WO2022191168A1 - 組換えaav9ビリオンの製造方法 - Google Patents

組換えaav9ビリオンの製造方法 Download PDF

Info

Publication number
WO2022191168A1
WO2022191168A1 PCT/JP2022/009902 JP2022009902W WO2022191168A1 WO 2022191168 A1 WO2022191168 A1 WO 2022191168A1 JP 2022009902 W JP2022009902 W JP 2022009902W WO 2022191168 A1 WO2022191168 A1 WO 2022191168A1
Authority
WO
WIPO (PCT)
Prior art keywords
raav9
virions
production method
buffer
tris
Prior art date
Application number
PCT/JP2022/009902
Other languages
English (en)
French (fr)
Inventor
孝太 大月
智貴 平島
Original Assignee
Jcrファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jcrファーマ株式会社 filed Critical Jcrファーマ株式会社
Priority to KR1020237032807A priority Critical patent/KR20230154039A/ko
Priority to EP22767122.9A priority patent/EP4299751A1/en
Priority to US18/280,543 priority patent/US20240150726A1/en
Priority to CN202280019247.0A priority patent/CN117280039A/zh
Publication of WO2022191168A1 publication Critical patent/WO2022191168A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14151Methods of production or purification of viral material

Definitions

  • the present invention relates to a method for producing recombinant adeno-associated virus particles (rAAV virions) that can be used for gene therapy, for example rAAV9 virions using affinity column chromatography and anion column chromatography.
  • a method for producing rAAV9 virions comprising the step of purifying
  • Adeno-associated virus belongs to the Parvoviridae family, the smallest class of linear single-stranded DNA viruses among viruses existing in nature, and its viral genome is about 4.7 kb. It forms non-enveloped icosahedral particles with a diameter of about 22 nm.
  • AAV has many mutants with different serotypes called serotypes, and 11 of them are known to infect human cells. Each AAV serotype has a specific organ tropism. For example, AAV9 is known to tropically infect the central nervous system (CNS), heart, lung, liver, and skeletal muscle.
  • CNS central nervous system
  • AAV infects various human organs, it is not considered pathogenic. Therefore, attempts have been made to utilize AAV as a material for producing recombinant viruses for gene therapy. Since each AAV serotype has its own tropism to the organ it infects, attempts have been made to use different serotypes depending on the organ into which the gene should be introduced by gene therapy. Since AAV9 has tropism for the central nervous system (CNS), heart, lung, liver, and skeletal muscle, it should be used as a material for producing recombinant viruses for gene transfer to these organs and tissues. has also been attempted.
  • CNS central nervous system
  • a recombinant AAV genome in which a part of the wild-type AAV genome is replaced with a foreign gene is encapsulated in the capsid protein in the form of a recombinant AAV virion (rAAV virion).
  • rAAV virion a recombinant AAV virion
  • rAAV virions are produced by in vitro processes in which the wild-type AAV genome is encapsulated in capsid proteins to form wild-type AAV. During this process, rAAV genomes are encapsulated in capsid proteins to form rAAV virions, but empty particles (empty capsids) that do not encapsulate rAAV virions are also formed.
  • Non-Patent Document 1 Empty capsids are impurities that arise during the manufacturing process of rAAV virions used for gene therapy.
  • Non-Patent Document 2 a method of separating rAAV virions encapsulating DNA from empty capsids not encapsulating DNA by density gradient ultracentrifugation is known on a small scale.
  • the rAAV virions used in clinical trials of gene therapy using AAV vectors are not necessarily those from which the empty capsid has been removed.
  • Virions scAAV2/8-FIX
  • Virions contain only about 20% rAAV virions, with a ratio of empty capsids to rAAV virions of about 4:1 (Non-Patent Documents 1 and 3).
  • a method for removing empty capsids that can be scaled up includes column chromatography using an anion exchanger (Patent Document 1).
  • Patent Document 4 A method for separating rAAV5 (rAAV virions of serotype 5) from empty capsids by two-step ion-exchange column chromatography has also been reported (Non-Patent Document 4). However, this method cannot be applied to rAAV2 (serotype 2 rAAV virions).
  • the purpose of the present invention is to provide an efficient method for purifying rAAV9 virions that can be used to introduce a gene encoding a desired protein into cells in gene therapy or the like.
  • the present inventors conducted extensive studies and found that the empty capsid and rAAV9 virion can be efficiently separated from the rAAV9 virion solution containing the empty capsid by using anion exchange column chromatography. and completed the present invention. That is, the present invention includes the following. 1.
  • a method for producing rAAV9 virions comprising: (a) culturing mammalian cells into which the AAV vector has been introduced in a medium to release rAAV9 virions into the medium; (b) recovering the culture supernatant from the medium, and (c) subjecting the recovered culture supernatant to affinity column chromatography using a material having affinity for the capsid protein of AAV as a stationary phase, and anion exchange. purifying the rAAV9 virions using anionic column chromatography using manufacturing method, including 2. 2. The production method according to 1 above, wherein the stationary phase used in the affinity column chromatography has a specific affinity for the capsid protein of serotype 9 AAV. 3. 3.
  • the buffering agent contained in the buffer solution is tris-HCl, bis-tris, bis-tris propane, bicine (N,N-bis(2-hydroxyethyl)glycine), HEPES (4-2-hydroxyethyl-1-piperazine ethanesulfonic acid), TAPS (3- ⁇ [tris(hydroxymethyl)methyl]amino ⁇ propaneethanesulfonic acid), tricine (N-tris(hydroxymethyl)methylglycine), and combinations of any two or more thereof 7.
  • the manufacturing method according to 5 or 6 above which is selected from the group consisting of: 8. 7.
  • the production method according to 5 or 6 above, wherein the buffer contained in the buffer solution is bis-tris propane. 9. 9.
  • the nonionic surfactant is selected from the group consisting of polysorbate 20, polysorbate 80, poloxamer 188, and combinations of any two or more thereof. 16. 16. The production method according to any one of 13 to 15 above, wherein the concentration of the nonionic surfactant is 0.0002 to 0.01% (w/v). 17. 17. The production method according to any one of 5 to 16 above, wherein the quaternary ammonium salt contained in the buffer is tetramethylammonium salt. 18. 18. The production method according to 17 above, wherein the tetramethylammonium salt is tetramethylammonium chloride. 19. 19. 19.
  • the manufacturing method described in . 22 Any one of 5 to 20 above, wherein in the anion exchange column chromatography, the fraction containing the rAAV9 virion is collected such that the ratio of the rAAV9 virion to the empty capsid is 5:5 to 10:0.
  • the manufacturing method described in . 23 Any one of 5 to 20 above, wherein in the anion exchange column chromatography, a fraction containing the rAAV9 virion is collected so that the ratio of the rAAV9 virion to the empty capsid is 7:3 to 10:0.
  • the manufacturing method described in . 24 The manufacturing method described in . 22. Any one of 5 to 20 above, wherein in the anion exchange column chromatography, a fraction containing the rAAV9 virion is collected so that the ratio of the rAAV9 virion to the empty capsid is 7:3 to 10:0.
  • a method for producing rAAV9 virions wherein an aqueous solution containing rAAV9 virions and empty capsids is subjected to anion exchange column chromatography using an anion exchanger as a stationary phase to transfer the rAAV9 virions to the anion exchanger. adsorbing and then eluting said rAAV9 virions from said anion exchanger with a buffer containing a quaternary ammonium salt and collecting a fraction containing said rAAV9 virions. 25. 25. The production method according to 24 above, wherein the buffer has a pH of 8.5 to 10.5. 26.
  • the buffering agent contained in the buffer solution is tris-HCl, bis-tris, bis-tris propane, bicine (N,N-bis(2-hydroxyethyl)glycine), HEPES (4-2-hydroxyethyl-1-piperazine ethanesulfonic acid), TAPS (3- ⁇ [tris(hydroxymethyl)methyl]amino ⁇ propaneethanesulfonic acid), tricine (N-tris(hydroxymethyl)methylglycine), and combinations of any two or more thereof 26.
  • the manufacturing method according to 24 or 25 above which is selected from the group consisting of: 27. 26.
  • the production method according to 24 or 25 above, wherein the buffer contained in the buffer solution is bis-tris propane. 28. 28.
  • nonionic surfactant is selected from the group consisting of polyoxyethylene-polyoxypropylene block copolymers, polysorbates, poloxamers, and combinations of any two or more thereof. Method of manufacture as described. 34. 33. The method according to 32 above, wherein the nonionic surfactant is selected from the group consisting of polysorbate 20, polysorbate 80, poloxamer 188, and combinations of any two or more thereof. 35. 35. The production method according to any one of 32 to 34 above, wherein the concentration of the nonionic surfactant is 0.0002 to 0.01% (w/v). 36. 36.
  • a large amount of rAAV9 virions can be supplied to the market at low cost.
  • FIG. 5 is a partially enlarged view of the chromatogram obtained in the purification step (condition A) by anion exchange column chromatography described in Example 8 (detection wavelengths: 260 nm and 280 nm). A1 to A6 indicate respective elution fractions.
  • FIG. 6 is a partially enlarged view of the chromatogram obtained in the purification step (condition B) by anion exchange column chromatography described in Example 9 (detection wavelengths: 260 nm and 280 nm). Fractions containing eluates corresponding to peaks indicated by B1 to B3 were collected as elution fractions B1 to B3, respectively.
  • FIG. 7 is a partially enlarged view of the chromatogram obtained in the purification step (condition C) by anion exchange column chromatography described in Example 10 (detection wavelengths: 260 nm and 280 nm). Fractions containing eluates corresponding to peaks indicated by C1 and C2 were collected as elution fractions C1 and C2, respectively.
  • FIG. 8 is a partially enlarged view of the chromatogram obtained in the purification step (condition D) by anion exchange column chromatography described in Example 11 (detection wavelengths: 260 nm and 280 nm). Fractions containing eluates corresponding to peaks indicated by D1 and D2 were collected as elution fractions D1 and D2, respectively.
  • FIG. 8 is a partially enlarged view of the chromatogram obtained in the purification step (condition D) by anion exchange column chromatography described in Example 11 (detection wavelengths: 260 nm and 280 nm). Fractions containing
  • FIG. 10 is a partially enlarged view of the chromatogram obtained in the purification step (condition E) by anion exchange column chromatography described in Example 12 (detection wavelengths: 260 nm and 280 nm). Fractions containing eluates corresponding to peaks indicated by E1 and E2 were collected as elution fractions E1 and E2, respectively.
  • FIG. 10 is a partially enlarged view of the chromatogram obtained in the purification step (condition F) by anion exchange column chromatography described in Example 13 (detection wavelengths: 260 nm and 280 nm). Fractions containing eluates corresponding to peaks indicated by F1 and F2 were collected as elution fractions F1 and F2, respectively.
  • Adeno-associated virus has a non-enveloped icosahedral structure, and its capsid consists of three capsid proteins, VP1, VP2, and VP3, in a ratio of approximately 1:1:10. contains in In wild-type AAV, the rep and cap genes are flanked by ITRs (inverted terminal repeats) on both ends of the capsid-packaged viral genome.
  • the Rep proteins (rep78, rep68, rep52 and rep40) produced from the rep gene are essential for encapsidation as well as for integration of the viral genome into the chromosome.
  • the cap gene encodes three capsid proteins (VP1, VP2 and VP3).
  • the rAAV genome refers to a DNA fragment in which a part of the wild-type AAV genome is replaced by a foreign gene, particularly the rep gene (rep region) of the wild-type AAV genome. and cap genes (cap regions) are replaced by foreign genes.
  • the rAAV genome contains an inverted terminal repeat (ITR) upstream of the rep region and an inverted terminal repeat (ITR) downstream of the cap region of the wild-type AAV genome, with a foreign gene between the two ITRs.
  • ITR inverted terminal repeat
  • ITR inverted terminal repeat
  • the DNA strands constituting the rAAV genome may be linear or circular, and may be single-stranded or double-stranded, but preferably linear single-stranded DNA.
  • rAAV virions are particles in which the rAAV genome is packaged in AAV capsid proteins. Particles composed of AAV capsid proteins without the rAAV genome are referred to as empty capsids.
  • rAAV virions usually involves (1) a sequence containing a first inverted terminal repeat (ITR) and a sequence containing a second inverted terminal repeat (ITR) from a virus such as AAV, and A plasmid (plasmid 1) having a structure containing a gene encoding a desired protein placed between these two ITRs; A plasmid (plasmid 2) containing the AAV Rep gene, which has the functions necessary for integration into the cell genome, and the gene encoding the capsid protein of AAV, and (3) E2A region, E4 region, and VA1 of adenovirus Three types of plasmids are used, one containing an RNA region (plasmid 3).
  • the present invention is not limited to this, and two types of plasmids can be used, one consisting of one plasmid formed by ligating two of the plasmids 1 to 3, and the remaining one plasmid. Furthermore, one plasmid obtained by ligating the plasmids 1 to 3 can also be used.
  • rAAV virions In general, the production of rAAV virions involves the general transfection of these three plasmids into host mammalian cells such as HEK293 cells in which the adenoviral E1a and E1b genes have been integrated into the genome. introduced by the method. Then, a sequence comprising a first inverted terminal repeat (ITR) and a sequence comprising a second inverted terminal repeat (ITR) and a gene encoding a desired protein located between these two ITRs. The containing region is replicated in the host cell and the resulting single-stranded DNA is packaged into the AAV capsid proteins to form rAAV virions. Since this rAAV virion has infectivity, it can introduce foreign genes into cells, tissues, etc. by administering it in vivo.
  • ITR inverted terminal repeat
  • ITR second inverted terminal repeat
  • an AAV vector is a sequence comprising a first inverted terminal repeat (ITR) and a second inverted terminal repeat from the AAV genome, which are used to generate rAAV virions. It refers to a vector that has a base sequence containing (ITR) and can incorporate a foreign gene. The site where the foreign gene can be integrated in the AAV vector can be located between the first and second inverted terminal repeats (ITRs).
  • An AAV vector into which a foreign gene is integrated is also an AAV vector. Plasmid 1 above corresponds to an AAV vector.
  • Plasmids 2 and 3 are not themselves AAV vectors, but the ligation of plasmid 1 and plasmid 2 and the ligation of plasmid 1 and plasmid 3 are also AAV vectors. Furthermore, one plasmid obtained by ligating plasmid 1, plasmid 2 and plasmid 3 is also an AAV vector.
  • the pAAV-CBA(BAM)-PPT1-WPRE vector described herein is an example of an AAV vector that encodes the human CMV enhancer/chicken ⁇ -actin promoter and downstream human PPT1 between two ITRs. Including genes.
  • the rAAV genome and rAAV virion are specifically referred to as rAAV9 genome and rAAV9 virion, respectively. The same is true for other serotypes of AAV.
  • the term inverted terminal repeat refers to a nucleotide sequence in which the same sequence is repeated at the end of the viral genome.
  • the ITR of adeno-associated virus is a region with a chain length of approximately 145 bases and functions as a replication origin and the like.
  • there are two inverted terminal repeats (ITRs) in the rAAV genome referred to as the first inverted terminal repeat (ITR) and the second inverted terminal repeat (ITR). .
  • the ITR located on the 5' side is called the first inverted terminal repeat (ITR), and the ITR located on the 3' side is called the first inverted terminal repeat (ITR).
  • the ITR that does is called the second inverted terminal repeat (ITR).
  • the inverted terminal repeat (ITR) is an AAV of any serotype as long as it has at least one of the functions of the original ITR, such as a function as a replication origin and gene insertion into host cells. It may be derived from AAV9, but is preferably derived from AAV9.
  • the ITR is not limited to a wild-type ITR, and may be a wild-type ITR with modifications such as substitutions, deletions, and additions.
  • the number of bases to be substituted is preferably 1-20, more preferably 1-10, still more preferably 1-3.
  • the number of bases to be deleted is preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 3. Mutations combining substitution and deletion of these bases can also be added.
  • nucleotide sequence of the mutated ITR preferably exhibits 80% or more identity, more preferably 85% or more identity, and still more preferably 90% or more identity with the wild-type ITR nucleotide sequence. more preferably 95% or more identity, more preferably 98% or more identity.
  • a functional equivalent of an ITR is something that can be functionally replaced with an ITR.
  • ITRs artificially constructed based on wild-type or mutant ITRs are also functional equivalents of ITRs as long as they can substitute for ITRs.
  • a functional equivalent of an AAV ITR is one that can be functionally used in place of an AAV ITR.
  • ITRs artificially constructed based on ITRs of wild-type or mutant AAV are also functional equivalents of ITRs of AAV as long as they can substitute for ITRs of AAV.
  • the AAV vector used for the production of rAAV virions in one embodiment of the present invention has the following nucleotide sequence (1) or (2): (1) a base sequence containing a first inverted terminal repeat (ITR) or a functional equivalent thereof, downstream thereof a base sequence encoding a foreign protein, further downstream a second inverted terminal repeat (ITR) or base sequences containing functional equivalents thereof; (2) a base sequence containing the first inverted terminal repeat (ITR) or a functional equivalent thereof, a base sequence containing a gene expression control site downstream thereof, a base sequence encoding a foreign protein further downstream, and a base sequence further downstream a second inverted terminal repeat (ITR) or a functional equivalent thereof.
  • the rAAV genome contained in the rAAV virions produced in one embodiment of the present invention has the following nucleotide sequence (1) or (2): (1) a base sequence containing a first inverted terminal repeat (ITR) or a functional equivalent thereof, downstream thereof a base sequence encoding a foreign protein, further downstream a second inverted terminal repeat (ITR) or base sequences containing functional equivalents thereof; (2) a base sequence containing the first inverted terminal repeat (ITR) or a functional equivalent thereof, a base sequence containing a gene expression control site downstream thereof, a base sequence encoding a foreign protein further downstream, and a base sequence further downstream a second inverted terminal repeat (ITR) or a functional equivalent thereof.
  • the foreign gene contained in the rAAV genome and AAV vector encodes a protein capable of exhibiting physiological activity in vivo.
  • physiological activity physiologically active protein
  • preferred examples include those that should be administered to patients as pharmaceuticals over a long period of time.
  • Such drugs include, for example, growth hormones, lysosomal enzymes, somatomedins, insulin, glucagon, cytokines, lymphokines, blood coagulation factors, antibodies, fusion proteins of antibodies and other proteins, granulocyte-macrophage colony-stimulating factor (GM-CSF) , granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating factor (M-CSF), erythropoietin, darbepoietin, tissue plasminogen activator (t-PA), thrombomodulin, follicle stimulating hormone (FSH), gonadotropin Releasing Hormone (GnRH), Gonadotropin, DNasel, Thyroid Stimulating Hormone (TSH), Nerve Growth Factor (NGF), Ciliary Neurotrophic Factor (CNTF), Glial Cell Line Neurotrophic Factor (GDNF), Neurotrophin 3, Neurotrophin 4/5, neurotrophin 6, neu
  • physiologically active protein is a lysosomal enzyme
  • ⁇ -L-iduronidase iduronic acid-2-sulfatase, glucocerebrosidase, ⁇ -galactosidase, GM2 activating protein
  • ⁇ -hexosaminidase A ⁇ - hexosaminidase B
  • N-acetylglucosamine-1-phosphotransferase ⁇ -mannosidase, ⁇ -mannosidase, galactosylceramidase, saposin C, arylsulfatase A, ⁇ -L-fucosidase, aspartylglucosaminidase, ⁇ -N-acetyl Galactosaminidase, acid sphingomyelinase, ⁇ -galactosidase A, ⁇ -glucuronidase, heparan N-sulfatase,
  • the bioactive protein is a human protein.
  • the protein may be wild-type, or may be mutated as long as the protein retains its original physiological activity.
  • that the protein has the original physiological activity means that the protein has 20% or more of the physiological activity of the wild-type protein.
  • the bioactivity of the protein relative to the bioactivity of the wild-type protein is preferably 40% or more, more preferably 50% or more, even more preferably 80% or more, and 90% or more. It is even more preferred.
