WO2022180908A1 - 車両制御システム - Google Patents

車両制御システム Download PDF

Info

Publication number
WO2022180908A1
WO2022180908A1 PCT/JP2021/035462 JP2021035462W WO2022180908A1 WO 2022180908 A1 WO2022180908 A1 WO 2022180908A1 JP 2021035462 W JP2021035462 W JP 2021035462W WO 2022180908 A1 WO2022180908 A1 WO 2022180908A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
control unit
battery
vehicle
heavy
Prior art date
Application number
PCT/JP2021/035462
Other languages
English (en)
French (fr)
Inventor
泰志 杉山
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to US18/038,377 priority Critical patent/US20230415608A1/en
Priority to CN202180081812.1A priority patent/CN116583449A/zh
Priority to JP2023502050A priority patent/JP7447350B2/ja
Publication of WO2022180908A1 publication Critical patent/WO2022180908A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a vehicle control system for hybrid vehicles having drive systems different from each other.
  • a vehicle control system of this type includes a power supply circuit including a plurality of power supplies and a relay device capable of changing the connection state of power supply wiring, a failure detection device that detects a failure state of the relay device, a power supply control device, and automatic operation control.
  • the failure detection device detects that a failure corresponding to a specific failure pattern has occurred in the relay device
  • the automatic operation control unit restricts some control functions of automatic operation and performs a fail operation. is disclosed (Patent Document 1).
  • Patent Document 1 when a power failure occurs due to an abnormality in an HV battery or an on-vehicle battery, there is a risk that the relay device will be turned off, and there is a possibility that the fail operation will not be executed. There is a problem.
  • the vehicle control system of the present invention that solves the above problems includes: A vehicle control system for a hybrid vehicle having two drive trains different from each other, a first battery; a second battery; relay circuits arranged upstream and downstream of the first battery; a first DCDC converter connected to the relay circuit; a second DCDC converter connected to the relay circuit in parallel with the first DCDC converter; a first relay control unit that controls the relay circuit; a second relay control unit that controls the relay circuit; a first drive control unit that controls the first drive system; a second drive control unit that controls the second drive system; the first relay control unit and the first drive control unit are connected downstream of the first DCDC converter; the second relay control unit, the second battery, and the second drive control unit are connected downstream of the second DCDC converter; The first relay control unit and the second relay control unit cut off the relay circuit on condition that an abnormality of the first battery is detected,
  • the second drive control unit is characterized by performing control to drive the second drive system using the electric power of the second battery as a power source by cutting off the relay circuit
  • the vehicle is controlled by the second battery when an abnormality is detected in the first battery.
  • FIG. 1 is a schematic configuration diagram of a vehicle control system according to a first embodiment;
  • FIG. The schematic block diagram of the vehicle control system which concerns on 2nd Embodiment.
  • the schematic block diagram of the vehicle control system which concerns on the modification 1 of 2nd Embodiment.
  • the schematic block diagram of the vehicle control system which concerns on the modified example 2 of 2nd Embodiment.
  • vehicle control systems 30 and 30A according to the first and second embodiments to which the vehicle control system according to the present invention is applied, and a vehicle control system 30B according to modified examples 1 and 2 of the second embodiment. , 30C will be described with reference to the drawings.
  • the relay circuit according to the present invention will be described by including it in the description of the vehicle control systems 30 and 30A.
  • the vehicle control system 30 is installed in a vehicle that automatically drives.
  • the vehicle control system 30 includes, as shown in FIG. It includes a control unit 7, a second high-voltage switch control unit 8, an on-board battery 9, an inverter control unit 10, and a drive control unit 11, and controls running of the vehicle by an on-board ECU (not shown).
  • the vehicle is a hybrid electric vehicle (HEV) having two drive systems different from each other.
  • a hybrid vehicle having two drive systems such as a drive device such as an engine (internal combustion engine) (not shown) and a motor 4 for running, as power sources, will be described as an example.
  • the vehicle control system 30 performs a fail operation in vehicle travel control when a power source malfunction such as blown fuse, overcharge abnormality, or short circuit failure occurs in either the HV battery 1 or the vehicle battery 9 .
  • the HV battery 1 of the first embodiment corresponds to the first battery of the vehicle control system according to the present invention
  • the first heavy electric SW2 and the second heavy electric SW3 correspond to the relay circuits
  • the first heavy electric SW control unit. 7 corresponds to the second relay control unit
  • the second heavy-current SW control unit 8 corresponds to the first relay control unit
  • the vehicle-mounted battery 9 corresponds to the second battery
  • the inverter control unit 10 corresponds to the first relay control unit. It corresponds to the drive control unit
  • the drive control unit 11 corresponds to the second drive control unit.
  • the HV battery 1 is composed of a power source that outputs high-voltage power capable of driving the motor 4 of the hybrid vehicle.
  • a redundant second high voltage switch 3 for turning the line ON or OFF is provided.
  • At least one of the first heavy electric SW control unit 7 and the second heavy electric SW control unit 8 controls the operations of the first heavy electric SW2 and the second heavy electric SW3.
  • the first DCDC converter 5 is configured to step down the high voltage output from the HV battery 1, and is connected to the first high voltage SW2, which is a relay circuit.
  • An inverter control unit 10 that controls the operation of the motor 4 is connected to the downstream side of the first DCDC converter 5 , and a first heavy current SW control unit 7 is connected to the downstream side of the inverter control unit 10 .
  • the second DCDC converter 6 is connected in parallel to the first DCDC converter 5, and a vehicle battery 9, a drive control unit 11, and a second high-power SW control unit 8 are connected to the downstream side of the second DCDC converter 6. .
  • the vehicle-mounted battery 9 is configured in the same manner as a power source such as an auxiliary battery mounted on a conventional vehicle and connected to a 12V control unit, and has a relatively low voltage, such as 12V power, compared to the HV battery 1. to the drive control unit 11.
  • the drive control unit 11 is configured to control a drive device other than the motor 4, such as an engine.
  • the vehicle control system 30 detects an abnormality of the HV battery 1, such as a blown fuse or overcharge of the HV battery 1, by means of a control unit (abnormality detection unit) (not shown) that monitors the voltage of the HV battery 1, and issues an abnormality notification.
  • a control unit abnormality detection unit
  • the first heavy-electric SW control unit 7 and the second heavy-electric SW control unit 8 control the first heavy-electric SW2 and the second heavy-electric SW3. Turn off.
  • the vehicle battery 9 is arranged downstream of the second DCDC converter 6 , and the drive control unit 11 and the second high-power SW control unit 8 can receive power supply from the vehicle battery 9 . Therefore, under the control of the drive control unit 11, the drive device such as the engine can be operated, and the fail operation can be executed.
  • the vehicle control system 30 for example, when an abnormality occurs in the vehicle battery 9 such as a short failure of the vehicle battery 9, electric power is not supplied from the vehicle battery 9 to the drive control unit 11, and the engine or the like is stopped. It becomes impossible to drive the drive. In addition, power is no longer supplied to the second heavy-electricity SW control unit 8, and control of the relay circuit by the second heavy-electricity SW control unit 8 becomes impossible.
