WO2022168972A1 - Method for manufacturing connector, and connector - Google Patents

Method for manufacturing connector, and connector Download PDF

Info

Publication number
WO2022168972A1
WO2022168972A1 PCT/JP2022/004667 JP2022004667W WO2022168972A1 WO 2022168972 A1 WO2022168972 A1 WO 2022168972A1 JP 2022004667 W JP2022004667 W JP 2022004667W WO 2022168972 A1 WO2022168972 A1 WO 2022168972A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
anisotropic conductive
conductive film
region
width
Prior art date
Application number
PCT/JP2022/004667
Other languages
French (fr)
Japanese (ja)
Inventor
紀之 渡邉
遥哲 芝
怜司 塚尾
裕樹 大関
宏一 佐藤
康二 江島
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2022168972A1 publication Critical patent/WO2022168972A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits

Definitions

  • the present invention relates to a method for manufacturing a connection using an anisotropic conductive film and the connection.
  • display panels of small electronic devices such as smartphones and tablet computers and large image display devices such as large organic EL televisions have a display part, a mounting area arranged on the periphery thereof, and a wiring area arranged at least in part thereof. It consists of In the wiring area, terminals of various electronic components such as FPC (flexible printed circuit) boards are anisotropically conductively connected through an anisotropic conductive film. At the time of this anisotropic conductive connection, an anisotropic conductive film having a width equal to or less than the width of the wiring region is temporarily attached to the wiring region of the display panel, and the temporarily attached anisotropic conductive film is attached. After aligning the terminal portions of various electronic components such as FPC substrates with the film, anisotropic conductive connection processing is performed.
  • FPC flexible printed circuit
  • any one of the predetermined evaluation items of the body may cause a problem that the evaluation result is lowered to a level that cannot be applied in practice. If such a problem occurs, for example, when performing anisotropic conductive connection using an anisotropic conductive film, connection failures such as short circuits and a decrease in the number of conductive particles captured may occur. There is concern that it will be lost.
  • the terminal portion of the first electronic component such as an FPC board is further mounted within a mounting area of a very narrow width (for example, a width of 0.6 mm or less) of a second electronic component such as a narrowed display panel.
  • a very narrow width for example, a width of 0.6 mm or less
  • a second electronic component such as a narrowed display panel.
  • the inventor of the present invention states that "the problem of the prior art is that the narrowed wiring area of the second electronic component such as the display panel of the small electronic device is anisotropic due to the narrowing of the frame of the second electronic component such as the display panel.”
  • the anisotropic conductive film is temporarily pasted, and the width of the anisotropic conductive film for the temporary pasting is slit to the narrow width of the wiring area or less. It is due to the fact that there is Under this hypothesis, if an anisotropic conductive film with a width equal to or greater than the width of the wiring area in the mounting area of the second electronic component such as a display panel can be used, the possibility of achieving the object of the present invention increases. I found out.
  • the terminal of the first electronic component such as an FPC board is used. part, and then the terminal part of the first electronic component such as the FPC board, the wiring area in the mounting area of the second electronic component such as the display panel, and the anisotropic conductive connection between them.
  • the inventors have found that it is sufficient to adjust the relative positional relationship with the anisotropic conductive film to achieve a predetermined relationship, and have completed the present invention.
  • the present invention provides a method for manufacturing a connecting body for anisotropically conductively connecting a terminal portion of a first electronic component to a wiring region within a mounting region of a second electronic component via an anisotropic conductive film, A temporary attachment step of temporarily attaching an anisotropic conductive film to the first electronic component; A placing step of placing the anisotropic conductive film temporarily attached to the first electronic component on the wiring region of the second electronic component; a thermocompression bonding step of thermocompression bonding with a thermocompression bonding tool from the first electronic component side;
  • the anisotropic conductive film includes a first region sandwiched between facing surfaces of the second electronic component and the first electronic component, and an anisotropic conductive film adjacent to the first region and facing the first electronic component but not the second electronic component. and a second region not facing the electronic component.
  • the terminal portion of the first electronic component and the wiring region of the second electronic component are different from each other through an anisotropic conductive film having a conductive particle-containing layer in which conductive particles are contained in a binder resin layer.
  • a connecting body that is tropically conductively connected The anisotropic conductive film is adjacent to the first region sandwiched between the facing surfaces of the second electronic component and the first electronic component, and faces the first electronic component. and a second region that does not face the second electronic component.
  • the anisotropic conductive film is temporarily attached to the terminal portion of the first electronic component such as the FPC board. This eliminates the need to make the width of the anisotropic conductive film to be used equal to or less than the width of the wiring area of the second electronic component such as the display panel. Therefore, as the anisotropic conductive film, it is possible to use an anisotropic conductive film whose width is larger than the width of the wiring region of the second electronic component and which has stable anisotropic conductive properties. Therefore, temporary attachment of an anisotropic conductive film can be realized by a conventional mounting apparatus, and temporary attachment with a particularly high placement accuracy is not required. As a result, the evaluation results for all of the predetermined evaluation items (conduction resistance, insulation resistance, conductive particle trapping property, and adhesive strength) of the manufactured connection are lowered to a level that cannot be applied in practice. can be avoided.
  • the predetermined evaluation items conduction resistance, insulation resistance, conductive particle trapping property, and adhesive strength
  • FIG. 1 is an explanatory view of the temporary bonding process of the manufacturing method of the connected body of the present invention.
  • FIG. 2 is an explanatory view of the placing process of the manufacturing method of the connected body of the present invention.
  • FIG. 3 is an explanatory view of the thermocompression bonding process of the manufacturing method of the connected body of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the connection body of the present invention.
  • FIG. 5 is a schematic cross-sectional view of an anisotropic conductive film applied to the method for manufacturing a connected body of the present invention.
  • the present invention is a method for manufacturing a connecting body in which a terminal portion of a first electronic component is anisotropically conductively connected to a wiring region of a second electronic component via an anisotropic conductive film. It has a “placement step” and a “thermocompression bonding step”.
  • placement step and a “thermocompression bonding step”.
  • an anisotropic conductive film 20 is temporarily attached to the first electronic component 10 .
  • the position where the anisotropic conductive film 20 is temporarily attached is usually a position covering the terminal portion 11 provided at the end of the first electronic component 10 , which is different from the first electronic component 10 .
  • the anisotropic conductive film 20 is flush at the end to facilitate alignment in the subsequent mounting process and to minimize the width of the anisotropic conductive film 20 itself. preferable.
  • the operation itself of temporary sticking can be performed according to the temporary sticking operation of an anisotropic conductive film.
  • First electronic component 10 As the first electronic component 10, an FPC board such as a known COF (chip-on-film) board or the like can be preferably applied. A hard glass substrate, a glass epoxy substrate, or the like can also be used as long as the effects of the present invention are not impaired.
  • the terminal portion 11 is made of a terminal material such as a metal such as Au, Ag, Cu, Ni, Ti, Al, Sn, Mo, a metal alloy combining these metals, or a metal oxide such as ITO. can be applied.
  • the anisotropic conductive film 20 has a structure in which conductive particles 22 are arranged two-dimensionally or three-dimensionally in a random or regular manner (for example, in a lattice such as a hexagonal lattice or a square lattice) in a binder resin layer 21. of conductive particle-containing layer 23 .
  • conductive particles 22 are arranged two-dimensionally or three-dimensionally in a random or regular manner (for example, in a lattice such as a hexagonal lattice or a square lattice) in a binder resin layer 21. of conductive particle-containing layer 23 .
  • the manufacturing operation of the anisotropic conductive film 20 can be simplified (for example, by kneading and dispersing the conductive particles in a binder resin to form a dispersion film). should be fine).
  • the conductive particles are regularly arranged, the amount of conductive particles used can be reduced, the production cost of the anisotropic conductive film can be
  • the binder resin layer 21 and the conductive particles 22 can have the same configurations as the binder resin layer and the conductive particles, respectively, which constitute the conductive particle-containing layer of a known anisotropic conductive film.
  • the binder resin layer include an acrylic resin composition layer and an epoxy resin composition layer.
  • the layer thickness of the binder resin layer 21 is preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • conductive particles include metal or alloy particles such as nickel particles and solder particles, and metal-coated resin particles obtained by coating known resin particles with a metal such as nickel.
  • the average particle size of the conductive particles is preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • Such conductive particles 22 may have their surfaces subjected to insulation treatment.
  • the number density of the conductive particles 22 in the binder resin layer 21 is preferably 1000 to 500000/mm 2 .
  • the number density of the conductive particles 22 in the binder resin layer 21 is preferably 1000 to 500000/mm 2 .
  • the anisotropic conductive film 20 may be composed only of the conductive particle-containing layer 23, but as shown in FIG. 5, it is preferable to use a film having a structure in which an insulating resin layer 24 is further laminated. .
  • this insulating resin layer 24 is a layer containing no conductive particles.
  • the conductive particle-containing layer 23 preferably exhibits a higher melt viscosity than the insulating resin layer 24 from the viewpoint of suppressing unnecessary resin flow of the conductive particles during anisotropic conductive connection.
  • the conductive particles 22 are preferably unevenly distributed on one side of the binder resin layer 21. If the conductive particles are unevenly distributed on one side, the conductive particles are likely to come into contact with the wiring area of the second electronic component, which will be described later, and it becomes easy to improve the conduction reliability during the anisotropic conductive connection.
  • the degree of uneven distribution when the distance from the one side of the binder resin layer 21 of the anisotropic conductive film 20 to the conductive particles 22 is D, and the layer thickness of the binder resin layer 21 is La, the layer thickness La at the distance D.
  • the ratio (%) [(D/La) ⁇ 100] is preferably ⁇ 5% or more and 40% or less, more preferably ⁇ 5% or more and 15% or less, and particularly preferably ⁇ 5% or more and 5% or less. If the ratio exceeds 40%, the position of the conductive particles 22 tends to shift during the anisotropic conductive connection, and between the terminal portion of the first electronic component and the wiring area of the second electronic component described later during the anisotropic conductive connection. reduces the number of conductive particles trapped in When the ratio is less than -5% (when the degree of exposure of the conductive particles from the binder resin layer increases), the insulating resin layer 24 cannot cover the conductive particles 22, and the anisotropic conductive film 20 is affected by deterioration in adhesion ability, etc. There is concern that the characteristics of A particularly preferable degree of uneven distribution is that the conductive particles 22 are flush with the binder resin layer 21 .
  • this temporary attachment step when temporarily attaching the anisotropic conductive film to the first electronic component, it is preferable to perform the temporary attachment from the side where the conductive particles are not unevenly distributed. As a result, it becomes easier to bring the conductive particles into contact with the wiring region of the second electronic component, which will be described later, and it becomes easier to improve the conduction reliability during the anisotropic conductive connection.
  • the anisotropic conductive film 20 has an insulating resin layer 24 as shown in FIG. It is preferable that the layer 24 side is positioned on the first electronic component 10 side. Since the conductive particle-containing layer 23 is pressed after the insulating resin layer 24 during anisotropic conductive connection, this suppresses unnecessary movement of the conductive particles 22, resulting in a short circuit and the number of trapped particles. This is for avoiding a decrease.
