WO2022179292A1 - 利用废旧锂离子电池负极制备硅碳复合材料的方法和应用 - Google Patents

利用废旧锂离子电池负极制备硅碳复合材料的方法和应用 Download PDF

Info

Publication number
WO2022179292A1
WO2022179292A1 PCT/CN2021/142487 CN2021142487W WO2022179292A1 WO 2022179292 A1 WO2022179292 A1 WO 2022179292A1 CN 2021142487 W CN2021142487 W CN 2021142487W WO 2022179292 A1 WO2022179292 A1 WO 2022179292A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
silicon
graphite
kerosene
composite material
Prior art date
Application number
PCT/CN2021/142487
Other languages
English (en)
French (fr)
Inventor
吴星宇
阮丁山
吴�琳
毛林林
冯茂华
李斌
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to HU2200269A priority Critical patent/HUP2200269A1/hu
Publication of WO2022179292A1 publication Critical patent/WO2022179292A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the field of recycling and reuse of lithium ion batteries, and in particular relates to a method and application for preparing silicon-carbon composite materials by using negative electrodes of waste lithium ion batteries.
  • lithium-ion batteries Since its commercialization, lithium-ion batteries have become an integral part of modern society and have greatly affected our lives. However, as the lithium-ion battery is charged and discharged, its capacity will decay, and eventually it cannot meet the needs of use, and needs to be downgraded or scrapped. At present, more and more attention has been paid to the environmental pollution of waste batteries, and the battery recycling technology is also constantly developing.
  • waste batteries such as nickel, cobalt, manganese, lithium, aluminum and copper, etc.
  • waste residues after the recovery of metal ions are not recycled.
  • the main components of the recovered lithium-ion battery after discharge, crushing, heat treatment and wet leaching are graphite, as well as unreacted separators, adhesives and residual metal ions.
  • the way to deal with these wastes is high temperature incineration, which aggravates the waste of resources and the greenhouse effect.
  • the preparation process of natural graphite, artificial graphite, and modified graphite usually requires a high temperature of 2500-3000 °C to achieve structural ordering, and this process accounts for about 50% of the total cost.
  • the graphite structure in the waste lithium-ion battery is orderly and does not need to be treated again, and the graphite carbon content in the recycled graphite is higher than 85%, which is much higher than the grade of graphite ore (usually about 10%). If the graphite in the recovered negative electrode can be reused, the manufacturing cost will be reduced and the environment will be protected.
  • Some related technologies only mention the recovery of graphite from waste lithium-ion batteries, but do not introduce the recovery method. Even though the related art has reported the recycling method of waste battery graphite, but its cost is high and has no practical application value.
  • silicon materials also have shortcomings, which will generate up to 300% volume expansion during the charging and discharging process, resulting in the pulverization of active materials, resulting in the continuous formation of SEI films, the continuous decrease of capacity, and poor cycle stability.
  • the low conductivity of silicon itself will lead to slow charge transfer and poor rate performance.
  • the current solutions are mainly to alleviate the volume expansion of silicon through nanoscale, and to use amorphous carbon coating and composite with carbon materials to improve the electrical conductivity.
  • the principle is that carbon as a dispersion matrix can buffer the volume change of the silicon negative electrode during lithium deintercalation and maintain the stability of the structure. At the same time, the high conductivity of carbon can improve the conductivity inside the battery.
  • a related art reports a silicon-carbon negative electrode material and a preparation method thereof. Carbon nanotubes and carbon nanofibers are deposited on the surface of nano-silicon powder or embedded between nano-silicon powder particles to form a core, and the surface of the core is coated with carbon. Floor. Its first specific capacity is greater than 500mAh/g, and its capacity retention rate for 60 cycles is greater than 92%. However, its preparation method is too complicated and requires special equipment to carry out. There is also a related art report on a preparation method of a silicon carbon negative electrode, which is to prepare a porous silicon material through secondary pickling, and then perform carbon coating to prepare a silicon carbon negative electrode material. However, its preparation method is expensive and cannot be applied on a large scale. At present, after recycling waste lithium-ion batteries, if the residual waste is not recycled, it will pollute the environment; the graphite materials used in the production of silicon carbon anodes are usually commercial graphite materials, and the cost is high.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art. To this end, the present invention proposes a method and application for preparing a silicon-carbon composite material using a waste lithium ion battery negative electrode, which has the advantages of convenient operation, low production cost and low energy consumption, and is suitable for industrial production.
  • a method for preparing a silicon-carbon composite material by using a waste lithium-ion battery negative electrode comprising the following steps:
  • step S1 the temperature of the heat treatment is 200-500° C.; the time of the heat treatment is 2-48 h.
  • step S1 the temperature of the heat treatment is 220-350°C; the time of the heat treatment is 5-20h.
  • step S1 the rotational speed used for the crushing is 20000-40000 r/min, and the crushing time is 10-120 min.
  • step S1 the mesh number of the sieve is 100-400 mesh.
  • step S1 the mesh number of the sieve is 200-300 mesh.
  • the acid solution is at least one of hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, hydrofluoric acid or acetic acid; the concentration of the acid solution is 1-5 mol/L.