  • the number of amino acids to be substituted is preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 3. be.
  • the amino acid sequence of the wild-type protein is deleted, the number of amino acids to be deleted is preferably 1-20, more preferably 1-10, still more preferably 1-3. Mutations combining these amino acid substitutions and deletions can also be added.
  • amino acids are added to the wild-type protein, preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 3 in the amino acid sequence of the protein or at the 5' or 3' end of amino acids are added. Mutations combining addition, substitution and deletion of these amino acids can also be added.
  • the amino acid sequence of the mutated protein preferably exhibits 80% or more identity, preferably 85% or more identity, more preferably 90% or more identity with the wild-type amino acid sequence of the protein. It exhibits identity, more preferably 95% or more identity, even more preferably 98% or more identity.
  • the position of each mutation and its form (deletion, substitution, addition) when compared with the wild-type protein can be easily confirmed by alignment of the amino acid sequences of the wild-type and mutant proteins.
  • the identity between the amino acid sequence of the wild-type protein and the amino acid sequence of the mutant protein can be easily calculated using a well-known homology calculation algorithm.
  • homology calculation algorithm include BLAST (Altschul SF. J Mol. Biol. 215. 403-10, (1990)), Pearson and Lipman's similarity search method (Proc. Natl. Acad. Sci. USA. 85. 2444 (1988)), Smith and Waterman's local homology algorithm (Adv. Appl. Math. 2. 482-9 (1981)).
  • substitutions of amino acids in the amino acid sequence of the above proteins by other amino acids occur, for example, within amino acid families related in their side chains and chemical properties of the amino acids. Substitutions within such an amino acid family are expected not to cause significant changes in protein function (ie, conservative amino acid substitutions).
  • Such amino acid families include, for example: (1) acidic amino acids aspartic acid and glutamic acid, (2) the basic amino acids histidine, lysine, and arginine, (3) the aromatic amine acids phenylalanine, tyrosine, and tryptophan; (4) serine and threonine, which are amino acids having a hydroxyl group (hydroxy amino acids), (5) the hydrophobic amino acids methionine, alanine, valine, leucine, and isoleucine; (6) the neutral hydrophilic amino acids cysteine, serine, threonine, asparagine, and glutamine; (7) amino acids glycine and proline that affect the orientation of the peptide chain; (8) asparagine and glutamine, which are amide-type amino acids (polar amino acids), (9) the aliphatic amino acids alanine, leucine, isoleucine, and valine; (10) small side chain amino acids alanine, glycine, serine, and
  • a fusion protein of the above-mentioned physiologically active protein and an antibody is also one of suitable proteins capable of exhibiting physiological activity.
  • the antibody to be fused with the physiologically active protein is not particularly limited as long as it exhibits affinity for a specific antigen in vivo.
  • it is an antibody that has specific affinity for a protein present on the surface of vascular endothelial cells.
  • Proteins present on the surface of such vascular endothelial cells include transferrin receptor, insulin receptor, leptin receptor, insulin-like growth factor I receptor, insulin-like growth factor II receptor, lipoprotein receptor, Fc receptor, Glucose transporter 1, organic anion transporter, monocarboxylic acid transporter, low-density lipoprotein receptor-associated protein 1, low-density lipoprotein receptor-associated protein 8, and membrane-bound forms of heparin-binding epidermal growth factor-like growth factor Precursors can be exemplified. Furthermore, OATP-F can be exemplified as an organic anion transporter, and MCT-8 can be exemplified as a monocarboxylic acid transporter.
  • Antibodies having specific affinity for transferrin receptor and insulin receptor can be preferably used, and in particular, antibodies having specific affinity for transferrin receptor can be preferably used.
  • the fusion protein When the antibody binds to a protein present on the surface of vascular endothelial cells, the fusion protein, after being taken up by the vascular endothelial cells, can reach various tissues and exhibit physiological activity there.
  • the fusion protein can be used as a drug that should be effective in various tissues. For example, if the antibody has specific affinity for transferrin receptor or insulin receptor, such fusion protein can be used as a drug to exert its effect in muscle.
  • the antibody to be fused with the physiologically active protein is an antibody that has a specific affinity for a protein present on the surface of cerebrovascular endothelial cells.
  • Proteins present on the surface of such cerebrovascular endothelial cells include transferrin receptors, insulin receptors, leptin receptors, insulin-like growth factor I receptors, insulin-like growth factor II receptors, lipoprotein receptors, and Fc receptors.
  • glucose transporter 1 organic anion transporter, monocarboxylic acid transporter, low-density lipoprotein receptor-associated protein 1, low-density lipoprotein receptor-associated protein 8, and membrane binding of heparin-binding epidermal growth factor-like growth factor
  • a mold precursor can be exemplified.
  • OATP-F can be exemplified as an organic anion transporter
  • MCT-8 can be exemplified as a monocarboxylic acid transporter.
  • Antibodies having specific affinity for transferrin receptor and insulin receptor can be preferably used, and in particular, antibodies having specific affinity for transferrin receptor can be preferably used.
  • the fusion protein can pass through the blood-brain barrier (BBB) to reach the brain tissue and exhibit physiological activity there. , such fusion proteins may be used as pharmaceuticals to exert their efficacy in the brain.
  • BBB blood-brain barrier
  • ligands having specific affinity for proteins present on the surface of cerebrovascular endothelial cells may be fused with the physiologically active protein.
  • ligands include transferrin, insulin, insulin-like growth factor I, insulin-like growth factor II receptor, lipoproteins, and Fc fragments, but such ligands are not limited to these.
  • a nucleotide sequence that can be used as a nucleotide sequence containing a gene expression control site that controls the expression of a foreign protein gene is introduced into a gene encoding a foreign protein.
  • cytomegalovirus-derived promoter (optionally including enhancer)
  • SV40 early promoter SV40 early promoter
  • human elongation factor-1 ⁇ (EF-1 ⁇ ) promoter human ubiquitin C promoter
  • retroviral Rous sarcoma virus LTR promoter retroviral Rous sarcoma virus LTR promoter, dihydrofolate reductase promoter, and ⁇ -actin promoter
  • PGK phosphoglycerate kinase
  • Preferred promoters include the mouse albumin promoter, the human albumin promoter, and the human alpha-1 antitrypsin promoter.
  • a synthetic promoter (mouse ⁇ -fetoprotein enhancer/mouse albumin promoter) having a base sequence containing a mouse albumin promoter downstream of a mouse ⁇ -fetoprotein enhancer can be suitably used as a gene expression control site.
  • Gene control sites may be promoters of genes that are expressed in an organ-specific or cell-type-specific manner.
  • organ-specific expression promoter or cell type-specific expression promoter By using an organ-specific expression promoter or cell type-specific expression promoter, a gene encoding a foreign protein integrated into the rAAV genome can be specifically expressed in a desired organ or cell.
  • mammalian cells that serve as host cells are cultured.
  • Mammalian cells in which the adenoviral E1A and E1B genes have been integrated into the genome are used as host cells.
  • HEK293T cells which are human embryonic kidney tissue-derived cells, are a preferred example of such cells.
  • the amount of host cells to be cultured is appropriately adjusted according to the required production amount of rAAV9 virions.
  • the plasmid to be introduced is usually (1) a base sequence containing a first inverted terminal repeat (ITR) derived from a virus such as AAV and a base sequence containing a second inverted terminal repeat (ITR), and these A plasmid (plasmid 1) having a structure containing a gene encoding a desired protein placed between two ITRs; A plasmid (plasmid 2) containing the AAV Rep gene that has the functions necessary for integration into the genome of AAV and the gene encoding the capsid protein of AAV, and (3) E2A region, E4 region, and VA1 RNA of adenovirus There are three types of plasmids, one containing the region (plasmid 3).
  • the present invention is not limited to this, and two types of plasmids can be used, one consisting of one plasmid formed by ligating two of the plasmids 1 to 3, and the remaining one plasmid. Furthermore, one plasmid obtained by ligating the plasmids 1 to 3 can also be used. Plasmid 2 contains the gene encoding the AAV9 capsid protein. Introduction of plasmids into host cells can be performed by conventional methods, including electroporation, liposome-mediated methods, and the like. Methods using lipofectamine are suitable for introduction of plasmids into host cells.
  • the host cells After introducing the plasmid, the host cells are cultured. During this culture period, the rAAV genome is replicated within the host cell, and the rAAV genome is packaged into the AAV9 capsid protein to form rAAV9 virions, which are released into the medium.
  • the medium used for culturing the host cells is not particularly limited as long as it can be used for culturing the host cells. For example, Eagle's minimum essential medium containing 10% FBS is preferably used. It is one of the culture media that can be used.
  • the host cells After introduction of the plasmid, the host cells are preferably cultured for 3-8 days, eg 6 days.
  • the culture supernatant containing rAAV9 virions is collected.
  • the culture supernatant can be collected by a conventional method such as centrifugation, membrane filtration, or the like after the culture is completed.
  • the rAAV9 virion contained in the culture supernatant may have attached DNA derived from the host cell genome or the like on its surface.
  • the DNA attached to this rAAV9 virion can be degraded by adding DNase to the collected culture supernatant.
  • An endonuclease can be preferably used as the DNase.
  • the DNase-treated culture supernatant is subjected to purification steps detailed below.
  • the purification process includes affinity column chromatography as the first step and anion exchange column chromatography as the second step. It can also be a purification step including column chromatography. In addition to these column chromatography, selected from cation exchange carrier, anion exchange carrier, hydrophobic interaction carrier, size exclusion carrier, reverse phase carrier, hydroxyapatite carrier, fluoroapatite carrier, and mixed mode carrier. Purification steps can also include one or more column chromatography using a carrier of the same type.
  • the purification process including affinity column chromatography as the first step and anion exchange column chromatography as the second step is detailed below.
  • the first step in the purification process is affinity column chromatography using a column in which a material with affinity for the AAV9 capsid is immobilized on a carrier.
  • the material having affinity for the AAV9 capsid used at this time is not particularly limited.
  • the material having affinity for the AAV9 capsid immobilized on the carrier is not particularly limited as long as the material has specific affinity for the AAV9 capsid.
  • the dissociation constant is preferably 1 ⁇ 10 -6 M or less, for example 5 ⁇ 10 -7 M to 1 ⁇ 10 -9 M.
  • Such materials include anti-AAV9 capsid antibodies.
  • the dissociation constant of the anti-AAV9 capsid antibody used here with the AAV9 capsid is preferably 1 ⁇ 10 -6 M or less, for example 5 ⁇ 10 -7 M to 1 ⁇ 10 -9 M.
  • POROS TM CaptureSelect TM AAVX Resins are a preferred example of those that can be used for affinity column chromatography.
  • the column is previously equilibrated with a near-neutral buffer solution containing a neutral salt.
  • a neutral salt used here is not particularly limited, NaCl is preferably used.
  • the neutral salt concentration is preferably 100-200 mM, more preferably 130-170 mM, eg 150 mM.
  • the pH of the buffer is preferably adjusted to 7.0-8.0 mM, more preferably 7.2-7.7 mM, eg 7.5 mM.
  • a buffer further supplemented with MgCl 2 can also be used, the concentration of which is preferably between 2 and 6 mM, eg 4 mM.
  • the rAAV9 virions contained in the culture supernatant bind to the column, and then washing the column removes most of the contaminants.
  • this process can hardly remove empty capsids. This is because the empty capsid also binds to the column.
  • rAAV9 virions adsorbed to a carrier can be eluted by passing an acidic buffer containing a buffer through the column.
  • the buffering agent used at this time is not particularly limited, but suitable ones include citric acid, phosphoric acid, glycine, histidine, acetic acid and the like.
  • the buffer concentration is preferably between 10 mM and 100 mM, eg 50 mM.
  • the pH of the buffer is preferably adjusted to 3.0-4.0 mM, more preferably 3.2-3.7 mM, eg 3.5 mM.
  • a buffer further supplemented with MgCl 2 can also be used, the concentration of which is preferably between 2 and 6 mM, eg 4 mM.
  • This eluate contains rAAV9 virions as well as empty capsids.
  • the pH of the solution containing rAAV9 virions eluted from antibody column chromatography is acidic. After elution, the pH of this solution is adjusted to basic with a buffer.
  • the buffer contained in the buffer used at this time is not particularly limited, but Tris-hydrochloride, bis-tris, bis-tris-propane, bicine (N,N-bis(2-hydroxyethyl)glycine), HEPES (4- 2-hydroxyethyl-1-piperazineethanesulfonic acid), TAPS (3- ⁇ [tris(hydroxymethyl)methyl]amino ⁇ propaneethanesulfonic acid), tricine (N-tris(hydroxymethyl)methylglycine), etc.
  • bis-tris propane is one suitable buffer.
  • concentration of the buffer is not particularly limited as long as the buffer has a buffering capacity, but is preferably 5 mM to 80 mM, more preferably 10 mM to 60 mM, still more preferably 10 mM to 30 mM. , for example 20 mM.
  • the pH of the buffer solution is not particularly limited as long as it is basic.
  • the buffer solution may contain a neutral salt in addition to the buffering agent.
  • the neutral salt contained in the buffer at this time includes, for example, calcium chloride, magnesium chloride, potassium phosphate, and sodium chloride, particularly magnesium chloride.
  • the concentration of the neutral salt is not particularly limited, but is preferably 0.1 mM to 20 mM, more preferably 0.5 mM to 10 mM, still more preferably 1 mM to 10 mM, for example 2 mM.
  • the buffer solution may further contain a nonionic surfactant.
  • nonionic surfactants polyoxyethylene-polyoxypropylene block copolymers, polysorbates, and poloxamers can be preferably used.
  • polysorbate 20, polysorbate 80, and poloxamer 188 can be particularly preferably used.
  • the concentration of the nonionic surfactant is preferably 0.0002-0.01% (w/v), more preferably 0.0005-0.005% (w/v), still more preferably 0.001-0.002% (w/v), For example, 0.001% (w/v).
  • An example of a suitable buffer is 20 mM bis-tris propane buffer containing 4 mM MgCl 2 , 0.001% (w/v) Pluronic TM F-68 (poloxamer 188).
  • the pH of the eluate after addition of the buffer is preferably pH 8.5-10.5, more preferably pH 9.0-10.0, eg pH 9.5.
  • the second step in the purification process is anion exchange column chromatography using a material with anion exchange groups as the stationary phase.
  • This step is to separate rAAV9 virions from empty capsids by using an anion exchange column and performing gradient elution or stepwise elution depending on the conductivity of the eluate.
  • the stationary phase used in anion exchange column chromatography is preferably a strong ion exchanger.
  • strong anion exchange column chromatography using a strong anion exchanger having a quaternary amine as a stationary phase can be preferably used.
  • the anion exchange column is pre-equilibrated with a buffer before being loaded with a basic pH-adjusted solution containing rAAV9 virions and empty capsids.
  • the buffer contained in the buffer used at this time is not particularly limited, but Tris-hydrochloride, bis-tris, bis-tris-propane, bicine (N,N-bis(2-hydroxyethyl)glycine), HEPES (4 -2-hydroxyethyl-1-piperazineethanesulfonic acid), TAPS (3- ⁇ [tris(hydroxymethyl)methyl]amino ⁇ propaneethanesulfonic acid), tricine (N-tris(hydroxymethyl)methylglycine), etc.
  • bis-tris propane is one suitable buffer.
  • concentration of the buffer is not particularly limited as long as the buffer has a buffering capacity, but is preferably 5 mM to 80 mM, more preferably 10 mM to 60 mM, still more preferably 10 mM to 30 mM. , for example 20 mM.
  • the pH of the buffer solution is not particularly limited as long as it is basic, but is preferably pH 8.5 to 10.5, more preferably pH 9.0 to 10.0, for example pH 9.5.
  • the buffer solution may contain a neutral salt in addition to the buffering agent, and the neutral salts contained at this time include calcium chloride, magnesium chloride, potassium phosphate, and sodium chloride, preferably magnesium chloride. is.
  • the concentration of the neutral salt is not particularly limited, but is preferably 0.1 mM to 20 mM, more preferably 0.5 mM to 10 mM, still more preferably 1 mM to 10 mM, for example 2 mM. be.
  • the buffer may further contain a non-ionic surfactant.
  • nonionic surfactants polyoxyethylene-polyoxypropylene block copolymers, polysorbates, and poloxamers can be preferably used.
  • polysorbate 20, polysorbate 80, and poloxamer 188 can be particularly preferably used.
  • the concentration of the nonionic surfactant is preferably 0.0002-0.01% (w/v), more preferably 0.0005-0.005% (w/v), still more preferably 0.001-0.002% (w/v), For example, 0.001% (w/v).
  • An example of a suitable buffer is 20 mM bis-tris propane buffer containing 4 mM MgCl 2 , 0.001% (w/v) Pluronic TM F-68 (poloxamer 188).
  • anion-exchange column chromatography the rAAV9 virions adsorbed to the column were eluted with a basic buffer (eluate) containing a fixed concentration of quaternary ammonium salts, or with a quaternary buffer in a basic buffer. By continuously varying the concentration of the ammonium salt, the column can be eluted and the fraction containing the rAAV9 virions is collected by fractionation.
  • One of the functions of anion exchange column chromatography is to separate rAAV9 virions from empty capsids. Since rAAV9 virions are packaged with the rAAV9 genome, they are more negatively charged than empty capsids.
  • rAAV9 virions adsorb strongly to anion-exchange column chromatography under basic conditions compared to empty capsids. Therefore, when a buffer solution containing a certain concentration or more of a quaternary ammonium salt is passed through an anion exchange column chromatography to which rAAV9 virions and empty capsids are adsorbed, empty capsids are generally eluted first, followed by rAAV9 virions. Elute.
  • the buffer contained in the eluate used for eluting the rAAV9 virions adsorbed on the column is not particularly limited.
  • N-bis(2-hydroxyethyl)glycine), HEPES (4-2-hydroxyethyl-1-piperazineethanesulfonic acid), TAPS (3- ⁇ [tris(hydroxymethyl)methyl]amino ⁇ propaneethanesulfonic acid), Tricine (N-tris(hydroxymethyl)methylglycine) and the like can be used, and bis-tris propane, for example, is one of the preferred buffers.
  • the concentration of the buffer contained in the eluate is not particularly limited as long as the buffer has buffering capacity, but is preferably 5 mM to 80 mM, more preferably 10 mM to 60 mM, and still more preferably 10 mM to 30 mM, for example 20 mM.
  • the pH of the buffer solution is not particularly limited as long as it is basic, but is preferably pH 8.5 to 10.5, more preferably pH 9.0 to 10.0, for example pH 9.5.
  • the concentration of the quaternary ammonium salt contained in the eluate is preferably 0 mM to 200 when rAAV9 virions are eluted by a gradient elution method in which the concentration is changed continuously. mM, e.g. be done.
  • the eluate eluted from the column is continuously monitored for absorbance at 260 nm and/or 280 nm and collected for each peak appearing on the column chromatogram. Among these fractions, those with a ratio of rAAV9 virions to empty capsids equal to or greater than the desired value are recovered.
  • the ratio of rAAV9 virions to empty capsids can be arbitrarily set depending on the use of rAAV9 virions, but is preferably 2:8 to 10:0, more preferably 4:6 to 10:0, and more preferably 4:6 to 10:0. It is preferably 5:5 to 10:0, and can be, for example, 7:3 to 10:0, 8:2 to 10:0.
  • the concentration is preferably 20 mM to 60 mM, more preferably 25 mM to 55 mM. , 30 mM to 55 mM, for example, set to 30 mM, 35 mM, 40 mM, 44 mM, 48 mM, etc.
  • the eluate eluted from the column is continuously monitored for absorbance at 260 nm and/or 280 nm and collected for each peak appearing on the column chromatogram. Among these fractions, those with a ratio of rAAV9 virions to empty capsids equal to or greater than the desired value are recovered.
