WO2022205721A1 - 一种基于直接扩谱时分复用的光传输装置及方法 - Google Patents

一种基于直接扩谱时分复用的光传输装置及方法 Download PDF

Info

Publication number
WO2022205721A1
WO2022205721A1 PCT/CN2021/110309 CN2021110309W WO2022205721A1 WO 2022205721 A1 WO2022205721 A1 WO 2022205721A1 CN 2021110309 W CN2021110309 W CN 2021110309W WO 2022205721 A1 WO2022205721 A1 WO 2022205721A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
spread spectrum
optical
time division
module
Prior art date
Application number
PCT/CN2021/110309
Other languages
English (en)
French (fr)
Inventor
冯达
郁军伟
蒋伟进
Original Assignee
湖南工商大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南工商大学 filed Critical 湖南工商大学
Priority to US17/799,912 priority Critical patent/US12040887B2/en
Publication of WO2022205721A1 publication Critical patent/WO2022205721A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5167Duo-binary; Alternative mark inversion; Phase shaped binary transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]

Definitions

  • the invention belongs to the field of optical communication, and in particular relates to an optical transmission device and method based on direct spread spectrum time division multiplexing.
  • optical communication has become the preferred research object for data access networks, which can meet the increasing bandwidth requirements of data services.
  • the requirements for service quality have increased in addition to bandwidth, ultra-low latency, high Reliability, high availability and high security.
  • ultra-low latency combined with high data rate
  • only the new access network architecture can meet the communication delay of 100us for both uplink and downlink.
  • IoT access technology it must be as simple as possible, match the control function of the device to be connected, and be able to integrate with traditional data access technologies.
  • the spread spectrum technology can realize non-scheduling delay multiplexing, and there are applications combining spread spectrum and scheduling in many fields, including LoRa, NB-IoT, MC-CDMA, and CDMA-PON. Among them, the first three are used for commercial IoT access, and the last technology is researched and deployed.
  • LoRa can use chirp spread spectrum combined with scheduling to achieve low-power long-distance data access
  • NB-IoT can use OFDM single-carrier multi-slot or multi-carrier single-slot to complete high-performance data transmission
  • MC-CDMA can use OFDM combined with Spread spectrum improves performance
  • CDMA-PON can use multi-wavelength coding to solve the conflict of optical access.
  • Luca Leonardi introduced the optimization of LoRa in an article entitled “RT-LoRa: A Medium Access Strategy to Support Real-Time Flows Over LoRa-Based Networks for Industrial IoT Applications” in the 2019 Internet of Things Journal, while LoRa's CLASS -A/B/C service mode can meet the trade-off between real-time performance and power consumption through scheduling, which is extremely important as a power-constrained device.
  • Huikang Li introduced the optimization of NB-IoT in an article entitled “Enhancing the Performance of 802.15.4-Based Wireless Sensor Networks With NB-IoT” in the 2020 Internet of Things Journal, and the use of NB-IoT must be fully installed The high-speed OFDM module can ensure dynamic and high performance, but cannot guarantee low complexity.
  • the technical purpose of the present invention is to provide an optical transmission device and method based on direct spread spectrum time division multiplexing, so as to solve the technical problem of how to reduce the complexity of the access system and improve the practicability and efficiency of the transmission system.
  • the technical scheme of the present invention is:
  • An optical transmission device based on direct spread spectrum time division multiplexing comprises: a signal transmitting module and a signal receiving module;
  • the signal transmitting module and the signal receiving module are connected by optical fiber communication;
  • the signal transmitting module is used to receive the external data sequence signal, encode it into a direct spread spectrum time division multiplexed electrical signal, and modulate it into a direct spread spectrum time division multiplexed optical signal;
  • the signal receiving module is used to receive the direct spread spectrum time division multiplexed optical signal, and perform photoelectric conversion, analog despreading, analog-to-digital conversion, and clock recovery in sequence to obtain the data sequence signal;
  • the signal transmitting module includes a signal modulation sub-module, and the signal modulation sub-module is a raised cosine coding modulation sub-module or an improved duo-binary coding modulation sub-module, wherein the raised cosine coding and modulation sub-module is used to receive an external data sequence signal, and perform signal processing in turn.
  • the raised cosine electrical signal is obtained by spread spectrum and raised cosine coding
  • the improved duobinary coding modulation sub-module is used to receive the external data sequence signal, and then perform signal spread spectrum, positive and negative separation, and improved duobinary coding in turn to obtain the improved duobinary differential electrical signal .
  • the signal emission module further includes an electro-optical conversion sub-module, a first optical filter and an optical amplifier;
  • the electro-optical conversion sub-module is used to receive the direct spread spectrum time division multiplexed electrical signal and modulate it into a direct spread spectrum time division multiplexed optical signal;
  • the first optical filter is used for filtering the direct spread spectrum time division multiplexed optical signal
  • the optical amplifier is used to amplify the power of the filtered direct spread spectrum time division multiplexed optical signal.
  • the raised cosine coding modulation sub-module includes a spread spectrum coding unit, a spread spectrum sequence unit and a raised cosine coding unit;
  • the spread spectrum coding unit is used for receiving the external data sequence signal and the orthogonal pseudo-random sequence signal of the spread spectrum sequence unit to implement spread spectrum coding on the external data sequence signal to obtain the spread spectrum signal;
  • the raised cosine coding unit is used for receiving the spread spectrum signal and performing raised cosine coding to obtain a raised cosine electrical signal.
  • the improved duobinary coding modulation sub-module includes a spread spectrum coding unit, a spread spectrum sequence unit, a positive and negative splitting unit, a first improved duobinary coding unit and a second improved duobinary coding unit;
  • the spread spectrum coding unit is used for receiving the external data sequence signal and the orthogonal pseudo-random sequence signal of the spread spectrum sequence unit to implement spread spectrum coding on the external data sequence signal to obtain the spread spectrum signal;
  • the positive and negative splitting unit is used for receiving the spread spectrum signal and splitting it to obtain the direct spread spectrum time division multiplexing differential signal;
  • the first improved duobinary coding unit and the second improved duobinary coding unit are respectively used for receiving one signal in the direct spread spectrum time division multiplexing differential signal, and performing the improved duobinary coding to obtain the improved duobinary differential electrical signal.
  • the electro-optical conversion sub-module used for the raised cosine bias signal includes an electric amplifier and a V ⁇ /2 bias Macen light modulator;
  • the electric amplifier is used to receive the raised cosine electric signal and amplify the electric signal
  • the V ⁇ /2 bias Macen optical modulator is used to receive the raised cosine electrical signal after electrical amplification, and modulate it to obtain the raised cosine bias optical signal.
  • the electro-optical conversion sub-module used for improving the duobinary differential signal includes a first electro-amplifier, a second electro-amplifier, a first V ⁇ -biased Marzen optical modulator, and a second V ⁇ -biased Marzen optical modulator;
  • the first electrical amplifier and the second electrical amplifier are respectively used for receiving one signal of the improved duobinary differential electrical signal, and performing electrical amplification;
  • the first V ⁇ -bias Marzen optical modulator and the second V ⁇ bias Marzen optical modulator are respectively used for receiving the electrically amplified improved duobinary differential electrical signals output by the first electrical amplifier and the second electrical amplifier, and then converting them into optical signals , an improved duobinary differential optical signal is obtained.
  • the signal receiving module includes a second optical filter, a photodetector, an analog-to-digital converter and a digital signal processing sub-module;
  • the second optical filter and the first optical filter are used for analog multiplexing and demultiplexing to realize final optical filtering
  • the photodetector is used to receive the filtered direct spread spectrum time-division multiplexed optical signal and convert it into an electrical signal. Subtraction is required for the differential electrical signal;
  • the analog-to-digital converter is used to receive electrical signals and convert them into digital signals
  • the digital signal processing sub-module is used to perform clock recovery on the received digital signal to obtain a data sequence signal and upload it to the client.
  • a local sequence unit is also included, and the local sequence unit is used to provide a quadrature pseudo-random sequence signal, convert the electrical signal output by the photodetector into a despread electrical signal and send it to an analog-to-digital converter.