  • Aligning the anisotropic conductive film 20 in this way makes the width of the anisotropic conductive film 20 larger than the width of the wiring region 31 even if the wiring region 31 of the second electronic component 30 is very narrow. can do. Alignment can be performed using a known alignment device or alignment mechanism. Note that the first region 20X and the second region 20Y being “adjacent” means that the second region 20Y extends continuously from the first region 20X without a break.
  • the mounting area 30a is an area formed in at least a part of the peripheral edge (frame) of the second electronic component 30, and is an area where an anisotropic conductive connection with the first electronic component 10 is performed.
  • a wiring region 31 is formed from a terminal material such as metals such as Au, Ag, Cu, Ni, Ti, Al, Sn, Mo, metal alloys combining these metals, or metal oxides such as ITO. formed.
  • thermocompression bonding process corresponds to the main curing process.
  • the first electronic component 10 is heated by a thermocompression bonding tool 40 while being thermocompressed in the direction of the arrow, thereby forming the first region 20X of the anisotropic conductive film 20 into the second electronic component. It is thermocompression bonded to the wiring area 31 of the component 30 .
  • a known cushioning material for example, a 50 ⁇ m thick Teflon (registered trademark) sheet
  • Teflon registered trademark
  • the connector 100 of FIG. 4 which is a part of the present invention, is obtained.
  • This connecting body 100 has an anisotropic conductive particle-containing layer 23 in which the terminal portion 11 of the first electronic component 10 and the wiring region 31 of the second electronic component 30 are formed by containing the conductive particles 22 in the binder resin layer 21 . It has a structure of anisotropically conductive connection via the conductive film 20 .
  • connection body 100 is adjacent to the first region 20X where the anisotropic conductive film 20 is sandwiched between the facing surfaces of the second electronic component 30 and the first electronic component 10, and the first region 20X.
  • a second region 20 ⁇ /b>Y faces the first electronic component 10 but does not face the second electronic component 30 .
  • thermocompression bonding process the relationship between the first electronic component 10, the second electronic component 30, and the anisotropic conductive film (ACF) 20 is shown in FIG. (width).
  • (b) Mounting area width The width of the frame of the second electronic component such as a display panel, which is not particularly limited, is preferably 1 mm or less in response to the narrowing of the frame of the second electronic component such as a display panel, and may be 0.2 mm or less. is assumed.
  • First area width of ACF It is the width (overlap width) of the region sandwiched between the facing surfaces of the first electronic component and the second electronic component and thermally compressed by the thermal compression bonding tool, and the first region width is less than the mounting region width, 25% or more of the ACF width is preferred.
  • Thermo-compression bonding tool position It is the distance from the inner edge of the mounting area (display edge) to the thermo-compression tool. A negative number indicates that the thermo-compression tool extends to the display. It is 0% or more and less than 100% of the width of the mounting area, preferably 5% or more and 70% or less.
  • Thermo-compression bonding tool width is preferably 0.8 to 3 times the mounting area width. This is for promoting the curing reaction of the first region of the anisotropic conductive film while preventing uneven contact of the tool. On the other hand, it is preferable to make it larger than the anisotropic conductive film width. This is for promoting the curing reaction of the anisotropic conductive film in the second region.
  • Second region width of ACF The width of the area of the ACF that faces the first electronic component but not the second electronic component, preferably less than or equal to the thermocompression tool width. This is for increasing the curing reaction rate of the ACF in the second region.
  • the width of the second region is preferably 75% or less of the width of the anisotropic conductive film in order to obtain sufficient connection strength. Furthermore, it is required to increase the curing reaction rate of the film to a certain level or higher, and in practice it is preferably 60% or more, more preferably 80% or more.
  • the curing reaction rate is calculated by the general IR method based on each peak intensity of the completely cured product and the uncured product, and the second area where the ACF is not thermocompressed in each evaluation connector is calculated as the measurement site. can be done. In the second area of the ACF, which is the curing reaction rate measurement site, it is preferable to measure near the center of gravity as a representative value.
  • connection body obtained in this way has a very narrow mounting area (e.g., 0.6 mm or less) for the second electronic component such as a display panel with a narrowed frame for the terminal portion of the first electronic component such as an FPC board.
  • a very narrow mounting area e.g., 0.6 mm or less
  • the second electronic component such as a display panel with a narrowed frame for the terminal portion of the first electronic component such as an FPC board.
  • Examples 1-10, Comparative Examples 1-6 (1) Preparation of anisotropic conductive film (a) Preparation of binder resin layer Phenoxy resin (YP-50, Nippon Steel Chemical & Materials Co., Ltd.) 40 parts by mass, silica filler (Aerosil R805, Nippon Aerosil Co., Ltd.) 25 parts by mass, liquid epoxy resin (jER828, Mitsubishi Chemical Co., Ltd.) 30 parts by mass, silane coupling agent (KBM-403, Shin-Etsu Chemical Co., Ltd.) 2 parts by mass, and thermal cationic polymerization initiator (SI-60L , Sanshin Kagaku Kogyo Co., Ltd.) 3 parts by mass of a binder resin layer-forming composition is applied on a PET film having a film thickness of 50 ⁇ m with a bar coater, dried in an oven at 80 ° C. for 5 minutes, and PET A binder resin layer having a thickness of 5 ⁇ m was formed on the film.
  • a binder resin layer
  • This conductive particle-containing layer was capable of functioning as a single-layer anisotropic conductive film.
  • the degree of embedding of the conductive particles was 0% in Examples 1 to 7 and Comparative Examples 1 to 5. (In other words, the conductive particles are unevenly distributed on one side of the binder resin layer).
  • the CV value of the metal-coated resin particles used was measured using FPIA-3000 (Malvern Panalytical) with 1000 or more particles, and was found to be 20% or less.
  • the outer shape of this glass substrate is 30 mm ⁇ 50 mm, the thickness is 0.5 mm, the width of the mounting area corresponding to the frame portion to which the FPC substrate is to be anisotropically conductively connected is 0.5 mm, and the width of the mounting area is 0.5 mm.
  • the temporarily attached anisotropic conductive film is placed in alignment on the mounting area of the glass substrate, and heated and pressurized with a thermocompression bonding tool (180 ° C., 3.5 MPa, 6 seconds, A connected body was obtained by lowering the thermocompression tool at a speed of 10 mm/sec and a stage temperature of 40°C.
  • thermocompression bonding when performing thermocompression bonding, as shown in FIG. ) mounting area width, (b) wiring area width, (c) ACF first area width, (d) thermocompression tool position, (e) thermocompression tool width, and (f) ACF second area width Performed as specified in Table 1.
  • (a) Curing reaction rate of second region of ACF The curing reaction rate of the second region of ACF (that is, the region not thermocompression-bonded) in the connecting body for evaluation was evaluated. Specifically, the curing reaction rate of the second region of ACF in each connection for evaluation is calculated based on the peak intensity of each of the completely cured product and the uncured product by the IR method. The curing reaction rate was evaluated according to the following criteria.
  • Conduction resistance of each connection body for evaluation was evaluated. Specifically, a digital multimeter (product number: Digital Multimeter 7555, manufactured by Yokogawa Electric Corporation) was used to measure the resistance value when a current of 1 mA was applied by the four-terminal method. The conduction resistance was evaluated according to the following criteria.
  • (c) Insulation resistance The insulation resistance of each evaluation connector was evaluated. Specifically, a high resistance meter (product number: high resistance meter 4339B, manufactured by Agilent Technologies) was used to measure the resistance between adjacent lines when an applied voltage of 25 V was applied by the two-terminal method. The insulation resistance was evaluated according to the following criteria.
  • Particle capture (minimum connection area) Particle trapping was evaluated by estimating the minimum connection area (the area of the terminal where 5 or more conductive particles are trapped). Specifically, a TEG with lines formed in the X direction was used. The indentations were counted with an optical microscope, and estimated by creating a calibration curve in which the horizontal axis is the connection area and the vertical axis is the captured number.
  • A particle trapping evaluation criteria: 200 ⁇ m 2 or more and less than 1000 ⁇ m 2
  • B no problem: 1000 ⁇ m 2 or more and 2000 ⁇ m 2 or less
  • C impossible: 2000 ⁇ m 2 or more
  • Adhesive strength The adhesive strength of each connector for evaluation was evaluated. Specifically, it was measured using a tensile tester (RTC1225A, A&D Co., Ltd.). The FPC substrate for evaluation was pulled up from the glass substrate for evaluation in the direction of 90 degrees at a speed of 50 mm/sec, and the force required for peeling off was measured as adhesive strength (N). The adhesive strength was evaluated according to the following criteria.
  • Adhesion strength evaluation criteria A (preferred): greater than 8N B (no problem): 5N or more and 8N or less C (impossible): less than 5N
  • connection body of Comparative Example 1 was evaluated as "C" in conduction resistance.
  • a comparison with Example 4 suggests that the ratio of the first area width of the ACF is small and the ratio of the second area width of the ACF is large.
  • the ratio of the first region width of the anisotropic conductive film to the total width of the anisotropic conductive film was 25% or more (the ratio of the second region width of the anisotropic conductive film is 75% or less) is preferable.
  • thermocompression tool position is preferably 70% or less.
  • thermocompression bonding tool is approximately four times the width of the mounting area, the bottom surface of the thermocompression bonding tool does not come into surface contact with the FPC board and causes uneven contact.
  • the width of the thermocompression bonding tool is preferably three times or less than the width of the mounting area.
  • connection body manufactured under the conditions of Comparative Example 4 had a problem with the evaluation item of adhesive strength.
  • the reason for this is thought to be that the mounting area width was 0.1 mm and the bonding width between the glass substrate and the anisotropic conductive film was reduced, resulting in a decrease in connection strength.
  • the width of the mounting area is 0.2 mm or more, no problem occurs in adhesive strength.
  • thermocompression bonding tool is a negative value of -10%, and the thermocompression bonding tool is in contact with the display section, and the bottom surface does not come into surface contact with the FPC board, causing uneven contact.
  • connection body manufactured under the conditions of Comparative Example 6 had a problem with the evaluation item of insulation resistance.
  • the number density of the conductive particles was 20,000/mm 2 and the conductive particles were too dense.
  • the anisotropic conductive film is temporarily attached to the terminal portion of the first electronic component such as the FPC board. This eliminates the need to make the width of the anisotropic conductive film to be used equal to or less than the width of the wiring area of the second electronic component such as the display panel. Therefore, as the anisotropic conductive film, it is possible to use an anisotropic conductive film whose width is larger than the width of the wiring region of the second electronic component and which has stable anisotropic conductive properties. Therefore, temporary attachment of an anisotropic conductive film can be realized by a conventional mounting apparatus, and temporary attachment with a particularly high placement accuracy is not required.
  • connection body of the present invention is used when anisotropically conductively connecting the terminal portion of the first electronic component such as the FPC board to the narrow mounting area of the second electronic component such as the display panel. Useful.
