WO2022203370A1 - Hydrogen gas sensor - Google Patents

Hydrogen gas sensor Download PDF

Info

Publication number
WO2022203370A1
WO2022203370A1 PCT/KR2022/004014 KR2022004014W WO2022203370A1 WO 2022203370 A1 WO2022203370 A1 WO 2022203370A1 KR 2022004014 W KR2022004014 W KR 2022004014W WO 2022203370 A1 WO2022203370 A1 WO 2022203370A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen gas
gas sensor
layer
electrode
hydrogen
Prior art date
Application number
PCT/KR2022/004014
Other languages
French (fr)
Korean (ko)
Inventor
임보규
김예진
정서현
기르마헤녹
박종목
정유진
공호열
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2022203370A1 publication Critical patent/WO2022203370A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a hydrogen gas sensor, and more particularly, to a hydrogen gas sensor having a fast response speed and high selectivity to hydrogen gas at room temperature without a separate heating means, and capable of high sensitivity sensing even of a low concentration of hydrogen gas.
  • Hydrogen energy which is emerging due to the recent depletion of fossil fuels and environmental pollution, is likely to be used in almost all fields used in the current energy system, from basic industrial materials to general fuels, hydrogen vehicles, hydrogen-powered airplanes, fuel cells, and nuclear fusion energy. has a
  • Various hydrogen gas sensors have been developed, but they are large in size and complicated in structure, and are expensive.
  • Another object of the present invention is to provide a hydrogen gas sensor having reliability and long-term stability of sensing hydrogen gas.
  • Another object of the present invention is to provide a method for manufacturing a hydrogen gas sensor capable of high sensitivity hydrogen sensing with high selectivity and sensitivity to hydrogen gas even at room temperature, and to provide a commercially available method for manufacturing a hydrogen gas sensor.
  • a hydrogen gas sensor includes a tin oxide layer; a first electrode and a second electrode spaced apart from each other on the tin oxide layer; a palladium nanoparticle layer positioned in a region where the first electrode and the second electrode are spaced apart; and a polymer layer positioned on the palladium nanoparticle layer and including an acrylate-based polymer.
  • the thickness of the palladium nanoparticle layer may be 1 to 5 nm.
  • a surface of the tin oxide layer in a region where the first electrode and the second electrode are spaced apart from each other includes a first region where the palladium nanoparticle layer is located, and the palladium nanoparticle layer A second region not located may be included.
  • the area of the second region may be 50% to 90% of the total area of the surface of the tin oxide layer partitioned by the first electrode and the second electrode .
  • the second region may be in contact with the polymer layer.
  • the palladium nanoparticles may be dispersed and positioned as discontinuous particles on the tin oxide layer.
  • Equation 1 In the hydrogen gas sensor according to an embodiment of the present invention, Equation 1 below may be satisfied.
  • Equation 1 (Rs-Rs 0 )/Rs 0 may be >0.1.
  • Rs 0 may be 1 nm or less.
  • the tin element when depth profiling is measured by X-ray photoelectron spectroscopy, the tin element may also be simultaneously detected at the initial depth where the palladium element starts to be detected.
  • the content of the palladium element at the initial depth may be more than the tin element.
  • the depth profiling may be measured in a state in which the polymer is removed.
  • the content of the element palladium at a depth of 5 nm or more may be less than 10 atomic%.
  • the time constant at 1000ppm hydrogen concentration in air and 373.15K under the condition (1) may be 2 to 3 seconds. .
  • the hydrogen gas sensor is a ratio (Ig/Ia)/C of the signal intensity (Ig/Ia) to the concentration C (mol %) of the hydrogen gas at 298.15K 2500 to 3500 may be satisfied.
  • the ratio (Ig/Ia)/C of the signal intensity (Ig/Ia) may satisfy 2800 to 3000.
  • the signal intensity (Ig/Ia) may be 100 or more at 2 mol% hydrogen concentration in air and 343.15K or less.
  • the polymer layer may be non-porous.
  • the polymer layer may include poly(C1-C4)alkyl methacrylate.
  • the polymer layer may include polymethyl methacrylate.
  • the polymer layer may have a flat surface.
  • the thickness of the tin oxide layer may be 5 nm to 300 nm.
  • the operating temperature may be in the range of -10 to 200 °C.
  • power consumption may be 10 nW or less.
  • the gas detection method according to the present invention uses the above-described hydrogen gas sensor.
  • the gas detection method according to an embodiment of the present invention may detect hydrogen having a concentration range of 0.1 to 100000 ppm.
  • a method of manufacturing a hydrogen gas sensor of the present invention comprises the steps of: a) forming a tin oxide layer on one surface of an insulating layer; b) forming a first electrode and a second electrode spaced apart from each other on one surface of the tin oxide layer not in contact with the insulating layer; c) forming a palladium nanoparticle layer in a region where the first electrode and the second electrode are spaced apart; and d) forming a polymer layer including an acrylate-based polymer on the palladium nanoparticle layer.
  • step a) may include applying a tin precursor solution to one surface of the insulating layer and heat-treating it.
  • the heat treatment temperature may be 200 to 500 °C.
  • the palladium nanoparticle layer may be formed by depositing on a partial region of the surface of the tin oxide layer.
  • step d) may include applying and drying a polymethylmethacrylate solution dissolved in a solvent on the metal nanoparticle layer.
  • step d) the drying may be performed at a temperature of 100 to 300°C.
  • the solvent may be a halogenated alkoxybenzene compound.
  • the hydrogen gas sensor according to the present invention has a fast response speed and high selectivity to hydrogen gas even at room temperature without a separate heating means, and is capable of high-sensitivity sensing even of a low concentration of hydrogen gas.
  • the hydrogen gas sensor according to the present invention can have reliability and long-term stability in sensing hydrogen gas by protecting the sensing unit from external environmental factors that may reduce the sensitivity of sensing hydrogen gas.
  • the method for manufacturing a hydrogen gas sensor according to the present invention has an advantage in that it can easily and economically manufacture a hydrogen gas sensor capable of high-sensitivity hydrogen sensing even at room temperature with a simple and economical process, and thus has very excellent industrial usefulness.
  • FIG. 1 is a schematic diagram of a hydrogen gas sensor according to an embodiment of the present invention.
  • AFM atomic force microscopy
  • FIG. 3 is a graph of the detection test result for each hydrogen concentration of the hydrogen gas sensor shown in FIG. 1;
  • FIG. 4 is a graph of the hydrogen gas repeated sensitivity test result of the hydrogen gas sensor shown in FIG. 1;
  • FIG. 5 is a graph of the response-recovery time result for each hydrogen concentration of the hydrogen gas sensor shown in FIG. 1;
  • FIG. 6 is a graph of the hydrogen gas selectivity test result of the hydrogen gas sensor shown in FIG. 1;
  • FIG. 7 is a graph of the long-term stability test result of the hydrogen gas sensor shown in FIG. 1;
  • FIG. 10 is a graph of hydrogen gas detection test results for each humidity of the hydrogen gas sensor shown in FIG. 1;
  • 11 to 12 are graphs comparing hydrogen gas detection test results of a hydrogen gas sensor according to embodiments of the present invention.
  • 15 is a graph showing a result of a repeated sensitivity test to hydrogen gas of a hydrogen gas sensor according to a comparative example
  • 17 is a scanning electron microscope image of a polymer layer according to an embodiment of the present invention.
  • 19 is a result of depth profiling through X-ray photoelectron spectroscopy (X-ray Photoelectron. Spectroscopy: XPS) of a hydrogen gas sensor according to an embodiment of the present invention.
  • X-ray photoelectron spectroscopy X-ray Photoelectron. Spectroscopy: XPS
  • the unit used without special mention is based on the weight, for example, the unit of % or ratio means weight % or weight ratio, and weight % means any one component of the entire composition unless otherwise defined. It means % by weight in the composition.
  • the numerical range used herein includes the lower limit and upper limit and all values within the range, increments logically derived from the form and width of the defined range, all values defined therein, and the upper limit of the numerical range defined in different forms. and all possible combinations of lower limits. Unless otherwise defined in the specification of the present invention, values outside the numerical range that may occur due to experimental errors or rounding of values are also included in the defined numerical range.
  • 'comprising' is an open-ended description having an equivalent meaning to expressions such as 'comprising', 'containing', 'having' or 'characterized', and elements not listed in addition; Materials or processes are not excluded.
  • a hydrogen gas sensor is a Schottky barrier diode having a bipolar structure using a sensor using catalytic combustion or a hot wire, SiO2, AlN metal oxide (nitride) semiconductor, and bulk Pd, Pt, SiC, GaN, etc.
  • sensors using since it operates at a high temperature of 300°C or higher, it has limitations such as not only high power consumption but also low sensitivity to hydrogen.
  • a hydrogen gas sensor includes a tin oxide layer; a first electrode and a second electrode spaced apart from each other on the tin oxide layer; a palladium nanoparticle layer positioned in a region where the first electrode and the second electrode are spaced apart; and a polymer layer positioned on the palladium nanoparticle layer and including an acrylate-based polymer.
  • the hydrogen gas sensor according to the present invention is a sensing unit, and includes a palladium nanoparticle layer in a specific region on the tin oxide layer, so that it is possible to operate at room temperature under low power, and it is possible to quickly and accurately detect low-concentration hydrogen gas.
  • a hydrogen gas sensor may have a very high selectivity for hydrogen gas.
  • such a hydrogen gas sensor may be capable of detecting hydrogen gas of 100 ppm or less with a fast response speed.
  • the sensing unit is protected from external environmental factors that may decrease the sensitivity of hydrogen gas sensing, thereby increasing reliability in hydrogen gas sensing, and maintaining high sensitivity even when used repeatedly for a long time. have.
  • the hydrogen gas sensor may satisfy Equation 1 below.
  • Rs and Rs 0 are not particularly limited as long as they satisfy Formula 1, but Rs 0 may be 1 nm or less, specifically 0.5 to 1 nm. Rs may be 1 nm or more, specifically 1 to 1.5 nm.
  • the RMS surface roughness may be an rms surface roughness measured in an area of 2 ⁇ 2 ⁇ m 2 using atomic force microscopy (AFM).
  • AFM atomic force microscopy
  • a tin element when depth profiling is measured by X-ray photoelectron spectroscopy, a tin element may be simultaneously detected at an initial depth at which the palladium element is detected.
  • the content of the palladium element at the initial depth may be more than the tin element, and when the depth profiling is measured, the content of the palladium element at a depth of 5 nm or more may be less than 10 atomic%, specifically 7% atomic% .
  • palladium nanoparticles are relatively dispersed and positioned on a tin oxide layer, and thus high-sensitivity sensing may be possible.
  • the depth profiling measurement may be measured in a state in which the polymer is removed.
  • the hydrogen gas sensor may be capable of more sensitive sensing as the following conditions (1) and (2) are satisfied.
  • the time constant may be 2 to 3 seconds at a hydrogen concentration of 1000 ppm in the air and 373.15 K.
  • the ratio (Ig/Ia)/C of the signal intensity (Ig/Ia) to the concentration C (mol%) of the hydrogen gas at 298.15K may satisfy 2500 to 3500, specifically, the signal The ratio (Ig/Ia)/C of the strength (Ig/Ia) may satisfy 2800 to 3000.
  • the signal intensity (Ig/Ia) at 2 mol% hydrogen concentration in air and 343.15K or less may be 100 or more, specifically 100 to 140.
  • FIG. 1 shows a hydrogen gas sensor according to an embodiment of the present invention.
  • the hydrogen gas sensor 1 of the present invention is a substrate 10; a tin oxide layer 15 positioned on the substrate 10; a first electrode 21 and a second electrode 23 positioned on the tin oxide layer 15; a palladium nanoparticle layer 30 positioned in a region where the first electrode 21 and the second electrode 23 are spaced apart; and a polymer layer 50 positioned on the palladium nanoparticle layer 30 and including an acrylate-based polymer.
  • the substrate 10 is not particularly limited as long as it is made of an insulating material, and may be glass, ceramic, alumina, a silicon wafer, or a polymer.
  • the polymer substrate 10 may be, for example, a flexible polyimide substrate 10 or a flexible polyethylene terephthalate substrate 10 .
  • Such a polymer substrate 10 has flexibility and insulation, and at the same time exhibits light transmittance, and can be applied to various fields.
  • the tin oxide layer 15 and the palladium nanoparticle layer 30 are sensing units for sensing hydrogen, and hydrogen gas can be sensed by the tin oxide layer 15 and the palladium nanoparticle layer 30 .
  • hydrogen gas can be sensed by the tin oxide layer 15 and the palladium nanoparticle layer 30 .
  • hydrogen is exposed to the tin oxide layer 15 and the palladium nanoparticle layer 30 in a state in which power is supplied to the first and second electrodes 23, hydrogen is adsorbed and electrical properties are changed to generate hydrogen. can be detected
  • the tin oxide layer 15 is made of tin oxide (SnO x ), and depending on the degree of oxidation, O x may be selected from O 1 to O 10 , but is not limited thereto.
  • the tin oxide layer 15 has a higher hydrogen adsorption rate relative to the area compared to other oxide layers, so that it is possible to sense even low-concentration hydrogen gas.
  • the thickness of the tin oxide layer 15 may be 5 to 300 nm, specifically 30 to 200 nm, but is not limited thereto. However, it may exhibit a high hydrogen sensitivity compared to the thickness in the above range.
  • the palladium nanoparticle layer 30 is positioned in a region in which the first electrode 21 and the second electrode 23 are spaced apart on the tin oxide layer 15, and as described above, depth profiling is measured by X-ray photoelectron spectroscopy.
  • palladium nanoparticles may be distributed to form a specific thickness and a specific roughness in a specific area on the tin oxide layer so that the tin element can be simultaneously detected at the initial depth where the palladium element is detected.
  • the thickness of the palladium nanoparticle layer is 1 to 5 nm, specifically 2 to 4 so that the tin element can be simultaneously detected at the initial depth where the palladium element is detected. may be nm.
  • the palladium nanoparticle layer 30 may be formed of palladium nanoparticles in the form of clusters or dispersed particles. As a specific example, it may be formed of cluster-type palladium nanoparticles having an average particle diameter of 0.5 to 1 nm. As such palladium nanoparticle layer 30 has both conductivity and excellent hydrogen adsorption ability, it can adsorb a large amount of hydrogen gas, and enables high-sensitivity sensing.
  • the present invention provides hydrogen gas sensing with high sensitivity as the palladium nanoparticle layer is located in a specific region, that is, in a region where the first electrode 21 and the second electrode 23 on the tin oxide layer 15 are spaced apart. It is possible.
  • the palladium nanoparticles may be uniformly or non-uniformly distributed in the region.
  • the palladium nanoparticles are on the surface of the tin oxide layer 15 in the region where the first electrode 21 and the second electrode 23 are spaced apart.
  • the surface of the tin oxide layer 15 in the region where the first electrode 21 and the second electrode 23 are spaced apart from the first region where the palladium nanoparticle layer 30 is located, and the palladium nanoparticle layer ( 30) may include a second region not located.
  • the area of the second region is 50% to 90%, preferably 60% to 80%, of the total area of the surface of the tin oxide layer 15 partitioned by the first electrode 21 and the second electrode 23 . It can be %.
  • the hydrogen gas sensor including the tin oxide layer 15 and the palladium nanoparticle layer 30 as described above is capable of not only high-sensitivity sensing but also hydrogen sensing under various environmental conditions. Specifically, the hydrogen gas sensor is capable of high-sensitivity hydrogen sensing even at a temperature of -50°C to 300°C and a humidity of 10 to 80%.
  • the first electrode 21 and the second electrode 23 are for measuring a change in current or resistance, and are spaced apart from each other on the tin oxide layer 15 .
  • copper, aluminum, nickel, titanium, silver, gold, platinum, palladium, etc. may be mentioned, but are not limited thereto, and any material used as a general electrode may be used.
  • Each of the first electrode 21 and the second electrode 23 may have a thickness of 10 nm to 200 nm, specifically, 50 nm to 150 nm, but is not limited thereto.
  • the polymer layer 50 including the acrylate-based polymer allows hydrogen gas to selectively permeate, thereby enabling high-sensitivity hydrogen gas sensing. Furthermore, the polymer layer 50 serves to protect the sensing unit, such as preventing the escape of palladium nanoparticles from external environments such as moisture and air, and prevents the hydrogen gas sensitivity from decreasing due to moisture when exposed to the outside for a long time. That is, the polymer layer 50 can significantly improve the sensitivity, hydrogen selectivity, and physical and chemical stability of the sensing unit.
  • the thickness of the polymer layer 50 is not particularly limited as long as it can sufficiently protect the palladium nanoparticle layer 30 . However, since it is formed to be thicker than the thickness of the electrode, the edge of the polymer layer 50 may be positioned on the electrode.
  • the polymer layer 50 protects not only the sensing unit but also the electrode of the hydrogen gas sensor from the external environment, thereby further enhancing the durability of the hydrogen gas sensor.
  • the polymer layer 50 may be 100 nm or more, or 500 nm or more, specifically 1 ⁇ m to 10 ⁇ m, but is not limited thereto.
  • the tin oxide layer 15 exposed to the outside, that is, the second region may be in direct contact with the polymer layer 50 .
  • Such a hydrogen gas sensor may further increase hydrogen selectivity.
  • the polymer layer 50 is not particularly limited as long as it has a structure capable of protecting the palladium nanoparticle layer 30 and increasing the selectivity of hydrogen gas, but a non-porous one may be advantageous in terms of hydrogen selectivity. Even if the polymer layer 50 is made of the same polymer material, the non-porous one may have higher hydrogen selectivity than the porous one.
  • non-porous means that when the surface of the polymer layer 50 is observed with a photograph of 25 ⁇ m X 20 ⁇ m measured with a scanning electron microscope, pores are not observed with the naked eye. Specifically, it may mean that pores having a size having a diameter of about 10 nm or more are not found.
  • the polymer layer 50 may have a flat surface in terms of hydrogen selectivity.
  • a planar surface may have higher hydrogen selectivity than a non-planar surface.
  • the flat surface refers to a smooth surface, and when the surface of the polymer layer 50 is observed with a photograph of 25 ⁇ m X 20 ⁇ m measured with a scanning electron microscope, it means that irregularities are not observed with the naked eye. it means. Specifically, it may mean that irregularities having a maximum diameter and maximum height of about 10 nm or more are not found.
  • the polymer layer 50 may include an acrylate-based polymer, specifically, poly(C1-C4)alkyl methacrylate. Specifically, one of polymethacrylate, polymethylacrylate, polymethylmethacrylate (PMMA), polyethylacrylate, polyethylmethacrylate, or a mixture thereof It may include those selected above. Preferably, the polymer layer 50 may include polymethyl methacrylate. Such a polymer layer 50 may be advantageous in terms of hydrogen selectivity through a non-porous structure.
  • the acrylate-based polymer may have a weight average molecular weight of 1,000 to 1,000,000 g/mol, specifically 5,000 to 500,000 g/mol, and more specifically 20,000 to 400,000 g/mol.
  • the polymer layer 50 made of polymethyl methacrylate simultaneously satisfies a non-porous and flat surface, it is preferable because it can have very high hydrogen selectivity, high sensitivity, and high reliability in sensing hydrogen gas.
  • the method of detecting hydrogen gas of the present invention through the hydrogen gas sensor of the present invention may be performed by measuring the current or resistance before and after exposing the detection target gas to the sensing unit.
  • measuring a drain current Ids(ref) of a hydrogen gas sensor to set a reference introducing a detection target gas to a sensing unit positioned between the first and second electrodes; a detection step of measuring a drain current Ids(detect) when a detection target gas is introduced; and analyzing the concentration of the detection gas using the measured drain current value, and the detection gas may be detected based on the changed (increased) drain current value before and after introduction of the detection target gas.
  • the detection of the detection gas may be performed with a changed resistance value instead of a changed drain current value before and after introduction of the detection target gas.
  • the operating (detection) temperature of the hydrogen gas sensor may be in the range of -50 to 300 °C, specifically -10 to 200 °C, and more specifically 4 to 100 °C.
  • Such a hydrogen gas detection method may detect hydrogen gas having a concentration range of 0.1 to 100000 ppm, specifically, 1 to 80000 ppm.
  • the method for producing hydrogen gas of the present invention comprises the steps of: a) forming a tin oxide layer on one surface of an insulating layer; b) forming a first electrode and a second electrode spaced apart from each other on one surface of the tin oxide layer not in contact with the insulating layer; c) forming a palladium nanoparticle layer in a region where the first electrode and the second electrode are spaced apart; and d) forming a polymer layer including an acrylate-based polymer on the palladium nanoparticle layer.
  • Such a manufacturing method has the advantage of being able to manufacture a hydrogen gas sensor with high selectivity, sensitivity and long-term stability, that is, the hydrogen gas sensor of the present invention described above, and has an advantage that the process is easy and simple and can be commercialized.
  • step a), step b), and step c) may be sequentially performed, but depending on the ease of the process, step a), step c), and step b) may be performed.
  • the step of forming a tin oxide layer on one surface of the insulating layer may be performed by applying and heat-treating a precursor solution including a precursor material of tin oxide to the insulating layer.
  • the tin oxide precursor material may be any type as long as it is soluble in the solvent used, and may be exemplified by an acetate-based tin precursor compound or a halogenated tin precursor compound, but may be used without limitation to a specific precursor.
  • the solvent is 2-methoxyethanol (2-mathoxyethanol), isopropanol (isopropanol), dimethylformamide (dimethylformamide), ethanol (ethanol), methanol (methanol), acetylacetone (acetylacetone) and dimethylamine borane (dimethylamineborane) group may include at least one in
  • the molar concentration of the precursor material in the precursor solution may be 0.01M to 3M, specifically 0.025M to 0.2M, more specifically 0.05 to 0.15M, but is not limited thereto.
  • the precursor solution may further include a solution stabilizer used in the art.
  • the precursor solution is applied on the substrate having the above-described insulating properties to form a precursor thin film.
  • the precursor solution may be applied by a coating method known in the art, such as spin coating, inkjet printing, dip coating, and the like. Thereafter, heat treatment is performed on the precursor thin film of the substrate to form a tin oxide layer.
  • the heat treatment may be performed at 200° C. to 500° C., specifically, 280° C. to 400° C., but is not limited thereto, and may be performed by dividing the temperature into first and second order.
  • step a) it is possible to easily form a tin oxide layer having a homogeneous surface with only a simple solution process, and it is strongly bound to a polymer layer containing an acrylate-based polymer. It is presumed to contribute to sensing.
  • step b the step of forming the first electrode and the second electrode spaced apart from each other on the tin oxide layer.
  • a shadow mask having a first electrode and a second electrode-shaped opening is disposed on the substrate on which the tin oxide layer is formed through step a).
  • the shadow mask is a mask designed so that deposition materials can be selectively deposited through the opening, and an electrode part having a precise shape can be manufactured.
  • a metal shadow mask, a polymer shadow mask such as PDMS or PMMA, etc. may be used as the shadow mask.
  • a metal is deposited with an electron beam on the substrate on which the shadow mask is disposed to form a first electrode and a second electrode on the tin oxide layer.
  • the metal may include, but is not limited to, copper, aluminum, nickel, titanium, silver, gold, platinum, and palladium.
  • step c a step of forming a palladium nanoparticle layer in a region where the first electrode and the second electrode are spaced apart is performed.
  • the palladium nanoparticle layer may be formed by depositing palladium nanoparticles in the form of clusters and dispersed particles.
  • Deposition of palladium nanoparticles may use a physical or chemical method, preferably sputtering method, thermal evaporation method, electron beam evaporation method, electroplating method, may be deposited in the form of spraying an aqueous metal solution on the sample surface, specifically sputtering method , the palladium nanoparticle layer may be preferably selected through a thermal evaporation method or an electron beam evaporation method.
  • the palladium nanoparticle layer may be formed by depositing only a partial region of the surface of the tin oxide layer. Accordingly, the surface of the tin oxide layer in the area where the first electrode and the second electrode are spaced apart can be divided into a first area where the palladium nanoparticle layer is located and a second area exposed to the outside because the palladium nanoparticle layer is not located, It is possible to fabricate a hydrogen gas sensor with even better sensitivity.
  • Step d) is a step of forming a polymer layer.
  • the polymer layer may be formed by coating a polymer on the metal oxide layer and the metal nanoparticle layer.
  • the polymer may be an acrylate-based polymer, but it is advantageous that the polymer is a polymethyl methacrylate polymer.
  • the polymer may be applied through spin coating, spray coating, knife coating, or roll coating, but is not limited thereto, and may be coated by various methods known in the art.
  • a polymer layer may be prepared by applying a polymer solution dissolved in a solvent and then evaporating the solvent to dry it.
  • the drying temperature is not limited as long as it is a condition capable of evaporating the solvent, but advantageously in forming a polymer layer having a non-porous and flat surface, a temperature of 100 to 300 ° C., specifically 120 to 200 ° C. can be performed in
  • step d) may be performed including; applying and drying polymethyl methacrylate dissolved in a solvent on the metal nanoparticle layer.
  • the solvent may be a halogenated alkoxybenzene compound, and the halogen may be chlorine, fluorine, or bromine.
  • the halogenated alkoxy benzene compound may be a chlorinated (C1-C4) alkoxy benzene compound, specifically anisole.
  • the polymer layer prepared through such a solvent has a non-porous and flat surface and, as described above, can greatly increase the selectivity of hydrogen gas.
  • Pd was deposited at a rate of 0.1 ⁇ /s using a thermal evaporator to have an average thickness of 3 nm.
  • 4 mg/ml of PMMA in anisole was spin-coated (4,000 rpm, 30 seconds) and then heat treated at 175° C. for 10 minutes to prepare a hydrogen gas sensor.
  • Examples 2 to 9 were prepared with reference to Table 1 below. Examples 2 to 9 were carried out in the same manner as in Example 1, but each was carried out under the conditions described in Table 1 below.
  • Example 1 0.1M 3nm
  • Example 2 0.025M 3nm
  • Example 3 0.05M 3nm
  • Example 4 0.075M 3nm
  • Example 5 0.2M 3nm
  • Example 6 0.1M 1 nm
  • Example 7 0.1M 2nm
  • Example 8 0.1M 4nm
  • Example 9 0.1M 5nm
  • Example 1 a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that polyimide was used as a substrate instead of a silicon wafer.
  • the polyimide substrate is a washed silicon wafer substrate (thickness: 500-550um, resistivity: ⁇ 0.005 ohm, SiO 2 thickness: 3000A (Dry)) by spin-coating liquid polyimide (PI) resin (1000rpm, 30 seconds) ), and then baking was carried out by increasing the temperature step by step.
  • PI liquid polyimide
  • Each step was performed at a temperature of 60, 80, 150, 230 and 300°C, each step was performed for 30 minutes, but the last 300°C temperature was performed for 1 hour.
  • Example 1 acetone (Example 11), tetrahydrofuran (Example 12), dimethylformamide (Example 13) and chlorobenzene (Example 14) were used instead of anisole for the solvent of PMMA, respectively and a hydrogen gas sensor was manufactured in the same manner as in Example 1.
  • Example 1 a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that the In 2 O 3 layer was formed instead of the SnO 2 layer.
  • Example 1 a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that an IGO layer, not a SnO 2 layer, was formed.
  • Example 1 a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that the WO 3 layer was formed instead of the SnO 2 layer.
  • Example 1 a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that the thickness of the palladium nanoparticle layer was set to 10 nm.
  • Example 1 a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that a PMMA polymer coating layer was not formed after pd deposition.
  • the manufactured sensor is one in which the polymer layer was not finally formed in Example 1.
  • Gas detection characteristics were measured using a semiconductor parameter analyzer (B15000A, Agilent) of a MSTECH probe station with an MFC system.
  • the hydrogen gas sensor was placed about 1 cm below the gas tube and directly exposed to the gas of the required concentration.
  • the hydrogen gas detection test was conducted at room temperature.
  • H 2 gas 100 ppm, 1 mol %, 10 mol % in N 2
  • dry air were mixed using MFC to produce hydrogen gas at a desired concentration (mol %).
  • the detection characteristic (Response) was expressed through the ratio (I g /I a ) of the hydrogen gas sensor current (I a ) before exposure to hydrogen gas and the hydrogen gas sensor current (I g ) after hydrogen gas exposure.
  • FIG. 2 is a result of comparing and measuring root mean square surface roughness of a tin oxide layer and a palladium nanoparticle layer in Example 1.
  • FIG. Specifically, FIG. a) is the result of measuring the rms surface roughness of the 2 x 2 ⁇ m 2 area of the tin oxide layer surface using atomic force microscopy (AFM) after forming the tin oxide layer on the substrate.
  • FIG. 2b) shows the results of measuring the RMS surface roughness of the tin oxide layer on which the palladium nanoparticles are deposited in the same manner as when measuring the surface roughness of the tin oxide layer.
  • AFM atomic force microscopy
  • the tin oxide layer RMS surface roughness (Rs 0 ) is 0.894 nm
  • the RMS surface roughness (Rs) of the tin oxide layer on which the palladium nanoparticles are deposited is 1.01 nm, compared to before deposition of palladium nanoparticles, palladium nanoparticles It was confirmed that the surface roughness increased after deposition, and in Equation 1 (Rs-Rs 0 )/Rs 0 satisfies 0.130.
  • FIG. 3 is a graph showing the results of a detection test (experimental example) for each hydrogen concentration of the hydrogen gas sensor manufactured in Example 1.
  • Figure 2 shows the detection test results for each concentration of 0.002% to 2%.
  • FIG. 4 is a graph showing the hydrogen gas repeated sensitivity test result of the hydrogen gas sensor of Example 1.
  • the hydrogen gas repeated sensitization test is to measure hydrogen gas at concentrations of 0.1 mol% and 2 mol% by the method of Experimental Example 5 times.
  • FIG. 4(a) is a graph showing the repeated sensitization test result of 0.1 mol% concentration hydrogen gas
  • FIG. 4(b) is a repeated sensitization test result of 2% concentration hydrogen gas.
  • FIG. 5 is a graph showing the response-recovery time results for each hydrogen concentration of the hydrogen gas sensor of Example 1.
  • FIG. 6 is a graph of a hydrogen gas selectivity test result of the hydrogen gas sensor according to Example 1.
  • FIG. 7 is a graph of long-term stability test results of the hydrogen gas sensor according to Example 1.
  • FIG. Long-term stability was tested by continuously exposing hydrogen at a concentration of 1000 ppm to the hydrogen gas sensor to perform a time-dependent detection test. Referring to FIG. 7 , hydrogen was stably detected without significant change even when measured for more than 50 days.
  • FIG. 8 is a graph of a hydrogen detection ability measurement test result for each temperature according to time of the hydrogen gas sensor according to Example 1.
  • Figure 9 was performed at a hydrogen concentration of 1000 ppm, and the measurement temperature was set to -10 °C, 0 °C, 20 °C, 50 °C, 100 °C, 150 °C and 200 °C, respectively, the hydrogen detection ability over time was measured did.
  • Table 2 below shows the results of measuring each of the Examples in the same manner as in Example 1 of Example 1 shown in FIG. 9 .
  • the hydrogen gas sensor according to the present invention has conditions (1) '1000 ppm hydrogen concentration in air and a time constant of 1.5 to 4 seconds at 373.15K' and condition (2) '1000 ppm hydrogen concentration in air and At 323.15K, it was confirmed that the time constant satisfies all of 10 to 15 seconds'.
  • 9 is a hydrogen detection result according to the temperature of 20 °C, 50 °C, 80 °C and 100 °C under a hydrogen concentration of 2 mol%.
  • the hydrogen gas sensor according to Example 1 has a signal strength of (Ig/Ia) 100 or more at a temperature of less than 80° C., and has a relatively linear hydrogen detection ability according to the temperature.
  • FIG. 10 is a graph of a hydrogen gas detection ability measurement test result according to the humidity of the hydrogen gas sensor according to Example 1.
  • 11 is a graph of hydrogen gas detection test results according to Examples 1 to 5; Specifically, the driving power was 1V and 5V, and was performed under a hydrogen concentration of 0.1 mol%.
  • Example 1 using 0.1M SnCl 2 had excellent hydrogen gas detection ability.
  • FIG. 13 is a graph showing a detection test result for each hydrogen concentration of the hydrogen gas sensor according to Example 10. Referring to FIG. Specifically, FIG. 13 shows the detection test results for each concentration of 0.05 mol% to 2 mol%.
  • FIG. 14 is a graph showing the hydrogen gas repeated sensitivity test result of the hydrogen gas sensor of Example 10.
  • FIG. The hydrogen gas repeated sensitization test is to measure 0.1 mol% and 1 mol% of hydrogen gas by the method of Experimental Example 5 times.
  • FIG. 14(a) is a graph showing the repeated sensitivity test result of 0.1 mol% concentration hydrogen gas
  • FIG. 14(b) is a repeated sensitivity test result of 1 mol% concentration hydrogen gas.
  • FIG. 15 is a graph showing hydrogen gas repeated sensitivity test results of the hydrogen gas sensors of Comparative Examples 1 to 3;
  • the hydrogen gas repeated sensitization test is to measure hydrogen gas with a concentration of 1 mol% by the method of Experimental Example 5 times.
  • FIG. 15(a) shows the results of Comparative Example 1
  • 15(b) shows the results of Comparative Example 2
  • 15(c) shows the results of Comparative Example 3.
  • the palladium nanoparticles are not located on the SnO 2 layer, so it can be confirmed that the second region where the SnO 2 layer is exposed to the outside exists. However, it was confirmed that such a second region was not observed in the comparative example.
  • Example 1 was non-porous and had a flat surface at the same time.
  • 18 is a graph showing a comparison result of a detection test of a hydrogen gas sensor according to Example 1, Examples 11 to 14, and Comparative Example 5; Specifically, 1000 ppm of hydrogen (H) gas, carbon monoxide (CO) gas, and methane (CH 4 ) gas were exposed to each Example and Comparative Example to perform a detection test.
  • 18 a) is a hydrogen gas exposure detection test result for each Example and Comparative Example
  • FIG. 18 b) is a carbon monoxide gas exposure result for each Example and Comparative Example
  • FIG. 18 c) is for each Example and Comparative Example It is a result of methane gas exposure.
  • Example has a high selectivity for hydrogen compared to the Comparative Example, and in particular, in the case of Example 1, which is non-porous and has a flat surface at the same time, the Comparative Example and other Examples It was confirmed that the sensing of hydrogen gas was possible with very high sensitivity despite supplying the same concentration of hydrogen gas.
  • Fig. 17 a) is the XPS measurement result of the surface analysis of the SnO 2 layer on which the palladium nanoparticle layer is deposited
  • Fig. 17 b) is the XPS measurement result at the time of reaching 5 nm from the surface.

