WO2022185428A1 - 基板搬送装置および基板搬送方法 - Google Patents

基板搬送装置および基板搬送方法 Download PDF

Info

Publication number
WO2022185428A1
WO2022185428A1 PCT/JP2021/008069 JP2021008069W WO2022185428A1 WO 2022185428 A1 WO2022185428 A1 WO 2022185428A1 JP 2021008069 W JP2021008069 W JP 2021008069W WO 2022185428 A1 WO2022185428 A1 WO 2022185428A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
transport
unit
distance
detection result
Prior art date
Application number
PCT/JP2021/008069
Other languages
English (en)
French (fr)
Inventor
太郎 伊藤
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2021/008069 priority Critical patent/WO2022185428A1/ja
Priority to JP2023503584A priority patent/JP7432058B2/ja
Priority to CN202180091723.5A priority patent/CN116762485A/zh
Priority to DE112021007189.0T priority patent/DE112021007189T5/de
Publication of WO2022185428A1 publication Critical patent/WO2022185428A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/0015Orientation; Alignment; Positioning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/0061Tools for holding the circuit boards during processing; handling transport of printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines

Definitions

  • the present specification relates to a substrate transport apparatus for transporting a substrate to a predetermined stop position on a transport path, and a substrate transport method.
  • a board-oriented work machine includes a board transfer device.
  • the substrate transport device transports the substrate loaded from the upstream side of the line to a predetermined stop position on the transport path, and transports the substrate after the substrate work is performed at the stop position to the downstream side of the line.
  • Many substrate transfer apparatuses are equipped with a substrate passage sensor that detects the position of the substrate to be transferred. A technical example related to this type of substrate transfer apparatus is disclosed in Japanese Unexamined Patent Application Publication No. 2002-200013.
  • the substrate detection sensor disclosed in Patent Document 1 compares the level of the received light signal with a first threshold value when determining "no substrate”, and determines "with substrate” when the level is equal to or lower than the first threshold. Further, the board detection sensor compares the level of the received light signal with a second threshold larger than the first threshold when determining that "there is a board”, and determines that the level is equal to or higher than the second threshold as "there is no board”. According to this, even if the board moves from a predetermined position due to vertical vibration after the determination of "board present", the determination of "board present” can be maintained, and erroneous determinations with respect to positional fluctuations of the board can be reduced. It is
  • detection light is projected toward the substrate, and the presence or absence of the substrate is detected based on changes in the amount of passage or reflection of the detection light.
  • the passing amount of detection light temporarily increases or the amount of reflection decreases in the gap, making it difficult to accurately detect the presence or absence of the substrate.
  • a substrate having deformation such as warpage may cause an erroneous determination of the presence or absence of the substrate because the area that blocks the detection light may change as the substrate is transported.
  • a timer was set to avoid the effects of temporary fluctuations in the amount of detected light passing through or reflected.
  • the detection of the trailing edge of the substrate is delayed by the distance obtained by multiplying the timer time by the transport speed of the substrate. distance adjustment).
  • the present specification aims to provide a board transfer apparatus and a board transfer method that can reduce the error stoppage of a work machine for a board due to a transfer abnormality and the decrease in accuracy of the stop position of the board. It should be an issue to be addressed.
  • the present specification includes a transport unit that transports a substrate from a loading end of a transport path to a predetermined stop position, and a detection light directed toward the substrate passing through a specified position on the loading end side of the transport path relative to the stop position. and a substrate passage sensor that detects the presence or absence of the substrate at the specified position based on the amount of passage or reflection of the detection light; a setting unit for setting a future transport distance for transporting the substrate to the stop position when the detection result changes from "no substrate” through “substrate present” to “no substrate”; a monitoring unit for monitoring whether or not the detection result changes to "substrate present” again until reaching , and if the detection result changes to "substrate present” again, then the detection result changes to "substrate absent” and a resetting unit that resets the set transport distance and resets the future transport distance when the transport distance changes to .
  • a transport unit that transports a substrate from the loading end of a transport path to a predetermined stop position, and a substrate that passes through a specified position on the loading end side of the transport path from the stop position.
  • a substrate passage sensor that projects detection light and detects the presence or absence of the substrate at the specified position based on the amount of passage or reflection of the detection light, and controls the transport unit based on the detection result of the substrate passage sensor.
  • the control unit changes the detection result from “no substrate” to “no substrate” via “substrate present” when the transport unit transports the substrate.
  • a future transport distance for transporting the substrate to the stop position is set, and it is monitored whether the detection result changes to "substrate presence” again until the substrate reaches the stop position. , when the detection result changes to "substrate present” again, and when the detection result subsequently changes to "substrate absent", the set transport distance is reset and the future transport distance is set again.
  • FIG. 1 is a plan view schematically showing a substrate transfer device according to a first embodiment
  • FIG. 1 is a side view schematically showing a substrate transfer device according to a first embodiment
  • FIG. 3 is a block diagram showing a control configuration of the substrate transfer device
  • FIG. 10 is a plan view showing a state in which the rear end of a normal substrate reaches a specified position (carry-in end) of the transport path;
  • FIG. 11 is a plan view showing a state in which a normal substrate reaches a stop position on the transport path and stops;
  • FIG. 4 is a plan view showing a state before starting a transport operation of a broken substrate;
  • FIG. 10 is a plan view showing a state in which the trailing edge of the small substrate piece on the front side of the broken substrate has reached a specified position (carry-in end) of the transport path;
  • FIG. 10 is a plan view showing a state in which the front edge of the small piece substrate on the rear side of the broken substrate has reached a specified position (carry-in end) of the transport path;
  • FIG. 10 is a plan view showing a state in which the rear end of the cracked substrate has reached a specified position (carry-in end) of the transport path;
  • FIG. 4 is a plan view showing a state in which a broken substrate has reached a stop position on the transport path and stopped. It is a top view which shows typically the board
  • FIG. 11 is a side view schematically showing a state in the middle of transporting a warped substrate in the second embodiment. It is a front view which shows typically the board
  • FIG. 1 A solder printing machine or the like is arranged on the upstream side of the component mounting machine 1, and a substrate inspection machine or the like is arranged on the downstream side to constitute a work line for substrates.
  • the direction from the left side to the right side of FIG. 1 is the X-axis direction for transporting the substrate K, and the direction from the bottom side (front side) to the top side (rear side) of the page is the Y-axis direction.
  • the component mounting machine 1 is configured by assembling a board conveying device 2 , a component supply device 3 , a component transfer device 4 , a component recognition camera 49 , a control device 5 (see FIG. 4 ), and the like on a base 10 .
  • the board transfer device 2 has a pair of guide rails 21 .
  • the pair of guide rails 21 extend in the X-axis direction on the base 10 and are arranged parallel to each other and spaced apart in the Y-axis direction. The separation distance between the pair of guide rails 21 can be adjusted according to the width of the substrate K.
  • a pair of guide rails 21 and a space therebetween constitute a transport path for the substrate K.
  • the substrate conveying device 2 conveys the horizontally positioned substrate K from the carry-in end 22 of the guide rail 21 (conveyance path) to a predetermined stop position PS (see FIG. 2).
  • a positioning mechanism (not shown) provided below the stop position PS positions and releases the substrate K. As shown in FIG. The details of the substrate transfer device 2 will be described later.
  • the component supply device 3 is composed of a plurality of feeders 31 arranged side by side in the X-axis direction. Each feeder 31 sends out a carrier tape in which a large number of components are stored in a line toward a supply position 32 on the leading end side. A carrier tape provides a pickable supply of parts at a supply position 32 .
  • the component transfer device 4 is composed of a Y-axis moving body 41, an X-axis moving body 42, a mounting head 43, an automatic tool 44, a suction nozzle 45, a board recognition camera 46, a side view camera 47, and the like.
  • the Y-axis moving body 41 is driven by a linear motion mechanism to move in the Y-axis direction.
  • the X-axis moving body 42 is mounted on the Y-axis moving body 41 and driven by the linear motion mechanism to move in the X-axis direction.
  • the mounting head 43 is attached to a clamping mechanism (not shown) provided on the front surface of the X-axis moving body 42 and moves in two horizontal directions together with the X-axis moving body 42 .
  • An automatic tool 44 is rotatably provided below the mounting head 43 .
  • a plurality (12 in the example of FIG. 1) of suction nozzles 45 are exchangeably held below the automatic tool 44 .
  • the suction nozzle 45 is driven by an elevation drive mechanism (not shown) to ascend and descend, and is selectively supplied with negative or positive pressure air from an air supply mechanism (not shown).
  • the suction nozzle 45 sucks and holds the component from the supply position 32 of the component supply device 3 and mounts it on the substrate K.
  • the mounting head 43, the automatic tool 44, and the suction nozzle 45 may be replaced by an operator or automatically. In the case of automatic replacement, a replacement station is provided on the upper surface of the base 10, and replacement equipment is prepared.
  • the board recognition camera 46 is provided on the X-axis moving body 42 along with the mounting head 43 .
  • the board recognition camera 46 is arranged with its optical axis directed downward, and images the position reference mark attached to the board K from above.
  • the acquired image data is image-processed, and the stop position of the substrate K is obtained accurately.
  • a side-view camera 47 is provided on the front side of the autotool 44 below the mounting head 43 .
  • the side-view camera 47 captures and recognizes the component held by the suction nozzle 45 together with the lower part of the suction nozzle 45 from the side.
  • a digital imaging device having an imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) can be exemplified.
  • the component recognition camera 49 is provided on the base 10 between the substrate transport device 2 and the component supply device 3.
  • the component recognition camera 49 is arranged so that the optical axis faces upward.
  • the component recognition camera 49 captures and recognizes the component held by the suction nozzle 45 from below while the mounting head 43 is moving from the component supply device 3 to the board K.
  • a digital imaging device having an imaging element such as a CCD or CMOS can be exemplified.
  • the control device 5 is assembled to the base 10, and the position at which it is arranged is not particularly limited.
  • the control device 5 is configured using a computer device having a CPU and operated by software. Note that the control device 5 may be configured by distributing a plurality of CPUs inside the machine and connecting them for communication.
  • the control device 5 controls the board conveying device 2, the component supply device 3, the component transfer device 4, and the component recognition camera 49 to proceed with the component mounting work. .
  • the job data is data describing detailed procedures and implementation methods of the mounting work.
  • the board transfer device 2 includes a transfer section 6, a board passage sensor 7, and a transfer control section 8 in addition to the pair of guide rails 21 described above.
  • a predetermined stop position PS for stopping the substrate K is set at the center of the pair of guide rails 21 (transport path) in the transport direction (X-axis direction).
  • the transport section 6 has a conveyor belt 61, two support pulleys (62, 63), a tension pulley 64 and a drive pulley 65 which are individually provided for each of the guide rails 21. .
  • the transport section 6 has a drive motor 66 that is commonly provided for the two drive pulleys 65 .
  • the conveyor belt 61 is formed in an endless loop using a flexible strip-shaped member.
  • the conveyor belt 61 is fitted into grooves formed in the guide rails 21 and held rotatably (see FIG. 15).
  • the substrate K is placed horizontally across the top surfaces of the two conveyor belts 61 .
  • the support pulley 62 is rotatably provided at the carry-in end 22 of the guide rail 21 .
