WO2022211554A1 - Hydrogen gas sensor and method for manufacturing same - Google Patents

Hydrogen gas sensor and method for manufacturing same Download PDF

Info

Publication number
WO2022211554A1
WO2022211554A1 PCT/KR2022/004660 KR2022004660W WO2022211554A1 WO 2022211554 A1 WO2022211554 A1 WO 2022211554A1 KR 2022004660 W KR2022004660 W KR 2022004660W WO 2022211554 A1 WO2022211554 A1 WO 2022211554A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hydrogen gas
gas sensor
metal oxide
metal
Prior art date
Application number
PCT/KR2022/004660
Other languages
French (fr)
Korean (ko)
Inventor
임보규
박종목
정서현
정유진
기르마헤녹
김예진
공호열
최재욱
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210178524A external-priority patent/KR102627784B1/en
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2022211554A1 publication Critical patent/WO2022211554A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a hydrogen gas sensor, and more particularly, to a hydrogen gas sensor having high sensitivity and selectivity to hydrogen gas, and a method for manufacturing the same.
  • Hydrogen energy which is emerging due to the depletion of fossil fuels and environmental pollution problems, has the potential to be used in almost all fields used in the current energy system, from basic industrial materials to general fuels, hydrogen vehicles, hydrogen-powered airplanes, fuel cells, and nuclear fusion energy. have it
  • Various hydrogen gas sensors have been developed, but they are large in size and complicated in structure, and are expensive.
  • Another object of the present invention is to provide a method of manufacturing a hydrogen gas sensor capable of sensing hydrogen gas with high sensitivity.
  • a hydrogen gas sensor includes a metal oxide layer; a first electrode and a second electrode spaced apart from each other on the metal oxide layer; a metal nanoparticle layer positioned in a region where the first electrode and the second electrode are spaced apart; a polymer layer positioned on the metal nanoparticle layer; and a porous color conversion sensing layer positioned on the polymer layer and containing metal oxide, metal nanoparticles and silicate.
  • the metal of the metal oxide of the porous color conversion sensing layer is a group consisting of zinc (Zn), titanium (Ti), molybdenum (Mo), tungsten (W)). It may be any one or more selected from.
  • the metal of the metal nanoparticles of the porous color conversion sensing layer may be palladium.
  • the silicate may be prepared by a condensation reaction of a C 1-4 alkoxysilane-based compound.
  • the weight ratio of the metal oxide: the metal nanoparticles: the silicate included in the porous color conversion sensing layer may be 1: 0.5 to 1.5: 0.1 to 0.5.
  • the surface of the metal oxide layer in the region where the first electrode and the second electrode are spaced apart from each other is a first region where the metal nanoparticle layer is located, and the metal nanoparticle layer is located It may include a second region that is not.
  • the area of the second region may be 50% to 90% of the total area of the surface of the metal oxide layer partitioned by the first electrode and the second electrode.
  • the polymer of the polymer layer may be an acrylate-based polymer.
  • the polymer of the polymer layer may be non-porous polymethyl methacrylate.
  • the metal oxide layer may be located on a flexible substrate.
  • the metal oxide layer may be located on the shrink film.
  • a method for manufacturing a hydrogen gas sensor comprises: a) forming a metal oxide layer on one surface of an insulating layer; b) forming a first electrode and a second electrode spaced apart from each other on one surface of the metal oxide layer not in contact with the insulating layer; c) forming a metal nanoparticle layer having a thickness of 1 to 5 nm in a region where the first electrode and the second electrode are spaced apart; d) forming a polymer layer on the metal nanoparticle layer; e) preparing a coating solution by mixing a first solution containing a metal oxide and metal nanoparticles and a second solution containing a C 1-4 alkoxysilane-based compound; and f) forming a porous color change sensing layer by applying and drying the coating solution on the polymer layer.
  • the C 1-4 alkoxysilane-based compound may be converted into silicate by condensation reaction.
  • the metal nanoparticle layer may be formed by being deposited on a partial region of the surface of the metal oxide layer.
  • step d) may include applying and drying polymethyl methacrylate dissolved in a solvent on the metal nanoparticle layer.
  • the solvent in step d1), may be a halogenated alkoxybenzene compound.
  • the hydrogen gas sensor according to the present invention has a structure in which a metal oxide layer - a metal nanoparticle layer - a polymer layer - a porous color conversion sensing layer is stacked in order, so that it can operate at room temperature and have high sensitivity and selectivity to hydrogen gas.
  • the hydrogen gas sensor according to the present invention can measure hydrogen gas with high sensitivity and high reliability by simultaneously performing hydrogen detection by an electric method and hydrogen detection by an optical method.
  • the hydrogen gas sensor according to the present invention has the advantage that it can be driven even with a low power of 10 nW or less.
  • FIG. 1 is a perspective view of a hydrogen gas sensor according to an embodiment of the present invention.
  • FIG. 2 is a side view of the hydrogen gas sensor shown in FIG. 1;
  • FIG. 3 is a scanning electron microscope photograph of a polymer layer according to an embodiment of the present invention.
  • FIG. 4 is a photograph showing the hydrogen sensitivity test result of the hydrogen gas sensor shown in FIG. 1;
  • FIG. 5 is a graph of a detection test result for each hydrogen concentration of the hydrogen gas sensor shown in FIG. 1 .
  • FIG. 6 is a graph of the repeated detection test result of the hydrogen gas sensor shown in FIG. 1;
  • FIG. 7 is a graph showing a result of a hydrogen gas selectivity detection test of the hydrogen gas sensor shown in FIG. 1 .
  • the unit used without special mention is based on the weight, for example, the unit of % or ratio means weight % or weight ratio, and weight % means any one component of the entire composition unless otherwise defined. It means % by weight in the composition.
  • the numerical range used herein includes the lower limit and upper limit and all values within the range, increments logically derived from the form and width of the defined range, all values defined therein, and the upper limit of the numerical range defined in different forms. and all possible combinations of lower limits. Unless otherwise defined in the specification of the present invention, values outside the numerical range that may occur due to experimental errors or rounding of values are also included in the defined numerical range.
  • 'comprising' is an open-ended description having an equivalent meaning to expressions such as 'comprising', 'containing', 'having' or 'characterized', and elements not listed in addition; Materials or processes are not excluded.
  • a conventional hydrogen gas sensor is a Schottky barrier diode having a bipolar structure using a sensor using catalytic combustion or a hot wire, SiO 2 , AlN metal oxide (nitride) semiconductor, and bulk Pd, Pt with SiC, GaN, etc.
  • a sensor using they are large in size and complicated in structure as well as expensive.
  • it since it operates at a high temperature of 300°C or higher, it has limitations such as not only high power consumption but also low sensitivity to hydrogen.
  • sensors that detect hydrogen gas through a hydrogen gas color-changing pigment that is color-converted when exposed to hydrogen gas have been developed, but the color changed according to hydrogen gas exposure is not high enough to be discernible with the naked eye, and the sensitivity is low, There is a disadvantage in that it is difficult to be used as a hydrogen gas sensor.
  • a hydrogen gas sensor includes a metal oxide layer; a first electrode and a second electrode spaced apart from each other on the metal oxide layer; a metal nanoparticle layer positioned in a region where the first electrode and the second electrode are spaced apart; a polymer layer positioned on the metal nanoparticle layer; and a porous color conversion sensing layer positioned on the polymer layer and containing metal oxide, metal nanoparticles and silicate, as a sensing unit, a metal oxide layer-metal nanoparticle layer-polymer layer-porous color conversion sensing
  • 1 to 2 show a hydrogen gas sensor according to an embodiment of the present invention.
  • the hydrogen gas sensor of the present invention includes a substrate 10, a metal oxide layer 15 positioned on the substrate 10; a first electrode 21 and a second electrode 23 spaced apart from each other on the metal oxide layer 15; a metal nanoparticle layer 30 positioned in a region where the first electrode 21 and the second electrode 23 are spaced apart; a polymer layer 50 positioned on the metal nanoparticle layer 30; and a porous color conversion sensing layer 70 positioned on the polymer layer 50 and containing metal oxide, metal nanoparticles, and silicate.
  • the substrate 10 is not particularly limited as long as it is made of an insulating material, but is made of a transparent material so that a color change according to whether the porous color conversion sensing layer 70 is exposed to hydrogen gas can be easily detected with the naked eye. It is preferable As an example, the substrate 10 may be glass.
  • the substrate 10 is a light-transmitting flexible substrate, and the metal oxide layer 15 may be located on the flexible substrate.
  • the flexible substrate may be flexible polyimide or flexible polyethylene terephthalate, but is not limited thereto.
  • a hydrogen gas sensor including such a flexible substrate may have flexibility, thus, a high risk of leakage, and may be installed in a bent position such as a gas cylinder, a pipe, a valve, and the like, and thus the utilization may be further increased.
  • the leakage of hydrogen gas can be sensed and the risk of leakage can be prevented at the same time.
  • the substrate 10 may be a shrink film, and the metal oxide layer 15 may be positioned on the shrink film.
  • the shrink film may be a material that is flexible and can be contracted by an external force such as heat.
  • the hydrogen gas sensor including such a shrink film is deformed into a shape corresponding to various installation positions, such as a pipe, a cylinder, and a storage tank, and can be installed without being limited to the installation position, and is easily installed by contraction, so that installation can be performed very easily can
  • the metal oxide layer 15 - the metal nanoparticle layer 30 - the polymer layer 50 - the porous color conversion sensing layer 70 is a sensing unit for detecting hydrogen. Specifically, when hydrogen gas is exposed to the sensing unit while power is supplied to the first and second electrodes, the hydrogen gas is adsorbed to the porous color conversion sensing layer 70 and can be visually detected through color change. The hydrogen gas passing through the porous color conversion sensing layer 70 reaches the metal oxide layer 15 and the metal nanoparticle layer 30 through the polymer layer 50, and the metal oxide layer 15 and the metal nanoparticle layer. Hydrogen is adsorbed to (30) and the electrical properties change, so that hydrogen can be detected.
  • the metal oxide layer 15 is made of a metal oxide (MO x ), and O x may be selected from O 1 to O 10 depending on the degree of an oxide material, but is not limited thereto.
  • the metal of the metal oxide layer 15 is not limited as long as it has hydrogen adsorption ability.
  • the metal of the metal oxide layer 15 may be tin, and the metal oxide layer 15 may be a tin oxide (SnO 2 ) layer.
  • the tin oxide layer has a higher hydrogen adsorption rate relative to the area compared to other metal oxide layers 15 so that even low concentration hydrogen gas can be sensed.
  • the thickness of the metal oxide layer 15 may be 5 to 300 nm, specifically 30 to 200 nm, but is not limited thereto. However, it may exhibit a high hydrogen sensitivity compared to the thickness in the above range.
  • the metal nanoparticle layer 30 is positioned in a region where the first and second electrodes are spaced apart on the metal oxide layer 15 , and is dispersed and positioned as discontinuous metal nanoparticles on the metal oxide layer 15 .
  • the metal nanoparticles may exist as zero-dimensional particles or aggregates of zero-dimensional particles.
  • the metal nanoparticles may be formed of aggregates having an average radius of 0.5 to 1 nm. It is advantageous for the metal to be palladium in terms of hydrogen adsorption capacity, and such a metal nanoparticle layer 30 can adsorb a large amount of hydrogen gas as it has both conductivity and excellent hydrogen adsorption capacity, and enables high-sensitivity sensing.
  • the thickness of the metal nanoparticle layer 30 is not limited as long as hydrogen adsorption is possible, but preferably, the thickness of the palladium nanoparticle layer may be 1 to 5 nm, specifically 2 to 4 nm.
  • the metal of the metal nanoparticle layer 30 is palladium (palladium nanoparticle layer) and the metal of the metal oxide layer 15 is tin (tin oxide layer), it is very advantageous in the hydrogen adsorption capacity of the hydrogen gas sensor.
  • the palladium nanoparticle layer is located in a specific region, that is, in a region where the first electrode and the second electrode on the metal oxide layer 15 are spaced apart, hydrogen gas sensing with high sensitivity is possible.
  • the palladium nanoparticles are dispersed as discontinuous particles in the region, and preferably, the palladium nanoparticles are distributed only in a partial region of the surface of the tin oxide layer in the region where the first electrode and the second electrode are spaced apart, so that the first electrode and the second electrode are separated.
  • the surface of the tin oxide layer in the region where the two electrodes are spaced apart may include a first region in which the palladium nanoparticle layer is positioned and a second region in which the palladium nanoparticle layer is not positioned.
  • the upper area of the tin oxide layer exposed to the outside without palladium nanoparticles is 50% of the total area of the surface of the tin oxide layer partitioned by the first electrode and the second electrode to 90%, preferably 60% to 80%.
  • the hydrogen gas sensor including the tin oxide layer and the palladium nanoparticle layer as described above is capable of sensing hydrogen under various environmental conditions as well as high-sensitivity sensing. Specifically, the hydrogen gas sensor is capable of high-sensitivity hydrogen sensing even at a temperature of -50°C to 300°C and a humidity of 10 to 80%.
  • the first electrode and the second electrode are for measuring a change in current or resistance, and are spaced apart from each other on the metal oxide layer 15 .
  • copper, aluminum, nickel, titanium, silver, gold, platinum, palladium, etc. may be mentioned, but are not limited thereto, and any material used as a general electrode may be used.
  • Each of the first and second electrodes may have a thickness of 10 nm to 200 nm, specifically, 50 nm to 150 nm, but is not limited thereto.
  • the polymer layer 50 allows hydrogen gas to selectively permeate to enable more sensitive hydrogen gas sensing. Furthermore, the polymer layer 50 serves to protect the sensing unit, such as preventing separation of metal nanoparticles, and prevents a decrease in hydrogen gas sensitivity due to moisture or the like when exposed to the outside for a long time. That is, the polymer layer 50 can significantly improve the sensitivity, hydrogen selectivity, and physical and chemical stability of the sensing unit.
  • the upper portion of the metal oxide layer 15 exposed to the outside, that is, the second region, may be in direct contact with the polymer layer 50 .
  • Such a hydrogen gas sensor may further increase hydrogen selectivity.
  • the polymer of the polymer layer 50 may be an acrylate-based polymer or a vinyl-based polymer.
  • polymethacrylate, polymethylacrylate, polymethylmethacrylate (PMMA), polyethylacrylate, polyethylmethacrylate, polyimide (PI) may be one or more selected from polystyrene (PS) or a mixture thereof, but is not limited thereto.
  • the polymer of the polymer layer 50 may be a non-porous polymethyl methacrylate (PMMA) layer.
  • PMMA polymethyl methacrylate
  • Such a polymer layer 50 increases the hydrogen selectivity so that more reliable hydrogen gas sensing is possible.
  • the polymer layer 50 made of non-porous polymethyl methacrylate may have higher hydrogen selectivity than that of porous polymethyl methacrylate, thereby increasing the sensitivity and reliability in sensing hydrogen gas.
  • the porous color conversion sensing layer 70 contains metal oxide, metal nanoparticles, and silicate, and is located in the outermost layer of the hydrogen gas sensor. make it possible. In addition, in addition to the above-described polymer layer 50, hydrogen gas is selectively transmitted through the metal oxide layer 15 and the metal nanoparticle layer 30 to further increase the selectivity of the hydrogen gas sensor, and the polymer layer 50 Together with this, it is possible to protect the hydrogen gas sensor from external factors such as moisture and air.
  • O x may be selected from O 1 to O 10 according to the degree of an oxide material, but is not limited thereto.
  • the metal of the metal oxide may be at least one selected from the group consisting of zinc (Zn), titanium (Ti), molybdenum (Mo), and tungsten (W).
  • the metal oxide may be tungsten oxide (WO 3 ).
  • Such a metal oxide may be discolored with high sensitivity to hydrogen gas together with metal nanoparticles, which will be described later.
  • the metal nanoparticles change color with respect to hydrogen gas together with the metal oxide, and it is advantageous in hydrogen gas discoloration that the metal of the metal nanoparticles is palladium.
  • the metal oxide is tungsten oxide and the metal nanoparticles are palladium nanoparticles
  • the tungsten oxide and the metal nanoparticles form an agglomerate that is mutually agglomerated, and the ability to change color by reacting with hydrogen gas may be increased.
  • the porous color conversion sensing layer 70 including tungsten oxide and metal nanoparticles is relatively transparent before exposure to hydrogen, but may exhibit a blue color after exposure to hydrogen.
  • the silicate forms a porous sheet shape as it is crosslinked, and in the entire area of the porous color conversion sensing layer 70, the metal oxide and metal nanoparticles and their aggregates are uniformly dispersed, but stably fixed and supported. can do.
  • the silicate is not limited as long as it forms a three-dimensional porous structure, but may preferably be prepared by a condensation reaction of a C1-4 alkoxysilane-based compound.
  • the alkoxysilane-based compound may be tetraethyl orthosilicate (TEOS).
  • the content of the metal oxide, metal nanoparticles and silicate included in the porous color conversion sensing layer 70 is not specifically limited as long as it can exhibit hydrogen gas sensing ability.
  • the weight ratio of metal oxide: metal nanoparticles: silicate may be 1: 0.5 to 1.5: 0.1 to 0.5, specifically, 1: 0.7 to 1.2: 0.2 to 0.4.
  • the porous color conversion sensing layer 70 includes tungsten oxide, palladium nanoparticles and silicate, and at the same time has high selectivity and high sensitivity to hydrogen gas, and is easily viewed with the naked eye.
  • the degree of color change may be high enough to be judged.
  • the porous color conversion sensing layer 70 is exposed to hydrogen gas, the color is easily changed even at room temperature, and the hydrogen concentration is 10% or less, specifically, 5% or less, more specifically, low-concentration hydrogen gas of 0.05 to 4%.
  • the degree of color change that can be easily discriminated by the naked eye that is, the visibility may be increased.
  • the method of detecting hydrogen gas of the present invention through the hydrogen gas sensor of the present invention can be made by measuring the current or resistance before and after exposing the detection target gas to the sensing unit, and at the same time, by detecting the color change with the naked eye, can be measured setting a reference by measuring the drain current Ids(ref) of the hydrogen gas sensor when measuring current or resistance; introducing a detection target gas to a sensing unit positioned between the first and second electrodes; a detection step of measuring a drain current Ids(detect) when a detection target gas is introduced; and analyzing the concentration of the detection gas using the measured drain current value, and the detection gas may be detected based on a drain current value changed (increased) before and after introduction of the detection target gas.
  • the detection of the detection gas may be performed with a changed resistance value instead of a changed drain current value before and after introduction of the detection target gas.
  • the hydrogen gas sensor with the naked eye can measure hydrogen gas with high sensitivity and reliability by simultaneously performing hydrogen detection by an electrical method and hydrogen detection by a gas discoloration or an optical method by including the above-described sensing unit.
  • the operating (detection) temperature of the hydrogen gas sensor may be in the range of -50 to 300 °C, specifically -10 to 200 °C, and more specifically 4 to 100 °C.
  • Such a hydrogen gas detection method may detect hydrogen gas having a concentration range of 0.1 to 100000 ppm, specifically, 1 to 80000 ppm.
  • step a), step b), and step c) may be sequentially performed, but depending on the ease of the process, step a), step c), and step b) may be performed.
  • the step of forming the metal oxide layer on one surface of the insulating layer may be performed by coating the insulating layer with a precursor solution containing a precursor material of a metal oxide.
  • the metal oxide may be tin oxide, and the precursor material may be any type as long as it is soluble in the solvent used, and may be used without limiting specific precursors such as chloride-based, acetate-based, and halide.
  • the solvent is 2-methoxyethanol (2-mathoxyethanol), isopropanol (isopropanol), dimethylformamide (dimethylformamide), ethanol (ethanol), methanol (methanol), acetylacetone (acetylacetone) and dimethylamine borane (dimethylamineborane) group may include at least one in
  • the molar concentration of the precursor material in the precursor solution may be 0.01M to 3M, specifically 0.025M to 0.2M, and more specifically 0.05 to 0.15M, but is not limited thereto.
  • the precursor solution may further include a solution stabilizer used in the art.
  • the precursor solution is applied on the substrate having the above-described insulating properties to form a precursor thin film.
  • the precursor solution may be applied by a coating method known in the art, such as spin coating, inkjet printing, dip coating, and the like. Thereafter, heat treatment is performed on the precursor thin film of the substrate to form a metal oxide layer.
  • the heat treatment may be performed at 200° C. to 500° C., specifically, 280° C. to 400° C., but is not limited thereto, and may be performed by dividing the temperature into first and second order.
  • step a) may be performed without limitation, as long as it is a method for forming a metal oxide layer known in the art, such as an ion beam method.
  • step b the step of forming the first electrode and the second electrode spaced apart from each other on the metal oxide layer.
  • a shadow mask having a first electrode and a second electrode-shaped opening is disposed on the substrate on which the metal oxide layer is formed through step a).
  • the shadow mask is a mask designed so that deposition materials can be selectively deposited through the opening, and an electrode part having a precise shape can be manufactured.
  • a metal shadow mask, a polymer shadow mask such as PDMS or PMMA, etc. may be used as the shadow mask.
  • a metal is deposited by electron beam on the substrate on which the shadow mask is disposed to form the first electrode and the second electrode on the metal oxide layer.
  • the metal may include, but is not limited to, copper, aluminum, nickel, titanium, silver, gold, platinum, and palladium.
  • step c a step of forming a metal nanoparticle layer in a region where the first electrode and the second electrode are spaced apart is performed.
  • the metal nanoparticle layer may be a palladium nanoparticle layer, and the metal nanoparticle layer may be formed by depositing metal nanoparticles in the form of clusters and dispersed particles.
  • Deposition of metal nanoparticles may use a physical or chemical method, preferably sputtering method, thermal evaporation method, electron beam evaporation method, electroplating method, may be deposited in the form of spraying an aqueous metal solution on the sample surface, but is not necessarily limited thereto it is not
  • the metal nanoparticle layer may be formed by depositing only a partial region of the surface of the metal oxide layer. Accordingly, the surface of the metal oxide layer in the area where the first electrode and the second electrode are spaced apart can be divided into a first area where the metal nanoparticle layer is located and a second area exposed to the outside because the metal nanoparticle layer is not located, It is possible to fabricate a hydrogen gas sensor with even better sensitivity.
  • the metal nanoparticle layer may be formed to a thickness of 1 to 5 nm, preferably 2 to 4 nm.
  • Step d) is a step of forming a polymer layer on the first electrode, the second electrode, and the metal nanoparticle layer.
  • the polymer layer may be formed by coating a liquid polymer resin on the metal oxide layer and the metal nanoparticle layer.
  • the polymer resin may be an acrylate-based polymer resin or a vinyl-based polymer resin, but it is advantageous that the polymer resin is a polymethacrylate resin.
  • the polymer resin may be applied through spin coating, spray coating, knife coating, or roll coating, but is not limited thereto, and may be coated by various methods known in the art.
  • Polymer resins can be cured in various ways depending on the type of resin.
  • polymethyl methacrylate (PMMA) resin may be cured by applying a solution dissolved in a solvent and then evaporating the solvent.
  • step d) may be performed including; applying and drying polymethyl methacrylate dissolved in a solvent on the metal nanoparticle layer.
  • the solvent may be a halogenated alkoxybenzene compound. Halogen can be chlorine, fluorine and bromine.
  • the halogenated alkoxybenzene compound may be anisole (CH3OCH ).
  • the polymer layer prepared through such a solvent is non-porous polymethyl methacrylate, and as described above, the selectivity of hydrogen gas can be very high.
  • Step e) is a step of preparing a coating solution for forming a porous color conversion sensing layer, and a first solution containing a metal oxide and metal nanoparticles and a second solution containing a C 1-4 alkoxysilane-based compound are mixed to prepare a coating solution.
  • the first solution may be a sol in which a metal oxide and metal nanoparticles are mixed in a solvent, and may include a metal oxide and metal nanoparticles and aggregates thereof.
  • Metal nanoparticles in the first solution The content of the metal oxide is not limited as long as it can be uniformly mixed with each other. However, in the first solution, the molar ratio of the metal nanoparticles: the metal of the metal oxide is 1: 10 to 100, specifically, in the range of 1: 20 to 70, the visibility of the prepared porous color conversion sensing layer may be more excellent.
  • the second solution includes a C1-4 alkoxysilane-based compound and a solvent, and the C1-4 alkoxysilane-based compound may be tetraethyl orthosilicate (TEOS).
  • the solvent of the first solution and the second solution may be an organic solvent and an aqueous solution containing the organic solvent, for example, ethanol.
  • the mixing ratio of the first solution and the second solution may be appropriately adjusted according to the conditions required for the porous color conversion sensing layer to be prepared.
  • the volume ratio of the first solution to the second solution mixed in step e) may be 1: 0.01 to 1, specifically, 1: 0.1 to 0.7, but is not limited thereto.
  • Step f) is a step of forming a porous color change sensing layer by applying and drying the coating solution prepared in step e) on the polymer layer.
  • the coating solution may be applied through spin coating, spray coating, knife coating, roll coating and dip coating, but is not limited thereto, and may be coated by various methods known in the art. In addition, drying may be cured by evaporating the solvent contained in the coating solution.
  • step f) as the coating solution is applied and dried in the polymer layer, the C 1-4 alkoxysilane-based compound may be condensed and converted into silicate. Accordingly, it is possible to form a porous color conversion sensing layer having a three-dimensional cross-linked structure, and a porous color conversion sensing layer having high visibility in which metal oxide and metal nanoparticles are uniformly mixed, and stably fixed thereto can be formed.
  • tungsten (W) powder 30% hydrogen peroxide (H 2 0 2 ) in 20 ml of ethanol was added in a molar ratio of 1: 3, followed by stirring for 2 hours and centrifugation. The supernatant was separated and heated at 80° C. for 3 hours, and then ethanol was added to obtain a 0.3 M WO 3 precursor sol. Then, palladium chloride (PdCl 2 ) was added to the WO 3 precursor sol so that the molar ratio of palladium: tungsten was 1:50 to prepare a first solution.
  • PdCl 2 palladium chloride
  • TEOS tetraethyl orthosilicate
  • AR aqueous ammonia
  • NH 4 OH 99% aqueous ethanol solution in a molar ratio of 1: 2: 40
  • ammonia water in the mixture was removed through a rotary evaporator so that the hydrogen ion concentration index (pH) of the mixture became neutral (pH7).
  • pH7 hydrogen ion concentration index
  • a coating solution was prepared by mixing the prepared first solution: second solution in a volume ratio of 1:0.3.
  • liquid polyimide (PI) resin on the cleaned silicon wafer substrate (thickness: 500-550um, resistivity: ⁇ 0.005 ohm, SiO 2 thickness: 3000A (Dry)
  • PI polyimide
  • a flexible substrate was manufactured by baking while increasing the temperature step by step. Each step was performed at a temperature of 60, 80, 150, 230 and 300°C, each step was performed for 30 minutes, but the last 300°C temperature was performed for 1 hour.
  • a 0.1M SnCl 2 solution using 2-methoxyethanol as a solvent was spin-coated (3,000 rpm, 60 seconds) and annealed at 400° C. for 1 hour to form a SnO 2 layer.
  • Al was deposited to a thickness of 90 nm and a width of 1000 ⁇ m through a shadow mask to form first and second electrodes. In this case, the separation distance between the first and second electrodes was 200 ⁇ m.
  • Pd was deposited at a rate of 0.1 ⁇ /s using a thermal evaporator to have an average thickness of 3 nm.
  • PMMA solvent anisole
  • the scanning electron microscope image of the prepared PMMA layer was confirmed and shown in FIG. 3 .
  • the coating solution prepared in Preparation Example was spin-coated (800 rpm, 120 seconds) on the formed PMMA layer, and then heat-treated at 50° C. for 1 hour to prepare a hydrogen gas sensor.
  • Example 1 the solvent of PMMA was acetone (Example 2_Acetone), tetrahydrofuran (Example 3_THF), dimethylformamide (Example 4_DMF) and chlorobenzene (Example 5_CB) instead of anisole, respectively, except that and a hydrogen gas sensor was manufactured in the same manner as in Example 1 (Anisole).
  • Gas detection characteristics were measured using a semiconductor parameter analyzer (B15000A, Agilent) of a MSTECH probe station with an MFC system.
  • the hydrogen gas sensor was placed about 1 cm below the gas tube and directly exposed to the gas of the required concentration.
  • the hydrogen gas detection test was conducted at room temperature.
  • MFC H2 gas (100ppm, 1%, 10% in N2) and dry air were mixed to produce hydrogen gas of the desired concentration.
  • the detection characteristics were shown by comparing the color change and current of the hydrogen gas sensor before and after exposure to hydrogen gas.
  • Example 1 was non-porous.
  • FIG. 4 is a photograph comparing the detection test results of the hydrogen gas sensor according to Example 1 with the naked eye. Specifically, FIG. 4a) shows before the detection test, and FIG. 4b) shows after the detection test result.
  • the hydrogen gas sensor has relatively high light transmittance before exposure to hydrogen gas, but shows a blue color after exposure to hydrogen gas, and it can be confirmed that hydrogen gas detection is possible with very high visibility. In particular, it was confirmed that the reaction time was less than 20 seconds, so that it was possible to detect hydrogen gas within a very fast time compared to the prior art.
  • FIG. 5 is a graph showing a detection test (current change) for each hydrogen gas concentration of the hydrogen gas sensor according to Example 1.
  • FIG. 6 is a graph showing the hydrogen gas repeated sensitivity test result of the hydrogen gas sensor according to Example 1. Referring to FIG. The hydrogen gas repeated sensitization test was performed by measuring hydrogen gas at concentrations of 0.5% (FIG. 6a) and 1% (FIG. 6b) and 4% (FIG. 6c) by the method of Experimental Example 5 times.
  • FIG. 7 is a graph showing a comparison result of a detection test of a hydrogen gas sensor according to Examples 1 to 5; Specifically, a detection test was performed by exposing 1000 ppm of hydrogen gas to each hydrogen gas sensor.
  • Example 1 which is non-porous, it was confirmed that hydrogen gas was sensed with very high sensitivity despite supply of hydrogen gas of the same concentration.

