WO2022196312A1 - Vacuum drying device and vacuum drying method - Google Patents

Vacuum drying device and vacuum drying method Download PDF

Info

Publication number
WO2022196312A1
WO2022196312A1 PCT/JP2022/008123 JP2022008123W WO2022196312A1 WO 2022196312 A1 WO2022196312 A1 WO 2022196312A1 JP 2022008123 W JP2022008123 W JP 2022008123W WO 2022196312 A1 WO2022196312 A1 WO 2022196312A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
coating
side wall
vacuum drying
partition
Prior art date
Application number
PCT/JP2022/008123
Other languages
French (fr)
Japanese (ja)
Inventor
敦 槇本
英博 吉田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280019303.0A priority Critical patent/CN116917050A/en
Priority to JP2023506928A priority patent/JPWO2022196312A1/ja
Priority to KR1020237029525A priority patent/KR20230156036A/en
Publication of WO2022196312A1 publication Critical patent/WO2022196312A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/12Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation being performed after the application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present disclosure relates to a vacuum drying apparatus and a vacuum drying method.
  • OLEDs Organic Light Emitting Diodes
  • organic EL Electrode
  • Organic EL displays using organic light-emitting diodes have the advantages of being thin, light, and low power consumption, as well as being excellent in terms of response speed, viewing angle, and contrast ratio.
  • QLED Quantum-dot Light Emitting Diode
  • a QLED has an anode formed on a substrate, a cathode provided on the opposite side of the substrate from the anode, and an organic layer provided therebetween.
  • the organic layer has, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in this order from the anode side to the cathode side.
  • a coating apparatus for an inkjet method is used for forming the hole injection layer, the hole transport layer, the light emitting layer, and the like.
  • the coating device forms a coating layer by coating a substrate with a coating liquid containing an organic material and a solvent. By drying and baking the coating layer under reduced pressure, a hole injection layer and the like are formed (see, for example, Patent Document 1).
  • the reduced-pressure drying apparatus of Patent Document 2 includes an airflow regulating portion that regulates airflow from the vicinity of the upper surface of the substrate held on the substrate holding stage toward the exhaust port of the processing container.
  • the airflow regulating portion includes a cover formed of a side wall portion that blocks the airflow on the side of the substrate and a ceiling portion that blocks the airflow above the substrate, and a partition portion that partitions the inside of the cover above the substrate. In such a configuration, unevenness in the reduced-pressure drying rate is reduced by adjusting the vertical spacing between the substrate and the partition using the spacing adjusting section.
  • the display manufacturing method has been developed by the above technologies, but as a technology to further improve the utilization rate of the substrate, a technology called MMG (Multi Models on Glass), which simultaneously produces display panels of different sizes on a single substrate, is known. It is for example, by producing panels of various sizes, such as a combination of two 55-inch panels and three 65-inch panels, or a combination of two 82-inch panels and three 32-inch panels, the substrate utilization rate can be improved. can.
  • MMG Multi Models on Glass
  • a reduced-pressure drying apparatus includes a chamber for accommodating a substrate having a plurality of coating regions on which a coating layer containing a solvent is formed, a substrate holding stage for holding the substrate inside the chamber, and a side wall portion arranged around the substrate held by the substrate holding stage; a partition arranged inside the side wall portion and partitioning a space above the plurality of coating regions of the substrate for each of the coating regions; A rectifying plate disposed at a position facing the substrate so as to block the space partitioned by the side wall portion and the partition, the rectifying plate having a plurality of through holes formed therein, and an imperfection inside the chamber.
  • a gas supply unit for supplying an active gas and a decompression unit for decompressing the inside of the chamber are provided.
  • FIG. 1 is a vertical cross-sectional view of a reduced-pressure drying apparatus according to an embodiment of the present disclosure; Cross-sectional view along line AA in FIG. Longitudinal cross-sectional view of a reduced-pressure drying apparatus according to Modification 2 of the present disclosure Longitudinal cross-sectional view of a reduced-pressure drying apparatus according to Modification 3 of the present disclosure Longitudinal cross-sectional view of a reduced-pressure drying apparatus according to Modification 4 of the present disclosure
  • the present disclosure is intended to solve the above problems, and suppresses the occurrence of uneven drying in each coating region when drying a substrate having a plurality of coating regions on which a coating layer containing a solvent is formed under reduced pressure. It is an object of the present invention to provide a reduced pressure drying apparatus and a reduced pressure drying method.
  • FIG. 1 is a vertical cross-sectional view of a reduced-pressure drying apparatus according to an embodiment.
  • 2 is a cross-sectional view taken along line AA of FIG. 1.
  • the reduced-pressure drying apparatus 100 shown in FIGS. 1 and 2 accommodates the substrate 10 on which the coating layer containing the solvent is formed in the coating region 11 inside the chamber 110, and applies the coating in a reduced-pressure atmosphere whose pressure is lower than the atmospheric pressure. Evaporate the solvent from the layer.
  • the coating layer is composed of a group of liquid droplets arranged without gaps, or a group of liquid droplets arranged two-dimensionally at a predetermined pitch like elements of a display panel.
  • the reduced-pressure drying apparatus 100 includes a chamber 110, a substrate holding stage 120, a side wall portion 130, a partition 140, a straightening plate 150, a plurality of suction control portions 160, a gas supply portion 170, a pressure reducing portion 180, a relative and a moving unit 190 .
  • the chamber 110 accommodates the substrate 10 .
  • a loading/unloading port for the substrate 10 is formed in the side wall of the chamber 110 .
  • An opening/closing shutter for opening and closing the loading/unloading port is arranged around the loading/unloading port. The open/close shutter opens the loading/unloading port to allow the substrate 10 to be loaded/unloaded, and the open/close shutter closes the loading/unloading port to allow the pressure inside the chamber 110 to be reduced.
  • the substrate holding stage 120 is arranged inside the chamber 110 .
  • the substrate holding stage 120 holds the substrate 10 by suction or the like so that the surface on which the coating layer is formed faces upward.
  • the side wall part 130 is arranged on the substrate holding stage 120 so as to surround the substrate 10 .
  • the side wall portion 130 is arranged such that the lower surface is in close contact with the upper surface of the substrate holding stage 120 and gas does not leak from between the upper surface of the substrate holding stage 120 and the lower surface of the side wall portion 130 when the substrate 10 is dried under reduced pressure.
  • the distance from the inner surface of the side wall portion 130 to the outer edge of the substrate 10 is 30 mm or less, and more preferably 5 mm or less.
  • the height of the side wall portion 130 is desirably determined by the diameter of a through hole 151 of the rectifying plate 150 and the thickness of the rectifying plate 150 , which will be described later.
  • the partition 140 is composed of a plurality of plate-like members having surfaces substantially parallel to the vertical direction.
  • the partition 140 is arranged so that the lower surface faces the area other than the coating area 11 on the substrate 10, that is, the area where the coating layer containing the solvent is not formed.
  • the partition 140 is arranged so that the portion facing the inner surface of the side wall portion 130 is in close contact with the inner surface of the side wall portion 130 and gas does not leak from between the side wall portion 130 and the inner surface of the partition 140 when the substrate 10 is dried under reduced pressure. It is The height of the partition 140 is such that it does not contact the substrate 10 .
  • a drying process in which a plurality of coating regions 11 exist is susceptible to the saturated vapor of the coating regions 11 adjacent to each other. It is desirable to reduce the impact.
  • the partition 140 partitions the space above the substrate 10 into each coating region 11 together with the side wall portion 130, and adjusts the airflow in each space.
  • the rectifying plate 150 is arranged so as to cover the region surrounded by the side wall portion 130 from above.
  • the bottom surface of the rectifying plate 150 is in close contact with the top surfaces of the side wall portion 130 and the partition 140 so that gas does not leak from between the top surfaces of the side wall portion 130 and the partition 140 and the bottom surface of the rectifying plate 150 when the substrate 10 is dried under reduced pressure. are placed.
  • a plurality of through holes 151 are formed in the current plate 150 .
  • the aperture ratio of the current plate 150 is set to an appropriate value according to the type of solvent of the coating layer applied on the substrate 10, the coating pattern of the coating layer, the pressure profile during drying under reduced pressure, and the like. Specifically, it is possible to set the aperture ratio of the portion of the straightening plate 150 facing each coating region 11 according to the amount of solvent in each coating region 11 before evacuation.
  • the opening ratio of the portions facing the coating regions 11 in which the coating layer with the large amount of solvent is formed before evacuation is calculated as follows: It can be set to be larger than the aperture ratio of the portion facing the formed coating region 11 . Further, when the exhaust flow velocity in the central portion of each coating region 11 during decompression exhaust is slower than the exhaust flow velocity in the outer peripheral portion, and the amount of solvent remaining in the central portion increases, each coating region in the rectifying plate 150 The opening ratio of the portion facing the central portion of 11 can be set larger than the opening ratio of the portion facing the outer peripheral portion.
  • the rectifying plate 150 is configured by, for example, connecting in the horizontal direction a plurality of punching plates, or a plurality of wire meshes or wire mesh filters capable of controlling the fluid resistance value with a high mesh such as plain weave or twilled weave. You may In addition, when the opening ratio of the rectifying plate 150 differs depending on the amount of solvent in each coating region 11, or when it differs depending on whether or not the portion faces the central portion of the coating region 11, a plurality of punching plates having different opening ratios may be used. Alternatively, one rectifying plate 150 may be configured by horizontally connecting wire meshes or wire mesh filters having different mesh sizes. From the viewpoint of suppressing temperature unevenness in the current plate 150 itself, it is desirable to use a material with high thermal conductivity, such as aluminum, as the material of the current plate 150 .
  • the shape of the through hole 151 that defines the aperture ratio of the straightening plate 150 is not particularly limited, but is preferably circular or polygonal. It is preferably shorter than the vertical distance L1 to plate 150 . It is preferable that the aperture ratio of the portions of the rectifying plate 150 facing the coating regions 11 is 0.1% to 63%.
  • the same number of suction control units 160 as the application areas 11 are provided.
  • the plurality of suction control units 160 may be composed of one member, or may be composed of separate members.
  • Each suction control part 160 is formed in a substantially truncated quadrangular pyramid shape in which an upper opening 161 at the upper end is smaller than a lower opening at the lower end.
  • the lower opening is an example of a first opening
  • the upper opening 161 is an example of a second opening.
  • Each suction control unit 160 is arranged so as to substantially block the space above each application region 11 .
  • a lower end surface of each suction control portion 160 is in close contact with a portion of the upper surface of the straightening plate 150 that substantially overlaps the side wall portion 130 or the partition 140 in a plan view.
  • the size of the upper opening 161 of each suction control unit 160 can be set according to the amount of solvent in each coating region 11 before evacuation. For example, suction control is performed so that the upper opening 161 of the suction control unit 160 facing the coating region 11 formed with a coating layer with a large amount of solvent is formed before evacuation, and the upper opening 161 faces the coating region 11 with a coating layer with a small amount of solvent formed thereon. It can be formed larger than the upper opening 161 of the portion 160 .
