WO2022198392A1 - 拍摄设备的控制方法、拍摄设备、电子设备及介质 - Google Patents

拍摄设备的控制方法、拍摄设备、电子设备及介质 Download PDF

Info

Publication number
WO2022198392A1
WO2022198392A1 PCT/CN2021/082118 CN2021082118W WO2022198392A1 WO 2022198392 A1 WO2022198392 A1 WO 2022198392A1 CN 2021082118 W CN2021082118 W CN 2021082118W WO 2022198392 A1 WO2022198392 A1 WO 2022198392A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaking
image acquisition
parameter information
motion mechanism
acquisition device
Prior art date
Application number
PCT/CN2021/082118
Other languages
English (en)
French (fr)
Inventor
王泽森
翁松伟
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/082118 priority Critical patent/WO2022198392A1/zh
Publication of WO2022198392A1 publication Critical patent/WO2022198392A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present application relates to the technical field of electronic devices, and in particular, to a control method of a photographing device, a photographing device, an electronic device, and a medium.
  • the embodiments of the present application provide a control method of a photographing device, a photographing device, an electronic device, and a medium.
  • an embodiment of the present application provides a method for controlling a photographing device.
  • the photographing device includes an image acquisition device and a motion mechanism, and the motion mechanism is used to drive the image acquisition device to move, and the method includes:
  • the motion mechanism is controlled to drive the image acquisition device to reciprocate in a preset axial direction to simulate shaking.
  • an embodiment of the present application further provides a photographing device, where the photographing device includes an image acquisition device, a motion mechanism, and a processor;
  • the motion mechanism is used to drive the image acquisition device to move
  • the processor is used to obtain the shaking simulation information; according to the shaking simulation information, the motion mechanism is controlled to drive the image acquisition device to reciprocate in a preset axial direction to simulate shaking.
  • embodiments of the present application further provide an electronic device, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor, where the computer program is executed by the processor When the control method of the above-mentioned photographing device is realized.
  • embodiments of the present application further provide a computer-readable storage medium, where instructions are stored on the computer-readable storage medium, and when the instructions are run on a computer, the computer is made to execute the above-mentioned method.
  • the control method of the photographing equipment
  • the photographing device can obtain the shaking simulation information; according to the shaking simulation information, the motion mechanism is controlled to drive the image acquisition device to reciprocate in the preset axial direction to simulate shaking.
  • the image acquisition device can be enabled to acquire moving pictures, so as to meet the needs of shooting moving pictures.
  • FIG. 1 is a flowchart of a method for controlling a photographing device provided by an embodiment of the present application
  • FIG. 2 is a flowchart of another method for controlling a photographing device provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a photographing device in an embodiment of the present application.
  • FIG. 4 is a flowchart of another method for controlling a photographing device provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a gimbal simulating jitter in a normal breathing simulation mode according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a gimbal simulating shaking in a severe breathing simulation mode according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of simulating shaking of a pan/tilt in a firearm simulation mode according to an embodiment of the present application
  • FIG. 8 is a schematic diagram of simulating shaking of a pan/tilt in a riding simulation mode according to an embodiment of the present application
  • FIG. 9 is a schematic diagram of a gimbal simulating jitter in an automobile simulation mode according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a kind of gimbal simulating shaking in a train simulation mode according to an embodiment of the present application
  • FIG. 11 is a schematic diagram of a gimbal simulating jitter in an aircraft simulation mode according to an embodiment of the present application
  • FIG. 12 is a schematic diagram of a gimbal simulating shaking in a walking simulation mode according to an embodiment of the present application
  • FIG. 13 is a schematic diagram of a gimbal simulating shaking in a running simulation mode according to an embodiment of the present application
  • Fig. 14 is a schematic diagram of simulating jitter of a pan/tilt in a special state simulation mode according to an embodiment of the present application
  • FIG. 15 is a block diagram of a photographing device provided by an embodiment of the present application.
  • Existing shooting equipment usually uses electronic stabilizers to increase stability, but the images that are too stable are not suitable for expressing specific scenes. For example, a slightly shaken picture is more conducive to expressing emotions and enhancing immersion.
  • the photographing device may include a motion mechanism and an image acquisition device
  • the motion mechanism itself may be a device used to control the image acquisition device to maintain stability during shooting
  • the motion mechanism may include respectively controlling the image acquisition device in different axial directions Moving parts, each axial movement can be independent of each other.
  • the motion mechanism of the photographing device may be used to drive the image acquisition device to perform a reciprocating motion to simulate shaking.
  • the photographing device includes an image acquisition device and a motion mechanism, and the motion mechanism is used to drive the image acquisition device to move.
  • the method may specifically include:
  • the shaking simulation information is information used to control the photographing device to simulate shaking.
  • the photographing device can achieve multiple effects of simulating shaking, and different effects can be achieved through different shaking simulation information.
  • the user can set the shaking simulation information on the shooting device.
  • the photographing device may be a pan/tilt supporting multi-axis movement
  • the image capturing device may be a camera
  • the moving mechanism may include components that control the movement of the image capturing device in multiple axes.
  • the movement mechanism of the pan/tilt may include components that respectively control the movement of the image capture device on the Roll axis, Yaw axis, and Pitch axis.
  • the photographing device may be a camera that supports IBIS (In Body Image Stabilization), for example, may be a camera that supports five-axis image stabilization, and the five axes may respectively include: a pitch axis (Pitch) , Yaw axis (Yaw), Roll axis (Roll), Horizontal axis (X), Vertical axis (Y).
  • the motion mechanism may include components for achieving body shake reduction in each axis.
  • control the motion mechanism to drive the image acquisition device to reciprocate in a preset axial direction to simulate shaking.
  • Reciprocating motion can refer to moving back and forth in an axis.
  • the motion mechanism can be controlled to drive the image acquisition device to reciprocate in certain axial directions to simulate shaking according to the shaking simulation information.
  • the photographing device can obtain the shaking simulation information; according to the shaking simulation information, the motion mechanism is controlled to drive the image acquisition device to reciprocate in the preset axial direction to simulate shaking.
  • the image acquisition device can be enabled to acquire moving pictures, so as to meet the needs of shooting moving pictures.
  • the embodiment of the present application Compared with the prior art in which the photographer controls the screen by his own shaking, the embodiment of the present application has stronger controllability and repeatability by simulating the shaking, and has higher experience and technical requirements for the photographer. Lower, further lowering the entry threshold for photography.
  • the embodiment of the present application does not cause loss of image quality by simulating jitter, and reduces the pressure in the later stage, and also has wider application scenarios.
  • the photographing device includes an image acquisition device and a motion mechanism, and the motion mechanism is used to drive the image acquisition device. Movement, the method may specifically include:
  • the motion mechanism can drive the image capture device to move in a preset axial direction, and by simulating jitter in different axial directions, the photographing device can simulate various jitter effects.