  • the ratio of rAAV9 virions to empty capsids can be arbitrarily set depending on the use of rAAV9 virions, but is preferably 2:8 to 10:0, more preferably 4:6 to 10:0, and more preferably 4:6 to 10:0. It is preferably 5:5 to 10:0, for example, 7:3 to 10:0, 8:2 to 10:0. Even when rAAV9 virions are eluted by increasing the concentration of the quaternary ammonium salt stepwise, if the rAAV9 virions are eluted at a certain concentration of the stepwise increasing concentration, it is constant. included when rAAV9 virions are eluted with an eluent containing a quaternary ammonium salt at a concentration of
  • the eluate may contain neutral salts in addition to buffers and quaternary ammonium salts.
  • neutral salts included in this case include calcium chloride, magnesium chloride, potassium phosphate, and sodium chloride. preferably magnesium chloride.
  • the concentration of the neutral salt is not particularly limited, but is preferably 0.1 mM to 20 mM, more preferably 0.5 mM to 10 mM, still more preferably 1 mM to 10 mM, for example 2 mM. be.
  • the buffer may further contain a non-ionic surfactant.
  • nonionic surfactants polyoxyethylene-polyoxypropylene block copolymers, polysorbates, and poloxamers can be preferably used.
  • polysorbate 20, polysorbate 80, and poloxamer 188 can be particularly preferably used.
  • concentration of the nonionic surfactant is preferably 0.0002-0.01% (w/v), more preferably 0.0005-0.005% (w/v), still more preferably 0.001-0.002% (w/v), For example, 0.001% (w/v).
  • a suitable buffer is a 20 mM bis-tris propane buffer containing 4 mM MgCl 2 , 0.001% (w/v) Pluronic TM F-68 (poloxamer 188), further supplemented with 30 mM, 35 mM, 40 mM Included are those containing quaternary ammonium salts at concentrations of mM, 44 mM, or 48 mM.
  • the eluate comprises a quaternary ammonium salt at a constant concentration of 30 mM to 60 mM, such as 30 mM, 35 mM, 40 mM, 44 mM, or 48 mM.
  • a chromatogram can be obtained in which a peak containing a large proportion of empty capsids, followed by a peak containing a large proportion of rAAV9 virions, appear separated in that order.
  • rAAV9 virions with few empty capsids can be obtained by fractionating only the fraction corresponding to the peak containing a large proportion of rAAV9 virions.
  • the ratio of rAAV9 virions to empty capsids in the eluted fractions recovered is preferably 2:8 to 10:0, more preferably 4:6 to 10:0, still more preferably 5:5. to 10:0, and can be arbitrarily adjusted to 5:5 to 10:0, 6:4 to 10:0, 7:3 to 10:0, 8:2 to 10:0, and the like.
  • the ratio of empty capsids to rAAV9 virions can be measured by the method described in Example 15, for example.
  • rAAV9 virion purified product the solution containing rAAV9 virions obtained by the production method of the present invention is referred to as rAAV9 virion purified product.
  • the rAAV9 virion purified product contains less empty capsid, and the ratio of rAAV9 virion to empty capsid can be set arbitrarily. 0, 7:3 to 10:0, 8:2 to 10:0, and so on.
  • the rAAV9 virion purified product can be used as a therapeutic agent as a pharmaceutical composition by aseptically packaging it in a glass container, resin container, or the like. Purified rAAV9 virions can be subjected to further purification steps for purposes such as removing endotoxins.
  • the method for producing rAAV9 virions of the present invention can be easily scaled up as a method for separating rAAV9 virions and empty capsids, so it can be suitably used as a method for producing rAAV9 virions on a commercial scale.
  • Example 1 Construction of pHelper (mod) vector From the 5' side, SalI site, RsrII site, replication origin (ColE1 ori), ampicillin resistance gene, BsiWI site, BstZ17I site, and BsrGI site. A DNA fragment containing the indicated base sequence was synthesized. This DNA fragment was digested with SalI and BsrGI. A pHelper vector (Takara Bio Inc.) was digested with SalI and BsrGI, and the above restriction enzyme-treated DNA fragment was inserted into the vector. The obtained plasmid was used as the pHelper(mod) vector (Fig. 1).
  • Example 2 Construction of pAAV-CBA(BAM)-PPT1-WPRE vector From the 5' side, ClaI site, human CMV enhancer, chicken ⁇ -actin promoter, chicken ⁇ -actin/MVM chimeric intron, palmitoyl protein thioesterase-1 ( PPT1) gene, Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element (WPRE), bovine growth hormone poly A sequence, and a DNA fragment containing the nucleotide sequence represented by SEQ ID NO: 2 containing the BglII site was synthesized. . This DNA fragment was digested with ClaI and BglII.
  • a pAAV-CMV vector (Takara Bio Inc.) was digested with ClaI and BglII, and the above restriction enzyme-treated DNA fragment was inserted into the vector.
  • the obtained plasmid was used as the pAAV-CBA(BAM)-PPT1-WPRE vector (Fig. 2). This plasmid was purified by standard methods.
  • FBS Fetal Bovine Serum, Collected in South America, CAPRICORN SCIENTIFIC
  • Minimum Essential Medium Eagle With Earle's salts, L-glutamine and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture, MERCK Minimum Essential Medium Eagle With Earle's salts, L-glutamine and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture, MERCK
  • HEK293T cells a cell line derived from human embryonic kidney cells expressing the SV40 virus largeT antigen gene, were expanded and cultured in 10% FBS-containing MEM medium until the number of cells reached approximately 6.5 ⁇ 10 9 cells.
  • HEK293T cells were suspended in 1000 mL of MEM medium containing 10% FBS at a cell concentration of 6.3 ⁇ 10 5 cells/mL, and placed in a cell stack culture chamber (cell culture surface treatment, 10 chambers, Corning). and cultured at 37°C in the presence of 5% CO 2 for 16 hours.
  • pHelper(mod) vector 0.55 mg pR2(mod)C9 vector, 0.55 mg pAAV-CBA(BAM)-PPT1-WPRE vector, and 4.4 mg polyethyleneimine (PEI MAX-Transfection Grade Linear Polyethylenimine Hydrochloride MW 40,000)) was added to Eagle's minimal essential medium to make a liquid volume of 54 mL, which was stirred with a vortex mixer and allowed to stand at room temperature for 15 minutes. A transfection reagent was prepared by adding 1446 mL of Eagle's minimal essential medium to the medium to bring the total volume to 1500 mL.
  • Example 6 Cell removal and nucleolytic enzyme treatment
  • the medium was collected from the cell stack culture chamber and filtered through a depth filter for prefiltration (ULTA Prime GF 5.0 ⁇ m, 2 inch capsule, GG, Cytiva). ) and a bottle top filter (Nalgene TM Rapid-Flow TM Sterile Single Use Bottle Top Filters, Thermo Fisher Scientific) to recover the culture supernatant.
  • 10 U/mL Benzonase TM (Benzonase Nuclease, Purity>90%, Merck) was added to the culture supernatant, and the mixture was stirred at 37°C for 1 hour to react.
  • the endonuclease activity of Benzonase TM degrades DNA fragments present in the filtrate, such as DNA fragments attached to rAAV virions present in the filtrate.
  • the reaction solution was filtered using the same type of filter as the bottle top filter described above, and the filtrate was subjected to the following steps as an enzyme-treated solution containing rAAV9 virions.
  • Example 7 Purification process by affinity column chromatography A column (diameter 1.6 cm, bed height 10 cm) packed with 20 mL of POROS AAVX resin (POROS TM CaptureSelect TM AAVX Affinity Resin, Thermo Fisher Scientific) was filled with a column volume of 20 mM trishydroxymethylaminomethane buffer (pH 7.5) containing 4 mM MgCl 2 and 150 mM NaCl five times as much as the column was passed through at a flow rate of 5 mL/min to equilibrate the column. Then, the rAAV9 virion-containing enzyme-treated solution obtained in Example 6 was loaded onto the column at a flow rate of 5 mL/min.
  • POROS AAVX resin POROS TM CaptureSelect TM AAVX Affinity Resin
  • Example 8 Purification step by anion exchange column chromatography (Condition A) A column (diameter: 0.8 cm, bed height: 20 cm) packed with 10 mL of TSKgel SuperQ-5PW(20) resin (TOSOH) was filled with 4 mM MgCl 2 , 0.001% Pluronic TM F-68, eight times the column volume. The column was equilibrated by passing 20 mM Bis-Tris Propane buffer (pH 9.5) containing the column at a flow rate of 1.25 mL/min. 270 mL of the rAAV9 virion-containing affinity fraction obtained in Example 7 was then loaded onto the column at a flow rate of 1.25 mL/min.
  • TSKgel SuperQ-5PW(20) resin TOSOH
  • an absorptiometer was installed in the channel downstream of the outlet of the column, and the absorbance of the eluate at 260 nm and 280 nm was monitored over time to obtain a chromatogram. The eluate was collected for each fraction corresponding to the peak on the chromatogram.
  • Example 9 Purification step by anion exchange column chromatography (condition B) A column (diameter: 0.8 cm, bed height: 20 cm) packed with 10 mL of TSKgel SuperQ-5PW(20) resin (TOSOH) was filled with 4 mM MgCl 2 , 0.001% Pluronic TM F-68, eight times the column volume. The column was equilibrated by passing 20 mM Bis-Tris Propane buffer (pH 9.5) containing the column at a flow rate of 1.25 mL/min. 270 mL of the rAAV9 virion-containing affinity fraction obtained in Example 7 was then loaded onto the column at a flow rate of 1.25 mL/min.
  • condition B A column (diameter: 0.8 cm, bed height: 20 cm) packed with 10 mL of TSKgel SuperQ-5PW(20) resin (TOSOH) was filled with 4 mM MgCl 2 , 0.001% Pluronic TM F-68, eight times the
  • Example 10 Purification step by anion exchange column chromatography (Condition C) A column (diameter: 0.8 cm, bed height: 20 cm) packed with 10 mL of TSKgel SuperQ-5PW(20) resin (TOSOH) was filled with 4 mM MgCl 2 , 0.001% Pluronic TM F-68, eight times the column volume. The column was equilibrated by passing 20 mM Bis-Tris Propane buffer (pH 9.5) containing the column at a flow rate of 1.25 mL/min. 270 mL of the rAAV9 virion-containing affinity fraction obtained in Example 7 was loaded onto the column at a flow rate of 1.25 mL/min.
  • TSKgel SuperQ-5PW(20) resin TOSOH
  • an absorptiometer was installed in the channel downstream of the outlet of the column, and the absorbance of the eluate at 260 nm and 280 nm was monitored over time to obtain a chromatogram. The eluate was collected for each fraction corresponding to the peak on the chromatogram.
  • Example 11 Purification step by anion exchange column chromatography (Condition D) A column (diameter: 0.8 cm, bed height: 20 cm) packed with 10 mL of TSKgel SuperQ-5PW(20) resin (TOSOH) was filled with 4 mM MgCl 2 , 0.001% Pluronic TM F-68, eight times the column volume. The column was equilibrated by passing 20 mM Bis-Tris Propane buffer (pH 9.5) containing the column at a flow rate of 1.25 mL/min. 270 mL of the rAAV9 virion-containing affinity fraction obtained in Example 7 was loaded onto the column at a flow rate of 1.25 mL/min.
  • an absorptiometer was installed in the channel downstream of the outlet of the column, and the absorbance of the eluate at 260 nm and 280 nm was monitored over time to obtain a chromatogram. The eluate was collected for each fraction corresponding to the peak on the chromatogram.
  • Example 12 Purification step by anion exchange column chromatography (Condition E) A column (diameter: 0.8 cm, bed height: 20 cm) packed with 10 mL of TSKgel SuperQ-5PW(20) resin (TOSOH) was filled with 4 mM MgCl 2 , 0.001% Pluronic TM F-68, eight times the column volume. The column was equilibrated by passing 20 mM Bis-Tris Propane buffer (pH 9.5) containing the column at a flow rate of 1.25 mL/min. 270 mL of the rAAV9 virion-containing affinity fraction obtained in Example 7 was loaded onto the column at a flow rate of 1.25 mL/min.
  • an absorptiometer was installed in the channel downstream of the outlet of the column, and the absorbance of the eluate at 260 nm and 280 nm was monitored over time to obtain a chromatogram. The eluate was collected for each fraction corresponding to the peak on the chromatogram.
  • Example 13 Purification step by anion exchange column chromatography (Condition F) A column (diameter: 0.8 cm, bed height: 20 cm) packed with 10 mL of TSKgel SuperQ-5PW(20) resin (TOSOH) was filled with 4 mM MgCl 2 , 0.001% Pluronic TM F-68, eight times the column volume. The column was equilibrated by passing 20 mM Bis-Tris Propane buffer (pH 9.5) containing the column at a flow rate of 1.25 mL/min. 270 mL of the rAAV9 virion-containing affinity fraction obtained in Example 7 was loaded onto the column at a flow rate of 1.25 mL/min.
  • an absorptiometer was installed in the channel downstream of the outlet of the column, and the absorbance of the eluate at 260 nm and 280 nm was monitored over time to obtain a chromatogram. The eluate was collected for each fraction corresponding to the peak on the chromatogram.
  • 1.0 ⁇ M forward primer (primer SI-3, SEQ ID NO: 8), 1.0 ⁇ M reverse primer (primer SI-4, SEQ ID NO: 9), and 0.25 ⁇ M probe (probe SI-2, 5' of SEQ ID NO: 10
  • a HEX-labeled 20 ⁇ primer/probe mix containing HEX as a reporter dye at the end and BHQ1 as a quencher dye at the 3′ end was prepared.
  • This droplet was subjected to a QX200 Droplet Digital PCR system (BioRad). PCR conditions are denaturation reaction (95 ° C, 10 minutes), 40 cycles of 3-step PCR (95 ° C, 30 seconds ⁇ 60 ° C, 60 seconds ⁇ 72 ° C, 15 seconds), PCR enzyme inactivation treatment (98 ° C , 10 minutes). Both FAM/HEX-positive droplets were defined as rAAV-positive droplets, and the amount of rAAV genome (vg: viral genome) was determined using QuantaSoft TM Version 1.7 (BioRad). The DNA regions amplified in this PCR are bovine growth hormone polyA and internal regions of ITR. The amount (number) of rAAV9 genomes determined here theoretically agrees with the amount (number) of rAAV9 virions.
  • Example 15 Measurement of ratio of rAAV9 virions It was measured by the following method using an analytical ultracentrifuge (Optima-AUC, Beckman Coulter). First, each eluted fraction was concentrated with Vivaspin Turbo15 (Sartoris) using an ultrafiltration membrane until the liquid volume became 1 mL. Furthermore, the solution components of each elution fraction were added to a control buffer (8.1 mM disodium hydrogen phosphate, 1.5 mM potassium dihydrogen phosphate, 437 mM sodium chloride, 2.7 mM potassium chloride, 0.001% Pluronic TM F-68). The buffer was exchanged and this was used as a measurement sample.
  • a control buffer 8.1 mM disodium hydrogen phosphate, 1.5 mM potassium dihydrogen phosphate, 437 mM sodium chloride, 2.7 mM potassium chloride, 0.001% Pluronic TM F-68.
  • the area of the peak corresponding to the rAAV9 virion and the area of the peak corresponding to the empty capsid were determined, and the percentage of rAAV9 virion and the percentage of empty capsid contained in each elution fraction were determined.
  • the ratio of rAAV9 virions is defined as the ratio (%) of rAAV9 virions when the sum of rAAV9 virions and empty capsids is taken as 100%, and the ratio of empty capsids is the sum of rAAV9 virions and empty capsids. Defined as the percentage of empty capsids out of 100%.
  • Example 16 Ratio of empty capsids and rAAV virions contained in eluted fractions (Condition A)
  • the chromatogram under condition A obtained in Example 8 is shown in FIG.
  • the eluate was separated into elution fractions A1 to A6 in the order of elution.
  • the viral genome amounts of rAAV9 virions contained in the six fractions were each measured by ddPCR.
  • the amount of virus genome contained in each fraction was 8.5 ⁇ 10 12 vg, 1.8 ⁇ 10 13 vg, 1.6 ⁇ 10 13 vg, 5.3 ⁇ 10 12 vg in the order of elution fraction A1 to elution fraction A6.
  • 1.1 ⁇ 10 12 vg and 2.2 ⁇ 10 12 vg indicating that rAAV9 virions were eluted in elution fractions A1 to A3, particularly elution fractions A2 and A3.
  • rAAV9 virions with a ratio of approximately 50% or more.
  • the amount of rAAV9 virions was 4.3 ⁇ 10 13 when elution fractions A1 to A3 were collected, and the amount of rAAV9 virions was 3.4 ⁇ 10 13 when elution fractions A2 to A3 were collected.
  • the concentration of tetramethylammonium chloride contained in the eluate when elution fractions A1 to A3 were eluted was approximately 30 mM to 50 mM.
  • the ratio of empty capsids and rAAV9 virions contained in the eluted fractions B1 to B3 was measured by the method shown in Example 15.
  • the percentages of rAAV9 virions in elution fractions B1, B2, and B3 were 1.1%, 58.0%, and 76.4%, respectively (Table 2).
  • This result shows that rAAV9 virions with a rAAV9 virion ratio of 50% or more, or 55% or more (for example, 58%) can be obtained by collecting elution fractions B2 and B3, and only elution fraction B3 can be obtained.
  • a rAAV9 virion solution with a ratio of rAAV9 virions of 70% or more, or 75% or more (for example, 76%) can be obtained by recovery.
  • the rAAV9 virion-adsorbed column is washed with a buffer containing 30 mM tetramethylammonium salt, and then passed through a buffer containing 48 mM tetramethylammonium salt.
  • a rAAV9 virion solution with a ratio of rAAV9 virions of 70% or more, or 75% or more (for example, 75% or 76%) can be obtained.
  • Elution fractions B1 and B2 are both eluates obtained by passing a buffer solution containing 30 mM tetramethylammonium salt through a column on which rAAV9 virions are adsorbed. Peaks B1 and B2 are clearly separated on the chromatogram (Fig. 6). Therefore, eluted fractions B1 and B2 can be separated and collected by monitoring the absorbance of the eluate obtained through a buffer solution containing 30 mM tetramethylammonium salt over time.
  • an rAAV9 virion solution with a rAAV9 virion ratio of 50% or more, or 55% or more (for example, 58%) can be obtained. Furthermore, by collecting only the eluted fraction B3, it is possible to obtain an rAAV9 virion solution with a ratio of rAAV9 virions of 70% or more, or 75% or more (for example, 76%).
  • the ratio of empty capsids and rAAV9 virions contained in the eluted fractions C1 and C2 was measured by the method shown in Example 15.
  • the percentages of rAAV9 virions in elution fractions C1 and C2 were 12.1% and 80.0%, respectively (Table 3). This result indicates that rAAV9 virions with a rAAV9 virion ratio of 75% or more (eg, 78% or 80%) can be obtained by collecting only the eluted fraction C3.
  • eluted fractions C1 and C2 can be separated and collected by monitoring the absorbance of the eluate obtained through a buffer solution containing 35 mM tetramethylammonium salt over time.
  • an rAAV9 virion solution with a rAAV9 virion ratio of 75% or more eg, 78% or 80%
  • the ratio of empty capsids and rAAV9 virions contained in the eluted fractions D1 and D2 was measured by the method shown in Example 15.
  • the percentage of rAAV9 virions in elution fractions D1 and D2 was 16.2% and 83.5%, respectively (Table 4). This result indicates that rAAV9 virions with a rAAV9 virion ratio of 75% or more, or 80% or more (e.g., 79% or 83%) can be obtained by collecting only the elution fraction D2. be.
  • eluted fractions D1 and D2 can be separated and collected by monitoring the absorbance of the eluate obtained through a buffer solution containing 40 mM tetramethylammonium salt over time.
  • a buffer solution containing 40 mM tetramethylammonium salt By discarding the eluted fraction D1 and collecting only the eluted fraction D2, it is possible to obtain an rAAV9 virion solution with a rAAV9 virion ratio of 75% or more, or 80% or more (e.g., 79% or 83%). can.
  • the ratio of empty capsids and rAAV9 virions contained in the eluted fractions E1 and E2 was measured by the method shown in Example 15.
  • the percentage of rAAV9 virions in elution fractions E1 and E2 was 30.8% and 85.4%, respectively (Table 5). This result indicates that rAAV9 virions with a rAAV9 virion ratio of 80% or more (eg, 83% or 85%) can be obtained by collecting only the eluted fraction E2.
  • eluted fractions E1 and E2 can be separated and collected by monitoring the absorbance of the eluate obtained through a buffer solution containing 44 mM tetramethylammonium salt over time.
  • an rAAV9 virion solution with a rAAV9 virion ratio of 80% or more for example, 83% or 85%
  • the ratio of empty capsids and rAAV9 virions contained in the eluted fractions F1 and F2 was measured by the method shown in Example 15.
  • the percentage of rAAV9 virions in elution fractions F1 and F2 was 28.7% and 87.0%, respectively (Table 6). This result indicates that rAAV9 virions with a rAAV9 virion ratio of 80% or more, or 85% or more (e.g., 84% or 87%) can be obtained by collecting only the eluted fraction F2. be.
  • eluted fractions F1 and F2 can be separated and collected by monitoring the absorbance of the eluate obtained through a buffer solution containing 48 mM tetramethylammonium salt over time.
  • a buffer solution containing 48 mM tetramethylammonium salt By discarding the eluted fraction F1 and collecting only the eluted fraction F2, it is possible to obtain an rAAV9 virion solution with a rAAV9 virion ratio of 80% or more, or 85% or more (e.g., 84% or 87%). can.
  • rAAV9 virions packaged with a DNA containing a base sequence encoding a foreign protein can be produced efficiently, and such rAAV9 virions can be stably supplied to medical institutions and the like. be able to.
  • SEQ ID NO: 1 Nucleotide sequence containing SalI site, RsrII site, ColE1 ori, ampicillin resistance gene, BsiWI site, BstZ17I site, and BsrGI site
  • synthetic sequence SEQ ID NO: 2 ClaI site, human CMV enhancer, chicken ⁇ actin promoter, chicken ⁇ -actin/MVM chimeric intron, palmitoyl protein thioesterase-1 (PPT1) gene, woodchuck hepatitis virus post-transcriptional regulatory element (WPRE), bovine growth hormone poly A sequence, and base sequence containing BglII site
  • synthetic sequence SEQ ID NO:3 Nucleotide sequence containing AfeI site, RsrII site, BsrGI site, AvrII site, ampicillin resistance gene, ColE1 ori, RsrII site, 5' part of serotype 2 Rep region (including p5 promoter) and SacII site
  • synthetic sequence SEQ ID NO: 4 Nucleotide sequence including