Abstract

The present invention relates to a hydrogen gas sensor, and specifically, to a hydrogen gas sensor which has a fast response rate and high selectivity to hydrogen gas even without an additional heating means, and which is capable of sensing even a low concentration of hydrogen gas with high sensitivity. The hydrogen gas sensor of the present invention comprises: a tin oxide layer; a first electrode and a second electrode, spaced apart from each other on the tin oxide layer; a palladium nanoparticle layer positioned in a spaced-apart region between the first electrode and the second electrode; and a polymer layer positioned on the palladium nanoparticle layer and including an acrylate-based polymer.

Description

수소 가스 센서hydrogen gas sensor
본 발명은 수소 가스 센서에 관한 것으로, 상세하게는 별도의 히팅 수단 없이도 상온에서 수소 가스에 대한 빠른 응답속도 및 높은 선택도를 가지며, 저농도의 수소 가스도 고감도 센싱이 가능한 수소 가스 센서에 관한 것이다.The present invention relates to a hydrogen gas sensor, and more particularly, to a hydrogen gas sensor having a fast response speed and high selectivity to hydrogen gas at room temperature without a separate heating means, and capable of high sensitivity sensing even of a low concentration of hydrogen gas.
최근 화석연료의 고갈 및 환경오염 문제로 인해 대두되고 있는 수소 에너지는 산업용 기초소재로부터 일반 연료, 수소자동차, 수소비행기, 연료전지, 핵융합에너지 등 현재의 에너지 시스템에서 사용되는 거의 모든 분야에 이용될 가능성을 지니고 있다. Hydrogen energy, which is emerging due to the recent depletion of fossil fuels and environmental pollution, is likely to be used in almost all fields used in the current energy system, from basic industrial materials to general fuels, hydrogen vehicles, hydrogen-powered airplanes, fuel cells, and nuclear fusion energy. has a
하지만, 수소가스는 폭발농도 범위가 넓고(4~75%), 발화에너지가 작아 미세한 정전기에도 쉽게 발화되기 때문에 누출된 양이 미량이라도 매우 위험할 수 있다. 이에, 수소 누출에 의한 대형사고 및 인명 피해를 줄이기 위해 수소가스를 빠르고 정확하게 탐지할 수 있는 고성능 센서가 요구된다. However, since hydrogen gas has a wide explosive concentration range (4 to 75%) and small ignition energy, it can be easily ignited even by minute static electricity, so even a small amount of leakage can be very dangerous. Accordingly, a high-performance sensor capable of quickly and accurately detecting hydrogen gas is required in order to reduce major accidents and human damage caused by hydrogen leakage.
현재까지 촉매연소 또는 열선을 사용한 센서, SiO2, AlN 금속산화(질화)물 반도체, 그리고 벌크 Pd, Pt에 SiC, GaN등을 이용하여 2극 구조의 숏키 장벽 다이오드(Schottky barrier diode)를 사용한 센서 등 다양한 수소 가스 센서가 개발되고 있지만, 이들은 크기가 크고 구조가 복잡할 뿐만 아니라 가격도 고가이다. 또한 300 ℃이상의 고온에서 동작하므로 소비전력이 클 뿐만 아니라 수소에 대한 민감도가 떨어지는 등의 한계성을 지니고 있다.Until now, sensors using catalytic combustion or hot wires, SiO2, AlN metal oxide (nitride) semiconductors, and sensors using a Schottky barrier diode with a bipolar structure using SiC, GaN, etc. in bulk Pd and Pt, etc. Various hydrogen gas sensors have been developed, but they are large in size and complicated in structure, and are expensive. In addition, since it operates at a high temperature of 300°C or higher, it has limitations such as not only high power consumption but also low sensitivity to hydrogen.
이에, 대한민국 등록특허공보 제10-0870126호 'Pd 나노와이어를 이용한 수소 가스 센서 제조방법'에 개시된 바와 같이, 수소 가스 센서로서 성능을 최적화할 수 있는 수소 가스 센서 재료 및 구조에 대한 연구가 진행중에 있으나, 여전히 상온에서 수소 가스에 대한 높은 민감도를 가질 수 있도록 작동하는 센서에 대한 개발이 필요한 실정이다.Accordingly, as disclosed in Korean Patent Publication No. 10-0870126 'Method for manufacturing hydrogen gas sensor using Pd nanowires', research on materials and structures for hydrogen gas sensors that can optimize performance as a hydrogen gas sensor is in progress. However, it is still necessary to develop a sensor that operates to have high sensitivity to hydrogen gas at room temperature.
본 발명의 목적은 상온에서도 수소 가스에 대한 빠른 응답속도 및 높은 선택도를 가지며, 저농도의 수소 가스에 대해서도 고감도 센싱이 가능한, 수소 가스 센서를 제공하기 위한 것이다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a hydrogen gas sensor that has a fast response speed and high selectivity to hydrogen gas even at room temperature, and is capable of high sensitivity sensing even for a low concentration of hydrogen gas.
또한, 본 발명의 목적은 수소 가스 센싱의 신뢰성 및 장기안정성을 가지는 수소 가스 센서를 제공하기 위한 것이다.Another object of the present invention is to provide a hydrogen gas sensor having reliability and long-term stability of sensing hydrogen gas.
본 발명의 다른 목적은 상온에서도 수소 가스에 대한 높은 선택도 및 민감도로 고감도 수소 센싱이 가능한 수소 가스 센서의 제조방법을 제공하는 것이며, 상업적으로 사용 가능한 수소 가스 센서 제조방법을 제공하기 위한 것이다.Another object of the present invention is to provide a method for manufacturing a hydrogen gas sensor capable of high sensitivity hydrogen sensing with high selectivity and sensitivity to hydrogen gas even at room temperature, and to provide a commercially available method for manufacturing a hydrogen gas sensor.
본 발명에 따른 수소 가스 센서는 주석산화물층; 상기 주석산화물층 상 서로 이격 위치하는 제1전극과 제2전극; 상기 제1전극과 제2전극이 이격된 영역에 위치하는 팔라듐 나노입자층; 및 상기 팔라듐 나노입자층 상에 위치하며, 아크릴레이트계 고분자를 포함하는 고분자층;을 포함한다.A hydrogen gas sensor according to the present invention includes a tin oxide layer; a first electrode and a second electrode spaced apart from each other on the tin oxide layer; a palladium nanoparticle layer positioned in a region where the first electrode and the second electrode are spaced apart; and a polymer layer positioned on the palladium nanoparticle layer and including an acrylate-based polymer.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 팔라듐 나노입자층의 두께는 1 내지 5 nm일 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the thickness of the palladium nanoparticle layer may be 1 to 5 nm.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서,상기 제1전극과 제2전극이 이격된 영역의 상기 주석산화물층 표면은 상기 팔라듐 나노입자층이 위치하는 제1영역과, 상기 팔라듐 나노입자층이 위치하지 않는 제2영역을 포함할 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, a surface of the tin oxide layer in a region where the first electrode and the second electrode are spaced apart from each other includes a first region where the palladium nanoparticle layer is located, and the palladium nanoparticle layer A second region not located may be included.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 제2영역의 면적은 상기 제1전극 및 제2전극에 의해 구획된 상기 주석산화물층 표면의 총 면적 중 50 % 내지 90%일 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the area of the second region may be 50% to 90% of the total area of the surface of the tin oxide layer partitioned by the first electrode and the second electrode .
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 제2영역은 고분자층과 접촉할 수 있다. In the hydrogen gas sensor according to an embodiment of the present invention, the second region may be in contact with the polymer layer.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 팔라듐 나노입자는 주석산화물층 상에 불연속적인 입자로 분산되어 위치할 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the palladium nanoparticles may be dispersed and positioned as discontinuous particles on the tin oxide layer.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 하기 식 1을 만족할 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, Equation 1 below may be satisfied.
[식 1][Equation 1]
(Rs-Rs0)/Rs0 > 0(Rs-Rs 0 )/Rs 0 > 0
(상기 식 1에서 Rs는 팔라듐 나노입자층이 증착된 주석산화물층의 RMS 표면 거칠기(root mean square surface roughness), Rs0는 주석산화물층의 RMS 표면 거칠기이다.)(In Equation 1, Rs is the root mean square surface roughness of the tin oxide layer on which the palladium nanoparticle layer is deposited, and Rs 0 is the RMS surface roughness of the tin oxide layer.)
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 식 1에서, (Rs-Rs0)/Rs0 > 0.1일 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, in Equation 1, (Rs-Rs 0 )/Rs 0 may be >0.1.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 식 1에서, Rs0는 1nm 이하일 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, in Equation 1, Rs 0 may be 1 nm or less.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, X선 광전자 분광법으로 깊이 프로파일링 측정 시, 팔라듐 원소가 검출되기 시작하는 최초 깊이에서 주석 원소도 동시에 검출될 수 있다. In the hydrogen gas sensor according to an embodiment of the present invention, when depth profiling is measured by X-ray photoelectron spectroscopy, the tin element may also be simultaneously detected at the initial depth where the palladium element starts to be detected.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 최초 깊이에서 상기 팔라듐 원소의 함량은 상기 주석 원소보다 더 많은 것 일 수 있다. In the hydrogen gas sensor according to an embodiment of the present invention, the content of the palladium element at the initial depth may be more than the tin element.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 깊이 프로파일링 측정은 고분자가 제거된 상태에서 측정될 수 있다. In the hydrogen gas sensor according to an embodiment of the present invention, the depth profiling may be measured in a state in which the polymer is removed.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 깊이 프로파일링 측정 시, 5 nm 이상의 깊이에서 팔라듐 원소의 함량은 10원자% 미만으로 존재할 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, when measuring the depth profiling, the content of the element palladium at a depth of 5 nm or more may be less than 10 atomic%.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 하기 조건 (1) 및 (2)를 만족할 수 있다. In the hydrogen gas sensor according to an embodiment of the present invention, the following conditions (1) and (2) may be satisfied.
(1) 공기 중 1000ppm 수소 농도 및 373.15K에서 시간상수가 1.5 내지 4초(1) At 1000 ppm hydrogen concentration in air and 373.15 K, the time constant is 1.5 to 4 seconds
(2) 공기 중 1000ppm 수소 농도 및 323.15K에서 시간상수가 10 내지 15초(2) 1000 ppm hydrogen concentration in air and a time constant of 10 to 15 seconds at 323.15 K
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 조건 (1)에서 공기중 1000ppm 수소 농도 및 373.15K에서 시간상수가 2 내지 3초일 수 있다. .In the hydrogen gas sensor according to an embodiment of the present invention, the time constant at 1000ppm hydrogen concentration in air and 373.15K under the condition (1) may be 2 to 3 seconds. .
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 수소 가스 센서는 298.15K에서 수소 가스의 농도 C(mol %)에 대한 신호 강도(Ig/Ia)의 비 (Ig/Ia)/C는 2500 내지 3500를 만족할 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the hydrogen gas sensor is a ratio (Ig/Ia)/C of the signal intensity (Ig/Ia) to the concentration C (mol %) of the hydrogen gas at 298.15K 2500 to 3500 may be satisfied.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 신호강도(Ig/Ia)의 비 (Ig/Ia)/C는 2800 내지 3000를 만족할 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the ratio (Ig/Ia)/C of the signal intensity (Ig/Ia) may satisfy 2800 to 3000.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 공기중 2 mol% 수소 농도 및 343.15K 이하에서 신호강도(Ig/Ia)는 100 이상일 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the signal intensity (Ig/Ia) may be 100 or more at 2 mol% hydrogen concentration in air and 343.15K or less.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 고분자층은 비다공질일 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the polymer layer may be non-porous.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 고분자층은 폴리(C1-C4)알킬메타크릴레이트를 포함할 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the polymer layer may include poly(C1-C4)alkyl methacrylate.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 고분자층은 폴리메틸메타크릴레이트를 포함할 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the polymer layer may include polymethyl methacrylate.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 고분자층은 평탄 표면을 가질 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the polymer layer may have a flat surface.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 주석산화물층의 두께는 5 ㎚ 내지 300 ㎚일 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the thickness of the tin oxide layer may be 5 nm to 300 nm.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 작동온도가 -10 내지 200 ℃ 범위일 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the operating temperature may be in the range of -10 to 200 ℃.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 소모 전력이 10 nW 이하일 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, power consumption may be 10 nW or less.
본 발명에 따른 가스 검출 방법은 상술한 수소 가스 센서를 이용한 것이다.The gas detection method according to the present invention uses the above-described hydrogen gas sensor.
본 발명의 일 실시예에 따른 가스 검출 방법은 0.1 내지 100000 ppm의 농도 범위를 가지는 수소를 검출할 수 있다.The gas detection method according to an embodiment of the present invention may detect hydrogen having a concentration range of 0.1 to 100000 ppm.
본 발명의 수소 가스 센서의 제조방법은 a) 절연층 일면에 주석산화물층을 형성하는 단계; b) 상기 절연층과 접하지 않는 주석산화물층 일면에 서로 이격되는 제1전극과 제2전극을 형성하는 단계; c) 상기 제1전극과 제2전극이 이격된 영역에 팔라듐 나노입자층을 형성하는 단계; 및 d) 상기 팔라듐 나노입자층 상에 아크릴레이트계 고분자를 포함하는 고분자층을 형성하는 단계;를 포함한다.A method of manufacturing a hydrogen gas sensor of the present invention comprises the steps of: a) forming a tin oxide layer on one surface of an insulating layer; b) forming a first electrode and a second electrode spaced apart from each other on one surface of the tin oxide layer not in contact with the insulating layer; c) forming a palladium nanoparticle layer in a region where the first electrode and the second electrode are spaced apart; and d) forming a polymer layer including an acrylate-based polymer on the palladium nanoparticle layer.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에 있어서, 상기 a)단계는 주석전구체 용액을 상기 절연층 일면에 도포 및 열처리하는 단계를 포함할 수 있다. In the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, step a) may include applying a tin precursor solution to one surface of the insulating layer and heat-treating it.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에 있어서, 상기 a)단계에서, 상기 열처리 온도는 200 내지 500℃일 수 있다.In the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, in step a), the heat treatment temperature may be 200 to 500 °C.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에 있어서, 상기 c) 단계에서, 상기 팔라듐 나노입자층은 상기 주석산화물층 표면의 일부영역에 증착되어 형성될 수 있다.In the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, in step c), the palladium nanoparticle layer may be formed by depositing on a partial region of the surface of the tin oxide layer.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에 있어서, 상기 d) 단계는 용매에 용해된 폴리메틸메타크릴레이트 용액을 상기 금속 나노입자층 상에 도포 및 건조하는 단계를 포함할 수 있다.In the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, step d) may include applying and drying a polymethylmethacrylate solution dissolved in a solvent on the metal nanoparticle layer.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에 있어서, 상기 d) 단계에서, 상기 건조는 100 내지 300℃의 온도에서 수행될 수 있다.In the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, in step d), the drying may be performed at a temperature of 100 to 300°C.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에 있어서, 상기 d) 단계에서, 상기 용매는 할로겐화 알콕시 벤젠 화합물일 수 있다.In the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, in step d), the solvent may be a halogenated alkoxybenzene compound.
본 발명에 따른 수소가스 센서는 별도의 히팅 수단 없이도 상온에서도 수소 가스에 대한 빠른 응답속도 및 높은 선택도를 가지며, 저농도의 수소 가스도 고감도 센싱이 가능하다.The hydrogen gas sensor according to the present invention has a fast response speed and high selectivity to hydrogen gas even at room temperature without a separate heating means, and is capable of high-sensitivity sensing even of a low concentration of hydrogen gas.
또한, 본 발명에 따른 수소 가스 센서는 수소 가스 센싱의 감도를 저하시킬 수 있는 외부 환경 인자로부터 감지부가 보호되어, 수소 가스 센싱에 있어 신뢰성 및 장기안정성을 가질 수 있다.In addition, the hydrogen gas sensor according to the present invention can have reliability and long-term stability in sensing hydrogen gas by protecting the sensing unit from external environmental factors that may reduce the sensitivity of sensing hydrogen gas.
본 발명에 따른 수소가스 센서 제조방법은 상온에서도 고감도 수소 센싱이 가능한 수소 가스 센서를 용이하고 간단한 공정으로 경제적으로 제조할 수 있어 산업적 유용성이 매우 우수한 장점이 있다. The method for manufacturing a hydrogen gas sensor according to the present invention has an advantage in that it can easily and economically manufacture a hydrogen gas sensor capable of high-sensitivity hydrogen sensing even at room temperature with a simple and economical process, and thus has very excellent industrial usefulness.