  • Axial parameter information can indicate the axis for which jitter needs to be simulated.
  • FIG. 3 is a schematic diagram of a photographing device in an embodiment of the present application, wherein the photographing device may be a pan/tilt supporting four-axis movement, and the motion mechanism may include driving the image acquisition device in the pitch axis (Pitch), the swing axis ( Yaw), rolling axis (Roll), vertical axis (Z) movement of structural components.
  • the photographing device may be a pan/tilt supporting four-axis movement
  • the motion mechanism may include driving the image acquisition device in the pitch axis (Pitch), the swing axis ( Yaw), rolling axis (Roll), vertical axis (Z) movement of structural components.
  • the Z axis and the Yaw axis may be determined as the target axis.
  • the dither simulation information may also include reference information for adjusting the dither effect.
  • the jitter simulation information may further include at least one of the following: range parameter information, speed parameter information, number of times parameter information, and interval parameter information.
  • the step 203 may include: controlling the motion of the motion mechanism when driving the image acquisition device to reciprocate on the target axis according to the range parameter information scope.
  • the range parameter information can indicate the range of motion when the motion mechanism drives the image acquisition device to reciprocate in the direction of the target axis.
  • the corresponding target motion range can be determined according to the range parameter information, and the motion mechanism is controlled to drive the image acquisition device to reciprocate along the target axis according to the target motion range.
  • the larger the motion range the larger the shaking amplitude of the image acquisition device.
  • the dynamic range of motion can be set in the range parameter information, and the range of motion for each reciprocating motion can be set individually or collectively. For example, the range of motion for each reciprocation can be successively increased or decreased.
  • the step 203 may include: according to the speed parameter information, controlling the motion of the motion mechanism when driving the image acquisition device to reciprocate on the target axis speed.
  • the speed parameter information can indicate the moving speed when the moving mechanism drives the image acquisition device to reciprocate on the target axis.
  • the corresponding target motion speed can be determined according to the speed parameter information, and the motion mechanism is controlled to drive the image acquisition device to reciprocate along the target axis at the target motion speed.
  • the greater the movement speed the greater the shaking frequency of the image acquisition device.
  • Dynamically changing motion speed can be set in the speed parameter information, and the motion speed of each reciprocating motion can be set individually or collectively. For example, the motion speed of each reciprocating motion can be successively increased or decreased.
  • the step 203 may include: controlling the number of times that the motion mechanism drives the image acquisition device to reciprocate on the target axis according to the number of times parameter information.
  • the number of times parameter information may indicate the number of times that the motion mechanism drives the image acquisition device to reciprocate in the direction of the target axis.
  • the corresponding target times can be determined according to the times parameter information, and the motion mechanism is controlled to drive the image acquisition device to reciprocate the target times on the target axis.
  • the step 203 may include: controlling, according to the interval parameter information, a pause when the motion mechanism drives the image acquisition device to reciprocate on the target axis interval.
  • the interval parameter information may indicate the pause interval during which the motion mechanism drives the image acquisition device to reciprocate in the direction of the target axis.
  • the corresponding target pause interval can be determined according to the interval parameter information, and the motion mechanism is controlled to pause according to the target pause interval when driving the image acquisition device to reciprocate on the target axis.
  • a dynamically changing pause interval can be set in the interval parameter information. For example, a reciprocating motion can be performed on the Z axis first, and then the next reciprocating motion can be performed after a period of pause according to the pause interval.
  • three reciprocating motions may be used as a group, and after one group of reciprocating motions is performed, the next group of reciprocating motions may be performed after a pause for a period of time according to the pause interval.
  • Users can set the pause interval between each group by themselves, which can be set uniformly or separately.
  • the motion mechanism may include a motor and a motion component, and the motor may drive the motion component to move in a predetermined axial direction.
  • the motor may drive the motion component to move in a predetermined axial direction.
  • the step 203 may include: determining an adapted drive signal according to the jitter simulation information; and providing the motor with the adapted drive signal, so that the motor drives the image capture device to perform in a preset axial direction. Reciprocating motion to simulate shaking.
  • the reciprocating motion can be realized by controlling the forward rotation and reverse rotation of the motor.
  • the motion mechanism can drive the image acquisition device to perform in the preset axial direction. Reciprocating motion to simulate shaking.
  • the range of motion can be achieved by controlling the stroke of the motor.
  • the motion mechanism can control the range of motion when driving the image acquisition device to reciprocate on the target axis.
  • the movement speed can be achieved by controlling the rotation speed of the motor.
  • the movement mechanism can control the movement speed when driving the image acquisition device to reciprocate on the target axis.
  • the number of reciprocating movements can be achieved by controlling the number of times the motor rotates.
  • the motion mechanism can control the number of times the image acquisition device is driven to reciprocate on the target axis.
  • the pause interval during reciprocating motion can be realized by controlling the interval of motor rotation.
  • the motion mechanism can control the reciprocating motion of the image acquisition device in the target axis direction. Pause interval.
  • the photographing device includes an image acquisition device and a motion mechanism, and the motion mechanism is used to drive the image acquisition device. Movement, the method may specifically include:
  • the photographing device can be set with a variety of shaking simulation modes, different shaking simulation modes can correspond to different shaking effects, and the shaking simulation modes can correspond to preset shaking simulation information.
  • the user can select the current shaking simulation mode from a variety of shaking simulation modes.
  • the photographing device may acquire matching shaking simulation information according to the current shaking simulation mode selected by the user.
  • the shaking simulation mode may include a breathing simulation mode
  • the breathing simulation mode may simulate a subjective shot of a breathing object (including a human or an animal), so that the moving picture captured by the image acquisition device can be regarded by the audience as a breathing object the screen seen.
  • the breathing simulation mode may include a normal breathing simulation mode and a vigorous breathing simulation mode.
  • FIG. 5 it is a schematic diagram of a gimbal simulating shaking in a normal breathing simulation mode.
  • a simulation effect can be achieved by controlling the up and down movement of the Z axis.
  • Fig. 6 it is a schematic diagram of a gimbal simulating shaking in the severe breathing simulation mode.
  • the severe breathing simulation mode can be based on the up and down movement of the Z axis, supplemented by the slight left and right swing of the Yaw axis, so as to create a tense atmosphere. Effect.
  • the amplitude of the jitter can be controlled by controlling the Z-axis motion range.
  • the frequency of shaking can also be controlled by controlling the speed to cope with the different emotional expressions of the picture required by the photographer.
  • the shaking simulation mode can also include a gun simulation mode: the gun simulation mode can simulate the subjective shot of a sniper rifle.
  • a gun simulation mode the gun simulation mode can simulate the subjective shot of a sniper rifle.