  • the support pulley 63 is rotatably provided at the unloading end 23 of the guide rail 21 .
  • Two support pulleys (62, 63) support the conveyor belt 61 for rotation.
  • the tension pulley 64 is rotatably provided below the support pulley 62 on the carry-in end 22 side.
  • the tension pulley 64 is urged by an unillustrated urging mechanism to apply tension to the conveyor belt 61 to prevent slackening.
  • a drive pulley 65 is provided below the support pulley 63 on the delivery end 23 side and engages the conveyor belt 61 .
  • the conveyor belt 61 is supported by the four pulleys described above and rotates clockwise in FIG.
  • the drive motor 66 rotates the two drive pulleys 65 at a constant speed via a transmission mechanism (not shown).
  • each of the two drive pulleys 65 rotates the conveyor belt 61 respectively.
  • the two conveyor belts 61 transport the placed substrate K.
  • the drive motor 66 a pulse motor, a stepping motor, or the like with good controllability is used. Therefore, the transport speed and transport distance of the substrate K can be freely adjusted, and the accurate transport distance of the substrate K can be obtained.
  • the substrate passing sensor 7 detects the presence or absence of the substrate K at the specified position.
  • the specified position is set to coincide with the carry-in end 22 of the guide rail 21 (conveyance path).
  • the specified position is not limited to this, and may be a position further toward the stop position PS than the carry-in end 22, and should be a position closer to the carry-in end 22 than the stop position PS.
  • the substrate passage sensor 7 employs a vertical passage type that projects the detection light DL in the vertical direction and detects the presence or absence of the substrate K based on the amount of passage of the detection light DL.
  • the board passage sensor 7 is composed of a light projecting section 71, a light receiving section 72, and a determination section 73 (see FIG. 4). As shown in FIG. 3 , the light projecting section 71 is arranged above the carry-in end 22 . The light projecting unit 71 projects vertically downward detection light DL toward the horizontal substrate K passing through the carry-in end 22 . The light projecting part 71 is maintained in a lighting state throughout the operating time period of the component mounting machine 1 .
  • the light receiving section 72 is arranged on the opposite side of the light projecting section 71 with the substrate K therebetween, in other words, below the carry-in end 22 .
  • the light receiving section 72 detects the passing amount of the detection light DL.
  • the passing amount of the detection light DL is large when there is no substrate K at the carry-in end 22, and decreases or disappears when the substrate K is present.
  • the light projecting unit 71 and the light receiving unit 72 may be arranged upside down, and the light projecting unit 71 may project the vertically upward detection light DL.
  • the determination unit 73 receives information on the amount of passage of the detection light DL from the light receiving unit 72 .
  • the determination unit 73 determines that there is no substrate when the passing amount is equal to or greater than a predetermined threshold, and determines that there is a substrate when the passing amount is less than the threshold.
  • the predetermined threshold is determined in advance in consideration of various conditions. These conditions include the performance of the light projecting section 71 and the light receiving section 72, changes in performance over time, tolerance of arrangement, light transmittance depending on the material and thickness of the substrate K, and the like.
  • the determination section 73 outputs the determination result to the transport control section 8 .
  • the determination result of the determination unit 73 corresponds to the detection result of the substrate passing sensor 7 .
  • the determination section 73 may be provided integrally with the light receiving section 72 or may be provided within the transport control section 8 .
  • the transport control unit 8 is configured using a computer device.
  • the transport control unit 8 controls the transport of the substrate K based on a command from the higher-level control device 5 connected for communication, and reports the control status to the control device 5 .
  • the transport control unit 8 executes the substrate transport method of the embodiment as described in detail below.
  • the transport control unit 8 receives the determination result from the determination unit 73 of the substrate passage sensor 7, and controls the drive motor 66 of the transport unit 6 based on the determination result.
  • the transport control unit 8 may have a function of controlling the light projecting unit 71, for example, a function of adjusting the brightness of the detection light DL.
  • the transport control unit 8 can obtain the transport distance of the substrate K based on the operation history of the drive motor 66 . Further, the transport control unit 8 recognizes the arrival of the substrate K at the stop position PS based on the determination result of the determination unit 73 and the transport distance obtained from the operation history of the drive motor 66 .
  • Various known methods can be applied as a control method for the drive motor 66, for example, a smooth deceleration control method for preventing the substrate K from suddenly stopping at the stop position PS.
  • the transport control unit 8 has four control function units configured using software, that is, a setting unit 81, a monitoring unit 82, a resetting unit 83, and an abnormality determination unit 84.
  • the four control function units operate in parallel with the transport operation of the transport unit 6 .
  • the setting unit 81 changes the determination result of the determination unit 73 of the substrate passage sensor 7 from “no substrate” to “no substrate” via "substrate present".
  • a future transport distance D1 for transporting the substrate K to the stop position PS is set.
  • the fact that the determination result has changed from “no substrate” to “with substrate” means that the front end of the substrate K has reached the carry-in end 22 .
  • the ordinary substrate K means a general rectangular substrate K having no voids. Therefore, the transport distance D1 represents the distance to be transported after the moment when the trailing edge of the substrate K passes the loading end 22 (see FIGS. 6 and 7).
  • the monitoring unit 82 operates immediately after the setting unit 81 sets the conveying distance D1 at the latest.
  • the monitoring unit 82 monitors whether or not the determination result of the determination unit 73 changes again to "substrate present" until the substrate K reaches the stop position PS.
  • the monitoring unit 82 stores that the determination result has changed again to "substrate present” by the reset flag setting operation.
  • the change of the judgment result of the judging unit 73 to "substrate present" cannot occur with a normal substrate K, but with a cracked substrate KB (see FIG. 8), which will be described later.
  • the monitoring unit 82 operates without being constrained by the setting unit 81 and continuously monitors changes in the determination result of the determination unit 73 .
  • the resetting unit 83 operates when the monitoring unit 82 finds that the determination result of the determination unit 73 has changed to "substrate present" again. In other words, the resetting unit 83 operates with the resetting flag set when the broken substrate KB is transported. The resetting unit 83 resets the set transport distance when the determination result of the determining unit 73 changes again to "substrate present" and then to "substrate absent". Further, the resetting unit 83 resets the future transport distance D1. "Reset” means that the initially set transport distance D1 is gradually corrected to be smaller as the transport of the substrate K progresses after the setting operation of the setting unit 81, but the reduced transport distance is reset. This means that the same conveying distance D1 as at the beginning is set again at this time.
  • the abnormality determination unit 84 determines whether or not there is an abnormality related to the transport of the board K.
  • the abnormality determination unit 84 obtains the estimated length of the substrate K in the transport direction based on the operation history of the drive motor 66 of the transport unit 6 and the determination result of the determination unit 73 of the substrate passage sensor 7 . More specifically, the abnormality determining unit 84 determines the first time when the determination result of the determining unit 73 changes from "no board" to "with board” and the moment when "with board” changes to "no board”. Find the second time. In other words, the abnormality determination unit 84 obtains the first time when the front end of the substrate K passes the loading end 22 and the second time when the rear end of the substrate K passes the loading end 22 .
  • the abnormality determination unit 84 obtains the transport distance that the drive motor 66 transported the board K from the first time to the second time, and uses it as the estimated length of the board K.
  • the abnormality determination unit 84 compares this estimated length with a previously stored known length LK of the substrate K in the transport direction, and determines that there is an abnormality when the length error exceeds a predetermined allowable value. According to this, an abnormality in which two substrates K are transported while being in contact with each other in the transportation direction, and an abnormality in which a component protruding backward from the substrate K is erroneously detected as the rear end of the substrate K is detected.
  • the abnormality determination unit 84 is not an essential component and may be omitted.
  • the abnormality determination unit 84 can determine whether or not there is an abnormality when the substrate passage sensor 7 detects the rear end of the substrate K during the operation of the substrate transfer device 2 .
  • the substrate K is controlled to stop so that its intermediate position PK overlaps the stop position PS (see FIG. 7).
  • the conveying distance D1 is obtained by the following equation (1).
  • Conveyance distance D1 D0-(LK/2) (1) That is, the transport distance D1 is a distance obtained by subtracting half the length LK of the substrate K in the transport direction from the separation distance D0 between the stop position PS and the specified position (carry-in end 22).
  • the conveying distance D2 is obtained by the following equation (2).
  • Conveyance distance D2 D0 (2) That is, the conveying distance D2 matches the separation distance D0 between the stop position PS and the specified position (carrying-in end 22).
  • the conveying distance D3 is obtained by the following equation (3).
  • Conveyance distance D3 D0-LK (3) That is, the conveying distance D3 is a distance obtained by subtracting the length LK of the substrate K in the conveying direction from the separation distance D0 between the stop position PS and the specified position (carrying-in end 22).
  • the cracked substrate KB consists of a picture-frame-shaped frame portion KF and two small piece substrates (K1, K2). Each of the small substrates (K1, K2) is coupled to the inside of the frame KF at three points. After the production of the broken substrate KB is completed, each of the small substrates (K1, K2) is separated from the frame KF and used separately.
  • the length of the broken substrate KB in the transport direction is LB.
  • the future transport distances (D1, D2, D3) can be obtained by applying the length LB to the equations (1), (2), and (3).
  • a gap portion KG is formed between the small piece substrate K1 on the front side in the transport direction of the broken substrate KB and the small piece substrate K2 on the rear side.
  • the cracked substrate KB may have three or more small piece substrates and a plurality of gaps KG.
  • the trailing edge of the front small board K1 may be erroneously detected as the trailing edge of the cracked board KB.
  • the first embodiment eliminates the possibility of this false detection.
  • FIG. 5 shows an operation flow of the substrate transfer apparatus 2
  • FIGS. 6 and 7 show an operation example of transferring a normal substrate K
  • FIGS. 8 to 12 show an operation example of transferring a cracked substrate KB.
  • the reset flag used by the monitoring unit 82 is in the reset state.
  • the transport control unit 8 causes the transport unit 6 to start the transport operation. After that, the transport unit 6 automatically continues the transport operation of the substrate K.
  • the transport control unit 8 repeats a series of operations after step S2 for each control cycle.
  • step S ⁇ b>2 the transport control unit 8 acquires the determination result of the determination unit 73 (hereinafter simply referred to as “determination result”), in other words, the detection result of the substrate passing sensor 7 .
  • step S3 the monitoring unit 82 checks whether or not the previous determination result was "no substrate” and the current determination result changed to "with substrate”.
  • the monitoring unit 82 advances the execution of the operation flow to step S4 when the change is made as described above, and otherwise advances the execution of the operation flow to step S11.
  • step S11 the monitoring unit 82 checks whether or not the previous determination result was "substrate present” and the current determination result changed to "substrate absent".
  • the monitoring unit 82 advances the execution of the operation flow to step S12 when the change is made as described above, and otherwise advances the execution of the operation flow to step S15.
  • step S15 the monitoring unit 82 checks whether the substrate K has reached the stop position PS. If not, the monitoring unit 82 returns execution of the operation flow to step S2. The front end of the substrate K has not reached the carry-in end 22 at the initial stage when the transportation of the substrate K is started. Therefore, the transport control unit 8 acquires the determination result of "no substrate" each time step S2 is executed. As a result, an operation loop composed of steps S2, S3, S11, and S15 is repeatedly executed.
