WO2022172044A1 - 充放電制御方法及び充放電制御装置 - Google Patents

充放電制御方法及び充放電制御装置 Download PDF

Info

Publication number
WO2022172044A1
WO2022172044A1 PCT/IB2021/000082 IB2021000082W WO2022172044A1 WO 2022172044 A1 WO2022172044 A1 WO 2022172044A1 IB 2021000082 W IB2021000082 W IB 2021000082W WO 2022172044 A1 WO2022172044 A1 WO 2022172044A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
charge
power receiving
charging
receiving element
Prior art date
Application number
PCT/IB2021/000082
Other languages
English (en)
French (fr)
Inventor
村井謙介
池添圭吾
鈴木健太
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to PCT/IB2021/000082 priority Critical patent/WO2022172044A1/ja
Priority to CN202180092190.2A priority patent/CN116745796A/zh
Priority to US18/276,560 priority patent/US20240097467A1/en
Priority to JP2022580262A priority patent/JPWO2022172044A1/ja
Priority to EP21925539.5A priority patent/EP4293605A4/en
Publication of WO2022172044A1 publication Critical patent/WO2022172044A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/67Controlling two or more charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]

Definitions

  • the present invention relates to a charge/discharge control method and a charge/discharge control device.
  • Patent Document 1 a method of controlling the power consumption of each power consumption element based on the constraint of the total power consumption consumed by the entire group including a plurality of power consumption elements.
  • Patent Document 1 a broadcasting element broadcasts a function of the difference between the current value of total power consumption and a reference value of total power consumption within a group.
  • Each power consuming element controls its own power consumption using this function and the priority given to itself.
  • Patent Document 1 does not perform control based on the charge/discharge schedule of a smart grid (a power grid that controls and optimizes power from both supply and demand).
  • the present invention has been made in view of the above problems, and an object thereof is to provide a charge/discharge control method and a charge/discharge control device capable of efficiently controlling charge/discharge.
  • a charge/discharge control method is a method of transmitting power to an entire load group via a power supply base point from the maximum value of total transmitted power that can be sent to the entire load group via the power supply base point.
  • charging and discharging can be controlled efficiently.
  • FIG. 1 is a schematic configuration diagram of a power system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating an operation example of the power reception control device.
  • FIG. 3 is a graph explaining a comparative example.
  • FIG. 4 is a graph illustrating SOC improvement.
  • FIG. 5 is a graph illustrating SOC improvement.
  • FIG. 6 is a table for explaining control based on the state of charge of another electric vehicle.
  • a power reception control device for an electric vehicle an example of a power reception element
  • its peripheral devices according to the present embodiment
  • a power system that supplies electrical energy to a load group 11 including a plurality of electric vehicles (EV1, EV2, EV3, ...) via a power facility 12 (an example of a power supply base point 10)
  • a power receiving control device the element received power, which is the power received by the electric vehicle EV1 included in the load group 11, is controlled by repeating a predetermined processing cycle.
  • the power receiving control device includes a receiving device 21 that receives an electric signal from the outside, a vehicle state acquiring device 22 that acquires information indicating the state of the electric vehicle EV1, and a computing device 23 that calculates the elemental received power of the electric vehicle EV1.
  • the electric vehicle EV1 includes a power receiving device 24 that receives power from the outside, a battery 25 that stores the power (elemental received power) received by the power receiving device 24, and a motor 26 that is driven based on the electrical energy stored in the battery 25 or the elemental received power.
  • the "processing cycle” includes processing steps (a) to (e).
  • the receiving device 21 transmits to the entire load group 11 via the power equipment 12 from the maximum value (Pall_max) of the total transmitted power that can be transmitted to the entire load group 11 via the power equipment 12. acquires information indicating the differential power ( ⁇ P) obtained by subtracting the current value of the total transmitted power (Pall_now).
  • the computing device 23 sets the priority ( ⁇ ) of the electric vehicle EV1, which indicates the degree to which power reception of the self (electric vehicle EV1) is prioritized over power reception of other electric vehicles (EV2, EV3, . . . ). , based on a numerical value representing the demand of the user of the electric vehicle EV1.
  • the calculation device 23 calculates the element differential power ( ⁇ P) by multiplying the differential power ( ⁇ P) indicated by the acquired information by the priority ( ⁇ ).
  • the computing device 23 updates the element received power (Pt+1) by adding the element differential power ( ⁇ P) to the element received power (Pt) in the previous processing cycle.
  • the computing device 23 controls the electric vehicle EV1 to receive the updated element received power (Pt+1).
  • the "electric vehicle” is an example of a “storage element” or a “power receiving element” that receives power transmitted via the power equipment 12.
  • the power storage element stores the received power in a battery (including a secondary battery, a storage battery, and a rechargeable battery).
  • Battery storage elements include all devices and devices with batteries, such as vehicles (including electric vehicles, hybrid vehicles, construction machinery, agricultural machinery), rail vehicles, playground equipment, tools, household products, daily necessities, and the like.
  • a “storage element” is an example of a “power receiving element” that receives power transmitted via the power equipment 12.
  • the “power receiving element” includes a “power consuming element” that consumes the received power without storing it, in addition to the “storage element”.
  • Power consumption elements include rail vehicles, playground equipment, tools, household products, daily necessities, and the like.
  • a “power consuming element” may be equipped with a battery, such as an electric vehicle. When electric power received by an electric vehicle is not stored in a battery but is directly transmitted to a motor and consumed as driving power of the motor, the electric vehicle is an example of a “power consumption element.”
  • “power consuming elements” include all equipment and devices that consume received power without storing it, whether or not they have batteries.
  • Power storage element and “power receiving element” both indicate the unit configuration of power reception control by the power reception control device. That is, power reception control according to the present embodiment is performed in units of power storage elements or power reception elements. For example, power reception control according to the present embodiment is performed independently and in parallel for each of a plurality of electric vehicles (EV1, EV2, EV3, . . . ).
  • an electricity storage element is taken as an example of a power receiving element
  • an electric vehicle (EV) that runs using electricity as an energy source and a motor 26 as a power source is taken as an example of an electricity storage element.
  • EV electric vehicle
  • the “power equipment 12 ” is an example of the power supply base point 10 .
  • the “power equipment 12” includes, for example, the following ⁇ 1> to ⁇ 6>.
  • a mobile phone communication network may be used to control the element received power of the electric vehicle EV1 from outside the electric vehicle EV1.
  • the configuration of one electric vehicle EV1 among the plurality of electric vehicles (EV1, EV2, EV3, . . . ) included in the load group 11 will be described as an example.
  • the electric vehicles (EV2, EV3, . . . ) also have the same configuration as the electric vehicle EV1.
  • the power reception control device controls the power received by the electric vehicle EV1 via the power equipment 12.
  • the electric vehicle EV1 includes a power receiving device 24 called an onboard charger (OBC).
  • OBC onboard charger
  • the computing device 23 controls power received by the power receiving device 24 via the power equipment 12 .
  • the power received by the power receiving device 24 is stored in the battery 25 .
  • the electric vehicle EV1 may directly transmit the power received by the power receiving device to the motor 26 as the drive source without storing it in the battery 25 .
  • the electric power supplied to the electric vehicle EV1 via the power equipment 12 is measured by the current measuring device 13.
  • a power value measured by the current measuring device 13 is transmitted to the difference information transmitting device 14 .
  • Electric energy is supplied to a plurality of electric vehicles (EV1, EV2, EV3, . Furthermore, via one power facility 12, not only a plurality of electric vehicles (EV1, EV2, EV3, ...) but also one or more other power consumption elements 15 included in the load group 11 electrical energy may be supplied.
  • Current measurement device 13 measures the total power transmission being sent to all electric vehicles (EV1, EV2, EV3, .
  • the current value of power (Pall_now) in other words, the total transmitted power of the entire load group 11 is measured.
  • the power capacity of the entire load group 11, that is, the maximum value (Pall_max) of the total transmitted power that can be sent to the entire load group 11 via the power equipment 12 is predetermined.
  • the power reception control device controls the element received power of the electric vehicle EV1 based on the constraint of the maximum value (Pall_max) of the total transmitted power. For example, the power reception control device controls the power received by the electric vehicle EV1 so that the current value (Pall_now) of the total transmitted power measured by the current measuring device 13 does not exceed the maximum power value (Pall_max).
  • the received power of the electric vehicle EV1 may be controlled so as to allow the current value (Pall_now) of the total transmitted power to temporarily exceed the maximum value (Pall_max) of power.
  • the maximum value (Pall_max) of the total transmitted power may or may not be a fixed value. In facilities such as office buildings, commercial facilities, factories, and highway parking areas, there are not only charging stations for electric vehicles (EVs), but also equipment that consumes power, such as lighting, air conditioning, and elevators. do. Depending on these facilities, the maximum value of total transmitted power may fluctuate.