  • the concentration of the acid solution is 2-5 mol/L.
  • step S2 the stirring time is 2-15h.
  • step S2 the stirring time is 4-12 h.
  • the solid-liquid separation is selected from centrifugal separation, vacuum filtration or filter press.
  • the rotational speed of the centrifugal separation is 3000-10000 r/min; the vacuum degree of the vacuum filtration is 0.85-0.95 MPa.
  • step S2 the drying temperature is 60-100° C.; the drying time is 5-15 h.
  • step S3 the mass ratio of the asphalt to kerosene is 1:(10-200).
  • step S3 the mass ratio of the pitch to kerosene is 1:(10-100).
  • the stirring mode is magnetic stirring or electric stirring.
  • step S3 the mass ratio of the graphite material, the silicon source and the pitch is 1:(0.05-0.2):(0.1-1).
  • step S3 the mass ratio of the graphite material, the silicon source and the pitch is 1:(0.08-0.15):(0.1-0.4).
  • the silicon source is one or both of elemental silicon or nano-silicon.
  • step S3 after the volatilized kerosene gas is collected in a condenser, the kerosene and water are separated by an oil-water separator, and the kerosene is reused.
  • step S4 the carbonization treatment is performed under an inert atmosphere, and the inert atmosphere is one of nitrogen, helium, argon or neon.
  • the inert atmosphere is nitrogen or argon.
  • step S4 the carbonization temperature is 600-1500°C; the carbonization time is 5-36h.
  • step S4 the carbonization temperature is 700-1000°C; the carbonization time is 5-15h.
  • the invention also proposes the application of the method in the preparation of batteries.
  • the present invention uses the negative electrode material of the waste lithium ion battery as the raw material, and synthesizes the silicon-carbon composite material through recycling. and resource reuse play an important role;
  • the method of the present invention can use a variety of graphite raw materials, and has low dependence on the source of graphite raw materials, and can be mixed with one or more types of recycled graphite, further reducing the manufacturing cost of silicon-carbon composite materials and improving the application of waste graphite. value;
  • the method of the present invention uses kerosene as a solvent in the stirring of silicon source, pitch and graphite material, and carbonization can be carried out without drying after fully mixing, thereby greatly reducing the energy consumption in the production process;
  • the carbon-silicon composite material prepared by the method of the present invention under the conditions of a voltage of 0.01-2V and a current density of 100mA/g, the first lithium insertion specific capacity is 670-760mAh/g, and the first delithiation specific capacity is 530-610mAh/g, the first effect is 80-81%, and the capacity retention rate is 95-97% after 50 cycles. Its performance is comparable to that of silicon-carbon composites prepared from commercial graphite, and this material can be used to achieve the high energy density requirements of lithium-ion batteries.
  • Fig. 1 is the XRD pattern of the silicon-carbon composite material prepared in Example 1 of the present invention.
  • Example 2 is a SEM image of the silicon-carbon composite material prepared in Example 1 of the present invention.
  • This embodiment prepares a kind of silicon carbon composite material, and the specific process is:
  • step S3 70g pitch is dissolved in 700g kerosene, stir to obtain mixed solution, add step S2 gained graphite material 700g and nano-silicon 70g to mixed solution, continue stirring until kerosene volatilizes completely, obtain mixed material, simultaneously volatilized kerosene After the gas is collected in the condenser, the kerosene and water are separated by the oil-water separator, and the kerosene is reused;
  • step S3 The mixture obtained in step S3 is heated to 700° C. under a nitrogen atmosphere, and taken out after being kept for 8 hours to obtain a silicon-carbon composite material.
  • This embodiment prepares a kind of silicon carbon composite material, and the specific process is:
  • step S3 80g pitch is dissolved in 700g kerosene, stir to obtain mixed solution, add step S2 gained graphite material 700g and nano-silicon 60g to the mixed solution, continue to stir until kerosene volatilizes completely, obtain mixed material, simultaneously volatilized kerosene After the gas is collected in the condenser, the kerosene and water are separated by the oil-water separator, and the kerosene is reused;
  • step S3 The mixture obtained in step S3 is heated to 800° C. in a nitrogen atmosphere, and taken out after being kept for 5 hours to obtain a silicon-carbon composite material.
  • This embodiment prepares a kind of silicon carbon composite material, and the specific process is:
  • step S3 70g pitch is dissolved in 800g kerosene, stir to obtain mixed solution, add step S2 gained graphite material 700g and nano-silicon 80g to mixed solution, continue stirring until kerosene volatilizes completely, obtain mixture material, simultaneously volatilized kerosene After the gas is collected in the condenser, the kerosene and water are separated by the oil-water separator, and the kerosene is reused;
  • step S3 The mixture obtained in step S3 is heated to 800° C. in a nitrogen atmosphere, and taken out after being kept for 5 hours to obtain a silicon-carbon composite material.
  • This embodiment prepares a kind of silicon carbon composite material, and the specific process is:
  • step S3 100g pitch is dissolved in 1200g kerosene, stir to obtain a mixed solution, add 700g of graphite material obtained in step S2 and 100g of nano-silicon into the mixed solution, continue to stir until the kerosene is completely volatilized to obtain a mixed material, while the volatilized kerosene is After the gas is collected in the condenser, the kerosene and water are separated by the oil-water separator, and the kerosene is reused;
  • step S3 The mixture obtained in step S3 is heated to 1000° C. in a nitrogen atmosphere, and taken out after being kept for 3 hours to obtain a silicon-carbon composite material.