  • step S2 the transport control unit 8 acquires the determination result of "substrate present". As a result, execution of the operation flow exits the operation loop from step S3 and proceeds to step S4.
  • step S4 the monitoring unit 82 determines whether or not it is the first operation (whether or not step S4 has been performed for the first time). If it is the first operation, the monitoring unit 82 returns execution of the operation flow to step S2.
  • the front end of the substrate K reaches the carry-in end 22, the operation is performed for the first time, so execution of the operation flow is returned to step S2.
  • step S2 the transport control unit 8 acquires the determination result of "substrate present" each time step S2 is executed. As a result, the operation loop described above is repeatedly executed. As shown in FIG. 6, when the rear end of the substrate K reaches the carry-in end 22, in step S2, the transport control unit 8 acquires the determination result of "no substrate". As a result, execution of the operation flow exits the operation loop from step S11 and proceeds to step S12.
  • step S12 the monitoring unit 82 determines the branch destination of the operation flow depending on whether the reset flag is set. When the rear end of the substrate K reaches the carry-in end 22, the reset flag is in the initial reset state, so execution of the operation flow proceeds to step S13.
  • step S13 the setting unit 81 determines the trailing edge of the substrate K, and performs the operation of setting the transport distance D1 from now on. Thereafter, execution of the operation flow returns to step S2 via step S15.
  • the transport control unit 8 After the trailing edge of the substrate K has passed the carry-in edge 22, the transport control unit 8 acquires the determination result of "no substrate" each time step S2 is executed. As a result, the operation loop described above is repeatedly executed. During the repetition, the transport control unit 8 gradually corrects the future transport distance D1 to be smaller as the transport of the substrate K progresses. Then, when the substrate K approaches the stop position PS, the transport control unit 8 appropriately decelerates the transport unit 6 .
  • step S15 When the substrate K reaches and stops at the stop position PS as shown in FIG. 7, execution of the operation flow exits the operation loop from step S15 and ends.
  • steps S5 and S14 of the operation flow are not executed, and the reset flag is not used.
  • resetting unit 83 does not operate.
  • the transport control unit 8 causes the transport unit 6 to start the transport operation.
  • the transport control section 8 acquires the determination result of the determination section 73 .
  • the transportation control unit 8 acquires the determination result of “no substrate” each time step S2 is executed.
  • an operation loop composed of steps S2, S3, S11, and S15 is repeatedly executed.
  • step S2 the transport control unit 8 acquires the determination result of "substrate present".
  • execution of the operation flow exits the operation loop from step S3 and proceeds to step S4.
  • step S4 the monitoring unit 82 returns the execution of the operation flow to step S2 because it is the first operation.
  • the transport control unit 8 acquires the determination result of "substrate present” each time step S2 is executed. As a result, the operation loop described above is repeatedly executed.
  • step S2 when the trailing edge of the small board K1 reaches the carry-in end 22, in step S2, the transport control unit 8 acquires the determination result of "no board". As a result, execution of the operation flow exits the operation loop from step S11 and proceeds to step S12. In step S12, since the reset flag is set in the monitoring unit 82, the execution of the operation flow proceeds to step S13. In step S13, the setting unit 81 determines the trailing edge of the cracked substrate KB, and performs the operation of setting the transport distance D1 from now on. However, this determination and setting operation is not for the trailing edge of the cracked substrate KB and is erroneous. Thereafter, execution of the operation flow returns to step S2 via step S15.
  • the transport control unit 8 acquires the determination result of "no substrate” each time step S2 is executed. As a result, the operation loop described above is repeatedly executed. During the repetition, the transport control unit 8 gradually corrects the future transport distance D1 to be smaller as the transport of the substrate K progresses.
  • step S2 when the front edge of the rear small piece substrate K2 reaches the carry-in end 22, in step S2, the transport control unit 8 acquires the determination result of "substrate present". Therefore, the monitoring unit 82 recognizes that the determination result has changed to "substrate present" again. As a result, execution of the operation flow exits the operation loop from step S3 and proceeds to step S4. In step S4, the monitoring unit 82 advances the execution of the operation flow to step S5 because it is the second operation.
  • the monitoring unit 82 After setting the reset flag in step S5, the monitoring unit 82 returns the operation flow to step S2. After that, while the small substrate K2 and the rear portion of the frame KF are passing through the carry-in end 22, the transport control unit 8 acquires the determination result of "substrate present" each time step S2 is executed. As a result, the operation loop described above is repeatedly executed. During the repetition, the transport control unit 8 gradually corrects the future transport distance to be smaller.
  • step S2 when the rear end of the broken substrate KB reaches the carry-in end 22, in step S2, the transport control unit 8 acquires the determination result of "no substrate". As a result, execution of the operation flow exits the operation loop from step S11 and proceeds to step S12. In step S12, since the reset flag is set (already set in step S5), the monitoring unit 82 advances the operation flow to step S14.
  • step S14 the resetting unit 83 determines the correction of the rear end of the cracked substrate KB, and resets the transport distance D1 from now on.
  • the conveying distance set in step S13 and gradually corrected to be smaller is reset, and the same conveying distance D1 as the initial one is set again at this time.
  • the erroneous setting in step S13 is reset and the correct setting is made in step S14.
  • the resetting unit 83 resets the resetting flag after normally completing the resetting operation. Thereafter, execution of the operation flow returns to step S2 via step S15.
  • the transport control unit 8 After the rear end of the cracked substrate KB has passed the carry-in end 22, the transport control unit 8 acquires the determination result of "no substrate" each time step S2 is executed. As a result, the operation loop described above is repeatedly executed. During the repetition, the transport control unit 8 appropriately controls the transport unit 6 based on the transport distance D1 reset in step S14.
  • step S15 execution of the operation flow exits the operation loop from step S15 and ends.
  • steps S5 and S14 are executed the number of times corresponding to the number of gaps KG. Therefore, the resetting unit 83 operates the number of times corresponding to the number of the gaps KG.
  • step S13 is executed only once regardless of the presence or absence of the gaps KG and the number thereof. Therefore, the setting unit 81 operates only once regardless of the type of substrate (K, KB).
  • the transport distance D1 from now on is set. Then, when the detection result changes to "substrate present” again, when the detection result subsequently changes to "substrate absent", it is determined to be the rear end of the cracked substrate KB, and the set transport distance is reset. The future transport distance D1 is set again.
  • the transport distance D1 from now on is restarted when the true trailing edge of the cracked substrate KB is determined to be corrected. set. Therefore, the detection accuracy of the rear end of the board (K, KB) can be improved more than before, and as a result, the board-to-board work machine (component mounting machine 1) can be stopped due to an error in transportation, or the board (K, KB) can be detected. ) of the stop position can be reduced more than before.
  • control method of the transport control unit 8 based on the detection result of the substrate passing sensor 7 is common to all types of substrates (K, KB). Therefore, in the first embodiment, the operator's labor is greatly reduced compared to the conventional technique in which the timer is set and the transport distance is adjusted for each of a plurality of board-to-board work machines for each type of board.
  • the substrate transfer apparatus 2A of the second embodiment will be described mainly with respect to the differences from the first embodiment.
  • the configurations of the transport section 6 and the transport control section 8 are the same as in the first embodiment.
  • the substrate passage sensor 7A of the second embodiment employs a horizontal passage type that projects the detection light DL in the horizontal direction and detects the presence or absence of the substrate K based on the amount of passage of the detection light DL.
  • the board passage sensor 7A is composed of a light projecting section 74, a light receiving section 75, and a determining section 73 which is the same as in the first embodiment.
  • the light projecting part 74 is arranged outside the carry-in end 22 (prescribed position) of one of the guide rails 21 in the Y-axis direction.
  • the light projecting part 74 projects the detection light DL in the horizontal direction orthogonal to the transport direction toward the substrate K in the horizontal posture passing through the carry-in end 22 .
  • the light receiving portion 75 is arranged at a position on the opposite side of the light projecting portion 74 with the substrate K therebetween, in other words, outside the carry-in end 22 (prescribed position) of the other guide rail 21 in the Y-axis direction.
  • the light receiving section 75 detects the passing amount of the detection light DL.
  • the detection accuracy of the trailing edge can be improved more than in the past. More specifically, in FIG. 14, the warped substrate KS is warped such that the intermediate portion in the transport direction protrudes upward, and the degree of warping is exaggerated. In the transport operation of the warped substrate KS, when the front portion and the rear portion of the warped substrate KS pass through the carry-in end 22, the passing amount of the detection light DL decreases. Meanwhile, when the intermediate portion of the warped substrate KS passes through the carry-in end 22, the detection light DL passes under the warp as shown in the drawing, and the passing amount increases temporarily.
  • the warped intermediate portion of the warped substrate KS has the same effect as the gap KG of the cracked substrate KB.
  • the determination result of the determination unit 73 of the substrate passage sensor 7A follows the same transition as in the case of transporting the cracked substrate KB in the first embodiment. Therefore, even if the trailing edge is erroneously determined due to the presence of the warped portion of the warped substrate KS, the future transport distance D1 is reset when the true trailing edge of the warped substrate KS is determined to be corrected. According to this, it is possible to improve the detection accuracy of the rear end of the warped board KS as compared with the conventional one. A decrease in positional accuracy can be reduced more than before.
  • the board passing sensor 7B employs a vertical reflection type that projects the detection light DL in the vertical direction and detects the presence or absence of the board K based on the amount of reflection of the detection light DL.
  • the board passage sensor 7B is composed of a light projecting section 76, a light receiving section 77, and a determination section (not shown).
  • the light projecting part 76 is arranged at a position above the carry-in end 22 in a posture slightly inclined from the vertical direction.
  • the light projecting unit 76 projects obliquely downward detection light DL toward the horizontal substrate K passing through the carry-in end 22 .
  • the light-receiving part 77 is arranged in a position aligned with the light-projecting part 76 and corresponding to the path of the detection light DL reflected by the substrate K in a posture slightly inclined from the vertical direction.
  • the light receiving section 77 detects the amount of reflection of the detection light DL.
  • the determination unit receives information on the amount of reflection of the detection light DL from the light receiving unit 77.
  • the determining unit determines that there is no substrate when the amount of reflection is less than a predetermined threshold, and determines that there is a substrate when the amount of reflection is equal to or greater than the threshold.
  • the board transfer device 2B of the third embodiment differs from the first embodiment in the detection method of the board passing sensor 7B, but its operation, function and effect are substantially the same as those of the first embodiment.
  • the board transfer devices (2, 2A, 2B) can also be applied to work machines other than the component mounting machine 1, such as a solder printing machine and a board inspection machine.
  • the substrate passage sensor may be of a horizontal reflection type that projects detection light in the horizontal direction and detects the presence or absence of the substrate K based on the amount of reflection of the detection light.
  • the substrate transport devices (2, 2A, 2B) use the estimated length obtained by the abnormality determination unit 84 to calculate the future transport distance D1. and the substrate K can be stopped at a predetermined stop position PS.
  • the abnormality determination by the abnormality determination unit 84 cannot be performed.
  • Various other applications and modifications are possible for the first to third embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Control Of Conveyors (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