  • the power supply line connected from the HV battery 1 to the first DCDC converter 5 and the second DCDC converter 6 can be conducted. Therefore, the control of the relay circuit by the first heavy-electricity SW control unit 7 is executed without any trouble, and the first heavy-electricity SW2 and the second heavy-electricity SW3 are maintained in the ON state. Therefore, the drive control of the motor 4 is performed by the inverter control unit 10 using the electric power supplied from the HV battery 1, and degeneration operation is performed to maintain the operation while the functions and performance of the system are partially stopped. Operations can be performed. As long as the fail operation can be executed, there are no particular restrictions on the specific operation control content of the degeneration operation.
  • an abnormality in the power supply line composed of the second DCDC converter 6 and the vehicle-mounted battery 9 such as a short-circuit failure of the output of the second DCDC converter 6, disconnection of the power supply line of the vehicle-mounted battery 9, etc. occurs, it is possible to execute a fail operation by degenerate operation in the same manner as in the case where an abnormality occurs in the vehicle-mounted battery 9 .
  • the vehicle control system 30 can also perform control to stop disconnection of the first high-voltage switch 2 and the second high-voltage switch 3 by the second relay control unit and to connect them again on condition that the start signal of the hybrid vehicle is received. .
  • the vehicle control system 30 of the first embodiment includes an HV battery 1, a first heavy electric SW2, a second heavy electric SW3, a motor 4, a first DCDC converter 5, a second DCDC converter 6, and a first heavy electric SW control. It has a unit 7 , a second heavy current switch control unit 8 , an onboard battery 9 , an inverter control unit 10 and a drive control unit 11 .
  • the vehicle control system 30 converts the first heavy-current SW control unit 7 and the second heavy-current SW control unit 8 that respectively control the first heavy-current SW 2 on the upstream side and the second heavy-current SW 3 on the downstream side of the HV battery 1 into the first DCDC converter. 5 and redundantly disposed downstream of the second DCDC converter 6, and is composed of two power supply lines. Furthermore, the vehicle-mounted battery 9 and the drive control unit 11 are arranged on the same power supply line.
  • the drive control unit 11 and the second high-power SW control unit 8 can receive power from the vehicle-mounted battery 9.
  • the control of the drive control unit 11 can operate the drive device such as the engine, and the effect that the fail operation can be executed while ensuring the safety of traveling can be obtained.
  • the power supply line connected from the HV battery 1 to the first DCDC converter 5 can be conducted. , the driving control of the motor 4 is performed, and the effect is obtained that the fail operation can be executed while ensuring the safety of traveling.
  • the vehicle control system 30 according to the first embodiment is configured with the components shown in FIG.
  • the vehicle control system according to the present invention may be configured with components other than the components shown in FIG.
  • a vehicle control system 30A according to a second embodiment configured with other components will be described below with reference to the drawings. Note that the same reference numerals are used for the same configurations as those of the vehicle control system 30 according to the first embodiment, and detailed description thereof will be omitted.
  • FIG. 2 is a schematic configuration diagram of a vehicle control system according to the second embodiment.
  • a vehicle control system 30A according to the second embodiment is installed in a vehicle that automatically operates, and as shown in FIG.
  • a third high-voltage relay 14 is connected, and a second high-voltage relay 13 and a fourth high-voltage relay 15 connected in parallel to each other are connected downstream of the HV battery 1 .
  • a fail-operation load Rf17, other loads Rx18, an inverter control unit 10, and a first heavy-voltage SW control unit 7 are connected downstream of the first DCDC converter 5.
  • a fail-operation load Rf17, other loads Rx18, a starter motor 19, an engine control unit 20, and a second high-power SW control unit 8 are connected downstream of the second DCDC converter 6.
  • the vehicle like the vehicle control system 30 according to the first embodiment, is a hybrid vehicle provided with a driving device such as an engine (not shown) and the motor 4 as power sources.
  • the first heavy electric relay 12 of the second embodiment corresponds to the first relay of the vehicle control system according to the present invention
  • the second heavy electric relay 13 corresponds to the third relay
  • the third heavy electric relay 14 corresponds to the second relay.
  • the fourth heavy-current relay 15 respectively corresponds to the fourth relay.
  • a first high-voltage relay 12 and a third high-voltage relay 14 are arranged upstream of the HV battery 1 for turning ON or OFF the power line, and a third relay 14 for turning the power line ON or OFF are arranged downstream of the HV battery 1.
  • a second high-voltage relay 13 and a fourth high-voltage relay 15 are arranged.
  • the operations of the first heavy electric relay 12 and the second heavy electric relay 13 are controlled by the second heavy electric SW control unit 8, and the third heavy electric relay 14 and the fourth heavy electric relay 15 (shown in FIG. The operations shown in C and D) are controlled by the first heavy electric SW control unit 7 .
  • the first DCDC converter 5 is configured to step down the high voltage output from the HV battery 1 and is connected to the first heavy-electric relay 12 and the third heavy-electric relay 14 .
  • the downstream side of the first DCDC converter 5 is connected to a fail-operation load Rf17, another load Rx18 having an arbitrary arrangement, and the inverter control unit 10.
  • a control unit 7 is connected.
  • the vehicle-mounted battery 9 On the downstream side of the first DCDC converter 5, the vehicle-mounted battery 9 is not arranged, and concerns such as a voltage drop occur due to the transient load increase of the fail-operation load Rf17. Therefore, it is preferable to perform a degenerate operation at the time of fail operation for the load on the downstream side of the first DCDC converter 5 .
  • degenerate operation during fail operation for example, motor torque (N ⁇ m) is suppressed during power steering control.
  • the second DCDC converter 6 is connected in parallel to the first DCDC converter 5. On the downstream side of the second DCDC converter 6, there are an onboard battery 9, a fail-operation load Rf17, other loads Rx18 that can be arranged arbitrarily, and a starter motor 19. , the engine control unit 20, the load Rs16 requiring standby, and the second high-power SW control unit 8 are connected.
  • the load Rs16 that requires standby is a load that receives an ignition key signal and permits power supply from the on-vehicle battery 9 and the second DCDC converter 6 to on-vehicle equipment. and loads such as body control modules (BCM) that monitor functions such as security.
  • the fail operation load Rf17 specifically includes power steering control, automatic driving control, and the like.
  • the starter motor 19 is a motor for starting the vehicle, and is sometimes used when the HV battery 1 fails in a hybrid vehicle.
  • the starter motor 19 is used to drive the drive train of the vehicle to move the vehicle from the driving lane to the shoulder of the road.
  • the engine control unit 20 is configured to control the operation of an engine (not shown).
  • the first heavy-electricity SW control unit 7 and the second heavy-electricity SW control unit 8 are mounted with microcomputers, and fixation of the first heavy-electricity relay 12, the second heavy-electricity relay 13, the third heavy-electricity relay 14, and the fourth heavy-electricity relay 15 It is equipped with a function to detect failures such as disconnection. When the contacts of each relay are switched from the disconnected state to the conductive state, a large inrush current to the capacitor may cause the contacts of the relays to be welded or stuck, or the relays to be disconnected. The first heavy electric SW control unit 7 and the second heavy electric SW control unit 8 can detect these failures.
  • the first heavy-electric SW control unit 7 and the second heavy-electric SW control unit 8 diagnose these failures before starting the vehicle, and take appropriate measures in the event of an abnormality.
  • the first heavy electric relay 12, the third heavy electric relay 14, the second heavy electric relay 13 and the fourth heavy electric relay 15 are redundantly arranged upstream and downstream of the HV battery 1, and any one of the heavy electric relays is fixed. It is configured so that the HV battery 1 can be reliably disconnected from the power supply line even in the event of failure.