  • a silicon-carbon composite material was prepared in this comparative example, and the difference from Example 4 mainly lies in the lack of a pickling step.
  • the specific process is as follows:
  • step S2 90g pitch is dissolved in 900g kerosene, stir to obtain mixed solution, add step S1 gained graphite material 750g and nano-silicon 90g to the mixed solution, continue stirring until kerosene volatilizes completely, obtain mixed material, simultaneously volatilized kerosene After the gas is collected in the condenser, the kerosene and water are separated by the oil-water separator, and the kerosene is reused;
  • step S2 The mixture obtained in step S2 is heated to 1000° C. in a nitrogen atmosphere, and taken out after being kept for 3 hours to obtain a silicon-carbon composite material.
  • Example 4 a silicon-carbon composite material is prepared, and the difference from Example 4 is mainly that the carbonization temperature is very low.
  • the specific process is as follows:
  • step S3 80g pitch is dissolved in 800g kerosene, stir to obtain a mixed solution, add 700g of graphite material obtained in step S2 and 100g of nano-silicon into the mixed solution, continue to stir until the kerosene is completely volatilized, and obtain the mixture, while the volatilized kerosene is After the gas is collected in the condenser, the kerosene and water are separated by the oil-water separator, and the kerosene is reused;
  • step S3 The mixture obtained in step S3 is heated to 400° C. in a nitrogen atmosphere, and taken out after being kept for 20 hours to obtain a silicon-carbon composite material.
  • Example 3 a silicon-carbon composite material is prepared, and the difference from Example 3 is that the recycled graphite material is replaced by commercial graphite.
  • the specific process is as follows:
  • step S2 The mixture obtained in step S1 is heated to 800° C. under a nitrogen atmosphere, and taken out after being kept for 5 hours to obtain a silicon-carbon composite material.
  • This comparative example prepares a kind of silicon carbon material according to the method of the patent (publication number: CN101153358 A), and the specific process is:
  • Silica powder with a D50 of 2 ⁇ m was ball-milled for 10 h, added to the NMP (N-methylpyrrolidone) solution of polypyrrole, stirred for 2 h, and dried at low temperature; 1.5 g of this silica powder was added to the carbon disulfide solution of the binder pitch (0.5g of binder pitch was dissolved in 15ml of carbon disulfide solution) and stirred for 1h; 8.5g of D50 19 ⁇ m spherical graphite was slowly added to the system, stirred for 1h, and dried; the material was placed in a tube furnace with argon protection Medium carbonization, carbonization temperature 1000 °C, carbonization time 5h; add the material prepared above into the toluene solution of impregnant pitch (0.3g of impregnant pitch is dissolved in 25ml toluene solution), stir for 2h, and evaporate the solvent; this material It is placed in a tube furnace protected by argon gas for carbonization, the carbonization
  • the silicon-carbon composite negative electrode material obtained in the embodiment and the comparative example is subjected to button cell fabrication and electrical property testing, as follows:
  • the silicon-carbon composite materials, conductive carbon black and polyvinylidene fluoride prepared in Examples 1-4 and Comparative Examples 1-3 were added in an appropriate amount of N-methylpyrrolidone in a mass ratio of 92:2:6 and stirred for a certain period of time. , make a negative electrode slurry, and evenly coat it on the copper foil; after drying at 85 °C for several times, the pole piece is punched; the punched pole piece is placed in a vacuum drying box and vacuum-dried at 100 °C 12h; assemble the CR2430 button battery with the pole piece, diaphragm, lithium piece, electrolyte, and positive and negative electrode shells in a certain order in the glove box; let the assembled battery stand for 3 hours to be tested.
  • Comparative Example 1 lacks the pickling step, and the prepared silicon carbon negative electrode has high impurity content and low capacity. The carbonization temperature in Comparative Example 2 is too low, which is not within the preferred range of this method, and the capacity of the final silicon-carbon negative electrode material is low.
  • Comparative Example 3 commercial graphite was used to prepare a silicon-carbon composite negative electrode material, and its capacity and cycle performance were similar to those of the silicon-carbon composite negative electrode material prepared by using recycled graphite in the present invention.
  • the method of recycling waste lithium ion battery negative electrode used in the present invention to prepare silicon carbon negative electrode has better performance of the synthesized silicon carbon negative electrode material. It is shown that the method of the present invention has great feasibility to prepare the silicon-carbon composite negative electrode material by recycling the negative electrode of the waste lithium ion battery.
  • FIG. 1 is an XRD pattern of the silicon-carbon composite material prepared in Example 1 of the present invention. It can be seen from the figure that the synthetic material is a silicon-carbon composite material.
  • FIG. 2 is an SEM image of the silicon-carbon composite material prepared in Example 1. It can be seen from the figure that the nano-silicon particles are uniformly coated on the surface of the graphite and are uniformly dispersed.
  • Figure 3 is a graph showing the cycle performance of the silicon-carbon composite materials prepared in Examples 1, 2 and Comparative Examples 1 and 3 at a current density of 100 mA/g. It can be seen from the figure that the silicon-carbon composite materials prepared in Example 1 have The cycle stability is good, and the capacity retention rate after 50 cycles is 95.3%, which is comparable to the performance of Comparative Example 3 using commercial graphite as the raw material.