  • First electronic component 11 Terminal portion 20 Anisotropic conductive film 20X First region 20Y Second region 21 Binder resin layer 22 Conductive particles 23 Conductive particle-containing layer 24 Insulating resin layer 30 Second electronic component (for example, display panel) 30a Mounting area 31 Wiring area 40 Thermocompression bonding tool 100 Connection body D Distance La from one side of binder resin layer of anisotropic conductive film to conductive particles La Layer thickness of binder resin layer (a) Mounting area width (b) Wiring area width (C) Width of first region of anisotropic conductive film (D) Position of thermocompression bonding tool (E) Width of thermocompression bonding tool (F) Width of second region of anisotropic conductive film

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Combinations Of Printed Boards (AREA)
  • Liquid Crystal (AREA)
  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

A method for manufacturing a connector for anisotropic conductive connection of a terminal portion of a first electronic component to a wiring region in a mounting region of a second electronic component, with an anisotropic conductive film therebetween. The method comprises a provisional affixing step for provisionally affixing the anisotropic conductive film to the first electronic component, a mounting step for mounting, on the wiring region of the second electronic component, the anisotropic conductive film provisionally affixed to the first electronic component, and a thermal compression bonding step for performing thermal compression bonding using a thermal compression bonding tool from the first electronic component side. The thermal compression bonding is performed such that the anisotropic conductive film has a first region in which the anisotropic conductive film is sandwiched between opposing surfaces of the second electronic component and the first electronic component, and a second region adjacent to the first region in which the anisotropic conductive film opposes the first electronic component but does not oppose the second electronic component.

Description

接続体の製造方法,接続体connection body manufacturing method, connection body
 本発明は、異方性導電フィルムを利用した接続体の製造方法及び当該接続体に関する。 The present invention relates to a method for manufacturing a connection using an anisotropic conductive film and the connection.
 従来、スマートフォンやタブレット型コンピュータ等の小型電子機器や大型有機ELテレビ等の大型画像表示装置のディスプレイパネルは、表示部とその周縁に配された実装領域とその少なくとも一部に配置された配線領域とから構成されている。配線領域には、FPC(フレキシブル印刷回路)基板等の各種電子部品の端子部が異方性導電フィルムを介して異方性導電接続されている。この異方性導電接続の際には、ディスプレイパネルの配線領域に、配線領域の幅と同等程度の幅もしくはそれ以下の幅の異方性導電フィルムを仮貼りし、仮貼りした異方性導電フィルムにFPC基板等の各種電子部品の端子部を位置合わせした後、異方性導電接続処理を行っている。 Conventionally, display panels of small electronic devices such as smartphones and tablet computers and large image display devices such as large organic EL televisions have a display part, a mounting area arranged on the periphery thereof, and a wiring area arranged at least in part thereof. It consists of In the wiring area, terminals of various electronic components such as FPC (flexible printed circuit) boards are anisotropically conductively connected through an anisotropic conductive film. At the time of this anisotropic conductive connection, an anisotropic conductive film having a width equal to or less than the width of the wiring region is temporarily attached to the wiring region of the display panel, and the temporarily attached anisotropic conductive film is attached. After aligning the terminal portions of various electronic components such as FPC substrates with the film, anisotropic conductive connection processing is performed.
 近年、上述したような小型電子機器や大型画像表示装置のディスプレイパネルにおいては狭額縁化が求められている。このため、ディスプレイパネル周縁の実装領域の幅を今まで以上に狭くすること(例えば、0.6mm以下の幅にすること)が試みられ、必然的に実装領域内の配線領域の幅もいっそう狭くすることが試みられている。そのため、そのような幅狭の配線領域に仮貼りするための幅狭の異方性導電フィルムを、加温デバイスを備えたスリット装置を用いて作成することが提案されている(特許文献1)。 In recent years, there has been a demand for narrower bezels in the display panels of small electronic devices and large image display devices as described above. For this reason, attempts have been made to further narrow the width of the mounting area around the periphery of the display panel (for example, to a width of 0.6 mm or less), and inevitably the width of the wiring area within the mounting area has become even narrower. is being attempted. Therefore, it has been proposed to create a narrow anisotropic conductive film for temporary attachment to such a narrow wiring region using a slit device equipped with a heating device (Patent Document 1). .
特開2007―90461号Japanese Patent Application Laid-Open No. 2007-90461
 しかし、異方性導電フィルムをこれまで以上に細い幅(例えば0.6mm以下の幅)にスリットしようとすると、異方性導電フィルムに対しスリット刃が入り難く、切断面が乱れがちとなり、スリット作業の難易度が著しく増大するという問題がある。また、そのように細幅にスリットされた異方性導電フィルムから作成した巻装体から異方性導電フィルムを引き出そうとした場合、ブロッキングなどの引き出し不良が生じ易いという問題もある。このように、ディスプレイパネルの狭額縁化に細幅の異方性導電フィルム及びその巻装体を対応させようとすると、それらの製造難易度が増大するという問題がある。 However, when trying to slit the anisotropic conductive film to a narrower width (for example, a width of 0.6 mm or less), it is difficult for the slitting blade to enter the anisotropic conductive film, and the cut surface tends to be disturbed, resulting in slitting. There is a problem that the difficulty level of the work increases remarkably. In addition, when an anisotropic conductive film is pulled out from a wound body made of such an anisotropic conductive film slit into a narrow width, there is a problem that a pulling failure such as blocking is likely to occur. As described above, when an attempt is made to adapt a narrow anisotropic conductive film and its winding body to the narrow frame of a display panel, there is a problem that the manufacturing difficulty thereof increases.
 また、異方性導電フィルムをディスプレイパネルの配線領域に仮貼りする実装装置においては、異方性導電フィルムを、細い幅の配線領域に正確に配置する必要がある。しかし、従前の実装装置の配置精度では、これまで以上に細幅の異方性導電フィルムを、細い幅の配線領域に正確に配置することが困難になることが予想される。正確な配置ができないと、小型電子機器の狭額縁化したディスプレイパネルに先ず細幅の異方性導電フィルムを仮貼りして異方性導電接続により接続体を製造する際に、製造された接続体の所定の評価項目(導通抵抗、絶縁抵抗、導電粒子捕捉性、接着強度)のいずれか一つでも、その評価結果を実用に適用できないレベルにまで低下させてしまうという問題を引き起こしかねない。そのような問題が引き起こされた場合には、例えば、異方性導電フィルムを用いて異方性導電接続を行う際に、ショートの発生や導電粒子捕捉数の減少等の接続不良が発生してしまうことが懸念される。 Also, in a mounting device that temporarily attaches an anisotropic conductive film to the wiring area of a display panel, it is necessary to accurately arrange the anisotropic conductive film in the narrow wiring area. However, with the placement accuracy of the conventional mounting apparatus, it is expected that it will be difficult to accurately place the narrower anisotropic conductive film in the narrower wiring area than ever before. If accurate placement is not possible, when a thin anisotropic conductive film is first temporarily attached to a narrow-framed display panel of a small electronic device to manufacture a connection body by anisotropic conductive connection, the manufactured connection Any one of the predetermined evaluation items of the body (conduction resistance, insulation resistance, conductive particle trapping property, adhesion strength) may cause a problem that the evaluation result is lowered to a level that cannot be applied in practice. If such a problem occurs, for example, when performing anisotropic conductive connection using an anisotropic conductive film, connection failures such as short circuits and a decrease in the number of conductive particles captured may occur. There is concern that it will be lost.
 本発明の目的は、以上の従来技術における問題点を解決しようとするものである。具体的には、FPC基板などの第1電子部品の端子部を、狭額縁化したディスプレイパネルなどの第2電子部品の非常に細い幅(例えば0.6mm以下の幅)の実装領域内の更に細い配線領域に異方性導電フィルムを介して異方性導電接続して接続体を製造する際に、配線領域の幅以下の幅の異方性導電フィルムを使用しなければならないという制約から解放されるようにすることである。そして、異方性導電フィルムの仮貼りを従前の実装装置で実現でき、しかも、製造された接続体の所定の評価項目(導通抵抗、絶縁抵抗、導電粒子捕捉性、接着強度)のいずれについても、評価結果が実用に適用できないレベルに低下してしまうことを回避することである。 The object of the present invention is to solve the problems in the conventional technology described above. Specifically, the terminal portion of the first electronic component such as an FPC board is further mounted within a mounting area of a very narrow width (for example, a width of 0.6 mm or less) of a second electronic component such as a narrowed display panel. When anisotropically conductively connected to a thin wiring area through an anisotropic conductive film to manufacture a connector, it is freed from the restriction that an anisotropic conductive film with a width equal to or less than the width of the wiring area must be used. It is to ensure that Then, temporary attachment of an anisotropic conductive film can be realized with a conventional mounting device, and moreover, for any of the predetermined evaluation items (conduction resistance, insulation resistance, conductive particle trapping property, adhesive strength) of the manufactured connection body , to avoid the deterioration of the evaluation result to a level that cannot be applied in practice.
 本発明者は、「従来技術の問題点が、小型電子機器のディスプレイパネル等の第2電子部品の狭額縁化に伴ってディスプレイパネル等の第2電子部品の細狭化した配線領域に異方性導電フィルムを先ず仮貼りすること、そして、その仮貼りをするための異方性導電フィルムとして、その幅を配線領域の細幅以下にスリットしたものを使用すること、といった技術常識にとらわれていることに起因している」との仮説を立てた。その仮説の下、ディスプレイパネルなどの第2電子部品の実装領域内の配線領域の幅以上の幅の異方性導電フィルムを使用できるようにすれば本発明の目的を達成できる可能性が増大することを見出した。そして、その目的を達成する手段として、異方性導電フィルムをディスプレイパネル等の第2電子部品の細狭化した配線領域に先ず仮貼りするのではなく、FPC基板などの第1電子部品の端子部に先ず仮貼りし、更に、FPC基板などの第1電子部品の端子部と、ディスプレイパネルなどの第2電子部品の実装領域内の配線領域と、それらを異方性導電接続するために使用する異方性導電フィルムとの相互の相対位置関係を所定の関係となるように調整すればよいことを見出し、本発明を完成させるに至った。 The inventor of the present invention states that "the problem of the prior art is that the narrowed wiring area of the second electronic component such as the display panel of the small electronic device is anisotropic due to the narrowing of the frame of the second electronic component such as the display panel." First, the anisotropic conductive film is temporarily pasted, and the width of the anisotropic conductive film for the temporary pasting is slit to the narrow width of the wiring area or less. It is due to the fact that there is Under this hypothesis, if an anisotropic conductive film with a width equal to or greater than the width of the wiring area in the mounting area of the second electronic component such as a display panel can be used, the possibility of achieving the object of the present invention increases. I found out. Then, as a means for achieving the object, instead of temporarily attaching an anisotropic conductive film to the narrowed wiring area of the second electronic component such as a display panel, the terminal of the first electronic component such as an FPC board is used. part, and then the terminal part of the first electronic component such as the FPC board, the wiring area in the mounting area of the second electronic component such as the display panel, and the anisotropic conductive connection between them. The inventors have found that it is sufficient to adjust the relative positional relationship with the anisotropic conductive film to achieve a predetermined relationship, and have completed the present invention.