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】空ウイルスの混入の少ない組換えアデノ随伴ウイルス粒子(rAAVビリオン)の製造方法が開示されている。当該製造法は,(a)AAVベクターが導入された哺乳動物細胞を培地中で培養して該培地中にrAAVビリオンを放出させ,(b)該培地から培養上清を回収し,(c)該回収した培養上清から,AAVのカプシド蛋白質に親和性を有する材料を固定相として用いたアフィニティカラムクロマトグラフィーと,陰イオンカラムクロマトグラフィーとを用いて,rAAVビリオンを精製するものである。

Description

組換えAAV9ビリオンの製造方法
 本発明は,遺伝子治療のために用いることのできる組換えアデノ随伴ウイルス粒子(rAAVビリオン)を製造するための方法に関し,例えば,アフィニティカラムクロマトグラフィーと,陰イオンカラムクロマトグラフィーとを用いてrAAV9ビリオンを精製する工程を含むrAAV9ビリオンの製造方法に関する。
 アデノ随伴ウイルス(AAV: adeno-associated virus)は,自然界に存在するウイルスの中で最も小さい部類の直鎖一本鎖DNAウイルスであるパルボウイルス科に属し,そのウイルスゲノムは約4.7 kbである。エンベロープを持たず,直径約22 nmの正二十面体粒子を形成する。
 AAVには,セロタイプと呼ばれる血清型が異なる変異種が多数存在し,それらの中の11種類のセロタイプがヒト細胞に感染することが知られている。AAVの各セロタイプはそれぞれ特有の臓器への指向性を持つ。例えば,AAV9は,中枢神経系(CNS),心臓,肺,肝臓,骨格筋に指向性を持って感染することが知られている。
 AAVはヒトの多様な臓器に感染するものの,病原性はないと考えられている。従って,AAVを遺伝子治療用の組換えウイルスを製造するための材料として利用することが試みられている。AAVの各セロタイプは感染する臓器にそれぞれ指向性があるので,遺伝子治療により遺伝子を導入させるべき臓器によって,セロタイプを使い分けることも試みられている。AAV9は,中枢神経系(CNS),心臓,肺,肝臓,骨格筋に指向性があるので,これらの臓器,組織に遺伝子を導入するための組換えウイルスを製造するための材料として利用することも試みられている。
 AAVを応用した遺伝子治療において,野生型のAAVゲノムの一部を外来の遺伝子に置換させた組換えAAVゲノム(rAAVゲノム)がカプシド蛋白質に内包された組換えAAVビリオン(rAAVビリオン)の形態で患者に投与される。rAAVビリオンは,野生型のAAVゲノムがカプシド蛋白質に内包されて野生型AAVが形成されるプロセスを試験管内で行わせることで製造される。この過程で,rAAVゲノムがカプシド蛋白質に内包されてrAAVビリオンが形成されるが,rAAVビリオンを内包しない空の粒子(空カプシド)も形成される。特にプラスミドDNAの一過性発現系では80%近くの空カプシドが含まれるとの報告もある。(非特許文献1)。空カプシドは遺伝子治療のために用いるrAAVビリオンの製造過程で生じる不純物である。
 空カプシドを除去する方法としては,小規模スケールであれば,DNAを内包したrAAVビリオンとDNAを内包していない空カプシドを密度勾配超遠心により分離する方法が知られている(非特許文献2)。但し,AAVベクターを用いた遺伝子治療の治験において用いられているrAAVビリオンは,必ずしも空カプシドが除去されたものではなく,血友病B患者に対して実施された治験で実際に投与されたrAAVビリオン(scAAV2/8-FIX)は,空カプシドとrAAVビリオンの比率が約4:1と,rAAVビリオンが20%程度しか含まれていない(非特許文献1,非特許文献3)。
 スケールアップ可能な空カプシド除去方法としては陰イオン交換体を用いたカラムクロマトグラフィーが挙げられる(特許文献1)。また,2ステップのイオン交換カラムクロマトグラフィーにより,rAAV5(セロタイプが5型のrAAVビリオン)を空カプシドから分離する方法が報告されている(非特許文献4)。但し,この方法はrAAV2(セロタイプが2型のrAAVビリオン)に適用できない。
特許第5956331号公報
James A. Human Gene Therapy. 22. 595-604 (2011) Ayuso E. Gene Therapy. 17. 503-510 (2010) Maria S. Human Gene Therapy Methods. 28. 101-108 (2017) Nicole B. Molecular Therapy. 6. 678-686 (2002)
 本発明の目的は,遺伝子治療等において,所望の蛋白質をコードする遺伝子を細胞に導入するために用いることのできるrAAV9ビリオンの効率的な精製方法を提供することである。
 上記目的に向けた研究において,本発明者らは,鋭意検討を重ねた結果,空カプシドを含むrAAV9ビリオン溶液から,陰イオン交換カラムクロマトグラフィーを用いることにより空カプシドとrAAV9ビリオンを効率よく分離できることを見出し,本発明を完成した。すなわち,本発明は以下を含むものである。
1.rAAV9ビリオンの製造方法であって;
(a)AAVベクターが導入された哺乳動物細胞を培地中で培養して該培地中にrAAV9ビリオンを放出させ,
(b)該培地から培養上清を回収し,及び
(c)該回収した培養上清から,AAVのカプシド蛋白質に親和性を有する材料を固定相として用いたアフィニティカラムクロマトグラフィーと,陰イオン交換体を固定相として用いた陰イオンカラムクロマトグラフィーとを用いて,該rAAV9ビリオンを精製する,
ことを含む製造方法。
2.該アフィニティカラムクロマトグラフィーに用いられる固定相が血清型9のAAVのカプシド蛋白質に対し特異的な親和性を有するものである,上記1に記載の製造方法。
3.該陰イオン交換体が強陰イオン交換体である,上記1又は2に記載の製造方法。
4.該強陰イオン交換体が,第4級アミンを有するものである,上記3に記載の製造方法。
5.該陰イオン交換カラムクロマトグラフィーにおいて,該rAAV9ビリオンを該カラムに吸着させ,次いで第四級アンモニウム塩を含有する緩衝液により該rAAV9ビリオンを該カラムから溶出させて,該rAAV9ビリオンを含む画分を回収するものである,上記1~4の何れかに記載の製造方法。
6.該緩衝液のpHが,8.5~10.5である,上記5に記載の製造方法。
7.該緩衝液に含まれる緩衝剤が,トリス塩酸,ビス-トリス,ビス-トリスプロパン,ビシン(N,N-ビス(2-ヒドロキシエチル)グリシン),HEPES(4-2-ヒドロキシエチル-1-ピペラジンエタンスルホン酸),TAPS(3-{[トリス(ヒドロキシメチル)メチル]アミノ}プロパンエタンスルホン酸),トリシン(N-トリス(ヒドロキシメチル)メチルグリシン),及びこれらの任意の2種以上を組み合わせたものからなる群から選択されるものである,上記5又は6に記載の製造方法。
8.該緩衝液に含まれる緩衝剤が,ビス-トリスプロパンである,上記5又は6に記載の製造方法。
9.該緩衝剤の濃度が10 mM~30 mMである,上記7又は8に記載の製造方法。
10.該緩衝液が,中性塩を含むものである,上記5~9の何れかに記載の製造方法。
11.該中性塩が,塩化マグネシウムである,上記10に記載の方法。
12.該中性塩の濃度が1 mM~10 mMである,上記10又は11に記載の方法。
13.該緩衝液が,非イオン性界面活性剤を含むものである,上記5~12の何れかに記載の製造方法。
14.該非イオン性界面活性剤が,ポリオキシエチレン-ポリオキシプロピレンブロック共重合体,ポリソルベート,ポロキサマー,及びこれらの任意の2種以上を組み合わせたものからなる群から選択されるものである,上記13に記載の製造方法。
15.該非イオン性界面活性剤が,ポリソルベート20,ポリソルベート80,ポロキサマー188,及びこれらの任意の2種以上を組み合わせたものからなる群から選択されるものである,上記13に記載の製造方法。
16.該非イオン性界面活性剤の濃度が0.0002~0.01 %(w/v)である,上記13~15の何れかに記載の製造方法。
17.該緩衝液に含まれる第四級アンモニウム塩がテトラメチルアンモニウム塩である,上記5~16の何れかに記載の製造方法。
18.該テトラメチルアンモニウム塩が,塩化テトラメチルアンモニウムである,上記17に記載の製造方法。
19.該吸着させたrAAV9ビリオンが,該第四級アンモニウム塩を20 mM~60 mMの濃度で含有する該緩衝液により該溶出されるものである,上記5~18の何れかに記載の製造方法。
20.該吸着させたrAAV9ビリオンが,該第四級アンモニウム塩を35 mM~55 mMの濃度で含有する該緩衝液により該溶出されるものである,上記5~18の何れかに記載の製造方法。
21.該陰イオン交換カラムクロマトグラフィーにおいて,該rAAV9ビリオンと空カプシドの比率が2:8~10:0となるように,該rAAV9ビリオンを含む画分を回収するものである上記5~20の何れかに記載の製造方法。
22.該陰イオン交換カラムクロマトグラフィーにおいて,該rAAV9ビリオンと空カプシドの比率が5:5~10:0となるように,該rAAV9ビリオンを含む画分を回収するものである上記5~20の何れかに記載の製造方法。
23.該陰イオン交換カラムクロマトグラフィーにおいて,該rAAV9ビリオンと空カプシドの比率が7:3~10:0となるように,該rAAV9ビリオンを含む画分を回収するものである上記5~20の何れかに記載の製造方法。
24.rAAV9ビリオンの製造方法であって,rAAV9ビリオンと空カプシドを含有する水溶液を,陰イオン交換体を固定相として用いた陰イオン交換カラムクロマトグラフィーに負荷して該rAAV9ビリオンを該陰イオン交換体に吸着させ,次いで第四級アンモニウム塩を含有する緩衝液により該rAAV9ビリオンを該陰イオン交換体から溶出させて,該rAAV9ビリオンを含む画分を回収することを含んでなる,製造方法。
25.該緩衝液のpHが,8.5~10.5である,上記24に記載の製造方法。
26.該緩衝液に含まれる緩衝剤が,トリス塩酸,ビス-トリス,ビス-トリスプロパン,ビシン(N,N-ビス(2-ヒドロキシエチル)グリシン),HEPES(4-2-ヒドロキシエチル-1-ピペラジンエタンスルホン酸),TAPS(3-{[トリス(ヒドロキシメチル)メチル]アミノ}プロパンエタンスルホン酸),トリシン(N-トリス(ヒドロキシメチル)メチルグリシン),及びこれらの任意の2種以上を組み合わせたものからなる群から選択されるものである,上記24又は25に記載の製造方法。
27.該緩衝液に含まれる緩衝剤が,ビス-トリスプロパンである,上記24又は25に記載の製造方法。
28.該緩衝剤の濃度が10 mM~30 mMである,上記26又は27に記載の製造方法。
29.該緩衝液が,中性塩を含むものである,上記24~28の何れかに記載の製造方法。
30.該中性塩が,塩化マグネシウムである,上記29に記載の方法。
31.該中性塩の濃度が1 mM~10 mMである,上記29又は30に記載の方法。
32.該緩衝液が,非イオン性界面活性剤を含むものである,上記24~31の何れかに記載の製造方法。
33.該非イオン性界面活性剤が,ポリオキシエチレン-ポリオキシプロピレンブロック共重合体,ポリソルベート,ポロキサマー,及びこれらの任意の2種以上を組み合わせたものからなる群から選択されるものである,上記32に記載の製造方法。
34.該非イオン性界面活性剤が,ポリソルベート20,ポリソルベート80,ポロキサマー188,及びこれらの任意の2種以上を組み合わせたものからなる群から選択されるものである,上記32に記載の製造方法。
35.該非イオン性界面活性剤の濃度が0.0002~0.01 %(w/v)である,上記32~34の何れかに記載の製造方法。
36.該緩衝液に含まれる第四級アンモニウム塩がテトラメチルアンモニウム塩である,上記24~35に記載の製造方法。
37.該テトラメチルアンモニウム塩が,塩化テトラメチルアンモニウムである,上記36に記載の方法。
38.該吸着させたrAAV9ビリオンが,該第四級アンモニウム塩を20 mM~60 mMの濃度で含有する該緩衝液により該溶出されるものである,上記24~37の何れかに記載の製造方法。
39.該吸着させたrAAV9ビリオンが,該第四級アンモニウム塩を35 mM~55 mMの濃度で含有する該緩衝液により該溶出されるものである,上記24~37の何れかに記載の製造方法。
40.該rAAV9ビリオンと空カプシドの比率が2:8~10:0となるように,該rAAV9ビリオンを含む画分を回収するものである,上記24~39の何れかに記載の製造方法。
41.該rAAV9ビリオンと空カプシドの比率が5:5~10:0となるように,該rAAV9ビリオンを含む画分を回収するものである,上記24~39の何れかに記載の製造方法。
42.該rAAV9ビリオンと空カプシドの比率が7:3~10:0となるように,該rAAV9ビリオンを含む画分を回収するものである,上記24~39の何れかに記載の製造方法。
 本発明によれば,例えば,rAAV9ビリオンを大量に安価に市場に供給することができる。
pHelper(mod)ベクターの構造を示す模式図。 pAAV-CBA(BAM)-PPT1-WPREベクターの構造を示す模式図。 pR2(mod)C6ベクターの構造を示す模式図。 pR2(mod)C9ベクターの構造を示す模式図。 図5は,実施例8に記載の陰イオン交換カラムクロマトグラフィーによる精製工程(条件A)で得られたクロマトグラムの,部分拡大図である(検出波長:260 nm及び280 nm)。A1~A6は,それぞれの溶出画分を示す。横軸は時間軸,左縦軸は吸光強度(a.u.:任意単位),右縦軸は塩化テトラエチルアンモニウムの濃度(mM)を示し,又塩化テトラエチルアンモニウムの濃度変化は実線Xで示される(以下,図6~図10で同じ)。 図6は,実施例9に記載の陰イオン交換カラムクロマトグラフィーによる精製工程(条件B)で得られたクロマトグラムの,部分拡大図である(検出波長:260 nm及び280 nm)。B1~B3で示されるピークに対応する溶出液を含む画分を,それぞれ溶出画分B1~B3として回収した。 図7は,実施例10に記載の陰イオン交換カラムクロマトグラフィーによる精製工程(条件C)で得られたクロマトグラムの,部分拡大図である(検出波長:260 nm及び280 nm)。C1及びC2で示されるピークに対応する溶出液を含む画分を,それぞれ溶出画分C1及びC2として回収した。 図8は,実施例11に記載の陰イオン交換カラムクロマトグラフィーによる精製工程(条件D)で得られたクロマトグラムの,部分拡大図である(検出波長:260 nm及び280 nm)。D1及びD2で示されるピークに対応する溶出液を含む画分を,それぞれ溶出画分D1及びD2として回収した。 図9は,実施例12に記載の陰イオン交換カラムクロマトグラフィーによる精製工程(条件E)で得られたクロマトグラムの,部分拡大図である(検出波長:260 nm及び280 nm)。E1及びE2で示されるピークに対応する溶出液を含む画分を,それぞれ溶出画分E1及びE2として回収した。 図10は,実施例13に記載の陰イオン交換カラムクロマトグラフィーによる精製工程(条件F)で得られたクロマトグラムの,部分拡大図である(検出波長:260 nm及び280 nm)。F1及びF2で示されるピークに対応する溶出液を含む画分を,それぞれ溶出画分F1及びF2として回収した。
 アデノ随伴ウイルス(AAV)は,エンベロープを持たない正二十面体の構造を有しており,そのカプシドは,3種類のカプシド蛋白質であるVP1,VP2,及びVP3を凡そ1:1:10の割合で含んでいる。野生型AAVでは,カプシドにパッケージングされたウイルスゲノム上に,両端のITR(逆方向末端反復)に挟まれたrep遺伝子およびcap遺伝子が存在する。rep遺伝子から産生されるRep蛋白質(rep78,rep68,rep52及びrep40)は,カプシド形成に必須であるとともに,ウイルスゲノムの染色体への組み込みにも必要とされる。cap遺伝子は3つのカプシド蛋白質(VP1,VP2及びVP3)をコードする。
 本発明の一実施形態において,rAAVゲノムとは,野生型のAAVゲノムの一部が外来の遺伝子により置き換えられたDNA断片のことをいい,特に,野生型のAAVゲノムのrep遺伝子(rep領域)とcap遺伝子(cap領域)が外来の遺伝子により置き換えられたDNA断片のことをいう。rAAVゲノムは,野生型のAAVゲノムのrep領域の上流にある逆方向末端反復(ITR)とcap領域の下流にある逆方向末端反復(ITR)を含み,この2つのITRの間に外来の遺伝子を含む構造を有する。ここで,rAAVゲノムを構成するDNA鎖は直鎖状でも環状でもよく,又1本鎖DNAでも2本鎖DNAでもよいが,好ましくは直鎖状の1本鎖DNAである。rAAVビリオンは,rAAVゲノムがAAVカプシド蛋白質にパッケージングされた粒子のことである。rAAVゲノムを含まないAAVカプシド蛋白質からなる粒子のことは空カプシドという。
 rAAVビリオンの生産には,通常,(1)AAV等のウイルスに由来する第一の逆方向末端反復(ITR)を含む塩基配列と第二の逆方向末端反復(ITR)を含む塩基配列,及びこれら2つのITRの間に配置された所望の蛋白質をコードする遺伝子を含む構造を有するプラスミド(プラスミド1),(2)前記ITR配列に挟まれた領域(ITR配列を含む)の塩基配列を宿主細胞のゲノム中に組み込むために必要な機能を有するAAV Rep遺伝子と,AAVのカプシド蛋白質をコードする遺伝子とを含むプラスミド(プラスミド2),及び(3)アデノウイルスのE2A領域,E4領域,及びVA1 RNA領域を含むプラスミド(プラスミド3)の3種類のプラスミドが用いられる。但し,これに限らず,プラスミド1~3のうちの2つを連結させて一つのプラスミドとしたものと,残りの一つのプラスミドの2種類のプラスミドを用いることもできる。更に,プラスミド1~3を連結させて一つのプラスミドとしたものを用いることもできる。
 一般に,rAAVビリオンの生産には,まず,これら3種類のプラスミドが,アデノウイルスのE1a遺伝子とE1b遺伝子がゲノム中に組み込まれたHEK293細胞等の宿主細胞となる哺乳動物細胞に一般的なトランスフェクション手法により導入される。そうすると第一の逆方向末端反復(ITR)を含む塩基配列と第二の逆方向末端反復(ITR)を含む塩基配列,及びこれら2つのITRの間に配置された所望の蛋白質をコードする遺伝子を含む領域が宿主細胞内で複製され,生じた一重鎖DNAがAAVのカプシド蛋白質にパッケージングされて,rAAVビリオンが形成される。このrAAVビリオンは,感染力を有するので,これを生体内に投与することで,外来の遺伝子を細胞,組織等に導入することができる。
 本発明の一実施形態において,AAVベクターとは,rAAVビリオンを作製するために用いられる,AAVゲノムに由来する第一の逆方向末端反復(ITR)を含む塩基配列と第二の逆方向末端反復(ITR)を含む塩基配列を有し,且つ,外来の遺伝子を組み込むことができるベクターのことをいう。AAVベクターにおいて外来の遺伝子を組み込むことのできる箇所は,第一と第二の逆方向末端反復(ITR)の間に配置させることができる。外来の遺伝子が組み込まれたAAVベクターもまたAAVベクターである。上記のプラスミド1は,AAVベクターに該当する。プラスミド2及び3はそれ自体AAVベクターではないが,プラスミド1とプラスミド2を連結させたもの,及びプラスミド1とプラスミド3を連結させたものもAAVベクターである。更に,プラスミド1,プラスミド2及びプラスミド3を連結させて一つのプラスミドとしたものもAAVベクターである。本明細書に記載されたpAAV-CBA(BAM)-PPT1-WPREベクターはAAVベクターの一例であり,2つのITRの間に,ヒトCMVエンハンサー/ニワトリβアクチンプロモーターとその下流にヒトPPT1をコードする遺伝子を含む。
 rAAVゲノム及びrAAVビリオンは,AAVの血清型が9である場合は,特にそれぞれrAAV9ゲノム,rAAV9ビリオンという。他の血清型のAAVについても同様である。
 本発明の一実施形態において,逆方向末端反復(ITR)というときは,ウイルスゲノムの末端に存在する,同じ配列が反復して存在する塩基配列のことをいう。アデノ随伴ウイルスのITRは,おおよそ145塩基の鎖長の領域であり,複製開始点等として機能する。本発明の一実施形態において,rAAVゲノム中には,逆方向末端反復(ITR)が2つ存在し,それぞれ第一の逆方向末端反復(ITR),第二の逆方向末端反復(ITR)という。ここで,2つのITRの間に,外来の蛋白質をコードする遺伝子を配置したときに,その5’側に位置するITRを第一の逆方向末端反復(ITR)といい,3’側に位置するITRを第二の逆方向末端反復(ITR)という。本発明において,逆方向末端反復(ITR)は,複製開始点としての機能,宿主細胞への遺伝子挿入等の,本来のITRの機能の少なくとも一つを有するものである限り,何れのセロタイプのAAV由来のものであってもよいが,好ましくはAAV9に由来するものである。
 また,ITRは,野生型のITRに限らず,野生型のITRの塩基配列に置換,欠失,付加等の改変を加えたものであってもよい。野生型のITRの塩基配列の塩基を他の塩基で置換する場合,置換する塩基の個数は,好ましくは1~20個,より好ましくは1~10個,更に好ましくは1~3個である。野生型のITRの塩基配列を欠失させる場合,欠失させる塩基の個数は,好ましくは1~20個,より好ましくは1~10個,更に好ましくは1~3個である。また,これら塩基の置換と欠失を組み合わせた変異を加えることもできる。野生型のITRに塩基を付加する場合,ITRの塩基配列中若しくは5’末端又は3’末端に,好ましくは1~20個,より好ましくは1~10個,更に好ましくは1~3個の塩基が付加される。これら塩基の付加,置換及び欠失を組み合わせた変異を加えることもできる。変異を加えたITRの塩基配列は,野生型のITRの塩基配列と,好ましくは80%以上の同一性を示し,より好ましくは85%以上の同一性を示し,更に好ましくは90%以上の同一性を示し,更に好ましくは,95%以上の同一性を示し,更に好ましくは98%以上の同一性を示す。