Abstract

提供了一种利用废旧锂离子电池负极制备硅碳复合材料的方法和应用,方法是将负极片进行热处理、破碎、过筛,得到筛下物石墨负极粉,然后将石墨负极粉溶于酸溶液中,搅拌,固液分离,取沉淀物并洗涤,干燥后得到石墨材料,再将沥青溶解于煤油中得到混合溶液,加入石墨材料和硅源,搅拌至煤油挥发完全,得到混合物料,最后将混合物料进行碳化处理,得到碳硅复合材料。以废旧锂离子电池的负极材料为原料,通过回收利用,合成硅碳复合材料,成本较低、操作简单,得到的产品性能优,进一步使废弃资源得以利用,对环境保护和资源再利用起重大作用。

Description

利用废旧锂离子电池负极制备硅碳复合材料的方法和应用 技术领域
本发明属于锂离子电池的回收再利用领域,具体涉及一种利用废旧锂离子电池负极制备硅碳复合材料的方法和应用。
背景技术
锂离子电池自从商业化以来,成为现代社会不可分割的一部分,极大地影响着我们的生活。然而随着锂离子电池充放电的进行,其容量会出现衰减,最终不能满足使用需求,需要进行降级利用或者报废处理。目前,废旧电池对环境的污染问题越来越受到人们的重视,电池回收技术也在不断的发展中。
当前,人们关注的焦点主要在于废旧电池中经济价值较高的金属,如镍、钴、锰、锂、铝和铜等,并未对回收金属离子后残余的废料进行回收处理。回收的锂离子电池经过放电,破碎,热处理,湿法浸出后的废料中含有的主要成分为石墨,还有未反应完全的隔膜,粘接剂以及残余的金属离子等。通常,处理这些废料的方式为高温焚烧处理,这加剧了资源的浪费和温室效应。有相关技术报道了如何高效回收镍、钴、锰、锂、铝、铜等金属离子,并未对回收金属离子后残余的废料进行处理。
天然石墨、人造石墨和改性石墨等的制备过程通常需要2500-3000℃的高温来实现结构的有序度,这一过程约占总成本的50%。但废旧锂离子电池中的石墨结构有序,不需再次进行处理,且回收石墨中的石墨碳含量高于85%以上,远高于石墨矿的品位(通常10%左右)。如能对回收负极中的石墨进行再利用,将会降低制造成本、保护环境。有相关技术仅稍微提及废弃锂离子电池中可进行石墨的回收,但并未介绍其回收方法。即使相关技术报道了废旧电池石墨的回收方法,但是其成本较高,无实际的应用价值。
硅的理论比容量(4200mAh/g)约为石墨(372mAh/g)的11倍,作为新一代锂离子电池负极材料,对于提升电池的能量密度发挥着比石墨更为显著的功效。同时,国家四部委发布的《促进汽车动力电池产业发展行动方案》中提到,到2020年和2025年,我国新型的锂离子动力电池单体的比能量需要分别超过300Wh/kg和500Wh/kg。利用 传统的石墨负极材料难以到达此要求,因此硅基材料已成为研究热点。但硅材料也存在缺点,其在充放电过程中会产生高达300%的体积膨胀,造成活性材料的粉碎,导致SEI膜的持续生成,容量不断下降,循环稳定性很差。此外,硅自身电导率低,将会导致电荷传输较慢,倍率性能差。目前解决的方法主要是通过纳米化来缓解硅的体积膨胀,以及利用无定形碳包覆和与碳材料复合来提升导电性能。其原理是碳作为分散基体可缓冲硅负极在锂脱嵌时的体积变化,保持结构的稳定性,同时,碳的高导电性可提高电池内部的导电性。有相关技术报道了一种硅碳负极材料及其制备方法,由碳纳米管和碳纳米纤维沉积到纳米硅粉表面或嵌入到纳米硅粉颗粒之间形成核,在核的表面包覆有碳层。其首次比容量大于500mAh/g,循环60周容量保持率大于92%。但其制备方法过于复杂,且需要专门的仪器来进行。还有相关技术报道了硅碳负极的制备方法,通过二次酸洗,制备多孔硅材料,再进行碳包覆,制备硅碳负极材料。但是其制备方法成本较高,无法大规模实现应用。目前,对废旧锂离子电池回收后,如未进行残余废料回收处理,将会污染环境;生产硅碳负极使用的石墨材料通常都为商业石墨材料,成本较高。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种利用废旧锂离子电池负极制备硅碳复合材料的方法和应用,其具有操作方便、生产成本低和能耗低等优点,适用于工业化生产。
根据本发明的一个方面,提出了一种利用废旧锂离子电池负极制备硅碳复合材料的方法,包括如下步骤:
S1.将废旧锂离子电池拆分,得到正、负极片,对所述负极片进行热处理、破碎、过筛,得到筛下物石墨负极粉;
S2.将所述石墨负极粉溶于酸溶液中,搅拌,固液分离,取沉淀物并洗涤,干燥后得到石墨材料;
S3.将沥青溶解于煤油中得到混合溶液,再加入所述石墨材料和硅源,搅拌至煤油挥发完全,得到混合物料;
S4.将所述混合物料进行碳化处理,得到碳硅复合材料。
在本发明的一些实施方式中,步骤S1中,所述热处理的温度为200-500℃;热处理的时间为2-48h。
在本发明的一些优选的实施方式中,步骤S1中,所述热处理的温度为220-350℃;热处理的时间为5-20h。
在本发明的一些实施方式中,步骤S1中,所述破碎所使用的转速为20000-40000r/min,破碎的时间为10-120min。
在本发明的一些实施方式中,步骤S1中,所述过筛的目数为100-400目。
在本发明的一些优选的实施方式中,步骤S1中,所述过筛的目数为200-300目。
在本发明的一些实施方式中,步骤S2中,所述酸溶液为盐酸、硫酸、磷酸、硝酸、氢氟酸或乙酸中的至少一种;所述酸溶液的浓度为1-5mol/L。
在本发明的一些优选的实施方式中,所述酸溶液的浓度为2-5mol/L。
在本发明的一些实施方式中,步骤S2中,所述搅拌的时间为2-15h。
在本发明的一些优选的实施方式中,步骤S2中,所述搅拌的时间为4-12h。