 即ち、本発明は、第1電子部品の端子部を第2電子部品の実装領域内の配線領域に異方性導電フィルムを介して異方性導電接続する接続体の製造方法であって、
 第1電子部品に、異方性導電フィルムを仮貼りする仮貼り工程と、
 第2電子部品の配線領域上に、第1電子部品に仮貼りされた異方性導電フィルムを載置する載置工程と、
 第1電子部品側から熱圧着ツールで熱圧着する熱圧着工程とを含み、
 異方性導電フィルムは、第2電子部品と第1電子部品との対向面間で挟持される第1領域と、第1領域に隣接し、第1電子部品には対向しているが第2電子部品には対向していない第2領域とを有する、接続体の製造方法を提供する。
That is, the present invention provides a method for manufacturing a connecting body for anisotropically conductively connecting a terminal portion of a first electronic component to a wiring region within a mounting region of a second electronic component via an anisotropic conductive film,
A temporary attachment step of temporarily attaching an anisotropic conductive film to the first electronic component;
A placing step of placing the anisotropic conductive film temporarily attached to the first electronic component on the wiring region of the second electronic component;
a thermocompression bonding step of thermocompression bonding with a thermocompression bonding tool from the first electronic component side;
The anisotropic conductive film includes a first region sandwiched between facing surfaces of the second electronic component and the first electronic component, and an anisotropic conductive film adjacent to the first region and facing the first electronic component but not the second electronic component. and a second region not facing the electronic component.
 また、本発明は、第1電子部品の端子部と第2電子部品の配線領域とが、バインダー樹脂層に導電粒子が含有されてなる導電粒子含有層を有する異方性導電フィルムを介して異方性導電接続されている接続体であって、
 前記異方性導電フィルムは、前記第2電子部品と第1電子部品との対向面間に挟持されている第1領域と、第1領域に隣接し、第1電子部品には対向しているが第2電子部品には対向していない第2領域とを備えることを特徴とする接続体を提供する。
Further, in the present invention, the terminal portion of the first electronic component and the wiring region of the second electronic component are different from each other through an anisotropic conductive film having a conductive particle-containing layer in which conductive particles are contained in a binder resin layer. A connecting body that is tropically conductively connected,
The anisotropic conductive film is adjacent to the first region sandwiched between the facing surfaces of the second electronic component and the first electronic component, and faces the first electronic component. and a second region that does not face the second electronic component.
 本発明の接続体の製造方法においては、異方性導電フィルムを、FPC基板などの第1電子部品の端子部に仮貼りする。このため、使用する異方性導電フィルムの幅を、ディスプレイパネルなどの第2電子部品の配線領域の幅以下とする必要性から解放される。従って、異方性導電フィルムとして、その幅が第2電子部品の配線領域の幅よりも大きく、安定した異方性導電特性のものを使用することができる。よって、異方性導電フィルムの仮貼りを従前の実装装置で実現することができ、格別に高い配置精度での仮貼りが不要となる。結果的に、製造された接続体の所定の評価項目(導通抵抗、絶縁抵抗、導電粒子捕捉性、接着強度)のいずれについても、評価結果が実用に適用できないレベルにまで低下してしまうことを回避できる。 In the manufacturing method of the connection body of the present invention, the anisotropic conductive film is temporarily attached to the terminal portion of the first electronic component such as the FPC board. This eliminates the need to make the width of the anisotropic conductive film to be used equal to or less than the width of the wiring area of the second electronic component such as the display panel. Therefore, as the anisotropic conductive film, it is possible to use an anisotropic conductive film whose width is larger than the width of the wiring region of the second electronic component and which has stable anisotropic conductive properties. Therefore, temporary attachment of an anisotropic conductive film can be realized by a conventional mounting apparatus, and temporary attachment with a particularly high placement accuracy is not required. As a result, the evaluation results for all of the predetermined evaluation items (conduction resistance, insulation resistance, conductive particle trapping property, and adhesive strength) of the manufactured connection are lowered to a level that cannot be applied in practice. can be avoided.
図1は、本発明の接続体の製造方法の仮貼り工程説明図である。FIG. 1 is an explanatory view of the temporary bonding process of the manufacturing method of the connected body of the present invention. 図2は、本発明の接続体の製造方法の載置工程説明図である。FIG. 2 is an explanatory view of the placing process of the manufacturing method of the connected body of the present invention. 図3は、本発明の接続体の製造方法の熱圧着工程説明図である。FIG. 3 is an explanatory view of the thermocompression bonding process of the manufacturing method of the connected body of the present invention. 図4は、本発明の接続体の概略断面図である。FIG. 4 is a schematic cross-sectional view of the connection body of the present invention. 図5は、本発明の接続体の製造方法に適用する異方性導電フィルムの概略断面図である。FIG. 5 is a schematic cross-sectional view of an anisotropic conductive film applied to the method for manufacturing a connected body of the present invention.
 本発明は、第1電子部品の端子部を第2電子部品の配線領域に異方性導電フィルムを介して異方性導電接続する接続体の製造方法であり、以下の「仮貼り工程」、「載置工程」及び「熱圧着工程」を有する。以下、本発明の接続体の製造方法について、図面を参照しながら、工程毎に詳細に説明する。 The present invention is a method for manufacturing a connecting body in which a terminal portion of a first electronic component is anisotropically conductively connected to a wiring region of a second electronic component via an anisotropic conductive film. It has a “placement step” and a “thermocompression bonding step”. Hereinafter, each step of the manufacturing method of the connected body of the present invention will be described in detail with reference to the drawings.
(仮貼り工程)
 仮貼り工程では、図1に示すように、第1電子部品10に、異方性導電フィルム20を仮貼りする。第1電子部品10において、異方性導電フィルム20を仮貼りする位置は、通常、第1電子部品10の末端に設けている端子部11を被覆する位置であり、第1電子部品10と異方性導電フィルム20とは、後続する載置工程でのアライメントを容易化し、また、異方性導電フィルム20自体の幅を最小化するために、末端端部で面一となっていることが好ましい。また、仮貼りの操作自体は、異方性導電フィルムの仮貼り操作に準じて行うことができる。
(Temporary sticking process)
In the temporary attachment step, as shown in FIG. 1 , an anisotropic conductive film 20 is temporarily attached to the first electronic component 10 . In the first electronic component 10 , the position where the anisotropic conductive film 20 is temporarily attached is usually a position covering the terminal portion 11 provided at the end of the first electronic component 10 , which is different from the first electronic component 10 . The anisotropic conductive film 20 is flush at the end to facilitate alignment in the subsequent mounting process and to minimize the width of the anisotropic conductive film 20 itself. preferable. Moreover, the operation itself of temporary sticking can be performed according to the temporary sticking operation of an anisotropic conductive film.
(第1電子部品10)
 第1電子部品10としては、好ましくは、公知のCOF(チップオンフィルム)基板などのFPC基板等を適用することができる。なお、硬質なガラス基板やガラスエポキシ基板なども、本発明の効果を損なわない限り、使用することができる。また、端子部11としては、Au、Ag、Cu、Ni、Ti、Al、Sn、Mo等の金属やこれらを組み合わせた金属合金、もしくはITOなどの金属酸化物等の端子素材から形成したものを適用することできる。
(First electronic component 10)
As the first electronic component 10, an FPC board such as a known COF (chip-on-film) board or the like can be preferably applied. A hard glass substrate, a glass epoxy substrate, or the like can also be used as long as the effects of the present invention are not impaired. The terminal portion 11 is made of a terminal material such as a metal such as Au, Ag, Cu, Ni, Ti, Al, Sn, Mo, a metal alloy combining these metals, or a metal oxide such as ITO. can be applied.
(異方性導電フィルム20)
 異方性導電フィルム20は、バインダー樹脂層21に導電粒子22が2次元的又は3次元的にランダム又は規則的(例えば、六方格子状、正方格子状等の格子状)に配置されている構造の導電粒子含有層23を有する。導電粒子がランダムに配置されている場合には、異方性導電フィルム20の製造操作を簡略化することができる(例えば、バインダー樹脂に導電粒子を混練して分散させ、分散物を成膜すればよい)。導電粒子が規則的に配置されている場合には、導電粒子の使用量を減少させて、異方性導電フィルムの製造コストを削減することができ、ショートの発生を抑制することもできる。
(Anisotropic conductive film 20)
The anisotropic conductive film 20 has a structure in which conductive particles 22 are arranged two-dimensionally or three-dimensionally in a random or regular manner (for example, in a lattice such as a hexagonal lattice or a square lattice) in a binder resin layer 21. of conductive particle-containing layer 23 . When the conductive particles are randomly arranged, the manufacturing operation of the anisotropic conductive film 20 can be simplified (for example, by kneading and dispersing the conductive particles in a binder resin to form a dispersion film). should be fine). When the conductive particles are regularly arranged, the amount of conductive particles used can be reduced, the production cost of the anisotropic conductive film can be reduced, and the occurrence of short circuits can be suppressed.
 バインダー樹脂層21及び導電粒子22は、それぞれ、公知の異方性導電フィルムの導電粒子含有層を構成するバインダー樹脂層及び導電粒子と同様の構成とすることができる。たとえばバインダー樹脂層としては、アクリル系樹脂組成物層、エポキシ系樹脂組成物層などが挙げられる。バインダー樹脂層21の層厚は、好ましくは1μm以上10μm以下である。また、導電粒子としては、ニッケル粒子、ハンダ粒子等の金属または合金粒子や、公知の樹脂粒子をニッケルなどの金属で被覆した金属被覆樹脂粒子を挙げることができる。導電粒子の平均粒子径は、好ましくは1μm以上10μm以下である。このような導電粒子22は、その表面が絶縁処理されていてもよい。 The binder resin layer 21 and the conductive particles 22 can have the same configurations as the binder resin layer and the conductive particles, respectively, which constitute the conductive particle-containing layer of a known anisotropic conductive film. Examples of the binder resin layer include an acrylic resin composition layer and an epoxy resin composition layer. The layer thickness of the binder resin layer 21 is preferably 1 μm or more and 10 μm or less. Examples of conductive particles include metal or alloy particles such as nickel particles and solder particles, and metal-coated resin particles obtained by coating known resin particles with a metal such as nickel. The average particle size of the conductive particles is preferably 1 μm or more and 10 μm or less. Such conductive particles 22 may have their surfaces subjected to insulation treatment.
 また、バインダー樹脂層21中の導電粒子22の個数密度は、好ましくは1000~500000個/mmである。導電粒子22の個数密度をこの範囲とすることにより、接続端子に必要な数の導電粒子22の捕捉数を提供することが可能となる。この個数密度はフィルム平面視で光学顕微鏡を用いて観察して求めることができる。 Further, the number density of the conductive particles 22 in the binder resin layer 21 is preferably 1000 to 500000/mm 2 . By setting the number density of the conductive particles 22 within this range, it is possible to provide the necessary number of the conductive particles 22 to be captured in the connection terminal. This number density can be obtained by observing the film in plan view using an optical microscope.
