WO2022172407A1 - Elevator apparatus - Google Patents

Elevator apparatus Download PDF

Info

Publication number
WO2022172407A1
WO2022172407A1 PCT/JP2021/005299 JP2021005299W WO2022172407A1 WO 2022172407 A1 WO2022172407 A1 WO 2022172407A1 JP 2021005299 W JP2021005299 W JP 2021005299W WO 2022172407 A1 WO2022172407 A1 WO 2022172407A1
Authority
WO
WIPO (PCT)
Prior art keywords
tension
car
safety device
acceleration
elevator
Prior art date
Application number
PCT/JP2021/005299
Other languages
French (fr)
Japanese (ja)
Inventor
靖之 粉川
誠治 渡辺
郁香 水谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022581121A priority Critical patent/JP7418623B2/en
Priority to PCT/JP2021/005299 priority patent/WO2022172407A1/en
Priority to CN202180092776.9A priority patent/CN116829486A/en
Priority to DE112021007075.4T priority patent/DE112021007075T5/en
Publication of WO2022172407A1 publication Critical patent/WO2022172407A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/04Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/12Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions in case of rope or cable slack

Definitions

  • the present disclosure relates to an elevator device.
  • the emergency stop device is activated by a large change in the tension of the rope. there is a risk of
  • the present disclosure has been made to solve the above-described problems, and aims to obtain an elevator device capable of suppressing malfunction of a safety device.
  • An elevator apparatus includes a lifting body, an emergency stop device provided in the lifting body, and a hoisting machine brake, is connected to the hoisting machine that raises and lowers the lifting body, and the lifting body, and Tension-type operation comprising a flexible object to be detected whose tension varies as the elevating body moves up and down, and a tension-type actuator that operates a safety device based on the change in tension of the object to be detected.
  • the device reduces the amplitude of tension fluctuations in the object to be detected at frequencies equal to or higher than a first set value, and reduces the amplitude of tension fluctuations in the object to be detected at frequencies equal to or lower than a second set value lower than the first set value.
  • the elevator apparatus includes a lifting body, a safety device provided on the lifting body, and an acceleration-type actuator provided on the lifting body that operates the safety device based on the acceleration of the lifting body.
  • the acceleration type actuator includes a detection weight that is displaced in the vertical direction according to changes in the acceleration of the elevator, and regulates the upward displacement of the detection weight when the elevator is raised, thereby activating the safety device. and a stopper mechanism that suppresses this and allows the detection weight to be displaced upward when the elevator is lowered, thereby allowing the safety device to operate.
  • FIG. 1 is a configuration diagram schematically showing an elevator device according to Embodiment 1;
  • FIG. FIG. 2 is a front view showing a relationship between a car guide rail and a safety device in FIG. 1; 3 is a cross-sectional view taken along line III-III of FIG. 2;
  • FIG. FIG. 2 is a front view showing a state of the safety device of FIG. 1 during operation;
  • FIG. 5 is a cross-sectional view taken along line VV of FIG. 4;
  • FIG. 2 is a configuration diagram showing a lower portion of the car of FIG. 1;
  • FIG. 7 is a configuration diagram showing a state in which the safety device is actuated by the tension type actuator of FIG.
  • FIG. 6 is a graph showing changes in tension of the compensating body received by the first spring when the car travels from the lowest floor to the highest floor; 4 is a graph showing changes in the amount of downward displacement of the movable plate when the car travels from the lowest floor to the highest floor;
  • FIG. 7 is an explanatory view schematically showing the tension type actuator of FIG. 6;
  • FIG. 5 is an explanatory diagram schematically showing the state of the tension actuator when the car travels from the bottom floor to the top floor; 4 is a graph showing changes in the position of the first transmission member when the car travels from the lowest floor to the highest floor; 4 is a graph showing changes in the position of the first transmission member when the car travels from the top floor to the bottom floor;
  • FIG. 5 is a graph showing changes in tension of the compensating body that the first spring receives when the hoist brake is actuated;
  • FIG. 4 is a graph showing changes in the position of the movable plate when the hoisting machine brake is actuated;
  • FIG. 4 is an explanatory view schematically showing the state of the tension type actuator when the suspension is broken;
  • 4 is a graph showing changes in downward acceleration of the car when the hoist brake is activated while the car is traveling upward, and changes in downward acceleration of the car when the suspension is broken.
  • 10 is a graph showing changes in tension received by the first spring when the hoist brake is activated while the car is traveling upward, and changes in tension received by the first spring when the suspension is broken; be.
  • FIG. 7 is a graph showing a change in the position of the first transmission member when the hoist brake is activated while the car is traveling upward, and a change in the position of the first transmission member when the suspension is broken; be.
  • FIG. 10 is a configuration diagram showing the lower part of the car of the elevator device according to Embodiment 2;
  • FIG. 11 is a configuration diagram showing the lower part of the car of the elevator device according to Embodiment 3;
  • FIG. 22 is a configuration diagram showing the state of the tension type actuator of FIG. 21 when the safety device is actuated;
  • FIG. 22 is an explanatory view schematically showing the tension type actuator of FIG.
  • 5 is a graph showing changes in the tension applied to the first spring when the hoist brake is activated and when the suspension is broken when the car is positioned near the top floor.
  • 5 is a graph showing changes in the tension applied to the first spring when the hoist brake is activated and when the suspension is broken when the car is positioned near the lowest floor.
  • 10 is a graph showing changes in the position of the first transmission member when the hoisting machine brake is activated and when the suspension body is broken when the car of the third embodiment is located near the top floor.
  • 10 is a graph showing changes in the position of the first transmission member when the hoisting machine brake is activated and when the suspension body is broken when the car of Embodiment 3 is positioned near the lowest floor. .
  • FIG. 12 is a configuration diagram showing the lower part of the car of the elevator device according to Embodiment 4;
  • FIG. 29 is a configuration diagram showing the state of the acceleration type actuator of FIG. 28 when the safety device is actuated;
  • 4 is a graph showing changes in the acceleration of the car when the hoist brake is activated and when the suspension is broken when the car is positioned near the lowest floor.
  • 5 is a graph showing changes in the acceleration of the car when the hoist brake is activated and when the suspension is broken when the car is positioned near the top floor.
  • 10 is a graph showing changes in the position of the second transmission member when the hoist brake is activated and when the suspension body is broken when the car of the fourth embodiment is located near the lowest floor. .
  • FIG. 10 is a graph showing changes in the position of the second transmission member when the hoisting machine brake is activated and when the suspension body is broken when the car of the fourth embodiment is located near the top floor.
  • FIG. 11 is a configuration diagram schematically showing a mechanism for operating a safety device of an elevator device according to Embodiment 5;
  • FIG. 35 is a side view showing the relationship between the first operating lever, the first transmission member, and the second transmission member in FIG. 34 when the safety device is not actuated;
  • FIG. 35 is a side view showing the relationship between the first operating lever, the first transmission member, and the second transmission member in FIG. 34 when the safety device is actuated by the tension type actuator;
  • FIG. 11 is a configuration diagram schematically showing a mechanism for operating a safety device of an elevator device according to Embodiment 6;
  • FIG. 1 is a configuration diagram schematically showing an elevator device according to Embodiment 1.
  • a machine room 2 is provided above the hoistway 1 .
  • a hoisting machine 3 is installed in the machine room 2 .
  • a deflection wheel 4 is installed in the machine room 2.
  • the hoisting machine 3 has a drive sheave 6 , a hoisting machine motor (not shown), and a hoisting machine brake 7 .
  • a hoist motor rotates the drive sheave 6 .
  • the hoist brake 7 keeps the drive sheave 6 stationary.
  • the hoist brake 7 also brakes the rotation of the drive sheave 6 .
  • An electromagnetic brake is used as the hoist brake 7 .
  • a suspension 8 is wound around the drive sheave 6 and the deflector wheel 4 .
  • the suspension body 8 has flexibility.
  • a plurality of ropes or a plurality of belts are used as the suspension body 8 .
  • a car 9 as an elevating body is connected to a first end of the suspension body 8 .
  • a counterweight 10 is connected to the second end of the suspension 8 .
  • the car 9 and the counterweight 10 are suspended in the hoistway 1 by the suspension 8. Also, the car 9 and the counterweight 10 are raised and lowered by rotating the drive sheave 6 .
  • the control device 5 controls the operation of the car 9 by controlling the hoisting machine 3 .
  • a pair of car guide rails 11 and a pair of counterweight guide rails 12 are installed in the hoistway 1 .
  • a pair of car guide rails 11 guides the car 9 to move up and down.
  • a pair of counterweight guide rails 12 guide the lifting and lowering of the counterweight 10 .
  • a car shock absorber 13 and a counterweight shock absorber 14 are installed in the pit 1a of the hoistway 1.
  • the pit 1a is a part of the hoistway 1 and is the part below the floor of the lowest floor.
  • a safety device 15 and a tension actuator 16 are mounted on the lower part of the car 9 .
  • the emergency stop device 15 brings the car 9 to an emergency stop by gripping the pair of car guide rails 11 .
  • a compensating body 17 as an object to be detected is suspended between the lower part of the car 9 and the lower part of the counterweight 10 .
  • the compensating body 17 compensates for the weight imbalance of the suspension 8 on one side of the drive sheave 6 and the other.
  • the compensating body 17 has flexibility. As the compensating body 17, for example, a plurality of compensating ropes or balancing chains are used. A compensating body 17 is connected to the tension actuator 16 in the lower part of the car 9 .
  • a balance wheel 18 is provided in the pit 1a.
  • the compensating body 17 is wound around the balance wheel 18 .
  • the balance wheel 18 is suspended by the compensating body 17 .
  • the balance wheel 18 applies tension to the compensating body 17 .
  • the tension in the hanging portions of the lower portion of the car 9 and the lower portion of the counterweight 10 fluctuates as the car 9 moves up and down.
  • the tension type actuator 16 operates the safety device 15 based on the tension fluctuation of the compensating body 17 .
  • a speed detector 19 is provided in the car 9 .
  • Speed detector 19 generates a signal corresponding to the speed of car 9 .
  • a signal from the speed detector 19 is transmitted to the control device 5 via a control cable (not shown).
  • An excessive speed is set in the control device 5 .
  • the excessive speed is set to a speed higher than the rated speed of the car 9, for example, 1.3 times the rated speed.
  • a safety circuit (not shown) may be immediately cut off to cut off the power supply to the hoisting machine 3 .
  • An electric sensor, an optical sensor, a mechanical sensor, or the like can be used as the speed detector 19.
  • an absolute value sensor for detecting the absolute value of displacement of the car 9 can be used.
  • a mechanical sensor has, for example, a detection rotor, a centrifugal mechanism, and an excessive speed detection switch.
  • the detection rotator rotates while contacting the car guide rail 11 .
  • the centrifugal mechanism is provided on the detection rotor and is displaced according to the rotation speed of the detection rotor.
  • the excessive speed detection switch is operated by the centrifugal mechanism when the speed of the car 9 becomes excessive. When the excessive speed detection switch is operated, power supply to the hoisting machine 3 is cut off.
  • FIG. 2 is a front view showing the relationship between the car guide rail 11 and the safety device 15 in FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2.
  • FIG. FIG. 4 is a front view showing the operating state of the safety device 15 of FIG. 5 is a cross-sectional view taken along line VV of FIG. 4.
  • FIG. 1 is a front view showing the relationship between the car guide rail 11 and the safety device 15 in FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2.
  • FIG. 4 is a front view showing the operating state of the safety device 15 of FIG. 5 is a cross-sectional view taken along line VV of FIG. 4.
  • the safety device 15 has a frame 21 and a pair of grips 22 .
  • One of the pair of gripping portions 22 corresponds to one of the pair of car guide rails 11 .
  • the other of the pair of gripping portions 22 corresponds to the other of the pair of car guide rails 11 .
  • the pair of grips 22 are provided on the frame 21 . 2-5, only one of the pair of grips 22 is shown.
  • Each gripping portion 22 has a pair of wedge members 23 , a pair of wedge guides 24 and a plurality of wedge guide springs 25 .
  • a pair of wedge members 23 are opposed to corresponding car guide rails 11 respectively.
  • Each wedge guide 24 is provided with an inclined surface 24a.
  • the inclined surface 24a approaches the car guide rail 11 as it goes upward.
  • Each wedge member 23 is vertically movable with respect to the frame 21 along the inclined surface 24 a of the corresponding wedge guide 24 .
  • the wedge guide spring 25 is provided between the frame 21 and the wedge guide 24 .
  • each wedge member 23 faces the corresponding car guide rail 11 with a gap therebetween, as shown in FIG.
  • each wedge member 23 is moved upward. At this time, each wedge member 23 is guided by the inclined surface 24 a to approach the car guide rail 11 and come into contact with the car guide rail 11 .
  • each wedge member 23 When each wedge member 23 is further moved upward, each wedge member 23 moves upward while pushing the wedge guide 24 horizontally so as to contract the wedge guide spring 25 .
  • the frictional force generated between each car guide rail 11 and the corresponding gripping portion 22 increases according to the amount of rise of each wedge member 23 with respect to the frame 21 .
  • each car guide rail 11 is gripped by the corresponding gripping portion 22, and the car 9 is brought to an emergency stop.
  • FIG. 6 is a configuration diagram showing the lower part of the car 9 in FIG.
  • the safety device 15 has a first operating lever 26 a , a second operating lever 26 b , and an interlocking mechanism 27 in addition to the frame 21 and the pair of grips 22 .
  • Each of the first operating lever 26a and the second operating lever 26b is connected to a corresponding pair of wedge members 23 .
  • the safety device 15 operates by rotating the first operating lever 26a and the second operating lever 26b.
  • the interlocking mechanism 27 transmits the movement of the first operating lever 26a to the second operating lever 26b, and interlocks the second operating lever 26b with the first operating lever 26a.
  • the tension type actuator 16 has a movable plate 31 , a filter mechanism 32 as a frequency filter, and a first transmission member 33 .
  • the movable plate 31 is fixed with respect to the connecting rod 28 .
  • the filter mechanism 32 has a low-pass filter 34 and a high-pass filter 35 .
  • Filter mechanism 32 functions as a bandpass filter.
  • the tension type actuator 16 operates the emergency stop device 15 based on the tension of the compensating body 17 that has passed through the filter mechanism 32.
  • the low-pass filter 34 has a first spring 36 and a first damper 37.
  • the first spring 36 is arranged between the movable plate 31 and the frame 21 , that is, between the movable plate 31 and the car 9 .
  • the first damper 37 is arranged in parallel with the first spring 36 between the movable plate 31 and the frame 21 .
  • the compensating body 17 is connected to the lower portion of the car 9 via the connecting rod 28 and the first spring 36.
  • a first spring 36 supports the tension of the compensating body 17 . That is, the first spring 36 expands and contracts according to the tension of the compensating body 17 .
  • the low-pass filter 34 reduces the amplitude of tension fluctuations at frequencies above the first set value in the compensating body 17 . That is, the cutoff frequency of the low-pass filter 34 is a frequency equal to or higher than the first set value.
  • the first set value is a value equal to or less than the frequency of tension fluctuation of the compensating body 17 when the hoisting machine brake 7 is operated.
  • the high-pass filter 35 is arranged in parallel with the first damper 37 between the movable plate 31 and the frame 21 . Also, the high-pass filter 35 is arranged between the low-pass filter 34 and the emergency stop device 15 .
  • the high-pass filter 35 has a second damper 38 and a second spring 39 .
  • the second spring 39 is arranged below the second damper 38 and connected in series with the second damper 38 .
  • the high-pass filter 35 reduces the amplitude of tension fluctuations at frequencies below the second set value in the compensating body 17 . That is, the cutoff frequency by the high-pass filter 35 is a frequency equal to or lower than the second set value.
  • the second set value is a value lower than the first set value. Further, the second set value is a value equal to or higher than a frequency capable of removing the time-varying DC component included in the tension fluctuation of the compensating body 17 due to normal running of the car 9, that is, the DC component.
  • the cutoff frequency of the low-pass filter 34 is determined by the ratio k1/c1 between the spring constant k1 of the first spring 36 and the damping coefficient c1 of the first damper 37.
  • the cutoff frequency of the high-pass filter 35 is determined by the ratio k2/c2 between the spring constant k2 of the second spring 39 and the damping coefficient c2 of the second damper 38 .
  • the spring constant k1 of the first spring 36 is sufficiently larger than the spring constant k2 of the second spring 39 . That is, the stiffness value of the second spring 39 is sufficiently smaller than the stiffness value of the first spring 36 . Therefore, the second spring 39 does not affect the displacement of the first spring 36 .
  • the first transmission member 33 is connected between the portion of the high-pass filter 35 between the second damper 38 and the second spring 39 and the first operating lever 26a. Also, the first transmission member 33 transmits the movement of the high-pass filter 35 to the first operating lever 26a.
  • FIG. 7 is a configuration diagram showing a state in which the safety device 15 is actuated by the tension type actuator 16 of FIG.
  • the tension of the compensating body 17 is rapidly reduced.
  • the first spring 36 expands, and the movable plate 31 and the first transmission member 33 are displaced upward.
  • the first operating lever 26a and the second operating lever 26b rotate simultaneously, and the pair of wedge members 23 in each grip portion 22 are moved upward.
  • FIG. 8 is a graph showing changes in the tension of the compensating body 17 that the first spring 36 receives when the car 9 travels from the lowest floor to the highest floor.
  • the mass of the compensating body 17 from the car 9 to the balance wheel 18 is defined as the effective mass of the compensating body 17 .
  • the length and effective mass of compensating body 17 increase in proportion to the height of car 9 . Therefore, when the car 9 travels from the lowest floor to the highest floor, the tension applied to the first spring 36 gradually increases.
  • FIG. 9 is a graph showing changes in the amount of downward displacement of the movable plate 31 when the car 9 travels from the lowest floor to the highest floor. As the car 9 travels from the lowest floor to the highest floor, the first spring 36 is compressed in proportion to the height of the car 9, and the amount of downward displacement of the movable plate 31 also increases continuously.
  • FIG. 10 is an explanatory diagram schematically showing the tension type actuator 16 of FIG.
  • FIG. 11 is an explanatory diagram schematically showing the state of the tension actuator 16 when the car 9 travels from the lowest floor to the highest floor.
  • FIG. 12 is a graph showing changes in the position of the first transmission member 33 when the car 9 travels from the lowest floor to the highest floor.
  • the compression amount of the first spring 36, the compression amount of the first damper 37, and the compression amount of the second damper 38 increase as the tension of the compensating body 17 received by the first spring 36 increases.
  • the tension fluctuation of the compensating body 17 during normal running of the car 9 is smooth as shown in FIG. 8 and is a DC component fluctuation without vibration.
  • the second damper 38 is compressed over time due to the action of a force proportional to the rate of change of the DC component corresponding to the gradient in FIG.
  • this rate of change is a very small value
  • the force acting on the second damper 38 is a constant small value. Since the second damper 38 and the second spring 39 are arranged in series, the force acting on the second damper 38 acts on the second spring 39 as it is.
  • the first transmission member 33 which is connected to the second spring 39, is slightly pushed down as shown in FIG. 12, and then maintains a constant displacement.
  • FIG. 13 is a graph showing changes in the position of the first transmission member 33 when the car 9 travels from the top floor to the bottom floor.
  • the vertical axis in FIG. 13 indicates displacement in the direction in which the second spring 39 extends.
  • the tension of the compensating body 17 gradually decreases.
  • the first spring 36 and the movable plate 31 are displaced upward because the first spring 36 exhibits movement in the extending direction. Due to this upward movement of the movable plate 31, the second damper 38 is also stretched, and the second spring 39 is also stretched upward.
  • the first transmission member 33 connected to the second spring 39 also slightly moves upward as shown in FIG. Therefore, as shown in FIG. 13, the first transmission member 33 does not reach the operating position P1 at which the safety device 15 is operated.
  • FIG. 14 is a graph showing changes in the tension of the compensating body 17 received by the first spring 36 when the hoisting machine brake 7 is actuated.
  • FIG. 15 is a graph showing changes in the position of the movable plate 31 when the hoisting machine brake 7 is activated.
  • the movable plate 31 fluctuates by the average value of the tension that the first spring 36 receives. Since the first damper 37 is arranged in parallel with the first spring 36 , tension fluctuations of the compensating body 17 are absorbed by the first damper 37 . As a result, the expansion and contraction of the first spring 36 and the vertical movement of the movable plate 31 are suppressed, and the vertical vibration of the first transmission member 33 is also suppressed.
  • FIG. 16 is an explanatory view schematically showing the state of the tension type actuator 16 when the suspension 8 is broken.
  • the suspension body 8 breaks, the first spring 36 and the first damper 37 are extended, and the movable plate 31 is displaced upward.
  • the second damper 38 cannot follow the stepwise upward displacement of the movable plate 31 and does not expand, but the second spring 39 expands and the first transmission member 33 is displaced upward. .