基板搬送装置は、基板を搬送路の搬入端から所定の停止位置まで搬送する搬送部と、前記搬送路の前記停止位置よりも前記搬入端側の規定位置を通過する前記基板に向けて検出光を投射し、前記検出光の通過量または反射量に基づいて、前記規定位置における前記基板の有無を検出する基板通過センサと、前記搬送部が前記基板を搬送する際に、前記基板通過センサの検出結果が「基板無し」から「基板有り」を経て「基板無し」に変化した時点で、前記基板を前記停止位置まで搬送する今後の搬送距離を設定する設定部と、前記基板が前記停止位置に到着するまで、前記検出結果が再び「基板有り」に変化するか否かを監視する監視部と、前記検出結果が再び「基板有り」に変化した場合、その後に前記検出結果が「基板無し」に変化した時点で、設定済みの前記搬送距離をリセットして今後の前記搬送距離を設定し直す再設定部と、を備える。

Description

基板搬送装置および基板搬送方法
 本明細書は、基板を搬送路の所定の停止位置まで搬送する基板搬送装置、および基板搬送方法に関する。
 プリント配線が施された基板に対基板作業を実施して、基板製品を量産する技術が普及している。さらに、対基板作業を実施する対基板作業機を複数台並べて、対基板作業ラインを構成することが一般的となっている。一般的に、対基板作業機は、基板搬送装置を備える。基板搬送装置は、ライン上流側から搬入された基板を搬送路の所定の停止位置まで搬送するとともに、停止位置で対基板作業が実施された後の基板をライン下流側に搬送する。多くの基板搬送装置は、搬送する基板の位置を検出する基板通過センサを備える。この種の基板搬送装置に関する一技術例が特許文献1に開示されている。
 特許文献1に開示された基板検出センサは、「基板無し」と判定しているときには受光信号のレベルを第1閾値と比較し、レベルが第1閾値以下になると「基板有り」と判定する。また、基板検出センサは、「基板有り」と判定しているときには受光信号のレベルを第1閾値より大きな第2閾値と比較し、レベルが第2閾値以上になると「基板無し」と判定する。これによれば、「基板有り」の判定後に基板が上下振動によって所定位置から変動しても「基板有り」の判定を維持して、基板の位置変動に対する誤判定を低減することができる、とされている。
特開2017-183630号公報
 ところで、特許文献1の基板検出センサを始めとする従来技術において、基板に向けて検出光を投射し、検出光の通過量または反射量の変化に基づいて基板の有無を検出している。しかしながら、空隙部をもつ割れ基板では、空隙部において一時的に検出光の通過量が増加し、または反射量が減少するため、基板の有無を正確に検出することが難しかった。また、反りなどの変形を有する基板は、搬送されてゆくのに伴い検出光を遮る面積が変化し得るため、基板の有無の誤判定を引き起こすおそれがあった。
 上記した問題点の対策として、従来、検出光の通過量または反射量の一時的な変動の影響を回避するためにタイマを設定して対応していた。つまり、一時的な変動の継続時間がタイマ時間未満であればこの変動を無視することにより、割れ基板の空隙部や基板の反り部分などに起因する誤判定を回避していた。また、タイマの設定により、タイマ時間と基板の搬送速度とを乗算した距離の分だけ基板の後端の検出が遅れるため、所定の停止位置まで搬送する今後の搬送距離を調整していた(オフセット距離の調整)。
 このようなタイマの設定および搬送距離の調整を行っても、搬送異常による対基板作業機のエラー停止や、基板の停止位置の精度低下を無くすことが難しかった。加えて、タイマの設定および搬送距離の調整は、基板の種類ごとに異なり、かつ、対基板作業ラインを構成する複数の対基板作業機について個別に行う必要があるため、オペレータの多大な手間を煩わせていた。
 それゆえ、本明細書では、搬送異常による対基板作業機のエラー停止や、基板の停止位置の精度低下を従来よりも減少させることができる基板搬送装置、および基板搬送方法を提供することを解決すべき課題とする。
 本明細書は、基板を搬送路の搬入端から所定の停止位置まで搬送する搬送部と、前記搬送路の前記停止位置よりも前記搬入端側の規定位置を通過する前記基板に向けて検出光を投射し、前記検出光の通過量または反射量に基づいて、前記規定位置における前記基板の有無を検出する基板通過センサと、前記搬送部が前記基板を搬送する際に、前記基板通過センサの検出結果が「基板無し」から「基板有り」を経て「基板無し」に変化した時点で、前記基板を前記停止位置まで搬送する今後の搬送距離を設定する設定部と、前記基板が前記停止位置に到着するまで、前記検出結果が再び「基板有り」に変化するか否かを監視する監視部と、前記検出結果が再び「基板有り」に変化した場合、その後に前記検出結果が「基板無し」に変化した時点で、設定済みの前記搬送距離をリセットして今後の前記搬送距離を設定し直す再設定部と、を備える基板搬送装置を開示する。
 また、本明細書は、基板を搬送路の搬入端から所定の停止位置まで搬送する搬送部と、前記搬送路の前記停止位置よりも前記搬入端側の規定位置を通過する前記基板に向けて検出光を投射し、前記検出光の通過量または反射量に基づいて、前記規定位置における前記基板の有無を検出する基板通過センサと、前記基板通過センサの検出結果に基づいて前記搬送部を制御する制御部と、を備える基板搬送装置において、前記制御部は、前記搬送部が前記基板を搬送する際に、前記検出結果が「基板無し」から「基板有り」を経て「基板無し」に変化した時点で、前記基板を前記停止位置まで搬送する今後の搬送距離を設定し、前記基板が前記停止位置に到着するまで、前記検出結果が再び「基板有り」に変化するか否かを監視し、前記検出結果が再び「基板有り」に変化した場合、その後に前記検出結果が「基板無し」に変化した時点で、設定済みの前記搬送距離をリセットして今後の前記搬送距離を設定し直す、基板搬送方法を開示する。
 本明細書で開示する基板搬送装置や基板搬送方法では、基板通過センサの検出結果が「基板無し」から「基板有り」を経て「基板無し」に変化した時点で、基板の後端と判定して今後の搬送距離を設定する。そして、検出結果が再び「基板有り」に変化した場合、その後に検出結果が「基板無し」に変化した時点で、基板の後端と修正判定し、設定済みの搬送距離をリセットして今後の搬送距離を設定し直す。これによれば、割れ基板の空隙部や基板の反り部分の存在により後端が誤って判定されても、その後に基板の真の後端が修正判定された時点で、今後の搬送距離が再設定される。したがって、基板の後端の検出精度を従来よりも向上させることができ、結果として、搬送異常による対基板作業機のエラー停止や、基板の停止位置の精度低下を従来よりも減少させることができる。
第1実施形態の基板搬送装置を適用した部品装着機の全体構成を示す平面図である。 第1実施形態の基板搬送装置を模式的に示す平面図である。 第1実施形態の基板搬送装置を模式的に示す側面図である。 基板搬送装置の制御の構成を示すブロック図である。 基板搬送装置の動作を説明する動作フローの図である。 通常の基板の後端が搬送路の規定位置(搬入端)に到達した状態を示す平面図である。 通常の基板が搬送路の停止位置に到着して停止した状態を示す平面図である。 割れ基板の搬送動作を開始する前の状態を示す平面図である。 割れ基板の前側の小片基板の後縁が搬送路の規定位置(搬入端)に到達した状態を示す平面図である。 割れ基板の後側の小片基板の前縁が搬送路の規定位置(搬入端)に到達した状態を示す平面図である。 割れ基板の後端が搬送路の規定位置(搬入端)に到達した状態を示す平面図である。 割れ基板が搬送路の停止位置に到着して停止した状態を示す平面図である。 第2実施形態の基板搬送装置を模式的に示す平面図である。 第2実施形態において、反りを有する基板の搬送途中の状態を模式的に示す側面図である。 第3実施形態の基板搬送装置を模式的に示す正面図である。
 1.部品装着機1の全体構成
 まず、第1実施形態の基板搬送装置2を適用した部品装着機1の全体構成について、図1を参考にして説明する。部品装着機1は、基板Kに部品を装着する装着作業を実施する。部品装着機1の上流側にはんだ印刷機等が配置され、下流側に基板検査機等が配置されて対基板作業ラインが構成される。図1の紙面左側から右側に向かう方向が基板Kを搬送するX軸方向、紙面下側(前側)から紙面上側(後側)に向かう方向がY軸方向となる。部品装着機1は、基板搬送装置2、部品供給装置3、部品移載装置4、部品認識用カメラ49、および制御装置5(図4参照)などが基台10に組み付けられて構成される。
 基板搬送装置2は、一対のガイドレール21を備える。一対のガイドレール21は、基台10上でX軸方向に延在しており、互いに平行しつつY軸方向に離隔して配置される。一対のガイドレール21の離隔距離は、基板Kの幅寸法に合わせて調整可能となっている。一対のガイドレール21、およびその間の空間は、基板Kの搬送路を構成する。基板搬送装置2は、水平姿勢の基板Kをガイドレール21(搬送路)の搬入端22から所定の停止位置PSまで搬送する(図2参照)。停止位置PSの下側に設けられた位置決め機構(図略)は、基板Kの位置決めおよび解放を行う。基板搬送装置2の詳細については、後述する。
 部品供給装置3は、X軸方向に並んで配列された複数のフィーダ31により構成される。各フィーダ31は、多数の部品が一列に収納されたキャリアテープを、先端側の供給位置32に向けて送り出す。キャリアテープは、供給位置32で部品を採取可能に供給する。
 部品移載装置4は、Y軸移動体41、X軸移動体42、装着ヘッド43、オートツール44、吸着ノズル45、基板認識用カメラ46、および側視カメラ47などで構成される。Y軸移動体41は、直動機構に駆動されてY軸方向に移動する。X軸移動体42は、Y軸移動体41に装架され、直動機構に駆動されてX軸方向に移動する。装着ヘッド43は、X軸移動体42の前面に設けられた図略のクランプ機構に取り付けられ、X軸移動体42と共に水平二方向に移動する。