  • the gas supply unit 170 includes, for example, a gas supply source 171, a mass flow controller 172, and an opening/closing valve 173.
  • a gas supply source 171 is connected to the chamber 110 through a pipe having a mass flow controller 172 and an opening/closing valve 173 in the middle, and supplies an inert gas such as nitrogen gas to the interior of the chamber 110 .
  • the amount of inert gas supplied can be adjusted by the mass flow controller 172 .
  • the pressure reducing unit 180 reduces the pressure inside the chamber 110 to a pressure lower than the atmospheric pressure.
  • the decompression unit 180 includes a decompression source 181 and an APC (Adaptive Pressure Control) valve 182 .
  • a dry pump, a mechanical booster pump, a turbomolecular pump, or the like is used as the reduced pressure source 181, for example.
  • the reduced pressure source 181 is connected to the chamber 110 via a pipe having an APC valve 182 in the middle, and reduces the pressure inside the chamber 110 .
  • the pressure inside the chamber 110 is reduced to, for example, 1 Pa or less while being adjusted by the APC valve 182 .
  • the pressure reduction profile correlates with the evaporation behavior of the solvent in the coating layer, and is an important control parameter for achieving uniform drying.
  • An exhaust port 111 of the chamber 110 is arranged at an isotropic position with respect to the substrate holding stage 120 . For example, it is arranged at a position corresponding to the central portion of the substrate holding stage 120 in plan view.
  • the relative movement section 190 raises and lowers the side wall section 130 , the partition 140 , the straightening plate 150 and the suction control section 160 with respect to the substrate holding stage 120 .
  • the relative movement section 190 may raise and lower the side wall section 130, the partition 140, the current plate 150, and the suction control section 160 without raising and lowering the substrate holding stage 120, or may move the side wall section 130, the partition 140, the current plate 150, and the suction control section 160 up and down.
  • the substrate holding stage 120 may be raised and lowered without raising and lowering the suction control section 160, or the side wall section 130, the partition 140, the rectifying plate 150 and the suction control section 160 may be raised and lowered while moving in the direction opposite to the moving direction thereof.
  • the substrate holding stage 120 may be raised and lowered.
  • the coating layer of the coating region 11 of the substrate 10 may be used for manufacturing an organic EL light-emitting diode, may be used for manufacturing a quantum dot light-emitting device, or may be used for manufacturing an organic thin-film transistor. It may be one used for manufacturing.
  • the relative movement section 190 raises the side wall section 130 , the partition 140 , the current plate 150 and the suction control section 160 with respect to the substrate holding stage 120 at the same time.
  • a transfer device (not shown) carries the substrate 10 having a plurality of coating regions 11 formed with a coating layer containing a solvent from the outside of the reduced pressure drying device 100 into the chamber 110, It is placed on the substrate holding stage 120 .
  • the relative movement section 190 moves the side wall section 130 , the partition 140 , the straightening plate 150 and the suction control section 160 to the substrate holding stage 120 . and simultaneously lower it to the state shown in FIG.
  • the gas supply unit 170 supplies an inert gas to the inside of the chamber 110 to create an inert gas atmosphere inside the chamber 110 .
  • the pressure reducing unit 180 reduces the pressure inside the chamber 110 in the inert gas atmosphere.
  • the inert gas has a large effect on the evaporation of the solvent present at the edge of the coating area 11 .
  • the inert gas and solvent vapor existing near the upper surface of the substrate 10 turn into an air current, pass through the through hole 151 of the current plate 150 and the upper opening 161 of the suction control unit 160, and enter the exhaust port 111 of the chamber 110. be carried.
  • the side wall portion 130 , the partition 140 , the straightening plate 150 and the suction control portion 160 regulate the airflow from near the upper surface of the substrate 10 toward the exhaust port 111 of the chamber 110 .
  • the solvent vapor is heavier than the inert gas, first, the region surrounded by the side wall portion 130, the partition 140 and the current plate 150 is filled with the solvent vapor below the inert gas. After spreading over the entire surface of each coating region 11, the solvent vapor diffuses upward while being prevented from spreading to other coating regions 11 by the partition 140. Vapor pressure unevenness is reduced.
  • the aperture ratio of the portion of current plate 150 facing each coating region 11 and the size and shape of upper opening 161 of each suction control unit 160 are determined by the solvent in each coating region 11 before evacuation. Since the space above each coating region 11 is partitioned by the side wall portion 130 and the partition 140, the decompression rate of the entire chamber 110 is the same, but it differs depending on each coating region 11.
  • Vapors generated from each coating area 11 can be evacuated at a high speed. As a result, the same drying process can be used to complete the vacuum drying of the entire coating area 11 at the same time.
  • the opening ratio of the portion facing the central portion of each application area 11 is set larger than the opening ratio of the portion facing the outer peripheral portion. Therefore, it is possible to reduce unevenness in drying caused by the drying of the outer peripheral portion of each coating region 11 being fast and the drying of the central portion being slow. As a result, the film thickness of the coating layer formed in each coating region 11 of the substrate 10 can be made uniform within the surface of the substrate 10 .
  • the adjustment of the evaporation rate of the solvent is performed by the vertical distance L1 from the substrate 10 to the current plate 150, the distance L2 from the side wall portion 130 to the edge of the coating area 11, and the distance from the partition 140 to the edge of the coating area 11. , the distribution of the through holes 151 of the current plate 150, the area of the upper opening 161 of the suction control unit 160, and the like.
  • the distance L1 from the substrate 10 to the rectifying plate 150 should be long enough so that the tendency of the opening pattern of the rectifying plate 150 does not appear in the evaporation distribution of the solvent from the substrate 10.
  • the distance L1 is at least twice the diameter of the through hole 151. Keeping distance is preferable.
  • the distance L2 from the side wall portion 130 to the edge of the application area 11 and the distance L3 from the partition 140 to the edge of the application area 11 are approximately the same distance, and the shorter the distance, the outer circumference of the application area 11. It is highly effective in suppressing dryness. Further, by adjusting the distribution of the through-holes 151 of the straightening plate 150 and the area of the upper opening 161 of the suction control section 160, the evaporation time of the solvent in each coating region 11 can be adjusted. The above conditions differ depending on the size of the substrate 10, the amount of solvent in the coating layer formed on each coating region 11, the pattern, etc., in completing the vacuum drying of all the coating regions 11 simultaneously by the same drying process. adjusted accordingly.
  • the gas supply unit 170 supplies inert gas to the interior of the chamber 110 to return the interior of the chamber 110 to the atmosphere before decompression.
  • the relative movement section 190 moves the side wall section 130 , the partition 140 , the straightening plate 150 and the suction control section 160 up and down simultaneously with respect to the substrate holding stage 120 , and the transfer device takes out the substrate 10 from the substrate holding stage 120 .
  • the reduced-pressure drying apparatus 100 is surrounded by the side wall portion 130 and the partition 140 arranged so as to partition the space above each coating region 11, and the side wall portion 130. and a rectifying plate 150 that closes the region from above. Therefore, during drying under reduced pressure, the space above each coating region 11 can be filled with vapor of the solvent below the inert gas, and the solvent evaporates from the coating layer formed in each coating region 11. It is possible to suppress the unevenness of the vapor pressure of As a result, it is possible to suppress the occurrence of uneven drying in each coating region 11 .
  • the reduced pressure drying according to the present disclosure By using the apparatus 100, the unevenness of the film thickness of the coating layer within the surface of the substrate 10 has been improved to about 80%.
  • the application pattern is changed.
  • the effect of the reduced-pressure drying apparatus 100 of the present disclosure is remarkably exhibited when forming a changing pattern.
  • Modification 1 Differences from the embodiment are that a temperature control section for controlling the temperature of the substrate holding stage 120 and the side wall section 130 is provided, and that the side wall section 130, the partition 140 and the straightening plate 150 are thermally connected.
  • a chiller in which cooling water is flowed, a Peltier device, or the like is used as the temperature control unit.
  • the saturated vapor pressure of the solvent in the space surrounded by the substrate holding stage 120, the side wall portion 130, and the straightening plate 150 can be lowered before the substrate 10 is placed on the substrate holding stage 120.
  • FIG. Therefore, when the substrate 10 is placed on the substrate holding stage 120, the space around the substrate 10 reaches the saturated vapor pressure earlier than at normal temperature, so the evaporation of the solvent in the coating layer can be stopped earlier than at normal temperature. can.
  • the absolute amount of the solvent that volatilizes in the space around the substrate can be reduced exponentially compared to the normal temperature. It is possible to suppress unevenness in the drying rate that occurs before decompression than at room temperature.
  • Side wall portion 130 and straightening plate 150 adsorb solvent vapor by cooling.
  • the solvent can be desorbed from the Further, a configuration that adjusts the temperature of at least one of the substrate holding stage 120, the side wall portion 130, and the partition 140 may be applied as the temperature control portion.
  • FIG. 3 shows a longitudinal sectional view of a reduced pressure drying apparatus 100 according to Modification 2.
  • a partition 140 is also arranged between the side wall portion 130 and the coating region 11 .
  • FIG. 1 it is possible to create a state in which all sides of the coating region 11 in plan view are adjacent to the partitions 140, and it is possible to further improve the film thickness uniformity of the coating layer of the substrate 10.
  • FIG. 4 shows a longitudinal sectional view of a reduced-pressure drying apparatus 100 according to Modification 3.
  • an elastic body 141 is provided at the lower end of the partition 140 .
  • the elastic body 141 deforms when it comes into physical contact with the substrate 10 , so that the partition 140 and the substrate 10 can be sealed without breaking the substrate 10 . Therefore, the steam between the coating regions 11 can be completely shut off, the effect of the steam from the adjacent coating regions 11 on each coating region 11 can be eliminated, and the film thickness uniformity of the coating layer on the substrate 10 can be further improved. becomes possible.
  • FIG. 5 shows a longitudinal sectional view of a reduced pressure drying apparatus 100 according to Modification 4.
  • an elastic body 131 is provided at the lower end of the side wall portion 130 . Accordingly, by driving the relative movement portion 190 within the deformable range of the elastic body 131, the distance between the current plate 150 and the substrate 10 can be adjusted. Therefore, the distance between the partition 140 and the substrate 10 can be made smaller, and the film thickness uniformity of the coating layer of the substrate 10 can be further improved.
  • the aperture ratios of portions of the rectifying plate 150 that face the application regions 11 may be set to the same value.
  • the opening ratio of the portion facing each coating region 11 is varied according to the amount of solvent in each coating region 11 before evacuation, and the portion facing the central portion and the portion facing the outer peripheral portion of each coating region 11 may be set to the same value.
  • the vacuum drying apparatus 100 does not have to include the suction control section 160.
  • the reduced-pressure drying apparatus and reduced-pressure drying method of the present disclosure when a substrate having a plurality of coating regions on which a coating layer containing a solvent is formed is dried under reduced pressure, uneven drying occurs in each coating region. can be suppressed.
  • the vacuum drying apparatus and the vacuum drying method of the present disclosure can be suitably applied to the manufacture of a display panel in which the film thickness of the coating layer formed in a plurality of coating regions on the substrate is uniform within the plane.