 異方性導電フィルム20は、導電粒子含有層23のみで構成されていてもよいが、図5に示すように、絶縁性樹脂層24が更に積層された構造を有するものを使用することが好ましい。当然に、この絶縁性樹脂層24は導電粒子を含有していない層である。この場合、導電粒子含有層23は、異方性導電接続時に導電粒子が不要に樹脂流動してしまうことを抑制する点から、絶縁性樹脂層24よりも高い溶融粘度を示すことが好ましい。 The anisotropic conductive film 20 may be composed only of the conductive particle-containing layer 23, but as shown in FIG. 5, it is preferable to use a film having a structure in which an insulating resin layer 24 is further laminated. . Naturally, this insulating resin layer 24 is a layer containing no conductive particles. In this case, the conductive particle-containing layer 23 preferably exhibits a higher melt viscosity than the insulating resin layer 24 from the viewpoint of suppressing unnecessary resin flow of the conductive particles during anisotropic conductive connection.
 なお、異方性導電フィルム20においては、導電粒子22がバインダー樹脂層21の片面に偏在していることが好ましい。片面に偏在していると、後述する第2電子部品の配線領域に導電粒子が接触しやすくなり、異方性導電接続時に導通信頼性を良好なものとすることが容易となる。偏在の程度としては、異方性導電フィルム20のバインダー樹脂層21の該片面から導電粒子22までの距離をDとし、バインダー樹脂層21の層厚をLaとしたとき、距離Dの層厚Laに対する比率(%)[(D/La)×100]が、好ましくは-5%以上40%以下、より好ましくは-5%以上15%以下、特に好ましくは-5%以上5%以下である。比率が40%を超えると、異方性導電接続時に導電粒子22が位置ズレしやすくなり、異方性導電接続時に第1電子部品の端子部と後述する第2電子部品の配線領域との間で捕捉される導電粒子数が減少する。また比率が-5%未満になると(バインダー樹脂層から導電粒子が露出する程度が大きくなると)、絶縁性樹脂層24が導電粒子22を覆えなくなり、接着能力の低下等、異方性導電フィルム20の特性が損なわれることが懸念される。特に好ましい偏在の程度としては、導電粒子22がバインダー樹脂層21と面一になっていることである。 In addition, in the anisotropic conductive film 20, the conductive particles 22 are preferably unevenly distributed on one side of the binder resin layer 21. If the conductive particles are unevenly distributed on one side, the conductive particles are likely to come into contact with the wiring area of the second electronic component, which will be described later, and it becomes easy to improve the conduction reliability during the anisotropic conductive connection. As the degree of uneven distribution, when the distance from the one side of the binder resin layer 21 of the anisotropic conductive film 20 to the conductive particles 22 is D, and the layer thickness of the binder resin layer 21 is La, the layer thickness La at the distance D. The ratio (%) [(D/La) × 100] is preferably −5% or more and 40% or less, more preferably −5% or more and 15% or less, and particularly preferably −5% or more and 5% or less. If the ratio exceeds 40%, the position of the conductive particles 22 tends to shift during the anisotropic conductive connection, and between the terminal portion of the first electronic component and the wiring area of the second electronic component described later during the anisotropic conductive connection. reduces the number of conductive particles trapped in When the ratio is less than -5% (when the degree of exposure of the conductive particles from the binder resin layer increases), the insulating resin layer 24 cannot cover the conductive particles 22, and the anisotropic conductive film 20 is affected by deterioration in adhesion ability, etc. There is concern that the characteristics of A particularly preferable degree of uneven distribution is that the conductive particles 22 are flush with the binder resin layer 21 .
 なお、この仮貼り工程において、異方性導電フィルムを第1電子部品に仮貼りする際に、導電粒子が偏在していない側から仮貼りを行うことが好ましい。これにより、後述する第2電子部品の配線領域に導電粒子を接触させやすくなり、異方性導電接続時に導通信頼性を良好なものとすることが容易となる。 It should be noted that, in this temporary attachment step, when temporarily attaching the anisotropic conductive film to the first electronic component, it is preferable to perform the temporary attachment from the side where the conductive particles are not unevenly distributed. As a result, it becomes easier to bring the conductive particles into contact with the wiring region of the second electronic component, which will be described later, and it becomes easier to improve the conduction reliability during the anisotropic conductive connection.
 また、異方性導電フィルム20が、図5のように絶縁性樹脂層24を有する場合、この仮貼り工程において、異方性導電フィルムを第1電子部品に仮貼りする際に、絶縁性樹脂層24側が第1電子部品10側に位置するように行うことが好ましい。これは、異方性導電接続の際に導電粒子含有層23が絶縁性樹脂層24の後に加圧されることから導電粒子22の不要な移動を抑制することになり、ショートや捕捉粒子数の低下を回避することができるようにするためである。 Further, when the anisotropic conductive film 20 has an insulating resin layer 24 as shown in FIG. It is preferable that the layer 24 side is positioned on the first electronic component 10 side. Since the conductive particle-containing layer 23 is pressed after the insulating resin layer 24 during anisotropic conductive connection, this suppresses unnecessary movement of the conductive particles 22, resulting in a short circuit and the number of trapped particles. This is for avoiding a decrease.
(載置工程)
 載置工程では、図2に示すように、仮貼り工程の後、第2電子部品30の実装領域30a内の配線領域31上に、第1電子部品10に仮貼りされた異方性導電フィルム20を載置する。この載置工程で異方性導電フィルム20を載置する際には、第2電子部品30と第1電子部品10との対向面間で挟持される第1領域20Xと、第1領域20Xに隣接し、第1電子部品10には対向しているが第2電子部品30には対向していない第2領域20Yとが形成されるようにアライメントを行う。このように異方性導電フィルム20をアライメントすると、仮に第2電子部品30の配線領域31が非常に細幅であっても、異方性導電フィルム20の幅を配線領域31の幅よりも大きくすることができる。アライメントは公知のアライメント装置やアライメント機構を用いて行うことができる。なお、第1領域20Xと第2領域20Yとが「隣接」しているとは、第2領域20Yが第1領域20Xから途切れなく連続して延設されていることである。
(Placement process)
In the placement step, as shown in FIG. 2, after the temporary attachment step, an anisotropic conductive film temporarily attached to the first electronic component 10 on the wiring area 31 in the mounting area 30a of the second electronic component 30. 20 is placed. When placing the anisotropic conductive film 20 in this placing step, the first region 20X sandwiched between the facing surfaces of the second electronic component 30 and the first electronic component 10 and the first region 20X Alignment is performed so that a second region 20</b>Y that is adjacent and faces the first electronic component 10 but does not face the second electronic component 30 is formed. Aligning the anisotropic conductive film 20 in this way makes the width of the anisotropic conductive film 20 larger than the width of the wiring region 31 even if the wiring region 31 of the second electronic component 30 is very narrow. can do. Alignment can be performed using a known alignment device or alignment mechanism. Note that the first region 20X and the second region 20Y being “adjacent” means that the second region 20Y extends continuously from the first region 20X without a break.
(第2電子部品30)
 第2電子部品30としては、好ましくは、ガラス基板や光学樹脂を使用した液晶表示パネル等の各種画像表示パネルを例示することができる。実装領域30aは、第2電子部品30の周縁(額縁)の少なくとも一部に形成されている領域であり、第1電子部品10との異方性導電接続が行われる領域である。そしてその内側には、Au、Ag、Cu、Ni、Ti、Al、Sn、Mo等の金属やこれらを組み合わせた金属合金、もしくはITOなどの金属酸化物等の端子素材から形成した配線領域31が形成されている。
(Second electronic component 30)
As the second electronic component 30, preferably, various image display panels such as a liquid crystal display panel using a glass substrate or an optical resin can be exemplified. The mounting area 30a is an area formed in at least a part of the peripheral edge (frame) of the second electronic component 30, and is an area where an anisotropic conductive connection with the first electronic component 10 is performed. Inside thereof, a wiring region 31 is formed from a terminal material such as metals such as Au, Ag, Cu, Ni, Ti, Al, Sn, Mo, metal alloys combining these metals, or metal oxides such as ITO. formed.
(熱圧着工程)
 熱圧着工程は本硬化工程に相当する。図3に示すように、この工程では、第1電子部品10側から熱圧着ツール40で加熱しながら矢印の方向に熱圧着し、異方性導電フィルム20の第1領域20Xを、第2電子部品30の配線領域31に熱圧着する。この熱圧着の際に、熱圧着ツール40と第1電子部品10の間に公知の緩衝材(例えば50μm厚のテフロン(登録商標)シート)を介在させてもよい。この際、異方性導電フィルム20の第2領域20Yは熱圧着ツール40では熱圧着されない。この熱圧着工程を経て、本発明の一部である、図4の接続体100が得られる。この接続体100は、第1電子部品10の端子部11と第2電子部品30の配線領域31とが、バインダー樹脂層21に導電粒子22が含有されてなる導電粒子含有層23を有する異方性導電フィルム20を介して異方性導電接続されている構造を有している。この接続体100は、異方性導電フィルム20が、第2電子部品30と第1電子部品10との対向面間に挟持されている第1領域20Xと、第1領域20Xに隣接し、第1電子部品10には対向しているが第2電子部品30には対向していない第2領域20Yとを備えるように構成されている。
(Thermocompression process)
The thermocompression bonding process corresponds to the main curing process. As shown in FIG. 3, in this step, the first electronic component 10 is heated by a thermocompression bonding tool 40 while being thermocompressed in the direction of the arrow, thereby forming the first region 20X of the anisotropic conductive film 20 into the second electronic component. It is thermocompression bonded to the wiring area 31 of the component 30 . During this thermocompression bonding, a known cushioning material (for example, a 50 μm thick Teflon (registered trademark) sheet) may be interposed between the thermocompression bonding tool 40 and the first electronic component 10 . At this time, the second region 20</b>Y of the anisotropic conductive film 20 is not thermocompressed by the thermocompression tool 40 . Through this thermocompression bonding process, the connector 100 of FIG. 4, which is a part of the present invention, is obtained. This connecting body 100 has an anisotropic conductive particle-containing layer 23 in which the terminal portion 11 of the first electronic component 10 and the wiring region 31 of the second electronic component 30 are formed by containing the conductive particles 22 in the binder resin layer 21 . It has a structure of anisotropically conductive connection via the conductive film 20 . The connection body 100 is adjacent to the first region 20X where the anisotropic conductive film 20 is sandwiched between the facing surfaces of the second electronic component 30 and the first electronic component 10, and the first region 20X. A second region 20</b>Y faces the first electronic component 10 but does not face the second electronic component 30 .
 なお、この熱圧着工程において、第1電子部品10と第2電子部品30と異方性導電フィルム(ACF)20との間の関係は図3に示す以下の(イ)~(ヘ)の指標(幅)で表すことができる。 In this thermocompression bonding process, the relationship between the first electronic component 10, the second electronic component 30, and the anisotropic conductive film (ACF) 20 is shown in FIG. (width).