  • the difference information transmission device 14 is communicably connected to each of the power equipment 12, the current measurement device 13, and the electric vehicle EV1 by radio or wire.
  • the power equipment 12 transmits an electrical signal indicating the maximum value (Pall_max) of the total transmitted power to the difference information transmission device 14 .
  • the current measuring device 13 transmits an electrical signal indicating the current value (Pall_now) of the measured total transmitted power to the difference information transmitting device 14 .
  • the difference information transmission device 14 includes a calculation section 31 and a transmission section 32 .
  • the calculation unit 31 calculates the differential power ( ⁇ P) by subtracting the current value (Pall_now) of the total transmitted power from the maximum value (Pall_max) of the total transmitted power, as shown in Equation (1).
  • the transmitter 32 transmits (broadcasts) an electrical signal indicating the differential power ( ⁇ P) to all the electric vehicles (EV1, EV2, EV3, . . . ) included in the load group 11 by mobile communication. .
  • An electrical signal indicative of the differential power ( ⁇ P) is received by receiver 21 and forwarded to computing device 23 .
  • the power receiving control device can transmit power to the entire load group 11 via the power equipment 12 from the maximum value (Pall_max) of the total transmitted power that can be transmitted to the entire load group 11 via the power equipment 12. It is possible to obtain information indicating the differential power ( ⁇ P) obtained by subtracting the current value of the total transmitted power (Pall_now).
  • the difference information transmission device 14 uses the transmission unit 32 to transmit the difference power to the reception devices 21 of all the electric vehicles (EV1, EV2, EV3, . . . ) included in the load group 11 by wireless communication. Transmit (broadcast) information indicating ( ⁇ P). Alternatively, wired communication may be used to transmit the information indicating the differential power ( ⁇ P).
  • the difference information transmission device 14 receives, for example, the state of charge (SOC: STATE OF CHARGE) of the battery 25 and the time (T d ) at which power reception ends, transmitted from each electric vehicle. It is not necessary to have a receiving device for receiving a signal indicating the state of That is, between the difference information transmission device 14 and each electric vehicle, it is only necessary to be able to communicate in only one direction from the difference information transmission device 14 to each electric vehicle. Bi-directional communication is also possible.
  • SOC state of charge
  • T d time at which power reception ends
  • the difference information transmission device 14 may be, for example, a server connected to the power equipment 12, the current measurement device 13, and the load group 11 via a computer network. Alternatively, the difference information transmission device 14 may be configured as part of the power equipment 12 .
  • the vehicle state acquisition device 22 acquires information representing the state of the electric vehicle EV1.
  • the "state of the electric vehicle EV1" is a numerical value representing the request of the user of the electric vehicle EV1.
  • the numerical value representing the request of the user of the electric vehicle EV1 is the remaining time (T) until the time when the electric vehicle EV1 ends power reception (power reception end time T d ).
  • the remaining time (T) can be calculated from the time when the electric vehicle EV1 finishes receiving power.
  • the remaining time (T) is the remaining time during which the battery 25 of the electric vehicle EV1 can be charged.
  • the power reception end time (T d ) may be a time actually set by the user using an information communication terminal such as a smartphone or a user interface mounted on the electric vehicle EV1. Alternatively, if there is no specific instruction or setting from the user, the time may be estimated from statistical data obtained by investigating the user's past action history (past departure time history, etc.).
  • the computing device 23 prioritizes power reception by the self EV1 over power reception by other electric vehicles (EV2, EV3, .
  • the priority ( ⁇ ) of the electric vehicle EV1 which indicates the degree to which the electric vehicle EV1
  • the calculation device 23 calculates the priority ( ⁇ ) from the remaining time (T) from the current time (T o ) to the power reception end time (T d ) using the equation (2).
  • N indicates the total number of electric vehicles receiving power within the load group 11 .
  • the priority ( ⁇ ) is inversely proportional to the remaining time (T). As the remaining time (T) becomes shorter, the priority ( ⁇ ) becomes higher.
  • the formula (2) is only an example.
  • the priority ( ⁇ ) is inversely proportional to the remaining time (T) multiplied by 2 or more g times (g is a positive number). You may
  • the total number of electric vehicles (N) may be statistical data (quantity data) obtained by investigating past power reception history in the load group 11, or may be approximated from the current power value (Pall_now). It is also possible to estimate the total number (N).
  • the total number (N), like the differential power ( ⁇ P), is broadcast from the differential information transmitter 14 or a device attached to the differential information transmitter 14 .
  • the total number (N) may be specified by location information or an identification signal of the charging system.
  • the calculation device 23 calculates the element differential power ( ⁇ P) by multiplying the differential power ( ⁇ P) by the priority ( ⁇ ) as shown in the equation (3), and calculates the element received power (Pt) in the previous processing cycle.
  • the element received power (Pt+1) is updated by adding the element differential power ( ⁇ P) to
  • the suffixes (lower right characters) "t" and “t+1" of the symbol "P" indicating the element received power indicate the number of repetitions of the "processing cycle".
  • t is a positive integer including zero.
  • the computing device 23 transmits an instruction signal to the power receiving device 24 so that the power receiving device 24 receives the updated element power reception power (Pt+1), and the power receiving device 24 that has received the instruction signal receives the updated element power reception power (Pt+1). Power (Pt+1) is received via power equipment 12 .
  • the power reception control device repeatedly executes a "processing cycle" including the processing steps (a) to (e) at a constant cycle to obtain the power (element received power Pt) received by the power receiving device 24 of the electric vehicle EV1. Control.
  • step S ⁇ b>01 the receiving device 21 acquires information indicating the differential power ( ⁇ P) calculated by the calculator 31 .
  • the process proceeds to step S02, and the vehicle state acquisition device 22 acquires information indicating the power reception end time (T d ) as an example of information indicating the state of the electric vehicle EV1.
  • step S03 the power reception control device determines whether or not to continue power reception. For example, when an instruction signal to end power reception is received from the user of the electric vehicle EV1 (NO in S03), or when the current time is the end time (T d ) of power reception, continuation of power reception is ended. Alternatively, when it is detected that the charging port is not connected (NO in S03), the electric vehicle EV1 is likely to start moving within several minutes, so the continuation of power reception is terminated. Furthermore, when the state of charge (SOC) of the battery 25 reaches the target value (NO in S03), continuation of power reception is terminated. If these conditions do not exist (YES in S03), the power reception control device continues power reception.
  • SOC state of charge
  • step S04 the calculation device 23 calculates the priority ( ⁇ ) of the electric vehicle EV1 from the power reception end time (T d ) using equation (2).
  • step S05 the calculation device 23 updates the element received power (Pt+1) by substituting the differential power ( ⁇ P) and the priority ( ⁇ ) into the equation (3).
  • the computing device 23 controls the power receiving device 24 so that the power receiving device 24 receives the updated elemental received power (Pt+1).
  • the power reception control device controls the element received power (P) by repeatedly executing a processing cycle in units of steps S01 to S06 until it is determined NO in step S03.
  • the updated element received power (Pt+1) is corrected by subtracting a certain power correction value ( ⁇ Pt) from the previous element received power (Pt). may This makes it difficult for the differential power ( ⁇ P) to become zero. As a result, the electric vehicle desiring to newly start receiving power can start receiving power early.
  • the power reception control device controls charging and discharging of its own electric vehicle based on the charging and discharging schedule of the smart grid.
  • a smart grid is a power grid that controls and optimizes electricity from both supply and demand. Smart grids are sometimes called next-generation power grids or smart communities.
  • the smart grid is a power network that includes the power equipment 10, the difference information transmission device 14, the current measurement device 13, and the load group 11 shown in FIG.
  • the charging and discharging schedule of the smart grid is not particularly limited, it is assumed that it is set in advance in this embodiment.
  • the charge/discharge schedule is preset based on peak power demand, off-peak power demand, nighttime power, and the like.
  • the power receiving control device acquires the charging and discharging schedule of the smart grid. For example, the power reception control device acquires the charge/discharge schedule from the difference information transmission device 14 . The power reception control device then controls charging and discharging of its own electric vehicle based on the charging and discharging schedule. In other words, the power system transmits a charge/discharge schedule to each electric vehicle. The electric power system prompts each electric vehicle to charge/discharge based on the charge/discharge schedule. This allows the power system to supply many electric vehicles with the power they need.
  • Conversion loss is, for example, AC-DC conversion loss or DC-AC conversion loss.
  • charge/discharge loss conversion loss related to charge/discharge
  • the comparative example referred to here is a case in which the charge/discharge control method according to this embodiment is not used.
  • the upper diagram of FIG. 3 will be described.
  • the upper diagram shows the charging and discharging schedule of the smart grid.
  • positive values indicate the charging side.
  • a negative value indicates the discharge side.