Abstract

The vacuum drying device comprises: a chamber for housing a substrate having a plurality of coated regions on which a coating layer including a solvent is formed; a substrate-holding stage for holding the substrate inside the chamber; side wall portions arranged around the substrate held on the substrate-holding stage; partitions arranged on the inside of the side wall portions, the partitions partitioning the space of the plurality of coated regions on the substrate into each coating region; baffle plates arranged so as to close the spaces partitioned by the side wall portions and the partitions at positions facing the substrate and having a plurality of through-holes formed therein; a gas supply unit for supplying an inert gas to the inside of the chamber; and a vacuum unit for reducing the pressure inside the chamber.

Description

減圧乾燥装置および減圧乾燥方法Vacuum drying apparatus and vacuum drying method
 本開示は、減圧乾燥装置および減圧乾燥方法に関する。 The present disclosure relates to a vacuum drying apparatus and a vacuum drying method.
 従来、有機EL(Electroluminescence)の発光を利用した発光ダイオードである有機発光ダイオード(OLED:Organic Light Emitting Diode)が知られている。有機発ダイオードを用いた有機ELディスプレイは、薄型軽量かつ低消費電力であるうえ、応答速度や視野角、コントラスト比の面で優れているといった利点を有している。 Organic Light Emitting Diodes (OLEDs), which are light emitting diodes that utilize organic EL (Electroluminescence) light emission, have been known. Organic EL displays using organic light-emitting diodes have the advantages of being thin, light, and low power consumption, as well as being excellent in terms of response speed, viewing angle, and contrast ratio.
 さらには、発光層に有機EL材料ではなく、量子ドット発光材料を用いた量子ドット発光デバイス(QLED:Quantum-dot Light Emitting Diode)も急速に注目が高まっている。QLEDは、基板上に形成される陽極と、陽極を基準として基板とは反対側に設けられる陰極と、これらの間に設けられる有機層とを有する。有機層は、例えば陽極側から陰極側に向けて、正孔注入層、正孔輸送層、発光層、電子輸送層、および電子注入層をこの順で有する。正孔注入層や正孔輸送層、発光層などの形成には、インクジェット法の塗布装置が用いられる。塗布装置は、有機材料および溶剤を含む塗布液を基板上に塗布することで、塗布層を形成する。その塗布層を減圧乾燥、焼成することで、正孔注入層などが形成される(例えば、特許文献1参照)。 Furthermore, quantum-dot light-emitting devices (QLED: Quantum-dot Light Emitting Diode) that use quantum dot light-emitting materials instead of organic EL materials in the light-emitting layer are rapidly gaining attention. A QLED has an anode formed on a substrate, a cathode provided on the opposite side of the substrate from the anode, and an organic layer provided therebetween. The organic layer has, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in this order from the anode side to the cathode side. A coating apparatus for an inkjet method is used for forming the hole injection layer, the hole transport layer, the light emitting layer, and the like. The coating device forms a coating layer by coating a substrate with a coating liquid containing an organic material and a solvent. By drying and baking the coating layer under reduced pressure, a hole injection layer and the like are formed (see, for example, Patent Document 1).
 特許文献1に記載のような塗布装置を用いて塗布層を形成する際、基板の面内で、塗布層の減圧乾燥速度にムラがあるため、均一な減圧乾燥プロセスを追究することで、減圧乾燥速度のムラを低減し、基板の利用率を向上させる対策が取られてきた(例えば、特許文献2参照)。特許文献2の減圧乾燥装置は、基板保持ステージに保持された基板の上面付近から処理容器の排気口に向かう気流を規制する気流規制部を備える。気流規制部は、基板の側方で気流を遮る側壁部および基板の上方で気流を遮る天井部で形成されたカバーと、基板の上方でカバーの内部を仕切る仕切り部とを備える。このような構成において、基板と仕切り部との上下方向の間隔を間隔調整部で調整することによって、減圧乾燥速度のムラを低減していた。 When forming a coating layer using a coating device such as that described in Patent Document 1, the speed of drying the coating layer under reduced pressure is uneven within the surface of the substrate. Measures have been taken to reduce unevenness in drying speed and improve substrate utilization (see, for example, Patent Document 2). The reduced-pressure drying apparatus of Patent Document 2 includes an airflow regulating portion that regulates airflow from the vicinity of the upper surface of the substrate held on the substrate holding stage toward the exhaust port of the processing container. The airflow regulating portion includes a cover formed of a side wall portion that blocks the airflow on the side of the substrate and a ceiling portion that blocks the airflow above the substrate, and a partition portion that partitions the inside of the cover above the substrate. In such a configuration, unevenness in the reduced-pressure drying rate is reduced by adjusting the vertical spacing between the substrate and the partition using the spacing adjusting section.
 以上のような技術によって発展してきたディスプレイ製造方法だが、さらに基板の利用率を向上させる技術として、異なるサイズの表示パネルを1枚の基板で同時に生産するMMG(Multi Models on Glass)という技術が知られている。一例として、55インチが2枚と65インチ3枚の組合せや、82インチ2枚と32インチ3枚の組合せなど、さまざまなサイズのパネルを生産することによって、基板の利用率を向上させることができる。 The display manufacturing method has been developed by the above technologies, but as a technology to further improve the utilization rate of the substrate, a technology called MMG (Multi Models on Glass), which simultaneously produces display panels of different sizes on a single substrate, is known. It is For example, by producing panels of various sizes, such as a combination of two 55-inch panels and three 65-inch panels, or a combination of two 82-inch panels and three 32-inch panels, the substrate utilization rate can be improved. can.
特許第6338507号公報Japanese Patent No. 6338507 特許第6804250号公報Japanese Patent No. 6804250
 本開示の一態様の減圧乾燥装置は、溶剤を含む塗布層が形成された複数の塗布領域を有する基板を収容するチャンバーと、前記チャンバーの内部で、前記基板を保持する基板保持ステージと、前記基板保持ステージに保持された前記基板の周囲に配置された側壁部と、前記側壁部の内側に配置され、前記基板の前記複数の塗布領域上の空間を前記塗布領域ごとに仕切る仕切りと、前記基板に対向する位置において前記側壁部および前記仕切りで仕切られた前記空間を塞ぐように配置された整流板であって、複数の貫通穴が形成された前記整流板と、前記チャンバーの内部に不活性ガスを供給するガス供給部と、前記チャンバーの内部を減圧する減圧部と、を備える。 A reduced-pressure drying apparatus according to one aspect of the present disclosure includes a chamber for accommodating a substrate having a plurality of coating regions on which a coating layer containing a solvent is formed, a substrate holding stage for holding the substrate inside the chamber, and a side wall portion arranged around the substrate held by the substrate holding stage; a partition arranged inside the side wall portion and partitioning a space above the plurality of coating regions of the substrate for each of the coating regions; A rectifying plate disposed at a position facing the substrate so as to block the space partitioned by the side wall portion and the partition, the rectifying plate having a plurality of through holes formed therein, and an imperfection inside the chamber. A gas supply unit for supplying an active gas and a decompression unit for decompressing the inside of the chamber are provided.
本開示の実施の形態に係る減圧乾燥装置の縦断面図FIG. 1 is a vertical cross-sectional view of a reduced-pressure drying apparatus according to an embodiment of the present disclosure; 図1のA-A線に沿う横断面図Cross-sectional view along line AA in FIG. 本開示の変形例2に係る減圧乾燥装置の縦断面図Longitudinal cross-sectional view of a reduced-pressure drying apparatus according to Modification 2 of the present disclosure 本開示の変形例3に係る減圧乾燥装置の縦断面図Longitudinal cross-sectional view of a reduced-pressure drying apparatus according to Modification 3 of the present disclosure 本開示の変形例4に係る減圧乾燥装置の縦断面図Longitudinal cross-sectional view of a reduced-pressure drying apparatus according to Modification 4 of the present disclosure
 MMG技術では、減圧乾燥時に以下のような課題がある。隙間なく配置される液滴群で構成された塗布層、または、表示パネルの素子のように2次元的に所定のピッチで配置された液滴群で構成された塗布層が形成された塗布領域が複数設けられた基板を減圧乾燥する際、1つの塗布領域を区画する辺のうち、他の塗布領域に隣接している辺と、他の塗布領域に隣接していない辺とでは、隣接する塗布領域の蒸気圧の影響の有無によって、乾燥速度が異なる。そのため、各塗布領域内での乾燥ムラが発生するという課題がある。 With MMG technology, there are the following issues when drying under reduced pressure. A coating layer formed of droplet groups arranged without any gaps, or a coating region formed of a coating layer formed of droplet groups arranged two-dimensionally at a predetermined pitch like elements of a display panel. When drying a substrate on which a plurality of is provided under reduced pressure, among the sides defining one coating region, the sides adjacent to other coating regions and the sides not adjacent to other coating regions are not adjacent to each other. The drying rate differs depending on whether or not the vapor pressure of the coated area is affected. Therefore, there is a problem that drying unevenness occurs in each coating area.
 本開示は、上記課題を解決するものであり、溶剤を含む塗布層が形成された複数の塗布領域を有する基板を減圧乾燥させる際に、各塗布領域のそれぞれにおいて乾燥ムラが発生することを抑制できる減圧乾燥装置および減圧乾燥方法を提供することを目的とする。 The present disclosure is intended to solve the above problems, and suppresses the occurrence of uneven drying in each coating region when drying a substrate having a plurality of coating regions on which a coating layer containing a solvent is formed under reduced pressure. It is an object of the present invention to provide a reduced pressure drying apparatus and a reduced pressure drying method.
 [実施の形態]
 本開示の実施の形態について説明する。図1は、実施の形態に係る減圧乾燥装置の縦断面図である。図2は、図1のA-A線に沿う横断面図である。
[Embodiment]
An embodiment of the present disclosure will be described. FIG. 1 is a vertical cross-sectional view of a reduced-pressure drying apparatus according to an embodiment. 2 is a cross-sectional view taken along line AA of FIG. 1. FIG.
 <減圧乾燥装置の構成>
 図1および図2に示す減圧乾燥装置100は、溶剤を含む塗布層が塗布領域11に形成された基板10をチャンバー110の内部に収容し、気圧が大気圧よりも低い減圧雰囲気中で、塗布層から溶剤を蒸発させる。塗布層は、隙間なく配置された液滴群、または、表示パネルの素子のように2次元的に所定のピッチで配置された液滴群で構成されている。減圧乾燥装置100は、チャンバー110と、基板保持ステージ120と、側壁部130と、仕切り140と、整流板150と、複数の吸引制御部160と、ガス供給部170と、減圧部180と、相対移動部190とを有する。
<Structure of Vacuum Drying Apparatus>
The reduced-pressure drying apparatus 100 shown in FIGS. 1 and 2 accommodates the substrate 10 on which the coating layer containing the solvent is formed in the coating region 11 inside the chamber 110, and applies the coating in a reduced-pressure atmosphere whose pressure is lower than the atmospheric pressure. Evaporate the solvent from the layer. The coating layer is composed of a group of liquid droplets arranged without gaps, or a group of liquid droplets arranged two-dimensionally at a predetermined pitch like elements of a display panel. The reduced-pressure drying apparatus 100 includes a chamber 110, a substrate holding stage 120, a side wall portion 130, a partition 140, a straightening plate 150, a plurality of suction control portions 160, a gas supply portion 170, a pressure reducing portion 180, a relative and a moving unit 190 .
 チャンバー110は、基板10を収容する。図示はしていないが、チャンバー110の側壁部には、基板10の搬入出口が形成されている。搬入出口の周辺には、搬入出口を開閉する開閉シャッタが配置されている。開閉シャッタが搬入出口を開放することで、基板10の搬入出が可能となり、開閉シャッタが搬入出口を閉塞することで、チャンバー110の内部の減圧が可能となる。 The chamber 110 accommodates the substrate 10 . Although not shown, a loading/unloading port for the substrate 10 is formed in the side wall of the chamber 110 . An opening/closing shutter for opening and closing the loading/unloading port is arranged around the loading/unloading port. The open/close shutter opens the loading/unloading port to allow the substrate 10 to be loaded/unloaded, and the open/close shutter closes the loading/unloading port to allow the pressure inside the chamber 110 to be reduced.