  • the first operating lever 26a and the second operating lever 26b are rotated, and the safety device 15 is operated.
  • FIG. 17 shows changes in the downward acceleration of the car 9 when the hoist brake 7 is activated while the car 9 is traveling upward, and the downward acceleration of the car 9 when the suspension 8 is broken. is a graph showing changes in
  • the acceleration of the car 9 changes stepwise. However, the acceleration of the car 9 when the suspension 8 is broken is greater than the acceleration of the car 9 when the hoisting machine brake 7 is activated.
  • FIG. 18 shows the change in the tension applied to the first spring 36 when the hoist brake 7 is operated while the car 9 is traveling upward, and the tension applied to the first spring 36 when the suspension 8 is broken.
  • 4 is a graph showing changes in tension received;
  • the amount of change in tension when the hoist brake 7 operates is the product of the effective mass of the compensating body 17 and the acceleration of the car 9 . Further, the amount of change in tension when the suspension body 8 breaks is the product of the effective mass of the compensating body 17 and the acceleration of the car 9 plus half the weight of the balance wheel 18 .
  • FIG. 19 shows changes in the position of the first transmission member 33 when the hoisting machine brake 7 is activated while the car 9 is traveling upward, and the position of the first transmission member 33 when the suspension 8 is broken. is a graph showing changes in the position of . 19, the vibration component shown in FIG. 15 is ignored.
  • the first transmission member 33 is displaced upward with a time delay due to the effect of the second damper 38 . After that, since the acceleration becomes a constant value, the damping force of the second damper 38 is released, and the first transmission member 33 returns to the initial position of the second spring 39 .
  • the acceleration of the car 9 when the hoisting machine brake 7 is activated is smaller than the acceleration of the car 9 when the suspension 8 is broken. Therefore, the amount of decrease in tension of the compensating body 17 when the hoist brake 7 is actuated is smaller than the amount of decrease in tension of the compensating body 17 when the suspension body 8 is broken.
  • the amount of upward displacement of the first transmission member 33 when the hoist brake 7 is actuated is smaller than the amount of upward displacement of the first transmission member 33 when the suspension 8 is broken.
  • the displacement amount of the first transmission member 33 when the hoisting machine brake 7 is activated is ⁇ xe
  • the displacement amount of the first transmission member 33 when the suspension body 8 is broken is ⁇ xr
  • the first transmission member up to the operation position P1 is Let the displacement amount of 33 be ⁇ xs.
  • the filter mechanism 32 reduces the amplitude of tension fluctuations in the compensating body 17 at frequencies equal to or higher than the first set value.
  • the filter mechanism 32 also reduces the amplitude of tension fluctuations in the compensating body 17 at frequencies equal to or lower than a second set value lower than the first set value.
  • the tension type actuator 16 actuates the safety device 15 based on the tension fluctuation of the compensating body 17 that has passed through the filter mechanism 32 .
  • the first set value is a value equal to or less than the frequency of tension fluctuation of the compensating body 17 when the hoisting machine brake 7 is operated. Therefore, it is possible to more reliably suppress malfunction of the emergency stop device 15 due to tension fluctuation of the compensating body 17 when the hoisting machine brake 7 is actuated.
  • the second set value is a value equal to or higher than a frequency capable of removing the time-varying DC component included in the tension fluctuation of the compensating body 17 due to the normal running of the car 9 . Therefore, malfunction of the emergency stop device 15 due to tension fluctuation of the compensating body 17 due to normal running of the car 9 can be suppressed more reliably.
  • the low-pass filter 34 has a first spring 36 and a first damper 37
  • the high-pass filter 35 has a second damper 38 and a second spring 39 . Therefore, the filter mechanism 32 can be composed only of mechanical elements, and the safety device 15 can be operated without using electric power.
  • the speed governor and the speed governor rope can be omitted, reducing the equipment cost and realizing space saving of the hoistway 1.
  • the governor rope will not get caught on the hoistway equipment during earthquakes and strong winds. This enables early recovery after an earthquake.
  • the tension type actuator 16 can be easily applied to a high lift elevator system in which it is difficult to use a governor rope.
  • FIG. 20 is a configuration diagram showing the lower portion of the car 9 of the elevator apparatus according to Embodiment 2. As shown in FIG. 20, the interlocking mechanism 27, the second operating lever 26b, and the wedge member 23 corresponding to the second operating lever 26b are omitted.
  • the tension actuator 16 of Embodiment 2 has a spring bearing 41, a support spring 42, a tension sensor 43, a bandpass filter 44 as a frequency filter, and an actuator 45.
  • the spring bearing 41 is fixed to the connecting rod 28.
  • the support spring 42 is arranged between the spring bearing 41 and the frame 21 . Also, the support spring 42 supports the tension of the compensating body 17 .
  • the tension sensor 43 is arranged between the spring bearing 41 and the support spring 42 . Also, the tension sensor 43 generates an electrical signal corresponding to the tension of the compensating body 17 .
  • a load cell for example, can be used as the tension sensor 43 .
  • the band-pass filter 44 reduces the amplitude of tension fluctuations at frequencies above the first set value in the compensating body 17, and reduces the amplitude of tension fluctuations at frequencies below the second set value in the compensating body 17. .
  • the band-pass filter 44 processes the electrical signal from the tension sensor 43 to detect tension fluctuations in the compensating body 17 at frequencies above the first set value and below the second set value. to remove
  • the actuator 45 rotates the first operating lever 26a and operates the emergency stop device 15 based on the electrical signal that has passed through the bandpass filter 44. That is, the actuator 45 operates the safety device 15 based on the tension fluctuation of the compensating body 17 that has passed through the bandpass filter 44 .
  • the configuration of the elevator device excluding the tension type actuator 16 shown in FIG. 20 is the same as that of the first embodiment.
  • the tension type actuator 16 can be miniaturized.
  • FIG. 21 is a configuration diagram showing the lower portion of the car 9 of the elevator apparatus according to Embodiment 3.
  • FIG. 22 is a configuration diagram showing the state of the tension type actuator 16 of FIG. 21 when the safety device 15 is actuated. 21 and 22 omit the wedge member 23, the interlocking mechanism 27, and the second operating lever 26b.
  • FIG. 23 is an explanatory view schematically showing the tension actuator 16 of FIG. 21. As shown in FIG.
  • the tension type actuator 16 of Embodiment 3 has a stopper mechanism 51 in addition to the configuration similar to that of Embodiment 1.
  • the stopper mechanism 51 restricts the displacement of the first operating lever 26a in the direction in which the safety device 15 operates by restricting the upward displacement of the first transmission member 33 when the car 9 is raised. In addition, the stopper mechanism 51 allows the displacement of the first operating lever 26a in the direction in which the safety device 15 is operated by allowing the first transmission member 33 to be displaced upward when the car 9 is lowered.
  • the stopper mechanism 51 has a roller 52 , a ratchet 53 , a pawl member 54 and a stopper body 55 .
  • the roller 52 is rotatably provided on the frame 21. Further, the rollers 52 rotate while being in contact with one of the car guide rails 11 as the car 9 moves up and down.
  • the ratchet 53 is provided coaxially with the roller 52 . Also, the ratchet 53 rotates integrally with the roller 52 .
  • the claw member 54 is rotatably provided on the frame body 21 . Also, one end of the pawl member 54 meshes with the teeth of the ratchet 53 .
  • the stopper body 55 is connected to the claw member 54 . Also, the stopper main body 55 is in contact with the first transmission member 33 .
  • the configuration of the elevator device excluding the stopper mechanism 51 shown in FIG. 21 is the same as that of the first embodiment.
  • FIG. 24 is a graph showing changes in the tension applied to the first spring 36 when the hoisting machine brake 7 is activated and when the suspension body 8 is broken when the car 9 is positioned near the top floor. is.
  • FIG. 25 shows changes in the tension applied to the first spring 36 when the hoist brake 7 is activated and when the suspension 8 is broken when the car 9 is positioned near the lowest floor. graph.
  • the effective mass of the compensating body 17 ⁇ 1G is added to the tension before the suspension body 8 breaks.
  • the tension decreases by the product of the acceleration of the car 9 and the effective mass of the compensating body 17 .
  • the balance wheel 18 falls, half of the weight of the balance wheel 18 also disappears.
  • the effective mass of the compensating body 17 is close to zero. Therefore, when the car 9 is positioned near the lowest floor and the hoist brake 7 is activated, the tension applied to the first spring 36 hardly changes.
  • the operating position P1 is set so that the emergency stop device 15 does not malfunction due to the operation of the hoist brake 7 when the car 9 is positioned near the top floor, when the car 9 is positioned near the bottom floor There is a possibility that the emergency stop device 15 will not operate properly.
  • the hoisting machine brake 7 will operate when the car 9 is positioned near the top floor. In this case, the safety device 15 may malfunction.
  • the safety device 15 malfunctions when the hoisting machine brake 7 operates while the car 9 is ascending. On the other hand, when the suspension 8 breaks, the car 9 always descends. Therefore, in the third embodiment, the upward displacement of the first transmission member 33 is restricted when the car 9 is raised.
  • FIG. 26 shows the position of the first transmission member 33 when the hoisting machine brake 7 is activated and when the suspension 8 is broken when the car 9 of the third embodiment is positioned near the top floor.
  • is a graph showing changes in FIG. 27 shows the first transmission member 33 when the hoisting machine brake 7 is activated and when the suspension 8 is broken when the car 9 of Embodiment 3 is positioned near the lowest floor. It is a graph which shows the change of a position.
  • the hoisting machine brake 7 can be operated regardless of the position of the car 9. Malfunction of the safety device 15 is suppressed. Moreover, regardless of the position of the car 9, the safety device 15 operates properly when the suspension 8 is broken.
  • the configuration of the stopper mechanism 51 is not limited to the above example, and may be, for example, a combination of a sensor that detects the traveling direction of the car 9 and an actuator.
  • the actuator prevents or permits upward displacement of the first transmission member 33 based on the signal from the sensor.
  • the stopper mechanism 51 may restrict the movement of the first operating lever 26a, the second operating lever 26b, or the interlocking mechanism 27 when the car 9 is raised.
  • stopper mechanism 51 of the third embodiment may be applied to the tension actuator 16 of the second embodiment.
  • the object to be detected may be the suspended body 8.
  • the compensating body 17 may not be used in the elevator device.
  • the lifting body may be the counterweight 10. That is, the counterweight 10 may be equipped with an emergency stop device other than the emergency stop device 15 and the tension actuator 16 . In this case, the excessive speed monitoring of the car 9 and the operation of the safety device 15 mounted on the car 9 may be performed by a conventional speed governor.
  • FIG. 28 is a configuration diagram showing the lower portion of the car 9 of the elevator apparatus according to Embodiment 4. As shown in FIG. In FIG. 28, all of the wedge member 23, the interlocking mechanism 27, and the second operating lever 26b are omitted. In the fourth embodiment, an acceleration type actuator 61 is used instead of the tension type actuator 16 in the third embodiment.
  • the acceleration type actuator 61 is provided at the bottom of the car 9. Also, the acceleration type actuator 61 operates the safety device 15 based on the acceleration of the car 9 .
  • the acceleration type actuator 61 also has a detection weight 62 , a weight spring 63 , a second transmission member 64 and a stopper mechanism 51 .
  • the detection weight 62 is suspended by a weight spring 63.
  • the weight spring 63 expands and contracts in the vertical direction according to changes in the acceleration of the car 9 . That is, the detection weight 62 is vertically displaced according to changes in the acceleration of the car 9 .
  • the frame 21 is provided with a weight guide (not shown). The weight guide guides the vertical movement of the detection weight 62 .
  • the second transmission member 64 is connected between the detection weight 62 and the first actuation lever 26a. Further, the second transmission member 64 vertically moves together with the detection weight 62 to transmit the movement of the detection weight 62 to the first operating lever 26a.
  • the configuration of the stopper mechanism 51 is the same as that of the third embodiment.
  • the stopper main body 55 of Embodiment 4 is in contact with the second transmission member 64 . Thereby, the stopper mechanism 51 restricts the upward displacement of the detection weight 62 when the car 9 is raised, thereby suppressing the operation of the safety device 15 .
  • the stopper mechanism 51 also allows the detection weight 62 to be displaced upward when the car 9 is lowered, thereby allowing the safety device 15 to operate.
  • FIG. 29 is a configuration diagram showing the state of the acceleration type actuator 61 in FIG. 28 when the safety device 15 is activated.
  • the suspension 8 breaks, the car 9 begins to drop, and the acceleration of the car 9 greatly changes.
  • the detection weight 62 is largely displaced upward, the first operating lever 26a is pulled up via the second transmission member 64, and the safety device 15 is operated.
  • the configuration of the elevator device is the same as that of the third embodiment, except for the acceleration actuator 61 shown in FIGS. 28 and 29.
  • FIG. 30 is a graph showing changes in acceleration of the car 9 when the hoist brake 7 is activated and when the suspension 8 is broken when the car 9 is positioned near the lowest floor.
  • FIG. 31 is a graph showing changes in acceleration of the car 9 when the hoisting machine brake 7 is activated and when the suspension 8 is broken when the car 9 is positioned near the top floor.
  • the mass difference between the car 9 side and the counterweight 10 side does not increase with respect to the frictional force between the drive sheave 6 and the suspension body 8, and the acceleration of the car 9 immediately after it falls becomes very small. . That is, as shown in FIG. 31, when the car 9 is positioned near the top floor, the acceleration of the car 9 is small, so the upward displacement of the detection weight 62 and the second transmission member 64 may be small.
  • FIG. 32 shows the second transmission member 64 when the hoisting machine brake 7 is activated and when the suspension 8 is broken when the car 9 of the fourth embodiment is positioned near the lowest floor. It is a graph which shows the change of a position.
  • FIG. 33 shows the position of the second transmission member 64 when the hoist brake 7 is activated and when the suspension 8 is broken when the car 9 of the fourth embodiment is positioned near the top floor. is a graph showing changes in
  • the hoisting machine brake 7 when the hoisting machine brake 7 is activated when the car 9 is raised, the upward displacement of the second transmission member 64 is restricted to the stopper position Ps by the stopper mechanism 51. . That is, when the hoisting machine brake 7 is activated while the car 9 is ascending, the second transmission member 64 does not reach the activation position P1, which is the position at which the safety device 15 is activated.
  • the emergency stop device 15 can be operated regardless of the position of the car 9. Malfunction of the stopping device 15 is suppressed. Moreover, regardless of the position of the car 9, the safety device 15 operates properly when the suspension 8 is broken.
  • the configuration of the stopper mechanism 51 is not limited to the above example, and may be, for example, a combination of a sensor that detects the traveling direction of the car 9 and an actuator.
  • the actuator prevents or permits the upward displacement of the second transmission member 64 based on the signal from the sensor.
  • the stopper mechanism 51 may directly restrict the upward displacement of the detection weight 62 when the car 9 is raised. Also, the stopper mechanism 51 may restrict the movement of the first operating lever 26a, the second operating lever 26b, or the interlocking mechanism 27 when the car 9 is raised.
  • the acceleration type actuator 61 may be installed at a position other than the bottom of the car 9, for example, at the top.
  • the lifting body may be the counterweight 10. That is, the counterweight 10 may be equipped with an emergency stop device other than the emergency stop device 15 and the acceleration actuator 61 . In this case, the excessive speed monitoring of the car 9 and the operation of the safety device 15 mounted on the car 9 may be performed by a conventional speed governor.
  • FIG. 34 is a configuration diagram schematically showing a mechanism for operating the safety device 15 of the elevator system according to Embodiment 5, and shows a state when the safety device 15 is operated.
  • the tension type actuator 16 of Embodiment 1 and the acceleration type actuator 61 of Embodiment 4 are used together.
  • the acceleration actuator 61 is not provided with the stopper mechanism 51 .
  • the detection weight 62 is supported on a weight spring 63 .
  • FIG. 34 shows a state in which the emergency stop device 15 is actuated by the acceleration actuating device 61. As shown in FIG. 34
  • the first transmission member 33 is provided with a first push-up portion 33a.
  • the first push-up portion 33a is in contact with the first operating lever 26a, and pushes up the first operating lever 26a when the first transmission member 33 is displaced upward.
  • the second transmission member 64 is provided with a second push-up portion 64a.
  • the second push-up portion 64a is in contact with the first operating lever 26a, and pushes up the first operating lever 26a when the second transmission member 64 is displaced upward.
  • FIG. 35 is a side view showing the relationship between the first operating lever 26a, the first transmission member 33, and the second transmission member 64 in FIG. 34 when the safety device 15 is not in operation.
  • FIG. 36 is a side view showing the relationship between the first operating lever 26a, the first transmission member 33, and the second transmission member 64 in FIG.
  • first push-up portion 33a and the second push-up portion 64a are in contact with the lower surface of the first operating lever 26a.
  • first transmission member 33 is displaced upward from this state, as shown in FIG. 36, the first operating lever 26a is pushed up by the first push-up portion 33a, and the safety device 15 is operated.
  • both the first transmission member 33 and the second transmission member 64 are displaced upward. Even if it is, it will be pushed up.
  • the configuration of the elevator device except for the configuration shown in FIG. 34 is the same as that of the first embodiment.
  • the safety device 15 immediately operates due to the acceleration fluctuation of the car 9 .
  • the safety device 15 immediately operates due to the tension fluctuation of the compensating body 17 .
  • the operating position P1 which is the position at which the first transmission member 33 or the second transmission member 64 operates the safety device 15, does not depend on the position of the car 9, and the safety device 15 malfunctions when the hoisting machine brake 7 is operated. set to not. As a result, malfunction of the safety device 15 can be suppressed without using the stopper mechanism 51 .
  • FIG. 37 is a configuration diagram schematically showing a mechanism for operating the safety device 15 of the elevator system according to Embodiment 6.
  • the acceleration actuator 61 of Embodiment 6 has a weight stopper 65 in addition to the detection weight 62 , the weight spring 63 and the second transmission member 64 .
  • the weight stopper 65 is provided on the frame 21.
  • the detection weight 62 is normally placed on the weight stopper 65 .
  • the weight spring 63 is normally compressed by the dead weight of the detection weight 62 . Thereby, the weight spring 63 applies an upward force to the detection weight 62 .
  • the detection weight 62 moves upward from the weight stopper 65, and the movement of the detection weight 62 activates the emergency stop device 15. is set to
  • the weight stopper 65 supports part of the dead weight of the detection weight 62 . Further, even if the weight stopper 65 receives the weight of the detection weight 62, the weight stopper 65 neither displaces nor deforms in the vertical direction.
  • the natural frequency determined by the mass of the detection weight 62 and the rigidity of the weight spring 63 is equal to or lower than the lowest frequency among the frequencies of the vertical vibration generated in the car 9 by the operation of the hoist brake 7. is preferably set to . This more reliably suppresses the detection weight 62 from resonating with the vibration of the car 9 .
  • the above minimum frequency is the frequency when the length of the part of the suspension body 8 extending upward from the car 9 is the longest.
  • the natural frequency is preferably set to be equal to or lower than the vertical vibration frequency of the car 9 when the hoist brake 7 is activated when the car 9 is located on the lowest floor. be.
  • the configuration of the elevator device excluding the weight stopper 65 is the same as that of the fifth embodiment.
  • the safety device 15 when the car 9 is located on the lower floor, the safety device 15 can be operated properly while suppressing the malfunction of the safety device 15 due to the operation of the hoist brake 7 more reliably. can be made
  • the first transmission member 33 and the second transmission member 64 may be connected.
  • the tension type actuator 16 and the acceleration type actuator 61 may be configured to pull up the first operating lever 26a instead of pushing it up.
  • Embodiments 5 and 6 a configuration may be adopted in which either one of the tension type actuator 16 and the acceleration type actuator 61 is activated according to the position of the car 9 .
  • the lifting body may be the counterweight 10. That is, the counterweight 10 may be equipped with an emergency stop device other than the emergency stop device 15 , the tension actuator 16 , and the acceleration actuator 61 . In this case, the excessive speed monitoring of the car 9 and the operation of the safety device 15 mounted on the car 9 may be performed by a conventional speed governor.
  • the safety device 15 may be provided on the upper part of the elevator.
  • the layout of the entire elevator device is not limited to the layout of FIG.
  • the roping scheme may be a 2:1 roping scheme.
  • the elevator device may be a machine room-less elevator, a double-deck elevator, a one-shaft multi-car elevator device, or the like.
  • the one-shaft multi-car system is a system in which an upper car and a lower car placed directly below the upper car independently ascend and descend a common hoistway.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

