WO2022205911A1 - 一种液压***用防护液及其制备方法和应用 - Google Patents

一种液压***用防护液及其制备方法和应用 Download PDF

Info

Publication number
WO2022205911A1
WO2022205911A1 PCT/CN2021/128800 CN2021128800W WO2022205911A1 WO 2022205911 A1 WO2022205911 A1 WO 2022205911A1 CN 2021128800 W CN2021128800 W CN 2021128800W WO 2022205911 A1 WO2022205911 A1 WO 2022205911A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
weight
protective liquid
acid
hydraulic system
Prior art date
Application number
PCT/CN2021/128800
Other languages
English (en)
French (fr)
Inventor
侯建涛
沈栋
李善鹏
于光
薛永升
刘艺芳
赵昕楠
刘雪巍
尤秀全
于坤
张明坤
夏旗
李硕林
Original Assignee
煤炭科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 煤炭科学技术研究院有限公司 filed Critical 煤炭科学技术研究院有限公司
Publication of WO2022205911A1 publication Critical patent/WO2022205911A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/022Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/061Esters derived from boron

Definitions

  • the invention belongs to the technical field of hydraulic transmission medium, and specifically relates to a protective fluid for hydraulic systems, in particular, to a preparation method of the protective fluid for hydraulic systems, and furthermore, to the application of the protective fluid for hydraulic systems.
  • single hydraulic props are widely used in coal mines. At present, some single hydraulic props use clear water as the transmission medium, which easily leads to serious corrosion of single props and affects the supporting effect.
  • the fully mechanized mining hydraulic support which is also a coal mine underground hydraulic support equipment, has been widely used emulsified oil or concentrated liquid as the transmission medium. Since the transmission medium used for the external injection single hydraulic prop is a one-time consumable, it does not return liquid. In order to reduce the cost of coal per ton In order to reduce the discharge of waste liquid, the concentration of the transmission medium is required to be low.
  • the coal industry standard MT112.1-2006 clearly stipulates that when the external injection single hydraulic prop is working on the working face, the concentration of the transmission medium is 2%.
  • the present invention is made based on the inventor's discovery and understanding of the following facts and problems: some single pillars use clear water as the transmission medium, which can easily cause metal corrosion and damage to seals, and cannot provide effective protection.
  • Some single props that use emulsified oil or concentrated liquid for fully mechanized mining hydraulic supports as transmission medium.
  • emulsified oil As a mineral oil-based transmission medium, emulsified oil is not easy to degrade, and it is very easy to pollute the environment after the waste liquid is discharged.
  • emulsified oil belongs to a two-phase system and has poor stability. Especially at low concentration, it is easy to produce oil soap, which will block the system and affect the Pillar protection.
  • the concentrated liquid is a vegetable oil-based single-phase transmission medium
  • the stability is better than that of emulsified oil, but in the formula, anionic surfactants such as castor oil derivatives that are cheap and widely used are often used, which are easy to mix with calcium and magnesium in the solution water.
  • the ions form insoluble soaps
  • the EDTA complexing agent which can form a water-soluble complex with a large stability constant with metal ions such as calcium and magnesium ions, is introduced into the formula. Under the condition of liquid, EDTA can not completely complex the calcium and magnesium ions in the mixed liquid, resulting in the precipitation of soaps, performance attenuation and failure.
  • the present invention aims to solve one of the technical problems in the related art at least to a certain extent.
  • the embodiment of the present invention proposes a protective liquid for hydraulic systems, which has excellent rust resistance, stability, good adaptability of sealing materials and certain oiliness, and the use concentration is 1-2%, It can be used as a transmission medium for the long-term protection of the externally injected single hydraulic prop, and realize the support, lifting and other actions of the single prop and long-term metal corrosion inhibition.
  • a protective liquid for a hydraulic system comprises the following components: 24-33 parts by weight of boric acid glyceramide, 17-22 parts by weight of carboxylic acid alcohol amine salt, 1-2 parts by weight of sodium molybdate , 0.1-0.3 parts by weight of methylbenzotriazole, 8-12 parts by weight of glycerol and 30-50 parts by weight of water.
  • undecanedicarboxylic acid obtained by saponification of undecanedicarboxylic acid, octanoylglutamic acid and triethanolamine is used.
  • the complex of triethanolamine salt and octanoylglutamic acid triethanolamine salt is used as a rust inhibitor for metal corrosion inhibition.
  • Calcium and magnesium ions in the liquid water form insoluble soaps, and there is no need to add complexing agents; 2.
  • boric acid glyceramide, sodium molybdate and tolutriazole are compounded for synergistic use For metal protection, it has excellent corrosion inhibition performance for ferrous metals and non-ferrous metals when the concentration is 1-2%; 3.
  • the carboxylic acid alcohol amine salt complex in the protective liquid of the embodiment of the present invention can also be used as an oily agent, with The compound of boric acid glyceramide has good anti-friction performance and can effectively reduce equipment wear; 4.
  • the protective liquid of the embodiment of the present invention can be used in a concentration of 1-2% with mine water with a water hardness of 2000 mg/L, and the protection It lasts up to one and a half years, and its performance does not deteriorate. It can be used as a protective fluid for externally injected single hydraulic props.
  • the boric acid glyceramide is prepared by reacting 6-8 parts by weight of boric acid, 8-10 parts by weight of monoethanolamine and 10-15 parts by weight of glycerol.
  • the carboxylic acid alcoholamine salt comprises 13-16 parts by weight of triethanolamine salt of undecanedibasic acid and 4-6 parts by weight of octanoyl glutamic acid A complex of triethanolamine salts.
  • the undecanodibasic acid triethanolamine salt is prepared by saponification reaction of 5-7 parts by weight of undecanodibasic acid and 8-9 parts by weight of triethanolamine
  • the octanoyl glutamic acid triethanolamine salt is prepared by saponification reaction of 2-3 parts by weight of octanoyl glutamic acid and 2-3 parts by weight of triethanolamine.
  • the protective liquid for a hydraulic system according to an embodiment of the present invention, further includes at least one of a colorant, a defoaming agent or a bacteriostatic agent.
  • the colorant is fluorescent fruit green, and the added amount is 0.01-0.02 parts by weight; and/or the defoamer is water-based polyether, and the added amount is 0.05 -0.15 parts by weight; and/or, the bacteriostatic agent is isothiazolinone, and the added amount is 0.3-0.5 parts by weight.
  • the embodiment of the present invention also provides a method for preparing a protective liquid for a hydraulic system, which comprises the following steps:
  • step c mixing the boric acid glyceramide obtained in step a, the carboxylic acid alcohol amine salt compound obtained in step b, sodium molybdate, tolutriazole and process water, and stirring;
  • step d Add glycerol and the remaining raw materials in the designed proportion to the mixture obtained in step c, and stir to obtain a protective solution.
  • the saponification of undecanedicarboxylic acid, octanoylglutamic acid and triethanolamine is used to prepare the The compound of monocarbodibasic acid triethanolamine salt and octanoyl glutamic acid triethanolamine salt, the carboxylic acid alkanolamine salt compound is used as rust inhibitor for metal corrosion inhibition, which can make the protective liquid used at lower concentration , so that the protective liquid system is stable and does not delaminate, and the protective liquid will not form insoluble soaps with calcium and magnesium ions in the solution water, and there is no need to add a complexing agent; 2.
  • the boric acid glycerin is compounded Amide, sodium molybdate and methylbenzotriazole are used synergistically for metal protection, and have excellent corrosion inhibition performance for ferrous and non-ferrous metals when the concentration is 1-2%; 3.
  • the carboxylic acid alcohol amine salt complex prepared by saponification can also be used as an oily agent, compounded with boric acid glyceramide, has good friction reducing performance, and can effectively reduce equipment wear; It can be mixed with mine water with a hardness of 2000mg/L in a concentration of 1-2%.
  • the protection period is up to one and a half years, and the performance is not attenuated. It can be used as a protection liquid for external injection type single hydraulic prop.
  • the reaction temperature is 100-150° C., and the reaction time is 1-3 hours; and/or, in the step b , the saponification reaction temperature is 80-100 ° C, and the reaction time is 1-3 hours.
  • the embodiment of the present invention also provides an application of the protective liquid for a hydraulic system in an external injection type single hydraulic prop.
  • the protective liquid for a hydraulic system of the embodiment of the present invention can be used at a lower concentration of 1-2%, has a long protective period, and does not deteriorate in performance, and can be used as a protective liquid for an externally injected single hydraulic prop.