 基板保持ステージ120は、チャンバー110の内部に配置されている。基板保持ステージ120は、塗布層が形成された面が上を向くように、基板10を吸着などにより保持する。 The substrate holding stage 120 is arranged inside the chamber 110 . The substrate holding stage 120 holds the substrate 10 by suction or the like so that the surface on which the coating layer is formed faces upward.
 側壁部130は、基板保持ステージ120上おいて、基板10を囲むように配置されている。側壁部130は、下面が基板保持ステージ120の上面に密着し、基板保持ステージ120の上面と側壁部130の下面との間から、基板10の減圧乾燥時に気体が漏れないように、配置されている。側壁部130の内面から基板10の外縁までの距離は、30mm以下であり、5mm以下がより望ましい。側壁部130の高さは、整流板150の後述する貫通穴151の径や整流板150の厚さで決定することが望ましい。 The side wall part 130 is arranged on the substrate holding stage 120 so as to surround the substrate 10 . The side wall portion 130 is arranged such that the lower surface is in close contact with the upper surface of the substrate holding stage 120 and gas does not leak from between the upper surface of the substrate holding stage 120 and the lower surface of the side wall portion 130 when the substrate 10 is dried under reduced pressure. there is The distance from the inner surface of the side wall portion 130 to the outer edge of the substrate 10 is 30 mm or less, and more preferably 5 mm or less. The height of the side wall portion 130 is desirably determined by the diameter of a through hole 151 of the rectifying plate 150 and the thickness of the rectifying plate 150 , which will be described later.
 仕切り140は、鉛直方向とほぼ平行な面を有する複数の板状部材により構成されている。仕切り140は、下面が基板10上の塗布領域11以外の領域、つまり溶剤を含む塗布層が形成されていない領域に対向するように、配置されている。仕切り140は、側壁部130の内面に対向する部位が側壁部130の内面に密着し、側壁部130と仕切り140の内面との間から、基板10の減圧乾燥時に気体が漏れないように、配置されている。仕切り140の高さは、基板10と接触しない高さである。塗布領域11が複数存在する乾燥プロセスでは、互いに隣接する塗布領域11の飽和蒸気の影響を受けやすいため、仕切り140と基板10の間隔をなるべく小さくことで、互いに隣接する塗布領域11の飽和蒸気の影響を小さくすることが望ましい。仕切り140は、側壁部130とともに、基板10上の空間を塗布領域11ごとに区画し、各空間の気流を調整する。 The partition 140 is composed of a plurality of plate-like members having surfaces substantially parallel to the vertical direction. The partition 140 is arranged so that the lower surface faces the area other than the coating area 11 on the substrate 10, that is, the area where the coating layer containing the solvent is not formed. The partition 140 is arranged so that the portion facing the inner surface of the side wall portion 130 is in close contact with the inner surface of the side wall portion 130 and gas does not leak from between the side wall portion 130 and the inner surface of the partition 140 when the substrate 10 is dried under reduced pressure. It is The height of the partition 140 is such that it does not contact the substrate 10 . A drying process in which a plurality of coating regions 11 exist is susceptible to the saturated vapor of the coating regions 11 adjacent to each other. It is desirable to reduce the impact. The partition 140 partitions the space above the substrate 10 into each coating region 11 together with the side wall portion 130, and adjusts the airflow in each space.
 整流板150は、側壁部130で囲まれた領域を上から塞ぐように配置されている。整流板150は、下面が側壁部130および仕切り140の上面に密着し、側壁部130および仕切り140の上面と整流板150の下面の間から、基板10の減圧乾燥時に気体が漏れないように、配置されている。 The rectifying plate 150 is arranged so as to cover the region surrounded by the side wall portion 130 from above. The bottom surface of the rectifying plate 150 is in close contact with the top surfaces of the side wall portion 130 and the partition 140 so that gas does not leak from between the top surfaces of the side wall portion 130 and the partition 140 and the bottom surface of the rectifying plate 150 when the substrate 10 is dried under reduced pressure. are placed.
 整流板150には、複数の貫通穴151が形成されている。貫通穴151の穴径、数および分布を調整することにより、整流板150の開口率を任意に設定することができる。整流板150の開口率は、基板10上に塗布された塗布層の溶剤の種類や、塗布層の塗布パターン、減圧乾燥時の圧力プロファイルなどに応じて、適切な値に設定される。具体的には、整流板150における各塗布領域11に対向する部位の開口率を、減圧排気前の各塗布領域11の溶剤量に応じて設定することができる。例えば、整流板150における各塗布領域11に対向する部位のうち、減圧排気前の溶剤量が多い塗布層が形成された塗布領域11に対向する部位の開口率を、溶剤量が少ない塗布層が形成された塗布領域11に対向する部位の開口率よりも大きく設定することができる。また、減圧排気中の各塗布領域11の中央部の排気流速が外周部の排気流速と比較して遅いことで、中央部に残留する溶剤の量が多くなる場合、整流板150における各塗布領域11の中央部に対向する部位の開口率を、外周部に対向する部位の開口率よりも大きく設定することができる。 A plurality of through holes 151 are formed in the current plate 150 . By adjusting the hole diameter, number and distribution of the through holes 151, the aperture ratio of the straightening plate 150 can be arbitrarily set. The aperture ratio of the current plate 150 is set to an appropriate value according to the type of solvent of the coating layer applied on the substrate 10, the coating pattern of the coating layer, the pressure profile during drying under reduced pressure, and the like. Specifically, it is possible to set the aperture ratio of the portion of the straightening plate 150 facing each coating region 11 according to the amount of solvent in each coating region 11 before evacuation. For example, among the portions of the straightening plate 150 facing the coating regions 11, the opening ratio of the portions facing the coating regions 11 in which the coating layer with the large amount of solvent is formed before evacuation is calculated as follows: It can be set to be larger than the aperture ratio of the portion facing the formed coating region 11 . Further, when the exhaust flow velocity in the central portion of each coating region 11 during decompression exhaust is slower than the exhaust flow velocity in the outer peripheral portion, and the amount of solvent remaining in the central portion increases, each coating region in the rectifying plate 150 The opening ratio of the portion facing the central portion of 11 can be set larger than the opening ratio of the portion facing the outer peripheral portion.
 なお、整流板150を、例えば、複数のパンチングプレート、または、平織、綾畳織などの高メッシュにより流体抵抗値を制御することのできる複数の金網や金網フィルタを、水平方向に繋げることによって構成してもよい。また、整流板150の開口率が各塗布領域11の溶剤量に応じて異なる場合や、塗布領域11の中央部に対向する部位か否かに応じて異なる場合、開口率が異なる複数のパンチングプレート、または、メッシュの大きさが異なる金網や金網フィルタを水平方向に繋げることにより1枚の整流板150を構成してもよい。整流板150の材料としては、整流板150自体の温度ムラを抑制する観点から、熱伝導性の高い材料、例えばアルミ等の材料を適用することが望ましい。 The rectifying plate 150 is configured by, for example, connecting in the horizontal direction a plurality of punching plates, or a plurality of wire meshes or wire mesh filters capable of controlling the fluid resistance value with a high mesh such as plain weave or twilled weave. You may In addition, when the opening ratio of the rectifying plate 150 differs depending on the amount of solvent in each coating region 11, or when it differs depending on whether or not the portion faces the central portion of the coating region 11, a plurality of punching plates having different opening ratios may be used. Alternatively, one rectifying plate 150 may be configured by horizontally connecting wire meshes or wire mesh filters having different mesh sizes. From the viewpoint of suppressing temperature unevenness in the current plate 150 itself, it is desirable to use a material with high thermal conductivity, such as aluminum, as the material of the current plate 150 .
 また、整流板150の開口率を規定する貫通穴151の形状は特に限定されないが、円形または多角形であることが好ましく、さらに、円形の直径または多角形の対角線長さは、基板10から整流板150までの垂直方向の距離L1よりも短いことが好ましい。なお、整流板150における各塗布領域11に対向する部位の開口率は、0.1%~63%であることが好ましい。 The shape of the through hole 151 that defines the aperture ratio of the straightening plate 150 is not particularly limited, but is preferably circular or polygonal. It is preferably shorter than the vertical distance L1 to plate 150 . It is preferable that the aperture ratio of the portions of the rectifying plate 150 facing the coating regions 11 is 0.1% to 63%.
 吸引制御部160は、塗布領域11と同じ数、設けられている。複数の吸引制御部160は、1つの部材で構成されていてもよいし、別々の部材で構成されていてもよい。各吸引制御部160は、上端の上側開口161が下端の下側開口よりも小さいほぼ四角錐台筒状に形成されている。下側開口は第1の開口の一例であり、上側開口161は第2の開口の一例である。各吸引制御部160は、各塗布領域11の上方の空間をほぼ塞ぐように配置されている。各吸引制御部160の下端面は、整流板150の上面における平面視で側壁部130または仕切り140にほぼ重なる部位に密着している。このような構成によって、基板10の減圧乾燥時に、各吸引制御部160の下端面と整流板150との間から気体が漏れずに、各吸引制御部160の上側開口161からのみ気体を流出させることができる。また、各吸引制御部160の上側開口161の大きさを、減圧排気前の各塗布領域11の溶剤量に応じて設定することができる。例えば、減圧排気前の溶剤量が多い塗布層が形成された塗布領域11に対向する吸引制御部160の上側開口161を、溶剤量が少ない塗布層が形成された塗布領域11に対向する吸引制御部160の上側開口161よりも大きく形成することができる。このように、上側開口161の大きさを、各吸引制御部160に対向する塗布領域11の溶剤量に応じて設定することで、1枚の基板10上に塗布された溶剤量が異なる複数の塗布領域11を、同一の乾燥プロセスにて同時に乾燥させることができる。 The same number of suction control units 160 as the application areas 11 are provided. The plurality of suction control units 160 may be composed of one member, or may be composed of separate members. Each suction control part 160 is formed in a substantially truncated quadrangular pyramid shape in which an upper opening 161 at the upper end is smaller than a lower opening at the lower end. The lower opening is an example of a first opening, and the upper opening 161 is an example of a second opening. Each suction control unit 160 is arranged so as to substantially block the space above each application region 11 . A lower end surface of each suction control portion 160 is in close contact with a portion of the upper surface of the straightening plate 150 that substantially overlaps the side wall portion 130 or the partition 140 in a plan view. With such a configuration, when the substrate 10 is dried under reduced pressure, the gas does not leak from between the lower end surface of each suction control section 160 and the straightening plate 150, and the gas flows out only from the upper opening 161 of each suction control section 160. be able to. Also, the size of the upper opening 161 of each suction control unit 160 can be set according to the amount of solvent in each coating region 11 before evacuation. For example, suction control is performed so that the upper opening 161 of the suction control unit 160 facing the coating region 11 formed with a coating layer with a large amount of solvent is formed before evacuation, and the upper opening 161 faces the coating region 11 with a coating layer with a small amount of solvent formed thereon. It can be formed larger than the upper opening 161 of the portion 160 . In this manner, by setting the size of the upper opening 161 according to the amount of solvent in the application area 11 facing each suction control unit 160, a plurality of liquids having different amounts of solvent applied to one substrate 10 can be obtained. The coated areas 11 can be dried simultaneously in the same drying process.
 ガス供給部170は、例えば、ガス供給源171と、マスフローコントローラ172と、開閉バルブ173とを備える。ガス供給源171は、マスフローコントローラ172や開閉バルブ173が途中に設けられた配管を介してチャンバー110と接続され、チャンバー110の内部に窒素ガスなどの不活性ガスを供給する。不活性ガスの供給量は、マスフローコントローラ172によって調節可能である。 The gas supply unit 170 includes, for example, a gas supply source 171, a mass flow controller 172, and an opening/closing valve 173. A gas supply source 171 is connected to the chamber 110 through a pipe having a mass flow controller 172 and an opening/closing valve 173 in the middle, and supplies an inert gas such as nitrogen gas to the interior of the chamber 110 . The amount of inert gas supplied can be adjusted by the mass flow controller 172 .