  • FIG 7 it is a schematic diagram of a gimbal simulating jitter in the firearm simulation mode. You can control the Pitch axis and the Yaw axis to move at the same time. The movement range of the Pitch axis should be slightly larger than the Yaw axis. Seeing is moving around an ellipse.
  • the shaking simulation mode may further include a horse riding simulation mode, and the horse riding simulation mode may simulate a subjective shot while riding a horse.
  • FIG. 8 it is a schematic diagram of a gimbal simulating shaking in the riding simulation mode.
  • the movement mode of the horse when riding can be simulated by controlling the up and down movement of the Z axis and the slight pitching movement of the Pitch axis. From the side, it is a Semi-elliptical motion trajectory.
  • the shaking simulation mode can also include a car simulation mode, which can simulate a shot of a car while driving. It can be used when shooting car scenes, especially in green screen studios, when the camera frame is outside the car to simulate shaking.
  • FIG. 9 it is a schematic diagram of a gimbal simulating shaking in a car simulation mode.
  • the length of the arrow can indicate a large range of motion.
  • the car simulation mode can use the up and down movement of the Z-axis. First, the Z-axis performs an ups and downs with a slightly larger peak value, and then performs an ups and downs with a peak value that is half of the previous one, and then performs an ups and downs with half the peak value of the second wave. Three ups and downs as a group. Users can set the interval time between each group by themselves, which can be set uniformly or separately.
  • the shaking simulation mode can also include a train simulation mode, which can simulate footage of a train running. It can be used when shooting scenes in the train, mainly to simulate the shaking of the train when it is running on the track and passing through the seam between the tracks.
  • a train simulation mode which can simulate footage of a train running. It can be used when shooting scenes in the train, mainly to simulate the shaking of the train when it is running on the track and passing through the seam between the tracks.
  • Fig. 10 it is a schematic diagram of a gimbal simulating shaking in the train simulation mode.
  • the train simulation mode mainly uses the slight up and down movement of the Z axis, and increases the range of motion at regular intervals. The time interval can be set by the user uniformly. .
  • the jitter simulation mode can also include an airplane simulation mode.
  • the airplane simulation mode can simulate the footage of the plane flying, and can shoot scenes on the plane. Since the current plane scenes are mainly green screen, this mode is more realistic for creating a sense of reality. for the benefit.
  • 11 is a schematic diagram of a gimbal simulating jitter in aircraft simulation mode.
  • the Z axis can be slightly moved up and down, and the Roll axis can be slightly rolled to simulate the jitter of the aircraft during flight.
  • the shaking simulation mode may further include a walking simulation mode, and the walking simulation mode may simulate a subjective shot of a person walking.
  • FIG. 12 it is a schematic diagram of a gimbal simulating shaking in a walking simulation mode.
  • the walking simulation mode can use the Z-axis low-frequency up-and-down movement to simulate a person's walking.
  • the current stabilizer on the market does not have Z-axis anti-shake, and the captured picture still has jitter, and the frequency is high. If you use equipment such as stabilizers and balance bikes and lack the real experience when walking.
  • a picture of a person walking is simulated by using the up and down motion of the Z axis, so that the sense of realism is stronger.
  • the shaking simulation mode may further include a running simulation mode, and the running simulation mode may simulate a subjective shot of a person running.
  • a running simulation mode it is a schematic diagram of a gimbal simulating shaking in the running simulation mode.
  • the running simulation mode can use the Z-axis to move up and down in a large range, with the slight left and right swing of the Yaw axis, and the slight left and right rolling of the Roll axis. To achieve the jitter effect of simulating running.
  • the shaking simulation mode can also include a special state simulation mode, which can simulate subjective shots of people in special states such as drunkenness, drug addiction, and car accidents.
  • a special state simulation mode which can simulate subjective shots of people in special states such as drunkenness, drug addiction, and car accidents.
  • FIG 14 it is a schematic diagram of a gimbal simulating jitter in the special state simulation mode.
  • the special state simulation mode uses the large up and down movement of the Z axis, with the large left and right swing of the Yaw axis, and the Pitch axis increases the amplitude.
  • the pitch motion of the roll axis is small, and the roll axis rolls back and forth in a small range, simulating the subjective perspective jitter of a person in a special state.
  • control the motion mechanism to drive the image acquisition device to reciprocate in a preset axial direction to simulate shaking.
  • the user can select a shaking simulation mode on the photographing device as required, and the photographing device can determine the current shaking simulation mode, and obtain shaking simulation information matching the current shaking simulation mode; according to the shaking simulation information, control the motion mechanism to drive
  • the image acquisition device reciprocates in a preset axis to simulate shaking.
  • the image acquisition device can be enabled to acquire moving pictures, so as to meet the needs of shooting moving pictures.
  • the photographing device may include an image acquisition device 1501 , a motion mechanism 1502 , and a processor 1503 ;
  • the motion mechanism 1502 is used to drive the image capture device 1501 to move;
  • the processor 1503 is configured to acquire the shaking simulation information; according to the shaking simulation information, control the motion mechanism to drive the image acquisition device to reciprocate in a preset axial direction to simulate shaking.
  • the processor 1503 is configured to determine a current shaking simulation mode of the photographing device; and acquire shaking simulation information matching the current shaking simulation mode.
  • the shaking simulation information includes axial parameter information; the processor 1503 is configured to determine the target axis corresponding to the axial parameter information in a preset axial direction; control the motion mechanism to drive the The image acquisition device reciprocates in the target axis to simulate shaking.
  • the jitter simulation information further includes at least one of the following: range parameter information, speed parameter information, jitter times parameter information, and jitter interval parameter information.
  • the processor 1503 is configured to control the motion mechanism to drive the image acquisition device to reciprocate on the target axis according to the range parameter information. Range of motion during exercise.
  • the processor 1503 is configured to control the motion mechanism to drive the image acquisition device to reciprocate on the target axis according to the speed parameter information. Movement speed during exercise.
  • the processor 1503 is configured to control the motion mechanism to drive the image acquisition device to reciprocate on the target axis according to the times parameter information. number of movements.
  • the processor 1503 is configured to control the motion mechanism to drive the image acquisition device to reciprocate on the target axis according to the interval parameter information. Pause interval when exercising.
  • the motion mechanism includes a motor; the processor 1503 is configured to determine an adapted drive signal according to the jitter simulation information; provide the motor with the adapted drive signal, so that the motor drives The image acquisition device reciprocates in a preset axis to simulate shaking.
  • the preset axis includes at least one of the following: Z axis, Roll axis, Yaw axis, and Pitch axis.
  • the photographing device is a pan/tilt.
  • an embodiment of the present application further provides an electronic device, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor, when the computer program is executed by the processor.
  • an embodiment of the present application also provides a computer-readable storage medium, where instructions are stored on the computer-readable storage medium, and when the instructions are executed on a computer, the computer is made to execute the above-mentioned shooting device. Control Method.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the application can be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means may be embodied by one and the same item of hardware.
  • the use of the words first, second, and third, etc. do not denote any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