  • the positive and negative separation is carried out in turn, and the duobinary coding is improved to obtain the improved duobinary differential electrical signal;
  • the raised cosine bias optical signal is obtained through electro-optical conversion and optical bias in turn, and transmitted through the optical fiber;
  • the improved duobinary differential optical signal is obtained through electro-optical conversion, and transmitted through the optical fiber;
  • S4 The raised cosine biased optical signal or the improved duobinary differential optical signal received by the optical fiber, and photoelectric conversion, analog despreading, analog-to-digital conversion, and clock recovery are sequentially performed to obtain a data sequence signal and upload it to the client.
  • each time slot of time-division multiplexed downlink transmission uses unified chips, while uplink transmission uses interleaved chips.
  • Downlink transmission content includes broadcast data, multicast data and ranging request, while uplink transmission content includes data and ranging response.
  • the present invention has the following advantages and positive effects due to the adoption of the above technical solutions:
  • the present invention enables clock synchronization and phase synchronization between the destination node and the source node through direct spread spectrum downlink transmission, and supports dynamic ranging;
  • the present invention uses time division multiplexing, downlink time slots use unified chips, and uplink time slots use chip interleaving, thereby canceling the uplink transmission guard interval, reducing scheduling conflicts, realizing bidirectional byte interleaving transmission, and supporting ranging. Parallel transmission of responses and data;
  • the present invention adopts analog domain despreading at the receiving end to remove the damage introduced by transmission and improve the sensitivity.
  • the destination node and the source node can transmit data bidirectionally with high real-time performance, and at the same time, it can ensure the simplicity of the interface of the destination node. In other words, digital processing does not require line-rate equipment, thereby reducing the complexity of the access system.
  • FIG. 1 is a schematic structural diagram of an optical transmission device based on direct spread spectrum time division multiplexing according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of differential transmission of an improved duobinary differential optical signal according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a raised cosine bias optical signal transmission according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an uplink and downlink transmission sequence diagram of direct spread spectrum time division multiplexing according to an embodiment of the present invention
  • FIG. 5 is an effect diagram of a direct spread spectrum time division multiplexing downlink performance comparison test according to an embodiment of the present invention
  • FIG. 6 is an effect diagram of a direct spread spectrum time division multiplexing uplink performance comparison test according to an embodiment of the present invention
  • FIG. 7 is a schematic flowchart of an optical transmission method based on direct spread spectrum time division multiplexing according to an embodiment of the present invention.
  • 1 signal modulation sub-module
  • 2 electro-optical conversion sub-module
  • 31 first optical filter
  • 32 second optical filter
  • 4 optical amplifier
  • 5 photodetector
  • 6 digital signal processing sub-module
  • 7 coupler
  • optical transmission device and method based on direct spread spectrum time division multiplexing proposed by the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. The advantages and features of the present invention will become apparent from the following description and claims.
  • the present embodiment provides an optical transmission device based on direct spread spectrum time division multiplexing, including a signal transmitting module and a signal receiving module; the signal transmitting module and the signal receiving module are connected through optical fiber communication; the signal transmitting module is used for Receive the external data sequence signal, encode it into a direct spread spectrum time division multiplexed electrical signal, then modulate it into a direct spread spectrum time division multiplexed optical signal and output it; the signal receiving module is used to receive the direct spread spectrum time division multiplexed optical signal, and sequentially Perform photoelectric conversion, analog despreading, analog-to-digital conversion, and clock recovery to obtain a data sequence signal.
  • the signal transmission module includes: a signal modulation sub-module 1, an electro-optical conversion sub-module 2, a first optical filter 31, a coupler 7 and an optical amplifier 4, wherein the signal modulation sub-module 1 can be replaced, in this embodiment
  • the raised cosine coding modulation sub-module and the improved duobinary coding modulation sub-module are introduced.
  • the above-mentioned two signal modulation sub-modules 1 are mutually substituted, and the whole system uses non-return-to-zero code.
  • the electro-optical conversion sub-module 2 is used for receiving the direct spread spectrum time-division multiplexed electrical signal output by the signal modulation sub-module 1, and modulates the amplitude and phase of the direct spread spectrum time-division multiplexed optical signal and outputs it.
  • the first optical filter 31 is used to receive the direct spread spectrum time division multiplexed optical signal, filter it, and then output it; the first filter shapes the optical domain of the raised cosine biased optical signal or the improved duobinary differential optical signal.
  • the receiving end is provided with a second optical filter 32, which is used together with the first filter 31 as an analog multiplexing and demultiplexing device.
  • the coupler 7 is used for receiving the filtered direct spread spectrum time division multiplexed optical signal to realize the combination of multiple optical signals.
  • the optical amplifier 4 is used to receive the combined direct spread spectrum time division multiplexed optical signal, perform power amplification, and then output.
  • the improved duo-binary code modulation sub-module receives an external data sequence signal, and performs signal spread spectrum in turn, positive and negative separation , the improved duobinary code is improved and the duobinary differential electrical signal is output.
  • the improved duobinary coding modulation sub-module includes a spread spectrum coding unit, a spread spectrum sequence unit, a positive and negative splitting unit, a first improved duobinary coding unit and a second improved duobinary coding unit.
  • the input end of the spread spectrum coding unit receives the external data sequence signal and the orthogonal pseudo-random sequence signal such as the Gold sequence of the spread spectrum sequence unit respectively, so as to realize the spread spectrum coding for the external data sequence signal and obtain the spread spectrum signal.
  • the output end of the spread spectrum coding unit is signal-connected to the input end of the positive and negative splitting unit, and the positive and negative splitting unit receives the spread spectrum signal and splits it to obtain the direct spread spectrum time division multiplexing differential signal.
  • the output ends of the positive and negative splitting units are respectively connected with the input end of the first improved duobinary coding unit and the input end of the second improved duobinary coding unit, and the two improved duobinary coding units respectively receive the direct spread spectrum time division multiplexing.
  • One signal in the differential signal, and an improved duobinary coding is performed to obtain an improved duobinary differential electrical signal.
  • the improved duobinary code modulation sub-module Due to the use of the improved duobinary code modulation sub-module, a specific electro-optical conversion sub-module 2 is required correspondingly, and the above-mentioned electro-optical conversion sub-module 2 includes a first electric amplifier, a second electric amplifier, a first V ⁇ -bias Marzen optical modulator and The second V ⁇ biased Macen light modulator.
  • the first electrical amplifier and the second electrical amplifier are respectively connected with the first improved duobinary coding unit and the second improved duobinary coding unit, for receiving a signal of the improved duobinary differential electrical signal, and performing electrical amplification and outputting;
  • the first V ⁇ -biased Marzen optical modulator and the second V ⁇ -biased Marzen optical modulator are respectively connected to the first electric amplifier and the second electric amplifier, and are used for receiving the improved duobinary differential electric signal after the electric amplification, through the external signal.
  • the modulated laser electrical signal is converted into an optical signal and its amplitude and phase are controlled to obtain an improved duobinary differential optical signal and output. Since the V ⁇ -biased Marzen optical modulator has a zero-bias function, the optical signal can be modulated with positive and negative phases to reduce the amplitude of the modulated and output optical signal.
  • the raised cosine coding modulation submodule when the signal modulation submodule 1 is a raised cosine coding modulation submodule, the raised cosine coding modulation submodule is used to receive an external data sequence signal, and perform signal spreading in turn, and raised cosine coding obtains raised cosine.