 減圧部180は、チャンバー110の内部を大気圧よりも低い気圧に減圧する。減圧部180は、減圧発生源181と、APC(Adaptive Pressure Control)バルブ182とを備える。減圧発生源181としては、例えばドライポンプ、メカニカルブースターポンプ、ターボ分子ポンプなどが用いられる。減圧発生源181は、APCバルブ182が途中に設けられた配管を介してチャンバー110と接続され、チャンバー110の内部を減圧する。チャンバー110の内部の気圧は、APCバルブ182によって調節されながら、例えば1Pa以下まで減圧される。減圧プロファイルは、塗布層の溶剤の蒸発挙動と相関があり、均一な乾燥を実現するために重要な制御パラメータである。チャンバー110の排気口111は、基板保持ステージ120に対して等方的な位置に配置される。例えば、平面視で基板保持ステージ120の中央部に対応する位置に配置される。 The pressure reducing unit 180 reduces the pressure inside the chamber 110 to a pressure lower than the atmospheric pressure. The decompression unit 180 includes a decompression source 181 and an APC (Adaptive Pressure Control) valve 182 . A dry pump, a mechanical booster pump, a turbomolecular pump, or the like is used as the reduced pressure source 181, for example. The reduced pressure source 181 is connected to the chamber 110 via a pipe having an APC valve 182 in the middle, and reduces the pressure inside the chamber 110 . The pressure inside the chamber 110 is reduced to, for example, 1 Pa or less while being adjusted by the APC valve 182 . The pressure reduction profile correlates with the evaporation behavior of the solvent in the coating layer, and is an important control parameter for achieving uniform drying. An exhaust port 111 of the chamber 110 is arranged at an isotropic position with respect to the substrate holding stage 120 . For example, it is arranged at a position corresponding to the central portion of the substrate holding stage 120 in plan view.
 相対移動部190は、側壁部130、仕切り140、整流板150および吸引制御部160を、基板保持ステージ120に対して昇降させる。相対移動部190は、基板保持ステージ120を昇降させずに、側壁部130、仕切り140、整流板150および吸引制御部160を昇降させてもよいし、側壁部130、仕切り140、整流板150および吸引制御部160を昇降させずに、基板保持ステージ120を昇降させてもよいし、側壁部130、仕切り140、整流板150および吸引制御部160を昇降させるとともに、これらの移動方向と反対方向に基板保持ステージ120を昇降させてもよい。 The relative movement section 190 raises and lowers the side wall section 130 , the partition 140 , the straightening plate 150 and the suction control section 160 with respect to the substrate holding stage 120 . The relative movement section 190 may raise and lower the side wall section 130, the partition 140, the current plate 150, and the suction control section 160 without raising and lowering the substrate holding stage 120, or may move the side wall section 130, the partition 140, the current plate 150, and the suction control section 160 up and down. The substrate holding stage 120 may be raised and lowered without raising and lowering the suction control section 160, or the side wall section 130, the partition 140, the rectifying plate 150 and the suction control section 160 may be raised and lowered while moving in the direction opposite to the moving direction thereof. The substrate holding stage 120 may be raised and lowered.
 <減圧乾燥方法>
 次に、上記構成の減圧乾燥装置100を用いた減圧乾燥方法について説明する。なお、基板10の塗布領域11の塗布層は、有機EL発光ダイオードの製造に用いられるものであってもよいし、量子ドット発光デバイスの製造に用いられるものであってもよいし、有機薄膜トランジスタの製造に用いられるものであってもよい。
<Reduced pressure drying method>
Next, a vacuum drying method using the vacuum drying apparatus 100 configured as described above will be described. The coating layer of the coating region 11 of the substrate 10 may be used for manufacturing an organic EL light-emitting diode, may be used for manufacturing a quantum dot light-emitting device, or may be used for manufacturing an organic thin-film transistor. It may be one used for manufacturing.
 先ず、相対移動部190は、側壁部130、仕切り140、整流板150および吸引制御部160を、基板保持ステージ120に対して同時に上昇させる。チャンバー110の開閉シャッタが開かれると、図示しない搬送装置は、溶剤を含む塗布層が複数の塗布領域11に形成された基板10を、減圧乾燥装置100の外部からチャンバー110の内部に搬入し、基板保持ステージ120上に載置する。基板保持ステージ120が基板10を保持し、チャンバー110の開閉シャッタが閉じられると、相対移動部190は、側壁部130、仕切り140、整流板150および吸引制御部160を、基板保持ステージ120に対して同時に降下させ、図1に示す状態にする。 First, the relative movement section 190 raises the side wall section 130 , the partition 140 , the current plate 150 and the suction control section 160 with respect to the substrate holding stage 120 at the same time. When the open/close shutter of the chamber 110 is opened, a transfer device (not shown) carries the substrate 10 having a plurality of coating regions 11 formed with a coating layer containing a solvent from the outside of the reduced pressure drying device 100 into the chamber 110, It is placed on the substrate holding stage 120 . When the substrate holding stage 120 holds the substrate 10 and the open/close shutter of the chamber 110 is closed, the relative movement section 190 moves the side wall section 130 , the partition 140 , the straightening plate 150 and the suction control section 160 to the substrate holding stage 120 . and simultaneously lower it to the state shown in FIG.
 次に、ガス供給部170が、チャンバー110の内部に不活性ガスを供給し、チャンバー110の内部を不活性ガスの雰囲気にする。次に、減圧部180は、不活性ガスの雰囲気のチャンバー110の内部を減圧する。一般的に、減圧プロセスの初期では、不活性ガスが塗布領域11の端部に存在する溶剤の蒸発に大きな影響を与える。基板10の上面付近に存在する不活性ガスと溶剤の蒸気は、気流となって、整流板150の貫通穴151、吸引制御部160の上側開口161を通過して、チャンバー110の排気口111に運ばれる。このとき、側壁部130、仕切り140、整流板150および吸引制御部160が、基板10の上面付近からチャンバー110の排気口111に向かう気流を規制する。また、溶剤の蒸気は不活性ガスよりも重いため、先ず、側壁部130、仕切り140および整流板150により囲まれた領域において、不活性ガスの下方に溶剤の蒸気が充満する状態になる。そして、溶剤の蒸気は、各塗布領域11の全面に広がった後に、仕切り140により他の塗布領域11に広がることが抑制されつつ、上方へ拡散していくので、各塗布領域11の面内の蒸気圧のムラが低減される。 Next, the gas supply unit 170 supplies an inert gas to the inside of the chamber 110 to create an inert gas atmosphere inside the chamber 110 . Next, the pressure reducing unit 180 reduces the pressure inside the chamber 110 in the inert gas atmosphere. In general, at the beginning of the depressurization process, the inert gas has a large effect on the evaporation of the solvent present at the edge of the coating area 11 . The inert gas and solvent vapor existing near the upper surface of the substrate 10 turn into an air current, pass through the through hole 151 of the current plate 150 and the upper opening 161 of the suction control unit 160, and enter the exhaust port 111 of the chamber 110. be carried. At this time, the side wall portion 130 , the partition 140 , the straightening plate 150 and the suction control portion 160 regulate the airflow from near the upper surface of the substrate 10 toward the exhaust port 111 of the chamber 110 . Moreover, since the solvent vapor is heavier than the inert gas, first, the region surrounded by the side wall portion 130, the partition 140 and the current plate 150 is filled with the solvent vapor below the inert gas. After spreading over the entire surface of each coating region 11, the solvent vapor diffuses upward while being prevented from spreading to other coating regions 11 by the partition 140. Vapor pressure unevenness is reduced.
 さらに減圧が進み、10Pa以下になると、不活性ガスが溶剤の蒸発に与える影響は小さくなり、減圧下における蒸発によって各塗布領域11から発生する蒸気の排気速度を制御することが、各塗布領域11の塗布層の膜厚を均一化させるための要因になる。本実施の形態では、整流板150の各塗布領域11に対向する部位の開口率、および、各吸引制御部160の上側開口161の大きさおよび形状が、減圧排気前の各塗布領域11の溶剤量に応じて設定されており、かつ、各塗布領域11上の空間が側壁部130および仕切り140で区画されているため、チャンバー110全体の減圧速度は同じでも、各塗布領域11に応じて異なる速度で各塗布領域11から発生する蒸気を排気することができる。その結果、同一の乾燥プロセスによって、全塗布領域11の減圧乾燥を同時に完了させることができる。また、整流板150の各塗布領域11の上方に位置する部位では、各塗布領域11の中央部に対向する部位の開口率が、外周部に対向する部位の開口率よりも大きく設定されているため、各塗布領域11の外周部の乾燥が速く、中央部の乾燥が遅くなってしまうことによる乾燥ムラを低減することができる。これらにより、基板10の各塗布領域11に形成された塗布層の膜厚を基板10の面内で均一化することができる。 When the pressure is further reduced to 10 Pa or less, the effect of the inert gas on the evaporation of the solvent becomes small, and controlling the exhaust speed of the vapor generated from each coating region 11 by evaporation under reduced pressure is an important factor for each coating region 11. It becomes a factor for uniformizing the film thickness of the coating layer. In the present embodiment, the aperture ratio of the portion of current plate 150 facing each coating region 11 and the size and shape of upper opening 161 of each suction control unit 160 are determined by the solvent in each coating region 11 before evacuation. Since the space above each coating region 11 is partitioned by the side wall portion 130 and the partition 140, the decompression rate of the entire chamber 110 is the same, but it differs depending on each coating region 11. Vapors generated from each coating area 11 can be evacuated at a high speed. As a result, the same drying process can be used to complete the vacuum drying of the entire coating area 11 at the same time. In addition, in the portion of the current plate 150 located above each application area 11, the opening ratio of the portion facing the central portion of each application area 11 is set larger than the opening ratio of the portion facing the outer peripheral portion. Therefore, it is possible to reduce unevenness in drying caused by the drying of the outer peripheral portion of each coating region 11 being fast and the drying of the central portion being slow. As a result, the film thickness of the coating layer formed in each coating region 11 of the substrate 10 can be made uniform within the surface of the substrate 10 .
 ここで、溶剤の蒸発速度の調整は、基板10から整流板150までの垂直方向の距離L1、側壁部130から塗布領域11の端部までの距離L2、仕切り140から塗布領域11の端部までの距離L3、整流板150の貫通穴151の分布および吸引制御部160の上側開口161の面積などの調整により行われる。基板10から整流板150までの距離L1は、整流板150の開口パターンの傾向が基板10からの溶剤の蒸発分布に現れないくらい長い方がよく、例えば、貫通穴151の直径の2倍以上の距離にすることが望ましい。また、側壁部130から塗布領域11の端部までの距離L2および仕切り140から塗布領域11の端部までの距離L3は、同程度の距離であり、できる限り短い方が塗布領域11の外周部の乾燥を抑制する効果が高い。さらに、整流板150の貫通穴151の分布と吸引制御部160の上側開口161の面積を調整することで、各塗布領域11における溶剤の蒸発時間をそれぞれ調整することができる。同一の乾燥プロセスによって、全塗布領域11の減圧乾燥を同時に完了させるにあたり、基板10の大きさ、各塗布領域11に形成される塗布層の溶剤の量やパターンなどにより、上記の条件は異なるため適宜調整される。 Here, the adjustment of the evaporation rate of the solvent is performed by the vertical distance L1 from the substrate 10 to the current plate 150, the distance L2 from the side wall portion 130 to the edge of the coating area 11, and the distance from the partition 140 to the edge of the coating area 11. , the distribution of the through holes 151 of the current plate 150, the area of the upper opening 161 of the suction control unit 160, and the like. The distance L1 from the substrate 10 to the rectifying plate 150 should be long enough so that the tendency of the opening pattern of the rectifying plate 150 does not appear in the evaporation distribution of the solvent from the substrate 10. For example, the distance L1 is at least twice the diameter of the through hole 151. Keeping distance is preferable. Further, the distance L2 from the side wall portion 130 to the edge of the application area 11 and the distance L3 from the partition 140 to the edge of the application area 11 are approximately the same distance, and the shorter the distance, the outer circumference of the application area 11. It is highly effective in suppressing dryness. Further, by adjusting the distribution of the through-holes 151 of the straightening plate 150 and the area of the upper opening 161 of the suction control section 160, the evaporation time of the solvent in each coating region 11 can be adjusted. The above conditions differ depending on the size of the substrate 10, the amount of solvent in the coating layer formed on each coating region 11, the pattern, etc., in completing the vacuum drying of all the coating regions 11 simultaneously by the same drying process. adjusted accordingly.