  • a monitoring function is implemented for the microcomputers installed in the first heavy-electricity SW control unit 7 and the second heavy-electricity SW control unit 8, and when an abnormality such as program runaway of the microcomputers occurs,
  • the first heavy-electricity SW control unit 7 and the second heavy-electricity SW control unit 8 are configured to turn off each heavy-electricity relay by its monitoring function.
  • the first heavy-electric SW control unit 7 does not necessarily turn on the third heavy-electric relay 14 and the third heavy-electric relay 15 (C and D shown in FIG. 2).
  • the second heavy-electricity SW control unit 8 turns ON only the first heavy-electricity relay 12 and the second heavy-electricity relay 13 (A and B shown in FIG. 2), and when an abnormality occurs, the first heavy-electricity relay 12 and the second heavy-electric relay 13 (A, B shown in FIG. 2) are turned OFF, the first heavy-electric SW control unit 7 switches the third heavy-electric relay 14 and the fourth heavy-electric relay 15 (C, B shown in FIG. 2). D) may be turned ON to execute the degenerate operation. As long as the power is supplied from the first DCDC converter 5 to the first heavy-voltage SW control unit 7, the degeneration operation by fail operation can be executed even if the configuration is different or by other methods.
  • the first heavy-electric SW control unit 7 and the second heavy-electric SW control unit 8 receive an abnormality notification signal from the control unit that monitors the voltage of the HV battery 1 .
  • the first heavy-electric SW control unit 7 and the second heavy-electric SW control unit 8 include a first heavy-electric relay 12 and a second heavy-electric relay 13 (A and B shown in FIG. 2), a third heavy-electric relay 14 and a fourth heavy-electric relay 15. (C and D shown in FIG. 2) are all turned off. That is, fail-safe of the HV battery 1 is realized.
  • the load connected to the second DCDC converter 6 includes the vehicle battery 9, and power can be supplied from the vehicle battery 9 to the engine control unit 20 and the fail operation load Rf17.
  • the engine control unit 20 controls the engine by power supply from the vehicle-mounted battery 9, and the fail operation is performed in the degenerate operation.
  • a flow when an abnormality occurs in the vehicle-mounted battery 9 according to the second embodiment will be described. For example, if a short-circuit failure occurs in the vehicle-mounted battery 9, power is no longer supplied to the engine control unit 20, and the engine cannot be driven by the power supply from the vehicle-mounted battery 9.
  • the first heavy-electric relay 12 and the second heavy-electric relay 13 (A and B shown in FIG. 2), the third heavy-electric relay 14 and the fourth heavy-electric relay 15 ( C and D) shown are all in the ON state.
  • the first heavy-electric relay 12, the second heavy-electric relay 13, the third heavy-electric relay 14, and the fourth heavy-electric relay 15 in the vehicle control system 30A according to the second embodiment the low-side driver is used, but the high-side driver is used. You can make it come true.
  • the vehicle control system 30A includes, as shown in FIG. An inverter control unit 10 is provided.
  • the vehicle control system 30A also includes a first heavy relay 12, a second heavy relay 13, a third heavy relay 14, a fourth heavy relay 15, a load Rs 16, a load Rf 17, a load Rx 18, a starter motor 19, and an engine control unit 20. ing.
  • the vehicle control system 30A performs first heavy-current SW control for controlling the first heavy-electric relay 12 and the third heavy-electric relay 14 on the upstream side of the HV battery 1, and the second heavy-electric relay 13 and the fourth heavy-electric relay 15 on the downstream side, respectively.
  • the unit 7 and the second heavy current SW control unit 8 are redundantly arranged downstream of the second DCDC converter 6, and are configured with two power supply lines.
  • the vehicle-mounted battery 9, the starter motor 19, and the engine control unit 20 are arranged on the same power supply line. With this configuration, even if an abnormality occurs in the vehicle-mounted battery 9, the power supply line connected from the HV battery 1 to the first DCDC converter 5 can be conducted.
  • the drive control of the motor 4 is performed by the unit 10, and the effect is obtained that the fail operation can be executed while ensuring the safety of traveling.
  • the on-vehicle battery 9 is arranged downstream of the second DCDC converter 6, and the starter motor 19, the engine control unit 20, and the second heavy-current SW control unit 8 are connected to the on-vehicle battery. Power can be supplied from 9. As a result, it is possible to operate the engine by the control of the engine control unit 20, and it is possible to obtain the effect that the fail operation can be executed while ensuring the safety of traveling.
  • the vehicle control system 30A according to the second embodiment has been described for the case where it is configured with the components shown in FIG.
  • the vehicle control system according to the present invention may be configured with components other than the components shown in FIG.
  • Modifications 1 and 2 of the vehicle control system 30A according to the second embodiment configured with other components will be described below with reference to the drawings.
  • symbol is used about the structure similar to 30A of vehicle control systems which concern on 2nd Embodiment, and detailed description is abbreviate
  • FIG. 3 is a schematic configuration diagram of a vehicle control system according to Modification 1 of the second embodiment. Unlike the vehicle control system 30A according to the second embodiment, the vehicle control system 30B according to Modification 1, as shown in FIG. Only the second high current relay 13 is arranged downstream of the battery 1 . Other components are the same as those of the vehicle control system 30A according to the second embodiment.
  • the first heavy electric relay 12 branches to A and C shown in FIG. 3, the second heavy electric relay 13 branches to B and D shown in FIG. A and B are controlled by the second heavy electric SW control unit 8 .
  • the first heavy electric relay 12 is turned ON or OFF by the first heavy electric SW control unit 7 and the second heavy electric SW control unit 8
  • the second heavy electric relay 13 is turned ON or OFF by the first heavy electric SW control unit 7 and the second heavy electric SW control unit 8. is turned ON or OFF.
  • This configuration also provides the same effects as the vehicle control system 30A according to the second embodiment. That is, even if the HV battery 1 or the on-vehicle battery 9 fails to function as a power source, it is possible to realize the fail operation while ensuring the safety of the vehicle.
  • a switch for disconnection is required so that the power supply of the first heavy-electric relay 12 and the second heavy-electric relay 13 does not drop.
  • FIG. 4 is a schematic configuration diagram of a vehicle control system according to Modification 2 of the second embodiment.
  • the vehicle control system 30C according to Modification 2 is configured by integrated powertrain control, unlike the vehicle control system 30A according to the second embodiment.
  • the vehicle control system 30C is an E/E architecture that is a wired network suitable for advanced automated driving.
  • the integrated control ECU is connected by high-speed communication such as Ethernet.
  • the vehicle control system 30C includes, as shown in FIG. , the first automatic operation control unit 21 is arranged downstream of the second DCDC converter 6 .
  • the first automatic operation control unit 21 is arranged downstream of the second DCDC converter 6 .
  • a second integrated ECU having an inverter control unit 10 a first high-voltage SW control unit 7, etc. is arranged, and on the downstream side of the first DCDC converter 5, there is degeneracy for the purpose of failing operation.
  • a second automatic operation control unit 22 by control is arranged.
  • the second heavy electric SW control unit 8 may be integrated with the first automatic operation control unit 21, or may be arranged in an independent ECU.
  • the vehicle control system 30C according to Modification 2 can obtain the same effects as the vehicle control system 30A according to the second embodiment. That is, even if the HV battery 1 or the on-vehicle battery 9 fails to function as a power source, it is possible to realize the fail operation while ensuring the safety of the vehicle.
  • the present invention is not limited to each of the above-described embodiments, and the gist of the present invention described in the claims is as follows.
  • Various design changes can be made without departing from the scope.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