  • the use concentration of the protective liquid is 1-2%, in terms of mass.
  • a protective liquid for a hydraulic system comprises the following components: 24-33 parts by weight of boric acid glyceramide, 17-22 parts by weight of carboxylic acid alcohol amine salt, 1-2 parts by weight of sodium molybdate , 0.1-0.3 parts by weight of methylbenzotriazole, 8-12 parts by weight of glycerol and 30-50 parts by weight of water.
  • the undecanoyl glutamic acid triethanolamine salt and the octanoyl glutamic acid triethanolamine salt obtained by saponification of the undecanoyl glutamic acid, the octanoyl glutamic acid and the triethanolamine are used.
  • the compound is used as a rust inhibitor for metal corrosion inhibition, which can make the protective liquid used at a lower concentration, the system is stable, and does not delaminate, and the protective liquid will not form insoluble soaps with calcium and magnesium ions in the solution water.
  • boric acid glyceramide, sodium molybdate and methyl benzotriazole are compounded, which are used for metal protection synergistically.
  • the concentration is 1-2%, the Ferrous metals and non-ferrous metals have excellent corrosion inhibition performance;
  • the carboxylic acid alcohol amine salt complex in the protective solution of the embodiment of the present invention can also be used as an oily agent, compounded with boric acid glyceramide, has good friction reducing performance, and can effectively reduce Equipment wear;
  • the protective liquid of the embodiment of the present invention can be used in a concentration of 1-2% with mine water with a hardness of 2000 mg/L, the protective period is up to one and a half years, and the performance does not deteriorate, and can be used as an external injection type single hydraulic pressure Prop protection fluid.
  • the boric acid glyceramide is prepared by reacting 6-8 parts by weight of boric acid, 8-10 parts by weight of monoethanolamine and 10-15 parts by weight of glycerol. Adding boric acid glyceramide to the protective liquid of the embodiment of the present invention can make the protective liquid have the performance of reducing friction and reduce the wear of equipment, and it can further improve the corrosion inhibition performance of metals when it is compounded with the carboxylic acid alcohol amine salt compound. , The boric acid glyceramide has good fluidity, is convenient for material addition in the production process, is not easy to be hydrolyzed, exists stably in the aqueous solution, and will not degenerate and turbid.
  • the carboxylic acid alcoholamine salt comprises 13-16 parts by weight of triethanolamine salt of undecanedibasic acid and 4-6 parts by weight of octanoyl glutamic acid
  • the compound of triethanolamine salt preferably, the undecanodibasic acid triethanolamine salt is prepared by saponification reaction of 5-7 parts by weight of undecanodibasic acid and 8-9 parts by weight of triethanolamine
  • the octanoyl Glutamate triethanolamine salt is prepared by saponification reaction of 2-3 parts by weight of octanoyl glutamic acid and 2-3 parts by weight of triethanolamine.
  • a compound of undecanodibasic acid triethanolamine salt and octanoyl glutamic acid triethanolamine salt obtained by saponification of undecanodibasic acid, octanoyl glutamic acid and triethanolamine is added.
  • a compound of undecanodibasic acid triethanolamine salt and octanoyl glutamic acid triethanolamine salt obtained by saponification of undecanodibasic acid, octanoyl glutamic acid and triethanolamine is added.
  • the protective liquid can be used at a lower concentration, the system is stable and does not delaminate, and the carboxylic acid alcohol amine salt complex can also be used as an oily agent.
  • the anti-corrosion performance of metal, and the anti-friction performance are also improved, which can effectively reduce equipment wear.
  • the protective liquid further includes at least one of a colorant, a defoaming agent or a bacteriostatic agent; preferably, the colorant is fluorescent fruit green, and the Antifoaming agent water-based polyether, the bacteriostatic agent is isothiazolinone, further preferably, the added amount of the colorant is 0.01-0.02 parts by weight, and the added amount of the antifoaming agent is 0.05-0.15 parts by weight, so The added amount of the bacteriostatic agent is 0.3-0.5 parts by weight.
  • a colorant can also be added as required.
  • the bacteriostatic agent is preferably isothiazolinone, which can effectively inhibit the growth of microorganisms in the system and can be stored for a long time.
  • the embodiment of the present invention also provides a method for preparing a protective liquid for a hydraulic system, which comprises the following steps:
  • the reaction temperature is 100-150 ° C, and the reaction time is 1-3 hours;
  • the saponification reaction obtains the compound of undecanodibasic acid triethanolamine salt and octanoylglutamic acid triethanolamine salt
  • the saponification reaction temperature is 80-100 ° C, and the reaction time is 1-3 hours;
  • step c mixing the boric acid glyceramide obtained in step a, the carboxylic acid alcohol amine salt compound obtained in step b, sodium molybdate, tolutriazole and process water, and stirring;
  • step d Add glycerol and the remaining raw materials in the designed proportion to the mixture obtained in step c, and stir to obtain a protective solution.
  • the saponification of undecanodibasic acid, octanoylglutamic acid and triethanolamine is used to obtain undecanodibasic acid triethanolamine salt and octanoylglutamic acid
  • the complex of triethanolamine salt, the carboxylic acid alcoholamine salt complex is used as a rust inhibitor for metal corrosion inhibition, which can make the protective liquid used at a lower concentration, so that the protective liquid system is stable, does not delaminate, and the protective liquid does not It will form insoluble soaps and precipitate with calcium and magnesium ions in the solution water, and there is no need to add complexing agents; in the method of the embodiment of the present invention, boric acid glyceramide, sodium molybdate and tolutriazole are compounded for synergistic use.
  • the carboxylic acid alcohol amine salt complex prepared by saponification can also be used as an oily agent , compounded with boric acid glyceramide, it has good anti-friction performance and can effectively reduce equipment wear;
  • the protective liquid prepared by the method in the embodiment of the present invention can be used in a concentration of 1-2% with mine water with a hardness of 2000 mg/L , The protection period is up to one and a half years, and the performance is not attenuated. It can be used as a protective liquid for external injection type single hydraulic props.
  • the embodiment of the present invention also provides an application of a protective liquid for a hydraulic system in an external injection type single hydraulic prop, preferably, the protective liquid is used in a concentration of 1-2% by mass.
  • the protective liquid for a hydraulic system of the embodiment of the present invention can be used at a lower concentration of 1-2%, has a long protective period, and does not deteriorate in performance, and can be used as a protective liquid for an externally injected single hydraulic prop.
  • boric acid glyceramide get 6 parts by weight of boric acid, 9 parts by weight of monoethanolamine, 12 parts by weight of glycerol, mix in the reactor, and react at 130 ° C for 2 hours to prepare boric acid glyceramide;
  • step (1) boric acid glyceramide, the carboxylic acid alcohol amine salt complex prepared in the step (2), 1 part by weight of sodium molybdate, 0.01 part by weight of fluorescent fruit green, 0.2 part by weight of methylbenzotriazole and 43 parts by weight of process water, stirred at 40° C. for 1 hour;
  • the protective liquid prepared in this example was mixed with mine water with a hardness of 2000 mg/L to form a 1.2% solution for performance testing.
  • the cast iron drip test and anti-corrosion test were carried out. There was no rust on the cast iron, no rust on the 15 # steel bar, and no discoloration on the 65 # copper bar. %, it has excellent corrosion inhibition performance for ferrous and non-ferrous metals.
  • the stability test is carried out. There are no precipitates in room temperature stability, thermal stability and shock stability, and the stability is excellent.
  • boric acid glyceramide get 8 parts by weight of boric acid, 10 parts by weight of monoethanolamine, 15 parts by weight of glycerol, mix in the reactor, react at 130 ° C for 2 hours, prepare boric acid glyceramide;
  • carboxylic acid alcohol amine salt compound get 7 parts by weight of undecanedicarboxylic acid and 9 parts by weight of triethanolamine and 3 parts by weight of octanoyl glutamic acid and 3 parts by weight of triethanolamine, mix in the reactor,
  • the saponification reaction is carried out at 90° C. for 1.5 hours to prepare a complex of undecanodibasic acid triethanolamine salt and octanoyl glutamic acid triethanolamine salt;
  • step (1) boric acid glyceramide, the carboxylic acid alcohol amine salt complex prepared in the step (2), 1 part by weight of sodium molybdate, 0.02 part by weight of fluorescent fruit green, 0.3 part by weight of methylbenzotriazole and 31 parts by weight of process water, stirred at 40° C. for 1 hour;