도 1은 본 발명의 일 실시예에 따른 수소 가스 센서의 모식도,1 is a schematic diagram of a hydrogen gas sensor according to an embodiment of the present invention;
도 2는 본 발명의 일 실시예에 따른 주석산화물층 및 팔라듐나노입자층의 조도를 비교한 AFM(Atomic force microscopy)이미지,2 is an atomic force microscopy (AFM) image comparing the roughness of a tin oxide layer and a palladium nanoparticle layer according to an embodiment of the present invention;
도 3은 도 1에 도시된 수소 가스 센서의 수소농도별 검지테스트 결과 그래프,3 is a graph of the detection test result for each hydrogen concentration of the hydrogen gas sensor shown in FIG. 1;
도 4는 도 1에 도시된 수소 가스 센서의 수소 가스 반복 감응 테스트 결과 그래프,4 is a graph of the hydrogen gas repeated sensitivity test result of the hydrogen gas sensor shown in FIG. 1;
도 5는 도 1에 도시된 수소 가스 센서의 수소농도별 응답-회복 시간 결과 그래프,5 is a graph of the response-recovery time result for each hydrogen concentration of the hydrogen gas sensor shown in FIG. 1;
도 6은 도 1에 도시된 수소 가스 센서의 수소가스 선택성 테스트 결과 그래프,6 is a graph of the hydrogen gas selectivity test result of the hydrogen gas sensor shown in FIG. 1;
도 7은 도 1에 도시된 수소 가스 센서의 장기안정성 테스트 결과 그래프,7 is a graph of the long-term stability test result of the hydrogen gas sensor shown in FIG. 1;
도 8 내지 도 9는 도 1에 도시된 수소 가스 센서의 온도별 수소 가스 검지테스트 결과 그래프,8 to 9 are graphs of hydrogen gas detection test results for each temperature of the hydrogen gas sensor shown in FIG. 1;
도 10은 도 1에 도시된 수소 가스 센서의 습도별 수소 가스 검지테스트 결과그래프,10 is a graph of hydrogen gas detection test results for each humidity of the hydrogen gas sensor shown in FIG. 1;
도 11 내지 도 12는 본 발명의 실시예들에 따른 수소 가스 센서의 수소 가스 검지테스트 결과 비교 그래프,11 to 12 are graphs comparing hydrogen gas detection test results of a hydrogen gas sensor according to embodiments of the present invention;
도 13은 본 발명의 실시예에 따른 수소농도별 검지테스트 결과 그래프,13 is a graph of detection test results for each hydrogen concentration according to an embodiment of the present invention;
도 14는 본 발명의 실시예에 따른 수소 가스 반복 감응 테스트 결과 그래프,14 is a graph of hydrogen gas repeated sensitivity test results according to an embodiment of the present invention;
도 15는 비교예에 따른 수소 가스 센서의 수소가스에 대한 반복 감응 테스트 결과 그래프,15 is a graph showing a result of a repeated sensitivity test to hydrogen gas of a hydrogen gas sensor according to a comparative example;
도 16은 본 발명의 실시예에 따른 수소 가스 센서의 고분해능 투과전자현미경 (High-resolution transmission electron microscopy, HRTEM) 이미지,16 is a high-resolution transmission electron microscopy (HRTEM) image of a hydrogen gas sensor according to an embodiment of the present invention;
도 17은 본 발명의 실시예에 따른 고분자층의 주사전자현미경 이미지,17 is a scanning electron microscope image of a polymer layer according to an embodiment of the present invention;
도 18은 본 발명의 실시예 및 비교예에 따른 수소 가스 센서의 선택성 검지 테스트 결과 그래프,18 is a graph of the selectivity detection test result of the hydrogen gas sensor according to Examples and Comparative Examples of the present invention;
도 19는 본 발명의 일 실시예에 따른 수소 가스 센서의 X선 광전자 분광법((X-ray Photoelectron. Spectroscopy: XPS)을 통한 깊이 프로파일링 결과이다.19 is a result of depth profiling through X-ray photoelectron spectroscopy (X-ray Photoelectron. Spectroscopy: XPS) of a hydrogen gas sensor according to an embodiment of the present invention.
본 명세서에서 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. Unless otherwise defined in technical terms and scientific terms used in this specification, those of ordinary skill in the art to which this invention belongs have the meanings commonly understood, and in the following description and accompanying drawings, the subject matter of the present invention Descriptions of known functions and configurations that may unnecessarily obscure will be omitted.
또한, 본 명세서에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.Also, the singular form used herein may be intended to include the plural form as well, unless the context specifically dictates otherwise.
또한, 본 명세서에서 특별한 언급 없이 사용된 단위는 중량을 기준으로 하며, 일 예로 % 또는 비의 단위는 중량% 또는 중량비를 의미하고, 중량%는 달리 정의되지 않는 한 전체 조성물 중 어느 하나의 성분이 조성물 내에서 차지하는 중량%를 의미한다.In addition, in the present specification, the unit used without special mention is based on the weight, for example, the unit of % or ratio means weight % or weight ratio, and weight % means any one component of the entire composition unless otherwise defined. It means % by weight in the composition.
또한, 본 명세서에서 사용되는 수치 범위는 하한치와 상한치와 그 범위 내에서의 모든 값, 정의되는 범위의 형태와 폭에서 논리적으로 유도되는 증분, 이중 한정된 모든 값 및 서로 다른 형태로 한정된 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함한다. 본 발명의 명세서에서 특별한 정의가 없는 한 실험 오차 또는 값의 반올림으로 인해 발생할 가능성이 있는 수치범위 외의 값 역시 정의된 수치범위에 포함된다. In addition, the numerical range used herein includes the lower limit and upper limit and all values within the range, increments logically derived from the form and width of the defined range, all values defined therein, and the upper limit of the numerical range defined in different forms. and all possible combinations of lower limits. Unless otherwise defined in the specification of the present invention, values outside the numerical range that may occur due to experimental errors or rounding of values are also included in the defined numerical range.
본 명세서의 용어, '포함한다'는 '구비한다', '함유한다', '가진다' 또는 '특징으로 한다' 등의 표현과 등가의 의미를 가지는 개방형 기재이며, 추가로 열거되어 있지 않은 요소, 재료 또는 공정을 배제하지 않는다. As used herein, the term 'comprising' is an open-ended description having an equivalent meaning to expressions such as 'comprising', 'containing', 'having' or 'characterized', and elements not listed in addition; Materials or processes are not excluded.
종래, 수소 가스 센서는 촉매 연소 또는 열선을 사용한 센서, SiO2, AlN 금속산화(질화)물 반도체, 그리고 벌크 Pd, Pt에 SiC, GaN 등을 이용하여 2극 구조의 숏키 장벽 다이오드(Schottky barrier diode)를 사용한 센서 등이 개발되고 있지만, 이들은 크기가 크고 구조가 복잡할 뿐만 아니라 가격도 고가이다. 또한 300℃ 이상의 고온에서 동작하므로 소비전력이 클 뿐만 아니라 수소에 대한 민감도가 떨어지는 등의 한계성을 지니고 있었다. Conventionally, a hydrogen gas sensor is a Schottky barrier diode having a bipolar structure using a sensor using catalytic combustion or a hot wire, SiO2, AlN metal oxide (nitride) semiconductor, and bulk Pd, Pt, SiC, GaN, etc. Although sensors using In addition, since it operates at a high temperature of 300°C or higher, it has limitations such as not only high power consumption but also low sensitivity to hydrogen.
본 발명에 따른 수소 가스 센서는 주석산화물층; 상기 주석산화물층 상 서로 이격 위치하는 제1전극과 제2전극; 상기 제1전극과 제2전극이 이격된 영역에 위치하는 팔라듐 나노입자층; 및 상기 팔라듐 나노입자층 상에 위치하며, 아크릴레이트계 고분자를 포함하는 고분자층;을 포함한다.A hydrogen gas sensor according to the present invention includes a tin oxide layer; a first electrode and a second electrode spaced apart from each other on the tin oxide layer; a palladium nanoparticle layer positioned in a region where the first electrode and the second electrode are spaced apart; and a polymer layer positioned on the palladium nanoparticle layer and including an acrylate-based polymer.
본 발명에 따른 수소 가스 센서는 감지부로써, 주석산화물층 상 특정영역에 팔라듐 나노입자층을 포함하여 저전력하 상온작동이 가능하며, 저농도의 수소 가스에 대해서도 빠르고 정확한 검지가 가능하다. 또한, 팔라듐 나노입자층 상에 위치하는 고분자층을 포함함에 따라, 수소 가스에 대한 매우 높은 선택도를 가질 수 있다. 구체적으로, 이와 같은 수소 가스 센서는 100ppm이하의 수소 가스도 빠른 응답속도로 감지가 가능할 수 있다. The hydrogen gas sensor according to the present invention is a sensing unit, and includes a palladium nanoparticle layer in a specific region on the tin oxide layer, so that it is possible to operate at room temperature under low power, and it is possible to quickly and accurately detect low-concentration hydrogen gas. In addition, by including the polymer layer positioned on the palladium nanoparticle layer, it may have a very high selectivity for hydrogen gas. Specifically, such a hydrogen gas sensor may be capable of detecting hydrogen gas of 100 ppm or less with a fast response speed.
또한, 본 발명에 따른 수소 가스 센서는 수소 가스 센싱의 감도를 저하시킬 수 있는 외부 환경 인자로부터 감지부가 보호되어, 수소 가스 센싱에 있어 신뢰성을 높일 수 있으며, 장시간 반복하여 사용시에도 고민감성을 유지할 수 있다. In addition, in the hydrogen gas sensor according to the present invention, the sensing unit is protected from external environmental factors that may decrease the sensitivity of hydrogen gas sensing, thereby increasing reliability in hydrogen gas sensing, and maintaining high sensitivity even when used repeatedly for a long time. have.
일 실시예에 있어서, 팔라듐 나노입자층 및 주석산화물층이 특정 표면 조도를 가짐에 따라, 수소 가스에 대한 고감도 센싱이 가능할 수 있다. 구체적으로, 수소 가스 센서는 하기 식 1을 만족할 수 있다. In an embodiment, as the palladium nanoparticle layer and the tin oxide layer have a specific surface roughness, high sensitivity sensing for hydrogen gas may be possible. Specifically, the hydrogen gas sensor may satisfy Equation 1 below.
[식 1][Equation 1]
(Rs-Rs0)/Rs0 > 0(Rs-Rs 0 )/Rs 0 > 0
(상기 식 1에서 Rs는 팔라듐 나노입자층이 증착된 주석산화물층의 RMS 표면 거칠기(root mean square surface roughness), Rs0는 주석산화물층의 RMS 표면 거칠기이다.)(In Equation 1, Rs is the root mean square surface roughness of the tin oxide layer on which the palladium nanoparticle layer is deposited, and Rs 0 is the RMS surface roughness of the tin oxide layer.)
구체적으로, 상기 식 1에서 (Rs-Rs0)/Rs0 > 0.1, 더욱 구체적으로 0.3 > (Rs-Rs0)/Rs0 > 0.1일 수 있다.Specifically, in Formula 1, (Rs-Rs 0 )/Rs 0 > 0.1, more specifically, 0.3 > (Rs-Rs 0 )/Rs 0 >0.1.
일 양태에 있어서, Rs 및 Rs0는 상기 식 1을 만족하는 것이라면 특별히 한정되지 않으나, Rs0는 1nm 이하, 구체적으로 0.5 내지 1㎚일 수 있다. Rs는 1nm 이상, 구체적으로 1 내지 1.5㎚일 수 있다.In an embodiment, Rs and Rs 0 are not particularly limited as long as they satisfy Formula 1, but Rs 0 may be 1 nm or less, specifically 0.5 to 1 nm. Rs may be 1 nm or more, specifically 1 to 1.5 nm.
RMS 표면 거칠기는 AFM(Atomic force microscopy)을 이용하여 2 x 2μm2 면적에서 측정된 rms 표면 거칠기일 수 있다. The RMS surface roughness may be an rms surface roughness measured in an area of 2×2 μm 2 using atomic force microscopy (AFM).
또한, 일 실시예에 있어서, X선 광전자 분광법으로 깊이 프로파일링 측정 시, 팔라듐 원소가 검출되기 시작하는 최초 깊이에서 주석 원소도 동시에 검출될 수 있다.In addition, in an embodiment, when depth profiling is measured by X-ray photoelectron spectroscopy, a tin element may be simultaneously detected at an initial depth at which the palladium element is detected.
상기 최초 깊이에서 상기 팔라듐 원소의 함량은 상기 주석 원소보다 더 많은 것일 수 있으며, 상기 깊이 프로파일링 측정 시, 5 nm 이상의 깊이에서 팔라듐 원소의 함량은 10원자%, 구체적으로 7%원자% 미만일 수 있다.The content of the palladium element at the initial depth may be more than the tin element, and when the depth profiling is measured, the content of the palladium element at a depth of 5 nm or more may be less than 10 atomic%, specifically 7% atomic% .
이와 같은 수소 가스 센서는 주석산화물층 상에 비교적 팔라듐 나노입자가 분산되어 위치하는 것으로, 고감도 센싱이 가능할 수 있다.In such a hydrogen gas sensor, palladium nanoparticles are relatively dispersed and positioned on a tin oxide layer, and thus high-sensitivity sensing may be possible.
본 발명의 일 양태에 있어서, 상기 깊이 프로파일링 측정은 고분자가 제거된 상태에서 측정되는 것일 수 있다.In one aspect of the present invention, the depth profiling measurement may be measured in a state in which the polymer is removed.
일 실시예에 있어서, 수소 가스 센서는 하기 조건 (1) 및 (2)를 만족함에 따라, 더욱 고감도 센싱이 가능할 수 있다.In one embodiment, the hydrogen gas sensor may be capable of more sensitive sensing as the following conditions (1) and (2) are satisfied.
(1) 공기 중 1000ppm 수소 농도 및 373.15K에서 시간상수가 1.5 내지 4초(1) At 1000 ppm hydrogen concentration in air and 373.15 K, the time constant is 1.5 to 4 seconds
(2) 공기 중 1000ppm 수소 농도 및 323.15K에서 시간상수가 10 내지 15초(2) 1000 ppm hydrogen concentration in air and a time constant of 10 to 15 seconds at 323.15 K
구체적으로, 상기 조건 1에서 공기 중 상 1000ppm 수소 농도 및 373.15K에서 시간상수가 2 내지 3초일 수 있다.Specifically, under Condition 1, the time constant may be 2 to 3 seconds at a hydrogen concentration of 1000 ppm in the air and 373.15 K.
또한, 상기 수소 가스 센서는 298.15K에서 수소 가스의 농도 C(mol%)에 대한 신호 강도(Ig/Ia)의 비 (Ig/Ia)/C는 2500 내지 3500를 만족할 수 있으며, 구체적으로, 신호 강도(Ig/Ia)의 비 (Ig/Ia)/C는 2800 내지 3000을 만족할 수 있다.In addition, in the hydrogen gas sensor, the ratio (Ig/Ia)/C of the signal intensity (Ig/Ia) to the concentration C (mol%) of the hydrogen gas at 298.15K may satisfy 2500 to 3500, specifically, the signal The ratio (Ig/Ia)/C of the strength (Ig/Ia) may satisfy 2800 to 3000.
아울러, 일 실시예에 있어서, 공기중 2 mol% 수소 농도 및 343.15K 이하에서 신호강도(Ig/Ia)는 100 이상, 구체적으로 100 내지 140일 수 있다.In addition, in one embodiment, the signal intensity (Ig/Ia) at 2 mol% hydrogen concentration in air and 343.15K or less may be 100 or more, specifically 100 to 140.
도 1에는 본 발명의 일 실시예에 따른 수소 가스 센서가 도시되어 있다. 1 shows a hydrogen gas sensor according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 수소 가스 센서(1)는 기판(10); 기판(10) 상에 위치하는 주석산화물층(15); 주석산화물층(15) 상에 위치하는 제1전극(21)과 제2전극(23); 상기 제1전극(21)과 제2전극(23)이 이격된 영역에 위치하는 팔라듐 나노입자층(30); 및 팔라듐 나노입자층(30) 상에 위치하며, 아크릴레이트계 고분자를 포함하는 고분자층(50);을 포함한다.1, the hydrogen gas sensor 1 of the present invention is a substrate 10; a tin oxide layer 15 positioned on the substrate 10; a first electrode 21 and a second electrode 23 positioned on the tin oxide layer 15; a palladium nanoparticle layer 30 positioned in a region where the first electrode 21 and the second electrode 23 are spaced apart; and a polymer layer 50 positioned on the palladium nanoparticle layer 30 and including an acrylate-based polymer.
구체적으로 기판(10)은 절연성을 가지는 소재로 이루어진 것이라면 크게 제한되지 않으며, 유리, 세라믹, 알루미나, 실리콘 웨이퍼 또는 고분자 등일 수 있다. 일 예로, 도면에 도시된 바와 달리 고분자 기판(10)은 예시적으로, 유연성 폴리이미드 기판(10) 또는 유연성 폴리에틸렌테레프탈레이트 기판(10)일 수 있다. 이와 같은 고분자 기판(10)은 유연성 및 절연성을 가짐과 동시에 광투과성을 나타내며, 다양한 분야에 적용이 가능하도록 할 수 있다.Specifically, the substrate 10 is not particularly limited as long as it is made of an insulating material, and may be glass, ceramic, alumina, a silicon wafer, or a polymer. For example, unlike shown in the drawings, the polymer substrate 10 may be, for example, a flexible polyimide substrate 10 or a flexible polyethylene terephthalate substrate 10 . Such a polymer substrate 10 has flexibility and insulation, and at the same time exhibits light transmittance, and can be applied to various fields.
주석산화물층(15) 및 팔라듐 나노입자층(30)은 수소를 감지하는 감지부로, 주석산화물층(15) 및 팔라듐 나노입자층(30)에 의해 수소 가스의 센싱이 가능하다. 구체적으로, 제1 및 제2전극(23)에 전원을 공급한 상태에서 주석산화물층(15) 및 팔라듐 나노입자층(30)에 수소가 노출될 경우, 수소가 흡착되며 전기적 특성이 변화되어 수소를 검지할 수 있다. The tin oxide layer 15 and the palladium nanoparticle layer 30 are sensing units for sensing hydrogen, and hydrogen gas can be sensed by the tin oxide layer 15 and the palladium nanoparticle layer 30 . Specifically, when hydrogen is exposed to the tin oxide layer 15 and the palladium nanoparticle layer 30 in a state in which power is supplied to the first and second electrodes 23, hydrogen is adsorbed and electrical properties are changed to generate hydrogen. can be detected
주석산화물층(15)은 주석산화물(SnOx)로 이루어진 것으로, 산화 정도에 따라 Ox가 O1 내지 O10에서 선택될 수 있으나 이에 한정되진 않는다. 주석산화물층(15)은 타 산화물층에 비해 면적대비 수소 흡착률이 높아 저농도 수소 가스도 센싱이 가능하도록 한다The tin oxide layer 15 is made of tin oxide (SnO x ), and depending on the degree of oxidation, O x may be selected from O 1 to O 10 , but is not limited thereto. The tin oxide layer 15 has a higher hydrogen adsorption rate relative to the area compared to other oxide layers, so that it is possible to sense even low-concentration hydrogen gas.
주석산화물층(15)의 두께는 5 내지 300 ㎚, 상세하게 30 내지 200 ㎚ 일 수 있으나 이에 한정되지 않는다. 다만, 상기 범위에서 두께 대비 높은 수소 감응을 나타낼 수 있다. The thickness of the tin oxide layer 15 may be 5 to 300 nm, specifically 30 to 200 nm, but is not limited thereto. However, it may exhibit a high hydrogen sensitivity compared to the thickness in the above range.
팔라듐 나노입자층(30)은 주석산화물층(15) 상 제1전극(21) 및 제2전극(23)이 이격된 영역에 위치하는 것으로, 상술한 바와 같이, X선 광전자 분광법으로 깊이 프로파일링 측정 시, 팔라듐 원소가 검출되기 시작하는 최초 깊이에서 주석 원소도 동시에 검출될 수 있도록, 팔라듐 나노입자가 주석산화물층 상 특정 영역에 특정 두께 및 특정 거칠기를 형성하도록 분포될 수 있다.The palladium nanoparticle layer 30 is positioned in a region in which the first electrode 21 and the second electrode 23 are spaced apart on the tin oxide layer 15, and as described above, depth profiling is measured by X-ray photoelectron spectroscopy. , palladium nanoparticles may be distributed to form a specific thickness and a specific roughness in a specific area on the tin oxide layer so that the tin element can be simultaneously detected at the initial depth where the palladium element is detected.