  • the electrical signal is output; wherein, the raised cosine coding modulation sub-module includes a spread spectrum coding unit, a spread spectrum sequence unit and a raised cosine coding unit;
  • the spread spectrum coding unit of the raised cosine code modulation sub-module is used to receive the external data sequence signal and the orthogonal pseudo-random sequence signal of the spread spectrum sequence unit, such as the Gold sequence, to detect the external data.
  • the sequence signal realizes spread-spectrum coding to obtain a spread-spectrum signal.
  • the input end of the raised cosine coding unit is signal-connected to the output end of the spread spectrum coding unit, so as to receive the spread spectrum signal and perform raised cosine coding to obtain a raised cosine electrical signal.
  • the electro-optical conversion sub-module 2 here includes an electro-amplifier and a V ⁇ /2 -biased Marzen light modulator.
  • One end of the electric amplifier is connected to the signal of the output end of the raised cosine coding unit, which is used to receive the raised cosine electric signal, amplify the signal, and then output it;
  • the V ⁇ /2 bias Mazen light modulator is connected to the signal of the other end of the electric amplifier to receive
  • the raised cosine electrical signal after electrical amplification is modulated by an externally modulated laser, that is, through amplitude and phase adjustment, to obtain a raised cosine bias optical signal. Since the V ⁇ /2 biased Macen optical modulator has the function of quadrature bias, it can output positive amplitude optical signal.
  • the signal transmitting module of this embodiment has been described.
  • the signal transmitting module is interconnected by a single-mode fiber and an optical filter with a bandwidth of 12.5 GHz to transmit optical signals, and the signal receiving module performs signal reception.
  • the optical filter is the first optical filter. filter 31 and second optical filter 32 .
  • the signal receiving module includes a second optical filter 32 , a photodetector 5 , an analog-to-digital converter and a digital signal processing sub-module 6 .
  • the second optical filter 32 and the first optical filter 31 jointly simulate a multiplexing and demultiplexing device;
  • the photodetector 5 is used to receive the direct spread spectrum time division multiplexed optical signal output by the second optical filter 32, convert it into an electrical signal and output it; the photodetector may be a photodiode or an avalanche diode APD. After detection, if the signal is transmitted differentially, it needs to be subtracted to obtain the signal before the positive and negative split.
  • the analog-to-digital converter is signal-connected with the photodetector 5 for receiving the electrical signal of the photodetector 5, converting it into a digital signal and outputting it;
  • the digital signal processing sub-module 6 is used for receiving digital signals, and performing clock recovery to obtain data sequence signals and uploading them to the client.
  • the clock recovery can also be used in the process of analog-to-digital conversion of the analog electrical signal output by the photodetector, and the obtained clock is used to control the sampling point of the analog-to-digital conversion.
  • a local sequence unit is also included, and the local sequence unit is used to provide a quadrature pseudo-random sequence signal, convert the electrical signal output by the photodetector 5 into a despread electrical signal and send it to an analog-to-digital converter.
  • the spread spectrum signal can be obtained by spreading the original signal through the spreading sequence, and then positive and negative are separated, differentially transmitted and transmitted after channel coding, and finally detected at the receiving end, and subtracted.
  • the signal after spreading is restored, and the original signal is restored after despreading.
  • the spread spectrum signal after applying the raised cosine coding modulation sub-module, can spread the original signal through the spread spectrum sequence, then optically bias it, and transmit it after channel coding, and finally detect the spread spectrum signal at the receiving end. , the original signal is restored after despreading.
  • the present embodiment adopts the chip interleaving multiplexing protocol to distinguish uplink and downlink in the transmission process, uses unified chips in different downlink time slots, sends unicast data, broadcast data and ranging requests, and passes codes in different uplink time slots.
  • the chip interleaving multiplexes the transmitted data and the ranging response, thereby removing the uplink guard interval and realizing bidirectional byte interleaving transmission.
  • Downlink each destination uses one time slot, and there is a common broadcast time slot to support the destination's clock, phase synchronization and ranging request transmission, but all time slots use uniform chips.
  • the uplink uses one time slot for each destination, and can return ranging responses concurrently.
  • the ranging responses use broadcast time slots, but each time slot uses different chips.
  • the chip interleaving multiplexing protocol ensures high utilization of the link through the use of short chips.
  • the downlink performance test results of direct spread spectrum time division multiplexing show that the performance of the improved duobinary differential transmission is similar to that of raised cosine differential transmission, as well as raised cosine bias transmission.
  • the uplink performance test results of direct spread spectrum time division multiplexing show that the performance of improved duobinary differential transmission is similar to that of raised cosine differential transmission, as well as raised cosine biased transmission.
  • this embodiment provides a direct spread spectrum time division multiplexing-based optical transmission method based on Embodiment 1, and the method adopts the direct spread spectrum time division multiplexing based on any one of
  • the optical transmission device includes the following steps:
  • the raised cosine bias optical signal is obtained by electro-optical conversion based on the raised cosine electrical signal, and transmitted through the optical fiber;
  • an improved duobinary differential optical signal is obtained through electro-optical conversion, and transmitted through an optical fiber;
  • S4 The raised cosine biased optical signal or the improved duobinary differential optical signal received by the optical fiber, and photoelectric conversion, analog despreading, analog-to-digital conversion, and clock recovery are sequentially performed to obtain a data sequence signal and upload it to the client.
  • an optical transmission device based on direct spread spectrum time division multiplexing to realize high-speed signal high-real-time optical transmission
  • a signal transmitting module an optical fiber, and a signal receiving module
  • the signal transmitting module passes through the optical fiber. It is connected to the signal receiving module, wherein the modulation mode adopted by the signal transmitting module for the data sequence to be sent is direct spread spectrum time division multiplexing modulation.
  • the signal transmitting module pre-encodes the data sequence (random sequence) to be sent into a direct spread spectrum time division multiplexing electrical signal into its internal optical modulator, and then enters its internal optical filter to shape the signal in the optical domain, and then The shaped optical signal is amplified and transmitted through a 20-kilometer single-mode fiber, and the received laser signal passes through an optical filter to finally form an optical signal to be detected.
  • the optical filter can exist at the transmitting end and the receiving end at the same time, and is used for analog multiplexing and demultiplexing.
  • the optical signal with improved real-time performance based on direct spread spectrum time division multiplexing is directly detected, then undergoes clock recovery, despreads to remove the distortion caused by direct detection and transmission nonlinearity, and submits it to the upper layer for processing, such as FEC decoding.
  • the above process can be implemented using arbitrary waveform generators, lasers, electrical amplifiers, Marzen modulators, parametric fiber amplifiers, optical fibers, tunable optical filters, direct detection photocells, and sampling storage oscilloscopes.
  • this embodiment provides an optical transmission method based on direct spread spectrum time division multiplexing, which supports direct detection of optical signals, that is, square demodulation.
  • This embodiment adopts the direct spread spectrum modulation method.
  • the modulation method realizes raised cosine bias transmission coding and improved duobinary differential by biasing the Maszen optical modulator at the quadrature point, that is, V ⁇ /2 or the zero point, that is, V ⁇ , combined with precoding.
  • Transmission coding; in the signal receiving module, the received signal is despread to remove intersymbol interference and nonlinear distortion, and reduce the complexity of digital processing.
  • This embodiment approaches the sensitivity of direct detection to the range that can be achieved by photoelectric detection, while maintaining the real-time performance of the transceiver device, and is suitable for high real-time passive optical access.
  • byte interleaving transmission can reduce signal processing complexity and improve optical interface integration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种基于直接扩谱时分复用的光传输装置,包括:信号发射模块和信号接收模块;信号发射模块与信号接收模块之间通过光纤通信连接;信号发射模块用于接收外部的数据序列信号,编码为直接扩谱时分复用电信号,并调制为直接扩谱时分复用光信号然后输出;信号接收模块用于接收直接扩谱时分复用光信号,并依次进行光电转换、模拟解扩、模数转换、时钟恢复得到数据序列信号。本发明实现支持直接检测的直接扩谱调制;在接收端采用模拟域解扩去除传输引入损伤并提高灵敏度。通过时分复用协议对上下行方向码片交织配置以及动态测距实现字节交织传输,并且融合物联与控制数据,同时,支持实现低复杂度的接口,无需安装线速率的数字处理设备。