  • the charging side indicates that the signal transmitted from the difference information transmitting device 14 is positive. That is, the differential power ( ⁇ P) is positive.
  • the discharge side indicates that the signal transmitted from the difference information transmission device 14 is negative. That is, the differential power ( ⁇ P) is negative.
  • the horizontal axis indicates time.
  • Reference numeral 40 indicates a value related to the charge/discharge schedule.
  • Reference numeral 41 indicates the measured value.
  • the diagram on the lower side of FIG. 3 will be explained.
  • the vertical axis of the lower diagram indicates the storage battery capacity (kWh) of the electric vehicle.
  • the horizontal axis indicates time.
  • Reference numeral 51 indicates the storage battery capacity of EV1.
  • Reference numeral 52 indicates the storage battery capacity of EV2.
  • Reference numeral 53 indicates the storage battery capacity of EV3.
  • Reference numeral 54 indicates the storage battery capacity of the EV4.
  • Reference numeral 61 indicates the storage battery capacity when EV1 departs.
  • Reference numeral 62 indicates the storage battery capacity when EV2 departs.
  • Reference numeral 63 indicates the storage battery capacity when EV3 departs.
  • Reference numeral 64 indicates the storage battery capacity when the EV4 departs. In addition, you may read a storage battery accommodation as SOC.
  • the priority ( ⁇ ) is given by equation (4).
  • (estimated charging power) is the dimension of the amount of power because it takes the total over time.
  • the estimated charging power is transmitted from the difference information transmitting device 14, for example.
  • the estimated charging power is obtained by dividing the total amount of power available to the electric vehicles by the estimated number of staying electric vehicles.
  • the estimated charging power corresponds to the expected charging amount per electric vehicle.
  • a result of using the priority ( ⁇ ) according to Equation (4) will be described. An electric vehicle with a lower priority than surrounding electric vehicles will receive a smaller amount of charge. An electric vehicle with a higher priority than the surrounding electric vehicles will have a larger charge amount. As a result, as shown in FIG. 4, EV2 to EV4 can start with a higher SOC than in FIG.
  • the priority ( ⁇ ) may be given by formula (5).
  • the SOC state of another electric vehicle may be estimated to control the amount of electric power (charge/discharge amount) related to self charge/discharge.
  • the own electric vehicle cannot know the SOC state of other electric vehicles. Therefore, the power reception control device estimates the SOC state of the other electric vehicle and controls the amount of electric power (charge/discharge amount) related to its own charging/discharging.
  • state indicates whether it is on the charging side or the discharging side in the charging and discharging schedule of the smart grid. Whether or not another electric vehicle is expected to reach a desired SOC (hereinafter referred to as desired SOC) is estimated based on the amount of change in differential power ( ⁇ P). The SOC states of other electric vehicles are estimated in all cases (cases 1 to 8).
  • case 1 in FIG. 6 will be explained.
  • the charging/discharging schedule is "charging”.
  • the own electric vehicle is expected to reach the desired SOC. All other electric vehicles are expected to reach the desired SOC.
  • the power reception control device basically charges based on the charge/discharge schedule. Powered control devices do not discharge. However, charging may not be necessary depending on the SOC state of other electric vehicles.
  • Case 3 will be explained.
  • the charging/discharging schedule is "charging”. If the battery is charged according to the charging/discharging schedule, it is expected that the own electric vehicle will not reach the desired SOC. All other electric vehicles are expected to reach the desired SOC. In this case, the power reception control device charges based on the charge/discharge schedule.
  • Case 4 will be explained.
  • the charging/discharging schedule is "charging”. If the battery is charged according to the charging/discharging schedule, it is expected that the own electric vehicle will not reach the desired SOC. There are other electric vehicles that are unlikely to reach the desired SOC.
  • the power reception control device basically charges based on the charge/discharge schedule. Powered control devices do not discharge.
  • Case 5 the charge/discharge schedule is "discharge". If the electric vehicle is discharged according to the charging/discharging schedule, the own electric vehicle is expected to reach the desired SOC. All other electric vehicles are expected to reach the desired SOC. In this case, the power reception control device basically discharges based on the charge/discharge schedule. Powered control devices are not charged.
  • Case 6 the charge/discharge schedule is "discharge". If the electric vehicle is discharged according to the charging/discharging schedule, the own electric vehicle is expected to reach the desired SOC. There are other electric vehicles that are unlikely to reach the desired SOC. In this case, the power reception control device discharges based on the charge/discharge schedule.
  • the power reception control device charges or discharges based on the charge/discharge schedule.
  • Case 2 will be explained.
  • the charging/discharging schedule is "charging".
  • the own electric vehicle is expected to reach the desired SOC.
  • the power reception control device does not perform control based on the charge/discharge schedule.
  • the power reception control device discharges, ignoring the charge/discharge schedule. This allows the own electric vehicle to supply power to other electric vehicles. This allows other electric vehicles to start at a high SOC state.
  • Case 7 will be explained.
  • the charge/discharge schedule is "discharge". If the electric vehicle is discharged according to the charging/discharging schedule, it is expected that the own electric vehicle will not reach the desired SOC. All other electric vehicles are expected to reach the desired SOC. In this case, the power reception control device does not perform control based on the charge/discharge schedule. The power receiving control device charges the battery ignoring the charging/discharging schedule. This allows the own electric vehicle to start in a high SOC state.
  • the charge/discharge schedule is "discharge". If the electric vehicle is discharged according to the charging/discharging schedule, it is expected that the own electric vehicle will not reach the desired SOC. There are other electric vehicles that are unlikely to reach the desired SOC. In this case, the power reception control device does not perform control based on the charge/discharge schedule. The power reception control device charges the electric vehicle when there is no discharging electric vehicle among other electric vehicles expected to reach the desired SOC. This allows the own electric vehicle to start in a high SOC state. Further, the power reception control device does not charge the electric vehicle if there is a discharging electric vehicle among other electric vehicles that are not expected to reach the desired SOC.
  • not charging means not charging with the power supplied from the power equipment 12 . If there is a discharging electric vehicle among the other electric vehicles expected to not reach the desired SOC, the power reception control device charges the electric vehicle using the electric power discharged by the other electric vehicle. This allows the own electric vehicle to start in a high SOC state.
  • the power receiving control device estimates the SOC state of other electric vehicles. Based on the estimation result, the power reception control device performs charge/discharge control while ignoring the charge/discharge schedule. This allows self or other electric vehicles to start at a high SOC. In addition, this enables appropriate charge/discharge control and reduces charge/discharge loss.
  • the power reception control device controls the power received or discharged by the power receiving elements included in the load group 11 in a power system that supplies electrical energy to the load group 11 including a plurality of power receiving elements via the power supply base point 10 .
  • the power receiving control device determines the total power transmitted to the entire load group 11 via the power supply base point 10 from the maximum value of the total transmitted power that can be sent to the entire load group 11 via the power supply base point 10.
  • the power receiving control device multiplies the differential power ( ⁇ P) indicated by the acquired information by the priority ( ⁇ ) of the power receiving element, which indicates the degree to which the power reception of the power receiving element is prioritized over the power reception of other power receiving elements.
  • the power reception control device controls its own charging/discharging based on the element differential power and the charging/discharging schedule of the power system. This realizes efficient charge/discharge control using the charge/discharge schedule.
  • the power receiving control device estimates the state of charge of other power receiving elements.
  • the power reception control device controls its own charging/discharging based on the estimated state of charge of the other power receiving elements. In this way, the power reception control device basically follows the charge/discharge schedule, but depending on the estimated state of charge of other power receiving elements, the power reception control device ignores the charge/discharge schedule and performs its own charge/discharge control. This enables appropriate charge/discharge control and reduces charge/discharge loss.
  • Estimating the state of charge of the other power receiving element means estimating whether or not the amount of charge of the other power receiving element reaches the desired amount of charge of the other power receiving element at the time when the other power receiving element departs in the future.
  • a power system is, for example, a smart grid.
  • Processing circuitry includes programmed processing devices, such as processing devices that include electrical circuitry. Processing circuitry also includes devices such as application specific integrated circuits (ASICs) and circuit components arranged to perform the described functions.
  • ASICs application specific integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Power Engineering (AREA)
  • Human Resources & Organizations (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Sustainable Energy (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Educational Administration (AREA)
  • Sustainable Development (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