(イ)実装領域幅:
 ディスプレイパネル等の第2電子部品の額縁の幅であり、特に限定されないが、ディスプレイパネルなどの第2電子部品の狭額縁化に対応して1mm以下が好ましく、0.2mm又はそれ以下の場合も想定される。
(ロ)配線領域幅:
 実装領域幅内に設けられている配線領域の幅であり、配線領域幅は、実装領域幅より大きくなることはない。実装領域幅が、ディスプレイパネルなどの第2電子部品の狭額縁化に対応して1mm以下が好ましいことから、配線領域幅も1mm以下であることが好ましく、他方、実装作業性の観点から0.1mm以上であることが好ましい。
(ハ)ACFの第1領域幅:
 第1電子部品と第2電子部品との対向面間に挟持され、熱圧着ツールで熱圧着される領域の幅(オーバーラップ幅)であり、第1領域幅は実装領域幅以下であるが、ACF幅の25%以上が好ましい。
(ニ)熱圧着ツール位置:
 実装領域の内側端(表示部エッジ)から熱圧着ツールまでの距離であり、この数値が負であると、熱圧着ツールがディスプレイ部に及んでいることを示す。実装領域幅の0%以上100%未満であるが、好ましくは5%以上70%以下である。
(ホ)熱圧着ツール幅:
 熱圧着ツール幅は、実装領域幅の好ましくは0.8倍以上3倍以下である。ツールの片当たりを防ぎつつ、異方性導電フィルムの第1領域の硬化反応を促進させるためである。他方、異方性導電フィルム幅よりも大きくすることが好ましい。第2領域の異方性導電フィルムの硬化反応も促進させるためである。
(ヘ)ACFの第2領域幅:
 第1電子部品には対向しているが第2電子部品には対向していないACFの領域の幅であり、熱圧着ツール幅以下であることが好ましい。第2領域のACFの硬化反応率を増大させるためである。第2領域幅は、接続強度を十分に得るために、異方性導電フィルム幅の75%以下が好ましい。更にフィルムの硬化反応率を一定以上に高くすることが求められ、実用上60%以上であることが好ましく、80%以上であることがより好ましい。硬化反応率は、一般的なIR法で完全硬化物と未硬化物との各ピーク強度を元に、各評価用接続体におけるACFの熱圧着されていない第2領域を測定部位として算出することができる。硬化反応率測定部位であるACFの第2領域においては、重心点付近を測定することが代表値として好ましい。
(b) Mounting area width:
The width of the frame of the second electronic component such as a display panel, which is not particularly limited, is preferably 1 mm or less in response to the narrowing of the frame of the second electronic component such as a display panel, and may be 0.2 mm or less. is assumed.
(b) Wiring area width:
It is the width of the wiring area provided within the width of the mounting area, and the width of the wiring area is never larger than the width of the mounting area. Since the width of the mounting area is preferably 1 mm or less in response to the narrowing of the frame of the second electronic component such as the display panel, the width of the wiring area is also preferably 1 mm or less. It is preferably 1 mm or more.
(C) First area width of ACF:
It is the width (overlap width) of the region sandwiched between the facing surfaces of the first electronic component and the second electronic component and thermally compressed by the thermal compression bonding tool, and the first region width is less than the mounting region width, 25% or more of the ACF width is preferred.
(d) Thermo-compression bonding tool position:
It is the distance from the inner edge of the mounting area (display edge) to the thermo-compression tool. A negative number indicates that the thermo-compression tool extends to the display. It is 0% or more and less than 100% of the width of the mounting area, preferably 5% or more and 70% or less.
(e) Thermo-compression bonding tool width:
The thermocompression tool width is preferably 0.8 to 3 times the mounting area width. This is for promoting the curing reaction of the first region of the anisotropic conductive film while preventing uneven contact of the tool. On the other hand, it is preferable to make it larger than the anisotropic conductive film width. This is for promoting the curing reaction of the anisotropic conductive film in the second region.
(f) Second region width of ACF:
The width of the area of the ACF that faces the first electronic component but not the second electronic component, preferably less than or equal to the thermocompression tool width. This is for increasing the curing reaction rate of the ACF in the second region. The width of the second region is preferably 75% or less of the width of the anisotropic conductive film in order to obtain sufficient connection strength. Furthermore, it is required to increase the curing reaction rate of the film to a certain level or higher, and in practice it is preferably 60% or more, more preferably 80% or more. The curing reaction rate is calculated by the general IR method based on each peak intensity of the completely cured product and the uncured product, and the second area where the ACF is not thermocompressed in each evaluation connector is calculated as the measurement site. can be done. In the second area of the ACF, which is the curing reaction rate measurement site, it is preferable to measure near the center of gravity as a representative value.
 このようにして得られる接続体は、FPC基板などの第1電子部品の端子部を、狭額縁化したディスプレイパネルなどの第2電子部品の非常に細い幅(例えば0.6mm以下)の実装領域内の更に細い配線領域に異方性導電フィルムを介して異方性導電接続して接続体を製造する際に、配線領域の幅以下の幅の異方性導電フィルムを使用する必要性から解放され、また、異方性導電フィルムの仮貼りを(格別に高い配置精度ではない)従前の実装装置で実現できる。結果的に、製造された接続体の所定の評価項目(導通抵抗、絶縁抵抗、導電粒子捕捉性、接着強度)のいずれについても、評価結果を実用上問題のないレベルにすることができる。 The connection body obtained in this way has a very narrow mounting area (e.g., 0.6 mm or less) for the second electronic component such as a display panel with a narrowed frame for the terminal portion of the first electronic component such as an FPC board. Liberation from the need to use an anisotropic conductive film with a width equal to or less than the width of the wiring area when anisotropically conductively connected to a narrower wiring area in the inner part through an anisotropic conductive film to manufacture a connection body. Moreover, the temporary attachment of the anisotropic conductive film can be realized with a conventional mounting apparatus (which does not have a particularly high placement accuracy). As a result, the evaluation results of all of the predetermined evaluation items (conduction resistance, insulation resistance, conductive particle trapping property, and adhesive strength) of the manufactured connected body can be brought to a practically acceptable level.
 以下、本発明を実施例により具体的に説明する。 The present invention will be specifically described below with reference to examples.
  実施例1~10、比較例1~6
(1)異方性導電フィルムの作成
(a)バインダー樹脂層の作成
 フェノキシ樹脂(YP-50、日鉄ケミカル&マテリアル(株))40質量部、シリカフィラ(アエロジルR805、日本アエロジル(株))25質量部、液状エポキシ樹脂(jER828、三菱化学(株))30質量部、シランカップリング剤(KBM-403、信越化学工業(株))2質量部、及び熱カチオン重合開始剤(SI-60L、三新化学工業(株))3質量部からなるバインダー樹脂層形成用組成物を、バーコーターでフィルム厚さ50μmのPETフィルム上に塗布し、80℃のオーブンにて5分間乾燥させ、PETフィルム上に5μmの厚さのバインダー樹脂層を形成した。但し、実施例8ではPETフィルム上に10μmの厚さのバインダー樹脂層を形成した。
Examples 1-10, Comparative Examples 1-6
(1) Preparation of anisotropic conductive film (a) Preparation of binder resin layer Phenoxy resin (YP-50, Nippon Steel Chemical & Materials Co., Ltd.) 40 parts by mass, silica filler (Aerosil R805, Nippon Aerosil Co., Ltd.) 25 parts by mass, liquid epoxy resin (jER828, Mitsubishi Chemical Co., Ltd.) 30 parts by mass, silane coupling agent (KBM-403, Shin-Etsu Chemical Co., Ltd.) 2 parts by mass, and thermal cationic polymerization initiator (SI-60L , Sanshin Kagaku Kogyo Co., Ltd.) 3 parts by mass of a binder resin layer-forming composition is applied on a PET film having a film thickness of 50 μm with a bar coater, dried in an oven at 80 ° C. for 5 minutes, and PET A binder resin layer having a thickness of 5 μm was formed on the film. However, in Example 8, a binder resin layer having a thickness of 10 μm was formed on the PET film.
(b)導電粒子転写型の作成
 導電粒子の配列を平面視で正方格子配列とし、実施例10については導電粒子の個数密度が6000個/mm、実施例1、2、4及び6~8並びに比較例1及び3~5については12000個/mm、実施例3、5及び9並びに比較例2については16000個/mm、比較例6については20000個/mmとなるように、凸部パターンを形成した金型を作製した。この金型に公知の透明性樹脂のペレットを溶融させた状態で流し込み、冷やして固めることで、正方格子配列パターンを有する導電粒子転写型を作成した。
(b) Preparation of conductive particle transfer mold The conductive particles are arranged in a square lattice in plan view, and the number density of the conductive particles is 6000/mm 2 for Example 10, and Examples 1, 2, 4 and 6 to 8. and 12,000/mm 2 for Comparative Examples 1 and 3 to 5, 16,000/mm 2 for Examples 3, 5, and 9 and Comparative Example 2 , and 20,000/mm 2 for Comparative Example 6, A mold having a convex pattern was produced. A conductive particle transfer mold having a square lattice arrangement pattern was produced by pouring melted pellets of a known transparent resin into this mold and solidifying the melt by cooling.
(c)導電粒子含有層の作成
 導電粒子として、金属被覆樹脂粒子(AUL703、積水化学工業(株)、平均粒子径3μm)を用意し、この導電粒子を導電粒子転写型の凹みに充填し、その上に上述のバインダー樹脂層を被せ、60℃、0.5MPaで熱圧着することで貼着させた。そして、導電粒子転写型からバインダー樹脂層を剥離し、バインダー樹脂層上の導電粒子を、加圧(熱圧着条件:60~70℃、0.5MPa)することでバインダー樹脂層に押し込むことにより導電粒子含有層を作成した。この導電粒子含有層は、単層の異方性導電フィルムとして機能することができるものであった。なお、導電粒子の埋め込みの程度(バインダー樹脂層の層厚Laと、その表面から導電粒子までの距離Dとの比率)は、実施例1~7及び比較例1~5の場合0%であり(換言すれば、導電粒子がバインダー樹脂層の片面に面一になって、偏在している状態)、実施例8~10及び比較例6の場合は40%であった。なお、使用した金属被覆樹脂粒子のCV値はFPIA-3000(マルバーン・パナリティカル社)を用いて、粒子個数1000個以上で測定したところ20%以下であった。
(c) Preparation of conductive particle-containing layer Metal-coated resin particles (AUL703, Sekisui Chemical Co., Ltd., average particle size 3 μm) are prepared as conductive particles, and the conductive particles are filled into the recesses of the conductive particle transfer mold, The binder resin layer described above was covered thereon and adhered by thermocompression bonding at 60° C. and 0.5 MPa. Then, the binder resin layer is peeled off from the conductive particle transfer mold, and the conductive particles on the binder resin layer are pressed into the binder resin layer by pressing (thermocompression conditions: 60 to 70 ° C., 0.5 MPa). A particle-containing layer was created. This conductive particle-containing layer was capable of functioning as a single-layer anisotropic conductive film. The degree of embedding of the conductive particles (the ratio of the layer thickness La of the binder resin layer to the distance D from the surface to the conductive particles) was 0% in Examples 1 to 7 and Comparative Examples 1 to 5. (In other words, the conductive particles are unevenly distributed on one side of the binder resin layer). The CV value of the metal-coated resin particles used was measured using FPIA-3000 (Malvern Panalytical) with 1000 or more particles, and was found to be 20% or less.