本発明の課題は、バッテリの電源機能失陥が発生した場合でも、車両の走行の安全性を確保しつつ、フェールオペレーションが実現可能な車両制御システムを提供すること。本発明の車両制御システムは、HVバッテリ(1)と、HVバッテリ(1)の上流側および下流側にそれぞれ冗長して配置された第1強電リレー(12)、第2強電リレー(13)、第3強電リレー(14)、第4強電リレー(15)と、各リレーに接続された第1DCDCコンバータ(5)および第2DCDCコンバータ(6)とを備え、各コンバータ(5)、(6)の下流側には各リレーを制御する第1強電SW制御ユニット(7)および第2強電SW制御ユニット(8)を有し、第2DCDCコンバータ(6)の下流側には車載バッテリ(9)を備え、HVバッテリ(1)の異常が検知されたことを条件として、第1強電SW制御ユニット(7)および第2強電SW制御ユニット(8)が、各リレーを遮断し、車載バッテリ(9)の電力に基づき車両を制御する。

Description

車両制御システム
 本発明は、互いに異なる駆動系を有するハイブリッド車両の車両制御システムに関する。
 従来、自動運転機能が具備されていない車両の走行中に、車載バッテリの異常に起因する電源機能失陥が発生した場合、車両駆動トルクが無くなって惰性走行に切り替わるが、車両の運転者がハンドル操作を行うことで車両を安全に停止させていた。しかし、ハンドル操作が不要となる高度な自動運転機能が具備されている車両において、車両の走行中に電源機能失陥が発生した場合、高度な自動運転を継続することができない。そのため、車両が制御不能になることなく路肩や駐車場まで自動運転を継続して、安全に車両を停止させるという、いわゆるフェールオペレーションが必要になる。一方で、排出ガス規制や環境を保護するための環境規制を背景に車両の電動化が進められ、車両の駆動モータに向けて高電圧の電力を供給するHVバッテリを搭載した車両が増加している。このHVバッテリの異常に起因する電源機能失陥が発生した場合でも、フェールオペレーションを実行する車両制御システムが求められる。
 この種の車両制御システムとして、複数の電源および電源配線の接続状態を変更可能なリレー装置を含む電源回路と、リレー装置の故障状態を検出する故障検出装置と、電源制御装置と、自動運転制御部とを備え、故障検出装置が特定の故障パターンに該当する故障がリレー装置に生じていることを検出すると、自動運転制御部は自動運転の一部の制御機能を制限してフェールオペレーションを行うものが開示されている(特許文献1)。
 しかしながら、特許文献1に記載のものは、HVバッテリや車載バッテリの異常に起因する電源機能失陥が発生した場合に、リレー装置がOFFになるおそれがあり、フェールオペレーションが実行されない可能性があるという問題がある。
特許第6652103号公報
 バッテリの電源機能失陥が発生した場合でも、車両の走行の安全性を確保しつつ、フェールオペレーションが実現可能な車両制御システムを提供することを課題とする。
 上記課題を解決する本発明の車両制御システムは、
 互いに異なる2つの駆動系を有するハイブリッド車両の車両制御システムであって、
 第1バッテリと、
 第2バッテリと、
 前記第1バッテリの上流側と下流側にそれぞれ配置されたリレー回路と、
 該リレー回路に接続される第1DCDCコンバータと、
 前記リレー回路に前記第1DCDCコンバータと並列に接続される第2DCDCコンバータと、
 前記リレー回路を制御する第1リレー制御ユニットと、
 前記リレー回路を制御する第2リレー制御ユニットと、
 第1の駆動系を制御する第1駆動制御ユニットと、
 第2の駆動系を制御する第2駆動制御ユニットと、を有し、
 前記第1DCDCコンバータの下流側に、前記第1リレー制御ユニットと、前記第1駆動制御ユニットと、が接続され、
 前記第2DCDCコンバータの下流側に、前記第2リレー制御ユニットと、前記第2バッテリと、前記第2駆動制御ユニットと、が接続され、
 前記第1リレー制御ユニットおよび前記第2リレー制御ユニットは、前記第1バッテリの異常が検知されたことを条件として、前記リレー回路を遮断し、
 前記第2駆動制御ユニットは、前記リレー回路の遮断により、前記第2バッテリの電力を動力源として前記第2の駆動系を駆動させる制御を行うことを特徴とする。
 本発明に係る車両制御システムによれば、第1バッテリに異常が検知された場合に、第2バッテリにより車両が制御される。
 本発明によれば、バッテリの電源機能失陥が発生した場合でも、車両の走行の安全性を確保しつつ、フェールオペレーションが実現可能な車両制御システムを提供することができる。
 本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
第1実施形態に係る車両制御システムの概略構成図。 第2実施形態に係る車両制御システムの概略構成図。 第2実施形態の変形例1に係る車両制御システムの概略構成図。 第2実施形態の変形例2に係る車両制御システムの概略構成図。
 以下、本発明に係る車両制御システムが適用された第1実施形態および第2実施形態に係る車両制御システム30、30Aと、第2実施形態の変形例1および変形例2に係る車両制御システム30B、30Cについて図面を参照して説明する。なお、本発明に係るリレー回路は、車両制御システム30、30Aの説明に含めて説明する。
 (第1実施形態)
 車両制御システム30は、自動運転を行う車両に搭載されている。車両制御システム30は、図1に示すように、HVバッテリ1と、第1強電SW2と、第2強電SW3と、モータ4と、第1DCDCコンバータ5と、第2DCDCコンバータ6と、第1強電SW制御ユニット7、第2強電SW制御ユニット8と、車載バッテリ9と、インバータ制御ユニット10と、駆動制御ユニット11とを備えており、図示しない車載ECUによって、車両の走行制御を行う。車両は、互いに異なる2つの駆動系を有するハイブリッド車両(HEV:Hybrid Electric Vehicle)である。本実施形態では、2つの駆動系として、図示しないエンジン(内燃機関)などの駆動装置と、走行用のモータ4とを動力源として備えたハイブリッド車両の場合を例に説明している。
 車両制御システム30は、HVバッテリ1および車載バッテリ9の何れかにヒューズ溶断、過充電異常、ショート故障などの電源機能失陥が発生した場合に、車両の走行制御におけるフェールオペレーションを実行する。なお、第1実施形態のHVバッテリ1は、本発明に係る車両制御システムの第1バッテリに対応し、第1強電SW2および第2強電SW3は、リレー回路に対応し、第1強電SW制御ユニット7は、第2リレー制御ユニットに対応し、第2強電SW制御ユニット8は、第1リレー制御ユニットに対応し、車載バッテリ9は、第2バッテリに対応し、インバータ制御ユニット10は、第1駆動制御ユニットに対応し、駆動制御ユニット11は、第2駆動制御ユニットに対応する。
 HVバッテリ1は、ハイブリッド車両のモータ4を駆動可能な高電圧の電力を出力する電源からなり、上流側には電源ラインをONまたはOFFにする第1強電SW2が配置され、下流側には電源ラインをONまたはOFFにする第2強電SW3が冗長して配置されている。第1強電SW2および第2強電SW3の動作は、第1強電SW制御ユニット7と第2強電SW制御ユニット8の少なくとも一方によって制御される。
 第1DCDCコンバータ5は、HVバッテリ1から出力される高電圧を降圧するように構成されており、リレー回路である第1強電SW2に接続されている。第1DCDCコンバータ5の下流側には、モータ4の動作を制御するインバータ制御ユニット10が接続され、インバータ制御ユニット10の下流側には、第1強電SW制御ユニット7が接続されている。