充放電制御装置は、電力供給基点(10)を経由して負荷群(11)の全体に送ることができる総送電電力の最大値から、電力供給基点(10)を経由して負荷群(11)の全体に送っている総送電電力の現在値を減じて得られる差分電力を示す情報を取得し、取得した情報が示す差分電力に、他の受電要素の受電よりも自己の受電が優先される度合いを示す受電要素の優先度を乗じることにより、受電要素の要素差分電力を算出し、要素差分電力と、電カシステムの充放電スケジュールとに基づいて自己の充放電を制御する。

Description

充放電制御方法及び充放電制御装置
 本発明は、充放電制御方法及び充放電制御装置に関する。
 従来より、複数の電力消費要素を含むグループ全体で消費される総消費電力の制約に基づいて各電力消費要素の消費電力を制御する方法が知られている(特許文献1)。特許文献1において、同報送信要素が、総消費電力の現在値と総消費電力の基準値との差の関数をグループ内に同報送信する。各電力消費要素は、この関数と自己に与えられた優先度とを用いて自己の消費電力を制御する。
特許第6168528号公報
 しかしながら、特許文献1に記載された発明は、スマートグリッド(電力を供給及び需要の両方から制御し、最適化する電力網)の充放電スケジュールに基づいた制御を行っていない。
 本発明は、上記問題に鑑みて成されたものであり、その目的は、効率よく充放電を制御することができる充放電制御方法及び充放電制御装置を提供することである。
 本発明の一態様に係る充放電制御方法は、電力供給基点を経由して負荷群の全体に送ることができる総送電電力の最大値から、電力供給基点を経由して負荷群の全体に送っている総送電電力の現在値を減じて得られる差分電力を示す情報を取得し、取得した情報が示す差分電力に、他の受電要素の受電よりも自己の受電が優先される度合いを示す受電要素の優先度を乗じることにより、受電要素の要素差分電力を算出し、要素差分電力と、電力システムの充放電スケジュールとに基づいて自己の充放電を制御する。
 本発明によれば、効率よく充放電を制御することができる。
図1は、本発明の実施形態に係る電力システムの概略構成図である。 図2は、受電制御装置の一動作例を説明するフローチャートである。 図3は、比較例を説明するグラフである。 図4は、SOC改善を説明するグラフである。 図5は、SOC改善を説明するグラフである。 図6は、他の電気自動車の充電状態に基づく制御を説明する表である。
 以下、本発明の実施形態について、図面を参照して説明する。図面の記載において同一部分には同一符号を付して説明を省略する。
 図1を参照して、本実施形態に係る電気自動車(受電要素の一例)の受電制御装置及びその周辺装置の構成を説明する。複数の電気自動車(EV1、EV2、EV3、・・・)を含む負荷群11へ、電力設備12(電力供給基点10の一例)を経由して電気エネルギーを供給する電力システムにおいて、受電制御装置は、負荷群11に含まれる電気自動車EV1が受電する電力である要素受電電力を、所定の処理サイクルを繰り返すことにより制御する。
 受電制御装置は、外部から電気信号を受信する受信装置21と、電気自動車EV1の状態を示す情報を取得する車両状態取得装置22と、電気自動車EV1の要素受電電力を算出する計算装置23とを備える。電気自動車EV1は、外部から電力を受ける受電装置24と、受電装置24が受けた電力(要素受電電力)を蓄えるバッテリ25と、バッテリ25が蓄える電気エネルギー又は要素受電電力に基づいて駆動するモータ26とを備える。
 「処理サイクル」には、(a)~(e)の処理ステップが含まれる。
 (a)受信装置21は、電力設備12を経由して負荷群11の全体に送ることができる総送電電力の最大値(Pall_max)から、電力設備12を経由して負荷群11の全体に送っている総送電電力の現在値(Pall_now)を減じて得られる差分電力(ΔP)を示す情報を取得する。
 (b)計算装置23は、他の電気自動車(EV2、EV3、・・・)の受電よりも自己(電気自動車EV1)の受電が優先される度合いを示す電気自動車EV1の優先度(β)を、電気自動車EV1のユーザの要求を表す数値に基づいて算出する。
 (c)計算装置23は、取得した情報が示す差分電力(ΔP)に優先度(β)を乗じることにより要素差分電力(βΔP)を算出する。
 (d)計算装置23は、前回の処理サイクルにおける要素受電電力(Pt)に、要素差分電力(βΔP)を加算することにより、要素受電電力(Pt+1)を更新する。
 (e)計算装置23は、更新後の要素受電電力(Pt+1)を受電するように電気自動車EV1を制御する。
 ここで、本実施形態において、「電気自動車」は、電力設備12を経由して伝送される電力を受電する「蓄電要素」又は「受電要素」の一例である。蓄電要素は、受電した電力をバッテリ(二次電池、蓄電池、充電式電池を含む)に蓄える。「蓄電要素」には、車両(電気自動車、ハイブリッド車、建設機械、農業機械を含む)、鉄道車両、遊具、工具、家庭製品、日用品など、バッテリを備える、あらゆる機器及び装置が含まれる。
 「蓄電要素」は、電力設備12を経由して伝送される電力を受電する「受電要素」の一例である。「受電要素」には、「蓄電要素」の他に、受電した電力を蓄えずに消費する「電力消費要素」も含まれる。「電力消費要素」には、鉄道車両、遊具、工具、家庭製品、日用品など、が含まれる。「電力消費要素」は、電気自動車のように、バッテリを備えていても構わない。電気自動車が受電した電力をバッテリに蓄えずに、直接、モータへ電送し、モータの駆動力として消費する場合、電気自動車は「電力消費要素」の一例となる。このように、「電力消費要素」には、バッテリを備えるか否かに係わらず、受電した電力を蓄電せずに消費する、あらゆる機器及び装置が含まれる。
 「蓄電要素」及び「受電要素」は、いずれも受電制御装置による受電制御の単位構成を示す。即ち、蓄電要素又は受電要素を単位として本実施形態に係る受電制御が行われる。例えば、複数の電気自動車(EV1、EV2、EV3、・・・)の各々について、互いに独立して並列に本実施形態に係る受電制御が行われる。
 本実施形態では、受電要素の一例として蓄電要素を挙げ、更に、蓄電要素の一例として、電気をエネルギー源とし、モータ26を動力源として走行する電気自動車(EV)を挙げる。しかし、本発明における受電要素及び蓄電要素をそれぞれ電気自動車(EV)に限定することは意図していない。
 本実施形態において、「電力設備12」は、電力供給基点10の一例である。「電力設備12」には、例えば、以下の<1>~<6>が含まれる。
<1>電気自動車EV用の「充電スタンド」
<2>住宅、オフィスビル、商業施設、工場、又は高速道路のパーキングエリア等の敷地内に設置された「変電装置」
<3>水力、火力、原子力などの「発電所」、発電された電力を所定の電圧へ変換する「変電所」
<4>変電所を経由して伝送された電力を分配するための様々な「配電設備」
<5>これらの装置又は設備の間を接続する「配線(ケーブル、フィーダーを含む)」、及び<6>近隣にある小規模な蓄電要素のエネルギーを束ね、1つの大規模な発電所のように機能させる「バーチャルパワープラント(仮想発電所:VPP)」
 本実施形態では、受電制御装置が、電気自動車EV1に搭載されている例を説明するが、勿論、受電制御装置は、短距離無線、無線LAN、無線WANなどの近距離無線通信技術、或いは、携帯電話通信網を利用して、電気自動車EV1の外部から電気自動車EV1の要素受電電力を制御してもよい。
 また、負荷群11に含まれる複数の電気自動車(EV1、EV2、EV3、・・・)のうちの1台の電気自動車EV1の構成を例に取り説明するが、負荷群11に含まれる他の電気自動車(EV2、EV3、・・・)も電気自動車EV1と同じ構成を有している。