 減圧乾燥の終了後、ガス供給部170が、チャンバー110の内部に不活性ガスを供給し、チャンバー110の内部を減圧前の雰囲気に戻す。その後、相対移動部190が側壁部130、仕切り140、整流板150および吸引制御部160を、基板保持ステージ120に対して同時に昇降させ、搬送装置が基板10を基板保持ステージ120から取り出す。 After drying under reduced pressure, the gas supply unit 170 supplies inert gas to the interior of the chamber 110 to return the interior of the chamber 110 to the atmosphere before decompression. After that, the relative movement section 190 moves the side wall section 130 , the partition 140 , the straightening plate 150 and the suction control section 160 up and down simultaneously with respect to the substrate holding stage 120 , and the transfer device takes out the substrate 10 from the substrate holding stage 120 .
 <実施の形態の効果>
 以上説明したように、本実施の形態によれば、減圧乾燥装置100は、各塗布領域11の上方の空間を区画するように配置された側壁部130および仕切り140と、側壁部130で囲まれた領域を上から塞ぐ整流板150とを備える。このため、減圧乾燥時に、各塗布領域11の上方の空間において、不活性ガスの下方に溶剤の蒸気が充満する状態にすることができ、各塗布領域11に形成された塗布層から蒸発する溶剤の蒸気圧のムラを抑制することができる。その結果、各塗布領域11のそれぞれにおいて乾燥ムラが発生することを抑制できる。
<Effect of Embodiment>
As described above, according to the present embodiment, the reduced-pressure drying apparatus 100 is surrounded by the side wall portion 130 and the partition 140 arranged so as to partition the space above each coating region 11, and the side wall portion 130. and a rectifying plate 150 that closes the region from above. Therefore, during drying under reduced pressure, the space above each coating region 11 can be filled with vapor of the solvent below the inert gas, and the solvent evaporates from the coating layer formed in each coating region 11. It is possible to suppress the unevenness of the vapor pressure of As a result, it is possible to suppress the occurrence of uneven drying in each coating region 11 .
 なお、従来の減圧乾燥装置(仕切り140および吸引制御部160を有さない減圧乾燥装置)を使用した場合の基板10面内の塗布層の膜厚のバラツキを100とすると、本開示による減圧乾燥装置100を使用することにより、基板10面内の塗布層の膜厚のバラツキは約80にまで改善された結果が得られている。 In addition, if the variation in the thickness of the coating layer in the plane of the substrate 10 when using a conventional reduced pressure drying apparatus (a reduced pressure drying apparatus without the partition 140 and the suction control unit 160) is 100, the reduced pressure drying according to the present disclosure By using the apparatus 100, the unevenness of the film thickness of the coating layer within the surface of the substrate 10 has been improved to about 80%.
 フラットパネルディスプレイ用の発光層やカラーフィルタのように、例えば2500mm×2200mm、またそれを超える大サイズの基板上のパターンパターン形成の際や、基板ごとに切り出すパネルサイズを変更するために塗布パターンを変化させるパターン形成の際において、本開示の減圧乾燥装置100による効果が顕著に現れてくる。 For example, when forming patterns on large-sized substrates exceeding 2500 mm x 2200 mm, such as light-emitting layers and color filters for flat panel displays, and for changing the panel size to be cut out for each substrate, the application pattern is changed. The effect of the reduced-pressure drying apparatus 100 of the present disclosure is remarkably exhibited when forming a changing pattern.
 [変形例]
 本開示は、これまでに説明した実施の形態に示されたものに限られないことはいうまでもなく、その趣旨を逸脱しない範囲内で、種々の変形を加えることができる。また、上記実施の形態および以下に示す変形例は、正常に機能する限り、どのように組み合わせても良い。
[Modification]
It goes without saying that the present disclosure is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the present disclosure. Moreover, the above embodiments and modifications shown below may be combined in any way as long as they function normally.
 (変形例1)
 実施の形態と異なる点は、基板保持ステージ120と側壁部130の温度を調整する調温部を設けた点と、側壁部130、仕切り140および整流板150を熱的に接続した点である。調温部としては、冷却水を流したチラーやペルチェ素子などが用いられる。基板保持ステージ120と側壁部130を冷却することで、基板10と、整流板150と、基板保持ステージ120、側壁部130および整流板150で囲まれた空間とを冷却することができる。これにより、基板10を基板保持ステージ120に配置する前から、基板保持ステージ120、側壁部130および整流板150で囲まれた空間の溶剤の飽和蒸気圧を下げることができる。したがって、基板10を基板保持ステージ120に配置した際に、基板10の周囲の空間が常温時よりも早く飽和蒸気圧に達するため、塗布層の溶剤の蒸発を常温時よりも早く停止させることができる。また、基板10の周囲の空間を冷却し、飽和蒸気圧を下げることにより、当該周囲の空間で揮発する溶剤の絶対量を常温時と比べて指数関数的に減らすことができるため、結果として、減圧前に生じる乾燥速度のムラを常温時よりも抑えることができる。なお、側壁部130および整流板150は冷却によって溶剤の蒸気を吸着するが、減圧乾燥の後に、側壁部130を加熱することで、整流板150で捕集した溶剤を再度気化させて整流板150から溶剤を脱離させることができる。また、調温部として、基板保持ステージ120、側壁部130および仕切り140のうち少なくともいずれか1つの温度を調整する構成を適用してもよい。
(Modification 1)
Differences from the embodiment are that a temperature control section for controlling the temperature of the substrate holding stage 120 and the side wall section 130 is provided, and that the side wall section 130, the partition 140 and the straightening plate 150 are thermally connected. A chiller in which cooling water is flowed, a Peltier device, or the like is used as the temperature control unit. By cooling the substrate holding stage 120 and the side wall portion 130, the substrate 10, the straightening plate 150, and the space surrounded by the substrate holding stage 120, the side wall portion 130, and the straightening plate 150 can be cooled. As a result, the saturated vapor pressure of the solvent in the space surrounded by the substrate holding stage 120, the side wall portion 130, and the straightening plate 150 can be lowered before the substrate 10 is placed on the substrate holding stage 120. FIG. Therefore, when the substrate 10 is placed on the substrate holding stage 120, the space around the substrate 10 reaches the saturated vapor pressure earlier than at normal temperature, so the evaporation of the solvent in the coating layer can be stopped earlier than at normal temperature. can. In addition, by cooling the space around the substrate 10 and lowering the saturated vapor pressure, the absolute amount of the solvent that volatilizes in the space around the substrate can be reduced exponentially compared to the normal temperature. It is possible to suppress unevenness in the drying rate that occurs before decompression than at room temperature. Side wall portion 130 and straightening plate 150 adsorb solvent vapor by cooling. The solvent can be desorbed from the Further, a configuration that adjusts the temperature of at least one of the substrate holding stage 120, the side wall portion 130, and the partition 140 may be applied as the temperature control portion.
 (変形例2)
 図3に、変形例2に係る減圧乾燥装置100の縦断面図を示す。実施の形態と異なる点は、側壁部130と塗布領域11の間にも仕切り140を配置した点である。これにより、平面視における塗布領域11の全ての辺が仕切り140に隣接する状態を作ることができ、基板10の塗布層の膜厚均一性をより向上させることが可能となる。
(Modification 2)
FIG. 3 shows a longitudinal sectional view of a reduced pressure drying apparatus 100 according to Modification 2. As shown in FIG. A different point from the embodiment is that a partition 140 is also arranged between the side wall portion 130 and the coating region 11 . As a result, it is possible to create a state in which all sides of the coating region 11 in plan view are adjacent to the partitions 140, and it is possible to further improve the film thickness uniformity of the coating layer of the substrate 10. FIG.
 (変形例3)
 図4に、変形例3に係る減圧乾燥装置100の縦断面図を示す。実施の形態と異なる点は、仕切り140の下端に弾性体141を設けた点である。これにより、弾性体141が基板10に物理的に接触したときに変形するため、基板10を破壊することなく仕切り140と基板10の間を密閉することができる。したがって、各塗布領域11間の蒸気を完全に遮断し、各塗布領域11における隣接する塗布領域11からの蒸気の影響を無くすことができ、基板10の塗布層の膜厚均一性をより向上させることが可能となる。
(Modification 3)
FIG. 4 shows a longitudinal sectional view of a reduced-pressure drying apparatus 100 according to Modification 3. As shown in FIG. A different point from the embodiment is that an elastic body 141 is provided at the lower end of the partition 140 . As a result, the elastic body 141 deforms when it comes into physical contact with the substrate 10 , so that the partition 140 and the substrate 10 can be sealed without breaking the substrate 10 . Therefore, the steam between the coating regions 11 can be completely shut off, the effect of the steam from the adjacent coating regions 11 on each coating region 11 can be eliminated, and the film thickness uniformity of the coating layer on the substrate 10 can be further improved. becomes possible.
 (変形例4)
 図5に、変形例4に係る減圧乾燥装置100の縦断面図を示す。実施の形態と異なる点は、側壁部130の下端に弾性体131を設けた点である。これにより、弾性体131の変形可能範囲内で相対移動部190を駆動させることで、整流板150と基板10の距離を調整することができる。したがって、仕切り140と基板10との間隔も、より小さくすることができ、基板10の塗布層の膜厚均一性をより向上させることが可能となる。
(Modification 4)
FIG. 5 shows a longitudinal sectional view of a reduced pressure drying apparatus 100 according to Modification 4. As shown in FIG. A different point from the embodiment is that an elastic body 131 is provided at the lower end of the side wall portion 130 . Accordingly, by driving the relative movement portion 190 within the deformable range of the elastic body 131, the distance between the current plate 150 and the substrate 10 can be adjusted. Therefore, the distance between the partition 140 and the substrate 10 can be made smaller, and the film thickness uniformity of the coating layer of the substrate 10 can be further improved.
 (その他の変形例)
 整流板150の各塗布領域11に対向する部位の開口率を同じ値にしてもよい。また、各塗布領域11に対向する部位の開口率を減圧排気前の各塗布領域11の溶剤量に応じて異ならせるとともに、各塗布領域11の中央部に対向する部位と外周部に対向する部位の開口率を同じ値にしてもよい。
(Other modifications)
The aperture ratios of portions of the rectifying plate 150 that face the application regions 11 may be set to the same value. In addition, the opening ratio of the portion facing each coating region 11 is varied according to the amount of solvent in each coating region 11 before evacuation, and the portion facing the central portion and the portion facing the outer peripheral portion of each coating region 11 may be set to the same value.
 減圧乾燥装置100は、吸引制御部160を備えなくてもよい。 The vacuum drying apparatus 100 does not have to include the suction control section 160.
 本開示の減圧乾燥装置および減圧乾燥方法によれば、溶剤を含む塗布層が形成された複数の塗布領域を有する基板を減圧乾燥させる際に、各塗布領域のそれぞれにおいて乾燥ムラが発生することを抑制できる。 According to the reduced-pressure drying apparatus and reduced-pressure drying method of the present disclosure, when a substrate having a plurality of coating regions on which a coating layer containing a solvent is formed is dried under reduced pressure, uneven drying occurs in each coating region. can be suppressed.
 本開示の減圧乾燥装置および減圧乾燥方法は、基板上の複数の塗布領域に形成された塗布層の膜厚が面内で均一なディスプレイパネルの製造に好適に適用できる。 The vacuum drying apparatus and the vacuum drying method of the present disclosure can be suitably applied to the manufacture of a display panel in which the film thickness of the coating layer formed in a plurality of coating regions on the substrate is uniform within the plane.
 10 基板
 11 塗布領域
 100 減圧乾燥装置
 110 チャンバー
 111 排気口
 120 基板保持ステージ
 130 側壁部
 131 弾性体
 140 仕切り
 141 弾性体
 150 整流板
 151 貫通穴
 160 吸引制御部
 161 上側開口
 170 ガス供給部
 171 ガス供給源
 172 マスフローコントローラ
 173 開閉バルブ
 180 減圧部
 181 減圧発生源
 182 APCバルブ
 190 相対移動部
REFERENCE SIGNS LIST 10 substrate 11 application area 100 vacuum drying device 110 chamber 111 exhaust port 120 substrate holding stage 130 side wall portion 131 elastic body 140 partition 141 elastic body 150 rectifying plate 151 through hole 160 suction control section 161 upper opening 170 gas supply section 171 gas supply source 172 mass flow controller 173 opening/closing valve 180 decompression unit 181 decompression generation source 182 APC valve 190 relative movement unit