Abstract

The present invention relates to a hydrogen gas sensor and, more particularly, to a hydrogen gas sensor capable of operating at room temperature and having high sensitivity and selectivity to hydrogen gas, and a method for manufacturing same. The hydrogen gas sensor according to the present invention comprises: a metal oxide layer; a first electrode and a second electrode spaced apart from each other on the metal oxide layer; a metal nanoparticle layer positioned in a region at which the first electrode and the second electrode are spaced apart; a polymer layer positioned on the metal nanoparticle layer; and a porous color conversion sensing layer positioned on the polymer layer and containing metal oxide, metal nanoparticles, and silicate.

Description

수소 가스 센서 및 이의 제조방법 Hydrogen gas sensor and manufacturing method thereof
본 발명은 수소 가스 센서에 관한 것으로, 더 상세하게는 수소 가스에 대한 높은 민감도 및 선택성을 가지는 수소 가스 센서 및 이의 제조방법에 관한 것이다.The present invention relates to a hydrogen gas sensor, and more particularly, to a hydrogen gas sensor having high sensitivity and selectivity to hydrogen gas, and a method for manufacturing the same.
화석연료의 고갈 및 환경오염 문제로 인해 대두되고 있는 수소 에너지는 산업용 기초소재로부터 일반 연료, 수소자동차, 수소비행기, 연료전지, 핵융합에너지 등 현재의 에너지 시스템에서 사용되는 거의 모든 분야에 이용될 가능성을 지니고 있다. Hydrogen energy, which is emerging due to the depletion of fossil fuels and environmental pollution problems, has the potential to be used in almost all fields used in the current energy system, from basic industrial materials to general fuels, hydrogen vehicles, hydrogen-powered airplanes, fuel cells, and nuclear fusion energy. have it
하지만, 수소가스는 폭발농도범위가 넓고(4~75%), 발화에너지가 작아 미세한 정전기에도 쉽게 발화되기 때문에 누출된 양이 미량이라도 매우 위험할 수 있다. 이에, 수소 누출에 의한 대형사고 및 인명 피해를 줄이기 위해 수소가스를 빠르고 정확하게 탐지할 수 있는 고성능 센서가 요구된다. However, since hydrogen gas has a wide explosive concentration range (4 to 75%) and small ignition energy, it can be easily ignited even by minute static electricity, so even a small amount of leakage can be very dangerous. Accordingly, a high-performance sensor capable of quickly and accurately detecting hydrogen gas is required in order to reduce major accidents and human damage caused by hydrogen leakage.
현재까지 촉매연소 또는 열선을 사용한 센서, SiO2, AlN 금속산화(질화)물 반도체, 그리고 벌크 Pd, Pt에 SiC, GaN등을 이용하여 2극 구조의 숏키 장벽 다이오드(Schottky barrier diode)를 사용한 센서 등 다양한 수소 가스 센서가 개발되고 있지만, 이들은 크기가 크고 구조가 복잡할 뿐만 아니라 가격도 고가이다. 또한 300 ℃이상의 고온에서 동작하므로 소비전력이 클 뿐만 아니라 수소에 대한 민감도가 떨어지는 등의 한계성을 지니고 있다.Until now, sensors using catalytic combustion or hot wires, SiO2, AlN metal oxide (nitride) semiconductors, and sensors using a Schottky barrier diode with a bipolar structure using SiC, GaN, etc. in bulk Pd and Pt, etc. Various hydrogen gas sensors have been developed, but they are large in size and complicated in structure, and are expensive. In addition, since it operates at a high temperature of 300°C or higher, it has limitations such as not only high power consumption but also low sensitivity to hydrogen.
이에, 대한민국 등록특허공보 제10-0870126호 'Pd 나노와이어를 이용한 수소 가스 센서 제조방법'에 개시된 바와 같이, 수소 가스 센서로서 성능을 최적화할 수 있는 수소 가스 센서 재료 및 구조에 대한 연구가 진행중에 있으나, 여전히 상온에서 수소 가스에 대한 높은 민감도를 가질 수 있도록 작동하는 센서에 대한 개발이 필요한 실정이다.Accordingly, as disclosed in Korean Patent Publication No. 10-0870126 'Method for manufacturing hydrogen gas sensor using Pd nanowires', research on materials and structures for hydrogen gas sensors that can optimize performance as a hydrogen gas sensor is in progress. However, it is still necessary to develop a sensor that operates to have high sensitivity to hydrogen gas at room temperature.
본 발명의 목적은 상온 작동이 가능함과 동시에, 수소 가스에 대한 높은 민감도 및 선택성을 가지는 수소 가스 센서를 제공하는 것이다.It is an object of the present invention to provide a hydrogen gas sensor capable of operating at room temperature and having high sensitivity and selectivity to hydrogen gas.
본 발명의 또 다른 목적은 고감도로 수소 가스를 센싱할 수 있는 수소 가스 센서의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method of manufacturing a hydrogen gas sensor capable of sensing hydrogen gas with high sensitivity.
본 발명에 따른 수소 가스 센서는 금속산화물층; 상기 금속산화물층 상 서로 이격 위치하는 제1전극과 제2전극; 상기 제1전극과 제2전극이 이격된 영역에 위치하는 금속 나노입자층; 상기 금속 나노입자층 상에 위치하는 고분자층; 및 상기 고분자층 상에 위치하며, 금속산화물, 금속 나노입자 및 실리케이트를 함유하는 다공성 색변환감지층;을 포함한다.A hydrogen gas sensor according to the present invention includes a metal oxide layer; a first electrode and a second electrode spaced apart from each other on the metal oxide layer; a metal nanoparticle layer positioned in a region where the first electrode and the second electrode are spaced apart; a polymer layer positioned on the metal nanoparticle layer; and a porous color conversion sensing layer positioned on the polymer layer and containing metal oxide, metal nanoparticles and silicate.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 다공성 색변환감지층의 상기 금속산화물의 금속은 아연(Zn), 타이타늄(Ti), 몰리브덴(Mo), 텅스텐(W))으로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다. In the hydrogen gas sensor according to an embodiment of the present invention, the metal of the metal oxide of the porous color conversion sensing layer is a group consisting of zinc (Zn), titanium (Ti), molybdenum (Mo), tungsten (W)). It may be any one or more selected from.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 다공성 색변환감지층의 상기 금속나노입자의 금속은 팔라듐일 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the metal of the metal nanoparticles of the porous color conversion sensing layer may be palladium.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 실리케이트는 C1-4 알콕시실란계 화합물의 축합반응에 의해 제조된 것일 수 있다. In the hydrogen gas sensor according to an embodiment of the present invention, the silicate may be prepared by a condensation reaction of a C 1-4 alkoxysilane-based compound.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 다공성 색변환감지층에 포함되는 상기 금속산화물 : 상기 금속 나노입자 : 상기 실리케이트의 중량비는 1 : 0.5~1.5 : 0.1~0.5일 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the weight ratio of the metal oxide: the metal nanoparticles: the silicate included in the porous color conversion sensing layer may be 1: 0.5 to 1.5: 0.1 to 0.5.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 제1전극과 제2전극이 이격된 영역의 상기 금속산화물층 표면은 상기 금속 나노입자층이 위치하는 제1영역과, 금속 나노입자층이 위치하지 않는 제2영역을 포함할 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the surface of the metal oxide layer in the region where the first electrode and the second electrode are spaced apart from each other is a first region where the metal nanoparticle layer is located, and the metal nanoparticle layer is located It may include a second region that is not.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 제2영역의 면적은 상기 제1전극 및 제2전극에 의해 구획된 상기 금속산화물층 표면의 총 면적 중 50 % 내지 90%일 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the area of the second region may be 50% to 90% of the total area of the surface of the metal oxide layer partitioned by the first electrode and the second electrode. .
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 고분자층의 고분자는 아크릴레이트계 고분자일 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the polymer of the polymer layer may be an acrylate-based polymer.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 고분자층의 고분자는 비다공질 폴리메틸메타크릴레이트일 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the polymer of the polymer layer may be non-porous polymethyl methacrylate.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 금속산화물층은 유연기판 상에 위치할 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the metal oxide layer may be located on a flexible substrate.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 금속산화물층은 수축필름 상에 위치할 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the metal oxide layer may be located on the shrink film.
본 발명에 따른 수소 가스 센서의 제조방법은 a) 절연층 일면에 금속산화물층을 형성하는 단계; b) 상기 절연층과 접하지 않는 금속산화물층 일면에 서로 이격되는 제1전극과 제2전극을 형성하는 단계; c) 상기 제1전극과 제2전극이 이격된 영역에 1 내지 5nm 두께의 금속 나노입자층을 형성하는 단계; d) 상기 금속 나노입자층 상에 고분자층을 형성하는 단계; e) 금속산화물 및 금속 나노입자를 포함하는 제1용액과 및 C1-4 알콕시실란계 화합물을 포함하는 제2용액을 혼합하여 코팅액을 제조하는 단계; 및 f) 상기 코팅액을 상기 고분자층 상에 도포 및 건조하여 다공성 색변환감지층을 형성하는 단계;를 포함한다.A method for manufacturing a hydrogen gas sensor according to the present invention comprises: a) forming a metal oxide layer on one surface of an insulating layer; b) forming a first electrode and a second electrode spaced apart from each other on one surface of the metal oxide layer not in contact with the insulating layer; c) forming a metal nanoparticle layer having a thickness of 1 to 5 nm in a region where the first electrode and the second electrode are spaced apart; d) forming a polymer layer on the metal nanoparticle layer; e) preparing a coating solution by mixing a first solution containing a metal oxide and metal nanoparticles and a second solution containing a C 1-4 alkoxysilane-based compound; and f) forming a porous color change sensing layer by applying and drying the coating solution on the polymer layer.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에 있어서, 상기 f) 단계는 상기 C1-4 알콕시실란계 화합물이 축합반응되어 실리케이트로 전환될 수 있다.In the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, in step f), the C 1-4 alkoxysilane-based compound may be converted into silicate by condensation reaction.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에 있어서, 상기 c) 단계에서, 상기 금속 나노입자층은 상기 금속산화물층 표면의 일부영역에 증착되어 형성될 수 있다.In the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, in step c), the metal nanoparticle layer may be formed by being deposited on a partial region of the surface of the metal oxide layer.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, d) 단계는 용매에 용해된 폴리메틸메타크릴레이트를 상기 금속 나노입자층 상에 도포 및 건조하는 단계를 포함할 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, step d) may include applying and drying polymethyl methacrylate dissolved in a solvent on the metal nanoparticle layer.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 d1) 단계에서, 상기 용매는 할로겐화 알콕시 벤젠 화합물일 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, in step d1), the solvent may be a halogenated alkoxybenzene compound.
본 발명에 따른 수소 가스 센서는 금속산화물층-금속 나노입자층-고분자층-다공성 색변환감지층 순으로 적층된 구조를 통해, 상온작동이 가능함과 동시에 수소 가스에 대한 높은 민감도 및 선택성을 가질 수 있다 The hydrogen gas sensor according to the present invention has a structure in which a metal oxide layer - a metal nanoparticle layer - a polymer layer - a porous color conversion sensing layer is stacked in order, so that it can operate at room temperature and have high sensitivity and selectivity to hydrogen gas.
또한, 본 발명에 따른 수소 가스 센서는 전기적 방식에 의한 수소 감지 및 광학적인 방식에 의한 수소 감지를 동시에 수행하여 수소 가스를 고감도로 신뢰성 높게 측정할 수 있다. In addition, the hydrogen gas sensor according to the present invention can measure hydrogen gas with high sensitivity and high reliability by simultaneously performing hydrogen detection by an electric method and hydrogen detection by an optical method.
아울러, 본 발명에 따른 수소 가스 센서는 10 nW 이하의 낮은 전력으로도 구동이 가능하다는 장점이 있다.In addition, the hydrogen gas sensor according to the present invention has the advantage that it can be driven even with a low power of 10 nW or less.
도 1은 본 발명의 일 실시예에 따른 수소 가스 센서의 사시도,1 is a perspective view of a hydrogen gas sensor according to an embodiment of the present invention;
도 2는 도 1에 도시된 수소 가스 센서의 측면도,2 is a side view of the hydrogen gas sensor shown in FIG. 1;
도 3은 본 발명의 실시예에 따른 고분자층의 주사전자현미경 사진,3 is a scanning electron microscope photograph of a polymer layer according to an embodiment of the present invention;
도 4는 도 1에 도시된 수소 가스 센서의 수소 감응 테스트 결과를 나타내는 사진,4 is a photograph showing the hydrogen sensitivity test result of the hydrogen gas sensor shown in FIG. 1;
도 5는 도 1에 도시된 수소 가스 센서의 수소 농도별 검지테스트 결과 그래프이다.FIG. 5 is a graph of a detection test result for each hydrogen concentration of the hydrogen gas sensor shown in FIG. 1 .
도 6은 도 1에 도시된 수소 가스 센서의 반복 검지테스트 결과 그래프,6 is a graph of the repeated detection test result of the hydrogen gas sensor shown in FIG. 1;
도 7은 도 1에 도시된 수소 가스 센서의 수소 가스 선택성 검지테스트 결과 그래프이다.FIG. 7 is a graph showing a result of a hydrogen gas selectivity detection test of the hydrogen gas sensor shown in FIG. 1 .
본 명세서에서 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. Unless otherwise defined in technical terms and scientific terms used in this specification, those of ordinary skill in the art to which this invention belongs have the meanings commonly understood, and in the following description and accompanying drawings, the subject matter of the present invention Descriptions of known functions and configurations that may unnecessarily obscure will be omitted.