在本发明的一些实施方式中,步骤S2中,所述固液分离选用离心分离、真空抽滤或压滤机中的一种。
在本发明的一些优选的实施方式中,所述离心分离的转速为3000-10000r/min;所述真空抽滤的真空度为0.85-0.95MPa。
在本发明的一些实施方式中,步骤S2中,所述洗涤的过程为:用去离子水和无水乙醇反复洗涤所述固体沉淀物,直至滤液为中性(pH=7)。
在本发明的一些实施方式中,步骤S2中,所述干燥的温度为60-100℃;干燥的时间为5-15h。
在本发明的一些实施方式中,步骤S3中,所述沥青与煤油的质量比为1:(10-200)。
在本发明的一些优选的实施方式中,步骤S3中,所述沥青与煤油的质量比为1:(10-100)。
在本发明的一些实施方式中,步骤S2中和/或步骤S3中,所述搅拌的方式为磁力 搅拌或电动搅拌。
在本发明的一些实施方式中,步骤S3中,所述石墨材料、硅源和沥青的质量比为1:(0.05-0.2):(0.1-1)。
在本发明的一些优选的实施方式中,步骤S3中,所述石墨材料、硅源和沥青的质量比为1:(0.08-0.15):(0.1-0.4)。
在本发明的一些实施方式中,步骤S3中,所述硅源为单质硅或纳米硅中的一种或两种。
在本发明的一些实施方式中,步骤S3中,将挥发后的煤油气体引致冷凝器中收集后,通过油水分离器对煤油和水进行分离,重复利用煤油。
在本发明的一些实施方式中,步骤S4中,所述碳化处理在惰性气氛下进行,所述惰性气氛为氮气、氦气、氩气或氖气中的一种。
在本发明的一些优选的实施方式中,步骤S4中,所述惰性气氛为氮气或氩气。
在本发明的一些实施方式中,步骤S4中,所述碳化的温度为600-1500℃;所述碳化的时间为5-36h。
在本发明的一些优选的实施方式中,步骤S4中,所述碳化的温度为700-1000℃;所述碳化的时间为5-15h。
本发明还提出所述的方法在制备电池中的应用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明以废旧锂离子电池的负极材料为原料,通过回收利用,合成硅碳复合材料,其方法成本较低、操作简单,得到的产品性能优,进一步使废弃资源得以利用,对环境保护和资源再利用起重大作用;
2、本发明的方法可使用的石墨原料种类多,对石墨原料来源的依赖性低,可一种或多种类型的回收石墨混合使用,进一步降低硅碳复合材料制造成本,提高废弃石墨的应用价值;
3、本发明的方法在硅源、沥青和石墨材料的搅拌中,以煤油做溶剂,充分混合后 无需进行烘干即可进行碳化,大大降低生产过程中的能耗;
4、采用本发明方法制备出的碳硅复合材料,其在电压为0.01-2V,电流密度为100mA/g的条件下,首次嵌锂比容量为670-760mAh/g,首次脱锂比容量为530-610mAh/g,首效为80-81%,循环50次后容量保持率为95-97%。其与商业石墨制备的硅碳复合材料性能相当,利用该材料可实现锂离子电池对高能量密度的要求。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1制备出的硅碳复合材料的XRD图;
图2为本发明实施例1制备出的硅碳复合材料的SEM图;
图3为实施例1、2与对比例1、3制备出的硅碳复合材料在100mA/g电流密度下的循环性能曲线图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种硅碳复合材料,具体过程为:
S1.将废旧锂离子单体电池的外壳拆除,并分离正、负极片,收集多个电池的负极片,约1kg待处理,将回收后的负极片在300℃下保温12h,进行热处理,除去表面有机物、聚偏氟乙烯(PVDF)和羧甲基纤维素(CMC)等,将热处理后的负极片进行破碎处理,破碎的转速为34000r/min,破碎的时间为15min,再将破碎后的负极片于300目的筛网过筛,分离铜箔与石墨负极粉,得到石墨负极粉筛下物,约750g;
S2.将石墨负极粉筛下物溶于5mol/L硫酸溶液中搅拌6h,除去残余的金属离子,所得溶液进行固液分离,收集固体沉淀物,用去离子水和无水乙醇反复洗涤固体沉淀物, 直至滤液为中性(pH=7),在60℃下干燥12h后得到石墨材料,约700g;
S3.将70g沥青溶解在700g煤油中,搅拌均匀得到混合溶液,向混合溶液中加入步骤S2所得石墨材料700g和纳米硅70g,继续搅拌至煤油挥发完全,得到混合物料,同时将挥发后的煤油气体引致冷凝器中收集后,通过油水分离器对煤油和水进行分离,重复利用煤油;
S4.将步骤S3所得混合物料在氮气气氛下加温至700℃,并保温8h后取出,得到硅碳复合材料。
实施例2
本实施例制备了一种硅碳复合材料,具体过程为:
S1.将废旧锂离子单体电池的外壳拆除,并分离正、负极片,收集多个电池的负极片,约1kg待处理,将回收后的负极片在320℃下保温10h,进行热处理,除去表面有机物、PVDF和CMC等,将热处理后的负极片进行破碎处理,破碎的转速为34000r/min,破碎的时间为15min,再将破碎后的负极片于300目的筛网过筛,分离铜箔与石墨负极粉,得到石墨负极粉筛下物,约750g;
S2.将石墨负极粉筛下物溶于5mol/L硫酸溶液中搅拌4h,除去残余的金属离子,所得溶液进行固液分离,收集固体沉淀物,用去离子水和无水乙醇反复洗涤固体沉淀物,直至滤液为中性(pH=7),在70℃下干燥10h后得到石墨材料,约700g;
S3.将80g沥青溶解在700g煤油中,搅拌均匀得到混合溶液,向混合溶液中加入步骤S2所得石墨材料700g和纳米硅60g,继续搅拌至煤油挥发完全,得到混合物料,同时将挥发后的煤油气体引致冷凝器中收集后,通过油水分离器对煤油和水进行分离,重复利用煤油;