(d)絶縁性樹脂層の形成
 フェノキシ樹脂(YP-50、日鉄ケミカル&マテリアル(株))40質量部、シリカフィラ(アエロジルR805、日本アエロジル(株))5質量部、液状エポキシ樹脂(jER828、三菱化学(株))50質量部、シランカップリング剤(KBM-403、信越化学工業(株))2質量部、及び熱カチオン重合開始剤(SI-60L、三新化学工業(株))3質量部からなる絶縁性樹脂層形成用組成物を、バーコーターでフィルム厚さ50μmのPETフィルム上に塗布し、80℃のオーブンにて5分間乾燥させ、PETフィルム上に5μmの厚さの絶縁性樹脂層を形成した。
(d) Formation of insulating resin layer Phenoxy resin (YP-50, Nippon Steel Chemical & Material Co., Ltd.) 40 parts by mass, silica filler (Aerosil R805, Nippon Aerosil Co., Ltd.) 5 parts by mass, liquid epoxy resin (jER828 , Mitsubishi Chemical Co., Ltd.) 50 parts by mass, a silane coupling agent (KBM-403, Shin-Etsu Chemical Co., Ltd.) 2 parts by mass, and a thermal cationic polymerization initiator (SI-60L, Sanshin Chemical Industry Co., Ltd.) A composition for forming an insulating resin layer consisting of 3 parts by mass was coated on a PET film having a film thickness of 50 μm with a bar coater, dried in an oven at 80° C. for 5 minutes, and coated on the PET film to a thickness of 5 μm. An insulating resin layer was formed.
(e)導電粒子含有層と絶縁性樹脂層との積層
 実施例1~7及び比較例1~5については、導電粒子含有層の導電粒子が偏在していない面に絶縁性樹脂層を常法により積層することにより、2層構造の異方性導電フィルムを得た。実施例9~10及び比較例6については、導電粒子含有層の導電粒子が偏在している面に絶縁性樹脂層を常法により積層することにより、2層構造の異方性導電フィルムを得た。これらの異方性導電フィルムを以下の接続体の製造に適用した。なお、実施例8については、絶縁性樹脂層を積層せず、バインダー樹脂層単層で接続体の製造に適用した。
(e) Lamination of conductive particle-containing layer and insulating resin layer For Examples 1 to 7 and Comparative Examples 1 to 5, an insulating resin layer was formed on the surface of the conductive particle-containing layer on which the conductive particles were not unevenly distributed. An anisotropic conductive film having a two-layer structure was obtained by laminating by For Examples 9 to 10 and Comparative Example 6, an anisotropic conductive film with a two-layer structure was obtained by laminating an insulating resin layer on the surface of the conductive particle-containing layer on which the conductive particles are unevenly distributed. rice field. These anisotropic conductive films were applied to the production of the following connecting bodies. In Example 8, a single binder resin layer was applied to the manufacture of a connected body without stacking an insulating resin layer.
(2)接続体の製造
(a)構成材料の準備
 接続体製造用に、以下の異方性導電フィルム、FPC基板及びガラス基板を用意した。
*異方性導電フィルム
 作成した異方性導電フィルムを、スリッターで0.8mm幅にスリットしたものを使用した。
*FPC基板
 評価用FPC基板として、ポリイミドフィルム(38μmt-S’perflex基材、住友金属鉱山(株))上に端子ピッチ(L/S=1/1)が20μmのCu配線(8μmt-Snメッキ)が設けられたものを準備した。
*ガラス基板
 評価用ガラス基板として、ITOパターンガラス基板(コーニング社製)を準備した。このガラス基板の外形は30mm×50mmであり、厚みは0.5mmであり、FPC基板が異方性導電接続されるべき額縁部分に対応する実装領域の幅は0.5mmであり、実装領域内には、Ti/Al配線(厚み0.3μm)が設けられていた。
(2) Production of Connected Body (a) Preparation of Constituent Materials For the production of connected body, the following anisotropic conductive film, FPC substrate and glass substrate were prepared.
*Anisotropic Conductive Film The prepared anisotropic conductive film was slit to a width of 0.8 mm by a slitter and used.
* FPC board As an FPC board for evaluation, Cu wiring (8 µmt-Sn plating ) was prepared.
*Glass substrate As a glass substrate for evaluation, an ITO pattern glass substrate (manufactured by Corning Incorporated) was prepared. The outer shape of this glass substrate is 30 mm×50 mm, the thickness is 0.5 mm, the width of the mounting area corresponding to the frame portion to which the FPC substrate is to be anisotropically conductively connected is 0.5 mm, and the width of the mounting area is 0.5 mm. was provided with a Ti/Al wiring (thickness 0.3 μm).
(b)仮貼り工程、載置工程及び熱圧着工程の実施
 実装ステージ上に配置された評価用FPC基板の端子部に、実施例1~7及び10並びに比較例1~6の異方性導電フィルムを絶縁性樹脂層側から仮貼りし、実施例9の異方性導電フィルムを導電粒子含有層側から仮貼りし、実施例8の異方性導電フィルムを直接仮貼りした。仮貼りされた異方性導電フィルムを、ガラス基板の実装領域上にアライメントして載置し、異方性導電フィルム上から熱圧着ツールで加熱加圧(180℃、3.5MPa、6秒、熱圧着ツールの下降速度10mm/sec、ステージ温度40℃)することにより接続体を得た。
(b) Implementation of temporary bonding process, mounting process and thermocompression bonding process The anisotropic conduction of Examples 1 to 7 and 10 and Comparative Examples 1 to 6 was applied to the terminal part of the FPC board for evaluation placed on the mounting stage. The film was temporarily attached from the insulating resin layer side, the anisotropic conductive film of Example 9 was temporarily attached from the conductive particle-containing layer side, and the anisotropic conductive film of Example 8 was temporarily attached directly. The temporarily attached anisotropic conductive film is placed in alignment on the mounting area of the glass substrate, and heated and pressurized with a thermocompression bonding tool (180 ° C., 3.5 MPa, 6 seconds, A connected body was obtained by lowering the thermocompression tool at a speed of 10 mm/sec and a stage temperature of 40°C.
 なお、熱圧着を行う際、図3に示すように、異方性導電フィルム20、第1電子部品としてのFPC基板10及び第2電子部品としてのガラス基板30の相互間の位置関係「(イ)実装領域幅、(ロ)配線領域幅、(ハ)ACFの第1領域幅、(ニ)熱圧着ツール位置、(ホ)熱圧着ツール幅、及び(ヘ)ACFの第2領域幅」が表1に特定されるように行った。 In addition, when performing thermocompression bonding, as shown in FIG. ) mounting area width, (b) wiring area width, (c) ACF first area width, (d) thermocompression tool position, (e) thermocompression tool width, and (f) ACF second area width Performed as specified in Table 1.
(3)接続体の評価
 得られた接続体について、以下に説明する「ACFの第2領域の硬化反応率」、「導通抵抗」、「絶縁抵抗」、「粒子捕捉性」及び「接着強度」を試験評価し、総合判定を行った。評価結果・総合判定結果を表1に示す。
(3) Evaluation of Connected Body Regarding the obtained connected body, the "curing reaction rate of the second region of ACF", "conduction resistance", "insulation resistance", "particle trapping property" and "adhesive strength" described below were evaluated. was tested and evaluated, and a comprehensive judgment was made. Table 1 shows the evaluation results and overall judgment results.
(a)ACFの第2領域の硬化反応率
 評価用接続体におけるACFの第2領域(即ち、熱圧着されていない領域)の硬化反応率を評価した。具体的には、IR法で完全硬化物と未硬化物のそれぞれのピーク強度を元に各評価用接続物におけるACFの第2領域の硬化反応率を算出する。硬化反応率の評価は、次の基準で行った。
(a) Curing reaction rate of second region of ACF The curing reaction rate of the second region of ACF (that is, the region not thermocompression-bonded) in the connecting body for evaluation was evaluated. Specifically, the curing reaction rate of the second region of ACF in each connection for evaluation is calculated based on the peak intensity of each of the completely cured product and the uncured product by the IR method. The curing reaction rate was evaluated according to the following criteria.
(ACFの第2領域の硬化反応率の評価基準)
A(好ましい):80%以上
B(問題なし):60%以上80%未満
C(不可):60%未満
(Evaluation criteria for curing reaction rate of second region of ACF)
A (preferred): 80% or more B (no problem): 60% or more and less than 80% C (improper): less than 60%
(b)導通抵抗
 各評価用接続体の導通抵抗を評価した。具体的には、デジタルマルチメータ(品番:デジタルマルチメータ7555、横河電機(株)製)を用いて4端子法にて電流1mAを流したときの抵抗値を測定した。導通抵抗の評価は、次の基準で行った。
(b) Conduction resistance Conduction resistance of each connection body for evaluation was evaluated. Specifically, a digital multimeter (product number: Digital Multimeter 7555, manufactured by Yokogawa Electric Corporation) was used to measure the resistance value when a current of 1 mA was applied by the four-terminal method. The conduction resistance was evaluated according to the following criteria.
(導通抵抗評価基準)
A(好ましい):2Ω未満
B(問題なし):2Ω以上4Ω以下
C(不可):4Ωより大
(Continuity resistance evaluation criteria)
A (preferred): less than 2 Ω B (no problem): 2 Ω or more and 4 Ω or less C (impossible): greater than 4 Ω
(c)絶縁抵抗
 各評価用接続体の絶縁抵抗を評価した。具体的には、ハイレジスタンスメータ(品番:ハイレジスタンスメータ4339B、アジレント・テクノロジー社製)を用いて2端子法にて印加電圧25Vとしたときの、隣接ライン間の抵抗を測定した。絶縁抵抗の評価は、次の基準で行った。
(c) Insulation resistance The insulation resistance of each evaluation connector was evaluated. Specifically, a high resistance meter (product number: high resistance meter 4339B, manufactured by Agilent Technologies) was used to measure the resistance between adjacent lines when an applied voltage of 25 V was applied by the two-terminal method. The insulation resistance was evaluated according to the following criteria.
(絶縁抵抗評価基準)
AA(より好ましい):1012Ω以上
A(好ましい):1011Ω以上1012Ω未満
B(問題なし):109Ω以上1011Ω未満
C(不可):109Ω未満
(Insulation resistance evaluation criteria)
AA (more preferable): 10 12 Ω or more A (preferred): 10 11 Ω or more and less than 10 12 Ω B (no problem): 10 9 Ω or more and less than 10 11 Ω C (impossible): less than 10 9 Ω
(d)粒子捕捉性(最小接続面積)
 粒子捕捉については最小接続面積(5個以上の導電粒子が捕捉されている端子の面積)を見積もることで評価した。具体的には、X方向にライン状に配線形成したTEGを用いた。圧痕を光学顕微鏡にてカウントし、横軸:接続面積、縦軸:捕捉数とする検量線を作成することで、見積もった。
(d) Particle capture (minimum connection area)
Particle trapping was evaluated by estimating the minimum connection area (the area of the terminal where 5 or more conductive particles are trapped). Specifically, a TEG with lines formed in the X direction was used. The indentations were counted with an optical microscope, and estimated by creating a calibration curve in which the horizontal axis is the connection area and the vertical axis is the captured number.