 第2DCDCコンバータ6は、第1DCDCコンバータ5に並列に接続され、第2DCDCコンバータ6の下流側には、車載バッテリ9と、駆動制御ユニット11と、第2強電SW制御ユニット8とが接続されている。車載バッテリ9は、従来の車両に搭載されて12V制御ユニットに接続される補機バッテリなどの電源と同様に構成されており、HVバッテリ1と比べて比較的に低電圧、例えば12Vなどの電力を駆動制御ユニット11に供給するように構成されている。駆動制御ユニット11は、モータ4とは異なる駆動装置、例えば、エンジンなどの駆動装置を制御するように構成されている。
 車両制御システム30は、例えば、HVバッテリ1のヒューズ溶断または過充電など、HVバッテリ1の異常を、HVバッテリ1の電圧監視を行う図示しない制御ユニット(異常検知ユニット)により検知し、異常通知の制御信号を第1強電SW制御ユニット7および第2強電SW制御ユニット8が受信した場合に、第1強電SW制御ユニット7および第2強電SW制御ユニット8が第1強電SW2および第2強電SW3をOFFにする。
 これにより、第1DCDCコンバータ5および第2DCDCコンバータ6に対してHVバッテリ1からの電力が供給されなくなり、第1DCDCコンバータ5の下流側に接続されるインバータ制御ユニット10および第1強電SW制御ユニット7は動作継続がされなくなる。
 しかしながら、第2DCDCコンバータ6の下流側には、車載バッテリ9が配置されており、駆動制御ユニット11および第2強電SW制御ユニット8は、車載バッテリ9から電力の供給を受けることができる。したがって、駆動制御ユニット11の制御により、エンジンなどの駆動装置を動作させることができ、フェールオペレーションを実行することができる。
 また、車両制御システム30は、例えば、車載バッテリ9のショート故障が発生するなど、車載バッテリ9に異常が発生した場合に、駆動制御ユニット11に車載バッテリ9から電力が供給されなくなり、エンジンなどの駆動装置の駆動が不可能となる。また、第2強電SW制御ユニット8にもまた電力が供給されなくなり、第2強電SW制御ユニット8によるリレー回路の制御は不可能となる。
 しかしながら、車載バッテリ9に異常が発生した場合でも、HVバッテリ1から第1DCDCコンバータ5および第2DCDCコンバータ6に接続される電源ラインは導通可能となっている。したがって、第1強電SW制御ユニット7によるリレー回路の制御は、支障なく実行され、第1強電SW2および第2強電SW3はONの状態が維持される。したがって、HVバッテリ1から供給される電力により、インバータ制御ユニット10でモータ4の駆動制御を行い、システムの機能や性能を部分的に停止させた状態で稼動を維持する縮退運転を行うことでフェールオペレーションを実行することができる。なお、フェールオペレーションを実行することができれば、縮退運転の具体的な運転制御内容は、特に制限はない。
 車載バッテリ9に異常が発生した場合について説明したが、第2DCDCコンバータ6の出力のショート故障、車載バッテリ9の電源ラインの断線など、第2DCDCコンバータ6と車載バッテリ9で構成される電源ラインに異常が発生した場合も、車載バッテリ9に異常が発生した場合と同様に縮退運転によるフェールオペレーションを実行することができる。
 車両制御システム30は、ハイブリッド車両の起動信号が受信されたことを条件として、第2リレー制御ユニットによる第1強電SW2および第2強電SW3の遮断を中止し、再び接続させる制御を行うこともできる。
 第1実施形態の車両制御システム30の効果について説明する。
 第1実施形態の車両制御システム30は、図1に示すように、HVバッテリ1、第1強電SW2、第2強電SW3、モータ4、第1DCDCコンバータ5、第2DCDCコンバータ6、第1強電SW制御ユニット7、第2強電SW制御ユニット8、車載バッテリ9、インバータ制御ユニット10および駆動制御ユニット11を備えている。
 即ち、車両制御システム30は、HVバッテリ1の上流側の第1強電SW2、下流側の第2強電SW3をそれぞれ制御する第1強電SW制御ユニット7、第2強電SW制御ユニット8を第1DCDCコンバータ5に加えて第2DCDCコンバータ6の下流にそれぞれ冗長配置しており、2系統の電源ラインで構成されている。更に、車載バッテリ9と駆動制御ユニット11を同一電源ラインに配置している。
 この構成により、HVバッテリ1に異常が発生した場合、駆動制御ユニット11および第2強電SW制御ユニット8は、車載バッテリ9から電力の供給を受けることができる。その結果、駆動制御ユニット11の制御により、エンジンなどの駆動装置を動作させることができ、走行の安全性を確保しつつ、フェールオペレーションを実行することができるという効果が得られる。
 また、車載バッテリ9に異常が発生した場合でも、HVバッテリ1から第1DCDCコンバータ5に接続される電源ラインは導通可能となっているので、HVバッテリ1から供給される電力により、インバータ制御ユニット10でモータ4の駆動制御を行い、走行の安全性を確保しつつ、フェールオペレーションを実行することができるという効果が得られる。
 第1実施形態に係る車両制御システム30は、前述したように、図1に示す各構成要素で構成した場合について説明した。しかしながら、本発明に係る車両制御システムは、図1に示す各構成要素以外の他の構成要素で構成してもよい。以下、他の構成要素で構成した第2実施形態に係る車両制御システム30Aについて図面を参照して説明する。なお、第1実施形態に係る車両制御システム30と同様の構成については、同一の符号を用い、詳細な説明を省略する。
 (第2実施形態)
 図2は、第2実施形態に係る車両制御システムの概略構成図である。
 第2実施形態に係る車両制御システム30Aは、自動運転を行う車両に搭載されており、図2に示すように、HVバッテリ1の上流側に互いに並列に接続される第1強電リレー12と第3強電リレー14が接続され、HVバッテリ1の下流側に互いに並列に接続される第2強電リレー13と第4強電リレー15が接続されている。
 そして、第1DCDCコンバータ5の下流には、フェールオペレーションの負荷Rf17と、その他の負荷Rx18と、インバータ制御ユニット10と、第1強電SW制御ユニット7が接続されている。第2DCDCコンバータ6の下流には、フェールオペレーションの負荷Rf17と、その他の負荷Rx18と、セルモータ19と、エンジン制御ユニット20と、第2強電SW制御ユニット8が接続されている。
 車両は、第1実施形態に係る車両制御システム30と同様、図示しないエンジンなどの駆動装置とモータ4を動力源として備えたハイブリッド車両である。第2実施形態の第1強電リレー12は、本発明に係る車両制御システムの第1リレーに対応し、第2強電リレー13は第3リレーに対応し、第3強電リレー14は第2リレーに対応し、第4強電リレー15は、第4リレーにそれぞれ対応する。
 HVバッテリ1の上流側には、電源ラインをONまたはOFFにする第1強電リレー12および第3強電リレー14が配置され、HVバッテリ1の下流側には、電源ラインをONまたはOFFにする第2強電リレー13および第4強電リレー15が配置されている。
 第1強電リレー12および第2強電リレー13(図2に示すA、B)の動作は、第2強電SW制御ユニット8によって制御され、第3強電リレー14および第4強電リレー15(図2に示すC、D)の動作は、第1強電SW制御ユニット7によって制御される。
 第1DCDCコンバータ5は、HVバッテリ1から出力される高電圧を降圧するように構成されており、第1強電リレー12および第3強電リレー14に接続されている。第1DCDCコンバータ5の下流側には、フェールオペレーションの負荷Rf17と、配置が任意のその他の負荷Rx18と、インバータ制御ユニット10とが接続され、インバータ制御ユニット10の下流側には、第1強電SW制御ユニット7が接続されている。