상술한 바와 같이, X선 광전자 분광법으로 깊이 프로파일링 측정 시, 팔라듐 원소가 검출되기 시작하는 최초 깊이에서 주석 원소도 동시에 검출될 수 있도록 팔라듐 나노입자층의 두께는 1 내지 5 nm, 구체적으로 2 내지 4 nm 일 수 있다. As described above, when measuring depth profiling by X-ray photoelectron spectroscopy, the thickness of the palladium nanoparticle layer is 1 to 5 nm, specifically 2 to 4 so that the tin element can be simultaneously detected at the initial depth where the palladium element is detected. may be nm.
팔라듐 나노입자층(30)은 클러스터 또는 분산된 입자형태의 팔라듐 나노입자로 이루어질 수 있다. 구체예로, 평균 입경이 0.5 내지 1nm인 클러스터 형 팔라듐 나노입자로 이루어질 수 있다. 이와 같은 팔라듐 나노입자층(30)은 전도성과 우수한 수소흡착능을 동시에 가짐에 따라 다량의 수소 가스를 흡착할 수 있으며, 고감도 센싱이 가능하도록 한다. The palladium nanoparticle layer 30 may be formed of palladium nanoparticles in the form of clusters or dispersed particles. As a specific example, it may be formed of cluster-type palladium nanoparticles having an average particle diameter of 0.5 to 1 nm. As such palladium nanoparticle layer 30 has both conductivity and excellent hydrogen adsorption ability, it can adsorb a large amount of hydrogen gas, and enables high-sensitivity sensing.
구체적으로, 본 발명은 팔라듐 나노 입자층이 특정영역, 즉, 주석산화물층(15) 상 제1전극(21) 및 제2전극(23)이 이격된 영역에 위치함에 따라 높은 민감도로 수소가스 센싱이 가능하다. 팔라듐 나노입자는 상기 영역에서 균일 또는 불균일하게 분포되어 있을 수 있으며, 바람직하게, 팔라듐 나노입자는 제1전극(21)과 제2전극(23)이 이격된 영역의 주석산화물층(15) 표면에 일부영역에만 분포되어, 제1전극(21)과 제2전극(23)이 이격된 영역의 주석산화물층(15) 표면이 팔라듐 나노입자층(30)이 위치하는 제1영역과, 팔라듐 나노입자층(30)이 위치하지 않는 제2영역을 포함할 수 있다. Specifically, the present invention provides hydrogen gas sensing with high sensitivity as the palladium nanoparticle layer is located in a specific region, that is, in a region where the first electrode 21 and the second electrode 23 on the tin oxide layer 15 are spaced apart. It is possible. The palladium nanoparticles may be uniformly or non-uniformly distributed in the region. Preferably, the palladium nanoparticles are on the surface of the tin oxide layer 15 in the region where the first electrode 21 and the second electrode 23 are spaced apart. Distributed only in a partial region, the surface of the tin oxide layer 15 in the region where the first electrode 21 and the second electrode 23 are spaced apart from the first region where the palladium nanoparticle layer 30 is located, and the palladium nanoparticle layer ( 30) may include a second region not located.
상세하게, 제2영역의 면적은 제1전극(21) 및 제2전극(23)에 의해 구획된 주석산화물층(15) 표면의 총 면적 중 50% 내지 90%, 바람직하게는 60% 내지 80%일 수 있다. 상기와 같은 주석산화물층(15) 및 팔라듐 나노입자층(30)을 포함하는 수소 가스 센서는 고민감도 센싱뿐만 아니라, 다양한 환경조건 하에서도 수소센싱이 가능하다. 구체적으로, 수소 가스 센서는 -50℃ 내지 300℃의 온도 10 내지 80%의 습도 하에서도 고감도의 수소 센싱이 가능하다. In detail, the area of the second region is 50% to 90%, preferably 60% to 80%, of the total area of the surface of the tin oxide layer 15 partitioned by the first electrode 21 and the second electrode 23 . It can be %. The hydrogen gas sensor including the tin oxide layer 15 and the palladium nanoparticle layer 30 as described above is capable of not only high-sensitivity sensing but also hydrogen sensing under various environmental conditions. Specifically, the hydrogen gas sensor is capable of high-sensitivity hydrogen sensing even at a temperature of -50°C to 300°C and a humidity of 10 to 80%.
제1전극(21) 및 제2전극(23)은 전류 또는 저항의 변화를 측정하기 위한 것으로, 주석산화물층(15) 상에 서로 이격되어 위치한다. 일 예로, 구리, 알루미늄, 니켈, 티타늄, 은, 금, 백금 및 팔라듐 등을 들 수 있으나 이에 한정되는 것은 아니며, 일반적인 전극으로 사용되는 소재는 모두 사용 가능하다. 제1전극(21) 및 제2전극(23)의 각각 두께는 10㎚ 내지 200㎚ 구체적으로, 50㎚ 내지 150㎚일 수 있으나 이에 한정되지 않는다.The first electrode 21 and the second electrode 23 are for measuring a change in current or resistance, and are spaced apart from each other on the tin oxide layer 15 . As an example, copper, aluminum, nickel, titanium, silver, gold, platinum, palladium, etc. may be mentioned, but are not limited thereto, and any material used as a general electrode may be used. Each of the first electrode 21 and the second electrode 23 may have a thickness of 10 nm to 200 nm, specifically, 50 nm to 150 nm, but is not limited thereto.
아크릴레이트계 고분자를 포함하는 고분자층(50)은 수소 가스를 선택적으로 투과할 수 있도록 하여 더욱 고감도의 수소 가스 센싱이 가능하도록 한다. 나아가 고분자층(50)은 수분, 공기 등 외부 환경에서 팔라듐 나노입자의 이탈 방지 등 감지부를 보호하는 역할을 하여 장시간 동안 외부 노출 시 수분 등에 의해 수소 가스 민감도가 떨어지는 것을 방지한다. 즉, 고분자층(50)은 감지부의 민감도, 수소선택성, 물리적 및 화학적 안정성을 현저히 향상시킬 수 있다. 고분자층(50)의 두께는 팔라듐 나노입자층(30)을 충분히 보호할 수 있는 두께라면 특별히 한정되지 않는다. 다만, 상기 전극의 두께보다 두껍게 형성되어 고분자층(50)의 가장자리가 전극 상에 위치할 수 있다. 이와 같은 고분자층(50)은 감지부 뿐만 아니라, 수소 가스 센서의 전극도 외부 환경으로부터 보호함에 따라, 수소 가스 센서의 내구성을 더욱 높이는 역할을 할 수 있다. 구체적으로, 고분자층(50)은 100㎚ 이상, 또는 500 nm 이상, 구체적으로 1㎛ 내지 10㎛ 일 수 있으나 이에 한정되지 않는다.The polymer layer 50 including the acrylate-based polymer allows hydrogen gas to selectively permeate, thereby enabling high-sensitivity hydrogen gas sensing. Furthermore, the polymer layer 50 serves to protect the sensing unit, such as preventing the escape of palladium nanoparticles from external environments such as moisture and air, and prevents the hydrogen gas sensitivity from decreasing due to moisture when exposed to the outside for a long time. That is, the polymer layer 50 can significantly improve the sensitivity, hydrogen selectivity, and physical and chemical stability of the sensing unit. The thickness of the polymer layer 50 is not particularly limited as long as it can sufficiently protect the palladium nanoparticle layer 30 . However, since it is formed to be thicker than the thickness of the electrode, the edge of the polymer layer 50 may be positioned on the electrode. The polymer layer 50 protects not only the sensing unit but also the electrode of the hydrogen gas sensor from the external environment, thereby further enhancing the durability of the hydrogen gas sensor. Specifically, the polymer layer 50 may be 100 nm or more, or 500 nm or more, specifically 1 μm to 10 μm, but is not limited thereto.
본 발명의 일양태에 있어서, 주석산화물 층 상에 고분자층(50)이 형성될 시, 외부로 노출된 주석산화물층(15), 즉, 제2영역은 고분자층(50)과 직접 접촉될 수 있다. 이와 같은 수소 가스 센서는 수소 선택성을 더욱 높일 수 있다.In one aspect of the present invention, when the polymer layer 50 is formed on the tin oxide layer, the tin oxide layer 15 exposed to the outside, that is, the second region, may be in direct contact with the polymer layer 50 . have. Such a hydrogen gas sensor may further increase hydrogen selectivity.
고분자층(50)은 팔라듐 나노입자층(30)의 보호 및 수소 가스의 선택도를 높일 수 있는 구조라면 특별히 한정되지 않으나, 비다공질인 것이 수소 선택성에 있어서 유리할 수 있다. 고분자층(50)이 동일한 고분자 소재로 이루어진 것일지라도 비다공질인 것이 다공질일 때보다 더욱 높은 수소 선택도를 가질 수 있다. The polymer layer 50 is not particularly limited as long as it has a structure capable of protecting the palladium nanoparticle layer 30 and increasing the selectivity of hydrogen gas, but a non-porous one may be advantageous in terms of hydrogen selectivity. Even if the polymer layer 50 is made of the same polymer material, the non-porous one may have higher hydrogen selectivity than the porous one.
본 명세서에서, 비다공질이란 고분자층(50)의 표면을 주사전자현미경으로 측정된 25㎛ X 20㎛의 사진으로 관찰 시, 육안으로 기공이 관찰되지 않는 것을 의미한다. 구체적으로, 약 10㎚ 이상의 직경을 가지는 크기의 기공이 발견되지 않는 것을 의미할 수 있다. In the present specification, non-porous means that when the surface of the polymer layer 50 is observed with a photograph of 25 μm X 20 μm measured with a scanning electron microscope, pores are not observed with the naked eye. Specifically, it may mean that pores having a size having a diameter of about 10 nm or more are not found.
또한, 고분자층(50)은 평탄 표면을 가지는 것이 수소 선택성에 있어서 유리할 수 있다. 구체적으로, 고분자층(50)이 동일한 비다공질 고분자 소재일 시, 평탄 표면을 가지는 것이 비 평탄 표면을 가지는 것 보다 더욱 높은 수소 선택도를 가질 수 있다.In addition, it may be advantageous for the polymer layer 50 to have a flat surface in terms of hydrogen selectivity. Specifically, when the polymer layer 50 is made of the same non-porous polymer material, a planar surface may have higher hydrogen selectivity than a non-planar surface.
본 명세서에서, 평탄 표면이란 스무드(smooth)한 표면을 일컫는 것으로, 고분자층(50)의 표면을 주사전자현미경으로 측정된 25㎛ X 20㎛의 사진으로 관찰 시, 육안으로 요철이 관찰되지 않는 것을 의미한다. 구체적으로, 약 10㎚ 이상의 최대 지름 및 최대 높이를 가지는 요철이 발견되지 않는 것을 의미할 수 있다. In the present specification, the flat surface refers to a smooth surface, and when the surface of the polymer layer 50 is observed with a photograph of 25 μm X 20 μm measured with a scanning electron microscope, it means that irregularities are not observed with the naked eye. it means. Specifically, it may mean that irregularities having a maximum diameter and maximum height of about 10 nm or more are not found.
고분자층(50)은 상술한 바와 같이, 아크릴레이트계 고분자를 포함하는 것으로, 구체적으로, 폴리(C1-C4)알킬메타크릴레이트를 포함할 수 있다. 구체적으로, 폴리메타크릴레이트(polymethacrylate), 폴리메틸아크릴레이트(polymethylacrylate), 폴리메틸메타크릴레이트(PMMA), 폴리에틸아크릴레이트(polyethylacrylate), 폴리에틸메타크릴레이트(polyethylmetacrylate) 또는 이들의 혼합물에서 하나 이상 선택되는 것을 포함할 수 있다. 바람직하게 고분자층(50)은 폴리메틸메타크릴레이트를 포함할 수 있다. 이와 같은 고분자층(50)은 비다공질 구조를 통한 수소 선택도에 있어서 유리할 수 있다.As described above, the polymer layer 50 may include an acrylate-based polymer, specifically, poly(C1-C4)alkyl methacrylate. Specifically, one of polymethacrylate, polymethylacrylate, polymethylmethacrylate (PMMA), polyethylacrylate, polyethylmethacrylate, or a mixture thereof It may include those selected above. Preferably, the polymer layer 50 may include polymethyl methacrylate. Such a polymer layer 50 may be advantageous in terms of hydrogen selectivity through a non-porous structure.
상기 아크릴레이트계 고분자의 중량평균분자량은 1,000 내지 1,000,000 g/mol일 수 있고, 구체적으로 5,000 내지 500,000 g/mol, 보다 구체적으로 20,000 내지 400,000 g/mol, 일 수 있다.The acrylate-based polymer may have a weight average molecular weight of 1,000 to 1,000,000 g/mol, specifically 5,000 to 500,000 g/mol, and more specifically 20,000 to 400,000 g/mol.
특히, 폴리메틸메타크릴레이트로 이루어진 고분자층(50)이 비다공질 및 평탄표면을 동시에 만족함에 따라 수소 가스 센싱에 있어 매우 높은 수소 선택성, 고감도 및 높은 신뢰성을 가질 수 있어 바람직하다.In particular, as the polymer layer 50 made of polymethyl methacrylate simultaneously satisfies a non-porous and flat surface, it is preferable because it can have very high hydrogen selectivity, high sensitivity, and high reliability in sensing hydrogen gas.
상기한 본 발명의 수소 가스 센서를 통해 본 발명의 수소 가스를 검출하는 방법은 감지부에 검출 대상 가스를 노출시킨 전 후의 전류 또는 저항을 측정하여 이루어질 수 있다. 비한정적인 일 구체예로, 수소 가스 센서의 드레인 전류(Ids(ref))를 측정하여 기준을 설정하는 단계; 제1,2전극 사이에 위치하는 감지부에 검출 대상 가스를 도입하는 단계; 검출 대상 가스가 도입되었을 때의 드레인 전류(Ids(detect))를 측정하는 검출 단계; 및 측정된 드레인 전류값을 이용하여 검출 가스의 농도를 분석하는 단계;를 포함할 수 있으며, 검출 대상 가스의 도입 전 후 변화된(증가된) 드레인 전류값을 기준으로 검출 가스를 검출할 수 있다. 이와 달리, 검출 대상 가스의 도입 전 후에 따라 변화된 드레인 전류값이 아닌, 변화된 저항값으로 검출 가스의 검출이 이루어질 수 있음은 물론이다. The method of detecting hydrogen gas of the present invention through the hydrogen gas sensor of the present invention may be performed by measuring the current or resistance before and after exposing the detection target gas to the sensing unit. In one non-limiting embodiment, measuring a drain current Ids(ref) of a hydrogen gas sensor to set a reference; introducing a detection target gas to a sensing unit positioned between the first and second electrodes; a detection step of measuring a drain current Ids(detect) when a detection target gas is introduced; and analyzing the concentration of the detection gas using the measured drain current value, and the detection gas may be detected based on the changed (increased) drain current value before and after introduction of the detection target gas. Alternatively, it goes without saying that the detection of the detection gas may be performed with a changed resistance value instead of a changed drain current value before and after introduction of the detection target gas.
이때, 수소 가스 센서의 작동(검출) 온도는 -50 내지 300 ℃, 구체적으로 -10 내지 200 ℃, 보다 구체적으로 4 내지 100 ℃ 범위일 수 있다.In this case, the operating (detection) temperature of the hydrogen gas sensor may be in the range of -50 to 300 °C, specifically -10 to 200 °C, and more specifically 4 to 100 °C.
이와 같은 수소 가스 검출 방법은 0.1 내지 100000 ppm, 구체적으로 1 내지 80000 ppm의 농도 범위를 가지는 수소 가스를 검출할 수 있다.Such a hydrogen gas detection method may detect hydrogen gas having a concentration range of 0.1 to 100000 ppm, specifically, 1 to 80000 ppm.
이하, 본 발명의 수소 가스 센서의 제조방법에 대해 상세히 설명한다.Hereinafter, a method for manufacturing a hydrogen gas sensor of the present invention will be described in detail.
본 발명의 수소 가스 제조방법은 a) 절연층 일면에 주석산화물층을 형성하는 단계; b) 상기 절연층과 접하지 않는 주석산화물층 일면에 서로 이격되는 제1전극과 제2전극을 형성하는 단계; c) 상기 제1전극과 제2전극이 이격된 영역에 팔라듐 나노입자층을 형성하는 단계; 및 d) 상기 팔라듐 나노입자층 상에 아크릴레이트계 고분자를 포함하는 고분자층을 형성하는 단계;를 포함한다. 이와 같은 제조방법은 높은 선택도, 민감도 및 장기안정성이 우수한 수소 가스 센서, 즉 상술한 본 발명의 수소 가스 센서를 제조할 수 있는 장점이 있으며, 공정이 용이하고 간단하여 상업화 가능한 장점이 있다.The method for producing hydrogen gas of the present invention comprises the steps of: a) forming a tin oxide layer on one surface of an insulating layer; b) forming a first electrode and a second electrode spaced apart from each other on one surface of the tin oxide layer not in contact with the insulating layer; c) forming a palladium nanoparticle layer in a region where the first electrode and the second electrode are spaced apart; and d) forming a polymer layer including an acrylate-based polymer on the palladium nanoparticle layer. Such a manufacturing method has the advantage of being able to manufacture a hydrogen gas sensor with high selectivity, sensitivity and long-term stability, that is, the hydrogen gas sensor of the present invention described above, and has an advantage that the process is easy and simple and can be commercialized.
본 발명에서 a) 단계 이후, b) 단계 및 c) 단계가 순차적으로 수행될 수 있으나, 공정의 용이성에 따라a) 단계 이후, c) 단계 그 다음 b)단계가 수행될 수 있다.In the present invention, after step a), step b), and step c) may be sequentially performed, but depending on the ease of the process, step a), step c), and step b) may be performed.
상세하게, 절연층의 일면에 주석산화물층을 형성하는 단계(이하, a)단계)는 절연층에 주석산화물의 전구체 물질을 포함하는 전구체 용액을 도포 및 열처리시켜 수행될 수 있다. 구체적으로 주석산화물 전구체 물질은 사용되는 용매에 용해가 되는 것이면 어떤 종류라도 가능하며, 아세테이트계 주석 전구체 화합물 또는 할로겐화 주석 전구체 화합물 등이 예시될 수 있으나 특정 전구체에 제한을 두지 않으며 사용될 수 있다. In detail, the step of forming a tin oxide layer on one surface of the insulating layer (hereinafter, step a)) may be performed by applying and heat-treating a precursor solution including a precursor material of tin oxide to the insulating layer. Specifically, the tin oxide precursor material may be any type as long as it is soluble in the solvent used, and may be exemplified by an acetate-based tin precursor compound or a halogenated tin precursor compound, but may be used without limitation to a specific precursor.
용매는 2-메톡시에탄올(2-mathoxyethanol), 이소프로판올(isopropanol), 디메틸포름아마이드(dimethylformamide), 에탄올(ethanol), 메탄올(methanol), 아세틸아세톤(acetylacetone) 및 디메틸아민보란(dimethylamineborane) 으로 이루어진 군에서 적어도 하나를 포함할 수 있다. 전구체 용액 내 전구체 물질의 몰 농도는 0.01M 내지 3M, 구체적으로 0.025M 내지 0.2M, 더욱 구체적으로 0.05 내지 0.15M일 수 있으나 이에 한정되진 않는다. The solvent is 2-methoxyethanol (2-mathoxyethanol), isopropanol (isopropanol), dimethylformamide (dimethylformamide), ethanol (ethanol), methanol (methanol), acetylacetone (acetylacetone) and dimethylamine borane (dimethylamineborane) group may include at least one in The molar concentration of the precursor material in the precursor solution may be 0.01M to 3M, specifically 0.025M to 0.2M, more specifically 0.05 to 0.15M, but is not limited thereto.
전구체 용액은 당업계에서 사용되는 용액 안정화제를 더 포함할 수 있다.The precursor solution may further include a solution stabilizer used in the art.
a)단계는 전구체 용액을 상술한 절연성을 가지는 기판 위에 도포하여 전구체 박막을 형성한다. 전구체 용액은 스핀코팅, 잉크젯 프리팅, 딥코팅 등 당업계에 알려진 코팅 방법으로 도포될 수 있다. 이후, 기판의 전구체 박막에 열처리를 진행하여 주석산화물층을 형성한다.In step a), the precursor solution is applied on the substrate having the above-described insulating properties to form a precursor thin film. The precursor solution may be applied by a coating method known in the art, such as spin coating, inkjet printing, dip coating, and the like. Thereafter, heat treatment is performed on the precursor thin film of the substrate to form a tin oxide layer.