  • the protective liquid prepared in this example was mixed with mine water with a hardness of 2000 mg/L to form a 1.0% solution for performance testing, and the testing conditions were the same as those in Example 1.
  • the cast iron drip test and anti-corrosion test were carried out. There was no rust on the cast iron, no rust on the 15 # steel bar, and no discoloration on the 65 # copper bar. %, it has excellent corrosion inhibition performance for ferrous and non-ferrous metals.
  • the stability test is carried out. There are no precipitates in room temperature stability, thermal stability and shock stability, and the stability is excellent.
  • the friction performance test was carried out, and the diameter of the wear scar of D 431N 10S was 0.33 mm.
  • boric acid glyceramide get 6 parts by weight of boric acid, 8 parts by weight of monoethanolamine, 10 parts by weight of glycerol, mix in the reactor, and react at 130 ° C for 2 hours to prepare boric acid glyceramide;
  • carboxylic acid alcohol amine salt compound get 5 parts by weight of undecanedicarboxylic acid and 8 parts by weight of triethanolamine and 2 parts by weight of octanoyl glutamic acid and 2 parts by weight of triethanolamine, mix in the reactor,
  • the saponification reaction is carried out at 90° C. for 1.5 hours to prepare a complex of undecanodibasic acid triethanolamine salt and octanoyl glutamic acid triethanolamine salt;
  • step (1) boric acid glyceramide, the carboxylic acid alcohol amine salt complex prepared in the step (2), 2 parts by weight of sodium molybdate, 0.01 part by weight of fluorescent fruit green, 0.2 part by weight of tolutriazole and 49 parts by weight of process water, stirred at 40° C. for 1 hour;
  • the protective liquid prepared in this example was mixed with mine water with a hardness of 2000 mg/L to form a 2.0% solution for performance testing, and the testing conditions were the same as those in Example 1.
  • the cast iron spot test and anti-corrosion test were carried out. There was no rust on the cast iron, no rust on the 15 # steel bar, and no discoloration on the 65 # copper bar. %, it has excellent corrosion inhibition performance for ferrous and non-ferrous metals.
  • the stability test is carried out. There are no precipitates in room temperature stability, thermal stability and shock stability, and the stability is excellent.
  • the friction performance test was carried out, and the diameter of the wear scar of D 431N 10S was 0.34 mm.
  • boric acid glyceramide get 7 parts by weight of boric acid, 9 parts by weight of monoethanolamine, 13 parts by weight of glycerol, mix in the reactor, react 2 hours at 130 DEG C, prepare boric acid glyceramide;
  • carboxylic acid alcohol amine salt compound get 6 parts by weight of undecanedicarboxylic acid and 9 parts by weight of triethanolamine and 2 parts by weight of octanoyl glutamic acid and 2 parts by weight of triethanolamine, mix in the reactor,
  • the saponification reaction is carried out at 90° C. for 1.5 hours to prepare a complex of undecanodibasic acid triethanolamine salt and octanoyl glutamic acid triethanolamine salt;
  • step (1) boric acid glyceramide, the carboxylic acid alcohol amine salt complex prepared in the step (2), 2 parts by weight of sodium molybdate, 0.01 part by weight of fluorescent fruit green, 0.2 part by weight of tolutriazole and 39 parts by weight of process water, stirred at 40° C. for 1 hour;
  • the protective liquid prepared in this example was mixed with mine water with a hardness of 2000 mg/L to form a 1.5% solution for performance testing, and the testing conditions were the same as those in Example 1.
  • the cast iron drip test and anti-corrosion test are carried out.
  • the cast iron has no rust
  • the 15 # steel rod has no rust
  • the 65 # copper rod has no discoloration.
  • the test shows that the protective liquid in this example is used at a concentration of 1.5 %, it has excellent corrosion inhibition performance for ferrous and non-ferrous metals.
  • the stability test is carried out. There are no precipitates in room temperature stability, thermal stability and shock stability, and the stability is excellent.
  • the friction performance test was carried out, and the diameter of the wear scar of D 431N 10S was 0.33 mm.
  • the method is the same as that of Example 1, except that the step of preparing the carboxylic acid alcohol amine salt complex in step (2) is cancelled, and the carboxylic acid alcohol amine salt added in step (3) is triethanolamine oleate.
  • the protective liquid prepared in Comparative Example 1 was mixed with mine water with a hardness of 2000 mg/L to form a 1.2% solution for performance testing, and the test conditions were the same as those in Example 1.
  • the cast iron drip test and anti-corrosion test of MT/T76-2011 standard the cast iron has no rust, the 15# steel rod has no rust, and the 65# copper rod has no discoloration.
  • the test shows that the protective liquid of Comparative Example 1 is used at a concentration of 1.2 %, it has excellent corrosion inhibition performance for ferrous and non-ferrous metals.
  • the stability test was carried out, and there were white precipitates in room temperature stability, thermal stability and shock stability.
  • the friction performance test was carried out, and the diameter of the wear scar of D 431N 10S was 0.32 mm.
  • step (2) does not add octanoyl glutamic acid, is specifically to get 8 parts by weight of undecanedicarboxylic acid and 11 parts by weight of triethanolamine, mix in reactor, 90
  • the saponification reaction is carried out at °C for 1.5 hours to prepare triethanolamine salt of undecanoic dibasic acid;
  • the protective liquid prepared in Comparative Example 2 was mixed with mine water with a hardness of 2000 mg/L to form a 1.2% solution for performance testing, and the test conditions were the same as those in Example 1.
  • the cast iron drip test and anti-corrosion test of MT/T76-2011 standard the cast iron is corroded, the 15 # steel rod is corroded, and the 65 # copper rod has no discoloration.
  • the stability test is carried out.
  • the appearance of room temperature stability, thermal stability and shock stability is uniform and transparent, and there is no precipitate.
  • the friction performance test was carried out, and the diameter of the wear scar of D 431N 10S was 0.34 mm.
  • step (2) does not add undecanedicarboxylic acid, is specifically to get 8 parts by weight of octanoyl glutamic acid and 11 parts by weight of triethanolamine, mix in the reactor, 90
  • the saponification reaction is carried out at °C for 1.5 hours to prepare octanoyl glutamic acid triethanolamine salt;
  • the protective liquid prepared in Comparative Example 3 was mixed with mine water with a hardness of 2000 mg/L to form a 1.2% solution for performance testing, and the test conditions were the same as those in Example 1.
  • the cast iron drip test and anti-corrosion test of MT/T76-2011 standard the cast iron has no rust, the 15 # steel rod has no rust, and the 65 # copper rod has no discoloration.
  • the stability test is carried out.
  • the appearance of room temperature stability, thermal stability and shock stability is uniform and transparent, and there is no precipitate.
  • the friction performance test was carried out, and the diameter of the wear scar of D 431N 10S was 0.37 mm.
  • step (1) is omitted to prepare boric acid glyceramide, and triethanolamine borate is added in step (3).
  • the protective liquid prepared in Comparative Example 4 was mixed with mine water with a hardness of 2000 mg/L to form a 1.2% solution for performance testing.
  • the cast iron has rust
  • the 15 # steel rod has no rust
  • the 65 # copper rod has no discoloration.
  • the stability test was carried out according to the MT/T76-2011 standard. After 7 days of room temperature stability test, the appearance was cloudy, and there were no precipitates in thermal stability and shock stability.
  • the friction performance test was carried out, and the diameter of the wear scar of D 431N 10S was 0.34 mm.
  • Comparative Example 1 oleic acid triethanolamine was used as the carboxylic acid alcohol amine salt. Although the anti-corrosion performance, antibacterial performance and friction performance were excellent, white precipitates appeared in the room temperature stability, thermal stability and shock stability tests.
  • the carboxylic acid alcohol amine salt only uses the undecanoic dibasic acid triethanolamine salt. Although room temperature stability, thermal stability, shock stability, antibacterial performance and friction performance are all excellent, but in terms of anti-corrosion performance, cast iron Pieces and 15 # steel rods are corroded.
  • the carboxylic acid alcohol amine salt only used octanoyl glutamic acid triethanolamine salt.
  • the protective liquid prepared in Examples 1-4 was prepared into a 1-2% solution by using mine water with a hardness of 2000 mg/L, the anti-corrosion performance, room temperature stability, thermal stability, shock stability, antibacterial performance and The friction performance can meet the requirements of hydraulic protective fluid, and the comprehensive performance is excellent. It can be used as the transmission medium of the external injection type single hydraulic prop.
  • the terms “one embodiment,” “some embodiments,” “example,” “specific example,” or “some examples” and the like mean a specific feature, structure, material, or description described in connection with the embodiment or example. Features are included in at least one embodiment or example of the invention. In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