Claims (11)

  1.  溶剤を含む塗布層が形成された複数の塗布領域を有する基板を収容するチャンバーと、
     前記チャンバーの内部で、前記基板を保持する基板保持ステージと、
     前記基板保持ステージに保持された前記基板の周囲に配置された側壁部と、
     前記側壁部の内側に配置され、前記基板の前記複数の塗布領域上の空間を前記塗布領域ごとに仕切る仕切りと、
     前記基板に対向する位置において前記側壁部および前記仕切りで仕切られた前記空間を塞ぐように配置された整流板であって、複数の貫通穴が形成された前記整流板と、
     前記チャンバーの内部に不活性ガスを供給するガス供給部と、
     前記チャンバーの内部を減圧する減圧部と、を備える、
     減圧乾燥装置。
    a chamber for accommodating a substrate having a plurality of coating regions on which a coating layer containing a solvent is formed;
    a substrate holding stage that holds the substrate inside the chamber;
    a side wall portion arranged around the substrate held by the substrate holding stage;
    a partition disposed inside the side wall portion for partitioning a space above the plurality of coating regions of the substrate for each coating region;
    a rectifying plate disposed at a position facing the substrate so as to close the space partitioned by the side wall portion and the partition, the rectifying plate having a plurality of through holes;
    a gas supply unit that supplies an inert gas to the interior of the chamber;
    a decompression unit that decompresses the inside of the chamber,
    Vacuum dryer.
  2.  溶剤量が所定量である前記塗布層が形成された前記塗布領域に対向する部位における前記整流板の開口率は、溶剤量が前記所定量よりも少ない前記塗布層が形成された前記塗布領域に対向する部位における前記整流板の開口率よりも大きい、
     請求項1に記載の減圧乾燥装置。
    The aperture ratio of the rectifying plate in a portion facing the coating region where the coating layer containing a predetermined amount of solvent is formed is the same as that of the coating region where the coating layer containing a solvent less than the predetermined amount is formed. larger than the opening ratio of the rectifying plate at the facing portion;
    The vacuum drying apparatus according to claim 1.
  3.  前記複数の塗布領域のそれぞれの中央部に対向する部位における前記整流板の開口率は、前記複数の塗布領域のそれぞれの外周部に対向する部位における前記整流板の開口率よりも大きい、
     請求項1または2に記載の減圧乾燥装置。
    The aperture ratio of the rectifying plate at the portion facing the central portion of each of the plurality of coating regions is greater than the aperture ratio of the rectifying plate at the portion facing the outer periphery of each of the plurality of coating regions.
    The vacuum drying apparatus according to claim 1 or 2.
  4.  前記側壁部および前記仕切りよりも前記基板保持ステージの反対側における前記複数の塗布領域のそれぞれに対向する位置に配置され、前記減圧部による各塗布領域上の気体の吸引を制御する複数の吸引制御部をさらに備え、
     前記複数の吸引制御部は、それぞれ、前記塗布領域に近い側の第1の開口および前記塗布領域から遠い側の第2の開口を有する筒状に形成され、
     溶剤量が所定量である前記塗布層が形成された前記塗布領域に対向する前記吸引制御部の前記第2の開口は、溶剤量が前記所定量よりも少ない前記塗布層が形成された前記塗布領域に対向する前記吸引制御部の前記第2の開口よりも大きく形成されている、
     請求項1から3のいずれか一項に記載の減圧乾燥装置。
    a plurality of suction controls arranged at positions facing the plurality of coating regions on the opposite side of the substrate holding stage from the side wall portion and the partition, and controlling suction of gas from the coating regions by the decompression section; further comprising the
    each of the plurality of suction control units is formed in a cylindrical shape having a first opening closer to the application area and a second opening farther from the application area;
    The second opening of the suction control unit facing the coating region in which the coating layer having a predetermined amount of solvent is formed is the coating layer having the coating layer having a smaller amount of solvent than the predetermined amount. formed larger than the second opening of the suction control unit facing the region,
    The vacuum drying apparatus according to any one of claims 1 to 3.
  5.  前記仕切りは、前記基板の平面視において、前記複数の塗布領域の全周を囲むように配置されている、
     請求項1から4のいずれか一項に記載の減圧乾燥装置。
    The partition is arranged so as to surround the entire periphery of the plurality of coating regions in a plan view of the substrate.
    The vacuum drying apparatus according to any one of claims 1 to 4.
  6.  前記仕切りは、前記基板に接しないように配置されている、
     請求項1から5のいずれか一項に記載の減圧乾燥装置。
    The partition is arranged so as not to contact the substrate,
    The vacuum drying apparatus according to any one of claims 1 to 5.
  7.  前記仕切りにおける前記基板に近い側の端部には、前記基板に接する弾性体が配置されている、
     請求項1から5のいずれか一項に記載の減圧乾燥装置。
    An elastic body in contact with the substrate is arranged at an end of the partition closer to the substrate,
    The vacuum drying apparatus according to any one of claims 1 to 5.
  8.  前記基板保持ステージ、前記側壁部および前記仕切りのうち少なくともいずれか1つの温度を調整する温調部をさらに備える、
     請求項1から7のいずれか一項に記載の減圧乾燥装置。
    further comprising a temperature control unit that adjusts the temperature of at least one of the substrate holding stage, the side wall portion, and the partition;
    The vacuum drying apparatus according to any one of claims 1 to 7.
  9.  前記基板保持ステージと、前記側壁部および前記仕切りを相対的に移動させる相対移動部をさらに備える、
     請求項1から8のいずれか一項に記載の減圧乾燥装置。
    further comprising a relative movement unit for relatively moving the substrate holding stage and the side wall and the partition;
    The vacuum drying apparatus according to any one of claims 1 to 8.
  10.  前記整流板は、複数のパンチングプレート、または、複数の金網により構成されている、
     請求項1から9のいずれか一項に記載の減圧乾燥装置。
    The straightening plate is composed of a plurality of punching plates or a plurality of wire meshes,
    The vacuum drying apparatus according to any one of claims 1 to 9.
  11.  請求項1から請求項10のいずれか一項に記載の減圧乾燥装置を用いた減圧乾燥方法であって、
     前記チャンバーの内部において、前記基板保持ステージで前記基板を保持し、
     前記基板保持ステージに保持された前記基板の周囲に前記側壁部を配置し、かつ、前記側壁部の内側に仕切りを配置することによって、前記基板の前記複数の塗布領域上の空間を前記塗布領域ごとに仕切るとともに、前記側壁部および前記仕切りで仕切られた前記空間を前記整流板で塞ぎ、
     前記ガス供給部で前記チャンバーの内部に不活性ガスを供給し、
     前記減圧部で前記チャンバーの内部を減圧することによって、前記基板に形成された前記塗布層を乾燥させる、
     減圧乾燥方法。
    A vacuum drying method using the vacuum drying apparatus according to any one of claims 1 to 10,
    holding the substrate on the substrate holding stage inside the chamber;
    By arranging the side wall portion around the substrate held by the substrate holding stage and by arranging a partition inside the side wall portion, the space above the plurality of coating regions of the substrate is defined as the coating region. and closing the space partitioned by the side wall portion and the partition with the current plate,
    supplying an inert gas to the interior of the chamber with the gas supply unit;
    drying the coating layer formed on the substrate by decompressing the interior of the chamber in the decompression unit;
    Vacuum drying method.
PCT/JP2022/008123 2021-03-17 2022-02-28 Vacuum drying device and vacuum drying method WO2022196312A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280019303.0A CN116917050A (en) 2021-03-17 2022-02-28 Reduced pressure drying device and reduced pressure drying method
JP2023506928A JPWO2022196312A1 (en) 2021-03-17 2022-02-28
KR1020237029525A KR20230156036A (en) 2021-03-17 2022-02-28 Reduced pressure drying device and reduced pressure drying method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-043807 2021-03-17
JP2021043807 2021-03-17