또한, 본 명세서에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.Also, the singular form used herein may be intended to include the plural form as well, unless the context specifically dictates otherwise.
또한, 본 명세서에서 특별한 언급 없이 사용된 단위는 중량을 기준으로 하며, 일 예로 % 또는 비의 단위는 중량% 또는 중량비를 의미하고, 중량%는 달리 정의되지 않는 한 전체 조성물 중 어느 하나의 성분이 조성물 내에서 차지하는 중량%를 의미한다.In addition, in the present specification, the unit used without special mention is based on the weight, for example, the unit of % or ratio means weight % or weight ratio, and weight % means any one component of the entire composition unless otherwise defined. It means % by weight in the composition.
또한, 본 명세서에서 사용되는 수치 범위는 하한치와 상한치와 그 범위 내에서의 모든 값, 정의되는 범위의 형태와 폭에서 논리적으로 유도되는 증분, 이중 한정된 모든 값 및 서로 다른 형태로 한정된 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함한다. 본 발명의 명세서에서 특별한 정의가 없는 한 실험 오차 또는 값의 반올림으로 인해 발생할 가능성이 있는 수치범위 외의 값 역시 정의된 수치범위에 포함된다. In addition, the numerical range used herein includes the lower limit and upper limit and all values within the range, increments logically derived from the form and width of the defined range, all values defined therein, and the upper limit of the numerical range defined in different forms. and all possible combinations of lower limits. Unless otherwise defined in the specification of the present invention, values outside the numerical range that may occur due to experimental errors or rounding of values are also included in the defined numerical range.
본 명세서의 용어, '포함한다'는 '구비한다', '함유한다', '가진다' 또는 '특징으로 한다' 등의 표현과 등가의 의미를 가지는 개방형 기재이며, 추가로 열거되어 있지 않은 요소, 재료 또는 공정을 배제하지 않는다. As used herein, the term 'comprising' is an open-ended description having an equivalent meaning to expressions such as 'comprising', 'containing', 'having' or 'characterized', and elements not listed in addition; Materials or processes are not excluded.
종래 수소 가스 센서는 촉매연소 또는 열선을 사용한 센서, SiO2, AlN 금속산화(질화)물 반도체, 그리고 벌크 Pd, Pt에 SiC, GaN등을 이용하여 2극 구조의 숏키 장벽 다이오드(Schottky barrier diode)를 사용한 센서 등이 개발되고 있다. 그러나, 이들은 크기가 크고 구조가 복잡할 뿐만 아니라 가격도 고가이다. 또한 300℃ 이상의 고온에서 동작하므로 소비전력이 클 뿐만 아니라 수소에 대한 민감도가 떨어지는 등의 한계성을 지니고 있다.A conventional hydrogen gas sensor is a Schottky barrier diode having a bipolar structure using a sensor using catalytic combustion or a hot wire, SiO 2 , AlN metal oxide (nitride) semiconductor, and bulk Pd, Pt with SiC, GaN, etc. A sensor using However, they are large in size and complicated in structure as well as expensive. In addition, since it operates at a high temperature of 300°C or higher, it has limitations such as not only high power consumption but also low sensitivity to hydrogen.
또한, 수소 가스에 노출 시, 색변환되는 수소 가스 변색 안료를 통해 수소 가스를 감지하는 센서 들이 개발되었으나, 수소 가스 노출에 따라 변화되는 색상이 육안으로 식별 가능할 정도로 높지 않으며, 감도가 낮아, 실질적으로 수소 가스 센서로서 사용되기 어렵다는 단점이 있다.In addition, sensors that detect hydrogen gas through a hydrogen gas color-changing pigment that is color-converted when exposed to hydrogen gas have been developed, but the color changed according to hydrogen gas exposure is not high enough to be discernible with the naked eye, and the sensitivity is low, There is a disadvantage in that it is difficult to be used as a hydrogen gas sensor.
본 발명에 따른 수소 가스 센서는 금속산화물층; 상기 금속산화물층 상 서로 이격 위치하는 제1전극과 제2전극; 상기 제1전극과 제2전극이 이격된 영역에 위치하는 금속 나노입자층; 상기 금속 나노입자층 상에 위치하는 고분자층; 및 상기 고분자층 상에 위치하며, 금속산화물, 금속 나노입자 및 실리케이트를 함유하는 다공성 색변환감지층;을 포함하는 것으로, 감지부로서, 금속산화물층-금속 나노입자층-고분자층- 다공성 색변환감지층 순으로 적층된 구조를 포함함에 따라, 상온작동이 가능함과 동시에 수소 가스에 대한 높은 민감도 및 선택도를 가질 수 있다. 또한, 전기적 방식에 의한 수소 감지 및 변색과 같은 광학적인 방식에 의한 수소 감지를 동시에 수행하여 수소 가스를 고감도로 신뢰성 높게 측정할 수 있다. A hydrogen gas sensor according to the present invention includes a metal oxide layer; a first electrode and a second electrode spaced apart from each other on the metal oxide layer; a metal nanoparticle layer positioned in a region where the first electrode and the second electrode are spaced apart; a polymer layer positioned on the metal nanoparticle layer; and a porous color conversion sensing layer positioned on the polymer layer and containing metal oxide, metal nanoparticles and silicate, as a sensing unit, a metal oxide layer-metal nanoparticle layer-polymer layer-porous color conversion sensing By including the structure stacked in the order of layers, it is possible to operate at room temperature and at the same time have high sensitivity and selectivity to hydrogen gas. In addition, it is possible to measure hydrogen gas with high sensitivity and reliability by simultaneously performing hydrogen detection by an electrical method and hydrogen detection by an optical method such as discoloration.
도 1 내지 도 2는 본 발명의 일 실시예에 따른 수소 가스 센서가 도시되어 있다.1 to 2 show a hydrogen gas sensor according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하며 본 발명의 실시예에 따른 수소 가스 센서에 대해 상세히 설명한다. 첨부한 도면은 기술자에게 본 발명의 기술적 사상이 충분히 전달될 수 있도록 하기 위하여 어디까지나 예시적으로 제공되는 것으로서, 본 발명은 이하 제시되는 도면들로 한정되지 않고 다른 형태로 얼마든지 구체화될 수 있다. Hereinafter, a hydrogen gas sensor according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. The accompanying drawings are provided by way of example only so that the technical idea of the present invention can be sufficiently conveyed to those skilled in the art, and the present invention is not limited to the drawings presented below and may be embodied in other forms.
도 1 내지 도 2를 참조하면, 본 발명의 수소 가스 센서는, 기판(10), 기판(10)상에 위치하는 금속산화물층(15); 상기 금속산화물층(15) 상 서로 이격 위치하는 제1전극(21)과 제2전극(23); 상기 제1전극(21)과 제2전극(23)이 이격된 영역에 위치하는 금속 나노입자층(30); 상기 금속 나노입자층(30) 상에 위치하는 고분자층(50); 및 상기 고분자층(50) 상에 위치하며, 금속산화물, 금속 나노입자 및 실리케이트를 함유하는 다공성 색변환감지층(70);을 포함한다. 1 to 2, the hydrogen gas sensor of the present invention includes a substrate 10, a metal oxide layer 15 positioned on the substrate 10; a first electrode 21 and a second electrode 23 spaced apart from each other on the metal oxide layer 15; a metal nanoparticle layer 30 positioned in a region where the first electrode 21 and the second electrode 23 are spaced apart; a polymer layer 50 positioned on the metal nanoparticle layer 30; and a porous color conversion sensing layer 70 positioned on the polymer layer 50 and containing metal oxide, metal nanoparticles, and silicate.
구체적으로, 기판(10)은 절연성을 가지는 소재로 이루어진 것이라면 크게 제한되지 않으나, 다공성 색변환감지층(70)의 수소 가스 노출 여부에 따른 색변화를 육안으로 손쉽게 감지할 수 있도록 투명한 소재로 제조되는 것이 바람직하다. 일 예로 기판(10)은 유리일 수 있다.Specifically, the substrate 10 is not particularly limited as long as it is made of an insulating material, but is made of a transparent material so that a color change according to whether the porous color conversion sensing layer 70 is exposed to hydrogen gas can be easily detected with the naked eye. it is preferable As an example, the substrate 10 may be glass.
바람직하게, 기판(10)은 광투과성 유연기판으로, 금속산화물층(15)은 유연기판 상에 위치할 수 있다. 일 예로, 유연기판은 유연성 폴리이미드 또는 유연성 폴리에틸렌테레프탈레이트일 수 있으나, 이에 한정되지 않는다. 이와 같은 유연기판을 포함하는 수소 가스 센서는 유연성을 가질 수 있고, 이에, 누출위험도가 높으며, 가스 봄베, 배관, 밸브 등의 굴곡된 위치에 설치될 수 있어, 활용도가 더욱 높아질 수 있다. 아울러, 곡면을 형성하는 위치에 밀착되어 설치될 수 있어, 수소 가스의 누출을 센싱함과 동시에 누출 위험을 방지할 수 있다.Preferably, the substrate 10 is a light-transmitting flexible substrate, and the metal oxide layer 15 may be located on the flexible substrate. For example, the flexible substrate may be flexible polyimide or flexible polyethylene terephthalate, but is not limited thereto. A hydrogen gas sensor including such a flexible substrate may have flexibility, thus, a high risk of leakage, and may be installed in a bent position such as a gas cylinder, a pipe, a valve, and the like, and thus the utilization may be further increased. In addition, since it can be installed in close contact with a position forming a curved surface, the leakage of hydrogen gas can be sensed and the risk of leakage can be prevented at the same time.
또는 기판(10)은 수축필름으로, 금속산화물층(15)은 수축필름 상에 위치할 수 있다. 수축필름은 유연함과 동시에 열과 같은 외력에 의해 수축이 가능한 소재일 수 있다. 구체적으로, 폴리에스테르(Polyester, PET), 배향성 폴리스티렌(Oriented polystyrene, OPS), 폴리염화비닐(Polyvinyl chloride, PVC) 및 폴리프로필렌(Polypropylene, PP)로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 고분자로 이루어진 소재일 수 있다. 이와 같은 수축필름를 포함하는 수소 가스 센서는 배관, 봄베 및 저장탱크 등 여러 설치위치와 대응되는 형상으로 변형되어 설치위치에 한정되지 않고 설치될 수 있으며, 수축에 의해 쉽게 설치되어, 설치가 매우 손쉽게 이루어질 수 있다. Alternatively, the substrate 10 may be a shrink film, and the metal oxide layer 15 may be positioned on the shrink film. The shrink film may be a material that is flexible and can be contracted by an external force such as heat. Specifically, any one or two or more polymers selected from the group consisting of polyester (Polyester, PET), oriented polystyrene (OPS), polyvinyl chloride (PVC) and polypropylene (PP). It can be material. The hydrogen gas sensor including such a shrink film is deformed into a shape corresponding to various installation positions, such as a pipe, a cylinder, and a storage tank, and can be installed without being limited to the installation position, and is easily installed by contraction, so that installation can be performed very easily can
상술한 바와 같이, 금속산화물층(15)-금속 나노입자층(30)-고분자층(50)- 다공성 색변환감지층(70)은 수소를 감지하는 감지부이다. 구체적으로, 제1 및 제2전극에 전원을 공급한 상태에서 감지부에 수소 가스가 노출될 경우, 수소 가스가 다공성 색변환감지층(70)에 흡착되며, 색변화를 통해 육안으로 감지할 수 있고, 다공성 색변환감지층(70)을 통과한 수소 가스는 고분자층(50)을 통해 금속산화물층(15) 및 금속 나노입자층(30)에 도달하며, 금속산화물층(15) 및 금속 나노입자층(30)에 수소가 흡착되며 전기적 특성이 변화하여 수소를 검지할 수 있다.As described above, the metal oxide layer 15 - the metal nanoparticle layer 30 - the polymer layer 50 - the porous color conversion sensing layer 70 is a sensing unit for detecting hydrogen. Specifically, when hydrogen gas is exposed to the sensing unit while power is supplied to the first and second electrodes, the hydrogen gas is adsorbed to the porous color conversion sensing layer 70 and can be visually detected through color change. The hydrogen gas passing through the porous color conversion sensing layer 70 reaches the metal oxide layer 15 and the metal nanoparticle layer 30 through the polymer layer 50, and the metal oxide layer 15 and the metal nanoparticle layer. Hydrogen is adsorbed to (30) and the electrical properties change, so that hydrogen can be detected.
금속산화물층(15)은 금속산화물(MOx)로 이루어진 것으로, 산화 재질정도에 따라 Ox가 O1 내지 O10에서 선택될 수 있으나 이에 한정되진 않는다. 금속산화물층(15)의 금속은 수소 흡착능을 가지는 것이면 한정되지 않는다. 일 예로, 금속산화물층(15)의 금속은 주석일 수 있으며, 금속산화물층(15)은 주석산화물(SnO2)층일 수 있다. 주석산화물층은 타 금속산화물층(15)에 비해 면적대비 수소 흡착률이 높아 저농도 수소 가스도 센싱이 가능하도록 한다The metal oxide layer 15 is made of a metal oxide (MO x ), and O x may be selected from O 1 to O 10 depending on the degree of an oxide material, but is not limited thereto. The metal of the metal oxide layer 15 is not limited as long as it has hydrogen adsorption ability. For example, the metal of the metal oxide layer 15 may be tin, and the metal oxide layer 15 may be a tin oxide (SnO 2 ) layer. The tin oxide layer has a higher hydrogen adsorption rate relative to the area compared to other metal oxide layers 15 so that even low concentration hydrogen gas can be sensed.
금속산화물층(15)의 두께는 5 내지 300 ㎚, 상세하게 30 내지 200 ㎚ 일 수 있으나 이에 한정되지 않는다. 다만, 상기 범위에서 두께 대비 높은 수소 감응을 나타낼 수 있다. The thickness of the metal oxide layer 15 may be 5 to 300 nm, specifically 30 to 200 nm, but is not limited thereto. However, it may exhibit a high hydrogen sensitivity compared to the thickness in the above range.
금속 나노입자층(30)은 금속산화물층(15) 상 제1,2전극이 이격된 영역에 위치하는 것으로, 금속산화물층(15) 상에 불연속적인 금속 나노입자로 분산되어 위치한다. 구체적으로, 금속 나노입자는 0차원 입자 또는 0차원 입자의 응집체로 존재할 수 있다. 구체예로, 금속 나노입자는 평균 반경이 0.5 내지 1nm인 응집체로 이루어질 수 있다. 금속은 팔라듐인 것이 수소 흡착능에 있어서, 유리하며, 이와 같은 금속 나노입자층(30)은 전도성과 우수한 수소흡착능을 동시에 가짐에 따라 다량의 수소 가스를 흡착할 수 있으며, 고감도 센싱이 가능하도록 한다. The metal nanoparticle layer 30 is positioned in a region where the first and second electrodes are spaced apart on the metal oxide layer 15 , and is dispersed and positioned as discontinuous metal nanoparticles on the metal oxide layer 15 . Specifically, the metal nanoparticles may exist as zero-dimensional particles or aggregates of zero-dimensional particles. In an embodiment, the metal nanoparticles may be formed of aggregates having an average radius of 0.5 to 1 nm. It is advantageous for the metal to be palladium in terms of hydrogen adsorption capacity, and such a metal nanoparticle layer 30 can adsorb a large amount of hydrogen gas as it has both conductivity and excellent hydrogen adsorption capacity, and enables high-sensitivity sensing.