一种液压***用防护液,其包括如下组分:24-33重量份的硼酸甘油酰胺、17-22重量份的羧酸醇胺盐、1-2重量份钼酸钠、0.1-0.3重量份甲基苯骈三氮唑、8-12重量份丙三醇和30-50重量份水;其中,所述硼酸甘油酰胺由硼酸、一乙醇胺和丙三醇反应制得;所述羧酸醇胺盐为包括13-16重量份的十一碳二元酸三乙醇胺盐和4-6重量份的辛酰谷氨酸三乙醇胺盐的复合物;防护液具有极好的防锈性、稳定性、良好的密封材料适应性以及一定的油性,使用浓度在1%~2%,能够作为传动介质用于外注式单体液压支柱的长效防护,实现单体支柱的支撑、升降等动作及金属长效缓蚀。

Description

一种液压***用防护液及其制备方法和应用
相关申请的交叉引用
本申请要求申请号为202110347762.9、申请日为2021年3月31日的中国专利申请的优先权和权益,上述中国专利申请的全部内容在此通过引用并入本申请。
技术领域
本发明属于液压传动介质技术领域,具体涉及一种液压***用防护液,特别地,还涉及该液压***用防护液的制备方法,更进一步地,还涉及该液压***用防护液的应用。
背景技术
随着采矿科学技术的快速发展,液压***的不断改进,对液压传动介质的性能提出了更高的要求。尤其是近年来相关环保法规的日趋严格,环境保护和人类健康成为全社会关注的焦点,产品废液的排放已成为煤矿面临的重大问题。
单体液压支柱作为煤矿巷道重要支护设备,广泛用于煤矿井下,目前,部分单体液压支柱使用清水作为传动介质,这就容易导致单体支柱锈蚀严重,影响支护效果。同为煤矿井下液压支护设备的综采液压支架已经大量应用乳化油或浓缩液作为传动介质,由于外注式单体液压支柱用传动介质为一次性消耗品,不回液,为了降低吨煤成本及减少废液排放,要求传动介质配液浓度较低,煤炭行业标准MT112.1-2006中明确规定外注式单体液压支柱在工作面工作时,传动介质的配液浓度为2%。在我国,综采液压支架用乳化油或浓缩液产品受缓蚀技术制约,一般是按使用浓度为5%设计配方,常规使用浓度为4%~5%,低浓度使用时,在防锈、稳定等性能上已不能满足使用要求,同时,矿井下部分单体支柱用于半永久支护,工作周期长,要求传动介质具有长效防护功能,性能不得衰减,因此,常规的乳化油或浓缩液并不能适用于单体支柱,急需开发一种能够用于外注式单体支柱的长效传动介质。
发明内容
本发明是基于发明人对以下事实和问题的发现和认识做出的:部分单体支柱用清水作为传动介质,极易造成金属锈蚀、密封件损坏,无法提供有效防护。也有部分单体支柱借用综采液压支架用乳化油或浓缩液作为传动介质。乳化油作为矿物油基传动介质,不易降解,废液排放后极易污染环境,且乳化油属于两相体系,稳定性差,特别是在低使用浓度 下,易产生油皂析出,堵塞***,影响支柱防护。浓缩液虽为植物油基单一相传动介质,稳定性优于乳化油,但配方中,多采用价格便宜、来源广泛的蓖麻油衍生物等阴离子型表面活性剂,易与配液水中的钙、镁离子生成不溶性皂类析出,在配方中引入能与钙、镁离子等金属离子形成稳定常数大、水溶性络合物的EDTA络合剂,在低配液浓度下,特别在特高硬水等配液条件下,EDTA并不能完全络合配液水中的钙、镁离子,从而造成皂类析出,性能衰减、失效。而要降低浓缩液的额定使用浓度,母液配方的有效成分含量就会成倍增加,相应溶剂大幅减少,从而导致体系不平衡而分层或溶质无法溶解,这一根本矛盾制约了浓缩液的性能。因此,常规的乳化油或浓缩液并不能适用于单体支柱。
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的实施例提出一种液压***用防护液,该防护液具有极好的防锈性、稳定性,良好的密封材料适应性以及一定的油性,使用浓度在1~2%,能够作为传动介质用于外注式单体液压支柱的长效防护,实现单体支柱的支撑、升降等动作及金属长效缓蚀。
根据本发明实施例的一种液压***用防护液,其包括如下组分:24-33重量份的硼酸甘油酰胺、17-22重量份的羧酸醇胺盐、1-2重量份钼酸钠、0.1-0.3重量份甲基苯骈三氮唑、8-12重量份丙三醇和30-50重量份水。
根据本发明实施例的液压***用防护液的优点和技术效果,1、本发明实施例中采用十一碳二元酸、辛酰谷氨酸和三乙醇胺皂化制得的十一碳二元酸三乙醇胺盐和辛酰谷氨酸三乙醇胺盐的复合物作为防锈剂,用于金属缓蚀,能够使防护液在较低浓度下使用,体系稳定,不分层,防护液不会与配液水中的钙、镁离子生成不溶性皂类析出,无需添加络合剂;2、本发明实施例的防护液中,复配硼酸甘油酰胺、钼酸钠和甲基苯骈三氮唑,协同用于金属防护,在使用浓度为1-2%时对黑色金属、有色金属具有优异的缓蚀性能;3、本发明实施例的防护液中羧酸醇胺盐复合物还可以作为油性剂,与硼酸甘油酰胺复配,具有良好的减摩性能,能够有效减少设备磨损;4、本发明实施例的防护液,能够同水质硬度达2000mg/L的矿井水配成1-2%浓度使用,防护期长达一年半,性能不衰减,能够用做外注式单体液压支柱的防护液。
根据本发明实施例的液压***用防护液,其中,所述硼酸甘油酰胺由6-8重量份硼酸、8-10重量份一乙醇胺和10-15重量份丙三醇反应制得。
根据本发明实施例的液压***用防护液,其中,所述羧酸醇胺盐为包括13-16重量份的十一碳二元酸三乙醇胺盐和4-6重量份的辛酰谷氨酸三乙醇胺盐的复合物。
根据本发明实施例的液压***用防护液,其中,所述十一碳二元酸三乙醇胺盐由5-7重量份十一碳二元酸和8-9重量份三乙醇胺皂化反应制得,所述辛酰谷氨酸三乙醇胺盐由2-3重量份辛酰谷氨酸和2-3重量份三乙醇胺皂化反应制得。
根据本发明实施例的液压***用防护液,其中,所述防护液还包括着色剂、消泡剂或抑菌剂中的至少一种。
根据本发明实施例的液压***用防护液,其中,所述着色剂为荧光果绿,加入量为0.01-0.02重量份;和/或,所述消泡剂为水性聚醚,加入量为0.05-0.15重量份;和/或,所述抑菌剂为异噻唑啉酮,加入量为0.3-0.5重量份。
本发明实施例还提供了一种液压***用防护液的制备方法,其包括如下步骤:
a、将设计配比的硼酸、一乙醇胺和丙三醇混合,反应制得硼酸甘油酰胺;
b、将设计配比的十一碳二元酸、辛酰谷氨酸和三乙醇胺混合,皂化反应制得十一碳二元酸三乙醇胺盐和辛酰谷氨酸三乙醇胺盐的复合物;
c、将步骤a制得的硼酸甘油酰胺、步骤b制得的羧酸醇胺盐复合物、钼酸钠、甲基苯骈三氮唑和工艺水混合,搅拌;
d、向步骤c得到的混合物中加入设计配比的丙三醇和剩余原料,搅拌得到防护液。