 ITRの機能的等価物とは,機能的にITRに代えて用いることができるものをいう。また,野生型又は変異型のITRに基づいて人工的に構築されたITRも,ITRを代替することができるものである限り,ITRの機能的等価物である。
 AAVのITRの機能的等価物とは,機能的にAAVのITRに代えて用いることができるものをいう。また,野生型又は変異型のAAVのITRに基づいて人工的に構築されたITRも,AAVのITRを代替することができるものである限り,AAVのITRの機能的等価物である。
 本発明の一実施形態においてrAAVビリオンの製造に用いられるAAVベクターは,以下に示す(1)又は(2)の塩基配列を有する:
(1)第一の逆方向末端反復(ITR)又はその機能的等価物を含む塩基配列,その下流に外来の蛋白質をコードする塩基配列,更に下流に第二の逆方向末端反復(ITR)又はその機能的等価物を含む塩基配列;
 (2)第一の逆方向末端反復(ITR)又はその機能的等価物を含む塩基配列,その下流に遺伝子発現制御部位を含む塩基配列,更に下流に外来の蛋白質をコードする塩基配列,更に下流に第二の逆方向末端反復(ITR)又はその機能的等価物を含む塩基配列。
 本発明の一実施形態において製造されるrAAVビリオンに内包されるrAAVゲノムは,以下に示す(1)又は(2)の塩基配列を有する:
(1)第一の逆方向末端反復(ITR)又はその機能的等価物を含む塩基配列,その下流に外来の蛋白質をコードする塩基配列,更に下流に第二の逆方向末端反復(ITR)又はその機能的等価物を含む塩基配列;
 (2)第一の逆方向末端反復(ITR)又はその機能的等価物を含む塩基配列,その下流に遺伝子発現制御部位を含む塩基配列,更に下流に外来の蛋白質をコードする塩基配列,更に下流に第二の逆方向末端反復(ITR)又はその機能的等価物を含む塩基配列。
 本発明の一実施形態においてrAAVゲノム及びAAVベクターに含まれる外来の遺伝子は,生体内において生理活性を発揮し得る蛋白質をコードするものである。かかる生理活性を有する蛋白質(生理活性蛋白質)に特に制限はないが,好適なものとして,医薬として長期に亘って患者に投与されるべきものが挙げられる。かかる医薬としては,例えば,成長ホルモン,リソソーム酵素,ソマトメジン,インスリン,グルカゴン,サイトカイン,リンホカイン,血液凝固因子,抗体,抗体と他の蛋白質との融合蛋白質,顆粒球マクロファージコロニー刺激因子(GM-CSF),顆粒球コロニー刺激因子(G-CSF),マクロファージコロニー刺激因子(M-CSF),エリスロポエチン,ダルベポエチン,組織プラスミノーゲンアクチベーター(t-PA),トロンボモジュリン,卵胞刺激ホルモン(FSH),性腺刺激ホルモン放出ホルモン(GnRH),ゴナドトロピン,DNasel,甲状腺刺激ホルモン(TSH),神経成長因子(NGF),毛様体神経栄養因子(CNTF),グリア細胞株神経栄養因子(GDNF),ニューロトロフィン3,ニューロトロフィン4/5,ニューロトロフィン6,ニューレグリン1,アクチビン,塩基性線維芽細胞成長因子(bFGF),線維芽細胞成長因子2(FGF2),上皮細胞増殖因子(EGF),血管内皮増殖因子(VEGF),インターフェロンα,インターフェロンβ,インターフェロンγ,インターロイキン6,PD-1,PD-1リガンド,腫瘍壊死因子α受容体(TNF-α受容体),ベータアミロイドを分解する活性を有する酵素,エタネルセプト,ペグビソマント,メトレレプチン,アバタセプト,アスホターゼ,GLP-1受容体アゴニスト,及び抗体医薬の何れかの一つ,が挙げられる。
 生理活性蛋白質がリソソーム酵素である場合の好適例として,α-L-イズロニダーゼ,イズロン酸-2-スルファターゼ,グルコセレブロシダーゼ,β-ガラクトシダーゼ,GM2活性化蛋白質,β-ヘキソサミニダーゼA,β-ヘキソサミニダーゼB,N-アセチルグルコサミン-1-フォスフォトランスフェラーゼ,α-マンノシダーゼ,β-マンノシダーゼ,ガラクトシルセラミダーゼ,サポシンC,アリールスルファターゼA,α-L-フコシダーゼ,アスパルチルグルコサミニダーゼ,α-N-アセチルガラクトサミニダーゼ,酸性スフィンゴミエリナーゼ,α-ガラクトシダーゼ A,β-グルクロニダーゼ,ヘパランN-スルファターゼ,α-N-アセチルグルコサミニダーゼ,アセチルCoAα-グルコサミニドN-アセチルトランスフェラーゼ,N-アセチルグルコサミン-6-硫酸スルファターゼ,酸性セラミダーゼ,アミロ-1,6-グルコシダーゼ,シアリダーゼ,パルミトイル蛋白質チオエステラーゼ-1,トリペプチジルペプチダーゼ-1,ヒアルロニダーゼ-1,CLN1及びCLN2が挙げられる。
 本発明の一実施形態において,生理活性蛋白質はヒトの蛋白質である。また,蛋白質は野生型のものであってもよく,その蛋白質が有する本来の生理活性を有する限り,変異を加えたものであってもよい。ここで,その蛋白質が本来の生理活性を有するとは,その蛋白質の野生型蛋白質の生理活性に対して20%以上の生理活性を有することを意味する。その蛋白質の野生型蛋白質の生理活性に対する生理活性は,40%以上であることがより好ましく,50%以上であることが更に好ましく,80%以上であることがより更に好ましく,90%以上であることがなおも更に好ましい。
 野生型の生理活性蛋白質のアミノ酸配列のアミノ酸を他のアミノ酸で置換する場合,置換するアミノ酸の個数は,好ましくは1~20個,より好ましくは1~10個,更に好ましくは1~3個である。野生型の当該蛋白質のアミノ酸配列を欠失させる場合,欠失させるアミノ酸の個数は,好ましくは1~20個,より好ましくは1~10個,更に好ましくは1~3個である。また,これらアミノ酸の置換と欠失を組み合わせた変異を加えることもできる。野生型の当該蛋白質にアミノ酸を付加する場合,当該蛋白質のアミノ酸配列中若しくは5’末端又は3’末端に,好ましくは1~20個,より好ましくは1~10個,更に好ましくは1~3個のアミノ酸が付加される。これらアミノ酸の付加,置換及び欠失を組み合わせた変異を加えることもできる。変異を加えた当該蛋白質のアミノ酸配列は,野生型の当該蛋白質のアミノ酸配列と,好ましくは80%以上の同一性を示し,好ましくは85%以上の同一性を示し,より好ましくは90%以上の同一性を示し,更に好ましくは,95%以上の同一性を示し,更により好ましくは98%以上の同一性を示す。
 なお,本発明において,野生型蛋白質と比較したときの各変異の位置及びその形式(欠失,置換,付加)は,野生型及び変異型蛋白質のアミノ酸配列のアラインメントにより,容易に確認することができる。なお,本発明において,野生型蛋白質のアミノ酸配列と変異型蛋白質のアミノ酸配列との同一性は,周知の相同性計算アルゴリズムを用いて容易に算出することができる。例えば,そのようなアルゴリズムとして,BLAST(Altschul SF. J Mol. Biol. 215. 403-10, (1990)),Pearson及びLipmanの類似性検索法(Proc. Natl. Acad. Sci. USA. 85. 2444 (1988)),Smith及びWatermanの局所相同性アルゴリズム(Adv. Appl. Math. 2. 482-9(1981))等がある。
 上記の蛋白質のアミノ酸配列中のアミノ酸の他のアミノ酸による置換は,例えば,アミノ酸のそれらの側鎖及び化学的性質で関連性のあるアミノ酸ファミリー内で起こるものである。このようなアミノ酸ファミリー内での置換は,蛋白質の機能に大きな変化をもたらさない(即ち,保存的アミノ酸置換である)ことが予測される。かかるアミノ酸ファミリーとしては,例えば以下のものがある:
(1)酸性アミノ酸であるアスパラギン酸とグルタミン酸,
(2)塩基性アミノ酸であるヒスチジン,リシン,及びアルギニン,
(3)芳香族アミン酸であるフェニルアラニン,チロシン,及びトリプトファン,
(4)水酸基を有するアミノ酸(ヒドロキシアミノ酸)であるセリンとトレオニン,
(5)疎水性アミノ酸であるメチオニン,アラニン,バリン,ロイシン,及びイソロイシン,
(6)中性の親水性アミノ酸であるシステイン,セリン,トレオニン,アスパラギン,及びグルタミン,
(7)ペプチド鎖の配向に影響するアミノ酸であるグリシンとプロリン,
(8)アミド型アミノ酸(極性アミノ酸)であるアスパラギンとグルタミン,
(9)脂肪族アミノ酸である,アラニン,ロイシン,イソロイシン,及びバリン,
(10)側鎖の小さいアミノ酸であるアラニン,グリシン,セリン,及びトレオニン,
(11)側鎖の特に小さいアミノ酸であるアラニンとグリシン。
 また,上記の生理活性蛋白質と抗体との融合蛋白質も,生理活性を発揮し得る蛋白質の好適なものの一つである。ここで,生理活性蛋白質と融合させる抗体は,生体内で特定の抗原に対して親和性を示すものである限り,特に限定はない。例えば,血管内皮細胞の表面に存在する蛋白質に対して特異的な親和性を有する抗体である。かかる血管内皮細胞の表面に存在する蛋白質としては,トランスフェリン受容体,インスリン受容体,レプチン受容体,インスリン様成長因子I受容体,インスリン様成長因子II受容体,リポ蛋白質受容体,Fc受容体,ブドウ糖輸送担体1,有機アニオントランスポーター,モノカルボン酸トランスポーター,低密度リポ蛋白質受容体関連蛋白質1,低密度リポ蛋白質受容体関連蛋白質8,及びヘパリン結合性上皮成長因子様成長因子の膜結合型前駆体が例示できる。更に,有機アニオントランスポーターとしてはOATP-Fが,モノカルボン酸トランスポーターとしてはMCT-8が例示できる。トランスフェリン受容体,インスリン受容体に対して特異的な親和性を有する抗体は好適に用いることができ,特にトランスフェリン受容体に対して特異的な親和性を有する抗体は好適に用いることができる。抗体が血管内皮細胞の表面に存在する蛋白質と結合するものである場合,融合蛋白質は,血管内皮細胞に取り込まれた後,種々の組織にまで到達しそこで生理活性を示すことができるので,かかる融合蛋白質は,種々の組織で薬効を発揮させるべき医薬として使用し得る。例えば,抗体がトランスフェリン受容体,インスリン受容体に対して特異的な親和性を有するものである場合,かかる融合蛋白質は,筋肉内で薬効を発揮させるべき医薬として使用し得る。
 本発明の一実施形態において,生理活性蛋白質と融合させる抗体は,脳血管内皮細胞の表面に存在する蛋白質に対して特異的な親和性を有する抗体である。かかる脳血管内皮細胞の表面に存在する蛋白質としては,トランスフェリン受容体,インスリン受容体,レプチン受容体,インスリン様成長因子I受容体,インスリン様成長因子II受容体,リポ蛋白質受容体,Fc受容体,ブドウ糖輸送担体1,有機アニオントランスポーター,モノカルボン酸トランスポーター,低密度リポ蛋白質受容体関連蛋白質1,低密度リポ蛋白質受容体関連蛋白質8,及びヘパリン結合性上皮成長因子様成長因子の膜結合型前駆体が例示できる。更に,有機アニオントランスポーターとしてはOATP-Fが,モノカルボン酸トランスポーターとしてはMCT-8が例示できる。トランスフェリン受容体,インスリン受容体に対して特異的な親和性を有する抗体は好適に用いることができ,特にトランスフェリン受容体に対して特異的な親和性を有する抗体は好適に用いることができる。抗体が脳血管内皮細胞の表面に存在する蛋白質と結合するものである場合,融合蛋白質は,血液脳関門(BBB)を通過することにより脳組織にまで到達しそこで生理活性を示すことができるので,かかる融合蛋白質は,脳内で薬効を発揮させるべき医薬として使用し得る。生理活性蛋白質と融合させる抗体に代えて,脳血管内皮細胞の表面に存在する蛋白質に対して特異的な親和性を有する他のリガンドを生理活性蛋白質と融合させてもよい。かかるリガンドとして,トランスフェリン,インスリン,インスリン様成長因子I,インスリン様成長因子II受容体,リポ蛋白質,及びFc断片を例示することができるが,かかるリガンドはこれらに限定されるものではない。
 本発明の一実施形態において,外来の蛋白質の遺伝子の発現を制御する遺伝子発現制御部位を含む塩基配列として用いることのできる塩基配列に,それが外来の蛋白質をコードする遺伝子が導入される先の哺乳動物(特にヒト)の細胞,組織又は生体内で,この外来の蛋白質を発現させることができるものである限り,特に制限はないが,サイトメガロウイルス由来のプロモーター(任意選択でエンハンサーを含む),SV40初期プロモーター,ヒト伸長因子-1α(EF-1α)プロモーター,ヒトユビキチンCプロモーター,レトロウイルスのラウス肉腫ウイルスLTRプロモーター,ジヒドロ葉酸還元酵素プロモーター,及びβ-アクチンプロモーター,ホスホグリセリン酸キナーゼ(PGK)プロモーター,マウスアルブミンプロモーター,ヒトアルブミンプロモーター,及びヒトα-1アンチトリプシンプロモーターを含むものが好適である。例えば,マウスαフェトプロテインエンハンサーの下流にマウスアルブミンプロモーターを含む塩基配列を有する合成プロモーター(マウスαフェトプロテインエンハンサー/マウスアルブミンプロモーター)は遺伝子発現制御部位として好適に利用できる。
 遺伝子制御部位は,臓器特異的又は細胞種特異的に発現する遺伝子のプロモーターであってもよい。臓器特異的発現プロモーター又は細胞種特異的発現プロモーターを用いることにより,rAAVゲノムに組込んだ外来の蛋白質をコードする遺伝子を,所望の臓器又は細胞で特異的に発現させることができる。
 以下,本発明におけるrAAV9ビリオンの製造方法の一実施形態について詳述する。まず宿主細胞となる哺乳動物細胞が培養される。宿主細胞としてはアデノウイルスのE1A遺伝子とE1B遺伝子がゲノム中に組込まれた哺乳動物細胞が用いられる。ヒト胎児腎組織由来細胞であるHEK293T細胞はそのような細胞の好適例である。培養する宿主細胞の量は,必要とされるrAAV9ビリオンの製造量に応じて適宜調製される。
 次いで,宿主細胞にAAVベクターを含むプラスミドが導入される。導入されるプラスミドは,通常,(1)AAV等のウイルスに由来する第一の逆方向末端反復(ITR)を含む塩基配列と第二の逆方向末端反復(ITR)を含む塩基配列,及びこれら2つのITRの間に配置された所望の蛋白質をコードする遺伝子を含む構造を有するプラスミド(プラスミド1),(2)前記ITR配列に挟まれた領域(ITR配列を含む)の塩基配列を宿主細胞のゲノム中に組み込むために必要な機能を有するAAV Rep遺伝子と,AAVのカプシド蛋白質をコードする遺伝子とを含むプラスミド(プラスミド2),及び(3)アデノウイルスのE2A領域,E4領域,及びVA1 RNA領域を含むプラスミド(プラスミド3)の3種類のプラスミドである。但し,これに限らず,プラスミド1~3のうちの2つを連結させて一つのプラスミドとしたものと,残りの一つのプラスミドの2種類のプラスミドを用いることもできる。更に,プラスミド1~3を連結させて一つのプラスミドとしたものを用いることもできる。プラスミド2はAAV9のカプシド蛋白質をコードする遺伝子を含む。宿主細胞へのプラスミドの導入は,エレクトロポレーション,リポソーム媒介法等を含む常法により行うことができる。リポフェクタミンを用いる方法は宿主細胞へのプラスミドの導入のために好適に使用できる。
 プラスミドの導入後,宿主細胞は培養される。この培養期間中に宿主細胞内でrAAVゲノムが複製され,このrAAVゲノムがAAV9のカプシド蛋白質にパッケージされることによりrAAV9ビリオンが形成され,培地中に放出される。このとき宿主細胞の培養に用いられる培地には,宿主細胞の培養に用いることのできる培地である限り特に制限はなく,例えば,10%のFBSを含有するイーグル最小必須培地は好適に用いることのできる培地の一つである。プラスミドの導入後,宿主細胞は好ましくは3~8日間,例えば6日間培養される。
 培養終了後,rAAV9ビリオンを含む培養上清が回収される。培養上清の回収は,培養終了後の培地を遠心分離法,膜ろ過法等の常法により行うことができる。培養上清に含まれるrAAV9ビリオンの表面には,宿主細胞のゲノム等に由来するDNAが付着しているおそれがある。このrAAV9ビリオンに付着したDNAは,回収した培養上清にDNA分解酵素を添加することにより分解できる。DNA分解酵素としては,エンドヌクレアーゼを好適に用いることができる。Serratia marcescensに由来するエンドヌクレアーゼはその一例であり,このエンドヌクレアーゼの変異型であるベンゾナーゼは好適に使用できるものの一つである。DNA分解酵素により処理された培養上清は,以下で詳述される精製工程に供される。なお,当該精製工程は第1ステップとしてアフィニティカラムクロマトグラフィーを,第2のステップとして陰イオン交換カラムクロマトグラフィーを含むものであるが,第1のステップとして陰イオン交換カラムクロマトグラフィーを,第2ステップとしてアフィニティカラムクロマトグラフィーを含む精製工程とすることもできる。また,これらのカラムクロマトグラフィーに加えて,陽イオン交換担体,陰イオン交換担体,疎水性相互作用担体,サイズ排除担体,逆相担体,ヒドロキシアパタイト担体,フルオロアパタイト担体,及び混合モード担体から選択される担体が使用される1又は複数のカラムクロマトグラフィーを含む精製工程とすることもできる。以下に,第1ステップとしてアフィニティカラムクロマトグラフィーを,第2のステップとして陰イオン交換カラムクロマトグラフィーを含む精製工程について詳述する。
 精製工程の第1ステップは,AAV9のカプシドに親和性を有する材料を担体に固定したカラムを用いたアフィニティカラムクロマトグラフィーである。このとき用いられるAAV9のカプシドに親和性を有する材料には特に限定は無い。
 アフィニティカラムクロマトグラフィーにおいて担体に固定されるAAV9のカプシドに親和性を有する材料に,当該材料がAAV9カプシドと特異的な親和性を有するものである限り特に限定はなく,当該材料とAAV9カプシドとの解離定数は,好ましくは1×10-6 M以下であり,例えば5×10-7 M~1×10-9 Mである。かかる材料としては,抗AAV9カプシド抗体が挙げられる。ここで用いられる抗AAV9カプシド抗体のAAV9カプシドとの解離定数は,好ましくは1×10-6 M以下であり,例えば5×10-7 M~1×10-9 Mである。POROSTM CaptureSelectTM AAVX Resins(Thermo Fisher Scientific社)はアフィニティカラムクロマトグラフィーに用いることのできるものの好適例である。
 アフィニティカラムクロマトグラフィーの担体が,抗AAV9カプシド抗体を固定したものである場合(抗体カラムクロマトグラフィー),カラムは予め中性塩を含む中性付近の緩衝液で平衡化される。ここで用いられる中性塩に特に限定はないが,NaClが好適に用いられる。中性塩の濃度は,好ましくは100~200 mM,より好ましくは130~170 mM,例えば150 mMである。緩衝液のpHは,好ましくは7.0~8.0 mM,より好ましくは7.2~7.7 mM,例えば7.5 mMに調整される。MgCl2を更に添加した緩衝液を用いることもでき,その濃度は好ましくは2~6 mMであり,例えば4 mMである。
 培養上清をカラムに負荷することにより,培養上清に含まれるrAAV9ビリオンをカラムに結合させた後に,カラムを洗浄することにより,夾雑物の多くを除去することができる。但し,この過程では空カプシドを除去することはほとんどできない。空カプシドもカラムに結合するからである。
 抗体カラムクロマトグラフィーにおいて担体に吸着させたrAAV9ビリオンは,緩衝剤を含む酸性の緩衝液をカラムに通すことにより溶出させることができる。このとき用いられる緩衝剤に特に限定はないが,好適なものとしてクエン酸,リン酸,グリシン,ヒスチジン,酢酸等が挙げられる。緩衝剤の濃度は,好ましくは10 mM~100 mMであり,例えば50 mMである。緩衝液のpHは,好ましくは3.0~4.0 mM,より好ましくは3.2~3.7 mM,例えば3.5 mMに調整される。MgCl2を更に添加した緩衝液を用いることもでき,その濃度は好ましくは2~6 mMであり,例えば4 mMである。この溶出液にはrAAV9ビリオンに加えて空カプシドも含まれる。
 抗体カラムクロマトグラフィーから溶出させたrAAV9ビリオンを含む溶液のpHは酸性である。この溶液のpHは溶出後に,緩衝液を用いて塩基性にpHが調整される。このとき用いられる緩衝液に含まれる緩衝剤に特に限定はないが,トリス塩酸,ビス-トリス,ビス-トリスプロパン,ビシン(N,N-ビス(2-ヒドロキシエチル)グリシン),HEPES(4-2-ヒドロキシエチル-1-ピペラジンエタンスルホン酸),TAPS(3-{[トリス(ヒドロキシメチル)メチル]アミノ}プロパンエタンスルホン酸),トリシン(N-トリス(ヒドロキシメチル)メチルグリシン)等を用いることができ,例えばビス-トリスプロパンは好適な緩衝剤の一つである。緩衝剤の濃度については,緩衝液が緩衝能を有する限り特に限定は無いが,好ましくは5 mM~80 mMであり,より好ましくは10 mM~60 mMであり,さらに好ましくは10 mM~30 mMであり,例えば20 mMである。緩衝液のpHは,塩基性である限り特に限定は無い。また,緩衝液は緩衝剤以外に中性塩を含んでいてもよい。このとき緩衝液に含まれる中性塩としては,例えば塩化カルシウム,塩化マグネシウム,リン酸カリウム,及び塩化ナトリウムが挙げられるが,特に塩化マグネシウムである。中性塩の濃度に特に限定は無いが,好ましくは0.1 mM~20 mMであり,より好ましくは0.5 mM~10 mMであり,さらに好ましくは1 mM~10 mMであり,例えば2 mMである。緩衝液は更に非イオン性界面活性剤を添加したものであってもよい。非イオン性界面活性剤としては,ポリオキシエチレン-ポリオキシプロピレンブロック共重合体,ポリソルベート,ポロキサマーが好適に使用でき,例えば,ポリソルベート20,ポリソルベート80,ポロキサマー188,は特に好適に使用できる。非イオン性界面活性剤の濃度は,好ましくは0.0002~0.01%(w/v),より好ましくは0.0005~0.005%(w/v),更に好ましくは0.001~0.002%(w/v)であり,例えば0.001%(w/v)である。好適な緩衝液の一例として,4 mM MgCl2,0.001%(w/v) プルロニックTMF-68(ポロキサマー188)を含有する20 mMビス-トリスプロパン緩衝液が挙げられる。緩衝剤を添加後の溶出液のpHは,好ましくはpH8.5~10.5であり,より好ましくはpH9.0~10.0であり,例えばpH9.5である。