S4.将步骤S3所得混合物料在氮气气氛下加温至800℃,并保温5h后取出,得到硅碳复合材料。
实施例3
本实施例制备了一种硅碳复合材料,具体过程为:
S1.将废旧锂离子单体电池的外壳拆除,并分离正、负极片,收集多个电池的负极片,约1kg待处理,将回收后的负极片在350℃下保温6h,进行热处理,除去表面有机物、PVDF和CMC等,将热处理后的负极片进行破碎处理,破碎的转速为34000r/min,破碎的时间为15min,再将破碎后的负极片于300目的筛网过筛,分离铜箔与石墨负极粉,得到石墨负极粉筛下物,约750g;
S2.将石墨负极粉筛下物溶于4mol/L盐酸溶液中搅拌6h,除去残余的金属离子,所得溶液进行固液分离,收集固体沉淀物,用去离子水和无水乙醇反复洗涤固体沉淀物,直至滤液为中性(pH=7),在80℃下干燥6h后得到石墨材料,约700g;
S3.将70g沥青溶解在800g煤油中,搅拌均匀得到混合溶液,向混合溶液中加入步骤S2所得石墨材料700g和纳米硅80g,继续搅拌至煤油挥发完全,得到混合物料,同时将挥发后的煤油气体引致冷凝器中收集后,通过油水分离器对煤油和水进行分离,重复利用煤油;
S4.将步骤S3所得混合物料在氮气气氛下加温至800℃,并保温5h后取出,得到硅碳复合材料。
实施例4
本实施例制备了一种硅碳复合材料,具体过程为:
S1.将废旧锂离子单体电池的外壳拆除,并分离正、负极片,收集多个电池的负极片,约1kg待处理,将回收后的负极片在350℃下保温6h,进行热处理,除去表面有机物、PVDF和CMC等,将热处理后的负极片进行破碎处理,破碎的转速为34000r/min,破碎的时间为15min,再将破碎后的负极片于300目的筛网过筛,分离铜箔与石墨负极粉,得到石墨负极粉筛下物,约750g;
S2.将石墨负极粉筛下物溶于3mol/L盐酸溶液中搅拌6h,除去残余的金属离子,所得溶液进行固液分离,收集固体沉淀物,用去离子水和无水乙醇反复洗涤固体沉淀物,直至滤液为中性(pH=7),在80℃下干燥6h后得到石墨材料,约700g;
S3.将100g沥青溶解在1200g煤油中,搅拌均匀得到混合溶液,向混合溶液中加入步骤S2所得石墨材料700g和纳米硅100g,继续搅拌至煤油挥发完全,得到混合物料, 同时将挥发后的煤油气体引致冷凝器中收集后,通过油水分离器对煤油和水进行分离,重复利用煤油;
S4.将步骤S3所得混合物料在氮气气氛下加温至1000℃,并保温3h后取出,得到硅碳复合材料。
对比例1
本对比例制备了一种硅碳复合材料,与实施例4的区别主要在于缺少酸洗步骤,具体过程为:
S1.将废旧锂离子单体电池的外壳拆除,并分离正、负极片,收集多个电池的负极片,约1kg待处理,将回收后的负极片在350℃下保温6h,进行热处理,除去表面有机物、PVDF和CMC等,将热处理后的负极片进行破碎处理,破碎的转速为34000r/min,破碎的时间为15min,再将破碎后的负极片于300目的筛网过筛,分离铜箔与石墨负极粉,得到石墨负极粉筛下物,约750g;
S2.将90g沥青溶解在900g煤油中,搅拌均匀得到混合溶液,向混合溶液中加入步骤S1所得石墨材料750g和纳米硅90g,继续搅拌至煤油挥发完全,得到混合物料,同时将挥发后的煤油气体引致冷凝器中收集后,通过油水分离器对煤油和水进行分离,重复利用煤油;
S3.将步骤S2所得混合物料在氮气气氛下加温至1000℃,并保温3h后取出,得到硅碳复合材料。
对比例2
本对比例制备了一种硅碳复合材料,与实施例4的区别主要在于碳化温度很低,具体过程为:
S1.将废旧锂离子单体电池的外壳拆除,并分离正、负极片,收集多个电池的负极片,约1kg待处理,将回收后的负极片在350℃下保温6h,进行热处理,除去表面有机物、PVDF和CMC等,将热处理后的负极片进行破碎处理,破碎的转速为34000r/min,破碎的时间为15min,再将破碎后的负极片于300目的筛网过筛,分离铜箔与石墨负极粉, 得到石墨负极粉筛下物,约800g;
S2.将石墨负极粉筛下物溶于3mol/L盐酸溶液中搅拌6h,除去残余的金属离子,所得溶液进行固液分离,收集固体沉淀物,用去离子水和无水乙醇反复洗涤固体沉淀物,直至滤液为中性(pH=7),在80℃下干燥6h后得到石墨材料,约700g;
S3.将80g沥青溶解在800g煤油中,搅拌均匀得到混合溶液,向混合溶液中加入步骤S2所得石墨材料700g和纳米硅100g,继续搅拌至煤油挥发完全,得到混合物料,同时将挥发后的煤油气体引致冷凝器中收集后,通过油水分离器对煤油和水进行分离,重复利用煤油;
S4.将步骤S3所得混合物料在氮气气氛下加温至400℃,并保温20h后取出,得到硅碳复合材料。
对比例3
本对比例制备了一种硅碳复合材料,与实施例3的区别主要在于用商业石墨替代回收石墨材料,具体过程为:
S1.将50g沥青溶解在500g煤油中,搅拌均匀得到混合溶液,向混合溶液中加入商业石墨500g和纳米硅50g,继续搅拌至煤油挥发完全,得到混合物料,同时将挥发后的煤油气体引致冷凝器中收集后,通过油水分离器对煤油和水进行分离,重复利用煤油。
S2.将步骤S1所得混合物料在氮气气氛下加温至800℃,并保温5h后取出,得到硅碳复合材料。
对比例4
本对比例根据专利(公开号:CN101153358 A)的方法制备了一种硅碳材料,具体过程为:
将D50为2μm的硅粉球磨10h,将其加入聚吡咯的NMP(N-甲基吡咯烷酮)溶液中搅拌处理2h,低温烘干;取1.5g该种硅粉加入粘接剂沥青的二硫化碳溶液中(0.5g粘接剂沥青溶于15ml二硫化碳溶液中)搅拌1h;在该体系中缓慢加入8.5g D50为19μm球形石墨,搅拌1h,烘干;将该材料放置于有氩气保护的管式炉中碳化,碳化温 度1000℃,碳化时间5h;将上述制得的材料加入浸渍剂沥青的甲苯溶液中(0.3g浸渍剂沥青溶于25ml甲苯溶液中),搅拌2h,挥去溶剂;将该材料放置于有氩气保护的管式炉中碳化,碳化温度1000℃,碳化时间5h,得到硅碳材料。
试验例
将实施例与对比例得到的硅碳复合负极材料进行扣式电池制作及电性测试,具体如下:
将实施例1-4和对比例1-3制得的硅碳复合材料、导电碳黑和聚偏氟乙烯按照92:2:6的质量比,加入适量的N-甲基吡咯烷酮并搅拌一定时间,制成负极浆料,并均匀地涂覆在铜箔上;在85℃下烘干若干时间后进行极片冲孔;将冲孔后的极片置于真空干燥箱中以100℃真空干燥12h;将极片,隔膜,锂片,电解液,正负极壳按一定的顺序在手套箱中完成CR2430扣式电池的组装;将组装后的电池静置3h,待测试。
电池测试条件:在室温25℃,充放电电压为0.01-2.0V,电流密度为100mA/g。测试结果如表1所示。
表1实施例和对比例的电化学性能对比表
Figure PCTCN2021142487-appb-000001
从表1可知,实施例制备出的复合材料的首次嵌锂比容量在670-760mAh/g,首次脱锂比容量在530-610mAh/g,首效为80-81%,循环50次后容量保持率为95-97%。相比对比例性能较好,并且合成方法更加简单。其中,对比例1中与本发明相比缺少酸洗步骤,制得的硅碳负极杂质含量高、容量低。对比例2中的碳化温度过低,不在本方法的优选范围,最终制成的硅碳负极材料容量偏低。对比例3用商业石墨来制备硅碳复合负极材料,其容量和循环性能与本发明使用回收石墨制备的硅碳复合负极材料的性能相近。本发明所用废旧锂离子电池负极回收制备硅碳负极的方法较对比例4中的其他专利的方法,合成的硅碳负极材料性能较优。表明本发明方法利用废旧锂离子电池负极回收制备硅碳复合负极材料具有较大可行性。
图1为本发明实施例1制备出的硅碳复合材料的XRD图,从图中可知,合成材料为硅碳复合材料。图2为实施例1制备出的硅碳复合材料的SEM图,从图中可知,纳米硅颗粒均匀包覆在石墨表面,分散均匀。图3为实施例1、2与对比例1、3制备出的硅碳复合材料在100mA/g电流密度下的循环性能曲线图,从图中可知,实施例1制备出的硅碳复合材料的循环稳定性较好,50圈后容量保持率为95.3%,与使用商业石墨为原料的对比例3性能相当。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种利用废旧锂离子电池负极制备硅碳复合材料的方法,其特征在于,包括如下步骤:
    S1.将废旧锂离子电池拆分,得到正、负极片,对所述负极片进行热处理、破碎、过筛,得到筛下物石墨负极粉;
    S2.将所述石墨负极粉溶于酸溶液中,搅拌,固液分离,取沉淀物并洗涤,干燥后得到石墨材料;
    S3.将沥青溶解于煤油中得到混合溶液,再加入所述石墨材料和硅源,搅拌至煤油挥发完全,得到混合物料;
    S4.将所述混合物料进行碳化处理,得到碳硅复合材料。
  2. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述热处理的温度为200-500℃;热处理的时间为2-48h。
  3. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述过筛的目数为100-400目。
  4. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述酸溶液为盐酸、硫酸、磷酸、硝酸、氢氟酸或乙酸中的至少一种;所述酸溶液的浓度为1-5mol/L。
  5. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述干燥的温度为60-100℃;干燥的时间为5-15h。
  6. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述沥青与煤油的质量比为1:(10-200)。
  7. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述石墨材料、硅源和沥青的质量比为1:(0.05-0.2):(0.1-1)。
  8. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述硅源为单质硅或纳米硅中的一种或两种。
  9. 根据权利要求1所述的方法,其特征在于,步骤S4中,所述碳化处理在惰性气氛 下进行;碳化的温度为600-1500℃;碳化的时间为5-36h。
  10. 权利要求1-9任一项所述的方法在制备电池中的应用。
PCT/CN2021/142487 2021-02-26 2021-12-29 利用废旧锂离子电池负极制备硅碳复合材料的方法和应用 WO2022179292A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HU2200269A HUP2200269A1 (hu) 2021-02-26 2021-12-29 Eljárás szilícium-szén kompozit elõállítására hulladék lítiumion-akkumulátorok (LIA) anódanyagából és annak felhasználása