根据本发明实施例的液压***用防护液的制备方法的优点和技术效果,1、本发明实施例的方法中,采用十一碳二元酸、辛酰谷氨酸和三乙醇胺皂化制得十一碳二元酸三乙醇胺盐和辛酰谷氨酸三乙醇胺盐的复合物,该羧酸醇胺盐复合物作为防锈剂,用于金属缓蚀,能够使防护液在较低浓度下使用,使防护液体系稳定,不分层,防护液不会与配液水中的钙、镁离子生成不溶性皂类析出,无需添加络合剂;2、本发明实施例的方法中,复配硼酸甘油酰胺、钼酸钠和甲基苯骈三氮唑,协同用于金属防护,在使用浓度为1-2%时对黑色金属、有色金属具有优异的缓蚀性能;3、本发明实施例的方法中,皂化制得的羧酸醇胺盐复合物还可以作为油性剂,与硼酸甘油酰胺复配,具有良好的减摩性能,能够有效减少设备磨损;4、本发明实施例方法制得的防护液,能够同硬度达2000mg/L的矿井水配成1-2%浓度使用,防护期长达一年半,性能不衰减,能够用做外注式单体液压支柱的防护液。
根据本发明实施例的液压***用防护液的制备方法,其中,所述步骤a中,所述反应温度为100-150℃,反应时间为1-3小时;和/或,所述步骤b中,所述皂化反应温度为80-100℃,反应时间为1-3小时。
本发明实施例还提供了一种液压***用防护液在外注式单体液压支柱中的应用。本发明实施例的液压***用防护液,能够在1-2%的较低浓度下使用,防护期长,性能不衰减,能够用做外注式单体液压支柱的防护液。
根据本发明实施例的应用,其中,所述防护液使用浓度为1-2%,以质量计。
具体实施方式
下面详细描述本发明的实施例,所述实施例是示例性的,旨在用于解释本发明,而不 能理解为对本发明的限制。
根据本发明实施例的一种液压***用防护液,其包括如下组分:24-33重量份的硼酸甘油酰胺、17-22重量份的羧酸醇胺盐、1-2重量份钼酸钠、0.1-0.3重量份甲基苯骈三氮唑、8-12重量份丙三醇和30-50重量份水。
根据本发明实施例的液压***用防护液,采用十一碳二元酸、辛酰谷氨酸和三乙醇胺皂化制得的十一碳二元酸三乙醇胺盐和辛酰谷氨酸三乙醇胺盐的复合物作为防锈剂,用于金属缓蚀,能够使防护液在较低浓度下使用,体系稳定,不分层,防护液不会与配液水中的钙、镁离子生成不溶性皂类析出,无需添加络合剂;本发明实施例的防护液中,复配硼酸甘油酰胺、钼酸钠和甲基苯骈三氮唑,协同用于金属防护,在使用浓度为1-2%时对黑色金属、有色金属具有优异的缓蚀性能;本发明实施例的防护液中羧酸醇胺盐复合物还可以作为油性剂,与硼酸甘油酰胺复配,具有良好的减摩性能,能够有效减少设备磨损;本发明实施例的防护液,能够同硬度达2000mg/L的矿井水配成1-2%浓度使用,防护期长达一年半,性能不衰减,能够用做外注式单体液压支柱的防护液。
根据本发明实施例的液压***用防护液,其中,所述硼酸甘油酰胺由6-8重量份硼酸、8-10重量份一乙醇胺和10-15重量份丙三醇反应制得。本发明实施例的防护液中加入硼酸甘油酰胺,能够使防护液具有减少摩擦的性能,降低对设备的磨损,而且同羧酸醇胺盐复合物复配,能够进一步提升金属缓蚀性能,同时,硼酸甘油酰胺流动性好,方便生产过程中的物料投加,不易水解,水溶液中稳定存在,不会发生退变浑浊现象。
根据本发明实施例的液压***用防护液,其中,所述羧酸醇胺盐为包括13-16重量份的十一碳二元酸三乙醇胺盐和4-6重量份的辛酰谷氨酸三乙醇胺盐的复合物,优选地,所述十一碳二元酸三乙醇胺盐由5-7重量份十一碳二元酸和8-9重量份三乙醇胺皂化反应制得,所述辛酰谷氨酸三乙醇胺盐由2-3重量份辛酰谷氨酸和2-3重量份三乙醇胺皂化反应制得。。本发明实施例的防护液中,加入十一碳二元酸、辛酰谷氨酸和三乙醇胺皂化制得的十一碳二元酸三乙醇胺盐和辛酰谷氨酸三乙醇胺盐的复合物,不仅能在金属表面形成致密吸附保护膜,隔绝水中阴离子对金属的腐蚀,可以作为防锈剂,用于金属缓蚀,而且不会与配液水中的钙、镁离子生成不溶性皂类析出,无需添加络合剂,能够使防护液在较低浓度下使用,体系稳定,不分层,同时该羧酸醇胺盐复合物还能用作油性剂,同硼酸甘油酰胺复配,不仅提升了金属防腐蚀性能,而且还提升了减摩性能,能够有效减少设备磨损。
根据本发明实施例的液压***用防护液,其中,所述防护液还包括着色剂、消泡剂或抑菌剂中的至少一种;优选地,所述着色剂为荧光果绿,所述消泡剂水性聚醚,所述抑菌剂为异噻唑啉酮,进一步优选地,所述着色剂加入量为0.01-0.02重量份,所述消泡剂加入量为0.05-0.15重量份,所述抑菌剂加入量为0.3-0.5重量份。本发明实施例的防护液 中,根据需要还可以加入着色剂。本发明实施例中优选采用抑菌剂为异噻唑啉酮,可以有效抑制***微生物滋生,长效存储。
本发明实施例还提供了一种液压***用防护液的制备方法,其包括如下步骤:
a、将设计配比的硼酸、一乙醇胺和丙三醇混合,反应制得硼酸甘油酰胺,优选地,所述反应温度为100-150℃,反应时间为1-3小时;
b、将设计配比的十一碳二元酸、辛酰谷氨酸和三乙醇胺混合,皂化反应制得十一碳二元酸三一醇胺盐和辛酰谷氨酸三乙醇胺盐的复合物,优选地,皂化反应温度为80-100℃,反应时间为1-3小时;
c、将步骤a制得的硼酸甘油酰胺、步骤b制得的羧酸醇胺盐复合物、钼酸钠、甲基苯骈三氮唑和工艺水混合,搅拌;
d、向步骤c得到的混合物中加入设计配比的丙三醇和剩余原料,搅拌得到防护液。
根据本发明实施例的液压***用防护液的的制备方法,采用十一碳二元酸、辛酰谷氨酸和三乙醇胺皂化制得十一碳二元酸三乙醇胺盐和辛酰谷氨酸三乙醇胺盐的复合物,该羧酸醇胺盐复合物作为防锈剂,用于金属缓蚀,能够使防护液在较低浓度下使用,使防护液体系稳定,不分层,防护液不会与配液水中的钙、镁离子生成不溶性皂类析出,无需添加络合剂;本发明实施例的方法中,复配硼酸甘油酰胺、钼酸钠和甲基苯骈三氮唑,协同用于金属防护,在使用浓度为1-2%时对黑色金属、有色金属具有优异的缓蚀性能;本发明实施例的方法中,皂化制得的羧酸醇胺盐复合物还可以作为油性剂,与硼酸甘油酰胺复配,具有良好的减摩性能,能够有效减少设备磨损;本发明实施例方法制得的防护液,能够同硬度达2000mg/L的矿井水配成1-2%浓度使用,防护期长达一年半,性能不衰减,能够用做外注式单体液压支柱的防护液。
本发明实施例还提供了一种液压***用防护液在外注式单体液压支柱中的应用,优选地,所述防护液使用浓度为1-2%,以质量计。本发明实施例的液压***用防护液,能够在1-2%的较低浓度下使用,防护期长,性能不衰减,能够用做外注式单体液压支柱的防护液。
下面结合实施例详细描述本发明。
实施例1
(1)制备硼酸甘油酰胺:取6重量份硼酸、9重量份一乙醇胺、12重量份丙三醇,于反应釜中混合,130℃下反应2小时,制备得到硼酸甘油酰胺;
