing method can be used.
  • the working fluid W (liquid W2) condensed in the vapor passage G flows into the gap 22 through the pores of the porous sheet 21 .
  • the porous sheet 21 may not be a sintered body obtained by sintering powder, but may be a sheet formed of a porous metal body (also called foam metal), for example.
  • the gap 22 is used as a liquid channel through which the liquid W2 is transported.
  • the liquid W2 is transported along the first direction X by capillary action occurring in the gap 22.
  • the liquid W2 is transported along the first direction X by the capillary force of the gap 22.
  • the porous sheet 21 is a sintered body of powder, it has high wettability. Therefore, the gap 22 produces a high capillary force.
  • the gap 22 By using the gap 22 as a liquid channel, the length of the liquid channel can be shortened compared to the case where the liquid W2 is transported through random paths between the particles in the porous sheet 21 .
  • Manufacture of the vapor chamber 1A is performed through three processes, a heating bonding process, a degassing process, and a liquid injection process.
  • the heat bonding process is a process of bonding the top plate 11 and the bottom plate 12 to form the container 10 .
  • the degassing step is a step of evacuating the inside of the container 10 .
  • the injection step is a step of injecting the working fluid W into the inside of the container 10 (injecting the working fluid W).
  • a liquid injection hole (not shown) is formed in the container 10, and degassing and liquid injection are performed through the liquid injection hole. After the injection process, the injection hole is closed.
  • the manufacturing of the vapor chamber 1A may include steps other than the above three steps.
  • the container 10 according to the present embodiment is formed by heating the entire container 10 and brazing the bonding portions 13 while pressing the top plate 11 toward the bottom plate 12 . After the heat bonding process is performed, the degassing process is performed.
  • the injection process is performed.
  • the first sheet 21A and the second sheet 21B are stacked in the thickness direction Z so as to be in contact with each other in a state immediately before the start of the liquid injection process. That is, the bottom surface of the first sheet 21A and the top surface of the second sheet 21B are in contact with each other.
  • D1 is the sum of the thickness of the first sheet 21A and the thickness of the second sheet 21B
  • D2 is the distance in the thickness direction Z from the lower surface of each pillar 11b to the bottom plate 12a.
  • "thickness" means a dimension in the thickness direction Z. At this time, D2-D1>0 is established.
  • the upper surface of the wick 20 (first sheet 21A) is not in contact with the lower surfaces of the pillars 11b.
  • the average value of the total is defined as D1.
  • the average value of the distances is defined as D2.
  • the gap 22 widens in the thickness direction Z as shown in FIG.
  • the dimension in the thickness direction Z of the gap 22 after injection is approximately equal to the value of D2-D1 described above.
  • the dimension of the gap 22 in the thickness direction Z can be set to, for example, 10 to 15 ⁇ m. desirable.
  • the vapor chamber 1A is a heat radiation module that receives heat from the heat source H and releases the received heat to the outside.
  • the liquid W2 permeating the high temperature side of the wick 20 evaporates due to the heat received from the heat source H, undergoes a phase change to vapor W1, and travels toward the vapor passage G (S1).
  • the steam W1 flows through the steam flow path G toward the low temperature side where the pressure and temperature are lower than the high temperature side (S2).
  • the vapor W1 flows toward the low temperature side, heat is taken away by the container 10, the temperature of the vapor W1 decreases, and eventually the vapor W1 condenses and undergoes a phase change to the liquid W2.
  • the liquid W2 permeates the wick 20 and is absorbed in the gap 22 (S3).
  • the liquid W2 absorbed in the gap 22 flows back to the high temperature side by capillary force of the gap 22 (S4).
  • the vapor chamber 1A can continue to absorb heat from the heat source H and release the absorbed heat to the outside.
  • the vapor chamber 1A of this embodiment includes the container 10 in which the working fluid W is enclosed, and at least two porous sheets 21 accommodated in the container 10. , a vapor flow path G is formed, and a gap 22 is formed between the porous sheets 21 to generate a capillary force in the liquid W2.
  • the working fluid W that has become the liquid W2 on the low temperature side flows into the gaps 22 between the porous sheets 21 through the pores of the porous sheets 21 .
  • Gaps 22 between porous sheets 21 create capillary forces.
  • this gap 22 as a liquid channel, the length of the liquid channel from the low temperature side to the high temperature side can be shortened. Therefore, the liquid W2 is efficiently transported to the high temperature side, and the heat transport capability of the vapor chamber 1A can be improved.
  • the porous sheet 21 of the present embodiment is a sintered body of powder. With this configuration, the wettability of the porous sheet 21 is enhanced. Therefore, the capillary force generated by the gap 22 can be improved. Therefore, the liquid W2 is transported more efficiently, and the heat transport capability of the vapor chamber 1A can be further improved.
  • the two porous sheets 21 of this embodiment are relatively movable.
  • the gap 22 between the porous sheets 21 widens due to the surface tension of the liquid W2.
  • the size of the gap 22 can be determined by the previously mentioned dimensions D1 and D2. Compared to the case where two porous sheets 21 are fixed to the container 10 so that the gap 22 is formed, the size of the gap 22 can be made smaller more easily. By reducing the size of the gap 22, the capillary force can be increased. Therefore, the liquid W2 is transported more efficiently, and the heat transport capability of the vapor chamber 1A can be further improved.
  • FIG. 3 is a diagram showing the manufacturing process of the vapor chamber 1B according to the second embodiment. Specifically, it is a cross-sectional view of the vapor chamber 1B immediately before the heat bonding step described above.
  • D2 ⁇ D1 ⁇ 0 holds for the total thickness D1 of each porous sheet 21 and the distance D2 between the pillar 11b and the bottom plate 12a.
  • the value of D2-D1 may be -10 to 0 ⁇ m.
  • the manufacture of the vapor chamber 1B is carried out through three processes: a heating bonding process, a degassing process, and a liquid injection process.
  • the heat bonding process is started with the upper surface of the first sheet 21A (wick 20) in contact with the pillar 11b.
  • downward pressure is applied to the top plate 11 as shown in FIG.
  • This pressure is received by upper side wall portion 11c and lower side wall portion 12b. Therefore, although pressure in the thickness direction Z acts on the upper side wall portion 11c, such pressure does not act on the pillar 11b. Therefore, the amount of thermal expansion of the pillar 11b in the thickness direction Z is larger than the amount of thermal expansion of the upper side wall portion 11c.
  • each porous sheet 21 also thermally expands.
  • the amount of thermal expansion of the pillars 11b is greater than the amount of thermal expansion of the upper side wall portion 11c, and each porous sheet 21 also thermally expands, so that the pillars 11b crush the first sheet 21A downward.
  • only the portion of the first sheet 21A (wick 20) in contact with the pillar 11b is compressed downward. Since a bending moment is generated at the compressed portion of the first sheet 21A, a part of the first sheet 21A (surrounding the compressed portion) rises upward to form the gap 22.