금속 나노입자층(30)의 두께는 수소 흡착이 가능한 두께라면 한정되지 않으나, 바람직하게 팔라듐 나노입자층의 두께는 1 내지 5 nm, 구체적으로 2 내지 4 nm 일 수 있다. The thickness of the metal nanoparticle layer 30 is not limited as long as hydrogen adsorption is possible, but preferably, the thickness of the palladium nanoparticle layer may be 1 to 5 nm, specifically 2 to 4 nm.
상술한 바와 같이, 금속 나노입자층(30)의 금속이 팔라듐(팔라듐 나노입자층)이고, 금속산화물층(15)의 금속이 주석(주석산화물층)일 경우, 수소 가스 센서의 수소 흡착능에 있어서 매우 유리할 수 있다. 특히, 팔라듐 나노입자층이 특정영역, 즉, 금속산화물층(15) 상 제1전극 및 제2 전극이 이격된 영역에 위치함에 따라 높은 민감도로 수소가스 센싱이 가능하다. 팔라듐 나노입자는 상기 영역에서 불연속인 입자로 분산되어 있으며, 바람직하게, 팔라듐 나노입자는 제1전극과 제2전극이 이격된 영역의 주석산화물층 표면의 일부영역에만 분포되어, 제1전극과 제2전극이 이격된 영역의 주석산화물층 표면이 팔라듐 나노입자층이 위치하는 제1영역과, 팔라듐 나노입자층이 위치하지 않는 제2영역을 포함할 수 있다. As described above, when the metal of the metal nanoparticle layer 30 is palladium (palladium nanoparticle layer) and the metal of the metal oxide layer 15 is tin (tin oxide layer), it is very advantageous in the hydrogen adsorption capacity of the hydrogen gas sensor. can In particular, as the palladium nanoparticle layer is located in a specific region, that is, in a region where the first electrode and the second electrode on the metal oxide layer 15 are spaced apart, hydrogen gas sensing with high sensitivity is possible. The palladium nanoparticles are dispersed as discontinuous particles in the region, and preferably, the palladium nanoparticles are distributed only in a partial region of the surface of the tin oxide layer in the region where the first electrode and the second electrode are spaced apart, so that the first electrode and the second electrode are separated. The surface of the tin oxide layer in the region where the two electrodes are spaced apart may include a first region in which the palladium nanoparticle layer is positioned and a second region in which the palladium nanoparticle layer is not positioned.
상세하게, 팔라듐 나노입자가 위치하지 않고 외부로 노출된 주석산화물층의 상부 면적, 즉, 제2영역의 면적은 제1전극 및 제2전극에 의해 구획된 주석산화물층 표면의 총 면적 중 50% 내지 90%, 바람직하게는 60% 내지 80%일 수 있다. 상기와 같은 주석산화물층 및 팔라듐 나노입자층을 포함하는 수소 가스 센서는 고민감도 센싱뿐만 아니라, 다양한 환경조건 하에서도 수소센싱이 가능하다. 구체적으로, 수소 가스 센서는 -50℃ 내지 300℃ 온도 10 내지 80%의 습도 하에서도 고감도의 수소 센싱이 가능하다. In detail, the upper area of the tin oxide layer exposed to the outside without palladium nanoparticles, that is, the area of the second region is 50% of the total area of the surface of the tin oxide layer partitioned by the first electrode and the second electrode to 90%, preferably 60% to 80%. The hydrogen gas sensor including the tin oxide layer and the palladium nanoparticle layer as described above is capable of sensing hydrogen under various environmental conditions as well as high-sensitivity sensing. Specifically, the hydrogen gas sensor is capable of high-sensitivity hydrogen sensing even at a temperature of -50°C to 300°C and a humidity of 10 to 80%.
제1전극 및 제2전극은 전류 또는 저항의 변화를 측정하기 위한 것으로, 금속산화물층(15) 상에 서로 이격되어 위치한다. 일 예로, 구리, 알루미늄, 니켈, 티타늄, 은, 금, 백금 및 팔라듐 등을 들 수 있으나 이에 한정되는 것은 아니며, 일반적인 전극으로 사용되는 소재는 모두 사용 가능하다. 제1,2 전극의 각각 두께는 10㎚ 내지 200㎚ 구체적으로, 50㎚ 내지 150㎚일 수 있으나 이에 한정되지 않는다.The first electrode and the second electrode are for measuring a change in current or resistance, and are spaced apart from each other on the metal oxide layer 15 . As an example, copper, aluminum, nickel, titanium, silver, gold, platinum, palladium, etc. may be mentioned, but are not limited thereto, and any material used as a general electrode may be used. Each of the first and second electrodes may have a thickness of 10 nm to 200 nm, specifically, 50 nm to 150 nm, but is not limited thereto.
고분자층(50)은 수소 가스를 선택적으로 투과할 수 있도록 하여 더욱 고감도의 수소 가스 센싱이 가능하도록 한다. 나아가 고분자층(50)은 금속 나노입자의 이탈 방지 등 감지부를 보호하는 역할을 하여 장시간 동안 외부 노출 시 수분 등에 의해 수소 가스 민감도가 떨어지는 것을 방지한다. 즉, 고분자층(50)은 감지부의 민감도, 수소선택성, 물리적 및 화학적 안정성을 현저히 향상시킬 수 있다.The polymer layer 50 allows hydrogen gas to selectively permeate to enable more sensitive hydrogen gas sensing. Furthermore, the polymer layer 50 serves to protect the sensing unit, such as preventing separation of metal nanoparticles, and prevents a decrease in hydrogen gas sensitivity due to moisture or the like when exposed to the outside for a long time. That is, the polymer layer 50 can significantly improve the sensitivity, hydrogen selectivity, and physical and chemical stability of the sensing unit.
금속산화물층(15) 상에 고분자층(50)이 형성될 시, 외부로 노출된 금속산화물층(15)의 상부, 즉, 제2영역은 고분자층(50)과 직접 접촉될 수 있다. 이와 같은 수소 가스 센서는 수소 선택성을 더욱 높일 수 있다.When the polymer layer 50 is formed on the metal oxide layer 15 , the upper portion of the metal oxide layer 15 exposed to the outside, that is, the second region, may be in direct contact with the polymer layer 50 . Such a hydrogen gas sensor may further increase hydrogen selectivity.
고분자층(50)의 고분자는 아크릴레이트계 고분자 또는 비닐계 고분자일 수 있다. 구체적으로, 폴리메타크릴레이트(polymethacrylate), 폴리메틸아크릴레이트(polymethylacrylate), 폴리메틸메타크릴레이트(PMMA), 폴리에틸아크릴레이트(polyethylacrylate), 폴리에틸메타크릴레이트(polyethylmetacrylate), 폴리이미드(PI), 폴리스타이렌(PS) 또는 이들의 혼합물에서 하나 이상 선택되는 것일 수 있으나 이에 한정되진 않는다. The polymer of the polymer layer 50 may be an acrylate-based polymer or a vinyl-based polymer. Specifically, polymethacrylate, polymethylacrylate, polymethylmethacrylate (PMMA), polyethylacrylate, polyethylmethacrylate, polyimide (PI) , may be one or more selected from polystyrene (PS) or a mixture thereof, but is not limited thereto.
특히, 고분자층(50)의 고분자는 비다공질 폴리메틸메타크릴레이트(PMMA)층일 수 있다. 이와 같은 고분자층(50)은 수소 선택도를 매우 높여 더욱 더 신뢰도가 높은 수소 가스 센싱이 가능하도록 한다. 구체적으로, 비다공질 폴리메틸메타크릴레이트로 이루어진 고분자층(50)은 다공질 폴리메틸메타크릴레이트보다도 더욱 높은 수소 선택성을 가질 수 있어, 수소 가스 센싱에 있어 감도 및 신뢰성을 높일 수 있다.In particular, the polymer of the polymer layer 50 may be a non-porous polymethyl methacrylate (PMMA) layer. Such a polymer layer 50 increases the hydrogen selectivity so that more reliable hydrogen gas sensing is possible. Specifically, the polymer layer 50 made of non-porous polymethyl methacrylate may have higher hydrogen selectivity than that of porous polymethyl methacrylate, thereby increasing the sensitivity and reliability in sensing hydrogen gas.
다공성 색변환감지층(70)은 금속산화물, 금속나노입자 및 실리케이트를 함유하는 것으로, 수소 가스 센서의 최외층에 위치하여, 수소 가스에 노출 시 색변환되어 수소 가스 노출 여부를 육안으로 손쉽게 판단할 수 있도록 한다. 또한, 상술한 고분자층(50)과 더불어, 금속산화물층(15) 및 금속 나노입자층(30)으로 수소 가스를 선택적으로 투과시켜, 수소 가스 센서의 선택성을 더욱 높일 수 있으며, 고분자층(50)과 함께 수분 및 공기 등과 같은 외부 인자로부터 수소 가스 센서를 보호할 수 있다.The porous color conversion sensing layer 70 contains metal oxide, metal nanoparticles, and silicate, and is located in the outermost layer of the hydrogen gas sensor. make it possible In addition, in addition to the above-described polymer layer 50, hydrogen gas is selectively transmitted through the metal oxide layer 15 and the metal nanoparticle layer 30 to further increase the selectivity of the hydrogen gas sensor, and the polymer layer 50 Together with this, it is possible to protect the hydrogen gas sensor from external factors such as moisture and air.
구체적으로, 금속산화물(MOx)은 산화 재질정도에 따라 Ox가 O1 내지 O10에서 선택될 수 있으나 이에 한정되진 않는다. Specifically, in the metal oxide (MO x ), O x may be selected from O 1 to O 10 according to the degree of an oxide material, but is not limited thereto.
금속산화물의 금속은 아연(Zn), 타이타늄(Ti), 몰리브덴(Mo), 텅스텐(W))으로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다. 일 예로, 금속산화물은 텅스텐산화물(WO3)일 수 있다. 이와 같은 금속산화물은 후술할 금속 나노입자와 더불어 수소 가스에 대해 고감도로 변색할 수 있다. The metal of the metal oxide may be at least one selected from the group consisting of zinc (Zn), titanium (Ti), molybdenum (Mo), and tungsten (W). For example, the metal oxide may be tungsten oxide (WO 3 ). Such a metal oxide may be discolored with high sensitivity to hydrogen gas together with metal nanoparticles, which will be described later.
금속 나노입자는 금속산화물과 더불어 수소 가스에 대해 변색하는 것으로, 금속 나노입자의금속은 팔라듐인 것이 수소 가스 변색에 있어서 유리하다. 구체적으로, 상기 금속산화물이 텅스텐산화물이며, 금속 나노입자가 팔라듐 나노입자일 시, 텅스텐산화물 및 금속 나노입자는 상호 응집된 응집체를 형성하며, 수소 가스와 반응하는 변색 활성능이 높아 질 수 있다. 구체적으로, 텅스텐 산화물 및 금속 나노입자를 포함하는 다공성 색변환감지층(70)은 수소 노출 전 비교적 투명하나, 수소 노출 후 청색을 나타낼 수 있다. The metal nanoparticles change color with respect to hydrogen gas together with the metal oxide, and it is advantageous in hydrogen gas discoloration that the metal of the metal nanoparticles is palladium. Specifically, when the metal oxide is tungsten oxide and the metal nanoparticles are palladium nanoparticles, the tungsten oxide and the metal nanoparticles form an agglomerate that is mutually agglomerated, and the ability to change color by reacting with hydrogen gas may be increased. Specifically, the porous color conversion sensing layer 70 including tungsten oxide and metal nanoparticles is relatively transparent before exposure to hydrogen, but may exhibit a blue color after exposure to hydrogen.
실리케이트는 가교됨에 따라 다공성의 시트상을 형성하는 것으로, 다공성 색변환감지층(70) 전체영역에 있어서, 금속산화물 및 금속 나노입자와 이들의 응집체를 균일하게 분산시키되 안정적으로 고정 및 지지하는 역할을 할 수 있다. The silicate forms a porous sheet shape as it is crosslinked, and in the entire area of the porous color conversion sensing layer 70, the metal oxide and metal nanoparticles and their aggregates are uniformly dispersed, but stably fixed and supported. can do.
실리케이트는 3차원 다공성 구조체를 형성하는 것이면 한정되지 않으나, 바람직하게는 C1-4 알콕시실란계 화합물의 축합반응에 의해 제조된 것일 수 있다. 일 예로, 알콕시실란계 화합물은 테트라에틸 오르토실리케이트(Tetraethyl orthosilicate, TEOS)일 수 있다.The silicate is not limited as long as it forms a three-dimensional porous structure, but may preferably be prepared by a condensation reaction of a C1-4 alkoxysilane-based compound. For example, the alkoxysilane-based compound may be tetraethyl orthosilicate (TEOS).
다공성 색변환감지층(70)에 포함되는 금속산화물, 금속 나노입자 및 실리케이트의 함량은 수소 가스 센싱능을 나타낼 수 있는 것이라면, 구체적으로 한정되지 않는다. 구체적으로, 금속산화물 : 금속 나노입자 : 실리케이트의 중량비는 1 : 0.5~1.5 : 0.1~0.5 구체적으로, 1 : 0.7~1.2 :0.2~0.4일 수 있다. The content of the metal oxide, metal nanoparticles and silicate included in the porous color conversion sensing layer 70 is not specifically limited as long as it can exhibit hydrogen gas sensing ability. Specifically, the weight ratio of metal oxide: metal nanoparticles: silicate may be 1: 0.5 to 1.5: 0.1 to 0.5, specifically, 1: 0.7 to 1.2: 0.2 to 0.4.
본 발명의 일 실시예에 있어서, 다공성 색변환감지층(70)은 특히 텅스텐 산화물, 팔라듐 나노입자 및 실리케이트를 포함함에 따라, 수소 가스에 대한 높은 선택성 및 고민감도를 가짐과 동시에, 육안으로도 손쉽게 판단할 수 있을 만큼 높은 색변화도를 가질 수 있다. 나아가 이와 같은 다공성 색변환감지층(70)은 수소 가스 노출 시, 상온에서도 손쉽게 색변화되며, 수소 농도가 10%이하, 구체적으로, 5%이하, 더욱 구체적으로, 0.05 내지 4%의 저농도 수소 가스에도 육안으로 쉽게 판별가능한 색변화도, 즉, 시인성이 높아질 수 있다.In one embodiment of the present invention, the porous color conversion sensing layer 70 includes tungsten oxide, palladium nanoparticles and silicate, and at the same time has high selectivity and high sensitivity to hydrogen gas, and is easily viewed with the naked eye. The degree of color change may be high enough to be judged. Furthermore, when the porous color conversion sensing layer 70 is exposed to hydrogen gas, the color is easily changed even at room temperature, and the hydrogen concentration is 10% or less, specifically, 5% or less, more specifically, low-concentration hydrogen gas of 0.05 to 4%. Also, the degree of color change that can be easily discriminated by the naked eye, that is, the visibility may be increased.
상기한 본 발명의 수소 가스 센서를 통해 본 발명의 수소 가스를 검출하는 방법은 감지부에 검출 대상 가스를 노출시킨 전 후의 전류 또는 저항을 측정하여 이루어질 수 있음과 동시에, 육안으로 색변화를 감지하여 측정할 수 있다. 전류 또는 저항을 측정하는 경우, 수소 가스 센서의 드레인 전류(Ids(ref))를 측정하여 기준을 설정하는 단계; 제1,2전극 사이에 위치하는 감지부에 검출 대상 가스를 도입하는 단계; 검출 대상 가스가 도입되었을 때의 드레인 전류(Ids(detect))를 측정하는 검출 단계; 및 측정된 드레인 전류값을 이용하여 검출 가스의 농도를 분석하는 단계;를 포함할 수 있으며, 검출 대상 가스의 도입 전 후 변화된(증가된) 드레인 전류값을 기준으로 검출 가스를 검출할 수 있다. 이와 달리, 검출 대상 가스의 도입 전 후에 따라 변화된 드레인 전류값이 아닌, 변화된 저항값으로 검출 가스의 검출이 이루어질 수 있음은 물론이다. The method of detecting hydrogen gas of the present invention through the hydrogen gas sensor of the present invention can be made by measuring the current or resistance before and after exposing the detection target gas to the sensing unit, and at the same time, by detecting the color change with the naked eye, can be measured setting a reference by measuring the drain current Ids(ref) of the hydrogen gas sensor when measuring current or resistance; introducing a detection target gas to a sensing unit positioned between the first and second electrodes; a detection step of measuring a drain current Ids(detect) when a detection target gas is introduced; and analyzing the concentration of the detection gas using the measured drain current value, and the detection gas may be detected based on a drain current value changed (increased) before and after introduction of the detection target gas. Alternatively, it goes without saying that the detection of the detection gas may be performed with a changed resistance value instead of a changed drain current value before and after introduction of the detection target gas.