 受電制御装置は、電力設備12を経由して電気自動車EV1が受電する電力を制御する。電気自動車EV1は、オンボードチャージャー(OBC)と呼ばれる受電装置24を備える。計算装置23は、受電装置24が電力設備12を経由して受電する電力を制御する。受電装置24が受電した電力は、バッテリ25に蓄えられる。又は、電気自動車EV1は、受電装置が受電した電力を、バッテリ25に蓄えず、駆動源としてのモータ26へ直接送電しても構わない。
 電力設備12を経由して電気自動車EV1へ供給される電力は、電流計測装置13により計測される。電流計測装置13により計測された電力値は、差分情報送信装置14へ送信される。
 1つの電力設備12を経由して、負荷群11に含まれる複数の電気自動車(EV1、EV2、EV3、・・・)に対して電気エネルギーが供給される。更に、1つの電力設備12を経由して、複数の電気自動車(EV1、EV2、EV3、・・・)のみならず、負荷群11に含まれる1又は2以上の他の電力消費要素15に対しても電気エネルギーが供給されてもよい。電力設備12を経由して電気エネルギーの供給を受ける複数の電気自動車(EV1、EV2、EV3、・・・)及び1又は2以上の他の電力消費要素15は、1つのグループ(負荷群11)を形成している。
 電流計測装置13は、電力設備12を経由して1つの負荷群11に含まれる全ての電気自動車(EV1、EV2、EV3、・・・)及び他の電力消費要素15へ送られている総送電電力の現在値(Pall_now)、換言すれば、負荷群11の全体の総送電電力を計測する。
 ここで、負荷群11の全体の電力容量、即ち、電力設備12を経由して負荷群11の全体に送ることができる総送電電力の最大値(Pall_max)が予め定められている。本実施形態に係る受電制御装置は、総送電電力の最大値(Pall_max)の制約に基づき、電気自動車EV1の要素受電電力を制御する。例えば、受電制御装置は、電流計測装置13が計測する総送電電力の現在値(Pall_now)が、電力の最大値(Pall_max)を超えないように、電気自動車EV1の受電電力を制御する。勿論、総送電電力の現在値(Pall_now)が電力の最大値(Pall_max)を一時的に超えることを許容するように、電気自動車EV1の受電電力を制御しても構わない。なお、総送電電力の最大値(Pall_max)は、固定値でもよく、固定値でなくてもよい。オフィスビル、商業施設、工場、高速道路のパーキングエリア等の施設内には、電気自動車EV用の充電スタンドのみならず、照明装置、空調装置、昇降装置など、電力を消費する施設内機器が存在する。これらの設備によっては、総送電電力の最大値が変動する場合がありうる。
 図1に示すように、本実施形態では、電力設備12、電流計測装置13及び電気自動車EV1の各々に対して、差分情報送信装置14が無線又は有線により通信可能に接続されている。電力設備12は、差分情報送信装置14へ総送電電力の最大値(Pall_max)を示す電気信号を送信する。電流計測装置13は、計測した総送電電力の現在値(Pall_now)を示す電気信号を差分情報送信装置14へ送信する。
 差分情報送信装置14は、計算部31と送信部32とを備える。計算部31は、(1)式に示すように、総送電電力の最大値(Pall_max)から総送電電力の現在値(Pall_now)を減ずることにより差分電力(ΔP)を算出する。送信部32は、差分電力(ΔP)を示す電気信号を、負荷群11に含まれる全ての電気自動車(EV1、EV2、EV3、・・・)に対して、移動体通信により送信(ブロードキャスト)する。差分電力(ΔP)を示す電気信号は受信装置21により受信され、計算装置23へ転送される。これにより、受電制御装置は、電力設備12を経由して負荷群11の全体に送ることができる総送電電力の最大値(Pall_max)から、電力設備12を経由して負荷群11の全体に送っている総送電電力の現在値(Pall_now)を減じて得られる差分電力(ΔP)を示す情報を取得することができる。
Figure JPOXMLDOC01-appb-M000001
 なお、差分情報送信装置14は、送信部32を用いて、負荷群11に含まれる全ての電気自動車(EV1、EV2、EV3、・・・)の受信装置21に対して、無線通信により差分電力(ΔP)を示す情報を送信(ブロードキャスト)する。または、差分電力(ΔP)を示す情報の送信には有線による通信でもよい。
 図1に示す例において、差分情報送信装置14は、各電気自動車から送信される、例えばバッテリ25の充電率(SOC:STATE OF CHARGE)や受電を終了する時刻(T)など、各電気自動車の状態を示す信号を受信する受信装置を備えていなくてもよい。即ち、差分情報送信装置14と各電気自動車との間は、差分情報送信装置14から各電気自動車への片方向のみに通信できればよい。なお、双方向の通信も可能である。
 差分情報送信装置14は、例えば、コンピュータネットワークを介して、電力設備12、電流計測装置13、及び負荷群11に接続されたサーバであってもよい。或いは、差分情報送信装置14は、電力設備12の一部分として構成されていてもよい。
 車両状態取得装置22は、電気自動車EV1の状態を表す情報を取得する。例えば、「電気自動車EV1の状態」とは、電気自動車EV1のユーザの要求を表す数値である。電気自動車EV1のユーザの要求を表す数値は、電気自動車EV1の受電を終了する時刻(受電の終了時刻T)までの残り時間(T)である。残り時間(T)は、電気自動車EV1が受電を終了する時刻から算出可能である。残り時間(T)は、電気自動車EV1のバッテリ25を充電することができる残り時間である。
 例えば、自宅に帰宅したユーザが、自宅の駐車場にて電気自動車EV1のバッテリ25の充電を開始し、翌日の午前7時に電気自動車EV1にて外出する予定がある場合、翌日の午前7時から所定時間(5分)前の時刻を、受電の終了時刻として設定することができる。このように、“翌日の午前7時に外出したい”という「ユーザの要求」は、受電の終了時刻(午前6時55分=T)及び受電の終了時刻までの残り時間(T)を表している。「受電の終了時刻(T)」とは、電気自動車EV1が受電を続けることが可能な期間が終了する時刻を意味し、受電制御フロー(図2)において、受電を継続しない(S03でNO)と判断する時刻から区別される。
 受電の終了時刻(T)は、ユーザがスマートフォンなどの情報通信端末又は電気自動車EV1に搭載されたユーザインターフェースを用いて実際に設定した時刻であってもよい。又は、ユーザからの具体的な指示又は設定が無い場合、ユーザの過去の行動履歴(過去の出発時刻の履歴など)を調査して得られる統計データから推定される時刻であっても構わない。
 計算装置23は、電気自動車EV1のユーザの要求を表す数値(電気自動車EV1の状態)に基づいて、他の電気自動車(EV2、EV3、・・・)の受電よりも自己EV1の受電が優先される度合いを示す電気自動車EV1の優先度(β)を算出する。具体的に、計算装置23は、(2)式を用いて、現時刻(T)から受電の終了時刻(T)までの残り時間(T)から優先度(β)を算出する。(2)式において、Nは、負荷群11内で受電を行う電気自動車の総数を示す。
Figure JPOXMLDOC01-appb-M000002
 (2)式に示すように、優先度(β)は残り時間(T)に反比例する。残り時間(T)が短くなるにつれて、優先度(β)は高くなる。(2)式は一例にすぎず、例えば、優先度(β)は、残り時間(T)を2以上のg回(gは正数)掛け算した「残り時間(T)のg乗」に反比例してもよい。
 電気自動車の総数(N)は、負荷群11における過去の受電履歴を調査して得られる統計データ(数量データ)であってもよいし、電力の現在値(Pall_now)から、おおよその電気自動車の総数(N)を推定することも可能である。総数(N)は差分電力(ΔP)と同様に差分情報送信装置14もしくは差分情報送信装置14に付随する装置から同報送信される。または、充電システムの位置情報や識別信号などで、総数(N)を特定してもよい。