Description

一种基于直接扩谱时分复用的光传输装置及方法 技术领域
本发明属于光通信领域,尤其涉及一种基于直接扩谱时分复用的光传输装置及方法。
背景技术
近年来,光通信成为了数据接入网的首选研究对象,能满足数据业务日益增长的带宽要求,然而随着触觉互联网的提出,服务质量的需求除带宽外,增加了超低延时、高可靠性、高可用性以及高安全性。其中,在超低延时结合高数据率的需求下,只有全新的接入网架构才能上下行都满足100us的通信延时。同时,做为物联网接入技术,必须做到尽量简单,与待接入设备的控制功能匹配,也要能与传统数据接入技术融合。
通过扩频技术可以实现无调度延时复用,而且在多个领域有扩频与调度结合的应用,包括LoRa、NB-IoT、MC-CDMA、CDMA-PON。其中,商业物联网接入使用的有前三者,而最后一个技术有研究部署。LoRa可以使用啁啾扩频结合调度实现低功耗长距离的数据接入,NB-IoT可以使用OFDM的单载波多时隙或多载波单时隙完成高性能数据传输,MC-CDMA可以使用OFDM结合扩频提高性能,CDMA-PON可以使用多波长编码,解决光接入的冲突。Luca Leonardi在2019年Internet of Things Journal中题目为“RT-LoRa:A Medium Access Strategy to Support Real-Time Flows Over LoRa-Based Networks for Industrial IoT Applications”的文章中介绍了LoRa的优化,而LoRa的CLASS-A/B/C业务模式能通过调度满足实时性和功耗折中,做为功率受限设备后者极其重要。Huikang Li在2020年Internet of Things Journal中题目为“Enhancing the Performance of 802.15.4-Based Wireless Sensor Networks With NB-IoT”的文章中介绍了NB-IoT的优化,而NB-IoT的使用必须安装完整速率的OFDM模块,能保证动态性及高性能,无法保证低复杂度。You-Wei Chen在2017年Journal of Optical Communications and Networking 中题目为“MC-CDMA Enhanced LR-PON Using Widely Wavelength Lockable FPLD with Low Facet Reflectance”的文章中介绍了MC-CDMA的优化,而解扩需要先计算IFFT,提高复杂度,并且必须结合调度才能确定OFDM帧起始。Jing-Shiuan Lin在2016年Journal of Lightwave Technology中题目为“Study of Multicode-Keying Incoherent Optical CDMA without The Conventional Symbol-Synchronous Assumption”的文章中介绍了CDMA-PON的优化,必须使用多波长编码,提高器件复杂度,并且必须结合同步调度,减少冲突。
综上所述,如何降低接入***复杂度,同时保持传输***的实时性及减少功耗是当前需要解决的问题。
发明内容
本发明的技术目的是提供一种基于直接扩谱时分复用的光传输装置及方法,以解决如何降低接入***复杂度并提高传输***的实用性和效能性的技术问题。
为解决上述问题,本发明的技术方案为:
一种基于直接扩谱时分复用的光传输装置包括:信号发射模块和信号接收模块;
信号发射模块与信号接收模块之间通过光纤通信连接;
信号发射模块用于接收外部的数据序列信号,编码为直接扩谱时分复用电信号,并调制为直接扩谱时分复用光信号;
信号接收模块用于接收直接扩谱时分复用光信号,并依次进行光电转换、模拟解扩、模数转换、时钟恢复得到数据序列信号;
信号发射模块包括信号调制子模块,信号调制子模块为升余弦编码调制子模块或改进双二进制编码调制子模块,其中,升余弦编码调制子模块用于接收外部的数据序列信号,并依次进行信号扩谱、升余弦编码得到升余弦电信号,改进双二进制编码调制子模块用于接收外部的数据序列信号,并依次进行信号扩谱、正负分离、改进双二进制编码得到改进双二进制差分电信号。
进一步优选地,信号发射模块还包括电光转换子模块、第一光滤波器和光放大器;
电光转换子模块用于接收直接扩谱时分复用电信号,并调制为直接扩谱 时分复用光信号;
第一光滤波器用于将直接扩谱时分复用光信号进行滤波;
光放大器用于将滤波后的直接扩谱时分复用光信号进行功率放大。
其中,升余弦编码调制子模块包括扩谱编码单元、扩谱序列单元和升余弦编码单元;
扩谱编码单元用于接收外部的数据序列信号和扩谱序列单元的正交伪随机序列信号对外部的数据序列信号实现扩谱编码,得到扩谱信号;
升余弦编码单元用于接收扩谱信号进行升余弦编码,得到升余弦电信号。
其中,改进双二进制编码调制子模块包括扩谱编码单元、扩谱序列单元、正负拆分单元、第一改进双二进制编码单元和第二改进双二进制编码单元;
扩谱编码单元用于接收外部的数据序列信号和扩谱序列单元的正交伪随机序列信号对外部的数据序列信号实现扩谱编码,得到扩谱信号;
正负拆分单元用于接收扩谱信号并进行拆分得到直接扩谱时分复用差分信号;
第一改进双二进制编码单元和第二改进双二进制编码单元分别用于接收直接扩谱时分复用差分信号中的一路信号,并进行改进双二进制编码,得到改进双二进制差分电信号。
其中,升余弦偏置信号使用的电光转换子模块包括电放大器和V π/2偏置马曾光调制器;
电放大器用于接收升余弦电信号并进行信号电放大;
V π/2偏置马曾光调制器用于接收电放大后的升余弦电信号,并进行调制得到升余弦偏置光信号。
其中,改进双二进制差分信号使用的电光转换子模块包括第一电放大器、第二电放大器、第一V π偏置马曾光调制器和第二V π偏置马曾光调制器;
第一电放大器和第二电放大器分别用于接收改进双二进制差分电信号的一路信号,并进行电放大;
第一V π偏置马曾光调制器和第二V π偏置马曾光调制器分别用于接收第一电放大器和第二电放大器输出的电放大后的改进双二进制差分电信号,然后转化为光信号,得到改进双二进制差分光信号。
具体地,信号接收模块包括第二光滤波器、光电探测器、模数转换器和 数字信号处理子模块;
第二光滤波器与第一光滤波器用于模拟复用解复用器,实现最终光滤波;
光电探测器用于接收滤波后的直接扩谱时分复用光信号,并转换为电信号,对于差分的电信号需要实施减法运算;
模数转换器用于接收电信号,并转换为数字信号;
数字信号处理子模块用于对接收数字信号进行时钟恢复得到数据序列信号,并上传至客户端。