本申请实施例提供了拍摄设备的控制方法、拍摄设备、电子设备及介质,所述方法包括:获取抖动模拟信息;根据抖动模拟信息,控制运动机构带动图像采集装置在预设轴向进行往复运动以模拟抖动。通过对图像采集装置模拟抖动,可以使得图像采集装置能够采集到运动画面,满足拍摄运动画面的需求。

Description

拍摄设备的控制方法、拍摄设备、电子设备及介质 技术领域
本申请涉及电子设备技术领域,特别是涉及拍摄设备的控制方法、拍摄设备、电子设备及介质。
背景技术
随着科技的发展和技术的进步,摄影器材越做越轻量化。而且随着影视器材的变化,画面审美也一直区域运动化。从影视剧的历史来看,人们的审美逐渐从单一的固定镜头开始倾向于带有运动的镜头,逐步发展出推拉摇移的运动模式,之后随着斯坦尼康和升降机的发明,镜头的运动开始更加灵活,发展出跟镜头,环绕镜头,升降镜头。而电子炮和电子稳定器的出现逐步开始取代例如升降机,摇臂,斯坦尼康等老式设备。但电子产品最大的问题就是过于追求稳定,与现代审美对于画面运动的倾向性不符,不能满足拍摄运动画面的需求。
发明内容
本申请实施例提出了一种拍摄设备的控制方法、拍摄设备、电子设备及介质。
第一方面,本申请实施例提供一种拍摄设备的控制方法,所述拍摄设备包括图像采集装置和运动机构,所述运动机构用于带动所述图像采集装置运动,所述方法包括:
获取抖动模拟信息;
根据所述抖动模拟信息,控制所述运动机构带动所述图像采集装置在预设轴向进行往复运动以模拟抖动。
第二方面,本申请实施例还提供一种拍摄设备,所述拍摄设备包括图像采集装置、运动机构和处理器;
所述运动机构用于带动所述图像采集装置运动;
所述处理器用于获取抖动模拟信息;根据所述抖动模拟信息,控制所 述运动机构带动所述图像采集装置在预设轴向进行往复运动以模拟抖动。
第三方面,本申请实施例还提供一种电子设备,包括处理器、存储器及存储在所述存储器上并能够在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的拍摄设备的控制方法。
第四方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储指令,当所述指令在计算机上运行时,使得所述计算机执行如权上所述的拍摄设备的控制方法。
本申请实施例中,拍摄设备可以获取抖动模拟信息;根据抖动模拟信息,控制运动机构带动图像采集装置在预设轴向进行往复运动以模拟抖动。通过对图像采集装置模拟抖动,可以使得图像采集装置能够采集到运动画面,满足拍摄运动画面的需求。
附图说明
图1是本申请一实施例提供的一种拍摄设备的控制方法的流程图;
图2是本申请一实施例提供的另一种拍摄设备的控制方法的流程图;
图3是本申请实施例中一种拍摄设备的示意图;
图4是本申请一实施例提供的另一种拍摄设备的控制方法的流程图;
图5是本申请实施例一种云台在正常呼吸模拟模式下模拟抖动的示意图;
图6是本申请实施例一种云台在剧烈呼吸模拟模式下模拟抖动的示意图;
图7是本申请实施例一种云台在枪械模拟模式下模拟抖动的示意图;
图8是本申请实施例一种云台在骑马模拟模式下模拟抖动的示意图;
图9是本申请实施例一种云台在汽车模拟模式下模拟抖动的示意图;
图10是本申请实施例一种云台在火车模拟模式下模拟抖动的示意图;
图11是本申请实施例一种云台在飞机模拟模式下模拟抖动的示意图;
图12是本申请实施例一种云台在走路模拟模式下模拟抖动的示意图;
图13是本申请实施例一种云台在跑步模拟模式下模拟抖动的示意图;
图14是本申请实施例一种云台在特殊状态模拟模式下模拟抖动的示意 图;
图15是本申请一实施例提供的一种拍摄设备的框图。
具体实施方式
下面结合附图和具体实施方式对本申请作进一步详细的说明。
现有的拍摄设备通常通过电子稳定器来增加稳定性,但是过于稳定的画面并不适合表现特定场景。例如,轻微抖动的画面更有利于表达情绪和增强沉浸感。
为了得到抖动的画面,现在摄影师的解决方式一般有两种。前期可以靠轻轻转动云台来实现抖动。后期一般是依靠软件输入抖动的函数来制作不同抖动频率。但这两种抖动方式都存在硬性的缺陷,前期靠摄影师抖动对摄影师技术,身体素质有较高的要求,且很难做到一些均匀的抖动,而且同一组镜头难以达到相同频率和幅度的抖动。后期会对画质造成一些损失,且针对沿yaw轴和pitch轴等透视会发生改变的镜头是无法模拟的,整体局限性比较大。
在本申请实施例中,拍摄设备可以包括运动机构和图像采集装置,运动机构本身可以是用于控制图像采集装置在拍摄时保持稳定的器件,运动机构可以包括分别控制图像采集装置在不同轴向运动的部件,每个轴向的运动可以相互独立。
为了得到抖动的画面,本申请实施例中,可以利用拍摄设备的运动机构来带动图像采集装置进行往复运动以模拟抖动。
参照图1,示出了本申请一实施例提供的一种拍摄设备的控制方法的流程图,所述拍摄设备包括图像采集装置和运动机构,所述运动机构用于带动所述图像采集装置运动,所述方法具体可以包括:
101,获取抖动模拟信息。
在本申请实施例中,抖动模拟信息是用于控制拍摄设备实现模拟抖动的信息,拍摄设备可以实现多个模拟抖动的效果,不同的效果可以通过不同的抖动模拟信息来实现。在使用过程中,用户可以在拍摄设备设置抖动模拟信息。
在一种示例中,拍摄设备可以为支持多轴移动的云台,图像采集装置可以为摄像头,移动机构可以包括控制图像采集装置在多个轴向运动的部件。例如,若拍摄设备为支持三轴移动的云台,云台的移动机构可以包括分别控制图像采集装置在Roll轴、Yaw轴、Pitch轴运动的部件。
在另一种示例中,拍摄设备可以为支持机身防抖IBIS(In Body Image Stabilization)的相机,例如,可以是支持五轴防抖的相机,五个轴可以分别包括:俯仰轴(Pitch)、摇摆轴(Yaw)、滚动轴(Roll)、横(X)、纵轴(Y)。运动机构可以包括用于在各个轴向实现机身防抖的部件。
102,根据所述抖动模拟信息,控制所述运动机构带动所述图像采集装置在预设轴向进行往复运动以模拟抖动。
往复运动可以是指在某一轴向上来回移动。为了实现模拟抖动的效果,可以根据抖动模拟信息,控制运动机构带动图像采集装置在某些轴向上进行往复运动以模拟抖动。
本申请实施例中,拍摄设备可以获取抖动模拟信息;根据抖动模拟信息,控制运动机构带动图像采集装置在预设轴向进行往复运动以模拟抖动。通过对图像采集装置模拟抖动,可以使得图像采集装置能够采集到运动画面,满足拍摄运动画面的需求。
相比于现有技术中前期摄影师靠自身抖动控制画面的方式,本申请实施例通过模拟抖动的方式,有更强的可控性,更强的可重复性,对于摄影师经验以及技术要求更低,进一步降低摄影的入门门槛。