 装着ヘッド43の下側に、オートツール44が回転可能に設けられる。オートツール44の下側には、複数(図1の例では12本)の吸着ノズル45が交換可能に保持される。吸着ノズル45は、図略の昇降駆動機構に駆動されて昇降し、図略のエア供給機構から負圧や正圧のエアが選択的に供給される。吸着ノズル45は、部品供給装置3の供給位置32から部品を吸着して保持し、基板Kに装着する。装着ヘッド43、オートツール44、および吸着ノズル45は、作業者によって交換されてもよいし、自動で交換されてもよい。自動で交換される構成の場合、基台10の上面に交換用ステーションが設けられて、交換用の機材が準備される。
 基板認識用カメラ46は、装着ヘッド43と並んでX軸移動体42に設けられる。基板認識用カメラ46は、光軸が下向きとなるように配設され、基板Kに付設された位置基準マークを上方から撮像する。取得された画像データは画像処理され、基板Kの停止位置が正確に求められる。側視カメラ47は、装着ヘッド43の下側のオートツール44の前側に設けられる。側視カメラ47は、吸着ノズル45に保持された部品を吸着ノズル45の下部と一緒に側方から撮像して認識する。基板認識用カメラ46や側視カメラ47として、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子を有するデジタル式の撮像装置を例示できる。
 部品認識用カメラ49は、基板搬送装置2と部品供給装置3の間の基台10上に設けられる。部品認識用カメラ49は、光軸が上向きとなるように配置される。部品認識用カメラ49は、装着ヘッド43が部品供給装置3から基板Kに移動する途中で、吸着ノズル45に保持された部品を下方から撮像して認識する。部品認識用カメラ49として、CCDやCMOS等の撮像素子を有するデジタル式の撮像装置を例示できる。
 制御装置5は、基台10に組み付けられており、配置される位置は特に限定されない。制御装置5は、CPUを有してソフトウェアで動作するコンピュータ装置を用いて構成される。なお、制御装置5は、複数のCPUが機内に分散配置され、かつ通信接続されて構成されてもよい。制御装置5は、基板Kの種類ごとのジョブデータに基づいて、基板搬送装置2、部品供給装置3、部品移載装置4、および部品認識用カメラ49を制御して、部品の装着作業を進める。ジョブデータは、装着作業の詳細な手順や実施方法などを記述したデータである。
 2.第1実施形態の基板搬送装置2の構成
 第1実施形態の基板搬送装置2の説明に移る。基板搬送装置2は、前述した一対のガイドレール21に加え、搬送部6、基板通過センサ7、および搬送制御部8を備える。図2に示されるように、一対のガイドレール21(搬送路)の搬送方向(X軸方向)の中央に、基板Kを停止させる所定の停止位置PSが設定される。図3に示されるように、搬送部6は、ガイドレール21の各々に対して個別に設けられたコンベアベルト61、二つの支持プーリ(62、63)、テンションプーリ64、および駆動プーリ65を有する。さらに、搬送部6は、二つの駆動プーリ65に対して共通に設けられた駆動モータ66を有する。
 コンベアベルト61は、可撓性を有する帯状の部材を用いて無端環状に形成される。コンベアベルト61は、ガイドレール21に形成された溝に嵌め込まれ、輪転可能に保持される(図15参照)。基板Kは、二つのコンベアベルト61の上面を跨ぐように水平姿勢で載置される。支持プーリ62は、ガイドレール21の搬入端22の位置に回転自在に設けられる。支持プーリ63は、ガイドレール21の搬出端23の位置に回転自在に設けられる。二つの支持プーリ(62、63)は、コンベアベルト61を輪転可能に支持する。
 テンションプーリ64は、搬入端22側の支持プーリ62の下方に回転自在に設けられる。テンションプーリ64は、図略の付勢機構に付勢されており、コンベアベルト61に張力を付与して弛みの発生を防止する。駆動プーリ65は、搬出端23側の支持プーリ63の下方に設けられ、コンベアベルト61に係合する。コンベアベルト61は、上記した四つのプーリに支持されて、図3の時計回りに輪転する。駆動モータ66は、図略の伝達機構を介して二つの駆動プーリ65を等速で回転駆動する。
 これにより、二つの駆動プーリ65の各々は、それぞれコンベアベルト61を輪転駆動する。二つのコンベアベルト61は、載置された基板Kを搬送する。駆動モータ66として、制御性の良好なパルスモータやステッピングモータなどが用いられる。したがって、基板Kの搬送速度や搬送距離が自在に調整され、かつ、基板Kの正確な搬送距離の取得が可能となっている。
 基板通過センサ7は、規定位置における基板Kの有無を検出する。第一実施形態において、規定位置は、ガイドレール21(搬送路)の搬入端22に一致するように設定されている。これに限定されず、規定位置は、搬入端22よりも停止位置PSのほうへ進んだ位置でもよく、停止位置PSよりも搬入端22側の位置であることを要件とする。第一実施形態において、基板通過センサ7は、上下方向の検出光DLを投射し、検出光DLの通過量に基づいて基板Kの有無を検出する上下方向通過式が採用されている。
 基板通過センサ7は、投光部71、受光部72、および判定部73(図4参照)で構成される。図3に示されるように、投光部71は、搬入端22の上方に配置される。投光部71は、搬入端22を通過する水平姿勢の基板Kに向けて、鉛直下向きの検出光DLを投射する。投光部71は、部品装着機1の稼働時間帯を通して点灯状態が維持される。
 一方、受光部72は、基板Kを挟んだ投光部71の反対側の位置、換言すると搬入端22の下方に配置される。受光部72は、検出光DLの通過量を検出する。検出光DLの通過量は、搬入端22に基板Kが無いときに多く、基板Kが有るときに減少し、または無くなる。なお、投光部71および受光部72の配置が上下逆で、投光部71が鉛直上向きの検出光DLを投射してもよい。
 判定部73は、検出光DLの通過量の情報を受光部72から受け取る。判定部73は、通過量が所定の閾値以上である場合に「基板無し」と判定し、通過量が閾値未満である場合に「基板有り」と判定する。所定の閾値は、諸条件が考慮されて予め定められる。この諸条件には、投光部71および受光部72の性能、経時性能変化、および配置の許容誤差や、基板Kの材質および厚さに依存する光の透過率などがある。判定部73は、判定結果を搬送制御部8に出力する。判定部73の判定結果は、基板通過センサ7の検出結果に相当する。なお、判定部73は、受光部72と一体に設けられてもよく、あるいは、搬送制御部8内に設けられてもよい。
 3.基板搬送装置2の制御の構成
 次に、基板搬送装置2の制御の構成について、図4を参考にして説明する。搬送制御部8は、コンピュータ装置を用いて構成される。搬送制御部8は、通信接続された上位の制御装置5からの指令に基づいて基板Kを搬送する制御を行うとともに、制御状況を制御装置5に報告する。搬送制御部8は、以降に詳述するように、実施形態の基板搬送方法を実行する。
 搬送制御部8は、基板通過センサ7の判定部73から判定結果を受け取り、判定結果に基づいて搬送部6の駆動モータ66を制御する。なお、搬送制御部8は、投光部71の制御機能、例えば検出光DLの明るさの調整機能を有してもよい。搬送制御部8は、駆動モータ66の動作履歴に基づいて、基板Kの搬送距離を求めることができる。さらに、搬送制御部8は、判定部73の判定結果、および駆動モータ66の動作履歴から求めた搬送距離に基づいて、基板Kの停止位置PSへの到着を認識する。駆動モータ66の制御方法、例えば、基板Kを停止位置PSに急停止させない円滑な減速制御方法として、公知の各種方法を応用することができる。
 搬送制御部8は、ソフトウェアを用いて構成された四つの制御機能部、すなわち設定部81、監視部82、再設定部83、および異常判定部84を有する。四つの制御機能部は、搬送部6の搬送動作と並行して動作する。
 設定部81は、搬送部6が基板Kを搬送する際に、基板通過センサ7の判定部73の判定結果が「基板無し」から「基板有り」を経て「基板無し」に変化した時点で、基板Kを停止位置PSまで搬送する今後の搬送距離D1を設定する。判定結果が「基板無し」から「基板有り」に変化したことは、基板Kの前端が搬入端22に到達したことを意味する。また、その後に判定結果が「基板有り」から「基板無し」に変化した時点は、通常の基板Kの後端が搬入端22を通過した時点に相当する。ここで、通常の基板Kとは、空隙部をもたない長方形の一般的な基板Kを意味する。したがって、搬送距離D1は、基板Kの後端が搬入端22を通過した瞬間以降に搬送すべき距離を表す(図6、図7参照)。
 監視部82は、遅くとも設定部81が搬送距離D1を設定した直後から動作する。監視部82は、基板Kが停止位置PSに到着するまで、判定部73の判定結果が再び「基板有り」に変化するか否かを監視する。監視部82は、判定結果が再び「基板有り」に変化したことを、再設定フラグのセット操作によって記憶する。判定部73の判定結果が再び「基板有り」に変化することは、通常の基板Kでは生じ得ず、後述する割れ基板KB(図8参照)で生じる。第一実施形態において、監視部82は、設定部81に制約されることなく動作して、判定部73の判定結果の変化を継続的に監視する。
 再設定部83は、判定部73の判定結果が再び「基板有り」に変化したことを監視部82が見つけた場合に動作する。換言すると、再設定部83は、割れ基板KBの搬送時における再設定フラグのセット状態で動作する。再設定部83は、判定部73の判定結果が再び「基板有り」に変化した後さらに「基板無し」に変化した時点で、設定済みの搬送距離をリセットする。さらに、再設定部83は、今後の搬送距離D1を設定し直す。「設定し直す」とは、設定部81の設定動作の後に基板Kの搬送が進むに連れて、当初設定された搬送距離D1が徐々に小さく補正されるが、小さくなった搬送距離をリセットして、現時点で当初と同一の搬送距離D1を再度設定することを意味する。