Publications (1)

Publication Number Publication Date
WO2022196312A1 true WO2022196312A1 (en) 2022-09-22

Family

ID=83321280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008123 WO2022196312A1 (en) 2021-03-17 2022-02-28 Vacuum drying device and vacuum drying method

Country Status (4)

Country Link
JP (1) JPWO2022196312A1 (en)
KR (1) KR20230156036A (en)
CN (1) CN116917050A (en)
WO (1) WO2022196312A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158061A (en) * 2001-11-22 2003-05-30 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
JP2007090200A (en) * 2005-09-28 2007-04-12 Seiko Epson Corp Drying method, drying equipment, and deposition method, method for manufacturing electrooptical apparatus, and electrooptical apparatus, and electronic equipment
JP2010054070A (en) * 2008-08-26 2010-03-11 Sharp Corp Reduced pressure drying apparatus
JP2011071013A (en) * 2009-09-28 2011-04-07 Panasonic Corp Apparatus and method for manufacturing functional layer of organic el device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6338507B2 (en) 2014-10-16 2018-06-06 東京エレクトロン株式会社 Droplet ejection apparatus, droplet ejection method, program, and computer storage medium
JP6804250B2 (en) 2016-09-23 2020-12-23 東京エレクトロン株式会社 Vacuum drying device and vacuum drying method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158061A (en) * 2001-11-22 2003-05-30 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
JP2007090200A (en) * 2005-09-28 2007-04-12 Seiko Epson Corp Drying method, drying equipment, and deposition method, method for manufacturing electrooptical apparatus, and electrooptical apparatus, and electronic equipment
JP2010054070A (en) * 2008-08-26 2010-03-11 Sharp Corp Reduced pressure drying apparatus
JP2011071013A (en) * 2009-09-28 2011-04-07 Panasonic Corp Apparatus and method for manufacturing functional layer of organic el device

Also Published As

Publication number Publication date
KR20230156036A (en) 2023-11-13
CN116917050A (en) 2023-10-20
JPWO2022196312A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
KR100696547B1 (en) Method for depositing film
JP6328434B2 (en) Drying apparatus and drying processing method
KR100623730B1 (en) Evaporating source assembly and deposition apparatus having the same
EP1973145B1 (en) Apparatus and method for depositing protective layer
JP5568729B2 (en) Film forming apparatus and film forming method
US20090220691A1 (en) Evaporation apparatus and thin film forming method using the same
JP6804250B2 (en) Vacuum drying device and vacuum drying method
US20070131990A1 (en) System for manufacturing flat panel display
JP6241903B2 (en) Vapor deposition apparatus, vapor deposition method using vapor deposition apparatus, and device manufacturing method
JP3868280B2 (en) Organic electroluminescence device manufacturing equipment
US11239451B2 (en) Condensing plate, vacuum drying device and vacuum drying method
KR20160135355A (en) Evaporation source for organic material
CN109161853B (en) Vapor deposition apparatus and vapor deposition method
KR20160112293A (en) Evaporation source and Deposition apparatus including the same
KR102398880B1 (en) Heat treatment apparatus and method of manufacturing film using the same
KR20130045431A (en) Thin film deposition apparatus with improved deposition rate
WO2022196312A1 (en) Vacuum drying device and vacuum drying method
JP2007234390A (en) Method of manufacturing organic el panel, and its manufacturing device
KR101757736B1 (en) Apparatus of evaporation for fabricating the OLED and method of evaporation using the same
JP6556802B2 (en) Vacuum equipment, vapor deposition equipment and gate valve
KR20190090414A (en) Deposition apparatus
KR20220120254A (en) Apparatus of deposition having radiation angle controlling shutter
KR20200121733A (en) Decompression drying apparatus
KR20170060352A (en) Apparatus for gas supplying and exausting
TW202209426A (en) Reduced-pressure drying apparatus and reduced-pressure drying method in which the reduced-pressure drying apparatus comprises a chamber, a substrate holding section, a pressure reducing mechanism, and a diffusion suppressing section

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771067

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023506928

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280019303.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771067

Country of ref document: EP

Kind code of ref document: A1