An elevator apparatus, wherein a tension actuation device actuates an emergency stop device on the basis of a tension fluctuation in a body to be detected. The tension actuation device has a frequency filter, and actuates the emergency stop device on the basis of a tension fluctuation in a body to be detected, which passes through the frequency filter. The frequency filter reduces the amplitude of tension fluctuation having a frequency equal to or higher than a first set value in the body to be detected, and reduces the amplitude of tension fluctuation having a frequency equal to or lower than a second set value lower than the first set value in the body to be detected.

Description

エレベーター装置elevator equipment
 本開示は、エレベーター装置に関するものである。 The present disclosure relates to an elevator device.
 従来のエレベーター装置では、かごがロープによって吊り下げられている。かごの下部には、レバーが設けられている。レバーには、張力検出ローラーが設けられている。張力検出ローラーには、ロープが掛けられている。ロープが破断すると、レバーが下方向へ回転し、非常止め装置が作動する(例えば、特許文献1参照)。 In conventional elevator equipment, the car is suspended by ropes. A lever is provided at the bottom of the cage. The lever is provided with a tension detection roller. A rope is hung on the tension detection roller. When the rope breaks, the lever rotates downward and the safety device operates (see, for example, Patent Document 1).
特開平11-209022号公報JP-A-11-209022
 上記のような従来のエレベーター装置では、ロープの張力の大きな変動によって非常止め装置が作動するため、例えば、巻上機ブレーキの作動時にロープの張力が大きく変動した場合に、非常止め装置が誤作動する恐れがある。 In the conventional elevator system as described above, the emergency stop device is activated by a large change in the tension of the rope. there is a risk of
 本開示は、上記のような課題を解決するためになされたものであり、非常止め装置の誤作動を抑制することができるエレベーター装置を得ることを目的とする。 The present disclosure has been made to solve the above-described problems, and aims to obtain an elevator device capable of suppressing malfunction of a safety device.
 本開示に係るエレベーター装置は、昇降体、昇降体に設けられている非常止め装置、巻上機ブレーキを有しており、昇降体を昇降させる巻上機、昇降体に接続されており、かつ可撓性を有しており、昇降体の昇降に伴って張力が変動する被検出体、及び被検出体の張力変動に基づいて非常止め装置を作動させる張力式作動装置を備え、張力式作動装置は、被検出体における第1設定値以上の周波数の張力変動の振幅を低減するとともに、被検出体における第1設定値よりも低い第2設定値以下の周波数の張力変動の振幅を低減する周波数フィルターを有しており、張力式作動装置は、周波数フィルターを通過した被検出体の張力変動に基づいて、非常止め装置を作動させる。
 また、本開示に係るエレベーター装置は、昇降体、昇降体に設けられている非常止め装置、及び昇降体に設けられており、昇降体の加速度に基づいて非常止め装置を作動させる加速度式作動装置を備え、加速度式作動装置は、昇降体の加速度の変化に応じて上下方向へ変位する検出おもりと、昇降体の上昇時に検出おもりの上方への変位を規制して、非常止め装置が作動することを抑制し、昇降体の下降時に検出おもりの上方への変位を許容して、非常止め装置が作動することを許容するストッパー機構とを有している。
An elevator apparatus according to the present disclosure includes a lifting body, an emergency stop device provided in the lifting body, and a hoisting machine brake, is connected to the hoisting machine that raises and lowers the lifting body, and the lifting body, and Tension-type operation comprising a flexible object to be detected whose tension varies as the elevating body moves up and down, and a tension-type actuator that operates a safety device based on the change in tension of the object to be detected. The device reduces the amplitude of tension fluctuations in the object to be detected at frequencies equal to or higher than a first set value, and reduces the amplitude of tension fluctuations in the object to be detected at frequencies equal to or lower than a second set value lower than the first set value. It has a frequency filter, and the tension type actuator operates the safety device based on the tension variation of the object to be detected that has passed through the frequency filter.
Further, the elevator apparatus according to the present disclosure includes a lifting body, a safety device provided on the lifting body, and an acceleration-type actuator provided on the lifting body that operates the safety device based on the acceleration of the lifting body. , and the acceleration type actuator includes a detection weight that is displaced in the vertical direction according to changes in the acceleration of the elevator, and regulates the upward displacement of the detection weight when the elevator is raised, thereby activating the safety device. and a stopper mechanism that suppresses this and allows the detection weight to be displaced upward when the elevator is lowered, thereby allowing the safety device to operate.
 本開示のエレベーター装置によれば、非常止め装置の誤作動を抑制することができる。 According to the elevator device of the present disclosure, malfunction of the safety device can be suppressed.
実施の形態1によるエレベーター装置を模式的に示す構成図である。1 is a configuration diagram schematically showing an elevator device according to Embodiment 1; FIG. 図1のかごガイドレールと非常止め装置との関係を示す正面図である。FIG. 2 is a front view showing a relationship between a car guide rail and a safety device in FIG. 1; 図2のIII-III線に沿う断面図である。3 is a cross-sectional view taken along line III-III of FIG. 2; FIG. 図1の非常止め装置の作動時の状態を示す正面図である。FIG. 2 is a front view showing a state of the safety device of FIG. 1 during operation; 図4のV-V線に沿う断面図である。FIG. 5 is a cross-sectional view taken along line VV of FIG. 4; 図1のかごの下部を示す構成図である。FIG. 2 is a configuration diagram showing a lower portion of the car of FIG. 1; 図6の張力式作動装置により非常止め装置が作動した状態を示す構成図である。FIG. 7 is a configuration diagram showing a state in which the safety device is actuated by the tension type actuator of FIG. 6; かごが最下階から最上階まで走行したときに第1ばねが受けるコンペンセーティング体の張力の変化を示すグラフである。5 is a graph showing changes in tension of the compensating body received by the first spring when the car travels from the lowest floor to the highest floor; かごが最下階から最上階まで走行したときの可動プレートの下方への変位量の変化を示すグラフである。4 is a graph showing changes in the amount of downward displacement of the movable plate when the car travels from the lowest floor to the highest floor; 図6の張力式作動装置を模式的に示す説明図である。FIG. 7 is an explanatory view schematically showing the tension type actuator of FIG. 6; かごが最下階から最上階まで走行したときの張力式作動装置の状態を模式的に示す説明図である。FIG. 5 is an explanatory diagram schematically showing the state of the tension actuator when the car travels from the bottom floor to the top floor; かごが最下階から最上階まで走行したときの第1伝達部材の位置の変化を示すグラフである。4 is a graph showing changes in the position of the first transmission member when the car travels from the lowest floor to the highest floor; かごが最上階から最下階まで走行したときの第1伝達部材の位置の変化を示すグラフである。4 is a graph showing changes in the position of the first transmission member when the car travels from the top floor to the bottom floor; 巻上機ブレーキの作動時に第1ばねが受けるコンペンセーティング体の張力の変化を示すグラフである。FIG. 5 is a graph showing changes in tension of the compensating body that the first spring receives when the hoist brake is actuated; FIG. 巻上機ブレーキの作動時における可動プレートの位置の変化を示すグラフである。4 is a graph showing changes in the position of the movable plate when the hoisting machine brake is actuated; 懸架体の破断時における張力式作動装置の状態を模式的に示す説明図である。FIG. 4 is an explanatory view schematically showing the state of the tension type actuator when the suspension is broken; かごが上方向へ走行しているときに巻上機ブレーキが作動した場合におけるかごの下向きの加速度の変化と、懸架体が破断した場合におけるかごの下向きの加速度の変化とを示すグラフである。4 is a graph showing changes in downward acceleration of the car when the hoist brake is activated while the car is traveling upward, and changes in downward acceleration of the car when the suspension is broken. かごが上方向へ走行しているときに巻上機ブレーキが作動した場合に第1ばねが受ける張力の変化と、懸架体が破断した場合に第1ばねが受ける張力の変化とを示すグラフである。10 is a graph showing changes in tension received by the first spring when the hoist brake is activated while the car is traveling upward, and changes in tension received by the first spring when the suspension is broken; be. かごが上方向へ走行しているときに巻上機ブレーキが作動した場合における第1伝達部材の位置の変化と、懸架体が破断した場合における第1伝達部材の位置の変化とを示すグラフである。7 is a graph showing a change in the position of the first transmission member when the hoist brake is activated while the car is traveling upward, and a change in the position of the first transmission member when the suspension is broken; be. 実施の形態2によるエレベーター装置のかごの下部を示す構成図である。FIG. 10 is a configuration diagram showing the lower part of the car of the elevator device according to Embodiment 2; 実施の形態3によるエレベーター装置のかごの下部を示す構成図である。FIG. 11 is a configuration diagram showing the lower part of the car of the elevator device according to Embodiment 3; 非常止め装置の作動時における図21の張力式作動装置の状態を示す構成図である。FIG. 22 is a configuration diagram showing the state of the tension type actuator of FIG. 21 when the safety device is actuated; 図21の張力式作動装置を模式的に示す説明図である。FIG. 22 is an explanatory view schematically showing the tension type actuator of FIG. 21; かごが最上階付近に位置しているときに、巻上機ブレーキが作動した場合と、懸架体が破断した場合とにおける第1ばねが受ける張力の変化を示すグラフである。5 is a graph showing changes in the tension applied to the first spring when the hoist brake is activated and when the suspension is broken when the car is positioned near the top floor. かごが最下階付近に位置しているときに、巻上機ブレーキが作動した場合と、懸架体が破断した場合とにおける第1ばねが受ける張力の変化を示すグラフである。5 is a graph showing changes in the tension applied to the first spring when the hoist brake is activated and when the suspension is broken when the car is positioned near the lowest floor. 実施の形態3のかごが最上階付近に位置しているときに、巻上機ブレーキが作動した場合と、懸架体が破断した場合とにおける第1伝達部材の位置の変化を示すグラフである。10 is a graph showing changes in the position of the first transmission member when the hoisting machine brake is activated and when the suspension body is broken when the car of the third embodiment is located near the top floor. 実施の形態3のかごが最下階付近に位置しているときに、巻上機ブレーキが作動した場合と、懸架体が破断した場合とにおける第1伝達部材の位置の変化を示すグラフである。10 is a graph showing changes in the position of the first transmission member when the hoisting machine brake is activated and when the suspension body is broken when the car of Embodiment 3 is positioned near the lowest floor. . 実施の形態4によるエレベーター装置のかごの下部を示す構成図である。FIG. 12 is a configuration diagram showing the lower part of the car of the elevator device according to Embodiment 4; 非常止め装置の作動時における図28の加速度式作動装置の状態を示す構成図である。FIG. 29 is a configuration diagram showing the state of the acceleration type actuator of FIG. 28 when the safety device is actuated; かごが最下階付近に位置しているときに、巻上機ブレーキが作動した場合と、懸架体が破断した場合とにおけるかごの加速度の変化を示すグラフである。4 is a graph showing changes in the acceleration of the car when the hoist brake is activated and when the suspension is broken when the car is positioned near the lowest floor. かごが最上階付近に位置しているときに、巻上機ブレーキが作動した場合と、懸架体が破断した場合とにおけるかごの加速度の変化を示すグラフである。5 is a graph showing changes in the acceleration of the car when the hoist brake is activated and when the suspension is broken when the car is positioned near the top floor. 実施の形態4のかごが最下階付近に位置しているときに、巻上機ブレーキが作動した場合と、懸架体が破断した場合とにおける第2伝達部材の位置の変化を示すグラフである。10 is a graph showing changes in the position of the second transmission member when the hoist brake is activated and when the suspension body is broken when the car of the fourth embodiment is located near the lowest floor. . 実施の形態4のかごが最上階付近に位置しているときに、巻上機ブレーキが作動した場合と、懸架体が破断した場合とにおける第2伝達部材の位置の変化を示すグラフである。10 is a graph showing changes in the position of the second transmission member when the hoisting machine brake is activated and when the suspension body is broken when the car of the fourth embodiment is located near the top floor. 実施の形態5によるエレベーター装置の非常止め装置を作動させる機構を模式的に示す構成図である。FIG. 11 is a configuration diagram schematically showing a mechanism for operating a safety device of an elevator device according to Embodiment 5; 非常止め装置が作動していない状態における図34の第1作動レバー、第1伝達部材、及び第2伝達部材の関係を示す側面図である。FIG. 35 is a side view showing the relationship between the first operating lever, the first transmission member, and the second transmission member in FIG. 34 when the safety device is not actuated; 張力式作動装置によって非常止め装置が作動した状態における図34の第1作動レバー、第1伝達部材、及び第2伝達部材の関係を示す側面図である。FIG. 35 is a side view showing the relationship between the first operating lever, the first transmission member, and the second transmission member in FIG. 34 when the safety device is actuated by the tension type actuator; 実施の形態6によるエレベーター装置の非常止め装置を作動させる機構を模式的に示す構成図である。FIG. 11 is a configuration diagram schematically showing a mechanism for operating a safety device of an elevator device according to Embodiment 6;
 以下、実施の形態について、図面を参照して説明する。
 実施の形態1.
 図1は、実施の形態1によるエレベーター装置を模式的に示す構成図である。図において、昇降路1の上には、機械室2が設けられている。機械室2には、巻上機3、そらせ車4、及び制御装置5が設置されている。
Hereinafter, embodiments will be described with reference to the drawings.
Embodiment 1.
FIG. 1 is a configuration diagram schematically showing an elevator device according to Embodiment 1. FIG. In the figure, a machine room 2 is provided above the hoistway 1 . In the machine room 2, a hoisting machine 3, a deflection wheel 4, and a control device 5 are installed.
 巻上機3は、駆動シーブ6と、図示しない巻上機モーターと、巻上機ブレーキ7とを有している。巻上機モーターは、駆動シーブ6を回転させる。巻上機ブレーキ7は、駆動シーブ6の静止状態を保持する。また、巻上機ブレーキ7は、駆動シーブ6の回転を制動する。巻上機ブレーキ7としては、電磁ブレーキが用いられている。 The hoisting machine 3 has a drive sheave 6 , a hoisting machine motor (not shown), and a hoisting machine brake 7 . A hoist motor rotates the drive sheave 6 . The hoist brake 7 keeps the drive sheave 6 stationary. The hoist brake 7 also brakes the rotation of the drive sheave 6 . An electromagnetic brake is used as the hoist brake 7 .
 駆動シーブ6及びそらせ車4には、懸架体8が巻き掛けられている。懸架体8は、可撓性を有している。懸架体8としては、複数本のロープ又は複数本のベルトが用いられている。懸架体8の第1端部には、昇降体としてのかご9が接続されている。懸架体8の第2端部には、釣合おもり10が接続されている。 A suspension 8 is wound around the drive sheave 6 and the deflector wheel 4 . The suspension body 8 has flexibility. A plurality of ropes or a plurality of belts are used as the suspension body 8 . A car 9 as an elevating body is connected to a first end of the suspension body 8 . A counterweight 10 is connected to the second end of the suspension 8 .
 かご9及び釣合おもり10は、懸架体8により昇降路1内に吊り下げられている。また、かご9及び釣合おもり10は、駆動シーブ6を回転させることによって昇降する。制御装置5は、巻上機3を制御することによって、かご9の運行を制御する。 The car 9 and the counterweight 10 are suspended in the hoistway 1 by the suspension 8. Also, the car 9 and the counterweight 10 are raised and lowered by rotating the drive sheave 6 . The control device 5 controls the operation of the car 9 by controlling the hoisting machine 3 .
 昇降路1内には、一対のかごガイドレール11と、一対の釣合おもりガイドレール12とが設置されている。一対のかごガイドレール11は、かご9の昇降を案内する。一対の釣合おもりガイドレール12は、釣合おもり10の昇降を案内する。 A pair of car guide rails 11 and a pair of counterweight guide rails 12 are installed in the hoistway 1 . A pair of car guide rails 11 guides the car 9 to move up and down. A pair of counterweight guide rails 12 guide the lifting and lowering of the counterweight 10 .
 昇降路1のピット1aには、かご緩衝器13と、釣合おもり緩衝器14とが設置されている。ピット1aは、昇降路1の一部であって、最下階床面よりも下の部分である。 A car shock absorber 13 and a counterweight shock absorber 14 are installed in the pit 1a of the hoistway 1. The pit 1a is a part of the hoistway 1 and is the part below the floor of the lowest floor.
 かご9の下部には、非常止め装置15及び張力式作動装置16が搭載されている。非常止め装置15は、一対のかごガイドレール11を把持することによって、かご9を非常停止させる。非常止め装置15としては、次第ぎき式非常止め装置が用いられている。一般に、定格速度が45m/minを超えるエレベーターでは、次第ぎき式非常止め装置が用いられている。 A safety device 15 and a tension actuator 16 are mounted on the lower part of the car 9 . The emergency stop device 15 brings the car 9 to an emergency stop by gripping the pair of car guide rails 11 . As the safety device 15, a gradual safety device is used. In general, an elevator with a rated speed exceeding 45 m/min uses a step-by-step safety device.
 かご9の下部と釣合おもり10の下部との間には、被検出体としてのコンペンセーティング体17が吊り下げられている。コンペンセーティング体17は、駆動シーブ6の一側と他側とにおける懸架体8の重量不均衡を補償する。 A compensating body 17 as an object to be detected is suspended between the lower part of the car 9 and the lower part of the counterweight 10 . The compensating body 17 compensates for the weight imbalance of the suspension 8 on one side of the drive sheave 6 and the other.
 コンペンセーティング体17は、可撓性を有している。コンペンセーティング体17としては、例えば、複数本のコンペンセーティングロープ、又は釣合鎖が用いられている。コンペンセーティング体17は、かご9の下部において張力式作動装置16に接続されている。 The compensating body 17 has flexibility. As the compensating body 17, for example, a plurality of compensating ropes or balancing chains are used. A compensating body 17 is connected to the tension actuator 16 in the lower part of the car 9 .
 ピット1aには、釣合車18が設けられている。コンペンセーティング体17は、釣合車18に巻き掛けられている。釣合車18は、コンペンセーティング体17により吊り下げられている。これにより、釣合車18は、コンペンセーティング体17に張力を与えている。コンペンセーティング体17において、かご9の下部及び釣合おもり10の下部の吊り下げ部における張力は、かご9の昇降に伴って変動する。 A balance wheel 18 is provided in the pit 1a. The compensating body 17 is wound around the balance wheel 18 . The balance wheel 18 is suspended by the compensating body 17 . Thereby, the balance wheel 18 applies tension to the compensating body 17 . In the compensating body 17, the tension in the hanging portions of the lower portion of the car 9 and the lower portion of the counterweight 10 fluctuates as the car 9 moves up and down.
 張力式作動装置16は、コンペンセーティング体17の張力変動に基づいて、非常止め装置15を作動させる。 The tension type actuator 16 operates the safety device 15 based on the tension fluctuation of the compensating body 17 .
 かご9には、速度検出器19が設けられている。速度検出器19は、かご9の速度に応じた信号を発生する。速度検出器19からの信号は、図示しない制御ケーブルを介して、制御装置5に送信される。制御装置5には、過大速度が設定されている。過大速度は、かご9の定格速度よりも高い速度、例えば定格速度の1.3倍に設定されている。 A speed detector 19 is provided in the car 9 . Speed detector 19 generates a signal corresponding to the speed of car 9 . A signal from the speed detector 19 is transmitted to the control device 5 via a control cable (not shown). An excessive speed is set in the control device 5 . The excessive speed is set to a speed higher than the rated speed of the car 9, for example, 1.3 times the rated speed.
 かご9の速度が過大速度となると、制御装置5によって巻上機3への電力の供給が遮断される。これにより、巻上機ブレーキ7が作動し、駆動シーブ6の回転が制動され、かご9が急停止する。 When the speed of the car 9 becomes excessively high, the power supply to the hoisting machine 3 is cut off by the control device 5 . As a result, the hoisting machine brake 7 is activated, the rotation of the drive sheave 6 is braked, and the car 9 is brought to a sudden stop.
 なお、速度検出器19による検出値が過大速度になると、図示しない安全回路が直ちに遮断されて、巻上機3への電力供給が遮断されてもよい。 It should be noted that when the detected value by the speed detector 19 becomes an excessive speed, a safety circuit (not shown) may be immediately cut off to cut off the power supply to the hoisting machine 3 .
 速度検出器19としては、電気式センサー、光学式センサー、機械式センサー等を用いることができる。また、速度検出器19としては、かご9の変位の絶対値を検出する絶対値センサーを用いることができる。 An electric sensor, an optical sensor, a mechanical sensor, or the like can be used as the speed detector 19. As the speed detector 19, an absolute value sensor for detecting the absolute value of displacement of the car 9 can be used.
 機械式センサーは、例えば、検出回転体と、遠心機構と、過大速度検出スイッチとを有している。検出回転体は、かごガイドレール11に接触しながら回転する。遠心機構は、検出回転体に設けられており、検出回転体の回転速度に応じて変位する。過大速度検出スイッチは、かご9の速度が過大速度となったときに、遠心機構によって操作される。過大速度検出スイッチが操作されると、巻上機3への電力の供給が遮断される。 A mechanical sensor has, for example, a detection rotor, a centrifugal mechanism, and an excessive speed detection switch. The detection rotator rotates while contacting the car guide rail 11 . The centrifugal mechanism is provided on the detection rotor and is displaced according to the rotation speed of the detection rotor. The excessive speed detection switch is operated by the centrifugal mechanism when the speed of the car 9 becomes excessive. When the excessive speed detection switch is operated, power supply to the hoisting machine 3 is cut off.
 図2は、図1のかごガイドレール11と非常止め装置15との関係を示す正面図である。図3は、図2のIII-III線に沿う断面図である。図4は、図1の非常止め装置15の作動時の状態を示す正面図である。図5は、図4のV-V線に沿う断面図である。 FIG. 2 is a front view showing the relationship between the car guide rail 11 and the safety device 15 in FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. FIG. FIG. 4 is a front view showing the operating state of the safety device 15 of FIG. 5 is a cross-sectional view taken along line VV of FIG. 4. FIG.
 非常止め装置15は、枠体21と、一対の把持部22とを有している。一対の把持部22のうちの一方は、一対のかごガイドレール11のうちの一方に対応している。一対の把持部22のうちの他方は、一対のかごガイドレール11のうちの他方に対応している。また、一対の把持部22は、枠体21に設けられている。図2~5では、一対の把持部22のうちの一方のみが示されている。 The safety device 15 has a frame 21 and a pair of grips 22 . One of the pair of gripping portions 22 corresponds to one of the pair of car guide rails 11 . The other of the pair of gripping portions 22 corresponds to the other of the pair of car guide rails 11 . Also, the pair of grips 22 are provided on the frame 21 . 2-5, only one of the pair of grips 22 is shown.
 各把持部22は、一対の楔部材23、一対の楔ガイド24、及び複数の楔ガイドばね25を有している。 Each gripping portion 22 has a pair of wedge members 23 , a pair of wedge guides 24 and a plurality of wedge guide springs 25 .
 一対の楔部材23は、対応するかごガイドレール11にそれぞれ対向している。各楔ガイド24には、傾斜面24aが設けられている。傾斜面24aは、上方へ行くに従ってかごガイドレール11に近付いている。 A pair of wedge members 23 are opposed to corresponding car guide rails 11 respectively. Each wedge guide 24 is provided with an inclined surface 24a. The inclined surface 24a approaches the car guide rail 11 as it goes upward.