 計算装置23は、(3)式に示すように、差分電力(ΔP)に優先度(β)を乗じることにより要素差分電力(βΔP)を算出し、前回の処理サイクルにおける要素受電電力(Pt)に、要素差分電力(βΔP)を加算することにより、要素受電電力(Pt+1)を更新する。なお、要素受電電力を示す記号「P」の添え字(右下付文字)「t」「t+1」は、「処理サイクル」の繰り返し回数を示す。tは、零を含む正の整数である。
Figure JPOXMLDOC01-appb-M000003
 計算装置23は、受電装置24が更新後の要素受電電力(Pt+1)を受電するように受電装置24に対して指示信号を送信し、指示信号を受信した受電装置24は、更新後の要素受電電力(Pt+1)を、電力設備12を経由して受電する。
 受電制御装置は、(a)~(e)の処理ステップを含む「処理サイクル」を一定の周期で繰り返し実行することにより、電気自動車EV1の受電装置24が受電する電力(要素受電電力Pt)を制御する。
 次に、図2のフローチャートを参照して、図1の受電制御装置による受電制御方法の一例(基本例)を説明する。なお、当業者であれば、図1の受電制御装置の具体的な構成及び機能の説明から、受電制御装置による受電処理方法の具体的な手順を容易に理解できる。よって、ここでは、図1の受電制御装置による受電処理方法として、受電制御装置の主要な処理動作を説明し、詳細な処理動作の説明は、図1を参照した説明と重複するため割愛する。
 まず、ステップS01において、受信装置21は、計算部31により算出された差分電力(ΔP)を示す情報を取得する。処理はステップS02に進み、車両状態取得装置22は、電気自動車EV1の状態を示す情報の例として、受電の終了時刻(T)を示す情報を取得する。
 処理はステップS03に進み、受電制御装置は、受電を継続するか否かを判断する。例えば、電気自動車EV1のユーザから受電終了の指示信号を受信した場合(S03でNO)、又は、現時刻が受電の終了時刻(T)となった場合、受電の継続を終了する。或いは、充電ポートの未接続を検知した場合など(S03でNO)、それから数分の内に、電気自動車EV1が移動を開始する可能性が高まるため、受電の継続を終了する。更に、バッテリ25の充電率(SOC)が目標値に達した場合(S03でNO)、受電の継続を終了する。これらの状況が無ければ(S03でYES)、受電制御装置は受電を継続する。
 処理はステップS04に進み、計算装置23は、(2)式を用いて、受電の終了時刻(T)から、電気自動車EV1の優先度(β)を算出する。処理はステップS05に進み、計算装置23は、(3)式に、差分電力(ΔP)及び優先度(β)を代入することにより、要素受電電力(Pt+1)を更新する。
 ステップS06へ進み、計算装置23は、受電装置24が更新後の要素受電電力(Pt+1)を受電するように受電装置24を制御する。受電制御装置は、ステップS01からステップS06までを単位とする処理サイクルを、ステップS03でNOと判定されるまで、繰り返し実行することにより、要素受電電力(P)を制御する。
 なお、要素受電電力(Pt+1)を更新する際に、前回の要素受電電力(Pt)から、一定の電力補正値(αPt)を減算することにより、更新後の要素受電電力(Pt+1)を補正してもよい。これにより差分電力(ΔP)を零に成り難くすることができる。これにより新たに受電を開始したい電気自動車は、早期に受電を開始することができる。
 本実施形態では、受電制御装置は、スマートグリッドの充放電スケジュールに基づいて自己の電気自動車の充放電を制御する。スマートグリッドとは、電力を供給及び需要の両方から制御し、最適化する電力網のことである。スマートグリッドは、次世代送電網、あるいはスマートコミュニティと呼ばれる場合もある。スマートグリッドの一例として、スマートグリッドは図1に示す電力設備10、差分情報送信装置14、電流計測装置13、及び負荷群11を含む範囲の電力網である。
 スマートグリッドの充放電スケジュールについて、特に限定されないが、本実施形態では予め設定されているものとして説明する。例えば、充放電スケジュールは、電力需要のピーク、電力需要のオフピーク、夜間電力などに基づいて予め設定される。
 受電制御装置は、スマートグリッドの充放電スケジュールを取得する。例えば受電制御装置は、差分情報送信装置14から充放電スケジュールを取得する。そして受電制御装置は、充放電スケジュールに基づいて自己の電気自動車の充放電を制御する。換言すれば、電力システムは、各電気自動車に充放電スケジュールを送信する。電力システムは、充放電スケジュールに基づく充放電を各電気自動車に促す。これにより、電力システムは多くの電気自動車に、必要な電力を供給することができる。
 各電気自動車が充放電を行う際、充放電に関する変換損失が生じる。変換損失とは、例えば、AC−DC変換に係る損失、あるいはDC−AC変換に係る損失である。以下では「充放電に関する変換損失」を「充放電損失」と称する。各電気自動車が充放電を行う際、充放電損失を低減することが望まれる。
 次に図3~6を参照して本実施形態に係る充放電制御方法の一例について説明する。
 まず最初に図3を参照して比較例を説明する。ここでいう比較例は、本実施形態に係る充放電制御方法を使用しないケースである。図3の上側の図について説明する。上側の図は、スマートグリッドの充放電スケジュールを示す。上側の図の縦軸において、正の値は充電側であることを示す。負の値は放電側であることを示す。充電側とは、差分情報送信装置14から送信される信号がプラスであることを示す。つまり、差分電力(ΔP)はプラスである。一方、放電側とは、差分情報送信装置14から送信される信号がマイナスであることを示す。つまり、差分電力(ΔP)はマイナスである。横軸は時刻を示す。符号40は充放電スケジュールに係る値を示す。符号41は測定値を示す。
 図3の下側の図について説明する。下側の図の縦軸は、電気自動車の蓄電池容量(kWh)を示す。横軸は時刻を示す。符号51はEV1の蓄電池容量を示す。符号52はEV2の蓄電池容量を示す。符号53はEV3の蓄電池容量を示す。符号54はEV4の蓄電池容量を示す。符号61はEV1が出発する際の蓄電池容量を示す。符号62はEV2が出発する際の蓄電池容量を示す。符号63はEV3が出発する際の蓄電池容量を示す。符号64はEV4が出発する際の蓄電池容量を示す。なお蓄電池容置をSOCと読み替えてもよい。
 図3に示すように、充放電スケジュールにおいて、電力需要が比較的少ない夜間(時刻0:00~7:00)は充電可能電力が多い。一方で電力需要が多くなる時間帯(時刻7:00~11:00)は放電が要求される。EV1は他のEV(EV2~EV4)と比較して、充電可能電力が多い時間帯に充電するため、出発時のSOCが他のEVのSOCより高い。一方で、EV2~EV4は、放電が要求される時間帯をまたぐため、放電量が多くなる。このためEV2~EV4はSOCが低い状態で出発することになる。
 そこで充放電制御方法の一例として、優先度(β)を(4)式で与える。
Figure JPOXMLDOC01-appb-M000004
 Σ(推定充電電力)は時間で合計を取るため、電力量の次元になる。推定充電電力は例えば差分情報送信装置14から送信される。推定充電電力は電気自動車が利用できる合計電力量を滞在する電気自動車の推定台数で割ることによって求められる。推定充電電力は、電気自動車1台当たりの期待できる充電量に該当する。式(4)に係る優先度(β)を用いた結果を説明する。周りの電気自動車よりも優先度が低い電気自動車は、充電量が小さくなる。周りの電気自動車よりも優先度が高い電気自動車は充電量が大きくなる。これにより図4に示すように、EV2~EV4は、図3を比較してSOCが高い状態で出発することができる。
 優先度(β)を(5)式で与えてもよい。
Figure JPOXMLDOC01-appb-M000005