  • the gap 22 is used as a liquid channel.
  • the air pressure inside the container 10 decreases during the degassing process, a compressive force is generated in the container 10 due to the external air pressure.
  • the wick 20 since the first sheet 21A (wick 20) is compressed by the pillars 11b, the wick 20 receives the compressive force via the pillars 11b. Thereby, deformation of the container 10 can be prevented.
  • the injection process is performed.
  • D2-D1 ⁇ 0 the value of D1 which is the sum of the thicknesses of the porous sheets 21, can be increased.
  • D1 the value of D1
  • the amount of heat that can be absorbed and discharged by the vapor chamber depends on the substance amount of the working fluid W injected inside the container 10 . Therefore, by increasing the value of D1, it is possible to increase the substance amount of the working fluid W that can be injected into the container 10, thereby further increasing the allowable heat amount of the vapor chamber 1B.
  • the container 10 has the top plate 11 and the bottom plate 12 that are joined to each other. 12, gaps between the plurality of pillars 11b are steam flow paths G, and a portion of the porous sheet 21 is compressed by the plurality of pillars 11b. According to this configuration, the compressive force applied to the container 10 is received by the porous sheet 21, thereby preventing the container 10 from being deformed by the external air pressure.
  • a vapor chamber having a dimension in the first direction X of 90 mm, a dimension in the second direction Y of 56 mm, and a dimension in the thickness direction Z of 0.3 mm was prepared.
  • the wick 20 one porous sheet 21 having a thickness of 80 ⁇ m and made by sintering copper powder having a diameter of 5 ⁇ m was used.
  • Example 1A of the first embodiment was prepared. Each dimension was the same as in the comparative example.
  • the wick 20 two porous sheets 21 having a thickness of 35 ⁇ m and made by sintering copper powder having a diameter of 5 ⁇ m were used. A gap 22 was formed between the two porous sheets 21 due to the surface tension of the liquid W2.
  • Table 1 shows the results of measuring the temperature of the top plate 11 at measurement points P1 to P4 by contacting the heat source H to each of the comparative example and the example (see FIG. 1) (see FIG. 5).
  • the measurement points P1 to P4 were arranged in the center of the container 10 in the second direction Y.
  • FIG. In addition, the interval between two adjacent measurement points in the first direction X was set to 20 mm.
  • the difference between the temperature of P1 and the outside air temperature is small means that the vapor chamber can efficiently transport the heat received from the heat source H to the low temperature side (P2 to P4 side). In other words, it means that the vapor chamber has a high heat transport capacity.
  • a small difference between the temperature of P1 and the temperature of P4 means that the temperature gradient of the vapor chamber is small and the heat transport capacity of the vapor chamber is high. From Table 1, it can be confirmed that regardless of the magnitude of the output of the heat source H and the temperature of the heat source H, the example exhibits a higher heat transport capacity than the comparative example.
  • the wick 20 with a plurality of porous sheets 21 and using the gaps 22 between the porous sheets 21 as liquid flow paths, the heat transport capability of the vapor chamber can be improved.
  • the container 10 in the above-described embodiment was formed in a rectangular parallelepiped shape as a whole, it may be in the shape of an oval disk, or in other shapes.
  • the heat dissipation module of the above embodiments is a vapor chamber, the above embodiments may be applied to other types of heat dissipation modules.
  • the heat dissipation module may be a heat pipe using a pipe (for example, a copper pipe) as the container 10 .
  • a pipe for example, a copper pipe
  • the heat dissipation module may be a so-called loop heat pipe or the like.
  • Vapor chamber 10
  • Container 11 11
  • Top plate 11a Top plate 11b
  • Pillar 12 Bottom plate 21
  • Porous sheet 22 Gap G
  • Vapor flow path W Working fluid

Abstract

This heat dissipation module comprises: a container in which a working fluid is sealed; and at least two porous sheets housed in the container. A vapor channel is formed in the container. A gap for generating capillary force in the working fluid is formed between the porous sheets.

Description

放熱モジュールheat dissipation module
 本発明は、放熱モジュールに関する。
 本願は、2021年3月29日に、日本に出願された特願2021-055457号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a heat dissipation module.
This application claims priority based on Japanese Patent Application No. 2021-055457 filed in Japan on March 29, 2021, the contents of which are incorporated herein.
 ベーパーチャンバー等の放熱モジュールは、作動流体が封入されたコンテナと、コンテナ内に配置されたウィックとを備える。コンテナの高温側で作動流体が加熱され、蒸発すると、蒸発した作動流体(蒸気)は蒸気流路を通って低温側に移動して凝縮する。凝縮した作動流体(液体)は、ウィックの毛管力によって高温側に戻る。これら蒸発および凝縮の繰返しにより、高温側から低温側へと熱が輸送される(例えば、特許文献1を参照)。 A heat dissipation module such as a vapor chamber comprises a container containing a working fluid and a wick placed inside the container. As the working fluid is heated and vaporized on the hot side of the container, the vaporized working fluid (vapor) travels through the vapor flow path to the cold side where it condenses. The condensed working fluid (liquid) returns to the high temperature side due to the capillary force of the wick. By repeating these evaporations and condensations, heat is transported from the high temperature side to the low temperature side (see Patent Document 1, for example).
日本国特許第6623296号公報Japanese Patent No. 6623296
 ウィックの材質としては、例えばメッシュや粉体の焼結体が挙げられる。しかしながら、メッシュにより形成されたウィックは、毛管力が弱いために液体を輸送する効率が低い。このため、ベーパーチャンバーの熱輸送能力が低くなるという課題があった。粉体の焼結体により形成されたウィックは高い毛管力を生じさせるものの、液体がウィック内の粒子間をランダムな経路で動くために液体流路が長くなる。結果として、熱輸送能力が低くなるという課題があった。 Examples of wick materials include mesh and sintered powder. However, wicks formed by mesh have low efficiency in transporting liquid due to weak capillary force. Therefore, there is a problem that the heat transport capacity of the vapor chamber is low. A wick formed from a sintered body of powder produces a high capillary force, but the liquid moves in random paths between particles in the wick, resulting in a long liquid flow path. As a result, there is a problem that the heat transport capacity is lowered.
 本発明はこのような事情を考慮してなされ、熱輸送能力を向上させた放熱モジュールを提供することを目的とする。 The present invention has been made in consideration of such circumstances, and an object thereof is to provide a heat dissipation module with improved heat transport capability.
 上記課題を解決するために、本発明の一態様に係る放熱モジュールは、作動流体が封入されたコンテナと、前記コンテナ内に収容された少なくとも2枚の多孔質シートと、を備え、前記コンテナ内には蒸気流路が形成され、前記多孔質シートの間には、前記作動流体に毛管力を生じさせる隙間が形成されている。 In order to solve the above problems, a heat dissipation module according to one aspect of the present invention includes a container in which a working fluid is enclosed, and at least two porous sheets accommodated in the container, wherein the container contains: Vapor flow paths are formed in and gaps are formed between the porous sheets to generate capillary force in the working fluid.