进一步优选地,还包括本地序列单元,本地序列单元用于提供正交伪随机序列信号,将光电探测器输出的电信号转换为解扩电信号并输送至模数转换器。
一种基于直接扩谱时分复用的光传输方法,应用于如上述任意一项的基于直接扩谱时分复用的光传输装置,包括如下步骤:
S1:将正交伪随机序列信号乘以接收的数据序列信号实现扩谱编码,得到扩谱信号;
S2:基于扩谱信号,进行升余弦编码得到升余弦电信号;
或基于扩谱信号,依次进行正负分离、改进双二进制编码得到改进双二进制差分电信号;
S3:基于升余弦电信号依次通过电光转换和光偏置得到升余弦偏置光信号,并通过光纤传输;
或基于改进双二进制差分电信号通过电光转换得到改进双二进制差分光信号,并通过光纤传输;
S4:经光纤接收得到的升余弦偏置光信号或改进双二进制差分光信号,并依次进行光电转换、模拟解扩、模数转换、时钟恢复得到数据序列信号并上传至客户端。
其中,时分复用的下行传输各时隙使用统一码片,而上行传输使用交织码片,下行传输内容包括广播数据、组播数据以及测距请求而上行传输内容包括数据以及测距应答。
本发明由于采用以上技术方案,使其与现有技术相比具有以下的优点和积极效果:
1)本发明通过直接扩谱下行传输使得目的节点能够与源节点时钟同步、 相位同步,以及支持动态测距;
2)本发明通过时分复用的使用,下行时隙使用统一码片,上行时隙使用码片交织,从而取消上行传输保护间隔,减少调度冲突,实现双向字节交织传输,同时可以支持测距响应与数据的并行传输;
3)本发明在接收端采用模拟域解扩去除传输引入损伤并提高灵敏度,通过双向字节交织传输使得目的节点与源节点能够双向高实时性的传输数据,同时,能够保证目的节点接口的简单性,也即数字处理无需线速率设备,从而降低接入***复杂度。
附图说明
通过阅读下文优选实施方式的详细描述,各种其它的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。
图1为本发明的一种实施例的基于直接扩谱时分复用的光传输装置的结构示意图;
图2为本发明的一种实施例的改进双二进制差分光信号差分传输示意图;
图3为本发明的一种实施例的升余弦偏置光信号传输示意图;
图4为本发明的一种实施例的直接扩谱时分复用的上下行传输时序示意图;
图5为本发明的一种实施例的直接扩谱时分复用下行性能比较试验效果图;
图6为本发明的一种实施例的直接扩谱时分复用上行性能比较试验效果图;
图7为本发明的一种实施例的基于直接扩谱时分复用的光传输方法的流程示意图。
附图标记说明
1:信号调制子模块;2:电光转换子模块;31:第一光滤波器;32:第二光滤波器;4:光放大器;5:光电探测器;6:数字信号处理子模块;7:耦合器。
具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对照附图说明本发明的具体实施方式。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,并获得其它的实施方式。
为使图面简洁,各图中只示意性地表示出了与本发明相关的部分,它们并不代表其作为产品的实际结构。另外,以使图面简洁便于理解,在有些图中具有相同结构或功能的部件,仅示意性地绘示了其中的一个,或仅标出了其中的一个。在本文中,“一个”不仅表示“仅此一个”,也可以表示“多于一个”的情形。
以下结合附图和具体实施例对本发明提出的一种基于直接扩谱时分复用的光传输装置及方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。
实施例1
参看图1,本实施例提供一种基于直接扩谱时分复用的光传输装置,包括信号发射模块和信号接收模块;信号发射模块与信号接收模块之间通过光纤通信连接;信号发射模块用于接收外部的数据序列信号,并编码为直接扩谱时分复用电信号,然后调制为直接扩谱时分复用光信号并输出;信号接收模块用于接收直接扩谱时分复用光信号,并依次进行光电转换、模拟解扩、模数转换、时钟恢复得到数据序列信号。
参看图1,现对本实施例的信号发射模块进行详细说明。具体地,信号发射模块包括:信号调制子模块1、电光转换子模块2、第一光滤波器31、耦合器7和光放大器4,其中,信号调制子模块1的可进行更换,本实施例中介绍升余弦编码调制子模块和改进双二进制编码调制子模块,上述两种信号调制子模块1互为替代关系,同时整个***使用非归零码。
电光转换子模块2用于接收信号调制子模块1输出的直接扩谱时分复用电信号,并调制直接扩谱时分复用光信号的幅度及相位并输出。
第一光滤波器31用于接收直接扩谱时分复用光信号,并进行滤波,然后输出;第一滤波器将升余弦偏置光信号或者改进双二进制差分光信号光域成 形。另外,接收端设有第二光滤波器32,与第一滤波器31共同用于模拟复用解复用器。
耦合器7用于接收滤波后的直接扩谱时分复用光信号实现多路光信号的合并。光放大器4用于接收合并后的直接扩谱时分复用光信号,并进行功率放大,然后输出。
具体地,参看图1和图2,当信号调制子模块1为改进双二进制编码调制子模块时,改进双二进制编码调制子模块接收外部的数据序列信号,并依次进行信号扩谱,正负分离,改进双二进制编码得到改进双二进制差分电信号并输出。其中,改进双二进制编码调制子模块包括扩谱编码单元、扩谱序列单元、正负拆分单元、第一改进双二进制编码单元和第二改进双二进制编码单元。
扩谱编码单元的输入端分别接收外部的数据序列信号和扩谱序列单元的正交伪随机序列信号如Gold序列,以对外部的数据序列信号实现扩谱编码,得到扩谱信号。
扩谱编码单元的输出端与正负拆分单元的输入端信号连接,正负拆分单元接收扩谱信号并进行拆分得到直接扩谱时分复用差分信号。
正负拆分单元的输出端分别与第一改进双二进制编码单元的输入端和第二改进双二进制编码单元的输入端信号连接,上述两个改进双二进制编码单元分别接收直接扩谱时分复用差分信号中的一路信号,并进行改进双二进制编码,得到改进双二进制差分电信号。
由于采用改进双二进制编码调制子模块,其相对应的需要特定的电光转换子模块2,上述电光转换子模块2包括第一电放大器、第二电放大器、第一V π偏置马曾光调制器和第二V π偏置马曾光调制器。第一电放大器和第二电放大器分别与第一改进双二进制编码单元和第二改进双二进制编码单元信号连接,用于接收得到改进双二进制差分电信号的一路信号,并进行电放大并输出;
第一V π偏置马曾光调制器和第二V π偏置马曾光调制器分别与第一电放大器和第二电放大器信号连接,用于接收经电放大后的改进双二进制差分电信号,通过外调制激光器电信号转化为光信号并控制其幅度及相位,得到改进双二进制差分光信号并输出。由于V π偏置马曾光调制器具有零偏置功能, 因此可以用正负相位调制光信号,以减小调制并输出的光信号的幅度。