 各楔部材23は、対応する楔ガイド24の傾斜面24aに沿って、枠体21に対して上下動可能である。楔ガイドばね25は、枠体21と楔ガイド24との間に設けられている。 Each wedge member 23 is vertically movable with respect to the frame 21 along the inclined surface 24 a of the corresponding wedge guide 24 . The wedge guide spring 25 is provided between the frame 21 and the wedge guide 24 .
 通常時には、各楔部材23は、図2に示すように、対応するかごガイドレール11に隙間を介して対向している。これに対して、非常止め装置15の作動時には、各楔部材23が上方向へ動かされる。このとき、各楔部材23は、傾斜面24aに案内されてかごガイドレール11に近付いて行き、かごガイドレール11に接触する。 Normally, each wedge member 23 faces the corresponding car guide rail 11 with a gap therebetween, as shown in FIG. On the other hand, when the safety device 15 is actuated, each wedge member 23 is moved upward. At this time, each wedge member 23 is guided by the inclined surface 24 a to approach the car guide rail 11 and come into contact with the car guide rail 11 .
 各楔部材23がさらに上方向へ動かされると、各楔部材23は、楔ガイドばね25を縮めるように楔ガイド24を水平方向へ押しながら上方へ移動する。各かごガイドレール11と、対応する把持部22との間に発生する摩擦力は、枠体21に対する各楔部材23の上昇量に応じて増大する。これにより、各かごガイドレール11は、対応する把持部22によって把持され、かご9が非常停止する。 When each wedge member 23 is further moved upward, each wedge member 23 moves upward while pushing the wedge guide 24 horizontally so as to contract the wedge guide spring 25 . The frictional force generated between each car guide rail 11 and the corresponding gripping portion 22 increases according to the amount of rise of each wedge member 23 with respect to the frame 21 . As a result, each car guide rail 11 is gripped by the corresponding gripping portion 22, and the car 9 is brought to an emergency stop.
 図6は、図1のかご9の下部を示す構成図である。非常止め装置15は、枠体21及び一対の把持部22に加えて、第1作動レバー26a、第2作動レバー26b、及び連動機構27を有している。 FIG. 6 is a configuration diagram showing the lower part of the car 9 in FIG. The safety device 15 has a first operating lever 26 a , a second operating lever 26 b , and an interlocking mechanism 27 in addition to the frame 21 and the pair of grips 22 .
 第1作動レバー26a及び第2作動レバー26bのそれぞれは、対応する一対の楔部材23に連結されている。非常止め装置15は、第1作動レバー26a及び第2作動レバー26bが回転することによって作動する。 Each of the first operating lever 26a and the second operating lever 26b is connected to a corresponding pair of wedge members 23 . The safety device 15 operates by rotating the first operating lever 26a and the second operating lever 26b.
 連動機構27は、第1作動レバー26aの動きを、第2作動レバー26bに伝達し、第2作動レバー26bを第1作動レバー26aに連動させる。 The interlocking mechanism 27 transmits the movement of the first operating lever 26a to the second operating lever 26b, and interlocks the second operating lever 26b with the first operating lever 26a.
 張力式作動装置16は、可動プレート31、周波数フィルターとしてのフィルター機構32、及び第1伝達部材33を有している。可動プレート31は、接続ロッド28に対して固定されている。 The tension type actuator 16 has a movable plate 31 , a filter mechanism 32 as a frequency filter, and a first transmission member 33 . The movable plate 31 is fixed with respect to the connecting rod 28 .
 フィルター機構32は、ローパスフィルター34と、ハイパスフィルター35とを有している。フィルター機構32は、バンドパスフィルターとして機能する。張力式作動装置16は、フィルター機構32を通過したコンペンセーティング体17の張力に基づいて、非常止め装置15を作動させる The filter mechanism 32 has a low-pass filter 34 and a high-pass filter 35 . Filter mechanism 32 functions as a bandpass filter. The tension type actuator 16 operates the emergency stop device 15 based on the tension of the compensating body 17 that has passed through the filter mechanism 32.
 ローパスフィルター34は、第1ばね36と、第1ダンパー37とを有している。第1ばね36は、可動プレート31と枠体21との間、即ち可動プレート31とかご9との間に配置されている。第1ダンパー37は、可動プレート31と枠体21との間に、第1ばね36に対して並列に配置されている。 The low-pass filter 34 has a first spring 36 and a first damper 37. The first spring 36 is arranged between the movable plate 31 and the frame 21 , that is, between the movable plate 31 and the car 9 . The first damper 37 is arranged in parallel with the first spring 36 between the movable plate 31 and the frame 21 .
 コンペンセーティング体17は、接続ロッド28及び第1ばね36を介して、かご9の下部に接続されている。第1ばね36は、コンペンセーティング体17の張力を支持している。即ち、第1ばね36は、コンペンセーティング体17の張力に応じて伸縮する。 The compensating body 17 is connected to the lower portion of the car 9 via the connecting rod 28 and the first spring 36. A first spring 36 supports the tension of the compensating body 17 . That is, the first spring 36 expands and contracts according to the tension of the compensating body 17 .
 コンペンセーティング体17の張力が高いほど、第1ばね36の圧縮量が大きくなり、可動プレート31の下方への変位量が大きくなる。 The higher the tension of the compensating body 17, the greater the amount of compression of the first spring 36 and the greater the amount of downward displacement of the movable plate 31.
 ローパスフィルター34は、コンペンセーティング体17における第1設定値以上の周波数の張力変動の振幅を低減する。即ち、ローパスフィルター34による遮断周波数は、第1設定値以上の周波数である。第1設定値は、巻上機ブレーキ7の作動時におけるコンペンセーティング体17の張力変動の周波数以下の値である。 The low-pass filter 34 reduces the amplitude of tension fluctuations at frequencies above the first set value in the compensating body 17 . That is, the cutoff frequency of the low-pass filter 34 is a frequency equal to or higher than the first set value. The first set value is a value equal to or less than the frequency of tension fluctuation of the compensating body 17 when the hoisting machine brake 7 is operated.
 ハイパスフィルター35は、可動プレート31と枠体21との間に、第1ダンパー37に対して並列に配置されている。また、ハイパスフィルター35は、ローパスフィルター34と非常止め装置15との間に配置されている。 The high-pass filter 35 is arranged in parallel with the first damper 37 between the movable plate 31 and the frame 21 . Also, the high-pass filter 35 is arranged between the low-pass filter 34 and the emergency stop device 15 .
 また、ハイパスフィルター35は、第2ダンパー38と、第2ばね39とを有している。第2ばね39は、第2ダンパー38の下方に配置されているとともに、第2ダンパー38に対して直列に接続されている。 Also, the high-pass filter 35 has a second damper 38 and a second spring 39 . The second spring 39 is arranged below the second damper 38 and connected in series with the second damper 38 .
 ハイパスフィルター35は、コンペンセーティング体17における第2設定値以下の周波数の張力変動の振幅を低減する。即ち、ハイパスフィルター35による遮断周波数は、第2設定値以下の周波数である。第2設定値は、第1設定値よりも低い値である。また、第2設定値は、かご9の通常走行によるコンペンセーティング体17の張力変動に含まれる時間変動するDC成分、即ち直流成分を除去可能な周波数以上の値である。 The high-pass filter 35 reduces the amplitude of tension fluctuations at frequencies below the second set value in the compensating body 17 . That is, the cutoff frequency by the high-pass filter 35 is a frequency equal to or lower than the second set value. The second set value is a value lower than the first set value. Further, the second set value is a value equal to or higher than a frequency capable of removing the time-varying DC component included in the tension fluctuation of the compensating body 17 due to normal running of the car 9, that is, the DC component.
 ローパスフィルター34による遮断周波数は、第1ばね36のばね定数k1と、第1ダンパー37の減衰係数c1との比k1/c1によって決まる。ハイパスフィルター35による遮断周波数は、第2ばね39のばね定数k2と、第2ダンパー38の減衰係数c2との比k2/c2によって決まる。 The cutoff frequency of the low-pass filter 34 is determined by the ratio k1/c1 between the spring constant k1 of the first spring 36 and the damping coefficient c1 of the first damper 37. The cutoff frequency of the high-pass filter 35 is determined by the ratio k2/c2 between the spring constant k2 of the second spring 39 and the damping coefficient c2 of the second damper 38 .
 また、第1ばね36のばね定数k1は、第2ばね39のばね定数k2よりも十分に大きい。即ち、第2ばね39の剛性値は、第1ばね36の剛性値に対して十分小さい。このため、第2ばね39は、第1ばね36の変位に対して影響を与えない。 Also, the spring constant k1 of the first spring 36 is sufficiently larger than the spring constant k2 of the second spring 39 . That is, the stiffness value of the second spring 39 is sufficiently smaller than the stiffness value of the first spring 36 . Therefore, the second spring 39 does not affect the displacement of the first spring 36 .
 第1伝達部材33は、ハイパスフィルター35における第2ダンパー38と第2ばね39との間の部分と、第1作動レバー26aとの間に連結されている。また、第1伝達部材33は、ハイパスフィルター35の動きを第1作動レバー26aに伝達する。 The first transmission member 33 is connected between the portion of the high-pass filter 35 between the second damper 38 and the second spring 39 and the first operating lever 26a. Also, the first transmission member 33 transmits the movement of the high-pass filter 35 to the first operating lever 26a.
 図7は、図6の張力式作動装置16により非常止め装置15が作動した状態を示す構成図である。懸架体8が破断してかご9が落下するとき、コンペンセーティング体17の張力が急激に減少する。これにより、第1ばね36が伸長し、可動プレート31及び第1伝達部材33が上方へ変位する。そして、第1作動レバー26a及び第2作動レバー26bが同時に回転し、各把持部22における一対の楔部材23が上方向へ動かされる。 FIG. 7 is a configuration diagram showing a state in which the safety device 15 is actuated by the tension type actuator 16 of FIG. When the suspension 8 breaks and the car 9 falls, the tension of the compensating body 17 is rapidly reduced. As a result, the first spring 36 expands, and the movable plate 31 and the first transmission member 33 are displaced upward. Then, the first operating lever 26a and the second operating lever 26b rotate simultaneously, and the pair of wedge members 23 in each grip portion 22 are moved upward.
 図8は、かご9が最下階から最上階まで走行したときに第1ばね36が受けるコンペンセーティング体17の張力の変化を示すグラフである。かご9から釣合車18までのコンペンセーティング体17の質量を、コンペンセーティング体17の実効質量とする。コンペンセーティング体17の長さ及び実効質量は、かご9の高さに比例して大きくなる。このため、かご9が最下階から最上階まで走行すると、第1ばね36が受ける張力は徐々に大きくなる。 FIG. 8 is a graph showing changes in the tension of the compensating body 17 that the first spring 36 receives when the car 9 travels from the lowest floor to the highest floor. The mass of the compensating body 17 from the car 9 to the balance wheel 18 is defined as the effective mass of the compensating body 17 . The length and effective mass of compensating body 17 increase in proportion to the height of car 9 . Therefore, when the car 9 travels from the lowest floor to the highest floor, the tension applied to the first spring 36 gradually increases.
 図9は、かご9が最下階から最上階まで走行したときの可動プレート31の下方への変位量の変化を示すグラフである。かご9が最下階から最上階まで走行すると、かご9の高さに比例して第1ばね36が圧縮され、可動プレート31の下方への変位量も連続的に大きくなる。 FIG. 9 is a graph showing changes in the amount of downward displacement of the movable plate 31 when the car 9 travels from the lowest floor to the highest floor. As the car 9 travels from the lowest floor to the highest floor, the first spring 36 is compressed in proportion to the height of the car 9, and the amount of downward displacement of the movable plate 31 also increases continuously.
 図10は、図6の張力式作動装置16を模式的に示す説明図である。図11は、かご9が最下階から最上階まで走行したときの張力式作動装置16の状態を模式的に示す説明図である。図12は、かご9が最下階から最上階まで走行したときの第1伝達部材33の位置の変化を示すグラフである。 FIG. 10 is an explanatory diagram schematically showing the tension type actuator 16 of FIG. FIG. 11 is an explanatory diagram schematically showing the state of the tension actuator 16 when the car 9 travels from the lowest floor to the highest floor. FIG. 12 is a graph showing changes in the position of the first transmission member 33 when the car 9 travels from the lowest floor to the highest floor.
 第1ばね36の圧縮量、第1ダンパー37の圧縮量、及び第2ダンパー38の圧縮量は、第1ばね36が受けるコンペンセーティング体17の張力が高いほど大きくなる。しかし、かご9の通常走行時のコンペンセーティング体17の張力変動は、図8に示すように滑らかであり、振動を伴わないDC成分の変動である。 The compression amount of the first spring 36, the compression amount of the first damper 37, and the compression amount of the second damper 38 increase as the tension of the compensating body 17 received by the first spring 36 increases. However, the tension fluctuation of the compensating body 17 during normal running of the car 9 is smooth as shown in FIG. 8 and is a DC component fluctuation without vibration.
 このため、第2ダンパー38は、図8の勾配に相当するDC成分の変化率に比例した力が作用することにより、時間とともに圧縮される。しかしながら、この変化率は非常に小さな値であるため、第2ダンパー38に作用する力は一定の小さな値となる。第2ダンパー38と第2ばね39とは直列に配置されているため、第2ばね39には、この第2ダンパー38に作用する力がそのまま作用する。これにより、第2ばね39と連結された第1伝達部材33は、図12に示すように少しだけ押し下げられた後、一定の変位を保つ。 Therefore, the second damper 38 is compressed over time due to the action of a force proportional to the rate of change of the DC component corresponding to the gradient in FIG. However, since this rate of change is a very small value, the force acting on the second damper 38 is a constant small value. Since the second damper 38 and the second spring 39 are arranged in series, the force acting on the second damper 38 acts on the second spring 39 as it is. As a result, the first transmission member 33, which is connected to the second spring 39, is slightly pushed down as shown in FIG. 12, and then maintains a constant displacement.
 図13は、かご9が最上階から最下階まで走行したときの第1伝達部材33の位置の変化を示すグラフである。図13の縦軸は、第2ばね39が伸びる方向の変位を示している。 FIG. 13 is a graph showing changes in the position of the first transmission member 33 when the car 9 travels from the top floor to the bottom floor. The vertical axis in FIG. 13 indicates displacement in the direction in which the second spring 39 extends.
 かご9が最上階から最下階へ走行すると、コンペンセーティング体17の張力は、次第に減少する。この場合、第1ばね36が伸びる方向の動きを示すため、第1ばね36及び可動プレート31は上方へ変位する。この可動プレート31の上方向への動きによって、第2ダンパー38も伸ばされる動きとなり、第2ばね39も上方へ伸ばされる。 As the car 9 travels from the top floor to the bottom floor, the tension of the compensating body 17 gradually decreases. In this case, the first spring 36 and the movable plate 31 are displaced upward because the first spring 36 exhibits movement in the extending direction. Due to this upward movement of the movable plate 31, the second damper 38 is also stretched, and the second spring 39 is also stretched upward.
 よって、第2ばね39と連結された第1伝達部材33も、図13に示すように、上向きにわずかに動くものの、ハイパスフィルター35によって、一定以上の引き上げ量とはならない。このため、第1伝達部材33は、図13に示すように、非常止め装置15を作動させる位置である作動位置P1までは到達しない。 Therefore, although the first transmission member 33 connected to the second spring 39 also slightly moves upward as shown in FIG. Therefore, as shown in FIG. 13, the first transmission member 33 does not reach the operating position P1 at which the safety device 15 is operated.
 従って、かご9の通常走行によるコンペンセーティング体17の振動を伴わないDC成分の張力変動による非常止め装置15の誤作動を抑制することができる。 Therefore, it is possible to suppress malfunction of the emergency stop device 15 due to tension variation of the DC component that is not accompanied by vibration of the compensating body 17 due to normal running of the car 9 .
 図14は、巻上機ブレーキ7の作動時に第1ばね36が受けるコンペンセーティング体17の張力の変化を示すグラフである。図15は、巻上機ブレーキ7の作動時における可動プレート31の位置の変化を示すグラフである。 FIG. 14 is a graph showing changes in the tension of the compensating body 17 received by the first spring 36 when the hoisting machine brake 7 is actuated. FIG. 15 is a graph showing changes in the position of the movable plate 31 when the hoisting machine brake 7 is activated.
 時刻t1に巻上機ブレーキ7が作動すると、かご9は、一定の減速度で減速する。このとき、第1ばね36が受ける張力は図14に示すように変化する。 When the hoisting machine brake 7 is activated at time t1, the car 9 decelerates at a constant deceleration. At this time, the tension applied to the first spring 36 changes as shown in FIG.
 また、巻上機ブレーキ7が作動すると、可動プレート31は第1ばね36が受ける張力の平均値分だけ変動する。第1ばね36に並列に第1ダンパー37が配置されているため、コンペンセーティング体17の張力変動は、第1ダンパー37によって吸収される。これにより、第1ばね36の伸縮及び可動プレート31の上下動が抑制され、第1伝達部材33の上下振動も抑制される。 Further, when the hoisting machine brake 7 operates, the movable plate 31 fluctuates by the average value of the tension that the first spring 36 receives. Since the first damper 37 is arranged in parallel with the first spring 36 , tension fluctuations of the compensating body 17 are absorbed by the first damper 37 . As a result, the expansion and contraction of the first spring 36 and the vertical movement of the movable plate 31 are suppressed, and the vertical vibration of the first transmission member 33 is also suppressed.
 従って、巻上機ブレーキ7の作動時のコンペンセーティング体17の振動を伴う張力変動による非常止め装置15の誤作動を抑制することができる。 Therefore, it is possible to suppress malfunction of the emergency stop device 15 due to tension fluctuations accompanied by vibration of the compensating body 17 when the hoisting machine brake 7 is activated.
 図16は、懸架体8の破断時における張力式作動装置16の状態を模式的に示す説明図である。懸架体8の破断時には、第1ばね36及び第1ダンパー37が伸長し、可動プレート31が上方へ変位する。このとき、第2ダンパー38は、可動プレート31のステップ状の上方変位に対して追従することができず、伸長しないが、第2ばね39が伸長し、第1伝達部材33が上方へ変位する。これにより、第1作動レバー26a及び第2作動レバー26bが回転し、非常止め装置15が作動する。 FIG. 16 is an explanatory view schematically showing the state of the tension type actuator 16 when the suspension 8 is broken. When the suspension body 8 breaks, the first spring 36 and the first damper 37 are extended, and the movable plate 31 is displaced upward. At this time, the second damper 38 cannot follow the stepwise upward displacement of the movable plate 31 and does not expand, but the second spring 39 expands and the first transmission member 33 is displaced upward. . As a result, the first operating lever 26a and the second operating lever 26b are rotated, and the safety device 15 is operated.
 図17は、かご9が上方向へ走行しているときに巻上機ブレーキ7が作動した場合におけるかご9の下向きの加速度の変化と、懸架体8が破断した場合におけるかご9の下向きの加速度の変化とを示すグラフである。 FIG. 17 shows changes in the downward acceleration of the car 9 when the hoist brake 7 is activated while the car 9 is traveling upward, and the downward acceleration of the car 9 when the suspension 8 is broken. is a graph showing changes in
 時刻t1に巻上機ブレーキ7が作動した場合も、時刻t1に懸架体8が破断した場合も、かご9の加速度はステップ状に変化する。但し、懸架体8の破断時のかご9の加速度は、巻上機ブレーキ7の作動時におけるかご9の加速度よりも大きい。 When the hoisting machine brake 7 is activated at time t1 and when the suspension 8 is broken at time t1, the acceleration of the car 9 changes stepwise. However, the acceleration of the car 9 when the suspension 8 is broken is greater than the acceleration of the car 9 when the hoisting machine brake 7 is activated.
 図18は、かご9が上方向へ走行しているときに巻上機ブレーキ7が作動した場合に第1ばね36が受ける張力の変化と、懸架体8が破断した場合に第1ばね36が受ける張力の変化とを示すグラフである。 FIG. 18 shows the change in the tension applied to the first spring 36 when the hoist brake 7 is operated while the car 9 is traveling upward, and the tension applied to the first spring 36 when the suspension 8 is broken. 4 is a graph showing changes in tension received;
 巻上機ブレーキ7が作動した場合の張力の変化量は、コンペンセーティング体17の実効質量とかご9の加速度との積となる。また、懸架体8が破断した場合の張力の変化量は、コンペンセーティング体17の実効質量とかご9の加速度の積に、釣合車18の重量の1/2を加えた値となる。 The amount of change in tension when the hoist brake 7 operates is the product of the effective mass of the compensating body 17 and the acceleration of the car 9 . Further, the amount of change in tension when the suspension body 8 breaks is the product of the effective mass of the compensating body 17 and the acceleration of the car 9 plus half the weight of the balance wheel 18 .
 図19は、かご9が上方向へ走行しているときに巻上機ブレーキ7が作動した場合における第1伝達部材33の位置の変化と、懸架体8が破断した場合における第1伝達部材33の位置の変化とを示すグラフである。なお、図19では、図15に示した振動成分は無視されている。 FIG. 19 shows changes in the position of the first transmission member 33 when the hoisting machine brake 7 is activated while the car 9 is traveling upward, and the position of the first transmission member 33 when the suspension 8 is broken. is a graph showing changes in the position of . 19, the vibration component shown in FIG. 15 is ignored.
 可動プレート31の位置がステップ状に変化すると、第1伝達部材33は、第2ダンパー38の効果によって、時間遅れを伴いながら上方へ変位する。この後、加速度が一定値となるため、第2ダンパー38の減衰力が開放され、第1伝達部材33は、第2ばね39の初期位置まで戻る。 When the position of the movable plate 31 changes stepwise, the first transmission member 33 is displaced upward with a time delay due to the effect of the second damper 38 . After that, since the acceleration becomes a constant value, the damping force of the second damper 38 is released, and the first transmission member 33 returns to the initial position of the second spring 39 .
 巻上機ブレーキ7が作動した場合におけるかご9の加速度は、懸架体8が破断した場合におけるかご9の加速度よりも小さい。よって、巻上機ブレーキ7が作動した場合におけるコンペンセーティング体17の張力減少量は、懸架体8が破断した場合におけるコンペンセーティング体17の張力減少量よりも小さい。そして、巻上機ブレーキ7が作動した場合における第1伝達部材33の上方への変位量は、懸架体8が破断した場合における第1伝達部材33の上方への変位量よりも小さい。 The acceleration of the car 9 when the hoisting machine brake 7 is activated is smaller than the acceleration of the car 9 when the suspension 8 is broken. Therefore, the amount of decrease in tension of the compensating body 17 when the hoist brake 7 is actuated is smaller than the amount of decrease in tension of the compensating body 17 when the suspension body 8 is broken. The amount of upward displacement of the first transmission member 33 when the hoist brake 7 is actuated is smaller than the amount of upward displacement of the first transmission member 33 when the suspension 8 is broken.
 ここで、巻上機ブレーキ7の作動時における第1伝達部材33の変位量をΔxe、懸架体8の破断時における第1伝達部材33の変位量をΔxr、作動位置P1までの第1伝達部材33の変位量をΔxsとする。Δxe<Δxs<Δxrを満たすように作動位置P1を設定することによって、懸架体8の破断時に非常止め装置15を直ちに作動させることができる。また、巻上機ブレーキ7の作動時における非常止め装置15の誤作動を、より確実に抑制することができる。 Here, the displacement amount of the first transmission member 33 when the hoisting machine brake 7 is activated is Δxe, the displacement amount of the first transmission member 33 when the suspension body 8 is broken is Δxr, and the first transmission member up to the operation position P1 is Let the displacement amount of 33 be Δxs. By setting the actuation position P1 so as to satisfy Δxe<Δxs<Δxr, the emergency stop device 15 can be immediately actuated when the suspension body 8 breaks. In addition, malfunction of the emergency stop device 15 when the hoisting machine brake 7 is activated can be suppressed more reliably.