 上記態様の放熱モジュールによれば、低温側において液体となった作動流体が、多孔質シートが有する細孔を通じて、多孔質シートの間の隙間に流入する。多孔質シートの間の隙間は毛管力を生じさせる。この隙間を液体流路として用いることで、低温側から高温側に至る液体流路の長さを短くすることができる。したがって、液体が効率的に高温側へ輸送され、放熱モジュールの熱輸送能力を向上させることができる。 According to the heat dissipation module of the aspect described above, the working fluid that has become liquid on the low temperature side flows into the gaps between the porous sheets through the pores of the porous sheets. Gaps between porous sheets create capillary forces. By using this gap as a liquid channel, the length of the liquid channel from the low temperature side to the high temperature side can be shortened. Therefore, the liquid is efficiently transported to the high temperature side, and the heat transport capability of the heat dissipation module can be improved.
 ここで、前記多孔質シートは、粉体の焼結体であってもよい。 Here, the porous sheet may be a sintered body of powder.
 また、前記複数の多孔質シートのそれぞれは、互いに相対移動可能であってもよい。 Further, each of the plurality of porous sheets may be movable relative to each other.
 また、前記コンテナは、互いに接合されたトッププレートおよびボトムプレートを有し、前記トッププレートは、上板と、前記上板から前記ボトムプレートに向けて突出する複数のピラーを有し、前記複数のピラーの間の隙間が前記蒸気流路であり、前記多孔質シートの一部が前記複数のピラーによって圧縮されていてもよい。 Also, the container has a top plate and a bottom plate that are joined together, the top plate has a top plate and a plurality of pillars projecting from the top plate toward the bottom plate, and the plurality of A gap between the pillars may be the vapor channel, and a portion of the porous sheet may be compressed by the plurality of pillars.
 本発明の上記態様によれば、熱輸送能力を向上させた放熱モジュールを提供できる。 According to the above aspect of the present invention, it is possible to provide a heat dissipation module with improved heat transport capability.
注液後における第1実施形態に係るベーパーチャンバーを示す断面図である。FIG. 4 is a cross-sectional view showing the vapor chamber according to the first embodiment after liquid injection; 注液前における第1実施形態に係るベーパーチャンバーを示す断面図である。FIG. 4 is a cross-sectional view showing the vapor chamber according to the first embodiment before liquid injection; 加熱接合前における第2実施形態に係るベーパーチャンバーを示す断面図である。FIG. 5 is a cross-sectional view showing the vapor chamber according to the second embodiment before heat bonding. 加熱接合後における第2実施形態に係るベーパーチャンバーを示す断面図である。FIG. 5 is a cross-sectional view showing the vapor chamber according to the second embodiment after heat bonding. 実施例および比較例に係るベーパーチャンバーの平面図である。FIG. 4 is a plan view of vapor chambers according to Examples and Comparative Examples.
(第1実施形態)
 以下、第1実施形態のベーパーチャンバー(放熱モジュール)について図面に基づいて説明する。
 図1に示すように、ベーパーチャンバー1Aは、作動流体Wが封入されたコンテナ10と、コンテナ10内に収容されたウィック20と、を備える。コンテナ10は、互いに接合されたトッププレート11およびボトムプレート12を有する。ボトムプレート12の外面には、熱源Hが接している。
(First embodiment)
The vapor chamber (radiation module) of the first embodiment will be described below with reference to the drawings.
As shown in FIG. 1 , the vapor chamber 1A includes a container 10 containing working fluid W and a wick 20 housed within the container 10 . The container 10 has a top plate 11 and a bottom plate 12 joined together. A heat source H is in contact with the outer surface of the bottom plate 12 .
(方向定義)
 ここで本実施形態では、XYZ直交座標系を設定して各構成の位置関係を説明する。トッププレート11およびボトムプレート12が対向する方向を厚さ方向Zという。厚さ方向Zに沿ってボトムプレート12からトッププレート11に向かう向きを、+Zの向きまたは上方という。+Zの向きとは反対の向きを、-Zの向きまたは下方という。厚さ方向Zに直交する一方向を第1方向Xといい、第1方向Xおよび厚さ方向Zの双方に直交する方向を第2方向Yという。本実施形態では、理解を容易にするために、熱が第1方向Xに輸送されるとして説明する。つまり、熱源Hはコンテナ10の第1方向Xにおける一端部に接しているとして説明する。コンテナ10のうち、熱源Hが接している一端部を第1端部10aと称し、第1端部10aの反対側に位置する端部を第2端部10bと称する。第1方向Xにおけるコンテナ10の第1端部10a側(熱源H側、+X側)を高温側、第2端部10b側(-X側)を低温側という。ただし、熱は第2方向Yに輸送されてもよい。
(direction definition)
Here, in this embodiment, an XYZ orthogonal coordinate system is set and the positional relationship of each component will be described. A direction in which the top plate 11 and the bottom plate 12 face each other is called a thickness direction Z. As shown in FIG. The direction from the bottom plate 12 toward the top plate 11 along the thickness direction Z is called the +Z direction or upward. The direction opposite to the +Z direction is called the -Z direction or down. A direction orthogonal to the thickness direction Z is called a first direction X, and a direction orthogonal to both the first direction X and the thickness direction Z is called a second direction Y. In this embodiment, it is assumed that heat is transported in the first direction X for easy understanding. That is, it is assumed that the heat source H is in contact with one end of the container 10 in the first direction X. As shown in FIG. One end of the container 10 that is in contact with the heat source H is referred to as a first end 10a, and the end opposite to the first end 10a is referred to as a second end 10b. The first end 10a side (heat source H side, +X side) of the container 10 in the first direction X is called the high temperature side, and the second end 10b side (−X side) is called the low temperature side. However, the heat may be transported in the second direction Y as well.
 作動流体Wは、相変化する周知の物質であって、コンテナ10内部で気相と液相とに相変化する。例えば、作動流体Wとして、水(純水)、アルコール、アンモニア等を採用できる。本明細書では、気相の作動流体を「蒸気W1」、液相の作動流体を「液体W2」と呼ぶことがある。気相と液相とを特に区別しない場合には単に作動流体Wと呼ぶことがある。 The working fluid W is a well-known substance that undergoes a phase change, and undergoes a phase change between a gas phase and a liquid phase inside the container 10 . For example, as the working fluid W, water (pure water), alcohol, ammonia, or the like can be used. In this specification, the gas-phase working fluid is sometimes called "vapor W1", and the liquid-phase working fluid is sometimes called "liquid W2". When the gas phase and the liquid phase are not particularly distinguished, they are sometimes simply referred to as a working fluid W.