 式(5)に係る優先度(β)を用いた場合、図5に示すように、EV2~EV4は、図3を比較してSOCが高い状態で出発することができる。
 また、充放電制御方法の他の例として、他の電気自動車のSOC状態を推定して自己の充放電に係る電力量(充放電量)を制御してもよい。本実施形態において、自己の電気自動車は、他の電気自動車のSOC状態を知ることはできない。そこで受電制御装置は他の電気自動車のSOC状態を推定して自己の充放電に係る電力量(充放電量)を制御する。図6を参照して、具体例を説明する。
 図6において、「状態」とは、スマートグリッドの充放電スケジュールにおいて、充電側であるか放電側であるかを示す。他の電気自動車が希望するSOC(以下希望SOC)に到達する見込みであるか否かは、差分電力(ΔP)の変化量に基づいて推定される。他の電気自動車のSOC状態は、すべてのケース(ケース1~8)において推定されるものである。
 まず図6のケース1について説明する。ケース1において充放電スケジュールは「充電」である。充放電スケジュールに基づいて充電した場合、自己の電気自動車は希望SOCに到達する見込みである。全ての他の電気自動車は希望SOCに到達する見込みである。この場合、受電制御装置は、基本的に充放電スケジュールに基づいて充電する。受電制御装置は放電しない。ただし、他の電気自動車のSOC状態によっては充電しなくてもよい。
 次にケース3について説明する。ケース3において充放電スケジュールは「充電」である。充放電スケジュールに基づいて充電した場合、自己の電気自動車は希望SOCに到達しない見込みである。全ての他の電気自動車は希望SOCに到達する見込みである。この場合、受電制御装置は、充放電スケジュールに基づいて充電する。
 次にケース4について説明する。ケース4において充放電スケジュールは「充電」である。充放電スケジュールに基づいて充電した場合、自己の電気自動車は希望SOCに到達しない見込みである。希望SOCに到達しない見込みの他の電気自動車が存在する。この場合、受電制御装置は、基本的に充放電スケジュールに基づいて充電する。受電制御装置は放電しない。
 次にケース5について説明する。ケース5において充放電スケジュールは「放電」である。充放電スケジュールに基づいて放電した場合、自己の電気自動車は希望SOCに到達する見込みである。全ての他の電気自動車は希望SOCに到達する見込みである。この場合、受電制御装置は、基本的に充放電スケジュールに基づいて放電する。受電制御装置は充電しない。
 次にケース6について説明する。ケース6において充放電スケジュールは「放電」である。充放電スケジュールに基づいて放電した場合、自己の電気自動車は希望SOCに到達する見込みである。希望SOCに到達しない見込みの他の電気自動車が存在する。この場合、受電制御装置は、充放電スケジュールに基づいて放電する。
 以上説明したように、ケース1、3~6において、受電制御装置は充放電スケジュールに基づいて充電または放電する。
 次にケース2について説明する。ケース2において充放電スケジュールは「充電」である。充放電スケジュールに基づいて充電した場合、自己の電気自動車は希望SOCに到達する見込みである。希望SOCに到達しない見込みの他の電気自動車が存在する。この場合、受電制御装置は、充放電スケジュールに基づく制御は実施しない。受電制御装置は、充放電スケジュールを無視して放電する。これにより、自己の電気自動車は他の電気自動車の電力を供給できる。これにより他の電気自動車は高いSOC状態で出発することが可能となる。
 次にケース7について説明する。ケース7において充放電スケジュールは「放電」である。充放電スケジュールに基づいて放電した場合、自己の電気自動車は希望SOCに到達しない見込みである。全ての他の電気自動車は希望SOCに到達する見込みである。この場合、受電制御装置は、充放電スケジュールに基づく制御は実施しない。受電制御装置は充放電スケジュールを無視して充電する。これにより、自己の電気自動車は高いSOC状態で出発することが可能となる。
 次にケース8について説明する。ケース8において充放電スケジュールは「放電」である。充放電スケジュールに基づいて放電した場合、自己の電気自動車は希望SOCに到達しない見込みである。希望SOCに到達しない見込みの他の電気自動車が存在する。この場合、受電制御装置は、充放電スケジュールに基づく制御は実施しない。受電制御装置は、希望SOCに到達しない見込みの他の電気自動車のうち、放電している電気自動車が存在しない場合、充電する。これにより、自己の電気自動車は高いSOC状態で出発することが可能となる。また受電制御装置は、希望SOCに到達しない見込みの他の電気自動車のうち、放電している電気自動車が存在する場合、充電しない。ここでいう「充電しない」とは、電力設備12から供給される電力を用いた充電はしない、ということを意味する。受電制御装置は、希望SOCに到達しない見込みの他の電気自動車のうち、放電している電気自動車が存在する場合、他の電気自動車が放電した電力を用いて充電する。これにより、自己の電気自動車は高いSOC状態で出発することが可能となる。
 以上説明したように、ケース2、7~8において、受電制御装置は他の電気自動車のSOC状態を推定する。受電制御装置は推定結果に基づいて、充放電スケジュールを無視する形で充放電制御を行う。これにより自己または他の電気自動車は高いSOC状態で出発することが可能となる。また、これにより適切な充放電制御が可能となり、充放電損失が低減する。
(作用効果)
 以上説明したように、本実施形態に係る受電制御装置(充放電制御装置)によれば、以下の作用効果が得られる。
 受電制御装置は、複数の受電要素を含む負荷群11へ電力供給基点10を経由して電気エネルギーを供給する電力システムにおいて、負荷群11に含まれる受電要素が受電または放電する電力を制御する。受電制御装置は、電力供給基点10を経由して負荷群11の全体に送ることができる総送電電力の最大値から、電力供給基点10を経由して負荷群11の全体に送っている総送電電力の現在値を減じて得られる差分電力(ΔP)を示す情報を取得する。受電制御装置は、取得した情報が示す差分電力(ΔP)に、他の受電要素の受電よりも自己の受電が優先される度合いを示す受電要素の優先度(β)を乗じることにより、受電要素の要素差分電力を算出する。受電制御装置は、要素差分電力と、電力システムの充放電スケジュールとに基づいて自己の充放電を制御する。これにより充放電スケジュールを用いた、効率的な充放電制御が実現する。
 また、受電制御装置は、他の受電要素の充電状態を推定する。受電制御装置は、推定された他の受電要素の充電状態に基づいて自己の充放電を制御する。このように、基本的には充放電スケジュールにしたがうが、推定された他の受電要素の充電状態によっては、受電制御装置は充放電スケジュールを無視する形で自己の充放電制御を行う。これにより適切な充放電制御が可能となり、充放電損失が低減する。
 他の受電要素の充電状態を推定するとは、他の受電要素が将来出発する時間において、他の受電要素の充電量が、他の受電要素が希望する充電量に到達するか否かを推定することを意味する。
 電力システムは、例えばスマートグリッドである。
 上述の実施形態に記載される各機能は、1または複数の処理回路により実装され得る。処理回路は、電気回路を含む処理装置等のプログラムされた処理装置を含む。処理回路は、また、記載された機能を実行するようにアレンジされた特定用途向け集積回路(ASIC)や回路部品等の装置を含む。
 上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 例えば、
10 電力供給基点
11 負荷群
13 電流計測装置
14 差分情報送信装置
15 電力消費要素
21 受信装置
22 車両状態取得装置
23 計算装置
24 受電装置
25 バッテリ
26 モータ
31 計算部
32 送信部