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110217443.6A CN113036255A (zh) 2021-02-26 2021-02-26 利用废旧锂离子电池负极制备硅碳复合材料的方法和应用
CN202110217443.6 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022179292A1 true WO2022179292A1 (zh) 2022-09-01

Family

ID=76462441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142487 WO2022179292A1 (zh) 2021-02-26 2021-12-29 利用废旧锂离子电池负极制备硅碳复合材料的方法和应用

Country Status (3)

Country Link
CN (1) CN113036255A (zh)
HU (1) HUP2200269A1 (zh)
WO (1) WO2022179292A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116425150A (zh) * 2023-04-11 2023-07-14 贺州学院 一种微波处理废旧石墨制备石墨烯的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036255A (zh) * 2021-02-26 2021-06-25 广东邦普循环科技有限公司 利用废旧锂离子电池负极制备硅碳复合材料的方法和应用
CN113823780B (zh) * 2021-08-20 2023-04-11 广东邦普循环科技有限公司 一种硅碳复合负极材料及其制备方法和应用
CN113675492A (zh) * 2021-08-23 2021-11-19 贵州轻工职业技术学院 从废旧锂离子电池回收石墨材料的方法及石墨材料、超级电容器
CN113782858A (zh) * 2021-08-30 2021-12-10 上海纳米技术及应用国家工程研究中心有限公司 一种用SiOx@C增加回收锂离子电池负极容量的方法
CN114597533B (zh) * 2022-03-24 2024-01-05 广东凯金新能源科技股份有限公司 一种锂离子电池负极石墨重复利用的方法
CN114976317B (zh) * 2022-06-29 2023-12-12 广东邦普循环科技有限公司 一种废旧硅碳材料的修复方法及其应用
CN115332662A (zh) * 2022-08-09 2022-11-11 东莞理工学院 一种废旧锂电池石墨负极材料的回收方法及其应用
CN116259876B (zh) * 2023-02-28 2024-03-19 天津赛德美新能源科技有限公司 一种锂电池负极石墨材料的回收方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427069A (zh) * 2012-05-19 2013-12-04 湖南省正源储能材料与器件研究所 一种锂离子电池复合负极材料及其制备
CN106129522A (zh) * 2016-08-31 2016-11-16 合肥国轩高科动力能源有限公司 一种利用锂离子电池负极回收石墨的制备方法
KR20200073350A (ko) * 2018-12-13 2020-06-24 삼성전자주식회사 음극 활물질 및 이를 채용한 리튬 이차 전지, 및 상기 음극 활물질의 제조방법
CN111573662A (zh) * 2020-05-21 2020-08-25 北京蒙京石墨新材料科技研究院有限公司 一种利用回收石墨制备高容量负极材料的方法
CN112133894A (zh) * 2020-09-03 2020-12-25 深圳石墨烯创新中心有限公司 用于锂电池负极材料及该材料的制备方法
CN113036255A (zh) * 2021-02-26 2021-06-25 广东邦普循环科技有限公司 利用废旧锂离子电池负极制备硅碳复合材料的方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103557716A (zh) * 2013-09-27 2014-02-05 中国科学院力学研究所 一种用于超燃冲压发动机高温煤油回收的装置
CN105428745B (zh) * 2015-11-30 2018-08-14 北京赛德美资源再利用研究院有限公司 一种废旧锂离子动力电池无害化综合回收利用方法
CN205313464U (zh) * 2016-01-14 2016-06-15 嘉兴市日新自动化科技有限公司 煤油冷却回收***
CN206138880U (zh) * 2016-08-29 2017-05-03 常州万容新材料科技有限公司 新型煤油回收装置
CN206138948U (zh) * 2016-09-19 2017-05-03 厦门大学嘉庚学院 煤油分离与回收装置
CN210705920U (zh) * 2019-09-29 2020-06-09 杭州美孚塑胶制品有限公司 一种聚四氟乙稀薄膜中的煤油回收装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427069A (zh) * 2012-05-19 2013-12-04 湖南省正源储能材料与器件研究所 一种锂离子电池复合负极材料及其制备
CN106129522A (zh) * 2016-08-31 2016-11-16 合肥国轩高科动力能源有限公司 一种利用锂离子电池负极回收石墨的制备方法
KR20200073350A (ko) * 2018-12-13 2020-06-24 삼성전자주식회사 음극 활물질 및 이를 채용한 리튬 이차 전지, 및 상기 음극 활물질의 제조방법
CN111573662A (zh) * 2020-05-21 2020-08-25 北京蒙京石墨新材料科技研究院有限公司 一种利用回收石墨制备高容量负极材料的方法
CN112133894A (zh) * 2020-09-03 2020-12-25 深圳石墨烯创新中心有限公司 用于锂电池负极材料及该材料的制备方法
CN113036255A (zh) * 2021-02-26 2021-06-25 广东邦普循环科技有限公司 利用废旧锂离子电池负极制备硅碳复合材料的方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116425150A (zh) * 2023-04-11 2023-07-14 贺州学院 一种微波处理废旧石墨制备石墨烯的方法

Also Published As

Publication number Publication date
CN113036255A (zh) 2021-06-25
HUP2200269A1 (hu) 2022-11-28

Similar Documents

Publication Publication Date Title
WO2022179292A1 (zh) 利用废旧锂离子电池负极制备硅碳复合材料的方法和应用
CN101710632B (zh) 一种废旧锂离子电池阳极材料石墨的回收及修复方法
CN102751548B (zh) 一种从磷酸铁锂废旧电池中回收制备磷酸铁锂的方法
CN107204438B (zh) 一种碳硅复合材料及其制备方法和用途
CN111270072B (zh) 一种废旧磷酸铁锂电池正极材料的回收利用方法
CN106169582B (zh) 一种天然针焦复合石墨负极材料生产方法
CN106784741B (zh) 一种碳硅复合材料、其制备方法及包含该复合材料的锂离子电池
CN113437378A (zh) 一种废旧电池正负极回收及其再利用的方法
CN110993891A (zh) 一种含硅负极片、其制备方法及锂离子电池
US20240014382A1 (en) Silicon-carbon composite anode material, and preparation method and use thereof
CN115566255B (zh) 一种二次电池及用电设备
CN111252757A (zh) 利用废旧锂离子动力电池制备石墨烯的方法
CN111807345A (zh) 硅碳复合材料、其制备方法、锂电池负极材料及锂电池
CN111977646A (zh) 一种以废旧电池石墨负极制备膨胀石墨/硅碳材料的方法
WO2022142582A1 (zh) 一种硅掺杂的石墨烯复合材料及其制备方法和应用
CN113594450B (zh) 一种锂离子电池用煤基人造石墨负极材料的制备方法
Qin et al. Recovery and reuse of spent LiFePO4 batteries
CN113562719A (zh) 纳米SnO2/水溶性沥青碳复合电极负极材料制备方法
CN108155022B (zh) 使用微晶石墨材料的锂离子电容器的制备方法
CN115051062A (zh) 一种利用低共熔溶剂处理废旧石墨直接再生的方法
CN114447465A (zh) 锂离子电池正、负极材料协同再生的方法、材料及应用
CN112670458B (zh) 一种硅碳材料的制备方法及其应用
CN110364722B (zh) 一种碳硅双壳层中空结构复合微球及其制备方法和应用
CN112397701A (zh) 一种稻壳基硅氧化物/碳复合负极材料及其制备方法与应用
CN113488714B (zh) 失效锂离子电池正极材料修复方法、再生正极材料及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927716

Country of ref document: EP

Kind code of ref document: A1