 コンテナ10は、密閉された中空容器である。トッププレート11およびボトムプレート12の材質としては、例えば銅などの熱伝導率が高い素材が望ましいが、銅以外の素材であってもよい。トッププレート11は、上板11aと、複数のピラー11bと、上側側壁部11cと、を有する。上側側壁部11cは、上板11aの外周縁から下方に突出している。複数のピラー11bは、上板11aから下方に突出し、上側側壁部11cによって囲まれている。複数のピラー11bの間の隙間には、蒸気流路Gが形成されている。図示は省略するが、蒸気流路Gは、蒸気W1が第1方向Xに流動できるように形成されている。例えば、複数の円柱状あるいは角柱状のピラー11bが、第1方向Xおよび第2方向Yの双方に並べて配置されていてもよい。あるいは、厚さ方向Zから見て、各ピラー11bが熱源Hを中心として放射状に延びていてもよい。 The container 10 is a closed hollow container. As the material of the top plate 11 and the bottom plate 12, a material having a high thermal conductivity such as copper is desirable, but a material other than copper may be used. The top plate 11 has an upper plate 11a, a plurality of pillars 11b, and an upper side wall portion 11c. The upper side wall portion 11c protrudes downward from the outer peripheral edge of the upper plate 11a. A plurality of pillars 11b protrude downward from the top plate 11a and are surrounded by an upper side wall portion 11c. Steam flow paths G are formed in gaps between the plurality of pillars 11b. Although illustration is omitted, the steam flow path G is formed so that the steam W1 can flow in the first direction X. As shown in FIG. For example, a plurality of columnar or prismatic pillars 11b may be arranged side by side in both the first direction X and the second direction Y. Alternatively, each pillar 11b may extend radially around the heat source H when viewed from the thickness direction Z.
 ボトムプレート12は、底板12aと、下側側壁部12bと、を有する。下側側壁部12bは、底板12aの外周縁から上方に突出している。トッププレート11およびボトムプレート12は、例えば銅板にエッチング加工を施すことによって形成できるが、エッチング加工以外の手法によって形成されていてもよい。トッププレート11およびボトムプレート12は、上側側壁部11cと下側側壁部12bとが接合部13を介して接合されることにより、互いに接合されている。本実施形態においては、接合部13の材質はロウ材(BAg-8)であり、コンテナ10を窒素雰囲気中で850℃に加熱することにより接合を行っている。なお、接合部13の材質はロウ材でなくてもよく、例えばはんだ合金や接着剤等であってもよい。あるいは、接合部13を設けずに、例えばレーザー接合や超音波接合等によって上側側壁部11cと下側側壁部12bとが直接接合される構成を採用してもよい。 The bottom plate 12 has a bottom plate 12a and a lower side wall portion 12b. The lower side wall portion 12b protrudes upward from the outer peripheral edge of the bottom plate 12a. The top plate 11 and the bottom plate 12 can be formed by etching a copper plate, for example, but they may be formed by a method other than etching. Top plate 11 and bottom plate 12 are joined to each other by joining upper side wall portion 11 c and lower side wall portion 12 b via joint portion 13 . In this embodiment, the material of the joining portion 13 is brazing material (BAg-8), and the joining is performed by heating the container 10 to 850° C. in a nitrogen atmosphere. It should be noted that the material of the joint portion 13 may not be a brazing material, and may be, for example, a solder alloy, an adhesive, or the like. Alternatively, a configuration in which the upper side wall portion 11c and the lower side wall portion 12b are directly joined by, for example, laser joining or ultrasonic joining without providing the joining portion 13 may be employed.
 ウィック20は、2つの多孔質シート21と、2つの多孔質シート21の間に形成される隙間22と、を有する。本明細書では、説明を容易とするために各多孔質シート21を上方から順に「第1シート21A」「第2シート21B」と呼ぶ場合がある。第1シート21Aと第2シート21Bとは、互いに相対移動可能な状態で上下に重ねられている。第2シート21Bは、ボトムプレート12に固定されてもよいし、固定されていなくてもよい。多孔質シート21の数は、3枚以上であってもよい。 The wick 20 has two porous sheets 21 and a gap 22 formed between the two porous sheets 21 . In this specification, the porous sheets 21 may be called "first sheet 21A" and "second sheet 21B" in order from the top for ease of explanation. The first sheet 21A and the second sheet 21B are stacked vertically so as to be movable relative to each other. The second seat 21B may or may not be fixed to the bottom plate 12 . The number of porous sheets 21 may be three or more.
 本実施形態において、多孔質シート21は、銅などの金属粉をシート状に焼結させた焼結体である。金属粉としては、例えば、いわゆるアトマイズ法によって製造されたアトマイズ粉を用いることができる。蒸気流路Gで凝縮した作動流体W(液体W2)は、多孔質シート21が有する細孔を通じて、隙間22に流入する。
 なお、多孔質シート21は、粉体を焼結させた焼結体でなくてもよく、例えばポーラス金属体(発泡金属ともいう)によって形成されたシート等であってもよい。
In this embodiment, the porous sheet 21 is a sintered body obtained by sintering metal powder such as copper into a sheet. As the metal powder, for example, atomized powder produced by a so-called atomizing method can be used. The working fluid W (liquid W2) condensed in the vapor passage G flows into the gap 22 through the pores of the porous sheet 21 .
The porous sheet 21 may not be a sintered body obtained by sintering powder, but may be a sheet formed of a porous metal body (also called foam metal), for example.
 隙間22は、液体W2が輸送される液体流路として利用される。液体W2は、隙間22で起こる毛細管現象によって、第1方向Xに沿って輸送される。言い換えれば、液体W2は、隙間22の毛管力によって、第1方向Xに沿って輸送される。多孔質シート21は、粉体の焼結体であるため、高い濡れ性を有する。このため、隙間22は高い毛管力を生じさせる。隙間22を液体流路として利用することで、液体W2が多孔質シート21内の粒子間をランダムな経路で輸送される場合と比べて、液体流路の長さを短くすることができる。 The gap 22 is used as a liquid channel through which the liquid W2 is transported. The liquid W2 is transported along the first direction X by capillary action occurring in the gap 22. As shown in FIG. In other words, the liquid W2 is transported along the first direction X by the capillary force of the gap 22. As shown in FIG. Since the porous sheet 21 is a sintered body of powder, it has high wettability. Therefore, the gap 22 produces a high capillary force. By using the gap 22 as a liquid channel, the length of the liquid channel can be shortened compared to the case where the liquid W2 is transported through random paths between the particles in the porous sheet 21 .