 異常判定部84は、基板Kの搬送に関する異常の有無を判定する。異常判定部84は、搬送部6の駆動モータ66の動作履歴、および基板通過センサ7の判定部73の判定結果に基づいて、基板Kの搬送方向の推定長さを求める。詳述すると、異常判定部84は、判定部73の判定結果が「基板無し」から「基板有り」に変化した瞬間の第一時刻、および「基板有り」から「基板無し」に変化した瞬間の第二時刻を求める。換言すると、異常判定部84は、基板Kの前端が搬入端22を通過した第一時刻、および基板Kの後端が搬入端22を通過した第二時刻を求める。
 さらに、異常判定部84は、第一時刻から第二時刻までに駆動モータ66が基板Kを搬送した搬送距離を求めて、基板Kの推定長さとする。異常判定部84は、この推定長さと、予め記憶した基板Kの搬送方向の既知の長さLKとを比較して、長さの誤差が所定の許容値を超える場合に異常有りと判定する。これによれば、二枚の基板Kが搬送方向に接した状態で搬送される異常や、基板Kから後方にはみ出している部品を基板Kの後端と誤検出した異常が検出される。
 設定部81、監視部82、および再設定部83の機能および動作については、後の基板搬送装置2の動作の説明の中で追加して述べる。一方、異常判定部84は、必須の構成でなく、省略されてもよい。異常判定部84は、基板搬送装置2の動作の途中で、基板通過センサ7が基板Kの後端を検出したときに、異常の有無を判定することができる。
 4.搬送距離D1(D2、D3)
 次に、前述した搬送距離D1について、図2、図7を参考にして説明する。前述したように、ガイドレール21(搬送路)のX軸方向の中央に、破線で示された停止位置PSが設定される。停止位置PSと搬入端22(規定位置)との離間距離は、D0である。一方、基板Kの搬送方向の長さは、LKである。また、基板Kの搬送方向の中間位置PKが、破線で示されている。離間距離D0および基板Kの長さLKは既知であり、搬送距離D1は、搬送動作を開始する以前に予め求められる。
 第1実施形態において、基板Kは、その中間位置PKが停止位置PSに重なるように停止制御される(図7参照)。この場合、搬送距離D1は、次式(1)により求められる。
   搬送距離D1=D0-(LK/2)…………(1)
つまり、搬送距離D1は、停止位置PSと規定位置(搬入端22)との離間距離D0から基板Kの搬送方向の長さLKの半分を減算した距離となる。
 なお、基板Kの後端が停止位置PSに重なるように停止制御される場合、搬送距離D2は、次式(2)により求められる。
   搬送距離D2=D0……………………………(2)
つまり、搬送距離D2は、停止位置PSと規定位置(搬入端22)との離間距離D0に一致する。
 また、基板Kの前端が停止位置PSに重なるように停止制御される場合、搬送距離D3は、次式(3)により求められる。
   搬送距離D3=D0-LK……………………(3)
つまり、搬送距離D3は、停止位置PSと規定位置(搬入端22)との離間距離D0から基板Kの搬送方向の長さLKを減算した距離となる。
 5.割れ基板KB
 次に、割れ基板KBの構成例について、図8を参考にして説明する。割れ基板KBは、額縁形状の枠部KF、および二つの小片基板(K1、K2)からなる。小片基板(K1、K2)の各々は、枠部KFの内側に3箇所で結合されている。割れ基板KBの生産終了後に、小片基板(K1、K2)の各々は、枠部KFから割り取られて別々に使用される。
 割れ基板KBの搬送方向の長さは、LBである。割れ基板KBについても、長さLBを式(1)、式(2)、および式(3)に適用して、今後の搬送距離(D1、D2、D3)を求めることができる。割れ基板KBの搬送方向前側の小片基板K1と後側の小片基板K2の間に、空隙部KGが形成されている。なお、割れ基板KBは、三つ以上の小片基板と、複数の空隙部KGとを有してもよい。従来技術において、前側の小片基板K1の後縁を、割れ基板KBの後端と誤検出するおそれがあった。第1実施形態は、この誤検出のおそれを解消するものである。
 6.基板搬送装置2の動作
 次に、基板搬送装置2の動作について、図5~図12を参考にして説明する。図5は、基板搬送装置2の動作フローを示し、図6および図7は、通常の基板Kを搬送する動作事例を示し、図8~図12は、割れ基板KBを搬送する動作事例を示す。搬送動作を開始する以前の初期状態において、監視部82が用いる再設定フラグはリセット状態になっている。
 一番目に、通常の基板Kを搬送する場合の動作について説明する。図5のステップS1で、搬送制御部8は、搬送部6の搬送動作を開始させる。以降、搬送部6は、基板Kの搬送動作を自動的に継続する。一方、搬送制御部8は、ステップS2以降の一連の動作を制御サイクルごとに繰り返す。ステップS2で、搬送制御部8は、判定部73の判定結果(以降では単に「判定結果」と略記する)、換言すると基板通過センサ7の検出結果を取得する。
 次のステップS3で、監視部82は、前回の判定結果が「基板無し」で、かつ今回の判定結果が「基板有り」に変化したか否かを調べる。監視部82は、上記のように変化した場合に動作フローの実行をステップS4に進め、それ以外の場合に動作フローの実行をステップS11に進める。ステップS11で、監視部82は、前回の判定結果が「基板有り」で、かつ今回の判定結果が「基板無し」に変化したか否かを調べる。監視部82は、上記のように変化した場合に動作フローの実行をステップS12に進め、それ以外の場合に動作フローの実行をステップS15に進める。
 ステップS15で、監視部82は、基板Kが停止位置PSに到着しているか否かを調べる。到着していない場合、監視部82は、動作フローの実行をステップS2に戻す。基板Kの搬送を開始した初期の段階において、基板Kの前端は、搬入端22に到達していない。したがって、搬送制御部8は、ステップS2を実行するたびに「基板無し」の判定結果を取得する。これにより、ステップS2、ステップS3、ステップS11、およびステップS15によって構成される動作ループが繰り返して実行される。
 基板Kの前端が搬入端22に到達すると、ステップS2で、搬送制御部8は、「基板有り」の判定結果を取得する。これにより、動作フローの実行は、ステップS3から動作ループを抜けてステップS4に進められる。ステップS4で、監視部82は、初回の動作であるか否か(ステップS4を初めて実行したか否か)を判定する。初回の動作である場合、監視部82は、動作フローの実行をステップS2に戻す。基板Kの前端が搬入端22に到達したときには初回の動作であるので、動作フローの実行はステップS2に戻される。
 この後、基板Kが搬入端22を通過している間、搬送制御部8は、ステップS2を実行する都度「基板有り」の判定結果を取得する。これにより、前記した動作ループが繰り返して実行される。図6に示されるように基板Kの後端が搬入端22に到達すると、ステップS2で、搬送制御部8は、「基板無し」の判定結果を取得する。これにより、動作フローの実行は、ステップS11から動作ループを抜けてステップS12に進められる。
 ステップS12で、監視部82は、再設定フラグがセット状態であるか否かに応じて、動作フローの分岐先を決定する。基板Kの後端が搬入端22に到達した場合、再設定フラグは初期のリセット状態であるので、動作フローの実行は、ステップS13に進められる。ステップS13で、設定部81は、基板Kの後端を判定して、今後の搬送距離D1の設定動作を行う。この後、動作フローの実行は、ステップS15を経由してステップS2に戻される。
 基板Kの後端が搬入端22を通過した後、搬送制御部8は、ステップS2を実行する都度「基板無し」の判定結果を取得する。これにより、前記した動作ループが繰り返して実行される。繰り返しの間、搬送制御部8は、基板Kの搬送が進むにつれて今後の搬送距離D1を徐々に小さく補正する。そして、基板Kが停止位置PSに接近すると、搬送制御部8は、搬送部6を適正に減速制御する。
 図7に示されるように基板Kが停止位置PSに到着して停止すると、動作フローの実行は、ステップS15から動作ループを抜けて終了となる。通常の基板Kを搬送するときに、動作フローのステップS5およびステップS14は実行されず、再設定フラグは用いられない。加えて、再設定部83は動作しない。
 二番目に、割れ基板KBを搬送する場合の動作について説明する。図5のステップS1で、搬送制御部8は、搬送部6の搬送動作を開始させる。次のステップS2で、搬送制御部8は、判定部73の判定結果を取得する。割れ基板KBの搬送を開始した初期の段階において、搬送制御部8は、ステップS2を実行する都度「基板無し」の判定結果を取得する。これにより、ステップS2、ステップS3、ステップS11、およびステップS15によって構成される動作ループが繰り返して実行される。
 割れ基板KBの前端が搬入端22に到達すると、ステップS2で、搬送制御部8は、「基板有り」の判定結果を取得する。これにより、動作フローの実行は、ステップS3から動作ループを抜けてステップS4に進められる。ステップS4で、監視部82は、初回の動作であることから、動作フローの実行をステップS2に戻す。この後、枠部KFの前側部分および前側の小片基板K1が搬入端22を通過している間、搬送制御部8は、ステップS2を実行する都度「基板有り」の判定結果を取得する。これにより、前記した動作ループが繰り返して実行される。