相比于现有技术中后期画面调整的方式,本申请实施例通过模拟抖动的方式不会造成画质的损失,而且降低了后期的压力,同时也有更广泛的应用场景。
参照图2,示出了本申请一实施例提供的另一种拍摄设备的控制方法的流程图,所述拍摄设备包括图像采集装置和运动机构,所述运动机构用于带动所述图像采集装置运动,所述方法具体可以包括:
201,获取抖动模拟信息,所述抖动模拟信息包括轴向参数信息。
在本申请实施例中,运动机构可以带动图像采集装置在预设轴向进行运 动,通过在不同的轴向模拟抖动,拍摄设备可以模拟多种抖动效果。轴向参数信息可以指示需要模拟抖动的轴向。
参照图3所示为本申请实施例中一种拍摄设备的示意图,其中拍摄设备可以为支持四轴移动的云台,运动机构可以包括分别带动图像采集装置在俯仰轴(Pitch)、摇摆轴(Yaw)、滚动轴(Roll)、竖轴(Z)运动的结构部件。
202,在预设轴向中,确定所述轴向参数信息对应的目标轴向。
例如,若轴向参数信息指示了需要在Z轴和Yaw轴模拟抖动,则可以将Z轴和Yaw轴确定为目标轴向。
203,控制所述运动机构带动所述图像采集装置在所述目标轴向进行往复运动以模拟抖动。
在本申请实施例中,运动机构在带动图像采集装置在目标轴向进行往复运动时,可以实现不同的模拟抖动效果。抖动模拟信息还可以包括调整抖动效果的参考信息。
在一种实施例中,抖动模拟信息还可以包括如下至少一种:范围参数信息、速度参数信息、次数参数信息、间隔参数信息。
若所述抖动模拟信息还包括范围参数信息,则所述203可以包括:根据所述范围参数信息,控制所述运动机构在带动所述图像采集装置在所述目标轴向上往复运动时的运动范围。
范围参数信息可以指示运动机构带动图像采集装置在目标轴向上往复运动时的运动范围。可以根据范围参数信息确定对应的目标运动范围,控制运动机构带动图像采集装置在目标轴向上按目标运动范围进行往复运动。其中,运动范围越大,图像采集装置的抖动幅度越大。可以在范围参数信息设置动态变化的运动范围,每次往复运动的运动范围可以单独设置,也可以统一设置。例如,每次往复运动的运动范围可以逐次增大或减小。
若所述抖动模拟信息还包括速度参数信息,则所述203可以包括:根据所述速度参数信息,控制所述运动机构在带动所述图像采集装置在所述目标轴向上往复运动时的运动速度。
速度参数信息可以指示运动机构带动图像采集装置在目标轴向上往复 运动时的运动速度。可以根据速度参数信息确定对应目标运动速度,控制运动机构带动图像采集装置在目标轴向上按目标运动速度进行往复运动。其中,运动速度越大,图像采集装置的抖动频率越大。可以在速度参数信息设置动态变化的运动速度,每次往复运动的运动速度可以单独设置,也可以统一设置。例如,每次往复运动的运动速度可以逐次增大或减小。
若所述抖动模拟信息还包括次数参数信息,则所述203可以包括:根据所述次数参数信息,控制所述运动机构在带动所述图像采集装置在所述目标轴向上往复运动的次数。
次数参数信息可以指示运动机构带动图像采集装置在目标轴向上往复运动的次数。可以根据次数参数信息确定对应的目标次数,控制运动机构带动图像采集装置在目标轴向上进行目标次数的往复运动。
若所述抖动模拟信息还包括间隔参数信息,则所述203可以包括:根据所述间隔参数信息,控制所述运动机构在带动所述图像采集装置在所述目标轴向上往复运动时的停顿间隔。
间隔参数信息可以指示运动机构带动图像采集装置在目标轴向上往复运动的停顿间隔。可以根据间隔参数信息确定对应的目标停顿间隔,控制运动机构在带动图像采集装置在目标轴向上往复运动时,按照目标停顿间隔停顿。可以在间隔参数信息设置动态变化的停顿间隔,例如,可以先在Z轴进行一次往复运动,按照停顿间隔停顿一段时间后,再进行下次往复运动。又例如,可以以三次往复运动为一组,在进行一组往复运动后,按照停顿间隔停顿一段时间后,再进行下一组往复运动。用户可以自行设置每一组之间的停顿间隔,可以统一设置也可以分别设置。
在本申请实施例中,运动机构可以包括电机和运动部件,电机可以驱动运动部件在预设轴向运动。例如,对于支持四轴移动的云台,可以包括分别在四个轴向运动的四个运动部件和四个电机。不同的抖动效果可以通过调整输入电机的驱动信号来实现。所述步骤203可以包括:根据所述抖动模拟信息确定适配的驱动信号;向所述电机提供所述适配的驱动信号,以使所述电机带动所述图像采集装置在预设轴向进行往复运动以模拟抖动。
往复运动可以通过控制电机的正转、反转来实现,通过向电机提供使得电机能够在正转、反转之间切换的驱动信号,可以使得运动机构可以带动图像采集装置在预设轴向进行往复运动以模拟抖动。
运动范围可以通过控制电机的行程来实现,通过向电机提供使得电机能够调整行程的驱动信号,可以使得运动机构可以控制带动图像采集装置在目标轴向上往复运动时的运动范围。
运动速度可以通过控制电机的转速来实现,通过向电机提供使得电机能够调整转速的驱动信号,可以使得运动机构可以控制带动图像采集装置在目标轴向上往复运动时的运动速度。
往复运动的次数可以通过控制电机转动的次数来实现,通过向电机提供使得电机能够按照指定次数转动的驱动信号,可以使得运动机构可以控制带动图像采集装置在目标轴向上往复运动的次数。
往复运动时的停顿间隔可以通过控制电机转动的间隔来实现,通过向电机提供使得电机能够按照指定间隔转动的驱动信号,可以使得运动机构可以控制带动图像采集装置在目标轴向上往复运动时的停顿间隔。
参照图4,示出了本申请一实施例提供的另一种拍摄设备的控制方法的流程图,所述拍摄设备包括图像采集装置和运动机构,所述运动机构用于带动所述图像采集装置运动,所述方法具体可以包括:
401,确定所述拍摄设备当前的抖动模拟模式。
402,获取与所述当前的抖动模拟模式匹配的抖动模拟信息。
拍摄设备可以设置有多种抖动模拟模式,不同的抖动模拟模式可以对应不同的抖动效果,抖动模拟模式可以对应有预先设置好的抖动模拟信息。用户在使用拍摄设备时,可以从多种抖动模拟模式中,选取当前的抖动模拟模式。拍摄设备可以根据用户选取的当前的抖动模拟模式,获取匹配的抖动模拟信息。
在一种示例中,抖动模拟模式可以包括呼吸模拟模式,呼吸模拟模式可以模拟呼吸对象(包括人或动物)的主观镜头,可以使得图像采集装置拍摄得到的运动画面,可以被观众认为是呼吸对象所看到的画面。