(2)制备羧酸醇胺盐复合物:取6重量份十一碳二元酸和8重量份三乙醇胺以及2重量份辛酰谷氨酸和3重量份三乙醇胺,于反应釜中混合,90℃下皂化反应1.5小时,制备得到十一碳二元酸三乙醇胺盐和辛酰谷氨酸三乙醇胺盐的复合物;
(3)将步骤(1)硼酸甘油酰胺、步骤(2)制备的羧酸醇胺盐复合物、1重量份钼酸钠、0.01重量份荧光果绿、0.2重量份甲基苯骈三氮唑和43重量份工艺用水,于40℃下搅拌1小时;
(4)再加入10重量份丙三醇、0.4重量份异噻唑啉酮、0.1重量份水性聚醚,搅拌30分钟,得到防护液。
将本实施例制得的防护液加硬度为2000mg/L的矿井水配置成1.2%的溶液进行性能测试。
依据MT/T76-2011标准进行铸铁点滴实验及防腐蚀实验,铸铁件无锈蚀,15 #钢棒无锈蚀、65 #铜棒无色变,试验表明,本实施例的防护液在使用浓度为1.2%时对黑色金属、有色金属缓蚀性能优异。
依据MT/T76-2011标准进行稳定性实验,室温稳定性、热稳定性、震荡稳定性均无析出物,稳定性优异。
采用德国舒美细菌测试片,在30℃环境下,进行微生物测定,21天菌落总数无变化。
进行摩擦性能测试,四球摩擦磨损试机实验,D 431N 10S磨斑直径为0.34mm,小于标准GB/T3142中的规定,D 431N 10S条件下不发生卡咬时的最大磨斑直径为0.35mm。
实施例2
(1)制备硼酸甘油酰胺:取8重量份硼酸、10重量份一乙醇胺、15重量份丙三醇,于反应釜中混合,130℃下反应2小时,制备得到硼酸甘油酰胺;
(2)制备羧酸醇胺盐复合物:取7重量份十一碳二元酸和9重量份三乙醇胺以及3重量份辛酰谷氨酸和3重量份三乙醇胺,于反应釜中混合,90℃下皂化反应1.5小时,制备得到十一碳二元酸三乙醇胺盐和辛酰谷氨酸三乙醇胺盐的复合物;
(3)将步骤(1)硼酸甘油酰胺、步骤(2)制备的羧酸醇胺盐复合物、1重量份钼酸钠、0.02重量份荧光果绿、0.3重量份甲基苯骈三氮唑和31重量份工艺用水,于40℃下搅拌1小时;
(4)再加入12重量份丙三醇、0.5重量份异噻唑啉酮、0.1重量份水性聚醚,搅拌30分钟,得到防护液。
将本实施例制得的防护液加硬度为2000mg/L的矿井水配置成1.0%的溶液进行性能测试,测试条件与实施例1相同。
依据MT/T76-2011标准进行铸铁点滴实验及防腐蚀实验,铸铁件无锈蚀,15 #钢棒无锈蚀、65 #铜棒无色变,试验表明,本实施例的防护液在使用浓度为1.0%时对黑色金属、有色金属缓蚀性能优异。
依据MT/T76-2011标准进行稳定性实验,室温稳定性、热稳定性、震荡稳定性均无析出物,稳定性优异。
采用德国舒美细菌测试片,在30℃环境下,进行微生物测定,21天菌落总数无变化。
进行摩擦性能测试,D 431N 10S磨斑直径为0.33mm。
实施例3
(1)制备硼酸甘油酰胺:取6重量份硼酸、8重量份一乙醇胺、10重量份丙三醇,于反应釜中混合,130℃下反应2小时,制备得到硼酸甘油酰胺;
(2)制备羧酸醇胺盐复合物:取5重量份十一碳二元酸和8重量份三乙醇胺以及2重量份辛酰谷氨酸和2重量份三乙醇胺,于反应釜中混合,90℃下皂化反应1.5小时,制备得到十一碳二元酸三乙醇胺盐和辛酰谷氨酸三乙醇胺盐的复合物;
(3)将步骤(1)硼酸甘油酰胺、步骤(2)制备的羧酸醇胺盐复合物、2重量份钼酸钠、0.01重量份荧光果绿、0.2重量份甲基苯骈三氮唑和49重量份工艺用水,于40℃下搅拌1小时;
(4)再加入8重量份丙三醇、0.3重量份异噻唑啉酮、0.1重量份水性聚醚,搅拌30分钟,得到防护液。
将本实施例制得的防护液加硬度为2000mg/L的矿井水配置成2.0%的溶液进行性能测试,测试条件与实施例1相同。
依据MT/T76-2011标准进行铸铁点滴实验及防腐蚀实验,铸铁件无锈蚀,15 #钢棒无锈蚀、65 #铜棒无色变,试验表明,本实施例的防护液在使用浓度为2.0%时对黑色金属、有色金属缓蚀性能优异。
依据MT/T76-2011标准进行稳定性实验,室温稳定性、热稳定性、震荡稳定性均无析出物,稳定性优异。
采用德国舒美细菌测试片,在30℃环境下,进行微生物测定,21天菌落总数无变化。
进行摩擦性能测试,D 431N 10S磨斑直径为0.34mm。
实施例4
(1)制备硼酸甘油酰胺:取7重量份硼酸、9重量份一乙醇胺、13重量份丙三醇,于反应釜中混合,130℃下反应2小时,制备得到硼酸甘油酰胺;
(2)制备羧酸醇胺盐复合物:取6重量份十一碳二元酸和9重量份三乙醇胺以及2重量份辛酰谷氨酸和2重量份三乙醇胺,于反应釜中混合,90℃下皂化反应1.5小时,制备得到十一碳二元酸三乙醇胺盐和辛酰谷氨酸三乙醇胺盐的复合物;
(3)将步骤(1)硼酸甘油酰胺、步骤(2)制备的羧酸醇胺盐复合物、2重量份钼酸钠、0.01重量份荧光果绿、0.2重量份甲基苯骈三氮唑和39重量份工艺用水,于40℃下搅拌1小时;
(4)再加入10重量份丙三醇、0.4重量份异噻唑啉酮、0.1重量份水性聚醚,搅拌30分钟,得到防护液。
将本实施例制得的防护液加硬度为2000mg/L的矿井水配置成1.5%的溶液进行性能测试,测试条件与实施例1相同。
依据MT/T76-2011标准进行铸铁点滴实验及防腐蚀实验,铸铁件无锈蚀,15 #钢棒无锈蚀、65 #铜棒无色变,试验表明,本实施例的防护液在使用浓度为1.5%时对黑色金属、有色金属缓蚀性能优异。
依据MT/T76-2011标准进行稳定性实验,室温稳定性、热稳定性、震荡稳定性均无析出物,稳定性优异。
采用德国舒美细菌测试片,在30℃环境下,进行微生物测定,21天菌落总数无变化。
进行摩擦性能测试,D 431N 10S磨斑直径为0.33mm。
对比例1
与实施例1的方法相同,不同之处在于取消步骤(2)制备羧酸醇胺盐复合物的步骤,步骤(3)中加入的羧酸醇胺盐为油酸三乙醇胺。
将对比例1制得的防护液加硬度为2000mg/L的矿井水配置成1.2%的溶液进行性能测试,测试条件与实施例1相同。
依据MT/T76-2011标准的铸铁点滴实验及防腐蚀实验,铸铁件无锈蚀,15#钢棒无锈蚀、65#铜棒无色变,试验表明,对比例1的防护液在使用浓度为1.2%时对黑色金属、有色金属缓蚀性能优异。
依据MT/T76-2011标准进行稳定性实验,室温稳定性、热稳定性、震荡稳定性均有白色沉淀析出物。
采用德国舒美细菌测试片,在30℃环境下,进行微生物测定,21天菌落总数无变化。
进行摩擦性能测试,D 431N 10S磨斑直径为0.32mm。
对比例2
与实施例1的方法相同,不同之处在于步骤(2)不加入辛酰谷氨酸,具体为取8重量份十一碳二元酸和11重量份三乙醇胺,于反应釜中混合,90℃下皂化反应1.5小时,制备得到十一碳二元酸三乙醇胺盐;