이처럼 육안으로 수소 가스 센서는 상술한 감지부를 포함함에 따라, 전기적 방식에 의한 수소 감지 및 기체변색 또는 광학적인 방식에 의한 수소 감지를 동시에 수행하여 수소 가스를 고감도로 신뢰성 높게 측정할 수 있다. As such, the hydrogen gas sensor with the naked eye can measure hydrogen gas with high sensitivity and reliability by simultaneously performing hydrogen detection by an electrical method and hydrogen detection by a gas discoloration or an optical method by including the above-described sensing unit.
이때, 수소 가스 센서의 작동(검출) 온도는 -50 내지 300 ℃, 구체적으로 -10 내지 200 ℃, 보다 구체적으로 4 내지 100 ℃ 범위일 수 있다.In this case, the operating (detection) temperature of the hydrogen gas sensor may be in the range of -50 to 300 °C, specifically -10 to 200 °C, and more specifically 4 to 100 °C.
이와 같은 수소 가스 검출 방법은 0.1 내지 100000 ppm, 구체적으로 1 내지 80000 ppm의 농도 범위를 가지는 수소 가스를 검출할 수 있다.Such a hydrogen gas detection method may detect hydrogen gas having a concentration range of 0.1 to 100000 ppm, specifically, 1 to 80000 ppm.
이하, 본 발명의 수소 가스 센서의 제조방법에 대해 상세히 설명한다.Hereinafter, a method for manufacturing a hydrogen gas sensor of the present invention will be described in detail.
a) 절연층 일면에 금속산화물층을 형성하는 단계; b) 상기 절연층과 접하지 않는 금속산화물층 일면에 서로 이격되는 제1전극과 제2전극을 형성하는 단계; c) 상기 제1전극과 제2전극이 이격된 영역에 1 내지 5nm 두께의 금속 나노입자층을 형성하는 단계; d) 상기 금속 나노입자층 상에 고분자층을 형성하는 단계; e) 금속산화물 및 금속 나노입자를 포함하는 제1용액과 및 C1-4 알콕시실란계 화합물을 포함하는 제2용액을 혼합하여 코팅액을 제조하는 단계; 및 f) 상기 코팅액을 상기 고분자층 상에 도포 및 건조하여 다공성 색변환감지층을 형성하는 단계;를 포함한다.a) forming a metal oxide layer on one surface of the insulating layer; b) forming a first electrode and a second electrode spaced apart from each other on one surface of the metal oxide layer not in contact with the insulating layer; c) forming a metal nanoparticle layer having a thickness of 1 to 5 nm in a region where the first electrode and the second electrode are spaced apart; d) forming a polymer layer on the metal nanoparticle layer; e) preparing a coating solution by mixing a first solution containing a metal oxide and metal nanoparticles and a second solution containing a C 1-4 alkoxysilane-based compound; and f) forming a porous color change sensing layer by applying and drying the coating solution on the polymer layer.
본 발명에서 a) 단계 이후, b) 단계 및 c) 단계가 순차적으로 수행될 수 있으나, 공정의 용이성에 따라a) 단계 이후, c) 단계 그 다음 b)단계가 수행될 수 있다.In the present invention, after step a), step b), and step c) may be sequentially performed, but depending on the ease of the process, step a), step c), and step b) may be performed.
상세하게, 절연층의 일면에 금속산화물층을 형성하는 단계(이하, a)단계)는 절연층에 금속 산화물의 전구체물질을 포함하는 전구체용액을 코팅시켜 수행될 수 있다. 구체적으로 금속 산화물은 주석 산화물일 수 있으며, 전구체 물질은 사용되는 용매에 용해가 되는 것이면 어떤 종류라도 가능하며, 클로라이드계열, 아세테이트 계열, 할로겐화물 등 특정 전구체에 제한을 두지 않으며 사용될 수 있다. 용매는 2-메톡시에탄올(2-mathoxyethanol), 이소프로판올(isopropanol), 디메틸포름아마이드(dimethylformamide), 에탄올(ethanol), 메탄올(methanol), 아세틸아세톤(acetylacetone) 및 디메틸아민보란(dimethylamineborane) 으로 이루어진 군에서 적어도 하나를 포함할 수 있다. 전구체용액 내 전구체 물질의 몰농도는 0.01M 내지 3M, 구체적으로 0.025M 내지 0.2M, 더욱 구체적으로 0.05 내지 0.15M일 수 있으나 이에 한정되진 않는다. In detail, the step of forming the metal oxide layer on one surface of the insulating layer (hereinafter, step a)) may be performed by coating the insulating layer with a precursor solution containing a precursor material of a metal oxide. Specifically, the metal oxide may be tin oxide, and the precursor material may be any type as long as it is soluble in the solvent used, and may be used without limiting specific precursors such as chloride-based, acetate-based, and halide. The solvent is 2-methoxyethanol (2-mathoxyethanol), isopropanol (isopropanol), dimethylformamide (dimethylformamide), ethanol (ethanol), methanol (methanol), acetylacetone (acetylacetone) and dimethylamine borane (dimethylamineborane) group may include at least one in The molar concentration of the precursor material in the precursor solution may be 0.01M to 3M, specifically 0.025M to 0.2M, and more specifically 0.05 to 0.15M, but is not limited thereto.
전구체 용액은 당업계에서 사용되는 용액 안정화제를 더 포함할 수 있다.The precursor solution may further include a solution stabilizer used in the art.
a)단계는 전구체 용액을 상술한 절연성을 가지는 기판위에 도포하여 전구체 박막을 형성한다. 전구체 용액은 스핀코팅, 잉크젯 프리팅, 딥코팅 등 당업계에 알려진 코팅 방법으로 도포될 수 있다. 이후, 기판의 전구체 박막에 열처리를 진행하여 금속산화물층을 형성한다.In step a), the precursor solution is applied on the substrate having the above-described insulating properties to form a precursor thin film. The precursor solution may be applied by a coating method known in the art, such as spin coating, inkjet printing, dip coating, and the like. Thereafter, heat treatment is performed on the precursor thin film of the substrate to form a metal oxide layer.
열처리는 200℃ 내지 500℃, 구체적으로 280℃ 내지 400℃에서 수행될 수 있으나 이에 한정되지 않으며, 온도를 상이하게 하여 1,2차로 나누어 수행될 수 있다. The heat treatment may be performed at 200° C. to 500° C., specifically, 280° C. to 400° C., but is not limited thereto, and may be performed by dividing the temperature into first and second order.
이와 달리, a)단계는 이온빔방법 등 당업계에 알려진 금속산화물층 형성방법이라면 제한되지 않고 수행이 가능할 수 있다.Alternatively, step a) may be performed without limitation, as long as it is a method for forming a metal oxide layer known in the art, such as an ion beam method.
이후, 금속산화물층 상에 서로 이격되는 제1전극과 제2전극을 형성하는 단계(이하, b)단계)를 수행한다.Thereafter, the step of forming the first electrode and the second electrode spaced apart from each other on the metal oxide layer (hereinafter, step b) is performed.
구체적으로, 먼저, a) 단계를 거쳐 금속산화물층이 형성된 기판에 제1전극 및 제2전극 형상 개구부를 갖는 섀도 마스크를 배치한다. 섀도 마스크는 개구부를 통해 증착용 재료들이 선택적으로 증착될 수 있도록 설계된 마스크로, 정밀한 형상의 전극부를 제조할 수 있다. 섀도 마스크는 메탈 섀도 마스크, PDMS 또는 PMMA와 같은 고분자 섀도 마스크 등을 사용할 수 있다.Specifically, first, a shadow mask having a first electrode and a second electrode-shaped opening is disposed on the substrate on which the metal oxide layer is formed through step a). The shadow mask is a mask designed so that deposition materials can be selectively deposited through the opening, and an electrode part having a precise shape can be manufactured. As the shadow mask, a metal shadow mask, a polymer shadow mask such as PDMS or PMMA, etc. may be used.
이어서, 섀도 마스크가 배치된 기판 상에 금속을 전자빔으로 증착하여, 금속산화물층 상에 제1전극 및 제2전극을 형성한다. 금속은 구리, 알루미늄, 니켈, 티타늄, 은, 금, 백금 및 팔라듐 등을 들 수 있으나 이에 한정되는 것은 아니다.Next, a metal is deposited by electron beam on the substrate on which the shadow mask is disposed to form the first electrode and the second electrode on the metal oxide layer. The metal may include, but is not limited to, copper, aluminum, nickel, titanium, silver, gold, platinum, and palladium.
그 다음, 제1전극과 제2전극이 이격된 영역에 금속 나노입자층을 형성하는 단계(이하, c) 단계)를 수행한다. Next, a step (hereinafter, step c) of forming a metal nanoparticle layer in a region where the first electrode and the second electrode are spaced apart is performed.
c)단계에서 금속 나노입자층은 팔라듐 나노입자층일 수 있으며, 금속 나노입자층은 클러스터 및 분산된 입자형태의 금속 나노입자가 증착되어 형성될 수 있다. 금속 나노입자의 증착은 물리적 또는 화학적 방법을 이용할 수 있으며, 바람직하게는 스퍼터링법, 열증착법, 전자빔증착법, 전기도금법, 금속 수용액을 샘플 표면에 뿌리는 형식 등으로 증착할 수 있지만, 반드시 이에 한정되는 것은 아니다.In step c), the metal nanoparticle layer may be a palladium nanoparticle layer, and the metal nanoparticle layer may be formed by depositing metal nanoparticles in the form of clusters and dispersed particles. Deposition of metal nanoparticles may use a physical or chemical method, preferably sputtering method, thermal evaporation method, electron beam evaporation method, electroplating method, may be deposited in the form of spraying an aqueous metal solution on the sample surface, but is not necessarily limited thereto it is not
본 발명의 일 양태에 있어서, c) 단계에서, 금속 나노입자층은 금속산화물층 표면의 일부영역에만 증착되어 형성될 수 있다. 이에, 제1전극 및 제2전극이 이격된 영역의 금속산화물층 표면이 금속 나노입자층이 위치하는 제1영역과, 금속 나노입자층이 위치하지 않아 외부로 노출된 제2영역으로 구분될 수 있으며, 더욱더 우수한 민감도를 가지는 수소 가스 센서의 제작이 가능하다.In one aspect of the present invention, in step c), the metal nanoparticle layer may be formed by depositing only a partial region of the surface of the metal oxide layer. Accordingly, the surface of the metal oxide layer in the area where the first electrode and the second electrode are spaced apart can be divided into a first area where the metal nanoparticle layer is located and a second area exposed to the outside because the metal nanoparticle layer is not located, It is possible to fabricate a hydrogen gas sensor with even better sensitivity.
또한, c) 단계에서, 금속 나노입자층은 1 내지 5㎚, 바람직하게는 2 내지 4㎚의 두께로 형성될 수 있다.In addition, in step c), the metal nanoparticle layer may be formed to a thickness of 1 to 5 nm, preferably 2 to 4 nm.
d) 단계는 제1전극, 제2전극 및 금속 나노입자층 상에 고분자층을 형성하는 단계이다.Step d) is a step of forming a polymer layer on the first electrode, the second electrode, and the metal nanoparticle layer.
d)단계에서 고분자층은 금속산화물층 및 금속 나노입자층 상에 액상의 고분자수지가 코팅되어 형성될 수 있다. 구체적으로 고분자수지는 아크릴레이트계 고분자 수지 또는 비닐계 고분자 수지일 수 있으나, 폴리메타크릴레이트 수지인 것이 유리하다. In step d), the polymer layer may be formed by coating a liquid polymer resin on the metal oxide layer and the metal nanoparticle layer. Specifically, the polymer resin may be an acrylate-based polymer resin or a vinyl-based polymer resin, but it is advantageous that the polymer resin is a polymethacrylate resin.
바람직하게 고분자 수지는 스핀코팅, 스프레이코팅, 나이프코팅, 롤 코팅을 통해 도포될 수 있으며, 이에 한정되지 않고 당업계에 알려진 다양한 방법으로 코팅될 수 있다. 고분자수지는 수지 종류에 따라 다양한 방법으로 경화될 수 있다. 비한정적인 일 구체예로 폴리메틸메타크릴레이트(PMMA) 수지의 경우 용매에 용해된 용액을 도포한 후, 용매를 증발시킴으로써 경화될 수 있다. 구체적으로, d)단계는 용매에 용해된 폴리메틸메타크릴레이트를 금속 나노입자층 상에 도포 및 건조하는 단계;를 포함하여 수행될 수 있다. 이때, 용매는 할로겐화 알콕시 벤젠 화합물일 수 있다. 할로겐은 염소, 플루오르 및 브롬일 수 있다. 일 예로, 할로겐화 알콕시 벤젠 화합물은 아니솔(CH₃OCH )일 수 있다. 이와 같은 용매를 통해 제조되는 고분자층은 비다공질 폴리메틸메타크릴레이트으로, 상술한 바와 같이, 수소 가스의 선택성을 매우 높일 수 있다. Preferably, the polymer resin may be applied through spin coating, spray coating, knife coating, or roll coating, but is not limited thereto, and may be coated by various methods known in the art. Polymer resins can be cured in various ways depending on the type of resin. As a non-limiting example, polymethyl methacrylate (PMMA) resin may be cured by applying a solution dissolved in a solvent and then evaporating the solvent. Specifically, step d) may be performed including; applying and drying polymethyl methacrylate dissolved in a solvent on the metal nanoparticle layer. In this case, the solvent may be a halogenated alkoxybenzene compound. Halogen can be chlorine, fluorine and bromine. For example, the halogenated alkoxybenzene compound may be anisole (CH₃OCH ). The polymer layer prepared through such a solvent is non-porous polymethyl methacrylate, and as described above, the selectivity of hydrogen gas can be very high.
e) 단계는 다공성 색변환감지층을 형성하기 위한 코팅액을 제조하는 단계로, 금속산화물 및 금속 나노입자를 포함하는 제1용액과 및 C1-4 알콕시실란계 화합물을 포함하는 제2용액을 혼합하여 코팅액을 제조한다. Step e) is a step of preparing a coating solution for forming a porous color conversion sensing layer, and a first solution containing a metal oxide and metal nanoparticles and a second solution containing a C 1-4 alkoxysilane-based compound are mixed to prepare a coating solution.
구체적으로, 제1용액은 용매에 금속산화물 및 금속 나노입자가 혼합된 졸일 수 있으며, 금속산화물 및 금속 나노입자와 이들의 응집체를 포함할 수 있다. 제1용액 내 금속 나노입자 : 금속산화물의 함량은 서로 균일하게 혼합될 수 있는 범위라면 한정되지 않는다. 다만, 제1용액 내 금속 나노입자 : 금속산화물의 금속의 몰비가 1 : 10 내지 100, 구체적으로, 1 : 20 내지 70인 범위에서, 제조된 다공성 색변환 감지층의 시인성이 더욱 우수할 수 있다. 제2용액은 C1-4 알콕시실란계 화합물 및 용매를 포함하는 것으로, C1-4 알콕시실란계 화합물은 테트라에틸 오르토실리케이트(tetraethyl orthosilicate, TEOS)일 수 있다. Specifically, the first solution may be a sol in which a metal oxide and metal nanoparticles are mixed in a solvent, and may include a metal oxide and metal nanoparticles and aggregates thereof. Metal nanoparticles in the first solution: The content of the metal oxide is not limited as long as it can be uniformly mixed with each other. However, in the first solution, the molar ratio of the metal nanoparticles: the metal of the metal oxide is 1: 10 to 100, specifically, in the range of 1: 20 to 70, the visibility of the prepared porous color conversion sensing layer may be more excellent. . The second solution includes a C1-4 alkoxysilane-based compound and a solvent, and the C1-4 alkoxysilane-based compound may be tetraethyl orthosilicate (TEOS).