呼吸模拟模式可以包括正常呼吸模拟模式和剧烈呼吸模拟模式。参照图5所示为一种云台在正常呼吸模拟模式下模拟抖动的示意图,正常呼吸模拟模式可以通过控制Z轴的上下运动达到模拟的效果。参照图6所示为一种云台在剧烈呼吸模拟模式下模拟抖动的示意图,剧烈呼吸模拟模式可以通过以Z轴上下运动为主,Yaw轴轻微的左右摇摆为辅,达到一种营造紧张气氛的效果。同时可以通过控制Z轴运动范围来控制抖动的幅度。也可以通过控制速度来控制抖动的频率,以应对摄影师所需要的不同的画面情绪表达。
抖动模拟模式还可以包括枪械模拟模式:枪械模拟模式可以模拟狙击枪的主观镜头。参照图7所示为一种云台在枪械模拟模式下模拟抖动的示意图,可以通过控制Pitch轴和Yaw轴同时进行运动,Pitch轴的运动幅度应略大于Yaw轴,从正面看云台整体来看是在绕椭圆运动。
抖动模拟模式还可以包括骑马模拟模式,骑马模拟模式可以模拟骑马时的主观镜头。参照图8所示为一种云台在骑马模拟模式下模拟抖动的示意图,可以通过控制Z轴的上下运动和Pitch轴轻微的俯仰运动来模拟出骑马时马的运动模式,从侧面看是一个半椭圆形的运动轨迹。
抖动模拟模式还可以包括汽车模拟模式,汽车模拟模式可以模拟汽车行驶时的镜头。可以在拍摄车戏时使用,尤其适用于绿幕影棚中,摄影机架在车外时进行抖动模拟。参照图9所示为一种云台在汽车模拟模式下模拟抖动的示意图,图9中,箭头的长度,可以表示运动范围大大小。汽车模拟模式可以利用Z轴的上下运动,首先Z轴进行一个起伏峰值稍大的起伏,之后再进行一次起伏峰值为之前一半的起伏,之后再进行一次为第二次起伏峰值一半的起伏。三次起伏为一组。用户可以自行设置每一组之间的间隔时间,可以统一设置也可以分别设置。
抖动模拟模式还可以包括火车模拟模式,火车模拟模式可以模拟火车行驶时的镜头。可以拍摄在火车内的戏份时使用,主要用于模拟火车在轨道行驶时和通过轨道间接缝的抖动。参照图10所示为一种云台在火车模拟模式下模拟抖动的示意图,火车模拟模式主要是利用Z轴轻微的上下运动,每隔一段时间加大一次运动范围,时间间隔可以由用户统一设置。
抖动模拟模式还可以包括飞机模拟模式,飞机模拟模式可以模拟飞机飞行时的镜头,可以拍摄在飞机上的戏份,由于现阶段的飞机戏主要以绿幕为主,所以该模式对于营造真实感更为有利。参照图11所示为一种云台在飞机模拟模式下模拟抖动的示意图,飞机模拟模式可以利用Z轴轻微的上下运动,配合Roll轴轻微的滚动模拟飞机在飞行时的抖动。
抖动模拟模式还可以包括走路模拟模式,走路模拟模式可以模拟人行走时的主观镜头。参照图12所示为一种云台在走路模拟模式下模拟抖动的示意图,走路模拟模式可以利用Z轴低频的上下运动来模拟人的走动。目前当前市面上的稳定器没有Z轴防抖,拍摄出的画面还是会有抖动,而且频率较高。如果使用稳定器和平衡车等设备又缺乏走动时的真实体验。本申请实施例通过利用Z轴的上下运动模拟人行走的画面,真实感更强。
抖动模拟模式还可以包括跑步模拟模式,跑步模拟模可以模拟人跑步时的主观镜头。参照图13所示为一种云台在跑步模拟模式下模拟抖动的示意图,跑步模拟模式可以利用Z轴较大幅度的上下运动,配合Yaw轴的轻微左右摇摆,加上Roll轴的轻微左右滚动来达到模拟跑步的抖动效果。
抖动模拟模式还可以包括特殊状态模拟模式,特殊状态模拟模式可以模拟人在如醉酒,吸毒遭遇车祸等特殊状态下的主观镜头。参照图14所示为一种云台在特殊状态模拟模式下模拟抖动的示意图,特殊状态模拟模式是利用Z轴的大幅度上下运动,配合Yaw轴较大幅度的左右摇摆,Pitch轴加大幅度的俯仰运动,Roll轴较小幅度的来回滚动,模拟人在特殊状态下的主观视角抖动。
403,根据所述抖动模拟信息,控制所述运动机构带动所述图像采集装置在预设轴向进行往复运动以模拟抖动。
本申请实施例中,用户可以根据需要在拍摄设备选取抖动模拟模式,拍摄设备可以确定当前的抖动模拟模式,获取与当前的抖动模拟模式匹配的抖动模拟信息;根据抖动模拟信息,控制运动机构带动图像采集装置在预设轴向进行往复运动以模拟抖动。通过对图像采集装置模拟抖动,可以使得图像采集装置能够采集到运动画面,满足拍摄运动画面的需求。
参照图15,示出了本申请一实施例提供的一种拍摄设备的框图,所述拍摄设备可以包括图像采集装置1501、运动机构1502和处理器1503;
所述运动机构1502用于带动所述图像采集装置1501运动;
所述处理器1503用于获取抖动模拟信息;根据所述抖动模拟信息,控制所述运动机构带动所述图像采集装置在预设轴向进行往复运动以模拟抖动。
可选地,所述处理器1503用于确定所述拍摄设备当前的抖动模拟模式;获取与所述当前的抖动模拟模式匹配的抖动模拟信息。
可选地,所述抖动模拟信息包括轴向参数信息;所述处理器1503用于在预设轴向中,确定所述轴向参数信息对应的目标轴向;控制所述运动机构带动所述图像采集装置在所述目标轴向进行往复运动以模拟抖动。
可选地,所述抖动模拟信息还包括如下至少一种:范围参数信息、速度参数信息、抖动次数参数信息、抖动间隔参数信息。
可选地,若所述抖动模拟信息还包括范围参数信息,所述处理器1503用于根据所述范围参数信息,控制所述运动机构在带动所述图像采集装置在所述目标轴向上往复运动时的运动范围。
可选地,若所述抖动模拟信息还包括速度参数信息,所述处理器1503用于根据所述速度参数信息,控制所述运动机构在带动所述图像采集装置在所述目标轴向上往复运动时的运动速度。
可选地,若所述抖动模拟信息还包括次数参数信息,所述处理器1503用于根据所述次数参数信息,控制所述运动机构在带动所述图像采集装置在所述目标轴向上往复运动的次数。
可选地,若所述抖动模拟信息还包括间隔参数信息,所述处理器1503用于根据所述间隔参数信息,控制所述运动机构在带动所述图像采集装置在所述目标轴向上往复运动时的停顿间隔。
可选地,所述运动机构包括电机;所述处理器1503用于根据所述抖动模拟信息确定适配的驱动信号;向所述电机提供所述适配的驱动信号,以使所述电机带动所述图像采集装置在预设轴向进行往复运动以模拟抖动。
可选地,所述预设轴向包括如下至少一个:Z轴、Roll轴、Yaw轴、Pitch轴。
可选地,所述拍摄设备为云台。
进一步地,本申请实施例还提供一种电子设备,包括处理器、存储器及存储在所述存储器上并能够在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的拍摄设备的控制方法。
进一步地,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储指令,当所述指令在计算机上运行时,使得所述计算机执行如上所述的拍摄设备的控制方法。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的 范围。