参看图1和图3,当信号调制子模块1为升余弦编码调制子模块时,升余弦编码调制子模块用于接收外部的数据序列信号,并依次进行信号扩谱,升余弦编码得到升余弦电信号并输出;其中,升余弦编码调制子模块包括扩谱编码单元、扩谱序列单元和升余弦编码单元;
与改进双二进制编码调制子模块相同,升余弦编码调制子模块的扩谱编码单元用于接收外部的数据序列信号和扩谱序列单元的正交伪随机序列信号如Gold序列,以对外部的数据序列信号实现扩谱编码,得到扩谱信号。
升余弦编码单元的输入端与扩谱编码单元的输出端信号连接,以此接收扩谱信号进行升余弦编码,得到升余弦电信号。
由于采用升余弦编码调制子模块,其电光转换子模块2相应的作出调整。因此,此处的电光转换子模块2包括电放大器和V π/2偏置马曾光调制器。电放大器的一端与升余弦编码单元的输出端信号连接,用于接收升余弦电信号并进行信号放大,然后输出;V π/2偏置马曾光调制器与电放大器的另一端信号连接,以接收电放大后的升余弦电信号,并采用外调制激光器进行调制即通过幅度及相位调整,从而得到升余弦偏置光信号。由于V π/2偏置马曾光调制器具有正交偏置功能,可以输出正幅度的光信号。
综上,本实施例的信号发射模块已说明完毕,信号发射模块通过单模光纤以及带宽为12.5GHz的光滤波器互联进行光信号传输,信号接收模块进行信号接收,光滤波器即第一光滤波器31和第二光滤波器32。
参看图1,现对信号接收模块进行详细说明:
其中,信号接收模块包括第二光滤波器32、光电探测器5、模数转换器和数字信号处理子模块6。其中,第二光滤波器32与第一光滤波器31共同模拟复用解复用器;
光电探测器5用于接收第二光滤波器32输出的直接扩谱时分复用光信号,并转换为电信号并输出;该光探测器可以是光电二极管或者雪崩二极管APD。在检测之后,如果差分传输信号,需要相减获得正负拆分之前信号。
模数转换器与光电探测器5信号连接,用于接收光电探测器5的电信号,并转换为数字信号并输出;
数字信号处理子模块6用于接收数字信号,并进行时钟恢复得到数据序 列信号后上传至客户端。时钟恢复还可用于对光探测器输出的模拟电信号进行模数转换的过程中,将所得的时钟用于控制模数转换的采样点。
较优地,还包括本地序列单元,本地序列单元用于提供正交伪随机序列信号,将光电探测器5输出的电信号转换为解扩电信号并输送至模数转换器。
现对本实施例的信号实际变化以及性能测试进行详细说明。
参看图2,应用改进双二进制编码调制子模块后,扩谱信号可以通过扩谱序列将原始信号扩谱得到,然后正负分离,在信道编码后差分发送传输,最终在接收端检测,并且减法恢复扩谱后信号,解扩后恢复原始信号。
参看图3,应用升余弦编码调制子模块后,扩谱信号可以通过扩谱序列将原始信号扩谱,然后光偏置,并在信道编码后发送传输,最终在接收端检测得到扩谱后信号,解扩后恢复原始信号。
参看图4,本实施例采用码片交织复用协议在传输过程区分上下行,在下行不同时隙使用统一码片,发送单播数据、广播数据以及测距请求,在上行不同时隙通过码片交织复用发送数据以及测距应答,从而去掉上行保护间隔,实现双向字节交织传输。下行每个目的使用一个时隙,并且有公共的广播时隙,从而支持目的的时钟、相位同步和测距请求传输,但所有时隙使用统一码片。上行每个目的使用一个时隙,并且可以并发返回测距应答,该测距应答使用广播时隙,但每个时隙使用不同码片。由于上行时隙的码片交织,同一个时隙重叠的码片加上测距应答顶多3个,因此,码间串扰只需抑制3个,可以使用短码片。最终,码片交织复用协议通过短码片使用确保链路的高利用率。
参看图5,直接扩谱时分复用的下行性能测试结果表明,改进双二进制差分传输的性能和升余弦差分传输相近,也与升余弦偏置传输相近。
参看图6,直接扩谱时分复用的上行性能测试结果表明,改进双二进制差分传输的性能和升余弦差分传输相近,也与升余弦偏置传输相近。
实施例2
参看图7,本实施例提供一种基于实施例1的一种基于直接扩谱时分复用的光传输方法,该方法采用如实施例1中任意一项要求的基于直接扩谱时分复用的光传输装置,包括如下步骤:
S1:将正交伪随机序列信号输入至接收的数据序列信号实现扩谱编码,得到扩谱信号;
S2:基于扩谱信号,进行升余弦编码得到升余弦电信号;
或基于扩谱信号,依次进行正负分离,改进双二进制编码得到改进双二进制差分电信号;
S3:基于升余弦电信号通过电光转换得到升余弦偏置光信号,并通过光纤传输;
基于改进双二进制差分电信号通过电光转换得到改进双二进制差分光信号,并通过光纤传输;
S4:经光纤接收得到的升余弦偏置光信号或改进双二进制差分光信号,并依次进行光电转换、模拟解扩、模数转换、时钟恢复得到数据序列信号并上传至客户端。
现对本实施例进行说明:通过建立基于直接扩谱时分复用的光传输装置,实现高速信号高实时性光传输的,可概括为:信号发射模块、光纤、信号接收模块,信号发射模块通过光纤连接至信号接收模块,其中信号发射模块对待发送的数据序列采用的调制方式为直接扩谱时分复用调制。信号发射模块将待发送的数据序列(随机序列)经过预编码后成为直接扩谱时分复用电信号进入其内部的光调制器,随后进入其内部的光滤波器使信号在光域成形,随后成形的光信号在放大后通过20千米的单模光纤传输,而接收激光信号通过光滤波器最终形成待检测光信号。具体说明,光滤波器可以同时存在于发送端与接收端,用于模拟复用解复用器。
在信号接收模块,基于直接扩谱时分复用提高实时性的光信号被直接检测,随后经过时钟恢复,经解扩去除直检和传输非线性产生的失真,提交上层处理,如FEC解码。实际应用中,上述过程可采用任意波形生成器,激光器,电放大器,马曾调制器,参饵光纤放大器,光纤,可调光滤波器,直接检测光电管及采样存储示波器等器件实现。
综上,本实施例给出一种基于直接扩谱时分复用的光传输方法,支持光信号直接检测也即平方解调。本实施例采用直接扩谱调制方法,该调制方法通过在正交点也即Vπ/2或者零点也即Vπ偏置马曾光调制器,结合预编码,实现升余弦偏置传输编码和改进双二进制差分传输编码;在信号接收模块通 过解扩对收到信号去除码间串扰、非线性失真,并减少数字处理复杂度。本实施例将直检的灵敏度逼近到光电检测能实现的范围,同时保持收发设备的实时性,适合于高实时性无源光接入。另外,字节交织传输可以降低信号处理复杂度,提高光接口集成度。
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式。即使对本发明作出各种变化,倘若这些变化属于本发明权利要求及其等同技术的范围之内,则仍落入在本发明的保护范围之中。