제1용액 및 제2용액의 용매는 유기용매 및 유기용매를 함유하는 수용액일 수 있으며, 일 예로, 에탄올일 수 있다.The solvent of the first solution and the second solution may be an organic solvent and an aqueous solution containing the organic solvent, for example, ethanol.
제1용액 및 제2용액의 혼합비는 제조되는 다공성 색변환감지층에 요구되는 조건에 따라 적절히 조절될 수 있다. 구체적으로, e) 단계에서 혼합되는 제1용액 : 제2용액의 부피비는 1 : 0.01 내지 1, 구체적으로, 1: 0.1 내지 0.7일 수 있으나, 이에 한정되지 않는다. The mixing ratio of the first solution and the second solution may be appropriately adjusted according to the conditions required for the porous color conversion sensing layer to be prepared. Specifically, the volume ratio of the first solution to the second solution mixed in step e) may be 1: 0.01 to 1, specifically, 1: 0.1 to 0.7, but is not limited thereto.
f)단계는 e) 단계에서 제조된 코팅액을 고분자층 상에 도포 및 건조하여 다공성 색변환감지층을 형성하는 단계이다. 코팅액은 스핀코팅, 스프레이코팅, 나이프코팅, 롤 코팅 및 딥코팅을 통해 도포될 수 있으며, 이에 한정되지 않고 당업계에 알려진 다양한 방법으로 코팅될 수 있다. 또한 건조는 코팅액 내 포함된 용매를 증발시킴으로써 경화될 수 있다. Step f) is a step of forming a porous color change sensing layer by applying and drying the coating solution prepared in step e) on the polymer layer. The coating solution may be applied through spin coating, spray coating, knife coating, roll coating and dip coating, but is not limited thereto, and may be coated by various methods known in the art. In addition, drying may be cured by evaporating the solvent contained in the coating solution.
f) 단계는 코팅액이 고분자층에서 도포 및 건조됨에 따라 상기 C1-4 알콕시실란계 화합물이 축합반응되어 실리케이트로 전환될 수 있다. 이에, 3차원 가교 구조의 다공성 색변환감지층을 형성할 수 있으며, 금속산화물 및 금속 나노입자가 균일하게 혼합되고, 이들이 안정적으로 고정된 높은 시인성을 가지는 다공성 색변환감지층을 형성할 수 있다. In step f), as the coating solution is applied and dried in the polymer layer, the C 1-4 alkoxysilane-based compound may be condensed and converted into silicate. Accordingly, it is possible to form a porous color conversion sensing layer having a three-dimensional cross-linked structure, and a porous color conversion sensing layer having high visibility in which metal oxide and metal nanoparticles are uniformly mixed, and stably fixed thereto can be formed.
(제조예 )_다공성 색변환감지층 제조(Production Example)_Porous Color Conversion Sensing Layer Manufacture
먼저, 20㎖ 에탄올에 텅스텐(W) 파우더 : 30% 과산화수소(H202)를 1 : 3 몰비로 투입한 후, 2시간 동안 교반하여 원심분리하였다. 상층액을 분리하여 3시간 동안 80℃에서 가열한 후, 에탄올을 첨가하여 0.3 M의 WO3 전구체졸을 얻었다. 이후, 팔라듐 : 텅스텐의 몰비가 1:50이 되도록 염화팔라듐(PdCl2)을 WO3 전구체졸에 투입하여, 제1용액을 제조하였다. First, tungsten (W) powder: 30% hydrogen peroxide (H 2 0 2 ) in 20 ml of ethanol was added in a molar ratio of 1: 3, followed by stirring for 2 hours and centrifugation. The supernatant was separated and heated at 80° C. for 3 hours, and then ethanol was added to obtain a 0.3 M WO 3 precursor sol. Then, palladium chloride (PdCl 2 ) was added to the WO 3 precursor sol so that the molar ratio of palladium: tungsten was 1:50 to prepare a first solution.
테트라에틸 오르토실리케이트(tetraethyl orthosilicate, TEOS, 208.33, AR) : 암모니아수(NH4OH) : 99% 에탄올 수용액을 1: 2: 40 몰비로 혼합한 혼합물을 1시간동안 교반하였다. 이후, 혼합물의 수소이온농도지수(pH)가 중성(pH7)이 되도록 회전증발농축기를 통해 혼합물 내 암모니아수를 제거하였다. 중성화된 혼합물을 에탄올을 통해 0.4M농도로 희석한 후, 제2용액을 제조하였다.A mixture of tetraethyl orthosilicate (TEOS, 208.33, AR): aqueous ammonia (NH 4 OH): 99% aqueous ethanol solution in a molar ratio of 1: 2: 40 was stirred for 1 hour. Thereafter, ammonia water in the mixture was removed through a rotary evaporator so that the hydrogen ion concentration index (pH) of the mixture became neutral (pH7). After the neutralized mixture was diluted with ethanol to a concentration of 0.4M, a second solution was prepared.
상기 제조된 제1용액 : 제2용액을 부피비 1 : 0.3으로 혼합하여 코팅액을 제조하였다. A coating solution was prepared by mixing the prepared first solution: second solution in a volume ratio of 1:0.3.
(실시예 1) (Example 1)
세척된 silicon wafer 기판(두께 : 500-550um, 비저항 : <0.005 ohm, SiO2두께 : 3000A (Dry))에 액상의 폴리이미드(polyimide,PI) 수지를 스핀코팅(1000rpm, 30초)한 후, 단계별로 온도를 높여가며 베이킹하여 유연기판을 제조하였다. 각 단계는 60, 80, 150, 230 및 300℃ 온도로 수행되었으며, 각 단계는 30분간 진행되었으나, 마지막 300℃ 온도는 1시간동안 수행되었다.After spin-coating (1000rpm, 30 seconds) liquid polyimide (PI) resin on the cleaned silicon wafer substrate (thickness: 500-550um, resistivity: <0.005 ohm, SiO 2 thickness: 3000A (Dry)), A flexible substrate was manufactured by baking while increasing the temperature step by step. Each step was performed at a temperature of 60, 80, 150, 230 and 300°C, each step was performed for 30 minutes, but the last 300°C temperature was performed for 1 hour.
제조된 유연기판 상에 2-methoxyethanol을 용매로 한 0.1M SnCl2 용액을 스핀코팅 진행 (3,000rpm, 60초) 후 400℃ 에서 1시간동안 어닐링하여 SnO2층을 형성하였다. 그 다음, 섀도 마스크를 통해 Al을 두께 90nm, 너비 1000㎛로 증착하여 제1,2전극을 형성하였다. 이때, 제1,2전극의 이격거리는 200㎛였다. 그 다음 평균 3㎚ 두께를 갖도록 Pd을 thermal evaporator 이용하여 0.1Å/s의 속도로 증착하였다. 이후, 4mg/ml의 PMMA(용매 아니솔)를 1차 스핀코팅 (500rpm, 5초)한 후, 2차 스핀코팅(4000rpm, 30초)한 다음 175℃에서 10분간 열처리하여 PMMA층을 형성였다. On the prepared flexible substrate, a 0.1M SnCl 2 solution using 2-methoxyethanol as a solvent was spin-coated (3,000 rpm, 60 seconds) and annealed at 400° C. for 1 hour to form a SnO 2 layer. Then, Al was deposited to a thickness of 90 nm and a width of 1000 μm through a shadow mask to form first and second electrodes. In this case, the separation distance between the first and second electrodes was 200 μm. Then, Pd was deposited at a rate of 0.1 Å/s using a thermal evaporator to have an average thickness of 3 nm. After that, 4 mg/ml of PMMA (solvent anisole) was first spin-coated (500 rpm, 5 sec), and then a second spin-coating (4000 rpm, 30 sec) was performed and then heat-treated at 175° C. for 10 minutes to form a PMMA layer. .
제조된 PMMA층의 주사전자현미경 이미지를 확인하여 도 3에 도시하였다.The scanning electron microscope image of the prepared PMMA layer was confirmed and shown in FIG. 3 .
최종적으로, 형성된 PMMA층 상에 제조예에서 제조한 코팅액을 스핀코팅(800rpm,120초)한 다음 50℃에서 1시간동안 열처리하여 수소 가스 센서를 제조하였다.Finally, the coating solution prepared in Preparation Example was spin-coated (800 rpm, 120 seconds) on the formed PMMA layer, and then heat-treated at 50° C. for 1 hour to prepare a hydrogen gas sensor.
(실시예 2 내지 5) (Examples 2 to 5)
실시예 1에 있어서, PMMA의 용매를 아니솔 대신 각각 아세톤(실시예 2_Acetone), 테트라하이드로퓨란(실시예 3_THF), 디메틸포름아마이드(실시예 4_DMF) 및 클로로벤젠(실시예 5_CB)을 사용한 것을 제외하고, 실시예 1(Anisole)과 동일한 방법으로 수소 가스 센서를 제조하였다.In Example 1, the solvent of PMMA was acetone (Example 2_Acetone), tetrahydrofuran (Example 3_THF), dimethylformamide (Example 4_DMF) and chlorobenzene (Example 5_CB) instead of anisole, respectively, except that and a hydrogen gas sensor was manufactured in the same manner as in Example 1 (Anisole).
(실험예 1) 검지테스트 (Experimental Example 1) Detection test
가스 검지 특성은 MFC 시스템이 있는 MSTECH 프로브 스테이션의 반도체 매개변수 분석기 (B15000A, Agilent)를 사용하여 측정하였다. 수소 가스 센서는 가스 튜브 아래 약 1cm 거리에 위치시키고, 요구되는 농도의 가스에 직접적으로 노출시켰다. 수소가스 검지 테스트는 상온에서 진행하였다. MFC를 이용해서 H2 gas (100ppm, 1%, 10% in N2) 와 dry air를 혼합하여 원하는 농도의 수소 가스 제작하였다. 검지 특성은 수소 가스에 노출되기 전과 후의 수소 가스 센서의 색변화 및 전류비교 통해 나타내었다. Gas detection characteristics were measured using a semiconductor parameter analyzer (B15000A, Agilent) of a MSTECH probe station with an MFC system. The hydrogen gas sensor was placed about 1 cm below the gas tube and directly exposed to the gas of the required concentration. The hydrogen gas detection test was conducted at room temperature. Using MFC, H2 gas (100ppm, 1%, 10% in N2) and dry air were mixed to produce hydrogen gas of the desired concentration. The detection characteristics were shown by comparing the color change and current of the hydrogen gas sensor before and after exposure to hydrogen gas.
도 3을 참조하면, 실시예 1 내지 5의 PMMA층 표면의 비교 사진(SEM이미지)이 도시되어 있다. 도 3을 참조하면, 실시예 1의 경우 비다공질임을 확인할 수 있었다.Referring to FIG. 3, comparative photos (SEM images) of the surface of the PMMA layer of Examples 1 to 5 are shown. Referring to FIG. 3 , it was confirmed that Example 1 was non-porous.
도 4는 실시예 1에 따른 수소 가스 센서의 검지테스트 결과를 육안으로 비교한 사진이다. 구체적으로, 도 4a)는 검지테스트 전, 도 4b)는 검지테스트 결과 후가 도시되어 있다. 도 4를 참조하면, 수소 가스 센서는 수소 가스에 노출되기 전 비교적 높은 광투과성을 가지나, 수소가스에 노출된 후 청색을 나타내며, 매우 높은 시인성으로 수소 가스 검지가 가능함을 확인할 수 있었다. 특히, 반응 시간이 20초 미만으로 종래 대비 매우 빠른 시간 내에 수소 가스의 검지가 가능함을 확인할 수 있었다.4 is a photograph comparing the detection test results of the hydrogen gas sensor according to Example 1 with the naked eye. Specifically, FIG. 4a) shows before the detection test, and FIG. 4b) shows after the detection test result. Referring to FIG. 4 , the hydrogen gas sensor has relatively high light transmittance before exposure to hydrogen gas, but shows a blue color after exposure to hydrogen gas, and it can be confirmed that hydrogen gas detection is possible with very high visibility. In particular, it was confirmed that the reaction time was less than 20 seconds, so that it was possible to detect hydrogen gas within a very fast time compared to the prior art.
도 5는 실시예 1에 따른 수소 가스 센서의 수소 가스 농도별 검지테스트(전류변화)를 나타내는 그래프이다. 구체적으로 도 5를 참조하면, 저농도에서 고농도까지 수소 센싱이 가능하여 센싱범위가 매우 넓음을 확인 할 수 있었다. 5 is a graph showing a detection test (current change) for each hydrogen gas concentration of the hydrogen gas sensor according to Example 1. FIG. Specifically, referring to FIG. 5 , it was confirmed that hydrogen sensing was possible from a low concentration to a high concentration, so that the sensing range was very wide.
도 6은 실시예 1에 따른 수소 가스 센서의 수소 가스 반복 감응 테스트 결과 그래프가 도시되어 있다. 수소 가스 반복 감응 테스트는 0.5%(도 6a) 및 1%(도 6b) 및 4%(도 6c) 농도의 수소가스를 5회간 실험예의 방법으로 측정한 것이다. 6 is a graph showing the hydrogen gas repeated sensitivity test result of the hydrogen gas sensor according to Example 1. Referring to FIG. The hydrogen gas repeated sensitization test was performed by measuring hydrogen gas at concentrations of 0.5% (FIG. 6a) and 1% (FIG. 6b) and 4% (FIG. 6c) by the method of Experimental Example 5 times.
도 6을 참조하면, 실시예 1에 따른 수소 가스 센서의 반복적인 수소 센서 측정 시, 센싱 민감도가 저하되지 않으며, 고감도로 감도가 유지됨을 확인할 수 있었다. 구체적으로, 도 6의 투과율 (transmittance, %) 변화그래프를 살펴보면 반복 측정에도 고감도로 색변환를 통한 수소 감지가 가능하며, 전류비교(Response, Ig/Ia) 그래프를 통해, 전기적 반응을 통한 고감도 수소 센싱 역시 가능함을 확인할 수 있었다.Referring to FIG. 6 , it was confirmed that, when the hydrogen sensor was repeatedly measured with the hydrogen gas sensor according to Example 1, the sensing sensitivity was not lowered and the sensitivity was maintained with high sensitivity. Specifically, if you look at the transmittance (%) change graph of FIG. 6 , it is possible to detect hydrogen through color conversion with high sensitivity even for repeated measurements, and through the current comparison (Response, I g /I a ) graph, high sensitivity through electrical reaction It was confirmed that hydrogen sensing is also possible.
도 7은 실시예 1 내지 5에 따른 수소 가스 센서의 검지테스트 비교 결과 그래프이다. 구체적으로 1000ppm의 수소 가스를 각 수소 가스 센서에 노출시켜 검지테스트를 하였다.7 is a graph showing a comparison result of a detection test of a hydrogen gas sensor according to Examples 1 to 5; Specifically, a detection test was performed by exposing 1000 ppm of hydrogen gas to each hydrogen gas sensor.
도 7을 참조하면, 비다공질인 실시예 1의 경우, 동일한 농도의 수소 가스를 공급했음에도 불구하고 매우 고감도로 수소 가스의 센싱이 가능함을 확인할 수 있었다.Referring to FIG. 7 , in the case of Example 1, which is non-porous, it was confirmed that hydrogen gas was sensed with very high sensitivity despite supply of hydrogen gas of the same concentration.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, the present invention has been described with specific matters and limited examples and drawings, but these are only provided to help a more general understanding of the present invention, and the present invention is not limited to the above embodiments, and the present invention is not limited to the above embodiments. Various modifications and variations are possible from these descriptions by those of ordinary skill in the art.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다. Therefore, the spirit of the present invention should not be limited to the described embodiments, and not only the claims described below, but also all those with equivalent or equivalent modifications to the claims will be said to belong to the scope of the spirit of the present invention. .