 第1DCDCコンバータ5の下流側には、車載バッテリ9が配置されておらず、フェールオペレーションの負荷Rf17の過渡的な負荷増加に対して、電圧低下などの懸念が発生する。そのため、第1DCDCコンバータ5の下流側の負荷に関しては、フェールオペレーション時の縮退運転を実施することが好ましい。フェールオペレーション時の縮退運転として、例えば、パワーステアリング制御の際、モータトルク(N・m)を抑えることなどが挙げられる。
 第2DCDCコンバータ6は、第1DCDCコンバータ5に並列に接続され、第2DCDCコンバータ6の下流側には、車載バッテリ9と、フェールオペレーションの負荷Rf17と、配置が任意のその他の負荷Rx18と、セルモータ19と、エンジン制御ユニット20と、スタンバイが必要な負荷Rs16と、第2強電SW制御ユニット8とが接続されている。
 スタンバイが必要な負荷Rs16は、イグニッションキー信号を受けて、車載機器に車載バッテリ9および第2DCDCコンバータ6からの電力供給を許可する負荷であり、具体的にはスマートキー制御Assyや、車両のボディや、セキュリティなどの機能をモニタするボディ制御ユニット(BCM:Body Control Modules)などの負荷が挙げられる。フェールオペレーションの負荷Rf17は、具体的にはパワーステアリング制御や自動運転制御などが挙げられる。
 セルモータ19は、車両を始動するためのモータであり、ハイブリッド車両では、HVバッテリ1の故障時に使用されることがある。例えば、セルモータ19により車両の駆動系を駆動して車両を走行車線から路肩まで移動させるのに使用される。エンジン制御ユニット20は、図示しないエンジンの動作を制御するように構成されている。
 第1強電SW制御ユニット7および第2強電SW制御ユニット8は、マイクロコンピュータを実装しており、第1強電リレー12、第2強電リレー13、第3強電リレー14および第4強電リレー15の固着や断線などの故障を検出する機能を具備している。各リレーの接点を遮断状態から導通状態にしたときにコンデンサへの大きな突入電流によって各リレーの接点に溶着や、固着や、各リレー断線が発生することがある。第1強電SW制御ユニット7および第2強電SW制御ユニット8は、これらの故障を検出することができる。
 第1強電SW制御ユニット7および第2強電SW制御ユニット8は、車両の始動前にこれらの故障の診断を行い、異常時に適切な処置が行われる。第1強電リレー12および第3強電リレー14と第2強電リレー13および第4強電リレー15はHVバッテリ1の上流側および下流側に冗長して配置されており、何れか1つの強電リレーが固着故障した場合でも、確実にHVバッテリ1を電源ラインから切り離せるように構成されている。
 また、第1強電SW制御ユニット7および第2強電SW制御ユニット8内に実装されたマイクロコンピュータに対して、監視機能が実装されており、マイクロコンピュータのプログラム暴走のような異常が発生した際、第1強電SW制御ユニット7および第2強電SW制御ユニット8は、その監視機能により各強電リレーをOFFするように構成されている。
 次いで、第2実施形態に係る車両制御システム30Aによる車両始動のフローを簡単に説明する。
 まず、車両の待機状態などのスタンバイが必要な負荷Rs16が、キーオン信号を受信すると、車載バッテリ9から第2強電SW制御ユニット8に電力が供給される。第2強電SW制御ユニット8により第1強電リレー12および第2強電リレー13がONにされ、第1DCDCコンバータ5および第2DCDCコンバータ6が起動可能な状態となる。そして、第1DCDCコンバータ5から第1強電SW制御ユニット7に電力が供給される。第1強電SW制御ユニット7により第3強電リレー14および第4強電リレー15がONになり、モータ4の駆動力により車両が発進可能な状態となる。
 ここで、通常の正常動作時、第1強電SW制御ユニット7が必ずしも第3強電リレー14および第3強電リレー15(図2に示すC、D)をONにさせる必要はない。通常の正常動作時は、第2強電SW制御ユニット8により、第1強電リレー12および第2強電リレー13(図2に示すA、B)のみをONにさせ、異常が発生し第1強電リレー12および第2強電リレー13(図2に示すA、B)がOFFとなった場合のみ、第1強電SW制御ユニット7が第3強電リレー14および第4強電リレー15(図2に示すC、D)をONにさせて縮退運転を実行するようにしてもよい。第1DCDCコンバータ5から第1強電SW制御ユニット7に電力を供給する構成であれば、構成が異なっていても、また他の方法によっても、フェールオペレーションによる縮退運転を実行することができる。
 第2実施形態に係るHVバッテリ1に異常が発生した場合のフローについて説明する。例えば、HVバッテリ1の過充電異常が発生した場合、HVバッテリ1の電圧監視を行う制御ユニットからの異常通知信号を第1強電SW制御ユニット7および第2強電SW制御ユニット8が受信する。第1強電SW制御ユニット7および第2強電SW制御ユニット8は、第1強電リレー12および第2強電リレー13(図2に示すA、B)と、第3強電リレー14および第4強電リレー15(図2に示すC、D)とを全てOFFにする。即ち、HVバッテリ1のフェールセーフが実現される。
 図2に示すA、B、C、Dの全てがOFFになると、第1DCDCコンバータ5および第2DCDCコンバータ6にHVバッテリ1からの電力が供給されなくなり、第1DCDCコンバータ5の下流側に接続される負荷は動作継続できなくなる。しかしながら、第2DCDCコンバータ6に接続される負荷には、車載バッテリ9が具備されており、エンジン制御ユニット20とフェールオペレーションの負荷Rf17に車載バッテリ9から電力が供給可能となる。その結果、車載バッテリ9からの電力供給によりエンジン制御ユニット20がエンジンを制御しフェールオペレーションが縮退運転で行われる。
 従来、HVバッテリ1の電圧異常が発生した場合、HVバッテリ1が過熱する危険があるため、直ちに各強電リレーをOFFしてフェールセーフを実現する要求がある。また、車両事故などでHVバッテリ1がボディと接触した場合、ボディに電気が流れる可能性があるため、エアバックからの故障通知信号を受信後、直ちに各強電リレーをOFFしてフェールセーフを実現する要求がある。このような要求に対して、第2実施形態に係る車両制御システム30Aの車両制御により、従来、フェールセーフで要求されていることを満たすことができる。
 第2実施形態に係る車載バッテリ9に異常が発生した場合のフローについて説明する。 例えば、車載バッテリ9のショート故障が発生した場合、エンジン制御ユニット20に電力が供給されなくなり、車載バッテリ9からの電力供給によるエンジン駆動が不可能となる。
 第2強電SW制御ユニット8にもまた電力が供給されなくなり、第1強電リレー12および第2強電リレー13(図2に示すA、B)がOFFになる。しかし、第3強電リレー14および第4強電リレー15(図2に示すC、D)の制御は第1強電SW制御ユニット7が実行しており、第3強電リレー14および第4強電リレー15(図2に示すC、D)がONとなり、HVバッテリ1から第1DCDCコンバータ5に接続される電源ラインは導通可能となる。したがって、インバータ制御ユニット10によりモータ4の駆動制御が行われ、フェールオペレーションの負荷Rf17で縮退運転が行われる。
 先に記載した例では車載バッテリ9の異常に関して記載したが、第2DCDCコンバータ6の出力のショート故障、車載バッテリ9の電源ラインの断線など、第2DCDCコンバータ6と車載バッテリ9で構成される電源ネットワークの異常に対しても同様に、車載バッテリ9に異常が発生した場合のフローによるフェールオペレーションが行われる。