 図9に示されるように小片基板K1の後縁が搬入端22に到達すると、ステップS2で、搬送制御部8は、「基板無し」の判定結果を取得する。これにより、動作フローの実行は、ステップS11から動作ループを抜けてステップS12に進められる。ステップS12で、監視部82は、再設定フラグがりセット状態であるので、動作フローの実行をステップS13に進める。ステップS13で、設定部81は、割れ基板KBの後端を判定して、今後の搬送距離D1の設定動作を行う。しかしながら、この判定および設定動作は、割れ基板KBの後端に対するものでなく、誤ったものである。この後、動作フローの実行は、ステップS15を経由してステップS2に戻される。
 割れ基板KBの空隙部KGが搬入端22を通過している間、搬送制御部8は、ステップS2を実行する都度「基板無し」の判定結果を取得する。これにより、前記した動作ループが繰り返して実行される。繰り返しの間、搬送制御部8は、基板Kの搬送が進むに連れて、今後の搬送距離D1を徐々に小さく補正する。
 図10に示されるように後側の小片基板K2の前縁が搬入端22に到達すると、ステップS2で、搬送制御部8は、「基板有り」の判定結果を取得する。したがって、監視部82は、判定結果が再び「基板有り」に変化したことを認識する。これにより、動作フローの実行は、ステップS3から動作ループを抜けてステップS4に進められる。ステップS4で、監視部82は、二回目の動作であることから、動作フローの実行をステップS5に進める。
 監視部82は、ステップS5で再設定フラグをセット操作した後、動作フローの実行をステップS2に戻す。この後、小片基板K2および枠部KFの後側部分が搬入端22を通過している間、搬送制御部8は、ステップS2を実行する都度「基板有り」の判定結果を取得する。これにより、前記した動作ループが繰り返して実行される。繰り返しの間、搬送制御部8は、今後の搬送距離を徐々にさらに小さく補正する。
 図11に示されるように割れ基板KBの後端が搬入端22に到達すると、ステップS2で、搬送制御部8は、「基板無し」の判定結果を取得する。これにより、動作フローの実行は、ステップS11から動作ループを抜けてステップS12に進められる。ステップS12で、監視部82は、再設定フラグがセット状態であるので(既にステップS5でセット操作されている)、動作フローの実行をステップS14に進める。
 ステップS14で、再設定部83は、割れ基板KBの後端を修正判定して、今後の搬送距離D1の再設定動作を行う。これにより、ステップS13で設定されて徐々に小さく補正されてきた搬送距離がリセットされ、現時点で当初と同一の搬送距離D1が再度設定される。換言すると、ステップS13における誤った設定がリセットされて、ステップS14で正しい設定が行われる。再設定部83は、再設定動作を正常に終了した後、再設定フラグをリセット操作する。この後、動作フローの実行は、ステップS15を経由してステップS2に戻される。
 割れ基板KBの後端が搬入端22を通過した後、搬送制御部8は、ステップS2を実行する都度「基板無し」の判定結果を取得する。これにより、前記した動作ループが繰り返して実行される。繰り返しの間、搬送制御部8は、ステップS14で再設定された搬送距離D1に基づいて、搬送部6を適正に制御する。
 最終的に、割れ基板KBは、図12に示されるように、停止位置PSに到着して停止する。そして、動作フローの実行は、ステップS15から動作ループを抜けて終了となる。なお、複数の空隙部KGが搬送方向に離隔して並んだ割れ基板KBを搬送する場合、空隙部KGの個数に相当する回数だけステップS5およびステップS14が実行される。したがって、再設定部83は、空隙部KGの個数に相当する回数だけ動作する。一方、空隙部KGの有無やその個数に関係なく、ステップS13は1回だけ実行される。したがって、設定部81は、基板(K、KB)の種類に関係なく1回だけ動作する。
 第1実施形態の基板搬送装置2では、基板通過センサ7の検出結果が「基板無し」から「基板有り」を経て「基板無し」に変化した時点で、基板(K、KB)の後端と判定して今後の搬送距離D1を設定する。そして、検出結果が再び「基板有り」に変化した場合、その後に検出結果が「基板無し」に変化した時点で、割れ基板KBの後端と修正判定し、設定済みの搬送距離をリセットして今後の搬送距離D1を設定し直す。これによれば、割れ基板KBの空隙部KGの存在により後端が誤って判定されても、その後に割れ基板KBの真の後端が修正判定された時点で、今後の搬送距離D1が再設定される。したがって、基板(K、KB)の後端の検出精度を従来よりも向上させることができ、結果として、搬送異常による対基板作業機(部品装着機1)のエラー停止や、基板(K、KB)の停止位置の精度低下を従来よりも減少させることができる。
 加えて、基板通過センサ7の検出結果に基づく搬送制御部8の制御方法は、すべての基板(K、KB)の種類に対して共通化されている。したがって、基板の種類ごとに複数の対基板作業機の各々についてタイマの設定および搬送距離の調整を行う従来技術と比較して、第1実施形態ではオペレータの手間が大幅に軽減される。
 7.第2実施形態の基板搬送装置2A
 次に、第2実施形態の基板搬送装置2Aについて、図13および図14を参考にして、第1実施形態と異なる点を主に説明する。第2実施形態において、搬送部6および搬送制御部8の構成は、第1実施形態と同じである。一方、第2実施形態の基板通過センサ7Aは、水平方向の検出光DLを投射し、検出光DLの通過量に基づいて基板Kの有無を検出する水平方向通過式が採用されている。基板通過センサ7Aは、投光部74、受光部75、および第1実施形態と同じ判定部73で構成される。
 図13に示されるように、投光部74は、一方のガイドレール21の搬入端22(規定位置)のY軸方向外側に配置される。投光部74は、搬入端22を通過する水平姿勢の基板Kに向けて、搬送方向に直交する水平方向の検出光DLを投射する。受光部75は、基板Kを挟んだ投光部74の反対側の位置、換言すると他方のガイドレール21の搬入端22(規定位置)のY軸方向外側に配置される。受光部75は、検出光DLの通過量を検出する。
 第2実施形態の基板搬送装置2Aでは、反りを有する反り基板KSを搬送するときに、後端の検出精度を従来よりも向上させることができる。詳述すると、図14において、反り基板KSは、搬送方向の中間部分が上方に突出するように反っており、反りの程度が誇張して描かれている。反り基板KSの搬送動作において、反り基板KSの前部および後部が搬入端22を通過するときに、検出光DLの通過量が減少する。さりながら、反り基板KSの中間部分が搬入端22を通過するとき、検出光DLは、図示されるように反りの下側を通過して、その通過量が一時的に増加する。
 つまり、反り基板KSの反った中間部分では、割れ基板KBの空隙部KGと同じ作用が生じる。この結果、反り基板KSを搬送するときに、基板通過センサ7Aの判定部73の判定結果は、第1実施形態で割れ基板KBを搬送する場合と同様の推移をたどる。したがって、反り基板KSの反り部分の存在により後端が誤って判定されても、その後に反り基板KSの真の後端が修正判定された時点で、今後の搬送距離D1が再設定される。これによれば、反り基板KSの後端の検出精度を従来よりも向上させることができ、結果として、搬送異常による対基板作業機(部品装着機1)のエラー停止や、反り基板KSの停止位置の精度低下を従来よりも減少させることができる。
 8.第3実施形態の基板搬送装置2B
 次に、第3実施形態の基板搬送装置2Bについて、図15を参考にして、第1および第2実施形態と異なる点を主に説明する。第3実施形態において、基板通過センサ7Bは、上下方向の検出光DLを投射し、検出光DLの反射量に基づいて基板Kの有無を検出する上下方向反射式が採用されている。基板通過センサ7Bは、投光部76、受光部77、および判定部(図略)で構成される。
 図15に示されるように、投光部76は、搬入端22の上方の位置に、鉛直方向から少し傾斜した姿勢で配置される。投光部76は、搬入端22を通過する水平姿勢の基板Kに向けて、斜め下向きの検出光DLを投射する。一方、受光部77は、投光部76に並んだ位置であって、基板Kで反射する検出光DLの進路に相当する位置に、鉛直方向から少し傾斜した姿勢で配置される。受光部77は、検出光DLの反射量を検出する。
 判定部は、検出光DLの反射量の情報を受光部77から受け取る。判定部は、反射量が所定の閾値未満である場合に「基板無し」と判定し、反射量が閾値以上である場合に「基板有り」と判定する。第3実施形態の基板搬送装置2Bは、基板通過センサ7Bの検出方式が第1実施形態と相違するが、その動作、作用、および効果は、第1実施形態と概ね同じである。
 9.実施形態の応用および変形
 なお、基板搬送装置(2、2A、2B)は、部品装着機1以外の対基板作業機、例えばはんだ印刷機や基板検査機にも適用することができる。また、基板通過センサは、水平方向の検出光を投射し、検出光の反射量に基づいて基板Kの有無を検出する水平方向反射式を採用してもよい。さらに、基板Kの搬送方向の長さLKが未知であっても、基板搬送装置(2、2A、2B)は、異常判定部84が求めた推定長さを用いて今後の搬送距離D1を演算し、基板Kを所定の停止位置PSに停止させることができる。ただし、異常判定部84による異常判定は行えない。第1~第3実施形態は、その他にも様々な応用や変形が可能である。
 1:部品装着機  2、2A、2B:基板搬送装置  21:ガイドレール  22:搬入端  3:部品供給装置  4:部品移載装置  6:搬送部  61:コンベアベルト  65:駆動プーリ  66:駆動モータ  7、7A、7B:基板通過センサ  71:投光部  72:受光部  73:判定部  74:投光部  75:受光部  76:投光部  77:受光部  8:搬送制御部  81:設定部  82:監視部  83:再設定部  84:異常判定部  DL:検出光  PS:停止位置  D0:離間距離  D1:搬送距離  K:基板  PK:中間位置  LK:長さ  KB:割れ基板  KF:枠部  K1、K2:小片基板  KG:空隙部  LB:長さ  KS:反り基板