Claims (16)

  1. 금속산화물층;metal oxide layer;
    상기 금속산화물층 상 서로 이격 위치하는 제1전극과 제2전극; a first electrode and a second electrode spaced apart from each other on the metal oxide layer;
    상기 제1전극과 제2전극이 이격된 영역에 위치하는 금속 나노입자층; a metal nanoparticle layer positioned in a region where the first electrode and the second electrode are spaced apart;
    상기 금속 나노입자층 상에 위치하는 고분자층; 및a polymer layer positioned on the metal nanoparticle layer; and
    상기 고분자층 상에 위치하며, 금속산화물, 금속 나노입자 및 실리케이트를 함유하는 다공성 색변환감지층;을 포함하는 수소 가스 센서.A hydrogen gas sensor comprising a; located on the polymer layer, a porous color conversion sensing layer containing a metal oxide, metal nanoparticles and silicate.
  2. 제1항에 있어서, According to claim 1,
    상기 다공성 색변환감지층의 상기 금속산화물의 금속은 아연(Zn), 타이타늄(Ti), 몰리브덴(Mo), 텅스텐(W))으로 이루어진 군으로부터 선택되는 어느 하나 이상인, 수소 가스 센서.The metal of the metal oxide of the porous color conversion sensing layer is at least one selected from the group consisting of zinc (Zn), titanium (Ti), molybdenum (Mo), and tungsten (W)), a hydrogen gas sensor.
  3. 제1항에 있어서,According to claim 1,
    상기 다공성 색변환감지층의 상기 금속나노입자의 금속은 팔라듐인, 수소 가스 센서.The metal of the metal nanoparticles of the porous color conversion sensing layer is palladium, a hydrogen gas sensor.
  4. 제1항에 있어서,According to claim 1,
    상기 실리케이트는 C1-4 알콕시실란계 화합물의 축합반응에 의해 제조된 것인, 수소 가스 센서.The silicate is produced by the condensation reaction of a C 1-4 alkoxysilane-based compound, a hydrogen gas sensor.
  5. 제1항에 있어서,The method of claim 1,
    상기 다공성 색변환감지층에 포함되는 상기 금속산화물 : 상기 금속 나노입자 : 상기 실리케이트의 중량비는 1 : 0.5~1.5 : 0.1~0.5인, 수소 가스 센서.The weight ratio of the metal oxide included in the porous color conversion sensing layer: the metal nanoparticles: the silicate is 1: 0.5 to 1.5: 0.1 to 0.5, a hydrogen gas sensor.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 제1전극과 제2전극이 이격된 영역의 상기 금속산화물층 표면은 상기 금속 나노입자층이 위치하는 제1영역과, 금속 나노입자층이 위치하지 않는 제2영역을 포함하는, 수소 가스 센서The surface of the metal oxide layer in the region where the first electrode and the second electrode are spaced apart includes a first region in which the metal nanoparticle layer is located and a second region in which the metal nanoparticle layer is not located, a hydrogen gas sensor
  7. 제6항에 있어서,7. The method of claim 6,
    상기 제2영역의 면적은 상기 제1전극 및 제2전극에 의해 구획된 상기 금속산화물층 표면의 총 면적 중 50 % 내지 90%인, 수소 가스 센서.The area of the second region is 50% to 90% of the total area of the surface of the metal oxide layer partitioned by the first electrode and the second electrode, the hydrogen gas sensor.
  8. 제1항에 있어서,The method of claim 1,
    상기 고분자층의 고분자는 아크릴레이트계 고분자인, 수소 가스 센서.The polymer of the polymer layer is an acrylate-based polymer, a hydrogen gas sensor.
  9. 제1항에 있어서,The method of claim 1,
    상기 고분자층의 고분자는 비다공질 폴리메틸메타크릴레이트인, 수소 가스 센서.The polymer of the polymer layer is non-porous polymethyl methacrylate, a hydrogen gas sensor.
  10. 제1항에 있어서,According to claim 1,
    상기 금속산화물층은 유연기판 상에 위치하는, 수소 가스 센서.The metal oxide layer is located on a flexible substrate, a hydrogen gas sensor.
  11. 제1항에 있어서,The method of claim 1,
    상기 금속산화물층은 수축필름 상에 위치하는, 수소 가스 센서.The metal oxide layer is located on the shrink film, a hydrogen gas sensor.
  12. a) 절연층 일면에 금속산화물층을 형성하는 단계;a) forming a metal oxide layer on one surface of the insulating layer;
    b) 상기 절연층과 접하지 않는 금속산화물층 일면에 서로 이격되는 제1전극과 제2전극을 형성하는 단계; b) forming a first electrode and a second electrode spaced apart from each other on one surface of the metal oxide layer not in contact with the insulating layer;
    c) 상기 제1전극과 제2전극이 이격된 영역에 1 내지 5nm 두께의 금속 나노입자층을 형성하는 단계;c) forming a metal nanoparticle layer having a thickness of 1 to 5 nm in a region where the first electrode and the second electrode are spaced apart;
    d) 상기 금속 나노입자층 상에 고분자층을 형성하는 단계; d) forming a polymer layer on the metal nanoparticle layer;
    e) 금속산화물 및 금속 나노입자를 포함하는 제1용액과 및 C1-4 알콕시실란계 화합물을 포함하는 제2용액을 혼합하여 코팅액을 제조하는 단계; 및 e) preparing a coating solution by mixing a first solution containing a metal oxide and metal nanoparticles and a second solution containing a C 1-4 alkoxysilane-based compound; and
    f) 상기 코팅액을 상기 고분자층 상에 도포 및 건조하여 다공성 색변환감지층을 형성하는 단계;를 포함하는 수소 가스 센서의 제조방법.f) forming a porous color conversion sensing layer by applying and drying the coating solution on the polymer layer;
  13. 제12항에 있어서,13. The method of claim 12,
    상기 f) 단계는 상기 C1-4 알콕시실란계 화합물이 축합반응되어 실리케이트로 전환된는, 수소 가스 센서의 제조방법.In step f), the C 1-4 alkoxysilane-based compound is condensed and converted into silicate, a method of manufacturing a hydrogen gas sensor.
  14. 제12항에 있어서,13. The method of claim 12,
    상기 c) 단계에서, 상기 금속 나노입자층은 상기 금속산화물층 표면의 일부영역에 증착되어 형성되는, 수소 가스 센서의 제조방법.In step c), the metal nanoparticle layer is formed by depositing on a partial region of the surface of the metal oxide layer, a method of manufacturing a hydrogen gas sensor.
  15. 제12항에 있어서,13. The method of claim 12,
    상기 d) 단계는 용매에 용해된 폴리메틸메타크릴레이트를 상기 금속 나노입자층 상에 도포 및 건조하는 단계를 포함하는, 수소 가스 센서의 제조방법.The step d) comprises applying and drying polymethylmethacrylate dissolved in a solvent on the metal nanoparticle layer.
  16. 제15항에 있어서,16. The method of claim 15,
    상기 d1) 단계에서,In step d1),
    상기 용매는 할로겐화 알콕시 벤젠 화합물인, 수소 가스 센서의 제조방법.The solvent is a halogenated alkoxybenzene compound, a method of manufacturing a hydrogen gas sensor.
PCT/KR2022/004660 2021-03-31 2022-03-31 Hydrogen gas sensor and method for manufacturing same WO2022211554A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0042368 2021-03-31
KR20210042368 2021-03-31
KR1020210178524A KR102627784B1 (en) 2021-03-31 2021-12-14 Hydrogen gas sensor and Method for manufacturing thereof
KR10-2021-0178524 2021-12-14