열처리는 200℃ 내지 500℃, 구체적으로 280℃ 내지 400℃에서 수행될 수 있으나 이에 한정되지 않으며, 온도를 상이하게 하여 1,2차로 나누어 수행될 수 있다. The heat treatment may be performed at 200° C. to 500° C., specifically, 280° C. to 400° C., but is not limited thereto, and may be performed by dividing the temperature into first and second order.
이와 같은 a)단계는 간단한 용액 공정만으로 균질한 표면을 가지는 주석산화물층을 용이하게 형성할 수 있을 뿐만 아니라 아크릴레이트계 고분자를 포함하는 고분자층과 강하게 결착되며 정확한 메커니즘은 알 수 없으나 수소 가스를 고감도 센싱하는데 기여하는 것으로 추측된다.In step a), it is possible to easily form a tin oxide layer having a homogeneous surface with only a simple solution process, and it is strongly bound to a polymer layer containing an acrylate-based polymer. It is presumed to contribute to sensing.
이후, 주석산화물층 상에 서로 이격되는 제1전극과 제2전극을 형성하는 단계(이하, b)단계)를 수행한다.Thereafter, the step of forming the first electrode and the second electrode spaced apart from each other on the tin oxide layer (hereinafter, step b) is performed.
구체적으로, 먼저, a) 단계를 거쳐 주석산화물층이 형성된 기판에 제1전극 및 제2전극 형상 개구부를 갖는 섀도 마스크를 배치한다. 섀도 마스크는 개구부를 통해 증착용 재료들이 선택적으로 증착될 수 있도록 설계된 마스크로, 정밀한 형상의 전극부를 제조할 수 있다. 섀도 마스크는 메탈 섀도 마스크, PDMS 또는 PMMA와 같은 고분자 섀도 마스크 등을 사용할 수 있다.Specifically, first, a shadow mask having a first electrode and a second electrode-shaped opening is disposed on the substrate on which the tin oxide layer is formed through step a). The shadow mask is a mask designed so that deposition materials can be selectively deposited through the opening, and an electrode part having a precise shape can be manufactured. As the shadow mask, a metal shadow mask, a polymer shadow mask such as PDMS or PMMA, etc. may be used.
이어서, 섀도 마스크가 배치된 기판 상에 금속을 전자빔으로 증착하여, 주석산화물층 상에 제1전극 및 제2전극을 형성한다. 금속은 구리, 알루미늄, 니켈, 티타늄, 은, 금, 백금 및 팔라듐 등을 들 수 있으나 이에 한정되는 것은 아니다.Next, a metal is deposited with an electron beam on the substrate on which the shadow mask is disposed to form a first electrode and a second electrode on the tin oxide layer. The metal may include, but is not limited to, copper, aluminum, nickel, titanium, silver, gold, platinum, and palladium.
그 다음, 제1전극과 제2전극이 이격된 영역에 팔라듐 나노입자층을 형성하는 단계(이하, c) 단계)를 수행한다.Next, a step (hereinafter, step c) of forming a palladium nanoparticle layer in a region where the first electrode and the second electrode are spaced apart is performed.
c)단계에서 팔라듐 나노입자층은 클러스터 및 분산된 입자형태의 팔라듐 나노입자가 증착되어 형성될 수 있다. 팔라듐 나노입자의 증착은 물리적 또는 화학적 방법을 이용할 수 있으며, 바람직하게는 스퍼터링법, 열증착법, 전자빔증착법, 전기도금법, 금속 수용액을 샘플 표면에 뿌리는 형식 등으로 증착할 수 있으며, 구체적으로 스퍼터링법, 열증착법 또는 전자빔증착법을 통해 팔라듐 나노입자층이 바람직하게 선택될 수 있다.In step c), the palladium nanoparticle layer may be formed by depositing palladium nanoparticles in the form of clusters and dispersed particles. Deposition of palladium nanoparticles may use a physical or chemical method, preferably sputtering method, thermal evaporation method, electron beam evaporation method, electroplating method, may be deposited in the form of spraying an aqueous metal solution on the sample surface, specifically sputtering method , the palladium nanoparticle layer may be preferably selected through a thermal evaporation method or an electron beam evaporation method.
본 발명의 일 양태에 있어서, c) 단계에서, 팔라듐 나노입자층은 주석산화물층 표면의 일부영역에만 증착되어 형성될 수 있다. 이에, 제1전극 및 제2전극이 이격된 영역의 주석산화물층 표면이 팔라듐 나노입층이 위치하는 제1영역과, 팔라듐 나노입층이 위치하지 않아 외부로 노출된 제2영역으로 구분될 수 있으며, 더욱더 우수한 민감도를 가지는 수소 가스 센서의 제작이 가능하다.In one aspect of the present invention, in step c), the palladium nanoparticle layer may be formed by depositing only a partial region of the surface of the tin oxide layer. Accordingly, the surface of the tin oxide layer in the area where the first electrode and the second electrode are spaced apart can be divided into a first area where the palladium nanoparticle layer is located and a second area exposed to the outside because the palladium nanoparticle layer is not located, It is possible to fabricate a hydrogen gas sensor with even better sensitivity.
d)단계는 고분자층을 형성하는 단계로, d)단계에서 고분자층은 금속산화물층 및 금속 나노입자층 상에 고분자가 코팅되어 형성될 수 있다. 구체적으로 고분자는 아크릴레이트계 고분자일 수 있으나, 폴리메틸메타크릴레이트 고분자인 것이 유리하다. Step d) is a step of forming a polymer layer. In step d), the polymer layer may be formed by coating a polymer on the metal oxide layer and the metal nanoparticle layer. Specifically, the polymer may be an acrylate-based polymer, but it is advantageous that the polymer is a polymethyl methacrylate polymer.
바람직하게 고분자는 스핀코팅, 스프레이코팅, 나이프코팅, 롤 코팅을 통해 도포될 수 있으며, 이에 한정되지 않고 당업계에 알려진 다양한 방법으로 코팅될 수 있다. 일 구체예로 폴리메틸메타크릴레이트(PMMA)의 경우 용매에 용해된 고분자 용액을 도포한 후, 용매를 증발시킴으로써 건조하여 고분자층이 제조될 수 있다.Preferably, the polymer may be applied through spin coating, spray coating, knife coating, or roll coating, but is not limited thereto, and may be coated by various methods known in the art. In one embodiment, in the case of polymethyl methacrylate (PMMA), a polymer layer may be prepared by applying a polymer solution dissolved in a solvent and then evaporating the solvent to dry it.
d) 단계에서, 건조 온도는 용매를 증발시킬 수 있는 조건이라면 한정되지 않으나, 비다공질 및 평탄 표면을 가지는 고분자층을 형성하는 것에 있어 유리하게, 100 내지 300℃, 구체적으로 120 내지 200℃의 온도에서 수행될 수 있다. In step d), the drying temperature is not limited as long as it is a condition capable of evaporating the solvent, but advantageously in forming a polymer layer having a non-porous and flat surface, a temperature of 100 to 300 ° C., specifically 120 to 200 ° C. can be performed in
구체적으로, d)단계는 용매에 용해된 폴리메틸메타크릴레이트를 금속 나노입자층 상에 도포 및 건조하는 단계;를 포함하여 수행될 수 있다. 이때, 용매는 할로겐화 알콕시 벤젠 화합물일 수 있으며, 상기 할로겐은 염소, 플루오르 또는 브롬일 수 있다. 일 예로, 할로겐화 알콕시 벤젠 화합물은 염소화(C1-C4)알콕시 벤젠 화합물일 수 있으며, 구체적으로 아니솔(Anisole)일 수 있다. 이와 같은 용매를 통해 제조되는 고분자층은 비다공질 및 평탄 표면을 가지며 상술한 바와 같이, 수소 가스의 선택성을 매우 높일 수 있다. Specifically, step d) may be performed including; applying and drying polymethyl methacrylate dissolved in a solvent on the metal nanoparticle layer. In this case, the solvent may be a halogenated alkoxybenzene compound, and the halogen may be chlorine, fluorine, or bromine. As an example, the halogenated alkoxy benzene compound may be a chlorinated (C1-C4) alkoxy benzene compound, specifically anisole. The polymer layer prepared through such a solvent has a non-porous and flat surface and, as described above, can greatly increase the selectivity of hydrogen gas.
이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present application will be described in more detail using examples, but the following examples are only illustrative to aid understanding of the present application, and the content of the present application is not limited to the following examples.
(실시예 1)(Example 1)
세척된 silicon wafer 기판(두께 : 500-550um, 비저항 : <0.005 ohm, SiO2두께 : 3000A (Dry))에 2-methoxyethanol을 용매로 한 0.1M SnCl2 용액을 스핀코팅 진행 (3,000rpm, 60초) 후 300℃ 에서 1시간동안 어닐링하여 SnO2층을 형성하였다. 그 다음, 섀도 마스크를 통해 Al을 두께 90nm, 너비 1000㎛로 증착하여 제1전극 및 2전극을 형성하였다. 이때, 제1,2전극의 이격거리는 200㎛였다. 그 다음 평균 3㎚ 두께를 갖도록 Pd을 thermal evaporator 이용하여 0.1Å/s의 속도로 증착하였다. 최종적으로 4mg/ml of PMMA in anisole을 스핀코팅 (4,000rpm, 30초) 후 175℃에서 10분간 열처리하여 수소 가스 센서를 제조하였다.Spin coating with a 0.1M SnCl 2 solution using 2-methoxyethanol as a solvent on the washed silicon wafer substrate (thickness: 500-550um, resistivity: <0.005 ohm, SiO 2 thickness: 3000A (Dry)) (3,000rpm, 60 seconds) ) and then annealed at 300° C. for 1 hour to form a SnO 2 layer. Then, Al was deposited to a thickness of 90 nm and a width of 1000 μm through a shadow mask to form a first electrode and a second electrode. In this case, the separation distance between the first and second electrodes was 200 μm. Then, Pd was deposited at a rate of 0.1 Å/s using a thermal evaporator to have an average thickness of 3 nm. Finally, 4 mg/ml of PMMA in anisole was spin-coated (4,000 rpm, 30 seconds) and then heat treated at 175° C. for 10 minutes to prepare a hydrogen gas sensor.
이하, 실시예 2 내지 9를 하기 표 1을 참조하여 제조하였다. 실시예 2 내지 9는 실시예 1과 동일한 방법으로 진행하였으나, 하기 표 1에 기재된 조건으로 각각 진행하였다.Hereinafter, Examples 2 to 9 were prepared with reference to Table 1 below. Examples 2 to 9 were carried out in the same manner as in Example 1, but each was carried out under the conditions described in Table 1 below.
구분division SnCl2 용액 농도SnCl 2 solution concentration Pd 두께Pd thickness
실시예1Example 1 0.1M0.1M 3㎚3nm
실시예2Example 2 0.025M0.025M 3㎚3nm
실시예3Example 3 0.05M0.05M 3㎚3nm
실시예4Example 4 0.075M0.075M 3㎚3nm
실시예5Example 5 0.2M0.2M 3㎚3nm
실시예6Example 6 0.1M0.1M 1㎚1 nm
실시예7Example 7 0.1M0.1M 2㎚2nm
실시예8Example 8 0.1M0.1M 4㎚4nm
실시예9Example 9 0.1M0.1M 5㎚5nm
(실시예 10) (Example 10)
실시예 1에 있어서, silicon wafer 대신, 폴리이미드를 기판으로 한 것을 제외하고, 실시예 1과동일한 방법으로 수소 가스 센서를 제조하였다. 폴리이미드 기판은 세척된 silicon wafer 기판(두께 : 500-550um, 비저항 : <0.005 ohm, SiO2두께 : 3000A (Dry))에 액상의 폴리이미드(polyimide,PI) 수지를 스핀코팅(1000rpm, 30초)한 후, 단계별로 온도를 높여가며 베이킹하여 제조하였다. 각 단계는 60, 80, 150, 230 및 300℃ 온도로 수행되었으며, 각 단계는 30분간 진행되었으나, 마지막 300℃ 온도는 1시간동안 수행되었다.In Example 1, a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that polyimide was used as a substrate instead of a silicon wafer. The polyimide substrate is a washed silicon wafer substrate (thickness: 500-550um, resistivity: <0.005 ohm, SiO 2 thickness: 3000A (Dry)) by spin-coating liquid polyimide (PI) resin (1000rpm, 30 seconds) ), and then baking was carried out by increasing the temperature step by step. Each step was performed at a temperature of 60, 80, 150, 230 and 300°C, each step was performed for 30 minutes, but the last 300°C temperature was performed for 1 hour.
(실시예 11 내지 14) (Examples 11 to 14)
실시예 1에 있어서, PMMA의 용매를 아니솔 대신 각각 아세톤(실시예11), 테트라하이드로퓨란(실시예 12), 디메틸포름아마이드(실시예 13) 및 클로로벤젠(실시예 14)을 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 수소 가스 센서를 제조하였다.In Example 1, acetone (Example 11), tetrahydrofuran (Example 12), dimethylformamide (Example 13) and chlorobenzene (Example 14) were used instead of anisole for the solvent of PMMA, respectively and a hydrogen gas sensor was manufactured in the same manner as in Example 1.
(비교예 1)(Comparative Example 1)
실시예 1에 있어서, SnO2층이아닌 In2O3층을 형성한 것을 제외하고 실시예 1과 동일한 방법으로 수소 가스 센서를 제조하였다.In Example 1, a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that the In 2 O 3 layer was formed instead of the SnO 2 layer.
(비교예 2)(Comparative Example 2)
실시예 1에 있어서, SnO2층이아닌 IGO층을 형성한 것을 제외하고 실시예 1과 동일한 방법으로 수소 가스 센서를 제조하였다.In Example 1, a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that an IGO layer, not a SnO 2 layer, was formed.
(비교예 3)(Comparative Example 3)
실시예 1에 있어서, SnO2층이아닌 WO3층을 형성한 것을 제외하고 실시예 1과 동일한 방법으로 수소 가스 센서를 제조하였다.In Example 1, a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that the WO 3 layer was formed instead of the SnO 2 layer.
(비교예 4)(Comparative Example 4)
실시예 1에 있어서, 팔라듐 나노입자층의 두께를 10㎚로 설정한 것을 제외하고 실시예 1과 동일한 방법으로 수소 가스 센서를 제조하였다.In Example 1, a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that the thickness of the palladium nanoparticle layer was set to 10 nm.
(비교예 5)(Comparative Example 5)
실시예 1에 있어서, pd 증착 후 PMMA 고분자 코팅층을 형성하지 않은 것으로 제외하고, 실시예1과 동일한 방법으로 수소 가스 센서를 제조하였다. 제조된 센서는 최종적으로 실시예 1에서 고분자층이 형성되지 않은 것이다. In Example 1, a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that a PMMA polymer coating layer was not formed after pd deposition. The manufactured sensor is one in which the polymer layer was not finally formed in Example 1.
(실험예 1) 검지테스트 (Experimental Example 1) Detection test
가스 검지 특성은 MFC 시스템이 있는 MSTECH 프로브 스테이션의 반도체 매개변수 분석기 (B15000A, Agilent)를 사용하여 측정하였다. 수소 가스 센서는 가스 튜브 아래 약 1cm 거리에 위치시키고, 요구되는 농도의 가스에 직접적으로 노출시켰다. 수소가스 검지 테스트는 상온에서 진행하였다. MFC를 이용해서 H2 gas (100ppm, 1 mol%, 10 mol % in N2) 와 dry air를 혼합하여 원하는 농도(mol%)의 수소 가스 제작하였다. 검지 특성(Response)은 수소 가스에 노출되기 전의 수소 가스 센서 전류(Ia)와 수소 가스 노출 후의 수소 가스 센서 전류(Ig)의 비 (Ig/Ia)를 통해 나타내었다. Gas detection characteristics were measured using a semiconductor parameter analyzer (B15000A, Agilent) of a MSTECH probe station with an MFC system. The hydrogen gas sensor was placed about 1 cm below the gas tube and directly exposed to the gas of the required concentration. The hydrogen gas detection test was conducted at room temperature. H 2 gas (100 ppm, 1 mol %, 10 mol % in N 2 ) and dry air were mixed using MFC to produce hydrogen gas at a desired concentration (mol %). The detection characteristic (Response) was expressed through the ratio (I g /I a ) of the hydrogen gas sensor current (I a ) before exposure to hydrogen gas and the hydrogen gas sensor current (I g ) after hydrogen gas exposure.
도 2는 실시예 1에서, 주석산화물층 및 팔라듐 나노입자층 RMS 표면 거칠기(root mean square surface roughness)를 비교 측정한 결과이다. 구체적으로, 도 a)는 기판 상에 주석산화물층 형성 후, 주석산화물층 표면의 2 x 2μm2 면적에 대한 rms 표면 거칠기를 원자힘 전자현미경(AFM, Atomic force microscopy)을 이용하여 측정한 결과이고, 도 2b)는 팔라듐 나노입자가 증착된 주석산화물층의 RMS 표면 거칠기를 주석산화물층 표면 거칠기 측정 시와 동일한 방법으로 측정한 결과이다. FIG. 2 is a result of comparing and measuring root mean square surface roughness of a tin oxide layer and a palladium nanoparticle layer in Example 1. FIG. Specifically, FIG. a) is the result of measuring the rms surface roughness of the 2 x 2 μm 2 area of the tin oxide layer surface using atomic force microscopy (AFM) after forming the tin oxide layer on the substrate. , FIG. 2b) shows the results of measuring the RMS surface roughness of the tin oxide layer on which the palladium nanoparticles are deposited in the same manner as when measuring the surface roughness of the tin oxide layer.
도 2를 참조하면, 주석산화물층 RMS 표면 거칠기(Rs0)는 0.894㎚, 팔라듐 나노입자가 증착된 주석산화물층의 RMS 표면 거칠기(Rs)는 1.01㎚로, 팔라듐 나노입자 증착 전 대비 팔라듐 나노입자 증착 후 표면 조도가 증가함을 확인할 수 있었으며, 상기 식 1에서 (Rs-Rs0)/Rs0는 0.130을 만족함을 확인할 수 있었다. Referring to FIG. 2 , the tin oxide layer RMS surface roughness (Rs 0 ) is 0.894 nm, and the RMS surface roughness (Rs) of the tin oxide layer on which the palladium nanoparticles are deposited is 1.01 nm, compared to before deposition of palladium nanoparticles, palladium nanoparticles It was confirmed that the surface roughness increased after deposition, and in Equation 1 (Rs-Rs 0 )/Rs 0 satisfies 0.130.
비교예 4를 도 2에서 측정한 실시예 1의 RMS 표면 거칠기(root mean square surface roughness) 방법으로 동일하게 측정할 시, 비교예 4의 (Rs-Rs0)/ Rs0는 0.04이었다.When Comparative Example 4 was similarly measured by the RMS surface roughness method of Example 1 measured in FIG. 2 , (Rs-Rs 0 )/Rs 0 of Comparative Example 4 was 0.04.
도 3은 실시예 1에서 제작한 수소 가스 센서의 수소 농도별 검지테스트(실험예) 결과 그래프가 도시되어 있다. 구체적으로 도 2는 0.002% 내지 2%의 농도별 검지테스트 결과가 도시되어있다. 3 is a graph showing the results of a detection test (experimental example) for each hydrogen concentration of the hydrogen gas sensor manufactured in Example 1. Referring to FIG. Specifically, Figure 2 shows the detection test results for each concentration of 0.002% to 2%.
도 3을 참조하면, 저농도(0.002 mol%)에서 고농도(2 mol%)까지 수소 센싱이 가능하여 센싱범위가 매우 넓음을 확인할 수 있었다. Referring to FIG. 3 , it was confirmed that hydrogen sensing was possible from a low concentration (0.002 mol%) to a high concentration (2 mol%), so that the sensing range was very wide.
도 4에는 실시예 1의 수소 가스 센서의 수소 가스 반복 감응 테스트 결과 그래프가 도시되어 있다. 수소 가스 반복 감응 테스트는 0.1 mol% 및 2 mol% 농도의 수소가스를 5회간 실험예의 방법으로 측정한 것이다. 구체적으로, 도 4(a)는 0.1 mol% 농도 수소가스의 반복 감응 테스트 결과 그래프이며, 도 4(b)는 2%농도 수소가스의 반복 감응 테스트 결과이다.4 is a graph showing the hydrogen gas repeated sensitivity test result of the hydrogen gas sensor of Example 1. Referring to FIG. The hydrogen gas repeated sensitization test is to measure hydrogen gas at concentrations of 0.1 mol% and 2 mol% by the method of Experimental Example 5 times. Specifically, FIG. 4(a) is a graph showing the repeated sensitization test result of 0.1 mol% concentration hydrogen gas, and FIG. 4(b) is a repeated sensitization test result of 2% concentration hydrogen gas.
도 4를 참조하면, 실시예에서 제조한 수소가스센서는 반복적인 수소 센서 측정 시, 반복측정 시에도 센싱 민감도가 저하되지 않으며, 감도가 유지됨을 확인할 수 있었다.Referring to FIG. 4 , it was confirmed that the hydrogen gas sensor manufactured in Example did not decrease the sensing sensitivity during repeated measurement of the hydrogen sensor, and the sensitivity was maintained.