 このようなエレベーター装置では、フィルター機構32は、コンペンセーティング体17における第1設定値以上の周波数の張力変動の振幅を低減する。また、フィルター機構32は、コンペンセーティング体17における、第1設定値よりも低い第2設定値以下の周波数の張力変動の振幅を低減する。そして、張力式作動装置16は、フィルター機構32を通過したコンペンセーティング体17の張力変動に基づいて、非常止め装置15を作動させる。 In such an elevator device, the filter mechanism 32 reduces the amplitude of tension fluctuations in the compensating body 17 at frequencies equal to or higher than the first set value. The filter mechanism 32 also reduces the amplitude of tension fluctuations in the compensating body 17 at frequencies equal to or lower than a second set value lower than the first set value. The tension type actuator 16 actuates the safety device 15 based on the tension fluctuation of the compensating body 17 that has passed through the filter mechanism 32 .
 このため、非常止め装置15を作動させる場合における張力変動以外の張力変動の影響を低減することができ、非常止め装置15の誤作動を抑制することができる。また、懸架体8の破断時には、非常止め装置15を直ちに作動させることができる。 Therefore, it is possible to reduce the influence of tension fluctuations other than tension fluctuations when operating the safety device 15, and to suppress malfunction of the safety device 15. Moreover, when the suspension body 8 breaks, the safety device 15 can be activated immediately.
 また、第1設定値は、巻上機ブレーキ7の作動時におけるコンペンセーティング体17の張力変動の周波数以下の値である。このため、巻上機ブレーキ7の作動時におけるコンペンセーティング体17の張力変動による非常止め装置15の誤作動をより確実に抑制することができる。 Also, the first set value is a value equal to or less than the frequency of tension fluctuation of the compensating body 17 when the hoisting machine brake 7 is operated. Therefore, it is possible to more reliably suppress malfunction of the emergency stop device 15 due to tension fluctuation of the compensating body 17 when the hoisting machine brake 7 is actuated.
 また、第2設定値は、かご9の通常走行によるコンペンセーティング体17の張力変動に含まれる時間変動するDC成分を除去可能な周波数以上の値である。このため、かご9の通常走行によるコンペンセーティング体17の張力変動による非常止め装置15の誤作動をより確実に抑制することができる。 Also, the second set value is a value equal to or higher than a frequency capable of removing the time-varying DC component included in the tension fluctuation of the compensating body 17 due to the normal running of the car 9 . Therefore, malfunction of the emergency stop device 15 due to tension fluctuation of the compensating body 17 due to normal running of the car 9 can be suppressed more reliably.
 ローパスフィルター34は、第1ばね36と第1ダンパー37とを有しており、ハイパスフィルター35は、第2ダンパー38と第2ばね39とを有している。このため、フィルター機構32を機械要素だけで構成することができ、電力を用いずに非常止め装置15を作動させることができる。 The low-pass filter 34 has a first spring 36 and a first damper 37 , and the high-pass filter 35 has a second damper 38 and a second spring 39 . Therefore, the filter mechanism 32 can be composed only of mechanical elements, and the safety device 15 can be operated without using electric power.
 また、調速機及び調速機ロープを省略することができ、機器コストを削減するとともに、昇降路1の省スペース化を実現することができる。 In addition, the speed governor and the speed governor rope can be omitted, reducing the equipment cost and realizing space saving of the hoistway 1.
 また、調速機ロープを省略することにより、地震時及び強風時に、調速機ロープが昇降路機器に引っ掛かることがなくなる。これにより、地震後の早期復帰が可能となる。 Also, by omitting the governor rope, the governor rope will not get caught on the hoistway equipment during earthquakes and strong winds. This enables early recovery after an earthquake.
 また、調速機ロープを用いることが難しい高揚程のエレベーター装置にも、張力式作動装置16を容易に適用することができる。 In addition, the tension type actuator 16 can be easily applied to a high lift elevator system in which it is difficult to use a governor rope.
 実施の形態2.
 次に、図20は、実施の形態2によるエレベーター装置のかご9の下部を示す構成図である。図20では、連動機構27と、第2作動レバー26bと、第2作動レバー26bに対応する楔部材23とが省略されている。
Embodiment 2.
Next, FIG. 20 is a configuration diagram showing the lower portion of the car 9 of the elevator apparatus according to Embodiment 2. As shown in FIG. 20, the interlocking mechanism 27, the second operating lever 26b, and the wedge member 23 corresponding to the second operating lever 26b are omitted.
 実施の形態2の張力式作動装置16は、ばね受け41、支持ばね42、張力センサー43、周波数フィルターとしてのバンドパスフィルター44、及びアクチュエーター45を有している。 The tension actuator 16 of Embodiment 2 has a spring bearing 41, a support spring 42, a tension sensor 43, a bandpass filter 44 as a frequency filter, and an actuator 45.
 ばね受け41は、接続ロッド28に固定されている。支持ばね42は、ばね受け41と枠体21との間に配置されている。また、支持ばね42は、コンペンセーティング体17の張力を支持している。 The spring bearing 41 is fixed to the connecting rod 28. The support spring 42 is arranged between the spring bearing 41 and the frame 21 . Also, the support spring 42 supports the tension of the compensating body 17 .
 張力センサー43は、ばね受け41と支持ばね42との間に配置されている。また、張力センサー43は、コンペンセーティング体17の張力に応じた電気信号を発生する。張力センサー43としては、例えばロードセルを用いることができる。 The tension sensor 43 is arranged between the spring bearing 41 and the support spring 42 . Also, the tension sensor 43 generates an electrical signal corresponding to the tension of the compensating body 17 . A load cell, for example, can be used as the tension sensor 43 .
 張力センサー43からの電気信号は、バンドパスフィルター44を通してアクチュエーター45に送られる。バンドパスフィルター44は、コンペンセーティング体17における第1設定値以上の周波数の張力変動の振幅を低減するとともに、コンペンセーティング体17における第2設定値以下の周波数の張力変動の振幅を低減する。実施の形態2では、バンドパスフィルター44は、張力センサー43からの電気信号を処理することによって、コンペンセーティング体17における、第1設定値以上の周波数及び第2設定値以下の周波数の張力変動を除去する。 An electrical signal from the tension sensor 43 is sent to the actuator 45 through the bandpass filter 44 . The band-pass filter 44 reduces the amplitude of tension fluctuations at frequencies above the first set value in the compensating body 17, and reduces the amplitude of tension fluctuations at frequencies below the second set value in the compensating body 17. . In the second embodiment, the band-pass filter 44 processes the electrical signal from the tension sensor 43 to detect tension fluctuations in the compensating body 17 at frequencies above the first set value and below the second set value. to remove
 アクチュエーター45は、バンドパスフィルター44を通過した電気信号に基づいて、第1作動レバー26aを回転させ非常止め装置15を作動させる。即ち、アクチュエーター45は、バンドパスフィルター44を通過したコンペンセーティング体17の張力変動に基づいて、非常止め装置15を作動させる。 The actuator 45 rotates the first operating lever 26a and operates the emergency stop device 15 based on the electrical signal that has passed through the bandpass filter 44. That is, the actuator 45 operates the safety device 15 based on the tension fluctuation of the compensating body 17 that has passed through the bandpass filter 44 .
 図20に示した張力式作動装置16を除くエレベーター装置の構成は、実施の形態1と同様である。 The configuration of the elevator device excluding the tension type actuator 16 shown in FIG. 20 is the same as that of the first embodiment.
 このような構成によっても、実施の形態1と同様の効果を得ることができる。また、張力センサー43、バンドパスフィルター44、及びアクチュエーター45の組み合わせが用いられているため、張力式作動装置16を小型化することができる。 Even with such a configuration, the same effect as in the first embodiment can be obtained. Also, since a combination of the tension sensor 43, the bandpass filter 44, and the actuator 45 is used, the tension type actuator 16 can be miniaturized.
 実施の形態3.
 次に、図21は、実施の形態3によるエレベーター装置のかご9の下部を示す構成図である。図22は、非常止め装置15の作動時における図21の張力式作動装置16の状態を示す構成図である。図21及び図22では、全ての楔部材23と、連動機構27と、第2作動レバー26bとが省略されている。図23は、図21の張力式作動装置16を模式的に示す説明図である。
Embodiment 3.
Next, FIG. 21 is a configuration diagram showing the lower portion of the car 9 of the elevator apparatus according to Embodiment 3. As shown in FIG. FIG. 22 is a configuration diagram showing the state of the tension type actuator 16 of FIG. 21 when the safety device 15 is actuated. 21 and 22 omit the wedge member 23, the interlocking mechanism 27, and the second operating lever 26b. FIG. 23 is an explanatory view schematically showing the tension actuator 16 of FIG. 21. As shown in FIG.
 実施の形態3の張力式作動装置16は、実施の形態1と同様の構成に加えて、ストッパー機構51を有している。 The tension type actuator 16 of Embodiment 3 has a stopper mechanism 51 in addition to the configuration similar to that of Embodiment 1.
 ストッパー機構51は、かご9の上昇時に、第1伝達部材33の上方への変位を規制することにより、非常止め装置15が作動する方向への第1作動レバー26aの変位を規制する。また、ストッパー機構51は、かご9の下降時に、第1伝達部材33の上方への変位を許容することにより、非常止め装置15が作動する方向への第1作動レバー26aの変位を許容する。 The stopper mechanism 51 restricts the displacement of the first operating lever 26a in the direction in which the safety device 15 operates by restricting the upward displacement of the first transmission member 33 when the car 9 is raised. In addition, the stopper mechanism 51 allows the displacement of the first operating lever 26a in the direction in which the safety device 15 is operated by allowing the first transmission member 33 to be displaced upward when the car 9 is lowered.
 ストッパー機構51は、ローラー52、ラチェット53、爪部材54、及びストッパー本体55を有している。 The stopper mechanism 51 has a roller 52 , a ratchet 53 , a pawl member 54 and a stopper body 55 .
 ローラー52は、枠体21に回転可能に設けられている。また、ローラー52は、かご9の昇降に伴って、一方のかごガイドレール11に接しながら回転する。ラチェット53は、ローラー52と同軸上に設けられている。また、ラチェット53は、ローラー52と一体に回転する。 The roller 52 is rotatably provided on the frame 21. Further, the rollers 52 rotate while being in contact with one of the car guide rails 11 as the car 9 moves up and down. The ratchet 53 is provided coaxially with the roller 52 . Also, the ratchet 53 rotates integrally with the roller 52 .
 爪部材54は、枠体21に回転可能に設けられている。また、爪部材54の一端は、ラチェット53の歯と噛み合っている。 The claw member 54 is rotatably provided on the frame body 21 . Also, one end of the pawl member 54 meshes with the teeth of the ratchet 53 .
 ストッパー本体55は、爪部材54に接続されている。また、ストッパー本体55は、第1伝達部材33に接している。 The stopper body 55 is connected to the claw member 54 . Also, the stopper main body 55 is in contact with the first transmission member 33 .
 かご9の上昇時には、ローラー52及びラチェット53は、図21の時計方向へ回転する。このとき、図21の時計方向への爪部材54の回転は、ラチェット53によって阻止されている。これにより、第1伝達部材33はストッパー本体55により押さえ付けられ、第1伝達部材33の上方への変位が規制される。 When the car 9 is raised, the rollers 52 and ratchet 53 rotate clockwise in FIG. At this time, clockwise rotation of the pawl member 54 in FIG. 21 is blocked by the ratchet 53 . As a result, the first transmission member 33 is pressed by the stopper body 55, and upward displacement of the first transmission member 33 is restricted.
 一方、かご9の下降時には、ローラー52及びラチェット53は、図21の反時計方向へ回転する。この状態では、図21の時計方向への爪部材54の回転が許容される。このため、第1伝達部材33が上向きの力を受けると、図22に示すように、ストッパー本体55が上方へ変位するとともに、爪部材54が時計方向へ回転し、第1伝達部材33の上方への変位が許容される。 On the other hand, when the car 9 is lowered, the rollers 52 and the ratchet 53 rotate counterclockwise in FIG. In this state, clockwise rotation of the pawl member 54 in FIG. 21 is permitted. Therefore, when the first transmission member 33 receives an upward force, as shown in FIG. displacement is allowed.
 図21に示したストッパー機構51を除くエレベーター装置の構成は、実施の形態1と同様である。 The configuration of the elevator device excluding the stopper mechanism 51 shown in FIG. 21 is the same as that of the first embodiment.
 図24は、かご9が最上階付近に位置しているときに、巻上機ブレーキ7が作動した場合と、懸架体8が破断した場合とにおける第1ばね36が受ける張力の変化を示すグラフである。図25は、かご9が最下階付近に位置しているときに、巻上機ブレーキ7が作動した場合と、懸架体8が破断した場合とにおける第1ばね36が受ける張力の変化を示すグラフである。 FIG. 24 is a graph showing changes in the tension applied to the first spring 36 when the hoisting machine brake 7 is activated and when the suspension body 8 is broken when the car 9 is positioned near the top floor. is. FIG. 25 shows changes in the tension applied to the first spring 36 when the hoist brake 7 is activated and when the suspension 8 is broken when the car 9 is positioned near the lowest floor. graph.
 かご9が最下階付近に位置している場合、コンペンセーティング体17の実効質量は、ほぼ0である。このため、懸架体8が破断する前の張力は、ほぼ釣合車18の重量の1/2×1Gである。その状態から懸架体8が破断すると、張力はほぼ0となる。 When the car 9 is positioned near the lowest floor, the effective mass of the compensating body 17 is approximately zero. Therefore, the tension before the suspension 8 breaks is approximately 1/2 the weight of the balance wheel 18×1G. When the suspension body 8 breaks from that state, the tension becomes almost zero.
 これに対して、かご9が最上階付近に位置している場合、懸架体8が破断する前の張力には、コンペンセーティング体17の実効質量×1Gが付加されている。その状態から懸架体8が破断すると、張力は、かご9の加速度とコンペンセーティング体17の実効質量との積だけ低下する。また、釣合車18が落下することにより、釣合車18の重量の1/2の分も消滅する。 On the other hand, when the car 9 is located near the top floor, the effective mass of the compensating body 17×1G is added to the tension before the suspension body 8 breaks. When the suspension 8 breaks from that state, the tension decreases by the product of the acceleration of the car 9 and the effective mass of the compensating body 17 . In addition, as the balance wheel 18 falls, half of the weight of the balance wheel 18 also disappears.
 例えば、かご9が最上階に位置しているとき、釣合おもり10のすぐ上で懸架体8が破断した場合、駆動シーブ6に対して、かご9とは反対側には、懸架体8の大部分が残っている。このため、かご9の加速度は1Gよりも小さくなり、第1ばね36が受ける張力は0にはならない。 For example, when the car 9 is located on the top floor, if the suspension 8 breaks just above the counterweight 10, on the opposite side of the drive sheave 6 from the car 9 is the suspension 8. most of it remains. Therefore, the acceleration of the car 9 becomes smaller than 1 G, and the tension applied to the first spring 36 does not become zero.
 また、かご9が最下階付近に位置しているときには、コンペンセーティング体17の実効質量は0に近い。このため、かご9が最下階付近に位置しているとき、巻上機ブレーキ7が作動した場合、第1ばね36が受ける張力は殆ど変化しない。 Also, when the car 9 is positioned near the lowest floor, the effective mass of the compensating body 17 is close to zero. Therefore, when the car 9 is positioned near the lowest floor and the hoist brake 7 is activated, the tension applied to the first spring 36 hardly changes.
 一方、かご9が最上階付近に位置しているときには、コンペンセーティング体17の実効質量が大きい。このため、かご9が最上階付近に位置しているとき、巻上機ブレーキ7が作動した場合、第1ばね36が受ける張力は、コンペンセーティング体17の実効質量とかご9の減速度との積で決まる分だけ変化する。 On the other hand, when the car 9 is positioned near the top floor, the effective mass of the compensating body 17 is large. Therefore, when the car 9 is located near the top floor and the hoisting machine brake 7 is activated, the tension applied to the first spring 36 is the effective mass of the compensating body 17 and the deceleration of the car 9. It changes by the amount determined by the product of
 このため、かご9が最上階付近に位置するときに巻上機ブレーキ7の作動により非常止め装置15が誤作動しないように作動位置P1を設定すると、かご9が最下階付近に位置するときに非常止め装置15が適正に作動しない可能性がある。 Therefore, if the operating position P1 is set so that the emergency stop device 15 does not malfunction due to the operation of the hoist brake 7 when the car 9 is positioned near the top floor, when the car 9 is positioned near the bottom floor There is a possibility that the emergency stop device 15 will not operate properly.
 一方、かご9が最下階付近に位置するときに非常止め装置15が適正に作動するように作動位置P1を設定すると、かご9が最上階付近に位置するときに巻上機ブレーキ7が作動した場合に非常止め装置15が誤作動する可能性がある。 On the other hand, if the operating position P1 is set so that the safety device 15 operates properly when the car 9 is positioned near the lowest floor, the hoisting machine brake 7 will operate when the car 9 is positioned near the top floor. In this case, the safety device 15 may malfunction.
 以上のような事象が発生するのは、釣合車18の質量よりもコンペンセーティング体17の質量が大きい仕様の場合である。よって、高揚程のエレベーター装置に対して、上記のような不作動及び誤作動への対策を講じることが好適である。 The phenomenon described above occurs in the case of specifications in which the mass of the compensating body 17 is greater than the mass of the balance wheel 18 . Therefore, it is preferable to take countermeasures against non-operation and malfunction as described above for high-lift elevator devices.
 非常止め装置15が誤作動するのは、かご9の上昇中に巻上機ブレーキ7が作動した場合である。一方、懸架体8が破断した場合には、かご9は必ず下降する。このため、実施の形態3では、かご9の上昇時に、第1伝達部材33の上方への変位を規制している。 The safety device 15 malfunctions when the hoisting machine brake 7 operates while the car 9 is ascending. On the other hand, when the suspension 8 breaks, the car 9 always descends. Therefore, in the third embodiment, the upward displacement of the first transmission member 33 is restricted when the car 9 is raised.
 図26は、実施の形態3のかご9が最上階付近に位置しているときに、巻上機ブレーキ7が作動した場合と、懸架体8が破断した場合とにおける第1伝達部材33の位置の変化を示すグラフである。図27は、実施の形態3のかご9が最下階付近に位置しているときに、巻上機ブレーキ7が作動した場合と、懸架体8が破断した場合とにおける第1伝達部材33の位置の変化を示すグラフである。 FIG. 26 shows the position of the first transmission member 33 when the hoisting machine brake 7 is activated and when the suspension 8 is broken when the car 9 of the third embodiment is positioned near the top floor. is a graph showing changes in FIG. 27 shows the first transmission member 33 when the hoisting machine brake 7 is activated and when the suspension 8 is broken when the car 9 of Embodiment 3 is positioned near the lowest floor. It is a graph which shows the change of a position.
 図26及び図27に示すように、かご9の上昇時に巻上機ブレーキ7が作動した場合、第1伝達部材33の上方への変位は、ストッパー機構51によってストッパー位置Psまでに規制されている。 As shown in FIGS. 26 and 27, when the hoisting machine brake 7 is actuated when the car 9 is raised, the upward displacement of the first transmission member 33 is restricted to the stopper position Ps by the stopper mechanism 51. .
 このため、かご9が最下階付近に位置するときに非常止め装置15が適正に作動するように作動位置P1を設定すれば、かご9の位置によらず、巻上機ブレーキ7の作動時に非常止め装置15が誤作動することが抑制される。また、かご9の位置によらず、懸架体8の破断時には、非常止め装置15が適正に作動する。 Therefore, if the operating position P1 is set so that the emergency stop device 15 operates properly when the car 9 is positioned near the lowest floor, the hoisting machine brake 7 can be operated regardless of the position of the car 9. Malfunction of the safety device 15 is suppressed. Moreover, regardless of the position of the car 9, the safety device 15 operates properly when the suspension 8 is broken.
 なお、ストッパー機構51の構成は上記の例に限定されず、例えば、かご9の走行方向を検出するセンサーと、アクチュエーターとの組み合わせであってもよい。この場合、アクチュエーターは、センサーからの信号に基づいて、第1伝達部材33の上方への変位を阻止したり許容したりする。 The configuration of the stopper mechanism 51 is not limited to the above example, and may be, for example, a combination of a sensor that detects the traveling direction of the car 9 and an actuator. In this case, the actuator prevents or permits upward displacement of the first transmission member 33 based on the signal from the sensor.
 また、ストッパー機構51は、かご9の上昇時に、第1作動レバー26a、第2作動レバー26b、又は連動機構27の動きを規制してもよい。 Also, the stopper mechanism 51 may restrict the movement of the first operating lever 26a, the second operating lever 26b, or the interlocking mechanism 27 when the car 9 is raised.
 また、実施の形態3のストッパー機構51を実施の形態2の張力式作動装置16に適用してもよい。 Also, the stopper mechanism 51 of the third embodiment may be applied to the tension actuator 16 of the second embodiment.
 また、実施の形態1~3において、被検出体は、懸架体8であってもよい。その場合、エレベーター装置には、コンペンセーティング体17が用いられていなくてもよい。 Further, in Embodiments 1 to 3, the object to be detected may be the suspended body 8. In that case, the compensating body 17 may not be used in the elevator device.
 また、実施の形態1~3において、昇降体は、釣合おもり10であってもよい。即ち、釣合おもり10に、非常止め装置15とは別の非常止め装置と、張力式作動装置16とを搭載してもよい。この場合、かご9の過大速度監視、及びかご9に搭載された非常止め装置15の作動は、従来の調速機によって行う構成としてもよい。 Further, in Embodiments 1 to 3, the lifting body may be the counterweight 10. That is, the counterweight 10 may be equipped with an emergency stop device other than the emergency stop device 15 and the tension actuator 16 . In this case, the excessive speed monitoring of the car 9 and the operation of the safety device 15 mounted on the car 9 may be performed by a conventional speed governor.
 実施の形態4.
 次に、図28は、実施の形態4によるエレベーター装置のかご9の下部を示す構成図である。図28では、全ての楔部材23と、連動機構27と、第2作動レバー26bとが省略されている。実施の形態4では、実施の形態3における張力式作動装置16の代わりに、加速度式作動装置61が用いられている。
Embodiment 4.
Next, FIG. 28 is a configuration diagram showing the lower portion of the car 9 of the elevator apparatus according to Embodiment 4. As shown in FIG. In FIG. 28, all of the wedge member 23, the interlocking mechanism 27, and the second operating lever 26b are omitted. In the fourth embodiment, an acceleration type actuator 61 is used instead of the tension type actuator 16 in the third embodiment.
 加速度式作動装置61は、かご9の下部に設けられている。また、加速度式作動装置61は、かご9の加速度に基づいて非常止め装置15を作動させる。 The acceleration type actuator 61 is provided at the bottom of the car 9. Also, the acceleration type actuator 61 operates the safety device 15 based on the acceleration of the car 9 .
 また、加速度式作動装置61は、検出おもり62、おもりばね63、第2伝達部材64、及びストッパー機構51を有している。 The acceleration type actuator 61 also has a detection weight 62 , a weight spring 63 , a second transmission member 64 and a stopper mechanism 51 .
 検出おもり62は、おもりばね63によって吊り下げられている。おもりばね63は、かご9の加速度の変化に応じて上下方向へ伸縮する。即ち、検出おもり62は、かご9の加速度の変化に応じて上下方向へ変位する。枠体21には、図示しないおもりガイドが設けられている。おもりガイドは、検出おもり62の上下動を案内する。 The detection weight 62 is suspended by a weight spring 63. The weight spring 63 expands and contracts in the vertical direction according to changes in the acceleration of the car 9 . That is, the detection weight 62 is vertically displaced according to changes in the acceleration of the car 9 . The frame 21 is provided with a weight guide (not shown). The weight guide guides the vertical movement of the detection weight 62 .