将对比例2制得的防护液加硬度为2000mg/L的矿井水配置成1.2%的溶液进行性能测试,测试条件与实施例1相同。
依据MT/T76-2011标准的铸铁点滴实验及防腐蚀实验,铸铁件有锈蚀,15 #钢棒有锈蚀、65 #铜棒无色变。
依据MT/T76-2011标准进行稳定性实验,室温稳定性、热稳定性、震荡稳定性外观均一透明,无析出物。
采用德国舒美细菌测试片,在30℃环境下,进行微生物测定,21天菌落总数无变化。
进行摩擦性能测试,D 431N 10S磨斑直径为0.34mm。
对比例3
与实施例1的方法相同,不同之处在于步骤(2)不加入十一碳二元酸,具体为取8重量份辛酰谷氨酸和11重量份三乙醇胺,于反应釜中混合,90℃下皂化反应1.5小时,制备得到辛酰谷氨酸三乙醇胺盐;
将对比例3制得的防护液加硬度为2000mg/L的矿井水配置成1.2%的溶液进行性能测试,测试条件与实施例1相同。
依据MT/T76-2011标准的铸铁点滴实验及防腐蚀实验,铸铁件无锈蚀,15 #钢棒无锈蚀、65 #铜棒无色变。
依据MT/T76-2011标准进行稳定性实验,室温稳定性、热稳定性、震荡稳定性外观均一透明,无析出物。
采用德国舒美细菌测试片,在30℃环境下,进行微生物测定,21天菌落总数无变化。
进行摩擦性能测试,D 431N 10S磨斑直径为0.37mm。
对比例4
与实施例1的方法相同,不同之处在于,取消步骤(1)制备硼酸甘油酰胺,在步骤(3)中加入三乙醇胺硼酸酯。
将对比例4制得的防护液加硬度为2000mg/L的矿井水配置成1.2%的溶液进行性能测试。
依据MT/T76-2011标准的铸铁点滴实验及防腐蚀实验方法,铸铁件有锈蚀,15 #钢棒无锈蚀、65 #铜棒无色变。
依据MT/T76-2011标准进行稳定性实验,室温稳定性实验7天后外观浑浊,热稳定性及震荡稳定性无析出物。
采用德国舒美细菌测试片,在30℃环境下,进行微生物测定,21天菌落总数无变化。
进行摩擦性能测试,D 431N 10S磨斑直径为0.34mm。
对比例1中采用油酸三乙醇胺作为羧酸醇胺盐,虽然防腐性能、抗菌性能和摩擦性能表现优异,但室温稳定性、热稳定性、震荡稳定性测试中均出现白色沉淀析出物。对比例2中羧酸醇胺盐仅仅采用十一碳二元酸三乙醇胺盐,虽然室温稳定性、热稳定性、震荡稳 定性、抗菌性能和摩擦性能均表现优异,但在防腐性能上,铸铁件和15 #钢棒均出现锈蚀。对比例3中羧酸醇胺盐仅仅采用了辛酰谷氨酸三乙醇胺盐,虽然防腐性能、室温稳定性、热稳定性、震荡稳定性和抗菌性能表现优异,但是摩擦性能没有满足国标要求,超出了GB/T3142中的规定的D 431N 10S条件下不发生卡咬时的最大磨斑直径为0.35mm。对比例4中采用三乙醇胺硼酸酯替代实施例1中的硼酸甘油酰胺,虽然在热稳定性、震荡稳定性、抗菌性能和摩擦性能上能够满足要求,但在防腐测试中,铸铁件出现了锈蚀,室温稳定性实验中7后外观出现浑浊。而实施例1-4制得的防护液在采用硬度为2000mg/L的矿井水配置成1-2%的溶液后,在防腐性能、室温稳定性、热稳定性、震荡稳定性、抗菌性能和摩擦性能上均能满足对液压防护液的要求,综合性能表现优异,能够用作外注式单体液压支柱的传动介质。
在本发明中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种液压***用防护液,其特征在于,包括如下组分:24-33重量份的硼酸甘油酰胺、17-22重量份的羧酸醇胺盐、1-2重量份钼酸钠、0.1-0.3重量份甲基苯骈三氮唑、8-12重量份丙三醇和30-50重量份水。
  2. 根据权利要求1所述的液压***用防护液,其特征在于,所述硼酸甘油酰胺由6-8重量份硼酸、8-10重量份一乙醇胺和10-15重量份丙三醇反应制得。
  3. 根据权利要求1或2所述的液压***用防护液,其特征在于,所述羧酸醇胺盐为包括13-16重量份的十一碳二元酸三乙醇胺盐和4-6重量份的辛酰谷氨酸三乙醇胺盐的复合物。
  4. 根据权利要求3所述的液压***用防护液,其特征在于,所述十一碳二元酸三乙醇胺盐由5-7重量份十一碳二元酸和8-9重量份三乙醇胺皂化反应制得,所述辛酰谷氨酸三乙醇胺盐由2-3重量份辛酰谷氨酸和2-3重量份三乙醇胺皂化反应制得。
  5. 根据权利要求1-4中任一项所述的液压***用防护液,其特征在于,所述防护液还包括着色剂、消泡剂或抑菌剂中的至少一种。
  6. 根据权利要求5所述的液压***用防护液,其特征在于,所述着色剂为荧光果绿,加入量为0.01-0.02重量份;和/或,所述消泡剂为水性聚醚,加入量为0.05-0.15重量份;和/或,所述抑菌剂为异噻唑啉酮,加入量为0.3-0.5重量份。
  7. 一种权利要求1-6中任一项所述的液压***用防护液的制备方法,其特征在于,包括如下步骤:
    a、将设计配比的硼酸、一乙醇胺和丙三醇混合,反应制得硼酸甘油酰胺;
    b、将设计配比的十一碳二元酸、辛酰谷氨酸和三乙醇胺混合,皂化反应制得十一碳二元酸三乙醇胺盐和辛酰谷氨酸三乙醇胺盐的复合物;
    c、将步骤a制得的硼酸甘油酰胺、步骤b制得的羧酸醇胺盐复合物、钼酸钠、甲基苯骈三氮唑和工艺水混合,搅拌;
    d、向步骤c得到的混合物中加入设计配比的丙三醇和剩余原料,搅拌得到防护液。
  8. 根据权利要求7所述的液压***用防护液的制备方法,其特征在于,所述步骤a中,所述反应温度为100-150℃,反应时间为1-3小时;和/或,所述步骤b中,所述皂化反应温度为80-100℃,反应时间为1-3小时。
  9. 一种权利要求1-6中任一项所述的液压***用防护液在外注式单体液压支柱中的应用。
  10. 根据权利要求9所述的应用,其特征在于,所述防护液使用浓度为1-2%,以质量计。
PCT/CN2021/128800 2021-03-31 2021-11-04 一种液压***用防护液及其制备方法和应用 WO2022205911A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110347762.9A CN113061480B (zh) 2021-03-31 2021-03-31 一种液压***用防护液及其制备方法和应用
CN202110347762.9 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022205911A1 true WO2022205911A1 (zh) 2022-10-06