 精製工程の第2ステップは,陰イオン交換基を有する材料を固定相として用いた陰イオン交換カラムクロマトグラフィーである。このステップは,陰イオン交換カラムを用いることにより,溶出液のコンダクティビティーの違いによりグラジエント溶出もしくはステップワイズ溶出を行うことで,rAAV9ビリオンと空カプシドとを分離させるためのものである。陰イオン交換カラムクロマトグラフィーに用いられる固定相は,強イオン交換体であることが好ましい。例えば,第4級アミンを有する強陰イオン交換体を固定相とする強陰イオン交換カラムクロマトグラフィーは好適に使用できる。
 陰イオン交換カラムクロマトグラフィーにおいて陰イオン交換カラムは,rAAV9ビリオンと空カプシドを含む塩基性にpHが調整された溶液が負荷される前に,予め緩衝液で平衡化される。このときに用いられる緩衝液に含まれる緩衝剤に特に限定はないが,トリス塩酸,ビス-トリス,ビス-トリスプロパン,ビシン(N,N-ビス(2-ヒドロキシエチル)グリシン),HEPES(4-2-ヒドロキシエチル-1-ピペラジンエタンスルホン酸),TAPS(3-{[トリス(ヒドロキシメチル)メチル]アミノ}プロパンエタンスルホン酸),トリシン(N-トリス(ヒドロキシメチル)メチルグリシン)等を用いることができ,例えばビス-トリスプロパンは好適な緩衝剤の一つである。緩衝剤の濃度については,緩衝液が緩衝能を有する限り特に限定は無いが,好ましくは5 mM~80 mMであり,より好ましくは10 mM~60 mMであり,さらに好ましくは10 mM~30 mMであり,例えば20 mMである。緩衝液のpHは,塩基性である限り特に限定は無いが,好ましくはpH8.5~10.5であり,より好ましくはpH9.0~10.0であり,例えばpH9.5である。また,緩衝液は緩衝剤以外に中性塩を含んでいてもよく,このとき含まれる中性塩としては,塩化カルシウム,塩化マグネシウム,リン酸カリウム,及び塩化ナトリウムが挙げられ,好ましくは塩化マグネシウムである。中性塩の濃度については,特に限定は無いが,好ましくは0.1 mM~20 mMであり,より好ましくは0.5 mM~10 mMであり,さらに好ましくは1 mM~10 mMであり,例えば2 mMである。緩衝液は更に非イオン性界面活性剤を添加したものであってよい。非イオン性界面活性剤としては,ポリオキシエチレン-ポリオキシプロピレンブロック共重合体,ポリソルベート,ポロキサマーが好適に使用でき,例えば,ポリソルベート20,ポリソルベート80,ポロキサマー188,は特に好適に使用できる。非イオン性界面活性剤の濃度は,好ましくは0.0002~0.01%(w/v),より好ましくは0.0005~0.005%(w/v),更に好ましくは0.001~0.002%(w/v)であり,例えば0.001%(w/v)である。好適な緩衝液の一例として,4 mM MgCl2,0.001%(w/v) プルロニックTMF-68(ポロキサマー188)を含有する20 mMビス-トリスプロパン緩衝液が挙げられる。
 陰イオン交換カラムクロマトグラフィーにおいて,カラムに吸着されたrAAV9ビリオンは,一定濃度の第四級アンモニウム塩を含有する塩基性緩衝液(溶出液)を用いて,もしくは,塩基性緩衝液中の第四級アンモニウム塩の濃度を連続的に変化させることにより,カラムから溶出させることができ,rAAV9ビリオンを含む画分を分取することにより回収される。陰イオン交換カラムクロマトグラフィーの機能の一つとして,rAAV9ビリオンと空カプシドを分離することがある。rAAV9ビリオンにはrAAV9ゲノムがパッケージングされているので,rAAV9ビリオンは空カプシドよりも負にチャージしている。よってrAAV9ビリオンは空カプシドに比較して塩基性環境下では陰イオン交換カラムクロマトグラフィーに強く吸着する。従って,rAAV9ビリオン及び空カプシドが吸着した陰イオン交換カラムクロマトグラフィーにある一定の濃度以上の第四級アンモニウム塩を含む緩衝液を通じると,概ね,空カプシドが先に溶出し,次いでrAAV9ビリオンが溶出する。
 陰イオン交換カラムクロマトグラフィーにおいて,カラムに吸着したrAAV9ビリオンを溶出させるために用いる溶出液に含まれる緩衝剤に特に限定はないが,トリス塩酸,ビス-トリス,ビス-トリスプロパン,ビシン(N,N-ビス(2-ヒドロキシエチル)グリシン),HEPES(4-2-ヒドロキシエチル-1-ピペラジンエタンスルホン酸),TAPS(3-{[トリス(ヒドロキシメチル)メチル]アミノ}プロパンエタンスルホン酸),トリシン(N-トリス(ヒドロキシメチル)メチルグリシン)等を用いることができ,例えばビス-トリスプロパンは好適な緩衝剤の一つである。溶出液に含まれる緩衝剤の濃度に,緩衝液が緩衝能を有する限り特に限定は無いが,好ましくは5 mM~80 mMであり,より好ましくは10 mM~60 mMであり,さらに好ましくは10 mM~30 mMであり,例えば20 mMである。緩衝液のpHは,塩基性である限り特に限定は無いが,好ましくはpH8.5~10.5であり,より好ましくはpH9.0~10.0であり,例えばpH9.5である。
 溶出液に含まれる第四級アンモニウム塩の濃度は,濃度を連続的に変化させるグラジエント溶出法によりrAAV9ビリオンを溶出させる場合にあっては,その変化させる濃度の範囲は,好ましくは0 mM~200 mMであり,例えば,0 mM~80 mM,0 mM~60 mM,0 mM~50 mM,10 mM~80 mM,20 mM~80 mM,20 mM~50 mM,20 mM~60 mM等に設定される。カラムから溶出される溶出液は,連続的に260 nm又は/及び280 nmの吸光度がモニターされ,カラムクロマトグラムに表れるピーク毎に回収される。これらの画分の中から,rAAV9ビリオンと空カプシドの比率が所望の値以上のものが回収される。rAAV9ビリオンと空カプシドの比率は,rAAV9ビリオンの用途により任意に設定されるものであるが,好ましくは2:8~10:0であり,より好ましくは4:6~10:0であり,更に好ましくは5:5~10:0であり,例えば,7:3~10:0,8:2~10:0とすることができる。
 一定の濃度の第四級アンモニウム塩を含む溶出液を用いて,rAAV9ビリオンを溶出させる場合にあっては,その濃度は,好ましくは20 mM~60 mMであり,より好ましくは25 mM~55 mM,30 mM~55 mMであり,例えば30 mM,35 mM,40 mM,44 mM,48 mM等に設定される。カラムから溶出される溶出液は,連続的に260 nm又は/及び280 nmの吸光度がモニターされ,カラムクロマトグラムに表れるピーク毎に回収される。これらの画分の中から,rAAV9ビリオンと空カプシドの比率が所望の値以上のものが回収される。rAAV9ビリオンと空カプシドの比率は,rAAV9ビリオンの用途により任意に設定されるものであるが,好ましくは2:8~10:0であり,より好ましくは4:6~10:0であり,更に好ましくは5:5~10:0であり,例えば,7:3~10:0,8:2~10:0である。なお,第四級アンモニウム塩の濃度を段階的に上昇させてrAAV9ビリオンを溶出させる場合にあっても,段階的に上昇させる濃度の,ある濃度においてrAAV9ビリオンを溶出させるものであれば,それは一定の濃度の第四級アンモニウム塩を含む溶出液を用いて,rAAV9ビリオンを溶出させる場合に含まれる。
 また,溶出液は緩衝剤と第四級アンモニウム塩以外に中性塩を含んでいてもよく,このとき含まれる中性塩としては,塩化カルシウム,塩化マグネシウム,リン酸カリウム,及び塩化ナトリウムが挙げられ,好ましくは塩化マグネシウムである。中性塩の濃度については,特に限定は無いが,好ましくは0.1 mM~20 mMであり,より好ましくは0.5 mM~10 mMであり,さらに好ましくは1 mM~10 mMであり,例えば2 mMである。緩衝液は更に非イオン性界面活性剤を添加したものであってよい。非イオン性界面活性剤としては,ポリオキシエチレン-ポリオキシプロピレンブロック共重合体,ポリソルベート,ポロキサマーが好適に使用でき,例えば,ポリソルベート20,ポリソルベート80,ポロキサマー188,は特に好適に使用できる。非イオン性界面活性剤の濃度は,好ましくは0.0002~0.01%(w/v),より好ましくは0.0005~0.005%(w/v),更に好ましくは0.001~0.002%(w/v)であり,例えば0.001%(w/v)である。好適な緩衝液の一例として,4 mM MgCl2,0.001%(w/v) プルロニックTMF-68(ポロキサマー188)を含有する20 mM ビス-トリスプロパン緩衝液に更に,30 mM,35 mM,40 mM,44 mM,又は48 mMの濃度の第四級アンモニウム塩を含むものが挙げられる。
 陰イオン交換カラムクロマトグラフィーにおける一実施形態において,30 mM~60 mM の一定濃度,例えば30 mM,35 mM,40 mM,44 mM,又は48 mMの一定濃度の第四級アンモニウム塩を含む溶出液を用いてrAAV9ビリオンを溶出することにより,空カプシドが多い割合で含まれるピーク,次いでrAAV9ビリオンが多い割合で含まれるピークが,この順で分離して現れるクロマトグラムを得ることができる。rAAV9ビリオンが多い割合で含まれるピークに対応する画分のみを分取することにより,空カプシドの少ないrAAV9ビリオンを得ることができる。この場合に回収される溶出画分におけるrAAV9ビリオンと空カプシドの比率は,好ましくは2:8~10:0であり,より好ましくは4:6~10:0であり,更に好ましくは5:5~10:0であり,5:5~10:0,6:4~10:0,7:3~10:0,8:2~10:0等と任意に調整することができる。なお,空カプシドとrAAV9ビリオンの割合は,例えば,実施例15に記載の方法で測定することができる。
 本明細書において,本発明の製造方法により得られるrAAV9ビリオンを含む溶液のことをrAAV9ビリオン精製品という。rAAV9ビリオン精製品は,空カプシドの混入が少ないものであり,rAAV9ビリオンと空カプシドの比率は任意に設定されるものであるが,例えば,5:5~10:0,6:4~10:0,7:3~10:0,8:2~10:0等である。
 rAAV9ビリオン精製品は,これを無菌的にガラス容器,樹脂容器等にパッケージングして医薬組成物として,治療薬として用いることができる。rAAV9ビリオン精製品は,エンドトキシンを除去する等の目的のため,更なる精製工程に供することもできる。
 本発明のrAAV9ビリオンの製造方法は,rAAV9ビリオンと空カプシドを分離する方法として,スケールアップが容易に行えるものであるため,商業スケールでのrAAV9ビリオンの製造方法として好適に用いることができる。
 以下,実施例を参照して本発明を更に詳細に説明するが,本発明が実施例に限定されることは意図しない。
〔実施例1〕pHelper(mod)ベクターの構築
 5’側より,SalIサイト,RsrIIサイト,複製開始点(ColE1 ori),アンピシリン耐性遺伝子,BsiWIサイト,BstZ17Iサイト,及びBsrGIサイトを含む配列番号1で示される塩基配列を含むDNA断片を合成した。このDNA断片をSalIとBsrGIで消化した。pHelperベクター(タカラバイオ社)をSalIとBsrGIで消化し,これに,上記の制限酵素処理したDNA断片を挿入した。得られたプラスミドをpHelper(mod)ベクターとした(図1)。
〔実施例2〕pAAV-CBA(BAM)-PPT1-WPREベクターの構築
 5’側より,ClaIサイト,ヒトCMVエンハンサー,ニワトリβアクチンプロモーター,ニワトリβアクチン/MVMキメライントロン,パルミトイル蛋白質チオエステラーゼ-1(PPT1)遺伝子,ウッドチャック肝炎ウイルス転写後調節エレメント(Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element: WPRE),ウシ成長ホルモンポリA配列,及びBglIIサイトを含む配列番号2で示される塩基配列を含むDNA断片を合成した。このDNA断片をClaIとBglIIで消化した。pAAV-CMVベクター(タカラバイオ社)をClaIとBglIIで消化し,これに上記の制限酵素処理したDNA断片を挿入した。得られたプラスミドをpAAV-CBA(BAM)-PPT1-WPREベクターとした(図2)。常法によりこのプラスミドを精製した。
〔実施例3〕pR2(mod)C6ベクターの構築
 5’側より,AfeIサイト,RsrIIサイト,BsrGIサイト,AvrIIサイト,アンピシリン耐性遺伝子サイト,複製開始点(ColE1 ori),RsrIIサイト,AAV2 Rep領域の5’部分(p5プロモーターを含む),及びSacIIサイトを含む配列番号3で示される塩基配列を含むDNA断片を合成した。このDNA断片をAfeIとSacIIで消化した。pRC6ベクター(タカラバイオ社)をAfeIとSacIIで消化し,これに上記の制限処理した合成遺伝子を挿入した。得られたプラスミドをpR2(mod)C6ベクターとした(図3)。常法によりこのプラスミドを精製した。
〔実施例4〕pR2(mod)C9ベクターの構築
 5’側より,HindIIIサイト,AAV2 Rep領域の3’部分,AAV9 Cap領域,p5プロモーター,RsrIIサイト,及びBsrGIサイトを含む配列番号4で示される塩基配列を含むDNA断片を合成した。このDNA断片をHindIIIとBsrGIで消化した。pR2(mod)C6ベクターをHindIIIとBsrGIで消化し,これに上記の制限酵素処理した合成遺伝子を挿入した。得られたプラスミドをpR2(mod)C9ベクターとした(図4)。常法によりこのプラスミドを精製した。
〔実施例5〕rAAV9ビリオンの産生
 FBS(Fetal Bovine Serum, Collected in South America,CAPRICORN SCIENTIFIC社)を,終濃度10%になるようイーグル最少必須培地(Minimum Essential Medium Eagle With Earle’s salts, L-glutamine and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture,MERCK社)に添加し,10%FBS含有MEM培地とした。SV40ウイルスのlargeT抗原遺伝子を発現させたヒト胎児腎臓細胞由来の細胞株である,HEK293T細胞を10%FBS含有MEM培地中で概ね細胞数が6.5×109 個となるまで拡大培養した。HEK293T細胞を,1000 mLの10% FBS含有MEM培地中に細胞濃度6.3×105 個/mLとなるように懸濁させ,これをセルスタック培養チャンバー(細胞培養表面処理,10チ
ャンバー,Corning社)に播種し,37℃, 5% CO2存在下で16時間培養した。
 1.1 mgのpHelper(mod)ベクター,0.55 mgのpR2(mod)C9ベクター,0.55 mgのpAAV-CBA(BAM)-PPT1-WPREベクター,及び4.4 mgのポリエチレンイミン(PEI MAX-Transfection Grade Linear Polyethylenimine Hydrochloride(MW 40,000))をイーグル最少必須培地に添加して液量を54 mLとしたものをボルテックスミキサーで攪拌して室温で15分間静置した。これに1446 mLのイーグル最少必須培地を添加して全量1500 mLとしたものをトランスフェクション試薬とした。
 上記16時間培養後のセルスタック培養チャンバーから培地を全て除去し,これに1500 mLのトランスフェクション試薬を全量添加した後,37℃, 5% CO2存在下で細胞を培養した。
〔実施例6〕細胞の除去及び核酸分解酵素処理
 培養6日目にセルスタック培養チャンバーから培地を回収し,プレフィルトレーション用デプスフィルター(ULTA Prime GF 5.0 μm, 2 inch capsule, GG,Cytiva社)及びボトルトップフィルター(NalgeneTM Rapid-FlowTM Sterile Single Use Bottle Top Filters,Thermo Fisher Scientific社)でろ過することにより培養上清を回収した。培養上清に10 U/mLのBenzonaseTM(Benzonase Nuclease, Purity>90%,Merck社)を添加し,37℃で1時間撹拌し反応させた。この反応で,BenzonaseTMのエンドヌクレアーゼ活性により,ろ液中に存在するDNA断片,例えばろ液中に存在するrAAVビリオンに付着したDNA断片,が分解される。前述のボトルトップフィルターと同形式のフィルターを用いて反応後の溶液をろ過し,このろ液をrAAV9ビリオン含有酵素処理液として以下の行程に供した。
〔実施例7〕アフィニティカラムクロマトグラフィーによる精製工程
 20 mLのPOROS AAVX樹脂(POROSTM CaptureSelectTM AAVX Affinity Resin,Thermo Fisher Scientific社)を充填したカラム(直径1.6 cm,ベッド高10 cm)に,カラム容量の5倍の4 mM MgCl2,150 mM NaClを含有する20 mMトリスヒドロキシメチルアミノメタン緩衝液(pH7.5)を流速5 mL/分で通し,カラムを平衡化した。次いで実施例6で得られたrAAV9ビリオン含有酵素処理液を流速5 mL/分でカラムに負荷した。次いで,カラム容量の5倍の4 mM MgCl2,150 mM NaClを含有する20 mMトリスヒドロキシメチルアミノメタン緩衝液(pH7.5)を同流速でカラムに通し,カラムを洗浄した後,カラム容量の3倍の4 mM MgCl2を含有する50 mMクエン酸緩衝液(pH3.5)を同流速でカラムに通し,カラムに吸着したrAAV9ビリオンを溶出させた。得られた溶出液に2 mM MgCl2を含有する20 mM Bis-Tris Propane緩衝液(pH10.6)を加えてpH9.5に調整した。これをrAAV9ビリオン含有アフィニティ画分とし,以下に示す条件A~条件Fの各条件で陰イオン交換カラムクロマトグラフィーによる精製工程に供した。
〔実施例8〕陰イオン交換カラムクロマトグラフィーによる精製工程(条件A)
 10 mLのTSKgel SuperQ-5PW(20)樹脂(TOSOH社)を充填したカラム(直径0.8 cm,ベッド高20 cm)に,カラム容量の8倍の4 mM MgCl2,0.001% プルロニックTMF-68を含有する20 mM Bis-Tris Propane緩衝液(pH9.5)を流速1.25 mL/分で通してカラムを平衡化した。次いで,実施例7で得られたrAAV9ビリオン含有アフィニティ画分の270 mLを,流速1.25 mL/分でカラムに負荷した。次いで,カラム容量の5倍の4 mM MgCl2,0.001% プルロニックTMF-68を含有する20 mM Bis-Tris Propane緩衝液(pH9.5)をカラムに通してカラムを洗浄した。次いで,カラム容量の100倍の塩化テトラメチルアンモニウム,4 mM MgCl2,0.001% プルロニックTMF-68を含有する20 mM Bis-Tris Propane緩衝液(pH9.5)を,塩化テトラメチルアンモニウムの濃度を線形勾配(0~200 mM)で上昇させながら,流速1.25 mL/分でカラムに通し,カラムからrAAV9ビリオンを溶出させた。このときカラムの排出口の下流の流路に吸光光度計を設置し,溶出液の260 nm及び280 nmの吸光度を継時的にモニターしクロマトグラムを得た。クロマトグラム上のピークに対応する画分ごとに溶出液を回収した。
〔実施例9〕陰イオン交換カラムクロマトグラフィーによる精製工程(条件B)
 10 mLのTSKgel SuperQ-5PW(20)樹脂(TOSOH社)を充填したカラム(直径0.8 cm,ベッド高20 cm)に,カラム容量の8倍の4 mM MgCl2,0.001% プルロニックTMF-68を含有する20 mM Bis-Tris Propane緩衝液(pH9.5)を流速1.25 mL/分で通してカラムを平衡化した。次いで,実施例7で得られたrAAV9ビリオン含有アフィニティ画分の270 mLを,流速1.25 mL/分でカラムに負荷した。次いで,カラム容量の5倍の4 mM MgCl2,0.001% プルロニックTMF-68を含有する20 mM Bis-Tris Propane緩衝液(pH9.5)をカラムに通してカラムを洗浄した。次いで,カラム容量の10倍の4 mM MgCl2,0.001% プルロニックTMF-68,30 mM 塩化テトラメチルアンモニウムを含有する20 mM Bis-Tris Propane緩衝液(pH9.5)を流速1.25 mL/分でカラムに通し,カラムからrAAV9ビリオンを溶出させた。更に,カラム容量の6倍の4 mM MgCl2,0.001% プルロニックTMF-68,48 mM 塩化テトラメチルアンモニウムを含有する20 mM Bis-Tris Propane緩衝液(pH9.5)を流速1.25 mL/分でカラムに通し,カラムからrAAV9ビリオンを溶出させた。このときカラムの排出口の下流の流路に吸光光度計を設置し,溶出液の260 nm及び280 nmの吸光度を継時的にモニターしクロマトグラムを得た。クロマトグラム上のピークに対応する画分ごとに溶出液を回収した。
〔実施例10〕陰イオン交換カラムクロマトグラフィーによる精製工程(条件C)