도 5는 실시예 1의 수소 가스 센서의 수소농도별 응답-회복 시간 결과 그래프이다. 구체적으로 0 내지 2 mol% 수소 농도에서 센서의 응답-회복 시간 결과를 나타낸 것으로, 도 5를 참조하면 상온에서 회복속도가 거의 1분 이내이며, 응답속도가 빠름을 확인할 수 있다. 5 is a graph showing the response-recovery time results for each hydrogen concentration of the hydrogen gas sensor of Example 1. FIG. Specifically, the response-recovery time results of the sensor at 0 to 2 mol% hydrogen concentration are shown. Referring to FIG. 5 , it can be seen that the recovery speed is within 1 minute at room temperature and the response speed is fast.
도 6은 실시예 1에 따른 수소 가스 센서의 수소가스 선택성 테스트 결과 그래프이다. 구체적으로 10ppm의 수소 가스, 100ppm의 이산화탄소(CO2), 100ppm의 일산화탄소(CO), 100ppm의 메탄가스(CH4), 10ppm의 수소 가스와 100ppm의 이산화탄소(CO2)를 혼합한 혼합가스, 10ppm의 수소 가스와 100ppm의 일산화탄소(CO)를 혼합한 혼합가스, 10ppm의 수소 가스와 100ppm의 메탄가스(CH4)를 혼합한 혼합가스, 10ppm의 수소 가스와 각각 100ppm인 이산화탄소, 일산화탄소, 메탄가스를 혼합한 혼합가스를 수소 가스 센서에 노출시켜 검지테스트를 하였다.6 is a graph of a hydrogen gas selectivity test result of the hydrogen gas sensor according to Example 1. Referring to FIG. Specifically, 10ppm of hydrogen gas, 100ppm of carbon dioxide (CO2), 100ppm of carbon monoxide (CO), 100ppm of methane gas (CH4), a mixed gas of 10ppm of hydrogen gas and 100ppm of carbon dioxide (CO2), 10ppm of hydrogen gas and 100 ppm of carbon monoxide (CO), a mixed gas of 10 ppm of hydrogen gas and 100 ppm of methane gas (CH4), a mixed gas of 10 ppm of hydrogen gas and 100 ppm of carbon dioxide, carbon monoxide, and methane gas was exposed to a hydrogen gas sensor to perform a detection test.
도 6을 참조하면, 일산화탄소, 이산화탄소, 메탄가스에 대한 감응은 거의 없는 반면 수소가스에는 높은 감응도를 나타내었다. 수소가스와 다른 가스를 혼합하여 공급할 시에도 감응도가 수소가스만 공급할 시와 비슷하였다.Referring to FIG. 6 , there was almost no sensitivity to carbon monoxide, carbon dioxide, and methane gas, whereas high sensitivity to hydrogen gas was exhibited. Even when a mixture of hydrogen gas and other gas was supplied, the sensitivity was similar to that when only hydrogen gas was supplied.
도 7은 실시예 1에 따른 수소 가스 센서의 장기안정성 테스트 결과 그래프이다. 1000ppm의 농도의 수소를 수소 가스 센서에 지속적으로 노출시켜 시간에 따른 검지테스트를 진행하여 장기 안정성을 테스트하였다. 도 7을 참조하면 50일이상 측정시에도 큰 변화없이 안정적으로 수소를 검지하였다.7 is a graph of long-term stability test results of the hydrogen gas sensor according to Example 1. FIG. Long-term stability was tested by continuously exposing hydrogen at a concentration of 1000 ppm to the hydrogen gas sensor to perform a time-dependent detection test. Referring to FIG. 7 , hydrogen was stably detected without significant change even when measured for more than 50 days.
도 8은 실시예 1에 따른 수소 가스 센서의 시간에 따른 온도별 수소 검지능 측정 테스트 결과 그래프이다. 구체적으로, 도 9는 1000ppm의 수소 농도에서 수행되었으며, 측정온도를 -10℃, 0℃, 20℃, 50℃, 100℃, 150℃ 및 200℃로 각각 설정하여 시간에 따른 수소 검지능을 측정하였다.8 is a graph of a hydrogen detection ability measurement test result for each temperature according to time of the hydrogen gas sensor according to Example 1. Referring to FIG. Specifically, Figure 9 was performed at a hydrogen concentration of 1000 ppm, and the measurement temperature was set to -10 ℃, 0 ℃, 20 ℃, 50 ℃, 100 ℃, 150 ℃ and 200 ℃, respectively, the hydrogen detection ability over time was measured did.
도 8을 참조하면, -10℃ 내지 200℃온도에서 모두 수소 가스 검지능을 가짐을 확인하였으며, 특히 100℃에서 우수한 수소 가스 검지능을 가짐을 확인할 수 있었다. 상온에서도 빠른 수소 가스 검지 속도를 나타내었으며, 100℃에서는 매우 빠른 수소 가스 검지 속도를 나타내었다. 신호 강도가 포화되는 값을 100%로 할 때 63.2%에 해당하는 값을 시간상수로 할 경우, 100℃에서는 2.77초, 50℃에서는 12.5초, 20℃에서는 150초의 시간상수 값을 나타내어 50℃ 이상의 온도에서 매우 빠른 검지 속도를 나타내는 것을 확인할 수 있다. Referring to FIG. 8 , it was confirmed that all of the hydrogen gas detection capabilities were at a temperature of -10°C to 200°C, and in particular, it was confirmed that the hydrogen gas detection ability was excellent at 100°C. It showed a fast hydrogen gas detection speed even at room temperature, and a very fast hydrogen gas detection speed at 100°C. When the signal intensity saturation value is 100%, when the value corresponding to 63.2% is used as the time constant, the time constant is 2.77 seconds at 100°C, 12.5 seconds at 50°C, and 150 seconds at 20°C. It can be seen that the temperature shows a very fast detection speed.
하기 표 2는 각 실시예들을 도 9에 도시된 실시예 1의 수소 검지능 측정방법으로 동일하게 측정한 결과이다.Table 2 below shows the results of measuring each of the Examples in the same manner as in Example 1 of Example 1 shown in FIG. 9 .
구분division 조건 (1) 시간상수Condition (1) time constant 조건 (2) 시간상수Condition (2) time constant (Ig/Ia)/C(Ig/Ia)/C
실시예1Example 1 2.772.77 12.512.5 29232923
실시예2Example 2 3.443.44 14.714.7 25472547
실시예3Example 3 3.203.20 15.115.1 23332333
실시예4Example 4 2.912.91 13.113.1 28752875
실시예5Example 5 3.313.31 14.114.1 24282428
실시예6Example 6 3.743.74 13.113.1 19801980
실시예7Example 7 2.892.89 12.112.1 28122812
실시예8Example 8 2.942.94 12.712.7 26012601
실시예9Example 9 4.714.71 13.913.9 15251525
상기 표 2를 참조하면, 본 발명에 따른 수소 가스 센서는 조건 (1) '공기 중 1000ppm 수소 농도 및 373.15K에서의 시간상수가 1.5 내지 4초' 및 조건 (2) ' 공기 중 1000ppm 수소 농도 및 323.15K에서 시간상수가 10 내지 15초' 를 모두 만족함을 확인할 수 있었다. Referring to Table 2, the hydrogen gas sensor according to the present invention has conditions (1) '1000 ppm hydrogen concentration in air and a time constant of 1.5 to 4 seconds at 373.15K' and condition (2) '1000 ppm hydrogen concentration in air and At 323.15K, it was confirmed that the time constant satisfies all of 10 to 15 seconds'.
도 9는 2 mol%의 수소 농도 하 20℃, 50℃, 80℃ 및 100℃의 온도에 따른 수소 검지능 결과이다.9 is a hydrogen detection result according to the temperature of 20 ℃, 50 ℃, 80 ℃ and 100 ℃ under a hydrogen concentration of 2 mol%.
도 9를 참조하면, 실시예 1에 따른 수소 가스 센서는 80℃ 미만의 온도에서 신호강도는 (Ig/Ia) 100 이상이며, 온도에 따라 비교적 선형적인 수소 검지능을 가짐을 확인할 수 있다. Referring to FIG. 9 , it can be confirmed that the hydrogen gas sensor according to Example 1 has a signal strength of (Ig/Ia) 100 or more at a temperature of less than 80° C., and has a relatively linear hydrogen detection ability according to the temperature.
도 10은 실시예 1에 따른 수소 가스 센서의 습도에 따른 수소 가스 검지능 측정 테스트 결과 그래프이다. 구체적으로, 0.01 mol% 및 0.1 mol%의 수소 농도 각각에서 수행되었으며, 0%, 20%, 40%, 60% 및 80%로 습도를 설정하여 측정하였다.10 is a graph of a hydrogen gas detection ability measurement test result according to the humidity of the hydrogen gas sensor according to Example 1. FIG. Specifically, it was performed at a hydrogen concentration of 0.01 mol% and 0.1 mol%, respectively, and measurements were made by setting the humidity to 0%, 20%, 40%, 60% and 80%.
도 10을 참조하면, 높은 습도에서도 수소 가스 검지능을 가짐을 확인할 수 있었다.Referring to FIG. 10 , it was confirmed that hydrogen gas detection ability was achieved even at high humidity.
다양한 온도 조건에서 수소 검지능을 측정한 도 8 및 다양한 습도 조건에서 수소 가스 검지능을 측정한 도 10을 참조하면, 본 발명의 수소 가스 센서는 다양한 환경에서도 수소 가스 검지능을 가짐을 확인할 수 있었다.Referring to FIG. 8 in which hydrogen detection ability was measured in various temperature conditions and FIG. 10 in which hydrogen gas detection ability was measured in various humidity conditions, it was confirmed that the hydrogen gas sensor of the present invention has hydrogen gas detection ability in various environments. .
도 11은 실시예 1 내지 실시예 5에 따른 수소 가스 검지 테스트 결과 그래프이다. 구체적으로 구동전력은 1V 및 5V이었으며, 0.1 mol%의 수소농도 하에서 수행되었다.11 is a graph of hydrogen gas detection test results according to Examples 1 to 5; Specifically, the driving power was 1V and 5V, and was performed under a hydrogen concentration of 0.1 mol%.
도 11을 참조하면, 실시예 모두 수소 가스 검지능을 가지나, 0.1M 농도의 SnCl2를 사용한 실시예 1이 우수한 수소 가스 검지능을 가짐을 확인할 수 있었다.Referring to FIG. 11 , all examples have hydrogen gas detection ability, but it was confirmed that Example 1 using 0.1M SnCl 2 had excellent hydrogen gas detection ability.
도 12는 실시예 1 및 실시예 6 내지 9에 따른 수소 가스 검지 테스트 결과 그래프이다.12 is a graph of hydrogen gas detection test results according to Examples 1 and 6 to 9;
도 12를 참조하면, 실시예 모두 수소 가스 검지능을 가지나, 3㎚의 두께에서 가장 우수한 수소 가스 검지능을 가짐을 확인하였다.Referring to FIG. 12 , it was confirmed that all of the Examples had hydrogen gas detection ability, but had the best hydrogen gas detection ability at a thickness of 3 nm.
도 13은 실시예 10에 따른 수소 가스 센서의 수소 농도별 검지테스트 결과 그래프가 도시되어 있다. 구체적으로 도 13은 0.05 mol% 내지 2 mol%의 농도별 검지테스트 결과가 도시되어있다. 13 is a graph showing a detection test result for each hydrogen concentration of the hydrogen gas sensor according to Example 10. Referring to FIG. Specifically, FIG. 13 shows the detection test results for each concentration of 0.05 mol% to 2 mol%.
도 14는 실시예 10의 수소 가스 센서의 수소 가스 반복 감응 테스트 결과 그래프가 도시되어 있다. 수소 가스 반복 감응 테스트는 0.1 mol% 및 1 mol% 농도의 수소가스를 5회간 실험예의 방법으로 측정한 것이다. 구체적으로, 도 14(a)는 0.1 mol% 농도 수소가스의 반복 감응 테스트 결과 그래프이며, 도 14(b)는 1 mol% 농도 수소가스의 반복 감응 테스트 결과이다.14 is a graph showing the hydrogen gas repeated sensitivity test result of the hydrogen gas sensor of Example 10. FIG. The hydrogen gas repeated sensitization test is to measure 0.1 mol% and 1 mol% of hydrogen gas by the method of Experimental Example 5 times. Specifically, FIG. 14(a) is a graph showing the repeated sensitivity test result of 0.1 mol% concentration hydrogen gas, and FIG. 14(b) is a repeated sensitivity test result of 1 mol% concentration hydrogen gas.
도 14를 참조하면, 실시예에서 제조한 수소가스센서는 반복적인 수소 센서 측정 시, 반복측정 시에도 센싱 민감도가 저하되지 않으며, 감도가 유지됨을 확인할 수 있었다.Referring to FIG. 14 , it was confirmed that the hydrogen gas sensor manufactured in Example did not decrease the sensing sensitivity during repeated measurement of the hydrogen sensor, and the sensitivity was maintained.
도 15는 비교예 1 내지 3의 수소 가스 센서의 수소 가스 반복 감응 테스트 결과 그래프가 도시되어 있다. 수소 가스 반복 감응 테스트는 1 mol% 농도의 수소가스를 5회간 실험예의 방법으로 측정한 것이다. 구체적으로, 도 15(a)는 비교예1, 15(b)는 비교예 2 및 15(c)는 비교예 3의 결과를 나타낸다. 15 is a graph showing hydrogen gas repeated sensitivity test results of the hydrogen gas sensors of Comparative Examples 1 to 3; The hydrogen gas repeated sensitization test is to measure hydrogen gas with a concentration of 1 mol% by the method of Experimental Example 5 times. Specifically, FIG. 15(a) shows the results of Comparative Example 1, 15(b) shows the results of Comparative Example 2, and 15(c) shows the results of Comparative Example 3.
도15를 참조하면, 비교예 모두 수소 가스 검지능을 가지나, 1% 농도의 수소에서, Response가 90이하로, 0.1 mol% 농도의 수소에서 300이상의 Response를 가지는 실시예1에 비해 검지능이 매우 떨어짐을 확인할 수 있었다.Referring to FIG. 15 , all of the comparative examples have hydrogen gas detection ability, but at 1% concentration of hydrogen, the Response is less than 90, and the detection ability is very high compared to Example 1, which has a response of 300 or more at 0.1 mol% hydrogen. drop could be observed.
도 16은 실시예 1, 6, 9 및 비교예 4에서, SnO2층 형성 후 및 팔라듐 나노입자층을 증착시킨 후 측정한 HRTEM 측정결과이다. 16 is an HRTEM measurement result measured after forming a SnO 2 layer and after depositing a palladium nanoparticle layer in Examples 1, 6, 9 and Comparative Example 4;
도 16을 참조하면, 팔라듐 나노입자층의 두께가 1~5㎚인, 실시예는 SnO2층 상에 팔라듐 나노입자가 위치하지 않아 SnO2층 상이 외부로 노출된 제2영역이 존재함을 확인할 수 있었으나, 비교예에서는 이와 같은 제2영역이 관찰되지 않음을 확인할 수 있었다. Referring to FIG. 16 , in the example in which the palladium nanoparticle layer has a thickness of 1 to 5 nm, the palladium nanoparticles are not located on the SnO 2 layer, so it can be confirmed that the second region where the SnO 2 layer is exposed to the outside exists. However, it was confirmed that such a second region was not observed in the comparative example.
도 17은 실시예 1 및 11 내지 14의 PMMA층 표면의 비교 사진(SEM이미지)이 도시되어 있다. 17 is a comparative photograph (SEM image) of the surface of the PMMA layer of Examples 1 and 11 to 14 is shown.
도 17을 참조하면, 실시예 1의 경우 비다공질임과 동시 평탄 표면을 가짐을 확인할 수 있었다.Referring to FIG. 17 , it was confirmed that Example 1 was non-porous and had a flat surface at the same time.
도 18은 실시예 1, 실시예 11 내지 14 및 비교예 5에 따른 수소 가스 센서의 검지테스트 비교 결과 그래프이다. 구체적으로 1000ppm의 수소(H) 가스, 일산화탄소(CO) 가스 및 메탄(CH4) 가스 각각을 각 실시예 및 비교예에 노출시켜 검지테스트를 하였다. 도 18 a)는 각 실시예 및 비교예 별 수소 가스 노출 검지테스트 결과이며, 도 18 b)는 각 실시예 및 비교예 별 일산화탄소 가스 노출 결과이고, 도 18 c)는 각 실시예 및 비교예 별 메탄 가스 노출 결과이다.18 is a graph showing a comparison result of a detection test of a hydrogen gas sensor according to Example 1, Examples 11 to 14, and Comparative Example 5; Specifically, 1000 ppm of hydrogen (H) gas, carbon monoxide (CO) gas, and methane (CH 4 ) gas were exposed to each Example and Comparative Example to perform a detection test. 18 a) is a hydrogen gas exposure detection test result for each Example and Comparative Example, FIG. 18 b) is a carbon monoxide gas exposure result for each Example and Comparative Example, and FIG. 18 c) is for each Example and Comparative Example It is a result of methane gas exposure.
도 18을 참조하면, 실시예는 비교예 대비 수소에 대한 높은 선택성을 가지고 있음을 확인할 수 있었고, 특히, 비다공질임과 동시에 평탄 표면을 가지는 실시예 1의 경우, 비교예 및 타 실시예들과 동일한 농도의 수소 가스를 공급했음에도 불구하고 매우 고감도로 수소 가스의 센싱이 가능함을 확인할 수 있었다.Referring to FIG. 18 , it was confirmed that the Example has a high selectivity for hydrogen compared to the Comparative Example, and in particular, in the case of Example 1, which is non-porous and has a flat surface at the same time, the Comparative Example and other Examples It was confirmed that the sensing of hydrogen gas was possible with very high sensitivity despite supplying the same concentration of hydrogen gas.
도 19는 본 발명의 실시예 1에서, SnO2층 형성 후 및 팔라듐 나노입자층을 증착시킨 후 측정한 X선 광전자 분광법((X-ray Photoelectron. Spectroscopy: XPS)을 통한 깊이 프로파일링 결과이다. XPS 스펙트럼은 Thermo Fisher Scientific사의 장비를 이용하여 Al Kα radiation (hν = 1486.6 eV) 및 20.0 eV의 패스 에너지의 조건에서 측정하였다. 깊이 프로파일링(depth profiling)은 Ar+ ions etching을 통해 깊이별로 원소 함량을 측정하였다. 구체적으로 도 17 a)는 팔라듐 나노입자층이 증착된 SnO2층을 표면 분석한 XPS 측정 결과이고, 도 17 b)는 표면에서부터 5nm에 도달되는 시점에서의 XPS측정결과이다.19 is a depth profiling result through X-ray Photoelectron. Spectroscopy (XPS) measured after SnO 2 layer formation and after depositing a palladium nanoparticle layer in Example 1 of the present invention. XPS Spectra were measured under conditions of Al Kα radiation (hν = 1486.6 eV) and pass energy of 20.0 eV using the equipment of Thermo Fisher Scientific Inc. Depth profiling measures the element content by depth through Ar+ ions etching Specifically, Fig. 17 a) is the XPS measurement result of the surface analysis of the SnO 2 layer on which the palladium nanoparticle layer is deposited, and Fig. 17 b) is the XPS measurement result at the time of reaching 5 nm from the surface.
도 19를 참조하면, 표면에서는 Pd 및 Sn이 동시에 검출될 뿐만 아니라 Pd 함량은 26.18원자%으로 15.31원자%인 Sn 보다 다량 함유됨으로서, Pd가 나노입자층으로 다량 존재하는 것으로 나타났다. 또한 Sn도 상당량의 원자%를 차지하는 것으로 보아 표면이 팔라듐 나노입자층으로 코팅층을 형성하지 않고 SnO2가 표면에 부분적으로 노출되어 있음을 확인할 수 있었다. 한편 이온 스퍼터링을 통해 5nm 가량 표면을 제거할 경우 대부분의 Pd이 제거되어 관찰되지 않고 Sn만이 관찰됨을 확인할 수 있었다.Referring to FIG. 19 , not only Pd and Sn were simultaneously detected on the surface, but the Pd content was 26.18 atomic %, which is greater than 15.31 atomic % Sn, indicating that Pd is present in a large amount as a nanoparticle layer. In addition, it was confirmed that SnO2 was partially exposed on the surface without forming a coating layer with a palladium nanoparticle layer on the surface, as Sn also occupies a significant amount of atomic%. On the other hand, when the surface was removed by about 5 nm through ion sputtering, most of the Pd was removed and not observed, but only Sn was observed.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, the present invention has been described with specific matters and limited examples and drawings, but these are only provided to help a more general understanding of the present invention, and the present invention is not limited to the above embodiments, and the present invention is not limited to the above embodiments. Various modifications and variations are possible from these descriptions by those of ordinary skill in the art.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다. Therefore, the spirit of the present invention should not be limited to the described embodiments, and not only the claims to be described later, but also all those with equivalent or equivalent modifications to the claims will be said to belong to the scope of the spirit of the present invention. .