Claims (24)

  1. 一种拍摄设备的控制方法,其特征在于,所述拍摄设备包括图像采集装置和运动机构,所述运动机构用于带动所述图像采集装置运动,所述方法包括:
    获取抖动模拟信息;
    根据所述抖动模拟信息,控制所述运动机构带动所述图像采集装置在预设轴向进行往复运动以模拟抖动。
  2. 根据权利要求1所述的方法,其特征在于,所述获取抖动模拟信息,包括:
    确定所述拍摄设备当前的抖动模拟模式;
    获取与所述当前的抖动模拟模式匹配的抖动模拟信息。
  3. 根据权利要求1所述的方法,其特征在于,所述抖动模拟信息包括轴向参数信息;所述根据所述抖动模拟信息,控制所述运动机构带动所述图像采集装置在预设轴向进行往复运动以模拟抖动,包括:
    在预设轴向中,确定所述轴向参数信息对应的目标轴向;
    控制所述运动机构带动所述图像采集装置在所述目标轴向进行往复运动以模拟抖动。
  4. 根据权利要求3所述的方法,其特征在于,所述抖动模拟信息还包括如下至少一种:范围参数信息、速度参数信息、抖动次数参数信息、抖动间隔参数信息。
  5. 根据权利要求4所述的方法,其特征在于,若所述抖动模拟信息还包括范围参数信息,所述控制所述运动机构带动所述图像采集装置在所述目标轴向进行往复运动以模拟抖动,包括:
    根据所述范围参数信息,控制所述运动机构在带动所述图像采集装置在所述目标轴向上往复运动时的运动范围。
  6. 根据权利要求4所述的方法,其特征在于,若所述抖动模拟信息还包括速度参数信息,所述控制所述运动机构带动所述图像采集装置在所述目标轴向进行往复运动以模拟抖动,包括:
    根据所述速度参数信息,控制所述运动机构在带动所述图像采集装置在 所述目标轴向上往复运动时的运动速度。
  7. 根据权利要求4所述的方法,其特征在于,若所述抖动模拟信息还包括次数参数信息,所述控制所述运动机构带动所述图像采集装置在所述目标轴向进行往复运动以模拟抖动,包括:
    根据所述次数参数信息,控制所述运动机构在带动所述图像采集装置在所述目标轴向上往复运动的次数。
  8. 根据权利要求4所述的方法,其特征在于,若所述抖动模拟信息还包括间隔参数信息,所述控制所述运动机构带动所述图像采集装置在所述目标轴向进行往复运动以模拟抖动,包括:
    根据所述间隔参数信息,控制所述运动机构在带动所述图像采集装置在所述目标轴向上往复运动时的停顿间隔。
  9. 根据权利要求1所述的方法,其特征在于,所述运动机构包括电机;所述根据所述抖动模拟信息,控制所述运动机构带动所述图像采集装置在预设轴向进行往复运动以模拟抖动,包括:
    根据所述抖动模拟信息确定适配的驱动信号;
    向所述电机提供所述适配的驱动信号,以使所述电机带动所述图像采集装置在预设轴向进行往复运动以模拟抖动。
  10. 根据权利要求1所述的方法,其特征在于,所述预设轴向包括如下至少一个:Z轴、Roll轴、Yaw轴、Pitch轴。
  11. 根据权利要求1所述的方法,其特征在于,所述拍摄设备为云台。
  12. 一种拍摄设备,其特征在于,所述拍摄设备包括图像采集装置、运动机构和处理器;
    所述运动机构用于带动所述图像采集装置运动;
    所述处理器用于获取抖动模拟信息;根据所述抖动模拟信息,控制所述运动机构带动所述图像采集装置在预设轴向进行往复运动以模拟抖动。
  13. 根据权利要求12所述的拍摄设备,其特征在于,所述处理器用于确定所述拍摄设备当前的抖动模拟模式;获取与所述当前的抖动模拟模式匹配的抖动模拟信息。
  14. 根据权利要求12所述的拍摄设备,其特征在于,所述抖动模拟信息包括轴向参数信息;所述处理器用于在预设轴向中,确定所述轴向参数信息对应的目标轴向;控制所述运动机构带动所述图像采集装置在所述目标轴向进行往复运动以模拟抖动。
  15. 根据权利要求14所述的拍摄设备,其特征在于,所述抖动模拟信息还包括如下至少一种:范围参数信息、速度参数信息、抖动次数参数信息、抖动间隔参数信息。
  16. 根据权利要求15所述的拍摄设备,其特征在于,若所述抖动模拟信息还包括范围参数信息,所述处理器用于根据所述范围参数信息,控制所述运动机构在带动所述图像采集装置在所述目标轴向上往复运动时的运动范围。
  17. 根据权利要求15所述的拍摄设备,其特征在于,若所述抖动模拟信息还包括速度参数信息,所述处理器用于根据所述速度参数信息,控制所述运动机构在带动所述图像采集装置在所述目标轴向上往复运动时的运动速度。
  18. 根据权利要求15所述的拍摄设备,其特征在于,若所述抖动模拟信息还包括次数参数信息,所述处理器用于根据所述次数参数信息,控制所述运动机构在带动所述图像采集装置在所述目标轴向上往复运动的次数。
  19. 根据权利要求15所述的拍摄设备,其特征在于,若所述抖动模拟信息还包括间隔参数信息,所述处理器用于根据所述间隔参数信息,控制所述运动机构在带动所述图像采集装置在所述目标轴向上往复运动时的停顿间隔。
  20. 根据权利要求12所述的拍摄设备,其特征在于,所述运动机构包括电机;所述处理器用于根据所述抖动模拟信息确定适配的驱动信号;向所述电机提供所述适配的驱动信号,以使所述电机带动所述图像采集装置在预设轴向进行往复运动以模拟抖动。
  21. 根据权利要求12所述的拍摄设备,其特征在于,所述预设轴向包括如下至少一个:Z轴、Roll轴、Yaw轴、Pitch轴。
  22. 根据权利要求12所述的拍摄设备,其特征在于,所述拍摄设备为云台。
  23. 一种电子设备,其特征在于,包括处理器、存储器及存储在所述存储器上并能够在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至12中任一项所述的拍摄设备的控制方法。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至12中任一项所述的拍摄设备的控制方法。
PCT/CN2021/082118 2021-03-22 2021-03-22 拍摄设备的控制方法、拍摄设备、电子设备及介质 WO2022198392A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/082118 WO2022198392A1 (zh) 2021-03-22 2021-03-22 拍摄设备的控制方法、拍摄设备、电子设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/082118 WO2022198392A1 (zh) 2021-03-22 2021-03-22 拍摄设备的控制方法、拍摄设备、电子设备及介质