 第2伝達部材64は、検出おもり62と第1作動レバー26aとの間に連結されている。また、第2伝達部材64は、検出おもり62と一体に上下動して、検出おもり62の動きを第1作動レバー26aに伝達する。 The second transmission member 64 is connected between the detection weight 62 and the first actuation lever 26a. Further, the second transmission member 64 vertically moves together with the detection weight 62 to transmit the movement of the detection weight 62 to the first operating lever 26a.
 ストッパー機構51の構成は、実施の形態3と同様である。実施の形態4のストッパー本体55は、第2伝達部材64に接している。これにより、ストッパー機構51は、かご9の上昇時に検出おもり62の上方への変位を規制して、非常止め装置15が作動することを抑制する。また、ストッパー機構51は、かご9の下降時に検出おもり62の上方への変位を許容して、非常止め装置15が作動することを許容する。 The configuration of the stopper mechanism 51 is the same as that of the third embodiment. The stopper main body 55 of Embodiment 4 is in contact with the second transmission member 64 . Thereby, the stopper mechanism 51 restricts the upward displacement of the detection weight 62 when the car 9 is raised, thereby suppressing the operation of the safety device 15 . The stopper mechanism 51 also allows the detection weight 62 to be displaced upward when the car 9 is lowered, thereby allowing the safety device 15 to operate.
 図29は、非常止め装置15の作動時における図28の加速度式作動装置61の状態を示す構成図である。懸架体8が破断すると、かご9が落下し始め、かご9の加速度が大きく変化する。これにより、検出おもり62が上方へ大きく変位し、第2伝達部材64を介して、第1作動レバー26aが引き上げられ、非常止め装置15が作動する。 FIG. 29 is a configuration diagram showing the state of the acceleration type actuator 61 in FIG. 28 when the safety device 15 is activated. When the suspension 8 breaks, the car 9 begins to drop, and the acceleration of the car 9 greatly changes. As a result, the detection weight 62 is largely displaced upward, the first operating lever 26a is pulled up via the second transmission member 64, and the safety device 15 is operated.
 図28及び図29に示した加速度式作動装置61を除くエレベーター装置の構成は、実施の形態3と同様である。 The configuration of the elevator device is the same as that of the third embodiment, except for the acceleration actuator 61 shown in FIGS. 28 and 29.
 図30は、かご9が最下階付近に位置しているときに、巻上機ブレーキ7が作動した場合と、懸架体8が破断した場合とにおけるかご9の加速度の変化を示すグラフである。図31は、かご9が最上階付近に位置しているときに、巻上機ブレーキ7が作動した場合と、懸架体8が破断した場合とにおけるかご9の加速度の変化を示すグラフである。 FIG. 30 is a graph showing changes in acceleration of the car 9 when the hoist brake 7 is activated and when the suspension 8 is broken when the car 9 is positioned near the lowest floor. . FIG. 31 is a graph showing changes in acceleration of the car 9 when the hoisting machine brake 7 is activated and when the suspension 8 is broken when the car 9 is positioned near the top floor.
 かご9が最下階付近に位置しているときに、懸架体8が釣合おもり10のすぐ上で破断した場合、駆動シーブ6に対して、釣合おもり10側の質量よりも、かご9側の質量が十分に大きくなる。駆動シーブ6と懸架体8との間の摩擦力に対して、かご9側と釣合おもり10側との質量差が大きいため、かご9の落下直後の加速度はほぼ1Gとなる。 When the car 9 is located near the lowest floor, if the suspension 8 breaks just above the counterweight 10, the weight of the car 9 is greater than the mass on the side of the counterweight 10 with respect to the drive sheave 6. The mass of the side becomes sufficiently large. Since the mass difference between the car 9 side and the counterweight 10 side is large with respect to the frictional force between the drive sheave 6 and the suspension body 8, the acceleration of the car 9 immediately after it falls is approximately 1G.
 一方、かご9が最上階付近に位置しているときに、懸架体8が釣合おもり10のすぐ上で破断した場合、駆動シーブ6に対して、釣合おもり10側の懸架体8の質量と、かご9側の懸架体8及びコンペンセーティング体17の質量との差が小さくなる場合がある。 On the other hand, if the suspension 8 breaks just above the counterweight 10 when the car 9 is positioned near the top floor, the mass of the suspension 8 on the side of the counterweight 10 with respect to the drive sheave 6 is , the difference between the masses of the suspension body 8 and the compensating body 17 on the car 9 side may become small.
 この場合、駆動シーブ6と懸架体8との間の摩擦力に対して、かご9側と釣合おもり10側との質量差が大きくならず、かご9の落下直後の加速度は非常に小さくなる。即ち、図31に示すように、かご9が最上階付近に位置する場合、かご9の加速度が小さいため、検出おもり62及び第2伝達部材64の上方への変位が小さくなる場合がある。 In this case, the mass difference between the car 9 side and the counterweight 10 side does not increase with respect to the frictional force between the drive sheave 6 and the suspension body 8, and the acceleration of the car 9 immediately after it falls becomes very small. . That is, as shown in FIG. 31, when the car 9 is positioned near the top floor, the acceleration of the car 9 is small, so the upward displacement of the detection weight 62 and the second transmission member 64 may be small.
 これに対して、実施の形態4では、かご9の上昇時における検出おもり62及び第2伝達部材64の上方への変位が規制されている。 On the other hand, in the fourth embodiment, upward displacement of the detection weight 62 and the second transmission member 64 when the car 9 is raised is restricted.
 図32は、実施の形態4のかご9が最下階付近に位置しているときに、巻上機ブレーキ7が作動した場合と、懸架体8が破断した場合とにおける第2伝達部材64の位置の変化を示すグラフである。図33は、実施の形態4のかご9が最上階付近に位置しているときに、巻上機ブレーキ7が作動した場合と、懸架体8が破断した場合とにおける第2伝達部材64の位置の変化を示すグラフである。 FIG. 32 shows the second transmission member 64 when the hoisting machine brake 7 is activated and when the suspension 8 is broken when the car 9 of the fourth embodiment is positioned near the lowest floor. It is a graph which shows the change of a position. FIG. 33 shows the position of the second transmission member 64 when the hoist brake 7 is activated and when the suspension 8 is broken when the car 9 of the fourth embodiment is positioned near the top floor. is a graph showing changes in
 図32及び図33に示すように、かご9の上昇時に巻上機ブレーキ7が作動した場合、第2伝達部材64の上方への変位は、ストッパー機構51によってストッパー位置Psまでに規制されている。即ち、かご9の上昇時に巻上機ブレーキ7が作動した場合、第2伝達部材64は、非常止め装置15を作動させる位置である作動位置P1に達しない。 As shown in FIGS. 32 and 33, when the hoisting machine brake 7 is activated when the car 9 is raised, the upward displacement of the second transmission member 64 is restricted to the stopper position Ps by the stopper mechanism 51. . That is, when the hoisting machine brake 7 is activated while the car 9 is ascending, the second transmission member 64 does not reach the activation position P1, which is the position at which the safety device 15 is activated.
 このため、かご9が最上階付近に位置するときに非常止め装置15が適正に作動するように作動位置P1を設定すれば、かご9の位置によらず、巻上機ブレーキ7の作動時に非常止め装置15が誤作動することが抑制される。また、かご9の位置によらず、懸架体8の破断時には、非常止め装置15が適正に作動する。 Therefore, if the operating position P1 is set so that the safety device 15 operates properly when the car 9 is located near the top floor, the emergency stop device 15 can be operated regardless of the position of the car 9. Malfunction of the stopping device 15 is suppressed. Moreover, regardless of the position of the car 9, the safety device 15 operates properly when the suspension 8 is broken.
 なお、ストッパー機構51の構成は上記の例に限定されず、例えば、かご9の走行方向を検出するセンサーと、アクチュエーターとの組み合わせであってもよい。この場合、アクチュエーターは、センサーからの信号に基づいて、第2伝達部材64の上方への変位を阻止したり許容したりする。 The configuration of the stopper mechanism 51 is not limited to the above example, and may be, for example, a combination of a sensor that detects the traveling direction of the car 9 and an actuator. In this case, the actuator prevents or permits the upward displacement of the second transmission member 64 based on the signal from the sensor.
 また、ストッパー機構51は、かご9の上昇時に、検出おもり62の上方への変位を直接規制してもよい。また、ストッパー機構51は、かご9の上昇時に、第1作動レバー26a、第2作動レバー26b、又は連動機構27の動きを規制してもよい。 Also, the stopper mechanism 51 may directly restrict the upward displacement of the detection weight 62 when the car 9 is raised. Also, the stopper mechanism 51 may restrict the movement of the first operating lever 26a, the second operating lever 26b, or the interlocking mechanism 27 when the car 9 is raised.
 また、加速度式作動装置61は、かご9の下部以外の位置、例えば上部に設置してもよい。 Also, the acceleration type actuator 61 may be installed at a position other than the bottom of the car 9, for example, at the top.
 また、実施の形態4において、昇降体は、釣合おもり10であってもよい。即ち、釣合おもり10に、非常止め装置15とは別の非常止め装置と、加速度式作動装置61とを搭載してもよい。この場合、かご9の過大速度監視、及びかご9に搭載された非常止め装置15の作動は、従来の調速機によって行う構成としてもよい。 Further, in Embodiment 4, the lifting body may be the counterweight 10. That is, the counterweight 10 may be equipped with an emergency stop device other than the emergency stop device 15 and the acceleration actuator 61 . In this case, the excessive speed monitoring of the car 9 and the operation of the safety device 15 mounted on the car 9 may be performed by a conventional speed governor.
 実施の形態5.
 次に、図34は、実施の形態5によるエレベーター装置の非常止め装置15を作動させる機構を模式的に示す構成図であり、非常止め装置15が作動したときの状態を示している。
Embodiment 5.
Next, FIG. 34 is a configuration diagram schematically showing a mechanism for operating the safety device 15 of the elevator system according to Embodiment 5, and shows a state when the safety device 15 is operated.
 実施の形態5では、実施の形態1の張力式作動装置16と、実施の形態4の加速度式作動装置61とが併用されている。但し、加速度式作動装置61にストッパー機構51は設けられていない。また、検出おもり62は、おもりばね63上に支持されている。 In Embodiment 5, the tension type actuator 16 of Embodiment 1 and the acceleration type actuator 61 of Embodiment 4 are used together. However, the acceleration actuator 61 is not provided with the stopper mechanism 51 . Also, the detection weight 62 is supported on a weight spring 63 .
 張力式作動装置16と加速度式作動装置61とは、互いに独立して動作可能となっている。図34は、加速度式作動装置61によって、非常止め装置15が作動したときの状態を示している。 The tension type actuator 16 and the acceleration type actuator 61 are operable independently of each other. FIG. 34 shows a state in which the emergency stop device 15 is actuated by the acceleration actuating device 61. As shown in FIG.
 第1伝達部材33には、第1押上部33aが設けられている。第1押上部33aは、第1作動レバー26aに接しており、第1伝達部材33が上方へ変位したときに、第1作動レバー26aを押し上げる。 The first transmission member 33 is provided with a first push-up portion 33a. The first push-up portion 33a is in contact with the first operating lever 26a, and pushes up the first operating lever 26a when the first transmission member 33 is displaced upward.
 第2伝達部材64には、第2押上部64aが設けられている。第2押上部64aは、第1作動レバー26aに接しており、第2伝達部材64が上方へ変位したときに、第1作動レバー26aを押し上げる。 The second transmission member 64 is provided with a second push-up portion 64a. The second push-up portion 64a is in contact with the first operating lever 26a, and pushes up the first operating lever 26a when the second transmission member 64 is displaced upward.
 図35は、非常止め装置15が作動していない状態における図34の第1作動レバー26a、第1伝達部材33、及び第2伝達部材64の関係を示す側面図である。図36は、張力式作動装置16によって非常止め装置15が作動した状態における図34の第1作動レバー26a、第1伝達部材33、及び第2伝達部材64の関係を示す側面図である。 FIG. 35 is a side view showing the relationship between the first operating lever 26a, the first transmission member 33, and the second transmission member 64 in FIG. 34 when the safety device 15 is not in operation. FIG. 36 is a side view showing the relationship between the first operating lever 26a, the first transmission member 33, and the second transmission member 64 in FIG.
 通常時、第1押上部33a及び第2押上部64aは、それぞれ第1作動レバー26aの下面に接している。この状態から、第1伝達部材33が上方へ変位すると、図36に示すように、第1押上部33aによって第1作動レバー26aが押し上げられ、非常止め装置15が作動する。 Normally, the first push-up portion 33a and the second push-up portion 64a are in contact with the lower surface of the first operating lever 26a. When the first transmission member 33 is displaced upward from this state, as shown in FIG. 36, the first operating lever 26a is pushed up by the first push-up portion 33a, and the safety device 15 is operated.
 第1作動レバー26aは、第1伝達部材33が変位せず、第2伝達部材64のみが上方へ変位した場合にも、第1伝達部材33及び第2伝達部材64の両方が上方へ変位した場合にも、押し上げられる。 Even when the first transmission member 33 is not displaced and only the second transmission member 64 is displaced upward, both the first transmission member 33 and the second transmission member 64 are displaced upward. Even if it is, it will be pushed up.
 図34に示した構成を除くエレベーター装置の構成は、実施の形態1と同様である。 The configuration of the elevator device except for the configuration shown in FIG. 34 is the same as that of the first embodiment.
 かご9が最下階付近に位置しているときに懸架体8が破断した場合、コンペンセーティング体17の張力変動が小さくなるため、第1伝達部材33の変位は小さくなる。一方、かご9の落下開始加速度は大きくなるため、第2伝達部材64の変位は大きくなる。このため、第2押上部64aにより第1作動レバー26aが押し上げられる。 When the suspension body 8 is broken when the car 9 is positioned near the lowest floor, the tension fluctuation of the compensating body 17 is reduced, so the displacement of the first transmission member 33 is reduced. On the other hand, since the drop start acceleration of the car 9 increases, the displacement of the second transmission member 64 increases. Therefore, the first operating lever 26a is pushed up by the second push-up portion 64a.
 即ち、かご9が最下階付近に位置しているときに懸架体8が破断した場合には、かご9の加速度変動によって非常止め装置15が直ちに動作する。 That is, if the suspension 8 breaks while the car 9 is positioned near the lowest floor, the safety device 15 immediately operates due to the acceleration fluctuation of the car 9 .
 かご9が最上階付近に位置しているときに懸架体8が破断した場合、第2伝達部材64の変位よりも、第1伝達部材33の変位の方が大きくなり、第1押上部33aにより第1作動レバー26aが押し上げられる。 When the suspension 8 breaks when the car 9 is positioned near the top floor, the displacement of the first transmission member 33 becomes larger than the displacement of the second transmission member 64, and the first push-up portion 33a The first operating lever 26a is pushed up.
 即ち、かご9が最上階付近に位置しているときに懸架体8が破断した場合には、コンペンセーティング体17の張力変動によって非常止め装置15が直ちに動作する。 That is, when the suspension body 8 breaks when the car 9 is positioned near the top floor, the safety device 15 immediately operates due to the tension fluctuation of the compensating body 17 .
 このように、かご9の位置によらず、第1伝達部材33及び第2伝達部材64のうち、より変位の大きい方により第1作動レバー26aが押し上げられ、懸架体8の破断時に非常止め装置15が正常に作動する。 In this way, regardless of the position of the car 9, the first operating lever 26a is pushed up by the one of the first transmission member 33 and the second transmission member 64 that has a larger displacement, and when the suspension body 8 is broken, the safety device is activated. 15 works fine.
 第1伝達部材33又は第2伝達部材64が非常止め装置15を作動させる位置である作動位置P1は、かご9の位置によらず、巻上機ブレーキ7の作動時に非常止め装置15が誤作動しないように設定される。これにより、ストッパー機構51を用いることなく、非常止め装置15の誤作動を抑制することができる。 The operating position P1, which is the position at which the first transmission member 33 or the second transmission member 64 operates the safety device 15, does not depend on the position of the car 9, and the safety device 15 malfunctions when the hoisting machine brake 7 is operated. set to not. As a result, malfunction of the safety device 15 can be suppressed without using the stopper mechanism 51 .
 なお、実施の形態1、2又は3の張力式作動装置16と、実施の形態4の加速度式作動装置61とを、実施の形態5と同様に併用してもよい。 It should be noted that the tension type actuator 16 of Embodiments 1, 2 or 3 and the acceleration type actuator 61 of Embodiment 4 may be used together in the same manner as in Embodiment 5.
 実施の形態6.
 次に、図37は、実施の形態6によるエレベーター装置の非常止め装置15を作動させる機構を模式的に示す構成図である。実施の形態6の加速度式作動装置61は、検出おもり62、おもりばね63、及び第2伝達部材64に加えて、おもりストッパー65を有している。
Embodiment 6.
Next, FIG. 37 is a configuration diagram schematically showing a mechanism for operating the safety device 15 of the elevator system according to Embodiment 6. As shown in FIG. The acceleration actuator 61 of Embodiment 6 has a weight stopper 65 in addition to the detection weight 62 , the weight spring 63 and the second transmission member 64 .
 おもりストッパー65は、枠体21に設けられている。検出おもり62は、通常時、おもりストッパー65に載せられている。おもりばね63は、通常時、検出おもり62の自重によって圧縮されている。これにより、おもりばね63は、上方向への力を検出おもり62に付与している。 The weight stopper 65 is provided on the frame 21. The detection weight 62 is normally placed on the weight stopper 65 . The weight spring 63 is normally compressed by the dead weight of the detection weight 62 . Thereby, the weight spring 63 applies an upward force to the detection weight 62 .
 加速度式作動装置61は、かご9の下向きの加速度が過大加速度となったときに、検出おもり62がおもりストッパー65から上方向へ離れ、この検出おもり62の動きによって、非常止め装置15を作動させるように設定されている。 In the acceleration-type actuator 61, when the downward acceleration of the car 9 becomes excessive acceleration, the detection weight 62 moves upward from the weight stopper 65, and the movement of the detection weight 62 activates the emergency stop device 15. is set to
 通常時、おもりストッパー65は、検出おもり62の自重の一部を支持している。また、おもりストッパー65は、検出おもり62の自重を受けても、上下方向へ変位も変形もしない。 Normally, the weight stopper 65 supports part of the dead weight of the detection weight 62 . Further, even if the weight stopper 65 receives the weight of the detection weight 62, the weight stopper 65 neither displaces nor deforms in the vertical direction.
 検出おもり62の質量とおもりばね63の剛性とで決まる固有振動数は、巻上機ブレーキ7の作動によりかご9に発生する上下方向振動の振動数のうち、最も振動数が低い最低振動数以下に設定されることが好適である。これにより、検出おもり62がかご9の振動に共振することがより確実に抑制される。 The natural frequency determined by the mass of the detection weight 62 and the rigidity of the weight spring 63 is equal to or lower than the lowest frequency among the frequencies of the vertical vibration generated in the car 9 by the operation of the hoist brake 7. is preferably set to . This more reliably suppresses the detection weight 62 from resonating with the vibration of the car 9 .
 上記の最低振動数は、懸架体8の一部であって、かご9から上方へ向かっている部分の長さが最も長くなっているときの振動数である。このため、上記の固有振動数は、かご9が最下階に位置するときに巻上機ブレーキ7が作動した場合におけるかご9の上下方向振動の振動数以下に設定されていることが好適である。 The above minimum frequency is the frequency when the length of the part of the suspension body 8 extending upward from the car 9 is the longest. For this reason, the natural frequency is preferably set to be equal to or lower than the vertical vibration frequency of the car 9 when the hoist brake 7 is activated when the car 9 is located on the lowest floor. be.
 おもりストッパー65を除くエレベーター装置の構成は、実施の形態5と同様である。 The configuration of the elevator device excluding the weight stopper 65 is the same as that of the fifth embodiment.
 このような構成により、かご9が下層階に位置しているときに、巻上機ブレーキ7の作動による非常止め装置15の誤作動をより確実に抑制しつつ、非常止め装置15を適正に作動させることができる。 With such a configuration, when the car 9 is located on the lower floor, the safety device 15 can be operated properly while suppressing the malfunction of the safety device 15 due to the operation of the hoist brake 7 more reliably. can be made
 なお、実施の形態5、6において、第1伝達部材33と第2伝達部材64とを連結してもよい。 Note that in Embodiments 5 and 6, the first transmission member 33 and the second transmission member 64 may be connected.
 また、実施の形態5、6において、張力式作動装置16及び加速度式作動装置61は、第1作動レバー26aを押し上げる構成ではなく、引き上げる構成であってもよい。 Further, in Embodiments 5 and 6, the tension type actuator 16 and the acceleration type actuator 61 may be configured to pull up the first operating lever 26a instead of pushing it up.
 また、実施の形態5、6において、かご9の位置に応じて、張力式作動装置16と加速度式作動装置61とのいずれか一方を有効にするように切り替える構成としてもよい。 Further, in Embodiments 5 and 6, a configuration may be adopted in which either one of the tension type actuator 16 and the acceleration type actuator 61 is activated according to the position of the car 9 .
 また、実施の形態5、6において、昇降体は、釣合おもり10であってもよい。即ち、釣合おもり10に、非常止め装置15とは別の非常止め装置と、張力式作動装置16と、加速度式作動装置61とを搭載してもよい。この場合、かご9の過大速度監視、及びかご9に搭載された非常止め装置15の作動は、従来の調速機によって行う構成としてもよい。 Further, in Embodiments 5 and 6, the lifting body may be the counterweight 10. That is, the counterweight 10 may be equipped with an emergency stop device other than the emergency stop device 15 , the tension actuator 16 , and the acceleration actuator 61 . In this case, the excessive speed monitoring of the car 9 and the operation of the safety device 15 mounted on the car 9 may be performed by a conventional speed governor.
 また、実施の形態1~6において、非常止め装置15は、昇降体の上部に設けられていてもよい。 In addition, in Embodiments 1 to 6, the safety device 15 may be provided on the upper part of the elevator.
 また、実施の形態1~6において、エレベーター装置全体のレイアウトは、図1のレイアウトに限定されるものではない。例えば、ローピング方式は、2:1ローピング方式であってもよい。 Also, in Embodiments 1 to 6, the layout of the entire elevator device is not limited to the layout of FIG. For example, the roping scheme may be a 2:1 roping scheme.
 また、エレベーター装置は、機械室レスエレベーター、ダブルデッキエレベーター、ワンシャフトマルチカー方式のエレベーター装置等であってもよい。ワンシャフトマルチカー方式は、上かごと、上かごの真下に配置された下かごとが、それぞれ独立して共通の昇降路を昇降する方式である。 In addition, the elevator device may be a machine room-less elevator, a double-deck elevator, a one-shaft multi-car elevator device, or the like. The one-shaft multi-car system is a system in which an upper car and a lower car placed directly below the upper car independently ascend and descend a common hoistway.
 3 巻上機、6 駆動シーブ、7 巻上機ブレーキ、8 懸架体(被検出体)、9 かご(昇降体)、15 非常止め装置、16 張力式作動装置、17 コンペンセーティング体(被検出体)、26a 第1作動レバー、32 フィルター機構(周波数フィルター)、34 ローパスフィルター、35 ハイパスフィルター、36 第1ばね、37 第1ダンパー、38 第2ダンパー、39 第2ばね、43 張力センサー、44 バンドパスフィルター、45 アクチュエーター、51 ストッパー機構、61 加速度式作動装置、62 検出おもり、65 おもりストッパー。 3 hoisting machine, 6 drive sheave, 7 hoisting machine brake, 8 suspension body (object to be detected), 9 cage (elevating body), 15 emergency stop device, 16 tension type actuator, 17 compensating body (to be detected body), 26a first operating lever, 32 filter mechanism (frequency filter), 34 low pass filter, 35 high pass filter, 36 first spring, 37 first damper, 38 second damper, 39 second spring, 43 tension sensor, 44 Band pass filter, 45 Actuator, 51 Stopper mechanism, 61 Accelerating actuator, 62 Detection weight, 65 Weight stopper.