 車載バッテリ9およびHVバッテリ1が正常の場合は、第1強電リレー12および第2強電リレー13(図2に示すA、B)と、第3強電リレー14および第4強電リレー15(図2に示すC、D)は、全てONの状態にある。第1強電リレー12、第2強電リレー13、第3強電リレー14および第4強電リレー15に関して、第2実施形態に係る車両制御システム30Aにおいてはローサイドドライバで実現させているが、ハイサイドドライバで実現させても良い。
 第2実施形態に係る車両制御システム30Aの効果について説明する。
 車両制御システム30Aは、図2に示すように、HVバッテリ1、モータ4、第1DCDCコンバータ5、第2DCDCコンバータ6、第1強電SW制御ユニット7、第2強電SW制御ユニット8、車載バッテリ9およびインバータ制御ユニット10を備えている。また、車両制御システム30Aは、第1強電リレー12、第2強電リレー13、第3強電リレー14、第4強電リレー15、負荷Rs16、負荷Rf17、負荷Rx18、セルモータ19およびエンジン制御ユニット20を備えている。
 即ち、車両制御システム30Aは、HVバッテリ1の上流側の第1強電リレー12および第3強電リレー14、下流側の第2強電リレー13および第4強電リレー15をそれぞれ制御する第1強電SW制御ユニット7、第2強電SW制御ユニット8を第1DCDCコンバータ5に加えて第2DCDCコンバータ6の下流にそれぞれ冗長配置しており、2系統の電源ラインで構成されている。更に、車載バッテリ9とセルモータ19およびエンジン制御ユニット20を同一電源ラインに配置している。この構成により、車載バッテリ9に異常が発生した場合でも、HVバッテリ1から第1DCDCコンバータ5に接続される電源ラインは導通可能となっているので、HVバッテリ1から供給される電力により、インバータ制御ユニット10でモータ4の駆動制御を行い、走行の安全性を確保しつつ、フェールオペレーションを実行することができるという効果が得られる。
 また、HVバッテリ1に異常が発生した場合、第2DCDCコンバータ6の下流側には、車載バッテリ9が配置されており、セルモータ19およびエンジン制御ユニット20および第2強電SW制御ユニット8は、車載バッテリ9から電力の供給を受けることができる。その結果、エンジン制御ユニット20の制御により、エンジンを動作させることができ、走行の安全性を確保しつつ、フェールオペレーションを実行することができるという効果が得られる。
 第2実施形態に係る車両制御システム30Aは、前述したように、図2に示す各構成要素で構成した場合について説明した。しかしながら、本発明に係る車両制御システムは、図2に示す各構成要素以外の他の構成要素で構成してもよい。以下、他の構成要素で構成した第2実施形態に係る車両制御システム30Aの変形例1および変形例2について図面を参照して説明する。なお、第2実施形態に係る車両制御システム30Aと同様の構成については、同一の符号を用い、詳細な説明を省略する。
 (変形例1)
 図3は、第2実施形態の変形例1に係る車両制御システムの概略構成図である。
 変形例1に係る車両制御システム30Bは、図3に示すように、第2実施形態に係る車両制御システム30Aとは異なり、HVバッテリ1の上流側に第1強電リレー12のみが配置され、HVバッテリ1の下流側に第2強電リレー13のみが配置されている。他の構成要素は、第2実施形態に係る車両制御システム30Aと同一の構成要素となっている。
 第1強電リレー12は、図3に示すAとCに分岐され、第2強電リレー13は、図3に示すBとDに分岐されており、第1強電SW制御ユニット7でCとDが制御され、第2強電SW制御ユニット8でAとBが制御される。第1強電リレー12は、第1強電SW制御ユニット7および第2強電SW制御ユニット8でONまたはOFFとなり、第2強電リレー13は、第1強電SW制御ユニット7および第2強電SW制御ユニット8でONまたはOFFとなる。
 この構成によっても、第2実施形態に係る車両制御システム30Aと同様の効果が得られる。即ち、HVバッテリ1または車載バッテリ9の電源機能失陥が発生した場合でも、車両の走行の安全性を確保しつつ、フェールオペレーションが実現可能となるという効果が得られる。なお、この構成においては、例えば、車載バッテリ9がショート故障した場合、第1強電リレー12および第2強電リレー13の電源が低下しないよう、切り離し用のSWが必要となる。
 (変形例2)
 図4は、第2実施形態の変形例2に係る車両制御システムの概略構成図である。
 変形例2に係る車両制御システム30Cは、図4に示すように、第2実施形態に係る車両制御システム30Aとは異なり、パワートレイン制御が統合化されたパワートレイン制御により構成されている。車両制御システム30Cは、高度な自動運転に適した有線ネットワークであるE/Eアーキテクチャとして、車両駆動に必要な演算を集中化させた集中制御ECUと、各ドメインあるいはゾーン毎に配置された複数の統合制御ECUを、イーサネット(Ethernet)のような高速通信で接続している。
 具体的には、車両制御システム30Cは、図4に示すように、第2DCDCコンバータ6の下流側にエンジン制御ユニット20および第2強電SW制御ユニット8などを有する第1統合ECUが配置され、また、第2DCDCコンバータ6の下流側に第1自動運転制御ユニット21が配置されている。一方、第1DCDCコンバータ5の下流側にインバータ制御ユニット10および第1強電SW制御ユニット7などを有する第2統合ECUが配置され、また、第1DCDCコンバータ5の下流側にフェールオペレーションを目的とした縮退制御による第2自動運転制御ユニット22が配置されている。車載バッテリ9の電源機能失陥が発生した場合、第1DCDCコンバータ5から縮退制御用の統合ECUなどは電力供給可能な構成となるため、フェールオペレーションが可能となる。例えば、第2強電SW制御ユニット8は第1自動運転制御ユニット21と統合させても良いし、独立したECUに配置しても良い。
 変形例2に係る車両制御システム30Cは、第2実施形態に係る車両制御システム30Aと同様の効果が得られる。即ち、HVバッテリ1または車載バッテリ9の電源機能失陥が発生した場合でも、車両の走行の安全性を確保しつつ、フェールオペレーションが実現可能となるという効果が得られる。
 以上、本発明の第1実施形態および第2実施形態について詳述したが、本発明は、前記の各実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の趣旨を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1・・・HVバッテリ(第1バッテリ)、2・・・第1強電SW(リレー回路)、3・・・第2強電SW(リレー回路)、4・・・モータ、5・・・第1DCDCコンバータ、6・・・第2DCDCコンバータ、7・・・第1強電SW制御ユニット(第2リレー制御ユニット)、8・・・第2強電SW制御ユニット(第1リレー制御ユニット)、9・・・車載バッテリ(第2バッテリ)、10・・・インバータ制御ユニット(第1駆動制御ユニット)、11・・・駆動制御ユニット(第2駆動制御ユニット)、12・・・第1強電リレー(第1リレー)、13・・・第2強電リレー(第3リレー)、14・・・第3強電リレー(第2リレー)、15・・・第4強電リレー(第4リレー)、16・・・負荷Rs、17・・・負荷Rf、18・・・負荷Rx、19・・・セルモータ、20・・・エンジン制御ユニット、21、22・・・自動運転制御ユニット、30、30A、30B、30C・・・車両制御システム