Claims (5)

  1.  複数の受電要素を含む負荷群へ電力供給基点を経由して電気エネルギーを供給する電力システムにおいて、前記負荷群に含まれる受電要素が受電または放電する電力を制御する充放電制御方法であって、
     前記電力供給基点を経由して前記負荷群の全体に送ることができる総送電電力の最大値から、前記電力供給基点を経由して前記負荷群の全体に送っている総送電電力の現在値を減じて得られる差分電力を示す情報を取得し、
     取得した前記情報が示す前記差分電力に、他の受電要素の受電よりも自己の受電が優先される度合いを示す前記受電要素の優先度を乗じることにより、前記受電要素の要素差分電力を算出し、
     前記要素差分電力と、前記電力システムの充放電スケジュールとに基づいて前記自己の充放電を制御する
    ことを特徴とする充放電制御方法。
  2.  前記他の受電要素の充電状態を推定し、
     推定された前記他の受電要素の充電状態に基づいて前記自己の充放電を制御する
    ことを特徴とする請求項1に記載の充放電制御方法。
  3.  前記他の受電要素の充電状態を推定するとは、前記他の受電要素が将来出発する時間において、前記他の受電要素の充電量が、前記他の受電要素が希望する充電量に到達するか否かを推定することを意味する
    ことを特徴とする請求項2に記載の充放電制御方法。
  4.  前記電力システムはスマートグリッドである
    ことを特徴とする請求項1~3のいずれか1項に記載の充放電制御方法。
  5.  複数の受電要素を含む負荷群へ電力供給基点を経由して電気エネルギーを供給する電力システムにおいて、前記負荷群に含まれる受電要素が受電または放電する電力を制御する受電制御装置を有する充放電制御装置であって、
     前記受電制御装置は、
     前記電力供給基点を経由して前記負荷群の全体に送ることができる総送電電力の最大値から、前記電力供給基点を経由して前記負荷群の全体に送っている総送電電力の現在値を減じて得られる差分電力を示す情報を取得し、
     取得した前記情報が示す前記差分電力に、他の受電要素の受電よりも自己の受電が優先される度合いを示す前記受電要素の優先度を乗じることにより、前記受電要素の要素差分電力を算出し、
     前記要素差分電力と、前記電力システムの充放電スケジュールとに基づいて前記自己の充放電を制御する
    ことを特徴とする充放電制御装置。
PCT/IB2021/000082 2021-02-10 2021-02-10 充放電制御方法及び充放電制御装置 WO2022172044A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/IB2021/000082 WO2022172044A1 (ja) 2021-02-10 2021-02-10 充放電制御方法及び充放電制御装置
CN202180092190.2A CN116745796A (zh) 2021-02-10 2021-02-10 充放电控制方法以及充放电控制装置
US18/276,560 US20240097467A1 (en) 2021-02-10 2021-02-10 Charge-discharge control method and charge-discharge control device
JP2022580262A JPWO2022172044A1 (ja) 2021-02-10 2021-02-10
EP21925539.5A EP4293605A4 (en) 2021-02-10 2021-02-10 CHARGE/DISCHARGE CONTROL METHOD AND CHARGE/DISCHARGE CONTROL DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2021/000082 WO2022172044A1 (ja) 2021-02-10 2021-02-10 充放電制御方法及び充放電制御装置

Publications (1)

Publication Number Publication Date
WO2022172044A1 true WO2022172044A1 (ja) 2022-08-18

Family

ID=82838278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/000082 WO2022172044A1 (ja) 2021-02-10 2021-02-10 充放電制御方法及び充放電制御装置

Country Status (5)

Country Link
US (1) US20240097467A1 (ja)
EP (1) EP4293605A4 (ja)
JP (1) JPWO2022172044A1 (ja)
CN (1) CN116745796A (ja)
WO (1) WO2022172044A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4293604A4 (en) * 2021-02-10 2024-03-27 Nissan Motor CHARGE/DISCHARGE LOSS REDUCTION METHOD AND CHARGE/DISCHARGE LOSS REDUCTION DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013172537A (ja) * 2012-02-20 2013-09-02 Toshiba Corp 電力系統監視制御システム
JP6168528B2 (ja) 2014-07-28 2017-07-26 国立研究開発法人宇宙航空研究開発機構 電力制御システム、方法、及び、情報伝達能力制御システム、方法
JP2017158363A (ja) * 2016-03-03 2017-09-07 三菱重工業株式会社 電力マネジメント装置及び電力マネジメント方法並びにロジスティクスネットワークシステム
JP2018064458A (ja) * 2018-01-24 2018-04-19 キヤノン株式会社 送電装置、通知方法、プログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013570B2 (en) * 2009-07-23 2011-09-06 Coulomb Technologies, Inc. Electrical circuit sharing for electric vehicle charging stations
WO2012163396A1 (de) * 2011-05-30 2012-12-06 Siemens Aktiengesellschaft Leistungs- oder stromstärkebegrenzung bei ladeeinrichtungen
CN105940425B (zh) * 2014-01-28 2020-11-24 株式会社派契特科宁斯 电力控制***、方法及信息传达能力控制***、方法
CA2871242C (en) * 2014-05-29 2020-10-27 Addenergie Technologies Inc. Method and system for managing power demand of a plurality of charging stations sharing the same portion of an electrical network
US9705327B2 (en) * 2015-07-14 2017-07-11 Restore Nv Self-learning, real-time, data-driven power metering system
US10836275B2 (en) * 2018-06-22 2020-11-17 Hummingbirdev Adaptive electric vehicle charging based on grid monitoring
CN109193718B (zh) * 2018-08-01 2022-03-11 南京师范大学 一种适应于v2g的选择电动汽车入网调控方法
EP3944453A4 (en) * 2019-03-22 2022-04-06 Nissan Motor Co., Ltd. METHOD FOR CONTROLLING POWER CONSUMPTION OF POWER CONSUMPTION ELEMENTS AND DEVICE FOR CONTROLLING POWER CONSUMPTION
WO2020194009A1 (ja) * 2019-03-22 2020-10-01 日産自動車株式会社 蓄電要素の受電制御方法、及び受電制御装置
CN112193121B (zh) * 2020-12-04 2021-03-02 国网智慧能源交通技术创新中心(苏州)有限公司 一种v2g直流充电桩的集群放电控制方法
EP4293604A4 (en) * 2021-02-10 2024-03-27 Nissan Motor CHARGE/DISCHARGE LOSS REDUCTION METHOD AND CHARGE/DISCHARGE LOSS REDUCTION DEVICE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013172537A (ja) * 2012-02-20 2013-09-02 Toshiba Corp 電力系統監視制御システム
JP6168528B2 (ja) 2014-07-28 2017-07-26 国立研究開発法人宇宙航空研究開発機構 電力制御システム、方法、及び、情報伝達能力制御システム、方法
JP2017158363A (ja) * 2016-03-03 2017-09-07 三菱重工業株式会社 電力マネジメント装置及び電力マネジメント方法並びにロジスティクスネットワークシステム
JP2018064458A (ja) * 2018-01-24 2018-04-19 キヤノン株式会社 送電装置、通知方法、プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4293605A4

Also Published As

Publication number Publication date
JPWO2022172044A1 (ja) 2022-08-18
CN116745796A (zh) 2023-09-12
US20240097467A1 (en) 2024-03-21
EP4293605A1 (en) 2023-12-20
EP4293605A4 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
CN113401007B (zh) 电力管理装置以及电力管理方法
CN108475930B (zh) 供电装置以及控制装置
JP5071545B2 (ja) 電力需給システム
JP6596472B2 (ja) 充放電管理装置
JP7213335B2 (ja) 受電要素の受電制御方法、及び受電制御装置
EP2722957A1 (en) Charging system, power management server, vehicle management server, and power management program
US11843271B2 (en) Power reception control method for power storage element and power reception control device
JP2012060834A (ja) 充電制御装置
CN113165546A (zh) 对混合动力车或电动车的驱动蓄能器充电和放电的装置
JP6665374B2 (ja) 車両電力管理装置
JP2021035171A (ja) 充電制御装置及びその方法、プログラム、充電管理装置及びその方法、プログラム
WO2022172044A1 (ja) 充放電制御方法及び充放電制御装置
WO2022172043A1 (ja) 充放電損失低減方法及び充放電損失低減装置
CN115398767A (zh) 充电电力管理装置以及充电电力管理方法
US11880786B2 (en) Vehicle management system, vehicle management computer, and vehicle management method
JP2021191044A (ja) 電力制御システム
US11752893B2 (en) Methods, devices, and systems utilizing electric vehicle charging responsive to identified power signatures in an aggregate power waveform
JP7445511B2 (ja) 車両充電システム
WO2024052710A1 (ja) 受電制御方法及び受電制御装置
WO2022249482A1 (ja) 充放電管理装置、充放電管理方法、及びプログラム
JP2013236517A (ja) 電力監視装置
JP2016015829A (ja) 充電システム
WO2022172045A1 (ja) 充放電要素の充放電制御方法、及び充放電要素の充放電制御装置
JP2024055037A (ja) 受電要素の受電制御方法、及び受電要素の受電制御装置
CN115972953A (zh) 车辆充电***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580262

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180092190.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18276560

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021925539

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021925539

Country of ref document: EP

Effective date: 20230911