Claims (8)

  1.  昇降体、
     前記昇降体に設けられている非常止め装置、
     巻上機ブレーキを有しており、前記昇降体を昇降させる巻上機、
     前記昇降体に接続されており、かつ可撓性を有しており、前記昇降体の昇降に伴って張力が変動する被検出体、及び
     前記被検出体の張力変動に基づいて前記非常止め装置を作動させる張力式作動装置
     を備え、
     前記張力式作動装置は、前記被検出体における第1設定値以上の周波数の張力変動の振幅を低減するとともに、前記被検出体における前記第1設定値よりも低い第2設定値以下の周波数の張力変動の振幅を低減する周波数フィルターを有しており、
     前記張力式作動装置は、前記周波数フィルターを通過した前記被検出体の張力変動に基づいて、前記非常止め装置を作動させるエレベーター装置。
    lifting body,
    a safety device provided on the lifting body;
    A hoist that has a hoist brake and raises and lowers the lifting body;
    an object to be detected, which is connected to the elevating body and has flexibility and whose tension varies as the elevating body moves up and down; and the safety device based on the tension variation of the object to be detected. with a tension actuator that actuates the
    The tension type actuator reduces the amplitude of tension fluctuations in the object to be detected at frequencies equal to or higher than a first set value, and reduces the amplitude of tension fluctuations in the object to be detected at frequencies equal to or lower than a second set value lower than the first set value. It has a frequency filter that reduces the amplitude of tension fluctuations,
    The tension-type actuator is an elevator device that operates the safety device based on tension fluctuations of the object to be detected that have passed through the frequency filter.
  2.  前記第1設定値は、前記巻上機ブレーキの作動時における前記被検出体の張力変動の周波数以下の値であり、
     前記第2設定値は、前記昇降体の通常走行による前記被検出体の張力変動に含まれる時間変動するDC成分を除去可能な周波数以上の値である請求項1記載のエレベーター装置。
    The first set value is a value equal to or lower than the frequency of tension fluctuation of the object to be detected when the hoist brake is activated,
    2. The elevator apparatus according to claim 1, wherein said second set value is a value equal to or higher than a frequency capable of removing a time-varying DC component included in tension fluctuations of said object to be detected due to normal running of said elevator.
  3.  前記周波数フィルターは、ローパスフィルターと、前記ローパスフィルターに対して並列に配置されているハイパスフィルターとを有しており、
     前記ローパスフィルターは、第1ばねと、前記第1ばねに対して並列に配置されている第1ダンパーとを有しており、
     前記ハイパスフィルターは、第2ダンパーと、前記第2ダンパーに対して直列に配置されている第2ばねとを有している請求項1又は請求項2に記載のエレベーター装置。
    The frequency filter has a low-pass filter and a high-pass filter arranged in parallel with the low-pass filter,
    The low-pass filter has a first spring and a first damper arranged in parallel with the first spring,
    3. Elevator apparatus according to claim 1 or claim 2, wherein the high pass filter comprises a second damper and a second spring arranged in series with the second damper.
  4.  前記張力式作動装置は、
     前記被検出体の張力に応じた信号を発生する張力センサーと、
     前記張力センサーからの信号を処理する前記周波数フィルターとしてのバンドパスフィルターと、
     前記バンドパスフィルターを通過した信号に基づいて前記非常止め装置を作動させるアクチュエーターと
     を有している請求項1又は請求項2に記載のエレベーター装置。
    The tension type actuator includes:
    a tension sensor that generates a signal corresponding to the tension of the object to be detected;
    a bandpass filter as the frequency filter that processes the signal from the tension sensor;
    The elevator system according to claim 1 or 2, further comprising an actuator that operates the safety device based on the signal that has passed through the bandpass filter.
  5.  前記非常止め装置は、作動レバーを有しており、
     前記張力式作動装置は、ストッパー機構を有しており、
     前記ストッパー機構は、前記昇降体の上昇時に、前記非常止め装置が作動する方向への前記作動レバーの変位を規制し、前記昇降体の下降時に、非常止め装置が作動する方向への前記作動レバーの変位を許容する請求項1から請求項4までのいずれか1項に記載のエレベーター装置。
    The safety device has an operating lever,
    The tension actuator has a stopper mechanism,
    The stopper mechanism restricts displacement of the actuating lever in a direction in which the safety device operates when the elevator is ascending, and restricts displacement of the actuating lever in a direction in which the safety device operates when the elevator is descending. 5. Elevator apparatus according to any one of claims 1 to 4, wherein the displacement of .
  6.  前記昇降体に設けられており、前記昇降体の加速度に基づいて前記非常止め装置を作動させる加速度式作動装置
     をさらに備え、
     前記加速度式作動装置は、前記昇降体の加速度の変化に応じて上下方向へ変位する検出おもりを有している請求項1から請求項5までのいずれか1項に記載のエレベーター装置。
    further comprising: an acceleration-type actuator provided on the lifting body for activating the safety device based on acceleration of the lifting body;
    6. The elevator apparatus according to any one of claims 1 to 5, wherein the acceleration type actuator has a detection weight that is vertically displaced according to changes in acceleration of the elevator.
  7.  前記加速度式作動装置は、前記昇降体に設けられているおもりストッパーをさらに有しており、
     前記検出おもりは、前記おもりストッパーに載せられている請求項6記載のエレベーター装置。
    The acceleration type actuator further has a weight stopper provided on the lifting body,
    7. The elevator system according to claim 6, wherein said detection weight rests on said weight stopper.
  8.  昇降体、
     前記昇降体に設けられている非常止め装置、及び
     前記昇降体に設けられており、前記昇降体の加速度に基づいて前記非常止め装置を作動させる加速度式作動装置
     を備え、
     前記加速度式作動装置は、
     前記昇降体の加速度の変化に応じて上下方向へ変位する検出おもりと、
     前記昇降体の上昇時に前記検出おもりの上方への変位を規制して、前記非常止め装置が作動することを抑制し、前記昇降体の下降時に前記検出おもりの上方への変位を許容して、前記非常止め装置が作動することを許容するストッパー機構と
     を有しているエレベーター装置。
    lifting body,
    a safety device provided on the lifting body; and an acceleration-type actuator provided on the lifting body and actuating the safety device based on acceleration of the lifting body,
    The acceleration actuator is
    a detection weight displaced in the vertical direction in accordance with changes in the acceleration of the lifting body;
    restricting the upward displacement of the detection weight when the elevator is ascending, suppressing the operation of the safety device, and permitting the upward displacement of the detection weight when the elevator is descending; and a stopper mechanism that allows the safety device to operate.
PCT/JP2021/005299 2021-02-12 2021-02-12 Elevator apparatus WO2022172407A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022581121A JP7418623B2 (en) 2021-02-12 2021-02-12 elevator equipment
PCT/JP2021/005299 WO2022172407A1 (en) 2021-02-12 2021-02-12 Elevator apparatus
CN202180092776.9A CN116829486A (en) 2021-02-12 2021-02-12 Elevator device
DE112021007075.4T DE112021007075T5 (en) 2021-02-12 2021-02-12 Elevator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005299 WO2022172407A1 (en) 2021-02-12 2021-02-12 Elevator apparatus