 ベーパーチャンバー1Aの製造は、加熱接合工程と、脱気工程と、注液工程と、の3つの工程を経て行われる。加熱接合工程は、トッププレート11とボトムプレート12とを接合してコンテナ10を形成する工程である。脱気工程は、コンテナ10内部を真空とする工程である。注液工程は、コンテナ10内部に作動流体Wの注液を行う(作動流体Wを注入する)工程である。コンテナ10には、注液孔(不図示)が形成されており、脱気および注液は当該注液孔を介して行われる。注液工程の後で注液孔は閉塞される。
 なお、ベーパーチャンバー1Aの製造には上記の3工程以外の工程が含まれていてもよい。
Manufacture of the vapor chamber 1A is performed through three processes, a heating bonding process, a degassing process, and a liquid injection process. The heat bonding process is a process of bonding the top plate 11 and the bottom plate 12 to form the container 10 . The degassing step is a step of evacuating the inside of the container 10 . The injection step is a step of injecting the working fluid W into the inside of the container 10 (injecting the working fluid W). A liquid injection hole (not shown) is formed in the container 10, and degassing and liquid injection are performed through the liquid injection hole. After the injection process, the injection hole is closed.
The manufacturing of the vapor chamber 1A may include steps other than the above three steps.
 加熱接合工程において、本実施形態に係るコンテナ10は、トッププレート11をボトムプレート12に向けて押し付けながら、コンテナ10全体を加熱し接合部13をロウ付けすることによって形成される。
 加熱接合工程が行われた後に、脱気工程が行われる。
In the heat bonding process, the container 10 according to the present embodiment is formed by heating the entire container 10 and brazing the bonding portions 13 while pressing the top plate 11 toward the bottom plate 12 .
After the heat bonding process is performed, the degassing process is performed.
 脱気工程に次いで、注液工程が行われる。図2に示すように、注液工程開始直前の状態において、第1シート21Aと第2シート21Bとは、互いに接するように厚さ方向Zに重ねられている。つまり、第1シート21Aの下面と、第2シート21Bの上面とが、互いに接している。ここで、第1シート21Aの厚みと第2シート21Bの厚みとの合計をD1、各ピラー11bの下面から底板12aまでの厚さ方向Zにおける距離をD2とする。なお、本明細書において「厚さ」とは、厚さ方向Zにおける寸法を意味する。このとき、D2―D1>0が成立する。言い換えれば、ウィック20(第1シート21A)の上面は、ピラー11bの下面と接していない。なお、第1方向Xまたは第2方向Yにおいてシート21A、21Bの厚みの合計が一定でない場合には、当該合計の平均値をD1と定義する。同様に、各ピラー11bの下面から底板12aまでの厚さ方向Zにおける距離が一定でない場合には、当該距離の平均値をD2と定義する。コンテナ10に作動流体Wが注液されると、液体W2の表面張力によって、第1シート21Aは上方に移動してピラー11bに当接する。注液前の状態において第2シート21Bが底板12aに接していない場合、第2シート21Bも液体W2の表面張力によって下方に移動し、底板12aに当接してもよい。 After the degassing process, the injection process is performed. As shown in FIG. 2, the first sheet 21A and the second sheet 21B are stacked in the thickness direction Z so as to be in contact with each other in a state immediately before the start of the liquid injection process. That is, the bottom surface of the first sheet 21A and the top surface of the second sheet 21B are in contact with each other. Here, D1 is the sum of the thickness of the first sheet 21A and the thickness of the second sheet 21B, and D2 is the distance in the thickness direction Z from the lower surface of each pillar 11b to the bottom plate 12a. In this specification, "thickness" means a dimension in the thickness direction Z. At this time, D2-D1>0 is established. In other words, the upper surface of the wick 20 (first sheet 21A) is not in contact with the lower surfaces of the pillars 11b. Note that when the total thickness of the sheets 21A and 21B in the first direction X or the second direction Y is not constant, the average value of the total is defined as D1. Similarly, when the distance in the thickness direction Z from the lower surface of each pillar 11b to the bottom plate 12a is not constant, the average value of the distances is defined as D2. When the working fluid W is injected into the container 10, the surface tension of the liquid W2 causes the first sheet 21A to move upward and come into contact with the pillars 11b. If the second sheet 21B is not in contact with the bottom plate 12a before liquid injection, the second sheet 21B may also move downward due to the surface tension of the liquid W2 and come into contact with the bottom plate 12a.
 つまり、コンテナ10に作動流体Wを注液することで、図1に示すように隙間22が厚さ方向Zに広がる。注液後の隙間22の厚さ方向Zにおける寸法は、先述のD2-D1の値と略等しくなる。隙間22が生じさせる毛管力、隙間22の流路抵抗、およびコンテナ10と多孔質シート21の製造難度等を加味すると、隙間22の厚さ方向Zにおける寸法は、例えば10~15μmとすることが望ましい。 That is, by injecting the working fluid W into the container 10, the gap 22 widens in the thickness direction Z as shown in FIG. The dimension in the thickness direction Z of the gap 22 after injection is approximately equal to the value of D2-D1 described above. Considering the capillary force generated by the gap 22, the flow path resistance of the gap 22, and the difficulty of manufacturing the container 10 and the porous sheet 21, the dimension of the gap 22 in the thickness direction Z can be set to, for example, 10 to 15 μm. desirable.
 次に、以上のように構成されたベーパーチャンバー1Aの作用について説明する。 Next, the action of the vapor chamber 1A configured as above will be described.
 ベーパーチャンバー1Aは、熱源Hから熱を受け取り、受け取った熱を外部に放出する放熱モジュールである。
 図1に示すように、ウィック20の高温側に浸透している液体W2は、熱源Hから受け取った熱によって蒸発し、蒸気W1へと相変化して蒸気流路Gに向かう(S1)。蒸気W1は、高温側よりも圧力および温度が低い低温側へ向けて蒸気流路Gを流動する(S2)。蒸気W1は、低温側へ流動するにしたがってコンテナ10に熱を奪われて温度が低下し、やがて凝縮して液体W2へと相変化する。液体W2はウィック20に浸透し、隙間22に吸収される(S3)。隙間22に吸収された液体W2は、隙間22の毛管力によって高温側に還流する(S4)。S1~S4のサイクルを繰り返すことにより、ベーパーチャンバー1Aは熱源Hから熱を吸収し続け、吸収した熱を外部へ放出し続けることができる。
The vapor chamber 1A is a heat radiation module that receives heat from the heat source H and releases the received heat to the outside.
As shown in FIG. 1, the liquid W2 permeating the high temperature side of the wick 20 evaporates due to the heat received from the heat source H, undergoes a phase change to vapor W1, and travels toward the vapor passage G (S1). The steam W1 flows through the steam flow path G toward the low temperature side where the pressure and temperature are lower than the high temperature side (S2). As the vapor W1 flows toward the low temperature side, heat is taken away by the container 10, the temperature of the vapor W1 decreases, and eventually the vapor W1 condenses and undergoes a phase change to the liquid W2. The liquid W2 permeates the wick 20 and is absorbed in the gap 22 (S3). The liquid W2 absorbed in the gap 22 flows back to the high temperature side by capillary force of the gap 22 (S4). By repeating the cycle of S1 to S4, the vapor chamber 1A can continue to absorb heat from the heat source H and release the absorbed heat to the outside.