 10 mLのTSKgel SuperQ-5PW(20)樹脂(TOSOH社)を充填したカラム(直径0.8 cm,ベッド高20 cm)に,カラム容量の8倍の4 mM MgCl2,0.001% プルロニックTMF-68を含有する20 mM Bis-Tris Propane緩衝液(pH9.5)を流速1.25 mL/分で通してカラムを平衡化した。実施例7で得られたrAAV9ビリオン含有アフィニティ画分の270 mLを,流速1.25 mL/分でカラムに負荷した。次いで,カラム容量の5倍の4 mM MgCl2,0.001% プルロニックTMF-68を含有する20 mM Bis-Tris Propane緩衝液(pH9.5)をカラムに通してカラムを洗浄した。次いで,カラム容量の10倍の4 mM MgCl2,0.001% プルロニックTMF-68,35 mM 塩化テトラメチルアンモニウムを含有する20 mM Bis-Tris Propane緩衝液(pH9.5)を流速1.25 mL/分でカラムに通し,カラムからrAAV9ビリオンを溶出させた。このときカラムの排出口の下流の流路に吸光光度計を設置し,溶出液の260 nm及び280 nmの吸光度を継時的にモニターしクロマトグラムを得た。クロマトグラム上のピークに対応する画分ごとに溶出液を回収した。
〔実施例11〕陰イオン交換カラムクロマトグラフィーによる精製工程(条件D)
 10 mLのTSKgel SuperQ-5PW(20)樹脂(TOSOH社)を充填したカラム(直径0.8 cm,ベッド高20 cm)に,カラム容量の8倍の4 mM MgCl2,0.001% プルロニックTMF-68を含有する20 mM Bis-Tris Propane緩衝液(pH9.5)を流速1.25 mL/分で通してカラムを平衡化した。実施例7で得られたrAAV9ビリオン含有アフィニティ画分の270 mLを,流速1.25 mL/分でカラムに負荷した。次いで,カラム容量の5倍の4 mM MgCl2,0.001% プルロニックTMF-68を含有する20 mM Bis-Tris Propane緩衝液(pH9.5)をカラムに通してカラムを洗浄した。次いで,カラム容量の10倍の4 mM MgCl2,0.001% プルロニックTMF-68,40 mM 塩化テトラメチルアンモニウムを含有する20 mM Bis-Tris Propane緩衝液(pH9.5)を流速1.25 mL/分でカラムに通し,カラムからrAAV9ビリオンを溶出させた。このときカラムの排出口の下流の流路に吸光光度計を設置し,溶出液の260 nm及び280 nmの吸光度を継時的にモニターしクロマトグラムを得た。クロマトグラム上のピークに対応する画分ごとに溶出液を回収した。
〔実施例12〕陰イオン交換カラムクロマトグラフィーによる精製工程(条件E)
 10 mLのTSKgel SuperQ-5PW(20)樹脂(TOSOH社)を充填したカラム(直径0.8 cm,ベッド高20 cm)に,カラム容量の8倍の4 mM MgCl2,0.001% プルロニックTMF-68を含有する20 mM Bis-Tris Propane緩衝液(pH9.5)を流速1.25 mL/分で通してカラムを平衡化した。実施例7で得られたrAAV9ビリオン含有アフィニティ画分の270 mLを,流速1.25 mL/分でカラムに負荷した。次いで,カラム容量の5倍の4 mM MgCl2,0.001% プルロニックTMF-68を含有する20 mM Bis-Tris Propane緩衝液(pH9.5)をカラムに通してカラムを洗浄した。次いで,カラム容量の10倍の4 mM MgCl2,0.001% プルロニックTMF-68,44 mM 塩化テトラメチルアンモニウムを含有する20 mM Bis-Tris Propane緩衝液(pH9.5)を流速1.25 mL/分でカラムに通し,カラムからrAAV9ビリオンを溶出させた。このときカラムの排出口の下流の流路に吸光光度計を設置し,溶出液の260 nm及び280 nmの吸光度を継時的にモニターしクロマトグラムを得た。クロマトグラム上のピークに対応する画分ごとに溶出液を回収した。
〔実施例13〕陰イオン交換カラムクロマトグラフィーによる精製工程(条件F)
 10 mLのTSKgel SuperQ-5PW(20)樹脂(TOSOH社)を充填したカラム(直径0.8 cm,ベッド高20 cm)に,カラム容量の8倍の4 mM MgCl2,0.001% プルロニックTMF-68を含有する20 mM Bis-Tris Propane緩衝液(pH9.5)を流速1.25 mL/分で通してカラムを平衡化した。実施例7で得られたrAAV9ビリオン含有アフィニティ画分の270 mLを,流速1.25 mL/分でカラムに負荷した。次いで,カラム容量の5倍の4 mM MgCl2,0.001% プルロニックTMF-68を含有する20 mM Bis-Tris Propane緩衝液(pH9.5)をカラムに通してカラムを洗浄した。次いで,カラム容量の10倍の4 mM MgCl2,0.001% プルロニックTMF-68,48 mM 塩化テトラメチルアンモニウムを含有する20 mM Bis-Tris Propane緩衝液(pH9.5)を流速1.25 mL/分でカラムに通し,カラムからrAAV9ビリオンを溶出させた。このときカラムの排出口の下流の流路に吸光光度計を設置し,溶出液の260 nm及び280 nmの吸光度を継時的にモニターしクロマトグラムを得た。クロマトグラム上のピークに対応する画分ごとに溶出液を回収した。
〔実施例14〕rAAV9ビリオンの定量
 実施例8で得られた,条件Aの陰イオン交換カラムクロマトグラフィーの各溶出画分に含まれるrAAV9ゲノム量を,以下に示すドロップレットデジタルPCR法(ddPCR)により測定した。
 2 μLの溶出画分に1.6 μLのDNaseI(タカラバイオ社),2 μLの10× DNaseI Buffer(タカラバイオ社),及び14.4 μLの0.05% F-68を含有する純水を加え,37℃で30分間インキュベートし,rAAV9ビリオンに内包されていないDNAを消化した後,0.05% F-68を含有するTEバッファーを用いて適宜希釈し,ドロップレットデジタルPCR用サンプルとした。
 1.0 μMの順方向プライマー(プライマーSI-1,配列番号5),1.0 μMの逆方向プライマー(プライマーSI-2,配列番号6),及び0.25 μMのプローブ(プローブSI-1,配列番号7の5’末端にレポーター色素としてFAMを,3’末端にクエンチャー色素としてBHQ1を,それぞれ修飾したもの)を含むFAM標識20×プライマー/プローブミックスを調製した。また,1.0 μM 順方向プライマー(プライマーSI-3,配列番号8),1.0 μM 逆方向プライマー(プライマーSI-4,配列番号9),及び0.25 μMプローブ(プローブSI-2,配列番号10の5’末端にレポーター色素としてHEXを,3’末端にクエンチャー色素としてBHQ1を,それぞれ修飾したもの)を含むHEX標識20×プライマー/プローブミックスを調製した。
 ドロップレットデジタルPCR用サンプル溶液2 μLに,10 μLのddPCR Supermix for probes (no dUTP) (BioRad社),1 μLのFAM標識20×プライマー/プローブミックス,1 μLのHEX標識20×プライマー/プローブミックス,2 μLの5 M ベタイン溶液(Sigma社),及び4 μLの0.05% F-68を含有する純水を加え,PCR反応液を調製した。Droplet generator(BioRad社)を用いて,20 μLのPCR反応液と70 μLのDroplet Generator オイル for Probes(BioRad社)の懸濁液滴(ドロップレット)を調製した。このドロップレットをQX200 Droplet Digital PCRシステム(BioRad社)に供した。PCRの条件は,変性反応(95℃,10分),40サイクルの3ステップPCR(95℃,30秒→60℃,60秒→72℃,15秒),PCR酵素の不活化処理(98℃,10分)とした。FAM/HEX両陽性ドロップレットをrAAV陽性ドロップレットと定義し,QuantaSoftTM Version 1.7(BioRad社)を用いてrAAVゲノム量(vg:ウイルスゲノム)を求めた。なお,このPCRにおいて増幅されるDNA領域は,ウシ成長ホルモンpolyA,及びITRの内部領域である。ここで求められるrAAV9ゲノムの量(個数)は,rAAV9ビリオンの量(個数)に理論上一致する。
〔実施例15〕rAAV9ビリオンの割合の測定
 実施例8~13で得られた,各陰イオン交換樹脂精製の各溶出画分に含まれるrAAV9ビリオンと空カプシドの中でrAAV9ビリオンの占める割合を,分析用超遠心機(Optima-AUC,Beckman Coulter社)を用いて以下の方法により測定した。まず各溶出画分をVivaspin Turbo15 (ザルトリス社)で液量が1 mLとなるまで限外ろ過膜を用いて濃縮した。更に,各溶出画分の溶液成分を,コントロール緩衝液(8.1 mMリン酸水素二ナトリウム,1.5 mMリン酸二水素カリウム,437 mM塩化ナトリウム,2.7 mM塩化カリウム,0.001% プルロニックTMF-68)にバッファー交換し,これを測定サンプルとした。遠心容器に400 μLの測定サンプルと410 μLのコントロール緩衝液を注入し,20,000 rpm(32,205×g)で遠心を行い,30秒ごとに波長260 nm及び280 nmの吸光度の測定を50回行った。測定結果を超遠心分析用解析プログラムsedfitで読み込み,continuous-size distributionモデルで解析した。解析パラメーターをresolution=200,S min=1, S max=200,frictional ration=1.2,偏比容=0.73,緩衝液密度=1.0185,緩衝液粘度=0.01047に設定し,Lammの方程式に最適化して沈降係数(S)あたりの分布を解析した。rAAV9ビリオンに対応するピークの面積と,空カプシドに対応するピークの面積を求め,各溶出画分に含まれるrAAV9ビリオンの割合と空カプシドの割合を求めた。ここで,rAAV9ビリオンの割合とは,rAAV9ビリオンと空カプシドの合計を100%としたときのrAAV9ビリオンの割合(%)と定義され,空カプシドの割合とは,rAAV9ビリオンと空カプシドの合計を100%としたときの空カプシドの割合(%)と定義される。
〔実施例16〕結果:溶出画分に含まれる空カプシドとrAAVビリオンの割合(条件A)
 実施例8で得られた,条件Aでのクロマトグラムを図5に示す。溶出液を溶出順に溶出画分A1~溶出画分A6と分取した。6つの画分に含まれるrAAV9ビリオンのウイルスゲノム量をそれぞれ,ddPCRで測定した。その結果,各画分に含まれるウイルスゲノム量は,溶出画分A1~溶出画分A6の順に,それぞれ8.5×1012 vg,1.8×1013 vg,1.6×1013 vg,5.3×1012 vg,1.1×1012 vg,2.2×1012 vgであり,溶出画分A1~溶出画分A3に,特に溶出画分A2及び溶出画分A3に,rAAV9ビリオンが溶出されていることが分かった。
 次いで,溶出画分A1~溶出画分A3に含まれる,空カプシドとrAAV9ビリオンの割合を実施例15に示す方法で測定した。その結果を表1に示す。溶出画分A1,溶出画分A2,及び溶出画分A3におけるrAAV9ビリオンの割合は,それぞれ22.3%,52.9%,及び56.0%であった。この結果は,溶出画分A1~A3を回収することにより,rAAV9ビリオンの割合が20%以上であるrAAV9ビリオンを得ることができ,溶出画分A2~A3を回収することにより,rAAV9ビリオンの割合が概ね50%以上であるrAAV9ビリオンを得ることができることを示すものである。また,溶出画分A1~A3を回収した場合の,rAAV9ビリオンの量は4.3×1013 個であり,溶出画分A2~A3を回収した場合の,rAAV9ビリオンの量は3.4×1013 個となる。ここで,溶出画分A1~A3が溶出されたときの溶出液に含まれる塩化テトラメチルアンモニウムの濃度は,概ね30 mM~50 mMであった。
Figure JPOXMLDOC01-appb-T000001
〔実施例17〕結果:溶出画分に含まれる空カプシドとrAAVビリオンの割合(条件B)
 実施例9で得られた,条件Bでのクロマトグラムを図6に示す。クロマトグラム上には,30 mMのテトラメチルアンモニウム塩を含む緩衝液を通したときの溶出液に現れる2つのピーク(B1及びB2)と,48 mMのテトラメチルアンモニウム塩を含む緩衝液を通したときの溶出液に現れるピーク(B3)がある。B1,B2及びB3のそれぞれに対応する溶出液を分画し,溶出画分B1,溶出画分B2,及び溶出画分B3とした。
 溶出画分B1~溶出画分B3に含まれる,空カプシドとrAAV9ビリオンの割合を実施例15に示す方法で測定した。溶出画分B1,B2,及びB3中のrAAV9ビリオンの割合は,それぞれ1.1%,58.0%,及び76.4%であった(表2)。この結果は,溶出画分B2及びB3を回収することにより,rAAV9ビリオンの割合が50%以上,又は55%以上(例えば58%)であるrAAV9ビリオンを得ることができ,溶出画分B3のみを回収することにより,rAAV9ビリオンの割合が70%以上,又は75%以上(例えば76%)であるrAAV9ビリオン溶液を得ることができることを示すものである。
Figure JPOXMLDOC01-appb-T000002
 即ち,陰イオン交換カラムクロマトグラフィーにおいて,rAAV9ビリオンを吸着させたカラムに30 mMのテトラメチルアンモニウム塩を含む緩衝液を通してカラムを洗浄した後に,48 mMのテトラメチルアンモニウム塩を含む緩衝液を通して得られる溶出液(溶出画分B3に対応)のみを回収することにより,rAAV9ビリオンの割合が70%以上,又は75%以上(例えば75%,又は76%)であるrAAV9ビリオン溶液を得ることができる。
 溶出画分B1とB2は,いずれもrAAV9ビリオンを吸着させたカラムに30 mMのテトラメチルアンモニウム塩を含む緩衝液を通して得られる溶出液である。クロマトグラム上でピークB1とB2は明確に分離されている(図6)。従って,30 mMのテトラメチルアンモニウム塩を含む緩衝液を通して得られる溶出液の吸光度を継時的にモニターすることにより,溶出画分B1とB2を分離して回収することができる。溶出画分B1を廃棄し,溶出画分B2とB3を回収することで,rAAV9ビリオンの割合が50%以上,又は55%以上(例えば58%)であるrAAV9ビリオン溶液を得ることができる。更に,溶出画分B3のみを回収することで,rAAV9ビリオンの割合が70%以上,又は75%以上(例えば76%)であるrAAV9ビリオン溶液を得ることができる。
〔実施例18〕結果:溶出画分に含まれる空カプシドとrAAVビリオンの割合(条件C)
 実施例10で得られた,条件Cでのクロマトグラムを図7に示す。クロマトグラム上には,35 mMのテトラメチルアンモニウム塩を含む緩衝液を通したときの溶出液に現れる2つのピーク(C1及びC2)がある。C1及びC2のそれぞれに対応する溶出液を分画し,溶出画分C1及び溶出画分C2とした。
 溶出画分C1及びC2に含まれる,空カプシドとrAAV9ビリオンの割合を実施例15に示す方法で測定した。溶出画分C1及びC2中のrAAV9ビリオンの割合は,それぞれ12.1%及び80.0%であった(表3)。この結果は,溶出画分C3のみを回収することにより,rAAV9ビリオンの割合が75%以上(例えば78%又は80%)であるrAAV9ビリオンを得ることができることを示すものである。
Figure JPOXMLDOC01-appb-T000003
 クロマトグラム上でピークC1とC2は明確に分離されている(図7)。従って,35 mMのテトラメチルアンモニウム塩を含む緩衝液を通して得られる溶出液の吸光度を継時的にモニターすることにより,溶出画分C1とC2を分離して回収することができる。溶出画分C1を廃棄し,溶出画分C2のみを回収することで,rAAV9ビリオンの割合が75%以上(例えば78%,又は80%)であるrAAV9ビリオン溶液を得ることができる。
〔実施例19〕結果:溶出画分に含まれる空カプシドとrAAVビリオンの割合(条件D)
 実施例11で得られた,条件Dでのクロマトグラムを図8に示す。クロマトグラム上には,40 mMのテトラメチルアンモニウム塩を含む緩衝液を通したときの溶出液に現れる2つのピーク(D1及びD2)がある。D1及びD2のそれぞれに対応する溶出液を分画し,溶出画分D1及び溶出画分D2とした。
 溶出画分D1及びD2に含まれる,空カプシドとrAAV9ビリオンの割合を実施例15に示す方法で測定した。溶出画分D1及びD2中のrAAV9ビリオンの割合は,それぞれ16.2%及び83.5%であった(表4)。この結果は,溶出画分D2のみを回収することにより,rAAV9ビリオンの割合が75%以上,又は80%以上(例えば79%,又は83%)であるrAAV9ビリオンを得ることができることを示すものである。
Figure JPOXMLDOC01-appb-T000004
 クロマトグラム上でピークD1とD2は明確に分離されている(図8)。従って,40 mMのテトラメチルアンモニウム塩を含む緩衝液を通して得られる溶出液の吸光度を継時的にモニターすることにより,溶出画分D1とD2を分離して回収することができる。溶出画分D1を廃棄し,溶出画分D2のみを回収することで,rAAV9ビリオンの割合が75%以上,又は80%以上(例えば79%,又は83%)であるrAAV9ビリオン溶液を得ることができる。
〔実施例20〕結果:溶出画分に含まれる空カプシドとrAAVビリオンの割合(条件E)
 実施例12で得られた,条件Eでのクロマトグラムを図9に示す。クロマトグラム上には,44 mMのテトラメチルアンモニウム塩を含む緩衝液を通したときの溶出液に現れる2つのピーク(E1及びE2)がある。E1及びE2のそれぞれに対応する溶出液を分画し,溶出画分E1及び溶出画分E2とした。
 溶出画分E1及びE2に含まれる,空カプシドとrAAV9ビリオンの割合を実施例15に示す方法で測定した。溶出画分E1及びE2中のrAAV9ビリオンの割合は,それぞれ30.8%及び85.4%であった(表5)。この結果は,溶出画分E2のみを回収することにより,rAAV9ビリオンの割合が80%以上(例えば83%,又は85%)であるrAAV9ビリオンを得ることができることを示すものである。
Figure JPOXMLDOC01-appb-T000005
 クロマトグラム上でピークE1とE2は明確に分離されている(図9)。従って,44 mMのテトラメチルアンモニウム塩を含む緩衝液を通して得られる溶出液の吸光度を継時的にモニターすることにより,溶出画分E1とE2を分離して回収することができる。溶出画分E1を廃棄し,溶出画分E2のみを回収することで,rAAV9ビリオンの割合が80%以上(例えば83%,又は85%)であるrAAV9ビリオン溶液を得ることができる。
〔実施例21〕結果:溶出画分に含まれる空カプシドとrAAVビリオンの割合(条件F)
 実施例13で得られた,条件Fでのクロマトグラムを図10に示す。クロマトグラム上には,48 mMのテトラメチルアンモニウム塩を含む緩衝液を通したときの溶出液に現れる2つのピーク(F1及びF2)がある。F1及びF2のそれぞれに対応する溶出液を分画し,溶出画分F1及び溶出画分F2とした。
 溶出画分F1及びF2に含まれる,空カプシドとrAAV9ビリオンの割合を実施例15に示す方法で測定した。溶出画分F1及びF2中のrAAV9ビリオンの割合は,それぞれ28.7%及び87.0%であった(表6)。この結果は,溶出画分F2のみを回収することにより,rAAV9ビリオンの割合が80%以上,又は85%以上(例えば84%,又は87%)であるrAAV9ビリオンを得ることができることを示すものである。
Figure JPOXMLDOC01-appb-T000006
 クロマトグラム上でピークF1とF2は明確に分離されている(図10)。従って,48 mMのテトラメチルアンモニウム塩を含む緩衝液を通して得られる溶出液の吸光度を継時的にモニターすることにより,溶出画分F1とF2を分離して回収することができる。溶出画分F1を廃棄し,溶出画分F2のみを回収することで,rAAV9ビリオンの割合が80%以上,又は85%以上(例えば84%,又は87%)であるrAAV9ビリオン溶液を得ることができる。
 本発明の一実施形態によれば,外来の蛋白質をコードする塩基配列を含むDNAがパッケージされたrAAV9ビリオンを効率よく製造することができるので,かかるrAAV9ビリオンを医療機関等に安定的に供給することができる。
配列番号1:SalIサイト,RsrIIサイト,ColE1 ori,アンピシリン耐性遺伝子,BsiWIサイト,BstZ17Iサイト,及びBsrGIサイトを含む塩基配列,合成配列
配列番号2:ClaIサイト,ヒトCMVエンハンサー,ニワトリβアクチンプロモーター,ニワトリβアクチン/MVMキメライントロン,パルミトイル蛋白質チオエステラーゼ-1(PPT1)遺伝子,ウッドチャック肝炎ウイルス転写後調節エレメント(WPRE),ウシ成長ホルモンポリA配列,及びBglIIサイトを含む塩基配列,合成配列
配列番号3:AfeIサイト,RsrIIサイト,BsrGIサイト,AvrIIサイト,アンピシリン耐性遺伝子,ColE1 ori,RsrIIサイト,血清型2の Rep領域の5’部分(p5プロモーターを含む),及びSacIIサイトを含む塩基配列,合成配列
配列番号4:HindIIIサイト,血清型2のAAVのRep領域の3’部分,血清型9のCap領域,p5プロモーター,RsrIIサイト,及びBsrGIサイトを含む塩基配列,合成配列
配列番号5:順方向プライマー,プライマーSI-1の塩基配列,合成配列
配列番号6:逆方向プライマー,プライマーSI-2の塩基配列,合成配列
配列番号7:プローブSI-1の塩基配列,合成配列
配列番号8:順方向プライマー,プライマーSI-3の塩基配列,合成配列
配列番号9:逆方向プライマー,プライマーSI-4の塩基配列,合成配列
配列番号10:プローブSI-2の塩基配列,合成配列