Publications (1)

Publication Number Publication Date
WO2022211554A1 true WO2022211554A1 (en) 2022-10-06

Family

ID=83456560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004660 WO2022211554A1 (en) 2021-03-31 2022-03-31 Hydrogen gas sensor and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2022211554A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003055B1 (en) * 2008-02-27 2011-08-23 University Of Central Florida Research Foundation, Inc. Visual hydrogen detector with variable reversibility
KR101445590B1 (en) * 2012-05-08 2014-10-02 연세대학교 산학협력단 Hydrogen Sensor and Method for Manufacturing the same
US20170284953A1 (en) * 2007-04-18 2017-10-05 The Research Foundation Of State University Of New York Flexible multi-moduled nanoparticle-structured sensor array on polymer substrate and methods for manufacture
KR102087113B1 (en) * 2018-04-30 2020-03-10 재단법인대구경북과학기술원 Hydrogen-sensing composite particles and method for manufacturing the same
KR102190147B1 (en) * 2018-04-20 2020-12-11 광주과학기술원 Hydrogen gas sensor and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170284953A1 (en) * 2007-04-18 2017-10-05 The Research Foundation Of State University Of New York Flexible multi-moduled nanoparticle-structured sensor array on polymer substrate and methods for manufacture
US8003055B1 (en) * 2008-02-27 2011-08-23 University Of Central Florida Research Foundation, Inc. Visual hydrogen detector with variable reversibility
KR101445590B1 (en) * 2012-05-08 2014-10-02 연세대학교 산학협력단 Hydrogen Sensor and Method for Manufacturing the same
KR102190147B1 (en) * 2018-04-20 2020-12-11 광주과학기술원 Hydrogen gas sensor and method for manufacturing the same
KR102087113B1 (en) * 2018-04-30 2020-03-10 재단법인대구경북과학기술원 Hydrogen-sensing composite particles and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR100224941B1 (en) Gas sensor
US10132768B2 (en) Gas sensor and method for manufacturing same
US5280183A (en) Microelectronic device employing multiring phthalocyanine compound
WO2010056049A2 (en) Humidity sensor of capacitance type and method of fabricating same
WO2018216952A1 (en) Method for preparing graphene-tin oxide nanocomposite, and graphene-tin oxide nanocomposite
KR20110105388A (en) Organic chemical sensor with microporous organosilicate material
WO2014133310A1 (en) Thermochemistry gas sensor using chalcogenide-based nanowires and method for manufacturing same
CN101248337A (en) Infrared sensor unit and its manufacturing method
WO2018079943A1 (en) Perovskite solar cell using diffusion barrier film and manufacturing method therefor
KR20080026058A (en) Organic thin-film transistor
Gao et al. Ultrasensitive flexible NO2 gas sensors via multilayer porous polymer film
WO2022211554A1 (en) Hydrogen gas sensor and method for manufacturing same
WO2012138054A9 (en) Humidity sensor, humidity-sensing method, and transistor for the humidity sensor
WO2020226232A1 (en) Organic electrochemical transistor device and manufacturing method for same
WO2019112121A1 (en) Method for producing photoresponsive automatic color change precursor and photoresponsive automatic color change element, and photoresponsive automatic color change element produced thereby
US4900817A (en) Multiring phthalocyanine compounds
WO2022211555A1 (en) Wrapping type gas sensor
WO2019098469A1 (en) Gas sensor comprising composite structure including graphene and metal particle bonded to each other and method for manufacturing same
WO2023140470A1 (en) Hydrogen gas sensor and manufacturing method therefor
WO2021221425A1 (en) Electrode structure and ph sensor including same
KR102627784B1 (en) Hydrogen gas sensor and Method for manufacturing thereof
WO1998041853A1 (en) Gas sensor
WO2022108428A1 (en) Hydrogen gas sensor
WO2020040361A1 (en) Thin film, formation method therefor, and perovskite solar cell comprising thin film
WO2022211540A1 (en) Sensor array for sensing hydrogen and hydrogen sensing system using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781673

Country of ref document: EP

Kind code of ref document: A1