Publications (1)

Publication Number Publication Date
WO2022172407A1 true WO2022172407A1 (en) 2022-08-18

Family

ID=82838492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005299 WO2022172407A1 (en) 2021-02-12 2021-02-12 Elevator apparatus

Country Status (4)

Country Link
JP (1) JP7418623B2 (en)
CN (1) CN116829486A (en)
DE (1) DE112021007075T5 (en)
WO (1) WO2022172407A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726760A (en) * 1980-07-25 1982-02-12 Hitachi Ltd Elevator device
JPH11209022A (en) * 1998-01-19 1999-08-03 Hitachi Ltd Elevator with emergency stop device
US20190084801A1 (en) * 2017-09-15 2019-03-21 Otis Elevator Company Elevator emergency stop systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726760A (en) * 1980-07-25 1982-02-12 Hitachi Ltd Elevator device
JPH11209022A (en) * 1998-01-19 1999-08-03 Hitachi Ltd Elevator with emergency stop device
US20190084801A1 (en) * 2017-09-15 2019-03-21 Otis Elevator Company Elevator emergency stop systems

Also Published As

Publication number Publication date
CN116829486A (en) 2023-09-29
JPWO2022172407A1 (en) 2022-08-18
JP7418623B2 (en) 2024-01-19
DE112021007075T5 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
KR102276519B1 (en) elevator device
KR101617572B1 (en) Elevator device
US9505587B2 (en) Elevator with acceleration detection
US9546074B2 (en) Elevator apparatus including an anomalous acceleration detecting mechanism
KR101920546B1 (en) Elevator device
JP5774220B2 (en) Elevator equipment
JP5959668B2 (en) Elevator equipment
JP5591504B2 (en) elevator
JP6813041B2 (en) Double deck elevator
JP4575076B2 (en) Elevator equipment
WO2022172407A1 (en) Elevator apparatus
WO2000055085A1 (en) Safety device of elevator
JP7146119B2 (en) Elevator and its safety device
WO2022172406A1 (en) Elevator device
WO2018179182A1 (en) Elevator device
JP2016030679A (en) Double deck elevator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581121

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180092776.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112021007075

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925658

Country of ref document: EP

Kind code of ref document: A1