Family

ID=76564844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128800 WO2022205911A1 (zh) 2021-03-31 2021-11-04 一种液压***用防护液及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113061480B (zh)
WO (1) WO2022205911A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117901082A (zh) * 2024-03-07 2024-04-19 北京长源电力技术有限公司 一种抗辐射机械手

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070078068A1 (en) * 2004-02-05 2007-04-05 Niche Products Limited Hydraulic fluids
CN103450998A (zh) * 2012-05-30 2013-12-18 修建东 一种耐硬水全合成切削液及其制备方法
CN104277904A (zh) * 2014-09-25 2015-01-14 巢湖广丰金属制品有限公司 一种环保防锈水基切削液
CN104877749A (zh) * 2014-02-27 2015-09-02 上海德润宝特种润滑剂有限公司 蠕墨铸铁加工用水基切削液及其稀释液
CN105754698A (zh) * 2016-03-11 2016-07-13 东莞市纳晟润滑油科技有限公司 水溶性镁合金加工液
CN107529545A (zh) * 2017-06-30 2018-01-02 煤炭科学技术研究院有限公司 一种用于煤矿井下液压***的水‑乙醇型难燃液压液及其制备方法
CN107699139A (zh) * 2017-11-03 2018-02-16 辽宁宝瑞科技有限公司 一种水基环保防锈型超精研液组合物及制备和使用方法
WO2018200115A1 (en) * 2017-04-26 2018-11-01 Globaltech Fluids, Llc An additive composition for hydraulic fluids or heat transfer fluids
CN108774574A (zh) * 2018-04-08 2018-11-09 清华大学天津高端装备研究院 一种全合成水基防锈复合剂及其评价方法和应用
CN109181836A (zh) * 2018-05-30 2019-01-11 中国船舶重工集团公司第七八研究所 一种液压支架用防冻液压液

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313837A (en) * 1980-05-02 1982-02-02 Amax, Inc. Using molybdates to inhibit corrosion in water-based metalworking fluids
CN1132917C (zh) * 2001-01-05 2003-12-31 中国石油化工股份有限公司 一种润滑油添加剂
CN102010780B (zh) * 2010-10-28 2013-01-09 天津大学 一种粘度可控型水基润滑液及应用
CN103740440B (zh) * 2013-12-18 2015-11-18 洛阳轴研科技股份有限公司 一种合成液压支架液压液缓蚀剂的配置方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070078068A1 (en) * 2004-02-05 2007-04-05 Niche Products Limited Hydraulic fluids
CN103450998A (zh) * 2012-05-30 2013-12-18 修建东 一种耐硬水全合成切削液及其制备方法
CN104877749A (zh) * 2014-02-27 2015-09-02 上海德润宝特种润滑剂有限公司 蠕墨铸铁加工用水基切削液及其稀释液
CN104277904A (zh) * 2014-09-25 2015-01-14 巢湖广丰金属制品有限公司 一种环保防锈水基切削液
CN105754698A (zh) * 2016-03-11 2016-07-13 东莞市纳晟润滑油科技有限公司 水溶性镁合金加工液
WO2018200115A1 (en) * 2017-04-26 2018-11-01 Globaltech Fluids, Llc An additive composition for hydraulic fluids or heat transfer fluids
CN107529545A (zh) * 2017-06-30 2018-01-02 煤炭科学技术研究院有限公司 一种用于煤矿井下液压***的水‑乙醇型难燃液压液及其制备方法
CN107699139A (zh) * 2017-11-03 2018-02-16 辽宁宝瑞科技有限公司 一种水基环保防锈型超精研液组合物及制备和使用方法
CN108774574A (zh) * 2018-04-08 2018-11-09 清华大学天津高端装备研究院 一种全合成水基防锈复合剂及其评价方法和应用
CN109181836A (zh) * 2018-05-30 2019-01-11 中国船舶重工集团公司第七八研究所 一种液压支架用防冻液压液

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117901082A (zh) * 2024-03-07 2024-04-19 北京长源电力技术有限公司 一种抗辐射机械手

Also Published As

Publication number Publication date
CN113061480B (zh) 2022-09-20
CN113061480A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
US4390439A (en) Water-based hydraulic fluids having improved lubricity and corrosion inhibiting properties employing neodecanoic acid
US4493780A (en) Water-based hydraulic fluids having improved lubricity and corrosion inhibiting properties
CN102747359B (zh) 环保型水基防锈剂
WO2022205911A1 (zh) 一种液压***用防护液及其制备方法和应用
CN102296295B (zh) 一种复合膜水性防锈剂
CN104531323A (zh) 不含亚硝酸盐快速生物降解矿山支架用浓缩液及制备方法
CN103088352B (zh) 一种含磷硼酸除锈防锈剂
CN110699692A (zh) 一种双缩合希夫碱酸化缓蚀剂、制备方法及其应用
CN110791364A (zh) 一种高抗硬水型水乙二醇抗燃液压液及其制备方法
CN103865623B (zh) 一种多功能无毒水基防锈切割液
CN108440415B (zh) 一种油溶性双咪唑啉衍生物缓蚀剂及其制备方法和用途
CN105154174A (zh) 一种用于液压支架液压液的高效复合缓蚀剂及应用
CN108301002A (zh) 一种钢材缓蚀剂及其制备方法
CN111704954A (zh) 水溶性玻璃磨削液及其制备方法
CN101200803A (zh) 防锈液及其加工方法
CN101161868A (zh) 一种高浓缩气化性防锈液的制备方法
CN103132081A (zh) 一种水溶性铜缓蚀剂的制备方法
CN110776878B (zh) 一种环境友好型高沸点能量交换介质及其制备方法
CN114774924A (zh) 一种不含氨氮的黑色金属水溶性缓蚀剂及其制备方法
CN111040827B (zh) 一种有机羧酸复配剂、制备方法及钢板水基加工液
CN111088096B (zh) 一种氧化石墨烯接枝改性油酸皂、液压支架用浓缩液以及制备方法和应用
CN103450998A (zh) 一种耐硬水全合成切削液及其制备方法
CN102604718A (zh) 环保型水溶性非油金属防锈润滑剂
CN115851364B (zh) 浓缩液及其制备方法和应用
CN114806529B (zh) 一种溶垢助溶剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934547

Country of ref document: EP

Kind code of ref document: A1