 以上説明したように、本実施形態のベーパーチャンバー1Aは、作動流体Wが封入されたコンテナ10と、コンテナ10内に収容された少なくとも2枚の多孔質シート21と、を備え、コンテナ10内には蒸気流路Gが形成され、多孔質シート21の間には、液体W2に毛管力を生じさせる隙間22が形成されている。 As described above, the vapor chamber 1A of this embodiment includes the container 10 in which the working fluid W is enclosed, and at least two porous sheets 21 accommodated in the container 10. , a vapor flow path G is formed, and a gap 22 is formed between the porous sheets 21 to generate a capillary force in the liquid W2.
 この構成によれば、低温側において液体W2となった作動流体Wが、多孔質シート21が有する細孔を通じて、多孔質シート21の間の隙間22に流入する。多孔質シート21の間の隙間22は毛管力を生じさせる。この隙間22を液体流路として用いることで、低温側から高温側に至る液体流路の長さを短くすることができる。したがって、液体W2が効率的に高温側へ輸送され、ベーパーチャンバー1Aの熱輸送能力を向上させることができる。 According to this configuration, the working fluid W that has become the liquid W2 on the low temperature side flows into the gaps 22 between the porous sheets 21 through the pores of the porous sheets 21 . Gaps 22 between porous sheets 21 create capillary forces. By using this gap 22 as a liquid channel, the length of the liquid channel from the low temperature side to the high temperature side can be shortened. Therefore, the liquid W2 is efficiently transported to the high temperature side, and the heat transport capability of the vapor chamber 1A can be improved.
 また、本実施形態の多孔質シート21は、粉体の焼結体である。この構成によれば、多孔質シート21の濡れ性が高くなる。このため、隙間22が生じさせる毛管力を向上させることができる。したがって、液体W2がより効率的に輸送され、ベーパーチャンバー1Aの熱輸送能力をより向上させることができる。 Also, the porous sheet 21 of the present embodiment is a sintered body of powder. With this configuration, the wettability of the porous sheet 21 is enhanced. Therefore, the capillary force generated by the gap 22 can be improved. Therefore, the liquid W2 is transported more efficiently, and the heat transport capability of the vapor chamber 1A can be further improved.
 また、本実施形態の2枚の多孔質シート21は、相対移動可能である。これにより、液体W2の表面張力によって多孔質シート21の間の隙間22が広がる。隙間22のサイズは、先述の寸法D1、D2によって定めることができる。2枚の多孔質シート21を、隙間22が形成されるようにそれぞれコンテナ10に固定する場合と比較して、隙間22のサイズをより容易に小さくすることが可能である。隙間22のサイズを小さくすることで、毛管力をより大きくすることができる。したがって、液体W2がより効率的に輸送され、ベーパーチャンバー1Aの熱輸送能力をより向上させることができる。 Also, the two porous sheets 21 of this embodiment are relatively movable. Thereby, the gap 22 between the porous sheets 21 widens due to the surface tension of the liquid W2. The size of the gap 22 can be determined by the previously mentioned dimensions D1 and D2. Compared to the case where two porous sheets 21 are fixed to the container 10 so that the gap 22 is formed, the size of the gap 22 can be made smaller more easily. By reducing the size of the gap 22, the capillary force can be increased. Therefore, the liquid W2 is transported more efficiently, and the heat transport capability of the vapor chamber 1A can be further improved.
(第2実施形態)
 次に、本発明に係る第2実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 図3は、第2実施形態に係るベーパーチャンバー1Bの製造過程を示す図である。具体的には、先述した加熱接合工程直前におけるベーパーチャンバー1Bの断面図である。図3に示すように、本実施形態では、各多孔質シート21の厚みの合計D1およびピラー11bと底板12aの距離D2について、D2-D1≦0が成立する。例えば、D2-D1の値は、-10~0μmであってもよい。
(Second embodiment)
Next, a second embodiment according to the present invention will be described, but the basic configuration is the same as that of the first embodiment. For this reason, the same reference numerals are assigned to the same configurations, the description thereof is omitted, and only the points of difference will be described.
FIG. 3 is a diagram showing the manufacturing process of the vapor chamber 1B according to the second embodiment. Specifically, it is a cross-sectional view of the vapor chamber 1B immediately before the heat bonding step described above. As shown in FIG. 3, in the present embodiment, D2−D1≦0 holds for the total thickness D1 of each porous sheet 21 and the distance D2 between the pillar 11b and the bottom plate 12a. For example, the value of D2-D1 may be -10 to 0 μm.
 ベーパーチャンバー1Aと同様に、ベーパーチャンバー1Bの製造は、加熱接合工程と、脱気工程と、注液工程と、の3つの工程を経て行われる。本実施形態のベーパーチャンバー1Bにおいて、先述の通りD2-D1≦0であるから、加熱接合工程は、第1シート21A(ウィック20)の上面がピラー11bと接した状態で開始される。加熱接合工程が開始されると、図4に示すように、トッププレート11には下向きの圧力がかかる。この圧力は、上側側壁部11cおよび下側側壁部12bによって受け止められる。したがって、上側側壁部11cには厚さ方向Zの圧力が作用するが、ピラー11bにはこのような圧力が作用しない。このため、厚さ方向Zにおけるピラー11bの熱膨張量は、上側側壁部11cの熱膨張量よりも大きくなる。 As with the vapor chamber 1A, the manufacture of the vapor chamber 1B is carried out through three processes: a heating bonding process, a degassing process, and a liquid injection process. In the vapor chamber 1B of the present embodiment, D2-D1≤0 as described above, so the heat bonding process is started with the upper surface of the first sheet 21A (wick 20) in contact with the pillar 11b. When the heat bonding process is started, downward pressure is applied to the top plate 11 as shown in FIG. This pressure is received by upper side wall portion 11c and lower side wall portion 12b. Therefore, although pressure in the thickness direction Z acts on the upper side wall portion 11c, such pressure does not act on the pillar 11b. Therefore, the amount of thermal expansion of the pillar 11b in the thickness direction Z is larger than the amount of thermal expansion of the upper side wall portion 11c.
 また、各多孔質シート21も熱膨張する。このように、ピラー11bの熱膨張量が上側側壁部11cの熱膨張量よりも大きく、各多孔質シート21も熱膨張することにより、ピラー11bが第1シート21Aを下方に押し潰す。言い換えると、第1シート21A(ウィック20)のうちピラー11bに接している部分のみが下方に向けて圧縮される。第1シート21Aの圧縮された箇所には曲げモーメントが生じるため、第1シート21Aの一部(圧縮された箇所の周囲)が上方に***して隙間22が形成される。第1実施形態と同様に、隙間22は液体流路として利用される。 In addition, each porous sheet 21 also thermally expands. Thus, the amount of thermal expansion of the pillars 11b is greater than the amount of thermal expansion of the upper side wall portion 11c, and each porous sheet 21 also thermally expands, so that the pillars 11b crush the first sheet 21A downward. In other words, only the portion of the first sheet 21A (wick 20) in contact with the pillar 11b is compressed downward. Since a bending moment is generated at the compressed portion of the first sheet 21A, a part of the first sheet 21A (surrounding the compressed portion) rises upward to form the gap 22. As shown in FIG. As in the first embodiment, the gap 22 is used as a liquid channel.