Claims (42)

  1.  rAAV9ビリオンの製造方法であって;
    (a)AAVベクターが導入された哺乳動物細胞を培地中で培養して該培地中にrAAV9ビリオンを放出させ,
    (b)該培地から培養上清を回収し,及び
    (c)該回収した培養上清から,AAVのカプシド蛋白質に親和性を有する材料を固定相として用いたアフィニティカラムクロマトグラフィーと,陰イオン交換体を固定相として用いた陰イオンカラムクロマトグラフィーとを用いて,該rAAV9ビリオンを精製する,
    ことを含む製造方法。
  2.  該アフィニティカラムクロマトグラフィーに用いられる固定相が血清型9のAAVのカプシド蛋白質に対し親和性を有するものである,請求項1に記載の製造方法。
  3.  該陰イオン交換体が強陰イオン交換体である,請求項1又は2に記載の製造方法。
  4.  該強陰イオン交換体が,第4級アミンを有するものである,請求項3に記載の製造方法。
  5.  該陰イオン交換カラムクロマトグラフィーにおいて,該rAAV9ビリオンを該カラムに吸着させ,次いで第四級アンモニウム塩を含有する緩衝液により該rAAV9ビリオンを該カラムから溶出させて,該rAAV9ビリオンを含む画分を回収するものである,請求項1~4の何れかに記載の製造方法。
  6.  該緩衝液のpHが,8.5~10.5である,請求項5に記載の製造方法。
  7.  該緩衝液に含まれる緩衝剤が,トリス塩酸,ビス-トリス,ビス-トリスプロパン,ビシン(N,N-ビス(2-ヒドロキシエチル)グリシン),HEPES(4-2-ヒドロキシエチル-1-ピペラジンエタンスルホン酸),TAPS(3-{[トリス(ヒドロキシメチル)メチル]アミノ}プロパンエタンスルホン酸),トリシン(N-トリス(ヒドロキシメチル)メチルグリシン),及びこれらの任意の2種以上を組み合わせたものからなる群から選択されるものである,請求項5又は6に記載の製造方法。
  8.  該緩衝液に含まれる緩衝剤が,ビス-トリスプロパンである,請求項5又は6に記載の製造方法。
  9.  該緩衝剤の濃度が10mM~30mMである,請求項7又は8に記載の製造方法。
  10.  該緩衝液が,中性塩を含むものである,請求項5~9の何れかに記載の製造方法。
  11.  該中性塩が,塩化マグネシウムである,請求項10に記載の方法。
  12.  該中性塩の濃度が1mM~10mMである,請求項10又は11に記載の方法。
  13.  該緩衝液が,非イオン性界面活性剤を含むものである,請求項5~12の何れかに記載の製造方法。
  14.  該非イオン性界面活性剤が,ポリオキシエチレン-ポリオキシプロピレンブロック共重合体,ポリソルベート,ポロキサマー,及びこれらの任意の2種以上を組み合わせたものからなる群から選択されるものである,請求項13に記載の製造方法。
  15.  該非イオン性界面活性剤が,ポリソルベート20,ポリソルベート80,ポロキサマー188,及びこれらの任意の2種以上を組み合わせたものからなる群から選択されるものである,請求項13に記載の製造方法。
  16.  該非イオン性界面活性剤の濃度が0.0002~0.01%(w/v)である,請求項13~15の何れかに記載の製造方法。
  17.  該緩衝液に含まれる第四級アンモニウム塩がテトラメチルアンモニウム塩である,請求項5~16の何れかに記載の製造方法。
  18.  該テトラメチルアンモニウム塩が,塩化テトラメチルアンモニウムである,請求項17に記載の製造方法。
  19.  該吸着させたrAAV9ビリオンが,該第四級アンモニウム塩を20mM~60mMの濃度で含有する該緩衝液により該溶出されるものである,上記5~18の何れかに記載の製造方法。
  20.  該吸着させたrAAV9ビリオンが,該第四級アンモニウム塩を35mM~55mMの濃度で含有する該緩衝液により該溶出されるものである,上記5~18の何れかに記載の製造方法。
  21.  該陰イオン交換カラムクロマトグラフィーにおいて,該rAAV9ビリオンと空カプシドの比率が2:8~10:0となるように,該rAAV9ビリオンを含む画分を回収するものである請求項5~20の何れかに記載の製造方法。
  22.  該陰イオン交換カラムクロマトグラフィーにおいて,該rAAV9ビリオンと空カプシドの比率が5:5~10:0となるように,該rAAV9ビリオンを含む画分を回収するものである請求項5~20の何れかに記載の製造方法。
  23.  該陰イオン交換カラムクロマトグラフィーにおいて,該rAAV9ビリオンと空カプシドの比率が7:3~10:0となるように,該rAAV9ビリオンを含む画分を回収するものである請求項5~20の何れかに記載の製造方法。
  24.  rAAV9ビリオンの製造方法であって,rAAV9ビリオンと空カプシドを含有する水溶液を,陰イオン交換体を固定相として用いた陰イオン交換カラムクロマトグラフィーに負荷して該rAAV9ビリオンを該陰イオン交換体に吸着させ,次いで第四級アンモニウム塩を含有する緩衝液により該rAAV9ビリオンを該陰イオン交換体から溶出させて,該rAAV9ビリオンを含む画分を回収することを含んでなる,製造方法。
  25.  該緩衝液のpHが,8.5~10.5である,請求項24に記載の製造方法。
  26.  該緩衝液に含まれる緩衝剤が,トリス塩酸,ビス-トリス,ビス-トリスプロパン,ビシン(N,N-ビス(2-ヒドロキシエチル)グリシン),HEPES(4-2-ヒドロキシエチル-1-ピペラジンエタンスルホン酸),TAPS(3-{[トリス(ヒドロキシメチル)メチル]アミノ}プロパンエタンスルホン酸),トリシン(N-トリス(ヒドロキシメチル)メチルグリシン),及びこれらの任意の2種以上を組み合わせたものからなる群から選択されるものである,請求項24又は25に記載の製造方法。
  27.  該緩衝液に含まれる緩衝剤が,ビス-トリスプロパンである,請求項24又は25に記載の製造方法。
  28.  該緩衝剤の濃度が10mM~30mMである,請求項26又は27に記載の製造方法。
  29.  該緩衝液が,中性塩を含むものである,請求項24~28の何れかに記載の製造方法。
  30.  該中性塩が,塩化マグネシウムである,請求項29に記載の方法。
  31.  該中性塩の濃度が1mM~10mMである,請求項29又は30に記載の方法。
  32.  該緩衝液が,非イオン性界面活性剤を含むものである,請求項24~31の何れかに記載の製造方法。
  33.  該非イオン性界面活性剤が,ポリオキシエチレン-ポリオキシプロピレンブロック共重合体,ポリソルベート,ポロキサマー,及びこれらの任意の2種以上を組み合わせたものからなる群から選択されるものである,請求項32に記載の製造方法。
  34.  該非イオン性界面活性剤が,ポリソルベート20,ポリソルベート80,ポロキサマー188,及びこれらの任意の2種以上を組み合わせたものからなる群から選択されるものである,請求項32に記載の製造方法。
  35.  該非イオン性界面活性剤の濃度が0.0002~0.01%(w/v)である,請求項32~34の何れかに記載の製造方法。
  36.  該緩衝液に含まれる第四級アンモニウム塩がテトラメチルアンモニウム塩である,請求項24~35に記載の製造方法。
  37.  該テトラメチルアンモニウム塩が,塩化テトラメチルアンモニウムである,請求項36に記載の方法。
  38.  該吸着させたrAAV9ビリオンが,該第四級アンモニウム塩を20mM~60mMの濃度で含有する該緩衝液により該溶出されるものである,上記24~37の何れかに記載の製造方法。
  39.  該吸着させたrAAV9ビリオンが,該第四級アンモニウム塩を35mM~55mMの濃度で含有する該緩衝液により該溶出されるものである,上記24~37の何れかに記載の製造方法。
  40.  該rAAV9ビリオンと空カプシドの比率が2:8~10:0となるように,該rAAV9ビリオンを含む画分を回収するものである,請求項24~39の何れかに記載の製造方法。
  41.  該rAAV9ビリオンと空カプシドの比率が5:5~10:0となるように,該rAAV9ビリオンを含む画分を回収するものである,請求項24~39の何れかに記載の製造方法。
  42.  該rAAV9ビリオンと空カプシドの比率が7:3~10:0となるように,該rAAV9ビリオンを含む画分を回収するものである,請求項24~39の何れかに記載の製造方法。
PCT/JP2022/009902 2021-03-09 2022-03-08 組換えaav9ビリオンの製造方法 WO2022191168A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237032807A KR20230154039A (ko) 2021-03-09 2022-03-08 재조합 aav9 비리온의 제조 방법
EP22767122.9A EP4299751A1 (en) 2021-03-09 2022-03-08 Method for producing recombinant aav9 virion
US18/280,543 US20240150726A1 (en) 2021-03-09 2022-03-08 Method for Producing Recombinant AAV9 Virion
CN202280019247.0A CN117280039A (zh) 2021-03-09 2022-03-08 重组aav9病毒粒子的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-037870 2021-03-09
JP2021037870 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022191168A1 true WO2022191168A1 (ja) 2022-09-15

Family

ID=83228034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009902 WO2022191168A1 (ja) 2021-03-09 2022-03-08 組換えaav9ビリオンの製造方法

Country Status (6)

Country Link
US (1) US20240150726A1 (ja)
EP (1) EP4299751A1 (ja)
JP (1) JP2022138144A (ja)
KR (1) KR20230154039A (ja)
CN (1) CN117280039A (ja)
WO (1) WO2022191168A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189652A1 (ja) * 2022-03-29 2023-10-05 株式会社カネカ アデノ随伴ウイルスの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5956331B2 (ja) 2009-06-16 2016-07-27 ジェンザイム・コーポレーション 組換えaavベクターの改良された精製方法
WO2017160360A2 (en) * 2015-12-11 2017-09-21 The Trustees Of The University Of Pennsylvania Scalable purification method for aav9
WO2019241535A2 (en) * 2018-06-14 2019-12-19 Regenxbio Inc. Anion exchange chromatography for recombinant aav production
US20210009964A1 (en) * 2019-07-12 2021-01-14 Sangamo Therapeutics, Inc. Separation and Quantification of Empty and Full Viral Capsid Particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5956331B2 (ja) 2009-06-16 2016-07-27 ジェンザイム・コーポレーション 組換えaavベクターの改良された精製方法
WO2017160360A2 (en) * 2015-12-11 2017-09-21 The Trustees Of The University Of Pennsylvania Scalable purification method for aav9
WO2019241535A2 (en) * 2018-06-14 2019-12-19 Regenxbio Inc. Anion exchange chromatography for recombinant aav production
US20210009964A1 (en) * 2019-07-12 2021-01-14 Sangamo Therapeutics, Inc. Separation and Quantification of Empty and Full Viral Capsid Particles

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ALTSCHUL SF., J MOL. BIOL., vol. 215, 1990, pages 403 - 10
AYUSO E., GENE THERAPY., vol. 17, 2010, pages 503 - 510
MARIA S., HUMAN GENE THERAPY METHODS., vol. 28, 2017, pages 101 - 108
NICOLE B., MOLECULAR THERAPY., vol. 6, 2002, pages 678 - 686
PEARSONLIPMAN, PROC. NATL. ACAD. SCI. USA., vol. 85, 1988, pages 2444
SMITHWATERMAN, ADV. APPL. MATH., vol. 2, 1981, pages 482 - 9

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189652A1 (ja) * 2022-03-29 2023-10-05 株式会社カネカ アデノ随伴ウイルスの製造方法

Also Published As

Publication number Publication date
EP4299751A1 (en) 2024-01-03
JP2022138144A (ja) 2022-09-22
CN117280039A (zh) 2023-12-22
KR20230154039A (ko) 2023-11-07
US20240150726A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
JP6991095B2 (ja) ウイルスベクター精製における拡張可能な製造プラットフォームおよび遺伝子治療における使用のための高純度ウイルスベクター
JP7385603B2 (ja) 組換えaav生成のためのアニオン交換クロマトグラフィー
US20240060054A9 (en) Recombinant adeno-associated virus particle purification with multiple-step anion exchange chromatography
JP6868572B2 (ja) アフィニティー精製工程を含む組換えアデノ随伴ウイルス粒子の精製
AU2018291023B2 (en) AAV vector column purification methods
US11702639B2 (en) Column-based fully scalable rAAV manufacturing process
WO2022191168A1 (ja) 組換えaav9ビリオンの製造方法
JP2023525119A (ja) アデノ随伴ウイルス粒子またはアデノウイルスを精製するための方法および組成物
US20240084268A1 (en) Method for purifying recombinant viral particles
CA3221540A1 (en) Aav vector column purification methods
CN118006688A (zh) 一种重组腺相关病毒载体的纯化方法
JP2024525142A (ja) Aavベクターカラム精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767122

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280019247.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18280543

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237032807

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022767122

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022767122

Country of ref document: EP

Effective date: 20230925

NENP Non-entry into the national phase

Ref country code: DE