Claims (34)

  1. 주석산화물층;tin oxide layer;
    상기 주석산화물층 상 서로 이격 위치하는 제1전극과 제2전극; a first electrode and a second electrode spaced apart from each other on the tin oxide layer;
    상기 제1전극과 제2전극이 이격된 영역에 위치하는 팔라듐 나노입자층; 및 a palladium nanoparticle layer positioned in a region where the first electrode and the second electrode are spaced apart; and
    상기 팔라듐 나노입자층 상에 위치하며, 아크릴레이트계 고분자를 포함하는 고분자층;을 포함하는 수소 가스 센서.A hydrogen gas sensor comprising a; positioned on the palladium nanoparticle layer, the polymer layer comprising an acrylate-based polymer.
  2. 제1항에 있어서,According to claim 1,
    상기 팔라듐 나노입자층의 두께는 1 내지 5 nm인, 수소 가스 센서.The thickness of the palladium nanoparticle layer is 1 to 5 nm, a hydrogen gas sensor.
  3. 제1항에 있어서,According to claim 1,
    상기 제1전극과 제2전극이 이격된 영역의 상기 주석산화물층 표면은 상기 팔라듐 나노입자층이 위치하는 제1영역과, 상기 팔라듐 나노입자층이 위치하지 않는 제2영역을 포함하는, 수소 가스 센서.The surface of the tin oxide layer in the area where the first electrode and the second electrode are spaced apart from each other includes a first area in which the palladium nanoparticle layer is located and a second area in which the palladium nanoparticle layer is not located.
  4. 제3항에 있어서4. The method of claim 3
    상기 제2영역의 면적은 상기 제1전극 및 제2전극에 의해 구획된 상기 주석산화물층 표면의 총 면적 중 50 % 내지 90%인, 수소가스 센서.The area of the second region is 50% to 90% of the total area of the surface of the tin oxide layer partitioned by the first electrode and the second electrode, the hydrogen gas sensor.
  5. 제3항에 있어서,4. The method of claim 3,
    상기 제2영역은 고분자층과 접촉하는, 수소 가스 센서. The second region is in contact with the polymer layer, a hydrogen gas sensor.
  6. 제1항에 있어서,According to claim 1,
    상기 팔라듐 나노입자는 주석산화물층 상에 불연속적인 입자로 분산되어 위치하는 것을 특징으로 하는, 수소 가스 센서.The palladium nanoparticles are dispersed and positioned as discontinuous particles on the tin oxide layer, a hydrogen gas sensor.
  7. 제1항에 있어서,According to claim 1,
    하기 식 1을 만족하는 것을 특징으로 하는, 수소 가스 센서.A hydrogen gas sensor, characterized in that it satisfies Equation 1 below.
    [식 1][Equation 1]
    (Rs-Rs0)/Rs0 > 0(Rs-Rs 0 )/Rs 0 > 0
    (상기 식 1에서 Rs는 팔라듐 나노입자층이 증착된 주석산화물층의 RMS 표면 거칠기(root mean square surface roughness), Rs0는 주석산화물층의 RMS 표면 거칠기이다.)(In Equation 1, Rs is the root mean square surface roughness of the tin oxide layer on which the palladium nanoparticle layer is deposited, and Rs 0 is the RMS surface roughness of the tin oxide layer.)
  8. 제7항에 있어서8. The method of claim 7
    상기 식 1에서,In Equation 1 above,
    (Rs-Rs0)/Rs0 > 0.1인, 수소 가스 센서.(Rs-Rs 0 )/Rs 0 > 0.1, a hydrogen gas sensor.
  9. 제7항에 있어서8. The method of claim 7
    상기 식 1에서, In Equation 1 above,
    Rs0는 1nm 이하인, 수소 가스 센서.Rs 0 is 1 nm or less, a hydrogen gas sensor.
  10. 제1항에 있어서The method of claim 1
    X선 광전자 분광법으로 깊이 프로파일링 측정 시, 팔라듐 원소가 검출되기 시작하는 최초 깊이에서 주석 원소도 동시에 검출되는 것을 특징으로 하는 수소 가스 센서.When depth profiling is measured by X-ray photoelectron spectroscopy, a hydrogen gas sensor, characterized in that the tin element is simultaneously detected at the initial depth where the palladium element is detected.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 최초 깊이에서 상기 팔라듐 원소의 함량은 상기 주석 원소보다 더 많은 것인, 수소 가스 센서.wherein the content of elemental palladium at the initial depth is greater than elemental tin.
  12. 제10항에 있어서,11. The method of claim 10,
    상기 깊이 프로파일링 측정은 고분자가 제거된 상태에서 측정되는 것인, 수소 가스 센서.The depth profiling measurement is a hydrogen gas sensor that is measured in a state in which the polymer is removed.
  13. 제10항에 있어서,11. The method of claim 10,
    상기 깊이 프로파일링 측정 시, 5 nm 이상의 깊이에서 팔라듐 원소의 함량은 10원자% 미만으로 존재하는,수소 가스 센서.When measuring the depth profiling, the content of the element palladium at a depth of 5 nm or more is present in less than 10 atomic%, Hydrogen gas sensor.
  14. 제1항에 있어서,According to claim 1,
    하기 조건 (1) 및 (2)를 만족하는 것을 특징으로 하는 수소 가스 센서.A hydrogen gas sensor that satisfies the following conditions (1) and (2).
    (1) 공기 중 1000ppm 수소 농도 및 373.15K에서 시간상수가 1.5 내지 4초(1) At 1000 ppm hydrogen concentration in air and 373.15 K, the time constant is 1.5 to 4 seconds
    (2) 공기 중 1000ppm 수소 농도 및 323.15K에서 시간상수가 10 내지 15초(2) 1000 ppm hydrogen concentration in air and a time constant of 10 to 15 seconds at 323.15 K
  15. 제14항에 있어서, 15. The method of claim 14,
    상기 조건 (1)에서 공기중 1000ppm 수소 농도 및 373.15K에서 시간상수가 2 내지 3초인, 수소 가스 센서.A hydrogen gas sensor, wherein the time constant is 2-3 seconds at 1000ppm hydrogen concentration in air and 373.15K under the condition (1).
  16. 제14항에 있어서, 15. The method of claim 14,
    상기 수소 가스 센서는 298.15K에서 수소 가스의 농도 C(mol %)에 대한 신호 강도(Ig/Ia)의 비 (Ig/Ia)/C는 2500 내지 3500를 만족하는, 수소가스 센서.The hydrogen gas sensor is a hydrogen gas sensor, wherein the ratio (Ig/Ia)/C of the signal intensity (Ig/Ia) to the concentration C (mol %) of the hydrogen gas at 298.15K satisfies 2500 to 3500.
  17. 제16항에 있어서, 17. The method of claim 16,
    상기 신호강도(Ig/Ia)의 비 (Ig/Ia)/C는 2800 내지 3000를 만족하는, 수소가스 센서.The ratio (Ig/Ia)/C of the signal intensity (Ig/Ia) satisfies 2800 to 3000, a hydrogen gas sensor.
  18. 제14항에 있어서, 15. The method of claim 14,
    공기중 2 mol% 수소 농도 및 343.15K 이하에서 신호강도(Ig/Ia)는 100 이상인, 수소 가스 센서.A hydrogen gas sensor with a signal intensity (Ig/Ia) of 100 or more at 2 mol% hydrogen concentration in air and 343.15K or less.
  19. 제1항에 있어서,According to claim 1,
    상기 고분자층은 비다공질인, 수소 가스 센서.The polymer layer is non-porous, hydrogen gas sensor.
  20. 제1항에 있어서,According to claim 1,
    상기 고분자층은 폴리(C1-C4)알킬메타크릴레이트를 포함하는, 수소가스 센서.The polymer layer comprises a poly (C1-C4) alkyl methacrylate, a hydrogen gas sensor.
  21. 제20항에 있어서,21. The method of claim 20,
    상기 고분자층은 폴리메틸메타크릴레이트를 포함하는, 수소 가스 센서.The polymer layer comprises polymethyl methacrylate, a hydrogen gas sensor.
  22. 제1항에 있어서,According to claim 1,
    상기 고분자층은 평탄 표면을 가지는, 수소 가스 센서.wherein the polymer layer has a flat surface.
  23. 제1항에 있어서,According to claim 1,
    상기 주석산화물층의 두께는 5 ㎚ 내지 300 ㎚ 인 수소 가스 센서.A hydrogen gas sensor having a thickness of 5 nm to 300 nm of the tin oxide layer.
  24. 제1항에 있어서,According to claim 1,
    작동온도가 -10 내지 200 ℃ 범위인 수소 가스 센서.A hydrogen gas sensor with an operating temperature in the range of -10 to 200 °C.
  25. 제1항에 있어서,According to claim 1,
    소모 전력이 10 nW 이하인 수소 가스 센서.Hydrogen gas sensor with power consumption of 10 nW or less.
  26. 제1항 내지 제25항 중 어느 한 항에 따른 수소 가스 센서를 이용한 가스 검출 방법.A gas detection method using the hydrogen gas sensor according to any one of claims 1 to 25.
  27. 제26항에 있어서,27. The method of claim 26,
    0.1 내지 100000 ppm의 농도 범위를 가지는 수소를 검출할 수 있는 가스 검출 방법.A gas detection method capable of detecting hydrogen having a concentration range of 0.1 to 100000 ppm.
  28. a) 절연층 일면에 주석산화물층을 형성하는 단계;a) forming a tin oxide layer on one surface of the insulating layer;
    b) 상기 절연층과 접하지 않는 주석산화물층 일면에 서로 이격되는 제1전극과 제2전극을 형성하는 단계; b) forming a first electrode and a second electrode spaced apart from each other on one surface of the tin oxide layer not in contact with the insulating layer;
    c) 상기 제1전극과 제2전극이 이격된 영역에 팔라듐 나노입자층을 형성하는 단계; 및c) forming a palladium nanoparticle layer in a region where the first electrode and the second electrode are spaced apart; and
    d) 상기 팔라듐 나노입자층 상에 아크릴레이트계 고분자를 포함하는 고분자층을 형성하는 단계;를 포함하는, 수소 가스 센서의 제조방법.d) forming a polymer layer including an acrylate-based polymer on the palladium nanoparticle layer; comprising, a method of manufacturing a hydrogen gas sensor.
  29. 제28항에 있어서,29. The method of claim 28,
    상기 a)단계는 주석전구체 용액을 상기 절연층 일면에 도포 및 열처리하는 단계를 포함하는, 수소 가스 센서의 제조방법. Wherein step a) comprises the step of applying a tin precursor solution to one surface of the insulating layer and heat-treating, the method of manufacturing a hydrogen gas sensor.
  30. 제29항에 있어서,30. The method of claim 29,
    상기 a)단계에서, 상기 열처리 온도는 200 내지 500℃인, 수소 가스 센서의 제조방법.In step a), the heat treatment temperature is 200 to 500 ℃, a method of manufacturing a hydrogen gas sensor.
  31. 제28항에 있어서, 29. The method of claim 28,
    상기 c) 단계에서, 상기 팔라듐 나노입자층은 상기 주석산화물층 표면의 일부영역에 증착되어 형성되는, 수소 가스 센서의 제조방법.In step c), the palladium nanoparticle layer is formed by depositing on a partial region of the surface of the tin oxide layer, a method of manufacturing a hydrogen gas sensor.
  32. 제28항에 있어서, 29. The method of claim 28,
    상기 d) 단계는 용매에 용해된 폴리메틸메타크릴레이트 용액을 상기 금속 나노입자층 상에 도포 및 건조하는 단계를 포함하는, 수소 가스 센서의 제조방법.The step d) comprises applying and drying a polymethyl methacrylate solution dissolved in a solvent on the metal nanoparticle layer.
  33. 제32항에 있어서,33. The method of claim 32,
    상기 d) 단계에서, 상기 건조는 100 내지 300℃의 온도에서 수행되는, 수소 가스 센서의 제조방법.In step d), the drying is performed at a temperature of 100 to 300 ℃, a method of manufacturing a hydrogen gas sensor.
  34. 제33항에 있어서,34. The method of claim 33,
    상기 d) 단계에서,In step d),
    상기 용매는 할로겐화 알콕시 벤젠 화합물인, 수소 가스 센서의 제조방법.The solvent is a halogenated alkoxybenzene compound, a method of manufacturing a hydrogen gas sensor.
PCT/KR2022/004014 2021-03-22 2022-03-22 Hydrogen gas sensor WO2022203370A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20210036952 2021-03-22
KR20210036951 2021-03-22
KR20210036950 2021-03-22
KR10-2021-0036953 2021-03-22
KR10-2021-0036952 2021-03-22
KR10-2021-0036951 2021-03-22
KR10-2021-0036950 2021-03-22
KR20210036953 2021-03-22
KR20210042354 2021-03-31
KR10-2021-0042354 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022203370A1 true WO2022203370A1 (en) 2022-09-29