Publications (1)

Publication Number Publication Date
WO2022198392A1 true WO2022198392A1 (zh) 2022-09-29

Family

ID=83394993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082118 WO2022198392A1 (zh) 2021-03-22 2021-03-22 拍摄设备的控制方法、拍摄设备、电子设备及介质

Country Status (1)

Country Link
WO (1) WO2022198392A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205066563U (zh) * 2015-09-01 2016-03-02 李怀德 模拟射击装置
CN108510833A (zh) * 2018-05-31 2018-09-07 中国人民解放军第四军医大学 模拟夜视镜下飞行的训练器材和提高夜间作训能力的方法
CN109167894A (zh) * 2018-06-15 2019-01-08 Oppo广东移动通信有限公司 摄像头控制方法、装置、移动终端及存储介质
CN109708851A (zh) * 2018-12-27 2019-05-03 重庆大学 一种胶囊内窥镜动态成像性能检测***
CN209455024U (zh) * 2018-11-16 2019-10-01 长春工业大学 一种混联多自由度旋翼无人机地面模拟平台
CN110336995A (zh) * 2019-04-17 2019-10-15 中国信息通信研究院 用于拍照防抖性能测评的抖动轨迹生成方法、装置及***
KR20200042259A (ko) * 2018-10-15 2020-04-23 삼성전기주식회사 카메라 모듈의 액츄에이터
US20200310149A1 (en) * 2019-03-29 2020-10-01 Aac Optics Solutions Pte. Ltd. Lens driver for camera

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205066563U (zh) * 2015-09-01 2016-03-02 李怀德 模拟射击装置
CN108510833A (zh) * 2018-05-31 2018-09-07 中国人民解放军第四军医大学 模拟夜视镜下飞行的训练器材和提高夜间作训能力的方法
CN109167894A (zh) * 2018-06-15 2019-01-08 Oppo广东移动通信有限公司 摄像头控制方法、装置、移动终端及存储介质
KR20200042259A (ko) * 2018-10-15 2020-04-23 삼성전기주식회사 카메라 모듈의 액츄에이터
CN209455024U (zh) * 2018-11-16 2019-10-01 长春工业大学 一种混联多自由度旋翼无人机地面模拟平台
CN109708851A (zh) * 2018-12-27 2019-05-03 重庆大学 一种胶囊内窥镜动态成像性能检测***
US20200310149A1 (en) * 2019-03-29 2020-10-01 Aac Optics Solutions Pte. Ltd. Lens driver for camera
CN110336995A (zh) * 2019-04-17 2019-10-15 中国信息通信研究院 用于拍照防抖性能测评的抖动轨迹生成方法、装置及***

Similar Documents

Publication Publication Date Title
CN104117202B (zh) 投影式台球击球智能辅助***和方法
JP7506492B2 (ja) 画像を取り込むシステムおよびカメラ機器
CN103428461A (zh) 一种授课影像录制的***和方法
TW201723710A (zh) 自拍無人飛機系統及其執行方法
WO2019195991A1 (zh) 运动轨迹确定、延时摄影方法、设备及机器可读存储介质
WO2019205283A1 (zh) 基于红外的ar成像方法、***及电子设备
WO2019200718A1 (zh) 图像处理方法、装置及电子设备
CN110677591A (zh) 样本集构建方法、图像成像方法、装置、介质及电子设备
CN112926521B (zh) 基于光源亮灭的眼球追踪方法、***
CN112040137A (zh) 对录播中的教师进行自动跟踪拍摄的方法、装置及设备
CN110381254A (zh) 基于5g网络的影像处理方法、vr设备及***
WO2022198392A1 (zh) 拍摄设备的控制方法、拍摄设备、电子设备及介质
CN103455968A (zh) 一种具有粒子元素的实时影像渲染方法
CN110290409A (zh) 数据处理方法、vr设备以及***
JPH10262164A (ja) 画像入力装置、画像入力方法および記憶媒体
WO2021093577A1 (zh) 高动态范围图像自动曝光方法及无人飞行器
US20210362342A1 (en) Robotic camera software and controller
Prima et al. Secondary camera placement in Machinema using behavior trees
WO2022205085A1 (zh) 视频拍摄方法、装置及***
JP7003852B2 (ja) 遊戯用撮影装置
WO2022256978A1 (zh) 延时拍摄方法、装置及手持设备
JP7003866B2 (ja) 遊戯用撮影装置
Sun et al. Analysis of the multi-dimensional transformation of the perspective of new media image artworks using the image stabilization system
JP7167388B1 (ja) 動画作成システム、動画作成装置、及び動画作成用プログラム
CN117082225B (zh) 一种虚拟延时视频的生成方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932026

Country of ref document: EP

Kind code of ref document: A1