Claims (10)

  1. 一种基于直接扩谱时分复用的光传输装置,其特征在于,包括:信号发射模块和信号接收模块;
    所述信号发射模块与所述信号接收模块之间通过光纤通信连接;
    所述信号发射模块用于接收外部的数据序列信号,编码为直接扩谱时分复用电信号,并调制为直接扩谱时分复用光信号;
    所述信号接收模块用于接收所述直接扩谱时分复用光信号,并依次进行光电转换、模拟解扩、模数转换、时钟恢复得到所述数据序列信号;
    所述信号发射模块包括信号调制子模块,所述信号调制子模块为升余弦编码调制子模块或改进双二进制编码调制子模块,其中,所述升余弦编码调制子模块用于接收外部的数据序列信号,并依次进行信号扩谱、升余弦编码得到升余弦电信号,所述改进双二进制编码调制子模块用于接收外部的数据序列信号,并依次进行信号扩谱、正负分离、改进双二进制编码得到改进双二进制差分电信号。
  2. 根据权利要求1所述的基于直接扩谱时分复用的光传输装置,其特征在于,所述信号发射模块还包括电光转换子模块、第一光滤波器和光放大器;
    所述电光转换子模块用于将所述直接扩谱时分复用电信号调制为直接扩谱时分复用光信号;
    所述第一光滤波器用于对所述直接扩谱时分复用光信号进行滤波;
    所述光放大器用于对滤波后的所述直接扩谱时分复用光信号进行功率放大。
  3. 根据权利要求1所述的基于直接扩谱时分复用的光传输装置,其特征在于,所述升余弦编码调制子模块包括扩谱编码单元、扩谱序列单元和升余弦编码单元;
    所述扩谱编码单元用于接收外部的数据序列信号和所述扩谱序列单元的正交伪随机序列信号对外部的数据序列信号实现扩谱编码,得到扩谱信号;
    所述升余弦编码单元用于接收所述扩谱信号进行升余弦编码,得到所述升余弦电信号。
  4. 根据权利要求1所述的基于直接扩谱时分复用的光传输装置,其特征 在于,所述改进双二进制编码调制子模块包括扩谱编码单元、扩谱序列单元、正负拆分单元、第一改进双二进制编码单元和第二改进双二进制编码单元;
    所述扩谱编码单元用于接收外部的数据序列信号和所述扩谱序列单元的正交伪随机序列信号对外部的数据序列信号实现扩谱编码,得到扩谱信号;
    所述正负拆分单元用于接收所述扩谱信号并进行拆分得到直接扩谱时分复用差分信号;
    所述第一改进双二进制编码单元和所述第二改进双二进制编码单元分别用于对所述直接扩谱时分复用差分信号中的一路信号进行改进双二进制编码,得到所述改进双二进制差分电信号。
  5. 根据权利要求3所述的基于直接扩谱时分复用的光传输装置,其特征在于,所述电光转换子模块包括电放大器和V π/2偏置马曾光调制器;
    所述电放大器用于接收所述升余弦电信号并进行信号电放大;
    所述V π/2偏置马曾光调制器用于接收电放大后的所述升余弦电信号,并进行调制得到升余弦偏置光信号。
  6. 根据权利要求4所述的基于直接扩谱时分复用的光传输装置,其特征在于,所述电光转换子模块包括第一电放大器、第二电放大器、第一V π偏置马曾光调制器和第二V π偏置马曾光调制器;
    所述第一电放大器和所述第二电放大器分别用于接收所述改进双二进制差分电信号的一路信号,并进行偏置放大;
    所述第一V π偏置马曾光调制器和所述第二V π偏置马曾光调制器分别用于将所述第一电放大器和所述第二电放大器输出的电放大后的所述改进双二进制差分电信号转化为光信号,得到改进双二进制差分光信号。
  7. 根据权利要求1至6任意一项所述的基于直接扩谱时分复用的光传输装置,其特征在于,所述信号接收模块包括第二光滤波器、光电探测器、模数转换器和数字信号处理子模块;
    所述第二光滤波器与第一光滤波器都用于模拟复用解复用器,实现最终光滤波;
    所述光电探测器用于接收滤波后的所述直接扩谱时分复用光信号,并转换为电信号,对于差分的电信号需要实施减法运算;
    所述模数转换器用于接收所述电信号,并转换为数字信号;
    所述数字信号处理子模块用于对接收所述数字信号进行时钟恢复得到所述数据序列信号,并上传至客户端。
  8. 根据权利要求7所述的基于直接扩谱时分复用的光传输装置,其特征在于,还包括本地序列单元,所述本地序列单元用于提供正交伪随机序列信号,将所述光电探测器输出的所述电信号转换为解扩电信号并输送至所述模数转换器。
  9. 一种基于直接扩谱时分复用的光传输方法,其特征在于,应用于如权利要求1至8任意一项所述的基于直接扩谱时分复用的光传输装置,包括如下步骤:
    S1:将正交伪随机序列信号乘以接收的数据序列信号实现扩谱编码,得到扩谱信号;
    S2:基于所述扩谱信号,进行升余弦编码得到升余弦电信号;
    或基于所述扩谱信号,依次进行正负分离、改进双二进制编码得到所述改进双二进制差分电信号;
    S3:基于所述升余弦电信号依次通过电光转换和光偏置得到升余弦偏置光信号,并通过光纤传输;
    或基于所述改进双二进制差分电信号通过电光转换得到改进双二进制差分光信号,并通过光纤传输;
    S4:经光纤接收得到的所述升余弦偏置光信号或所述改进双二进制差分光信号,并依次进行光电转换、模拟解扩、模数转换、时钟恢复得到所述数据序列信号并上传至客户端。
  10. 根据权利要求9所述的直接扩谱时分复用的光传输方法,其特征在于,所述时分复用的下行传输各时隙使用统一码片,上行传输各时隙使用交织码片,下行传输的内容包括广播数据、组播数据以及测距请求,上行传输内容包括数据以及测距应答。
PCT/CN2021/110309 2021-04-02 2021-08-03 一种基于直接扩谱时分复用的光传输装置及方法 WO2022205721A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/799,912 US12040887B2 (en) 2021-04-02 2021-08-03 Optical transmission device based on direct-sequence-spread-spectrum time-division-multiple-access and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110360706.9A CN115189715B (zh) 2021-04-02 2021-04-02 一种基于直接扩谱时分复用的光传输装置及方法
CN202110360706.9 2021-04-02