Claims (9)

  1.  互いに異なる2つの駆動系を有するハイブリッド車両の車両制御システムであって、
     第1バッテリと、
     第2バッテリと、
     前記第1バッテリの上流側と下流側にそれぞれ配置されたリレー回路と、
     該リレー回路に接続される第1DCDCコンバータと、
     前記リレー回路に前記第1DCDCコンバータと並列に接続される第2DCDCコンバータと、
     前記リレー回路を制御する第1リレー制御ユニットと、
     前記リレー回路を制御する第2リレー制御ユニットと、
     第1の駆動系を制御する第1駆動制御ユニットと、
     第2の駆動系を制御する第2駆動制御ユニットと、を有し、
     前記第1DCDCコンバータの下流側に、前記第1リレー制御ユニットと、前記第1駆動制御ユニットと、が接続され、
     前記第2DCDCコンバータの下流側に、前記第2リレー制御ユニットと、前記第2バッテリと、前記第2駆動制御ユニットと、が接続され、
     前記第1リレー制御ユニットおよび前記第2リレー制御ユニットは、前記第1バッテリの異常が検知されたことを条件として、前記リレー回路を遮断し、
     前記第2駆動制御ユニットは、前記リレー回路の遮断により、前記第2バッテリの電力を動力源として前記第2の駆動系を駆動させる制御を行うことを特徴とする車両制御システム。
  2.  前記第1駆動制御ユニットは、前記第1バッテリから供給される電力を用いて前記第1の駆動系が有するモータを駆動し、
     前記第2駆動制御ユニットは、前記第2バッテリから供給される電力を用いて前記第2の駆動系が有する内燃機関により車両を駆動させることを特徴とする請求項1に記載の車両制御システム。
  3.  前記第2駆動制御ユニットは、前記第2バッテリから供給される電力を用いて前記内燃機関のセルモータにより車両を駆動させることを特徴とする請求項2に記載の車両制御システム。
  4.  前記第2リレー制御ユニットは、前記ハイブリッド車両の起動信号が受信されたことを条件として、前記リレー回路を接続することを特徴とする請求項1に記載の車両制御システム。
  5.  前記第1バッテリの異常を検知する異常検知ユニットを有し、
     該異常検知ユニットは、前記第1バッテリのヒューズ溶断または過充電を検知した場合に異常と判断することを特徴とする請求項1に記載の車両制御システム。
  6.  前記リレー回路は、前記第1バッテリの上流側に互いに並列に接続される第1リレーおよび第2リレーと、前記第1バッテリの下流側に互いに接続される第3リレーおよび第4リレーと、を備え、
     前記第1リレー制御ユニットは、前記第1リレーおよび前記第3リレーを制御し、
     前記第2リレー制御ユニットは、前記第2リレーおよび前記第4リレーを制御することを特徴とする請求項1に記載の車両制御システム。
  7.  前記第1リレー制御ユニットは、
     前記第1バッテリの異常が検出されたことを条件として、前記リレー回路の前記第2リレーおよび前記第4リレーを遮断することを特徴とする請求項6に記載の車両制御システム。
  8.  前記第2リレー制御ユニットは、
     前記第2バッテリの異常が検出されたことを条件として、前記リレー回路の前記第1リレーおよび前記第3リレーを遮断することを特徴とする請求項6に記載の車両制御システム。
  9.  第1バッテリに接続され、前記第1バッテリの電力を第1DCDCコンバータおよび前記第1DCDCコンバータに並列に接続される第2DCDCコンバータに供給するリレー回路であって、
     前記第1DCDCコンバータおよび前記第2DCDCコンバータの下流側に配置されたリレー制御ユニットからの制御信号に基づいて、前記第1バッテリと、前記第1DCDCコンバータもしくは前記第2DCDCコンバータとの接続または遮断を行うことを特徴とするリレー回路。
PCT/JP2021/035462 2021-02-26 2021-09-27 車両制御システム WO2022180908A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/038,377 US20230415608A1 (en) 2021-02-26 2021-09-27 Vehicle control system
CN202180081812.1A CN116583449A (zh) 2021-02-26 2021-09-27 车辆控制***
JP2023502050A JP7447350B2 (ja) 2021-02-26 2021-09-27 車両制御システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021030596 2021-02-26
JP2021-030596 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022180908A1 true WO2022180908A1 (ja) 2022-09-01

Family

ID=83048746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035462 WO2022180908A1 (ja) 2021-02-26 2021-09-27 車両制御システム

Country Status (4)

Country Link
US (1) US20230415608A1 (ja)
JP (1) JP7447350B2 (ja)
CN (1) CN116583449A (ja)
WO (1) WO2022180908A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028803A (ja) * 2005-07-15 2007-02-01 Honda Motor Co Ltd 電動車両の制御装置
JP2010018183A (ja) * 2008-07-11 2010-01-28 Toyota Motor Corp ハイブリッド車両の制御システム及び制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028803A (ja) * 2005-07-15 2007-02-01 Honda Motor Co Ltd 電動車両の制御装置
JP2010018183A (ja) * 2008-07-11 2010-01-28 Toyota Motor Corp ハイブリッド車両の制御システム及び制御方法

Also Published As

Publication number Publication date
US20230415608A1 (en) 2023-12-28
JPWO2022180908A1 (ja) 2022-09-01
CN116583449A (zh) 2023-08-11
JP7447350B2 (ja) 2024-03-11

Similar Documents

Publication Publication Date Title
US10933748B2 (en) Power supply system for vehicle
US11325500B2 (en) On-board electrical network for a motor vehicle
JP5261094B2 (ja) 高電圧機器用インターロック装置
US20180208064A1 (en) Power Supply System for Safety-Relevant Systems in a Motor Vehicle
KR100829307B1 (ko) 하이브리드 전기 차량의 고전압 릴레이 고장진단 제어방법
CN114103838A (zh) 用于自主车辆的电力控制设备和方法
EP3170701B1 (en) Vehicle power supply system
JP2017537828A (ja) 搭載電源網
JP2007131134A (ja) 車両用電源装置
CN107110896B (zh) 用于对车载电网进行监控的方法
US11097675B2 (en) Vehicular power supply system
US11623543B2 (en) Method for operating an on-board electrical network of a motor vehicle
US12012057B2 (en) Power network for a motor vehicle and method for operating a power network for a motor vehicle
US20220348156A1 (en) Vehicle electrical system and power module therefor
CN114466762A (zh) 用于车辆的控制装置
CN113306410B (zh) 冗余车载电网***和机动车
WO2022180908A1 (ja) 車両制御システム
CN113199940A (zh) 用于操作机动车辆的车载电网的方法
JP2003092874A (ja) 車両用電源装置
CN107650684B (zh) 高电压电池、用于运行高电压电池的方法、电池***和车辆
WO2021166750A1 (ja) 電源システム
KR101557230B1 (ko) 분류기를 이용한 전동식 파워 스티어링 동작 전원 공급 시스템 및 방법
CN112953209B (zh) 供电电源结构、dcdc转换器及车辆
US11254328B2 (en) Apparatus and method for using components of a vehicle
US20240001875A1 (en) Power supply control device, control method, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502050

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18038377

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180081812.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928003

Country of ref document: EP

Kind code of ref document: A1