Family

ID=83397693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004014 WO2022203370A1 (en) 2021-03-22 2022-03-22 Hydrogen gas sensor

Country Status (1)

Country Link
WO (1) WO2022203370A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0173154B1 (en) * 1995-12-31 1999-05-15 한갑수 Tin oxide thin film sensor for detecting hydrogen gas and its method
JP2002328109A (en) * 2001-05-02 2002-11-15 Ngk Spark Plug Co Ltd Element for detecting hydrogen gas, and method of manufacturing the same
KR20130106032A (en) * 2012-03-19 2013-09-27 연세대학교 산학협력단 Hydrogen sensor and method for manufacturing the same
US10782275B2 (en) * 2016-06-27 2020-09-22 Boe Technology Group Co., Ltd. Semiconductor hydrogen sensor and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0173154B1 (en) * 1995-12-31 1999-05-15 한갑수 Tin oxide thin film sensor for detecting hydrogen gas and its method
JP2002328109A (en) * 2001-05-02 2002-11-15 Ngk Spark Plug Co Ltd Element for detecting hydrogen gas, and method of manufacturing the same
KR20130106032A (en) * 2012-03-19 2013-09-27 연세대학교 산학협력단 Hydrogen sensor and method for manufacturing the same
US10782275B2 (en) * 2016-06-27 2020-09-22 Boe Technology Group Co., Ltd. Semiconductor hydrogen sensor and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONG JUREE, LEE SANGGEUN, SEO JUNGMOK, PYO SOONJAE, KIM JONGBAEG, LEE TAEYOON: "A Highly Sensitive Hydrogen Sensor with Gas Selectivity Using a PMMA Membrane-Coated Pd Nanoparticle/Single-Layer Graphene Hybrid", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 7, no. 6, 18 February 2015 (2015-02-18), US , pages 3554 - 3561, XP055971338, ISSN: 1944-8244, DOI: 10.1021/am5073645 *

Similar Documents

Publication Publication Date Title
US6109094A (en) Method and device for gas sensing
Saraie et al. Chemical Vapor Deposition of Al2 O 3 Thin Films under Reduced Pressures
WO2018124390A1 (en) Perovskite solar cell using graphene electrode, and manufacturing method therefor
US20110260219A1 (en) Protective layers suitable for exhaust gases for high-temperature chemfet exhaust gas sensors
WO2022203370A1 (en) Hydrogen gas sensor
WO2011081245A1 (en) Hydrogen sensor, and method for fabricating same
Martinelli et al. A study of the moisture effects on SnO2 thick films by sensitivity and permittivity measurements
KR101729937B1 (en) Semiconductor Type HCl Gas Sensor and Manufacturing Method Thereof
CN100587870C (en) Solid electrolytic capacitor and its manufacturing method
WO2019098469A1 (en) Gas sensor comprising composite structure including graphene and metal particle bonded to each other and method for manufacturing same
de Vasconcelos et al. Highly sensitive thermistors based on high-purity polycrystalline cubic silicon carbide
WO2014182139A1 (en) Photoactive layer, organic solar cell comprising same, and manufacturing method therefor
WO2022211555A1 (en) Wrapping type gas sensor
WO2023140470A1 (en) Hydrogen gas sensor and manufacturing method therefor
WO2017171214A1 (en) Thermochemical gas sensor using thermoelectric thin film and method for manufacturing same
WO2018174394A1 (en) Gas sensor and method for manufacturing same
Kumar et al. Fabrication and characterization of gridded Pt/SiO2/Si MOS structure for hydrogen and hydrogen sulphide sensing
WO2022025462A1 (en) Bolometer device and method of manufacturing same
WO2019054602A1 (en) Polymer having nano-wrinkle structure formed using ion beam and preparation method therefor
KR20220136151A (en) Hydrogen gas sensor
WO2023146229A1 (en) Resistive hydrogen sensor comprising sensing layer having semiconducting single-walled carbon nanotubes, and manufacturing method therefor
WO2022211554A1 (en) Hydrogen gas sensor and method for manufacturing same
WO2022108428A1 (en) Hydrogen gas sensor
WO2022211540A1 (en) Sensor array for sensing hydrogen and hydrogen sensing system using same
KR20220131861A (en) Hydrogen gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22776070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22776070

Country of ref document: EP

Kind code of ref document: A1