Publications (1)

Publication Number Publication Date
WO2022205721A1 true WO2022205721A1 (zh) 2022-10-06

Family

ID=83457871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110309 WO2022205721A1 (zh) 2021-04-02 2021-08-03 一种基于直接扩谱时分复用的光传输装置及方法

Country Status (3)

Country Link
US (1) US12040887B2 (zh)
CN (1) CN115189715B (zh)
WO (1) WO2022205721A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116819509A (zh) * 2023-08-28 2023-09-29 烟台初心航空科技有限公司 基于扩谱时域反射的雷达定位测距方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1413393A (zh) * 1999-12-21 2003-04-23 艾利森电话股份有限公司 码分多址接入通信***中对信息信号扩频和解扩的方法与装置
WO2005067188A2 (en) * 2004-01-08 2005-07-21 Matsushita Electric Industrial Co., Ltd. Delay waveguide and optical functional circuit using same
US20070196109A1 (en) * 2006-02-22 2007-08-23 Al-Chalabi Salah A Secure optical communication system
CN105075150A (zh) * 2013-03-22 2015-11-18 日本电信电话株式会社 光收发***、发送器、接收器以及光收发方法
CN112054977A (zh) * 2020-09-16 2020-12-08 湖南工商大学 一种基于功率谱整形的光传输方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7430257B1 (en) * 1998-02-12 2008-09-30 Lot 41 Acquisition Foundation, Llc Multicarrier sub-layer for direct sequence channel and multiple-access coding
US7349381B1 (en) * 2000-04-28 2008-03-25 Rockwell Collins Synchronization technique for spread spectrum frequency hopped data links and radios using the same
CN1813429B (zh) * 2003-07-16 2011-09-21 日本电信电话株式会社 使用光频率编码的光通信***、其光发送装置以及接收装置、反射型光通信装置
CN106508101B (zh) * 2006-09-21 2011-12-21 北京韦加航通科技有限责任公司 隐蔽抗干扰通信发射机和接收机
CN101534279B (zh) * 2009-04-10 2012-11-07 北京大学 直接序列扩频级联频域正交码分复用收发装置、方法及***
US9941974B2 (en) * 2015-12-21 2018-04-10 Zte Corporation Techniques for receiving DFT spreading modulation signals
US20200287671A1 (en) * 2016-03-04 2020-09-10 Nokia Solutions And Networks Oy Block-ifdma multiplexing scheme with flexible payload
CN113810116B (zh) * 2017-09-01 2023-02-03 华为技术有限公司 光信号传输***及光信号传输方法
CN109150308A (zh) * 2018-08-28 2019-01-04 南京邮电大学 一种多载波ds-cdma技术在可见光定位***中的应用方法
CN110601717B (zh) * 2019-09-16 2021-02-09 中国人民解放军军事科学院国防科技创新研究院 一种基于码分复用的通信与测距一体化***和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1413393A (zh) * 1999-12-21 2003-04-23 艾利森电话股份有限公司 码分多址接入通信***中对信息信号扩频和解扩的方法与装置
WO2005067188A2 (en) * 2004-01-08 2005-07-21 Matsushita Electric Industrial Co., Ltd. Delay waveguide and optical functional circuit using same
US20070196109A1 (en) * 2006-02-22 2007-08-23 Al-Chalabi Salah A Secure optical communication system
CN105075150A (zh) * 2013-03-22 2015-11-18 日本电信电话株式会社 光收发***、发送器、接收器以及光收发方法
CN112054977A (zh) * 2020-09-16 2020-12-08 湖南工商大学 一种基于功率谱整形的光传输方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAGLEENA BRUNO MARY, KUMAR SUJITH, V: "Performance Analysis of OTDM using PON in Direct and External Modulation", INTERNATIONAL JOURNAL OF SCIENCE AND RESEARCH, 28 February 2015 (2015-02-28), pages 402 - 406, XP055974121 *
ZHU YONG, ZHANG BAOFU, LI YUQUAN: "Spread Spectrum Codes Used in Fiber CDMA System", JOURNAL ON COMMUNICATIONS, vol. 20, 31 December 1999 (1999-12-31), pages 358 - 362, XP055974126 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116819509A (zh) * 2023-08-28 2023-09-29 烟台初心航空科技有限公司 基于扩谱时域反射的雷达定位测距方法
CN116819509B (zh) * 2023-08-28 2023-11-07 烟台初心航空科技有限公司 基于扩谱时域反射的雷达定位测距方法

Also Published As

Publication number Publication date
CN115189715A (zh) 2022-10-14
US12040887B2 (en) 2024-07-16
US20240187119A1 (en) 2024-06-06
CN115189715B (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
Erkılınç et al. Bidirectional wavelength-division multiplexing transmission over installed fibre using a simplified optical coherent access transceiver
Kaneda et al. Real-time 2.5 GS/s coherent optical receiver for 53.3-Gb/s sub-banded OFDM
JP5404925B2 (ja) 光通信システム、光受信器、光トランスポンダ、波長多重光通信システム、波長多重受信装置及び波長多重光トランスポンダ
WO2017016150A1 (zh) 一种基于幅度调制的带内透传监控信号的光模块
WO2019042371A1 (zh) 光信号传输***及光信号传输方法
Li et al. Terabit mode division multiplexing discrete multitone signal transmission over OM2 multimode fiber
CN109361472B (zh) 一种偏振无关的相干光接入方法及***
Dong et al. Bidirectional hybrid OFDM-WDM-PON system for 40-Gb/s downlink and 10-Gb/s uplink transmission using RSOA remodulation
Kocher et al. 50 km bidirectional FTTH transmission comparing different PON standards
WO2022205721A1 (zh) 一种基于直接扩谱时分复用的光传输装置及方法
Shahpari et al. Ultra-high-capacity passive optical network systems with free-space optical communications
Chaudhary et al. Experimental demonstration of 62.5 Mbps VLC link for healthcare infrastructures by incorporating limiting amplifier as an amplification scheme
TW201019626A (en) Dual-service optical fiber access system
Karbassian et al. Transceiver architecture for incoherent optical CDMA networks based on polarization modulation
CN110138454B (zh) 融合光纤和自由空间传输的偏振双二进制光接入***
Kumar et al. Effect of signal direct detection on sub-carrier multiplexed radio over fiber system
Lu et al. Optical label switching based on Manchester code+ NRZ modulation
CN104936047A (zh) 基于滤波器多载波调制技术的无源光网络上行传输***
CN205681439U (zh) 单边带无载波幅度相位调制的波分复用无源光网络***
CN111756450A (zh) 一种基于离散多载波调制技术的矢量模式复用***
Aldouri et al. FSO optical system utilizing DPSK advance modulation technique
Chen et al. A 200-Gbps OFDM long-reach PON over 60-km transmission without inline and pre-amplifier
Hou et al. The analysis of system performance of WDM/OCDMA-PON based on DQPSK/OOK
Kumar et al. OBI reduction and optical power budget enhancement in OFDM-PON system using spreading code in electrical domain
Zhang et al. Power budget of 25-Gb/s digital orthogonal filter multiple access PONs with 10G-class optics

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17799912

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934365

Country of ref document: EP

Kind code of ref document: A1