 脱気工程ではコンテナ10の内部の気圧が低下するため、コンテナ10には外気圧による圧縮力が生じる。本実施形態のベーパーチャンバー1Bにおいて、第1シート21A(ウィック20)はピラー11bによって圧縮されているため、ウィック20がピラー11bを介して上記の圧縮力を受ける。これにより、コンテナ10の変形を防止することができる。 Since the air pressure inside the container 10 decreases during the degassing process, a compressive force is generated in the container 10 due to the external air pressure. In the vapor chamber 1B of the present embodiment, since the first sheet 21A (wick 20) is compressed by the pillars 11b, the wick 20 receives the compressive force via the pillars 11b. Thereby, deformation of the container 10 can be prevented.
 脱気工程に次いで、注液工程が行われる。ここで、本実施形態のベーパーチャンバー1Bは、D2-D1≦0であるから、各多孔質シート21の厚みの合計であるD1の値を大きくとることができる。D1の値を大きくすることで、注液工程においてウィック20が保持できる液体W2の量を多くすることができる。ベーパーチャンバーが吸収・排出できる熱量はコンテナ10内部に注液された作動流体Wの物質量に依存する。したがって、D1の値を大きくすることで、コンテナ10内部に注液可能な作動流体Wの物質量を増やすことができ、これによりベーパーチャンバー1Bの許容熱量をより高めることができる。 After the degassing process, the injection process is performed. Here, in the vapor chamber 1B of the present embodiment, since D2-D1≤0, the value of D1, which is the sum of the thicknesses of the porous sheets 21, can be increased. By increasing the value of D1, it is possible to increase the amount of liquid W2 that the wick 20 can hold in the liquid injection process. The amount of heat that can be absorbed and discharged by the vapor chamber depends on the substance amount of the working fluid W injected inside the container 10 . Therefore, by increasing the value of D1, it is possible to increase the substance amount of the working fluid W that can be injected into the container 10, thereby further increasing the allowable heat amount of the vapor chamber 1B.
 以上説明したように、本実施形態のベーパーチャンバー1Bにおいて、コンテナ10は、互いに接合されたトッププレート11およびボトムプレート12を有し、トッププレート11は、上板11aと、上板11aからボトムプレート12に向けて突出する複数のピラー11bを有し、複数のピラー11bの間の隙間が蒸気流路Gであり、多孔質シート21の一部が複数のピラー11bによって圧縮されている。この構成によれば、コンテナ10にかかる圧縮力を多孔質シート21が受けることによって、コンテナ10が外気圧によって変形するのを防止できる。 As described above, in the vapor chamber 1B of the present embodiment, the container 10 has the top plate 11 and the bottom plate 12 that are joined to each other. 12, gaps between the plurality of pillars 11b are steam flow paths G, and a portion of the porous sheet 21 is compressed by the plurality of pillars 11b. According to this configuration, the compressive force applied to the container 10 is received by the porous sheet 21, thereby preventing the container 10 from being deformed by the external air pressure.
 以下、具体的な実施例を用いて、上記実施形態を説明する。なお、本発明は以下の実施例に限定されない。 The above embodiments will be described below using specific examples. In addition, the present invention is not limited to the following examples.
(比較例)
 第1方向Xにおける寸法は90mm、第2方向Yにおける寸法は56mm、厚さ方向Zにおける寸法は0.3mmのベーパーチャンバーを用意した。ウィック20として、Φ5μmの銅粉を焼結させた厚み80μmの多孔質シート21を、1枚用いた。
(Comparative example)
A vapor chamber having a dimension in the first direction X of 90 mm, a dimension in the second direction Y of 56 mm, and a dimension in the thickness direction Z of 0.3 mm was prepared. As the wick 20, one porous sheet 21 having a thickness of 80 μm and made by sintering copper powder having a diameter of 5 μm was used.
(実施例)
 第1実施形態のベーパーチャンバー1Aを用意した。各寸法は比較例と同一とした。ウィック20として、Φ5μmの銅粉を焼結させた厚み35μmの多孔質シート21を2枚用いた。2枚の多孔質シート21の間に、液体W2の表面張力によって隙間22が形成された。
(Example)
A vapor chamber 1A of the first embodiment was prepared. Each dimension was the same as in the comparative example. As the wick 20, two porous sheets 21 having a thickness of 35 μm and made by sintering copper powder having a diameter of 5 μm were used. A gap 22 was formed between the two porous sheets 21 due to the surface tension of the liquid W2.
 表1は、比較例および実施例のそれぞれに熱源Hを接し(図1参照)、測定点P1~P4におけるトッププレート11の温度を測定した結果である(図5参照)。測定点P1~P4は、第2方向Yにおけるコンテナ10の中央に配置した。また、第1方向Xにおいて隣り合う2つの測定点の間の間隔は、20mmとした。 Table 1 shows the results of measuring the temperature of the top plate 11 at measurement points P1 to P4 by contacting the heat source H to each of the comparative example and the example (see FIG. 1) (see FIG. 5). The measurement points P1 to P4 were arranged in the center of the container 10 in the second direction Y. FIG. In addition, the interval between two adjacent measurement points in the first direction X was set to 20 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 P1の温度と外気温との差が小さいことは、ベーパーチャンバーが、熱源Hから受け取った熱を低温側(P2~P4側)へと効率よく輸送できていることを意味する。言い換えれば、ベーパーチャンバーが高い熱輸送能力を有することを意味する。同様に、P1の温度とP4の温度の差が小さいことは、ベーパーチャンバーの温度勾配が小さく、ベーパーチャンバーの熱輸送能力が高いことを意味する。表1から、熱源Hの出力の大小や熱源Hの温度の高低に関わらず、比較例よりも実施例のほうが高い熱輸送能力を発揮できていることが確認できる。このように、ウィック20に複数の多孔質シート21を設け、多孔質シート21の間の隙間22を液体流路とすることによって、ベーパーチャンバーの熱輸送能力を向上させることができる。 The fact that the difference between the temperature of P1 and the outside air temperature is small means that the vapor chamber can efficiently transport the heat received from the heat source H to the low temperature side (P2 to P4 side). In other words, it means that the vapor chamber has a high heat transport capacity. Similarly, a small difference between the temperature of P1 and the temperature of P4 means that the temperature gradient of the vapor chamber is small and the heat transport capacity of the vapor chamber is high. From Table 1, it can be confirmed that regardless of the magnitude of the output of the heat source H and the temperature of the heat source H, the example exhibits a higher heat transport capacity than the comparative example. Thus, by providing the wick 20 with a plurality of porous sheets 21 and using the gaps 22 between the porous sheets 21 as liquid flow paths, the heat transport capability of the vapor chamber can be improved.