Claims (8)

  1.  基板を搬送路の搬入端から所定の停止位置まで搬送する搬送部と、
     前記搬送路の前記停止位置よりも前記搬入端側の規定位置を通過する前記基板に向けて検出光を投射し、前記検出光の通過量または反射量に基づいて、前記規定位置における前記基板の有無を検出する基板通過センサと、
     前記搬送部が前記基板を搬送する際に、前記基板通過センサの検出結果が「基板無し」から「基板有り」を経て「基板無し」に変化した時点で、前記基板を前記停止位置まで搬送する今後の搬送距離を設定する設定部と、
     前記基板が前記停止位置に到着するまで、前記検出結果が再び「基板有り」に変化するか否かを監視する監視部と、
     前記検出結果が再び「基板有り」に変化した場合、その後に前記検出結果が「基板無し」に変化した時点で、設定済みの前記搬送距離をリセットして今後の前記搬送距離を設定し直す再設定部と、
     を備える基板搬送装置。
  2.  前記基板通過センサは、水平姿勢で搬送される前記基板に向けて、上下方向の前記検出光を投射する、請求項1に記載の基板搬送装置。
  3.  前記基板通過センサは、水平姿勢で搬送される前記基板に向けて、搬送方向に交差する水平方向の前記検出光を投射する、請求項1に記載の基板搬送装置。
  4.  前記基板通過センサは、
     前記基板に向けて前記検出光を投射する投光部と、
     前記基板を挟んで前記投光部の反対側に配置され、前記基板が無いときと比較して前記基板が有るときに減少する前記検出光の前記通過量を検出する受光部と、
     前記通過量が所定の閾値以上である場合に「基板無し」と判定し、前記通過量が前記閾値未満である場合に「基板有り」と判定する判定部と、を有する、
     請求項1~3のいずれか一項に記載の基板搬送装置。
  5.  前記基板通過センサは、
     前記基板に向けて前記検出光を投射する投光部と、
     前記投光部に並んで配置され、前記基板が無いときと比較して前記基板が有るときに増加する前記検出光の前記反射量を検出する受光部と、
     前記反射量が所定の閾値未満である場合に「基板無し」と判定し、前記反射量が前記閾値以上である場合に「基板有り」と判定する判定部と、を有する、
     請求項1~3のいずれか一項に記載の基板搬送装置。
  6.  前記搬送距離は、前記停止位置と前記規定位置との離間距離、前記離間距離から前記基板の搬送方向の長さの半分を減算した距離、および、前記離間距離から前記基板の搬送方向の長さを減算した距離のいずれかである、請求項1~5のいずれか一項に記載の基板搬送装置。
  7.  前記搬送部の動作履歴および前記基板通過センサの前記検出結果に基づいて前記基板の搬送方向の推定長さを求め、前記推定長さと前記基板の搬送方向の既知の長さとを比較することにより異常の有無を判定する異常判定部を備える、請求項1~6のいずれか一項に記載の基板搬送装置。
  8.  基板を搬送路の搬入端から所定の停止位置まで搬送する搬送部と、
     前記搬送路の前記停止位置よりも前記搬入端側の規定位置を通過する前記基板に向けて検出光を投射し、前記検出光の通過量または反射量に基づいて、前記規定位置における前記基板の有無を検出する基板通過センサと、
     前記基板通過センサの検出結果に基づいて前記搬送部を制御する制御部と、を備える基板搬送装置において、
     前記制御部は、
     前記搬送部が前記基板を搬送する際に、前記検出結果が「基板無し」から「基板有り」を経て「基板無し」に変化した時点で、前記基板を前記停止位置まで搬送する今後の搬送距離を設定し、
     前記基板が前記停止位置に到着するまで、前記検出結果が再び「基板有り」に変化するか否かを監視し、
     前記検出結果が再び「基板有り」に変化した場合、その後に前記検出結果が「基板無し」に変化した時点で、設定済みの前記搬送距離をリセットして今後の前記搬送距離を設定し直す、
     基板搬送方法。
PCT/JP2021/008069 2021-03-03 2021-03-03 基板搬送装置および基板搬送方法 WO2022185428A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/008069 WO2022185428A1 (ja) 2021-03-03 2021-03-03 基板搬送装置および基板搬送方法
JP2023503584A JP7432058B2 (ja) 2021-03-03 2021-03-03 基板搬送装置および基板搬送方法
CN202180091723.5A CN116762485A (zh) 2021-03-03 2021-03-03 基板搬运装置及基板搬运方法
DE112021007189.0T DE112021007189T5 (de) 2021-03-03 2021-03-03 Platinenfördervorrichtung und Platinenförderverfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/008069 WO2022185428A1 (ja) 2021-03-03 2021-03-03 基板搬送装置および基板搬送方法

Publications (1)

Publication Number Publication Date
WO2022185428A1 true WO2022185428A1 (ja) 2022-09-09

Family

ID=83153973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008069 WO2022185428A1 (ja) 2021-03-03 2021-03-03 基板搬送装置および基板搬送方法

Country Status (4)

Country Link
JP (1) JP7432058B2 (ja)
CN (1) CN116762485A (ja)
DE (1) DE112021007189T5 (ja)
WO (1) WO2022185428A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537187A (ja) * 1991-07-31 1993-02-12 Juki Corp 電子回路基板搬送装置
WO2004093514A1 (ja) * 2003-04-11 2004-10-28 Fuji Machine Mfg. Co., Ltd. 基板搬送方法および装置
JP2007225323A (ja) * 2006-02-21 2007-09-06 Dainippon Screen Mfg Co Ltd 基板割れ検出装置および基板処理装置
JP2011071345A (ja) * 2009-09-25 2011-04-07 Fuji Mach Mfg Co Ltd 電子回路部品装着機
JP2013225627A (ja) * 2012-04-23 2013-10-31 Hitachi High-Tech Instruments Co Ltd 基板搬送装置
JP2017183630A (ja) * 2016-03-31 2017-10-05 パナソニック デバイスSunx株式会社 基板検出センサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537187A (ja) * 1991-07-31 1993-02-12 Juki Corp 電子回路基板搬送装置
WO2004093514A1 (ja) * 2003-04-11 2004-10-28 Fuji Machine Mfg. Co., Ltd. 基板搬送方法および装置
JP2007225323A (ja) * 2006-02-21 2007-09-06 Dainippon Screen Mfg Co Ltd 基板割れ検出装置および基板処理装置
JP2011071345A (ja) * 2009-09-25 2011-04-07 Fuji Mach Mfg Co Ltd 電子回路部品装着機
JP2013225627A (ja) * 2012-04-23 2013-10-31 Hitachi High-Tech Instruments Co Ltd 基板搬送装置
JP2017183630A (ja) * 2016-03-31 2017-10-05 パナソニック デバイスSunx株式会社 基板検出センサ

Also Published As

Publication number Publication date
JPWO2022185428A1 (ja) 2022-09-09
JP7432058B2 (ja) 2024-02-15
DE112021007189T5 (de) 2023-12-21
CN116762485A (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
US6853874B2 (en) Variable-width substrate conveyor, method of changing width of the same, and method of matching widths of two adjacent substrate conveyors
JP2012023241A (ja) 基板停止位置制御方法および装置、ならびに基板装着位置制御方法
JP2014078580A (ja) 電子部品実装装置および電子部品実装装置における基板位置決め方法
US10888041B2 (en) Substrate working system and component mounter
US20130167361A1 (en) Electronic component mounting device and electronic component mounting method
JP2014157960A (ja) 基板位置決め方法
JP6232583B2 (ja) 基板の搬送方法及び部品実装装置
JP6356222B2 (ja) 部品装着装置
JP6043871B2 (ja) 基板の搬送装置、表面実装機、及び基板の搬送方法
WO2021152840A1 (ja) 対基板作業機
WO2022185428A1 (ja) 基板搬送装置および基板搬送方法
JP2013135093A (ja) スプライシングテープおよびスプライシング処理方法ならびに電子部品実装装置
JP7285408B2 (ja) 部品実装装置および基板搬送方法
JP4357931B2 (ja) 部品実装機
JP5860688B2 (ja) 対基板作業機
JP5375879B2 (ja) 電子部品実装装置および電子部品実装装置における基板搬送方法
JP5203122B2 (ja) 基板搬送装置
JP7296259B2 (ja) 部品実装機
JP7252844B2 (ja) 対基板作業機
JP7213418B2 (ja) 部品実装システムおよび基板の受渡し方法
JP7332515B2 (ja) 部品実装ライン
JP6774380B2 (ja) 基板作業装置および搬送ベルトの状態通知方法
WO2024013934A1 (ja) 基板搬送装置及び基板検知方法
JP2018142629A (ja) 部品実装方法および部品実装装置
JP2017165548A (ja) 搬送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503584

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180091723.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112021007189

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929004

Country of ref document: EP

Kind code of ref document: A1