 なお、本発明の技術的範囲は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 It should be noted that the technical scope of the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention.
 例えば、前記実施形態においてコンテナ10は全体として直方体状に形成されていたが、例えば長円盤状であってもよいし、その他の形状であってもよい。
 また、前記実施形態の放熱モジュールはベーパーチャンバーであったが、その他の種類の放熱モジュールに対して前記実施形態を適用してもよい。具体的には、放熱モジュールは、コンテナ10としてパイプ(例えば銅管)を用いたヒートパイプであってもよい。この場合、パイプの内側に2枚以上の多孔質シート21を配置し、多孔質シート21の間に隙間22を形成することで、前記実施形態と同様の作用効果が得られる。あるいは、放熱モジュールは、いわゆるループヒートパイプ等であってもよい。
For example, although the container 10 in the above-described embodiment was formed in a rectangular parallelepiped shape as a whole, it may be in the shape of an oval disk, or in other shapes.
Moreover, although the heat dissipation module of the above embodiments is a vapor chamber, the above embodiments may be applied to other types of heat dissipation modules. Specifically, the heat dissipation module may be a heat pipe using a pipe (for example, a copper pipe) as the container 10 . In this case, by arranging two or more porous sheets 21 inside the pipe and forming a gap 22 between the porous sheets 21, the same effects as in the above embodiment can be obtained. Alternatively, the heat dissipation module may be a so-called loop heat pipe or the like.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。 In addition, it is possible to appropriately replace the components in the above-described embodiments with well-known components within the scope of the present invention, and the above-described embodiments and modifications may be combined as appropriate.
 1A、1B…ベーパーチャンバー(放熱モジュール) 10…コンテナ 11…トッププレート 11a…上板 11b…ピラー 12…ボトムプレート 21…多孔質シート 22…隙間 G…蒸気流路 W…作動流体 1A, 1B... Vapor chamber (radiation module) 10... Container 11... Top plate 11a... Top plate 11b... Pillar 12... Bottom plate 21... Porous sheet 22... Gap G... Vapor flow path W... Working fluid

Claims (4)

  1.  作動流体が封入されたコンテナと、
     前記コンテナ内に収容された少なくとも2枚の多孔質シートと、を備え、
     前記コンテナ内には蒸気流路が形成され、
     前記多孔質シートの間には、前記作動流体に毛管力を生じさせる隙間が形成されている、放熱モジュール。
    a container containing a working fluid;
    at least two porous sheets housed within the container;
    a steam flow path is formed in the container;
    The heat dissipation module, wherein gaps are formed between the porous sheets to cause the working fluid to exert a capillary force.
  2.  前記多孔質シートは、粉体の焼結体である、請求項1に記載の放熱モジュール。 The heat dissipation module according to claim 1, wherein the porous sheet is a sintered body of powder.
  3.  前記2枚の多孔質シートは相対移動可能である、請求項1または2に記載の放熱モジュール。 The heat dissipation module according to claim 1 or 2, wherein the two porous sheets are relatively movable.
  4.  前記コンテナは、互いに接合されたトッププレートおよびボトムプレートを有し、
     前記トッププレートは、上板と、前記上板から前記ボトムプレートに向けて突出する複数のピラーを有し、
     前記複数のピラーの間の隙間が前記蒸気流路であり、
     前記多孔質シートの一部が前記複数のピラーによって圧縮されている、請求項1から3のいずれか1項に記載の放熱モジュール。
    the container having a top plate and a bottom plate joined together;
    The top plate has a top plate and a plurality of pillars projecting from the top plate toward the bottom plate,
    gaps between the plurality of pillars are the steam channels;
    The heat dissipation module according to any one of claims 1 to 3, wherein a portion of said porous sheet is compressed by said plurality of pillars.
PCT/JP2022/001595 2021-03-29 2022-01-18 Heat dissipation module WO2022209164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021055457 2021-03-29
JP2021-055457 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022209164A1 true WO2022209164A1 (en) 2022-10-06

Family

ID=83458609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001595 WO2022209164A1 (en) 2021-03-29 2022-01-18 Heat dissipation module

Country Status (1)

Country Link
WO (1) WO2022209164A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3681843A (en) * 1970-03-06 1972-08-08 Westinghouse Electric Corp Heat pipe wick fabrication
JPS49116647A (en) * 1973-03-12 1974-11-07
JP2010151353A (en) * 2008-12-24 2010-07-08 Sony Corp Heat transport device, electronic apparatus, and method of manufacturing heat transport device
JP2020101296A (en) * 2018-12-19 2020-07-02 新光電気工業株式会社 Loop type heat pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3681843A (en) * 1970-03-06 1972-08-08 Westinghouse Electric Corp Heat pipe wick fabrication
JPS49116647A (en) * 1973-03-12 1974-11-07
JP2010151353A (en) * 2008-12-24 2010-07-08 Sony Corp Heat transport device, electronic apparatus, and method of manufacturing heat transport device
JP2020101296A (en) * 2018-12-19 2020-07-02 新光電気工業株式会社 Loop type heat pipe

Similar Documents

Publication Publication Date Title
CN110476033B (en) Vapor chamber
US10973151B2 (en) Vapor chamber
JP6741142B2 (en) Vapor chamber
US11359869B2 (en) Vapor chamber
US20130112376A1 (en) Heat pipe system
KR20180048972A (en) Vapor Chamber
US11740029B2 (en) Vapor chamber
CN104896983A (en) Manufacturing method of soaking plate with ultrathin foam silver as liquid absorbing core
WO2021256126A1 (en) Vapor chamber
CN112771344B (en) Vapor chamber
WO2022209164A1 (en) Heat dissipation module
WO2021157506A1 (en) Vapor chamber
WO2018198350A1 (en) Vapor chamber
US20230217631A1 (en) Vapor chamber
JP2021143809A (en) Vapor chamber and electronic device
JP2011247543A (en) Plate-like heat pipe structure and method for producing the same
JP7260062B2 (en) heat spreading device
JP7120494B1 (en) heat spreading device
WO2022025251A1 (en) Heat conduction member
WO2022025252A1 (en) Heat conduction member
WO2022025257A1 (en) Heat conducting member
WO2022025249A1 (en) Heat conduction member
WO2022025254A1 (en) Heat conduction member
JP7231121B2 (en) Porous body, heat dissipation structure and electronic device
WO2022107479A1 (en) Heat spreading device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779396

Country of ref document: EP

Kind code of ref document: A1