(粒子捕捉性評価基準)
A(好ましい):200μm以上1000μm未満
B(問題なし):1000μm以上2000μm以下
C(不可):2000μmより大
(Particle trapping evaluation criteria)
A (preferred): 200 μm 2 or more and less than 1000 μm 2 B (no problem): 1000 μm 2 or more and 2000 μm 2 or less C (impossible): 2000 μm 2 or more
(e)接着強度
 各評価用接続体の接着強度を評価した。具体的には、引張試験機(RTC1225A、(株)エー・アンド・デイ)を用いて測定した。評価用ガラス基板から評価用FPC基板を、50mm/秒の速度で90度方向に引き上げ、引き剥がしに要した力を接着強度(N)とし測定した。接着強度の評価は、次の基準で行った。
(e) Adhesive strength The adhesive strength of each connector for evaluation was evaluated. Specifically, it was measured using a tensile tester (RTC1225A, A&D Co., Ltd.). The FPC substrate for evaluation was pulled up from the glass substrate for evaluation in the direction of 90 degrees at a speed of 50 mm/sec, and the force required for peeling off was measured as adhesive strength (N). The adhesive strength was evaluated according to the following criteria.
(接着強度評価基準)
A(好ましい):8Nより大
B(問題なし):5N以上8N以下
C(不可):5Nより小
(Adhesion strength evaluation criteria)
A (preferred): greater than 8N B (no problem): 5N or more and 8N or less C (impossible): less than 5N
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[評価結果の考察]
 表1の結果から、実施例1~10の接続体は、ACFの第2領域の硬化反応率、導通抵抗、絶縁抵抗、粒子捕捉性、接着強度の各評価項目について、良好な結果を示した。特に、実施例3の場合、ガラス基板の配線領域幅が0.1mmの細幅であっても、製造された接続体の導通抵抗、絶縁抵抗、粒子捕捉性、接着強度のいずれも、評価結果は実用上問題のないレベルとなることがわかった。
[Consideration of evaluation results]
From the results of Table 1, the connected bodies of Examples 1 to 10 showed good results for each evaluation item of the curing reaction rate of the second region of ACF, conduction resistance, insulation resistance, particle trapping property, and adhesive strength. . In particular, in the case of Example 3, even if the width of the wiring region of the glass substrate was as narrow as 0.1 mm, all of the conduction resistance, insulation resistance, particle trapping property, and adhesive strength of the manufactured connection body were evaluated. was found to be at a practically acceptable level.
 比較例1の接続体は、導通抵抗が“C”評価であった。実施例4との比較により、ACFの第1領域幅の割合が少なくACFの第2領域幅の割合が多いことが原因と思われる。比較例1と実施例4の結果の比較により、異方性導電フィルムの全幅に対する異方性導電フィルムの第1領域幅の割合が25%以上(異方性導電フィルムの第2領域幅の割合が75%以下)である方が好ましいことがわかった。 The connection body of Comparative Example 1 was evaluated as "C" in conduction resistance. A comparison with Example 4 suggests that the ratio of the first area width of the ACF is small and the ratio of the second area width of the ACF is large. By comparing the results of Comparative Example 1 and Example 4, the ratio of the first region width of the anisotropic conductive film to the total width of the anisotropic conductive film was 25% or more (the ratio of the second region width of the anisotropic conductive film is 75% or less) is preferable.
 比較例2の接続体は、導通抵抗が“C”評価であった。熱圧着ツール位置が表示部エッジから離れすぎていることが原因と思われる。比較例2と実施例5の結果の比較により、熱圧着ツール位置は70%以下である方が好ましいことがわかった。 The connection body of Comparative Example 2 was evaluated as "C" in conduction resistance. The cause seems to be that the position of the thermocompression bonding tool is too far from the display edge. By comparing the results of Comparative Example 2 and Example 5, it was found that the thermocompression tool position is preferably 70% or less.
 比較例3では接続体を製造することができなかった。熱圧着ツール幅が、実装領域幅の約4倍の幅があるため、熱圧着ツールの底面がFPC基板に面接触せずに片当たりを起こしていることが原因と思われる。比較例3と実施例6の結果の比較により、熱圧着ツール幅は、実装領域幅の3倍以下であることが好ましいことがわかった。 In Comparative Example 3, a connecting body could not be manufactured. Since the width of the thermocompression bonding tool is approximately four times the width of the mounting area, the bottom surface of the thermocompression bonding tool does not come into surface contact with the FPC board and causes uneven contact. By comparing the results of Comparative Example 3 and Example 6, it was found that the width of the thermocompression bonding tool is preferably three times or less than the width of the mounting area.
 比較例4の条件で製造した接続体は、接着強度の評価項目について問題があった。実装領域幅0.1mmでありガラス基板と異方性導電フィルムの接着幅が減少したことで接続強度が低下したことが原因と思われる。比較例4と実施例7の結果の比較により、実装領域幅0.2mm以上であれば、接着強度に問題が生じないことがわかった。 The connection body manufactured under the conditions of Comparative Example 4 had a problem with the evaluation item of adhesive strength. The reason for this is thought to be that the mounting area width was 0.1 mm and the bonding width between the glass substrate and the anisotropic conductive film was reduced, resulting in a decrease in connection strength. By comparing the results of Comparative Example 4 and Example 7, it was found that if the width of the mounting area is 0.2 mm or more, no problem occurs in adhesive strength.
 比較例5の条件では接続体を製造することができなかった。熱圧着ツール位置が、-10%の負の値であり、熱圧着ツールがディスプレイ部に接触し、底面がFPC基板に面接触せずに片当たりを起こしていることが原因と思われる。 A connected body could not be manufactured under the conditions of Comparative Example 5. The position of the thermocompression bonding tool is a negative value of -10%, and the thermocompression bonding tool is in contact with the display section, and the bottom surface does not come into surface contact with the FPC board, causing uneven contact.
 比較例6の条件で製造した接続体は、絶縁抵抗の評価項目について問題があった。比較例6の異方性導電フィルムは、導電粒子の個数密度が20000個/mmであり導電粒子が密になりすぎたことが原因と思われる。比較例6と実施例9、10の結果の比較により、導電粒子の個数密度が6000個/mm以上16000個/mm以下であれば、絶縁抵抗に問題が生じないことがわかった。 The connection body manufactured under the conditions of Comparative Example 6 had a problem with the evaluation item of insulation resistance. In the anisotropic conductive film of Comparative Example 6, the number density of the conductive particles was 20,000/mm 2 and the conductive particles were too dense. By comparing the results of Comparative Example 6 and Examples 9 and 10, it was found that if the number density of the conductive particles is 6000/mm 2 or more and 16000/mm 2 or less, there is no problem with insulation resistance.
 本発明の接続体の製造方法においては、異方性導電フィルムを、FPC基板などの第1電子部品の端子部に仮貼りする。このため、使用する異方性導電フィルムの幅を、ディスプレイパネルなどの第2電子部品の配線領域の幅以下とする必要性から解放される。従って、異方性導電フィルムとして、その幅が第2電子部品の配線領域の幅よりも大きく、安定した異方性導電特性のものを使用することができる。よって、異方性導電フィルムの仮貼りを従前の実装装置で実現することができ、格別に高い配置精度での仮貼りが不要となる。このように、新規実装装置の導入を不要とするだけでなく、従前の実装装置の大幅な改修も回避することができる。結果的に、製造された接続体の所定の評価項目(導通抵抗、絶縁抵抗、導電粒子捕捉性、接着強度)のいずれについても、評価結果が実用に適用できないレベルにまで低下してしまうことを回避できる。従って、本発明の接続体の製造方法は、ディスプレイパネルなどの第2電子部品の細幅に形成された実装領域にFPC基板などの第1電子部品の端子部を異方性導電接続する際に有用である。 In the manufacturing method of the connection body of the present invention, the anisotropic conductive film is temporarily attached to the terminal portion of the first electronic component such as the FPC board. This eliminates the need to make the width of the anisotropic conductive film to be used equal to or less than the width of the wiring area of the second electronic component such as the display panel. Therefore, as the anisotropic conductive film, it is possible to use an anisotropic conductive film whose width is larger than the width of the wiring region of the second electronic component and which has stable anisotropic conductive properties. Therefore, temporary attachment of an anisotropic conductive film can be realized by a conventional mounting apparatus, and temporary attachment with a particularly high placement accuracy is not required. In this way, it is possible not only to eliminate the need to introduce a new mounting device, but also to avoid major modifications to the existing mounting device. As a result, the evaluation results for all of the predetermined evaluation items (conduction resistance, insulation resistance, conductive particle trapping property, and adhesive strength) of the manufactured connection are lowered to a level that cannot be applied in practice. can be avoided. Therefore, the manufacturing method of the connection body of the present invention is used when anisotropically conductively connecting the terminal portion of the first electronic component such as the FPC board to the narrow mounting area of the second electronic component such as the display panel. Useful.
10 第1電子部品
11 端子部
20 異方性導電フィルム
20X 第1領域
20Y 第2領域
21 バインダー樹脂層
22 導電粒子
23 導電粒子含有層
24 絶縁性樹脂層
30 第2電子部品(例えば、ディスプレイパネル)
30a 実装領域
31 配線領域
40 熱圧着ツール
100 接続体
D 異方性導電フィルムのバインダー樹脂層の片面から導電粒子までの距離
La バインダー樹脂層の層厚
(イ) 実装領域幅
(ロ) 配線領域幅
(ハ) 異方性導電フィルムの第1領域幅
(ニ) 熱圧着ツール位置
(ホ) 熱圧着ツール幅
(ヘ) 異方性導電フィルムの第2領域幅
10 First electronic component 11 Terminal portion 20 Anisotropic conductive film 20X First region 20Y Second region 21 Binder resin layer 22 Conductive particles 23 Conductive particle-containing layer 24 Insulating resin layer 30 Second electronic component (for example, display panel)
30a Mounting area 31 Wiring area 40 Thermocompression bonding tool 100 Connection body D Distance La from one side of binder resin layer of anisotropic conductive film to conductive particles La Layer thickness of binder resin layer (a) Mounting area width (b) Wiring area width (C) Width of first region of anisotropic conductive film (D) Position of thermocompression bonding tool (E) Width of thermocompression bonding tool (F) Width of second region of anisotropic conductive film

Claims (13)

  1.  第1電子部品の端子部を第2電子部品の実装領域内の配線領域に異方性導電フィルムを介して異方性導電接続する接続体の製造方法であって、
     第1電子部品に、異方性導電フィルムを仮貼りする仮貼り工程と、
     第2電子部品の配線領域上に、第1電子部品に仮貼りされた異方性導電フィルムを載置する載置工程と、
     第1電子部品側から熱圧着ツールで熱圧着する熱圧着工程とを含み、
     異方性導電フィルムは、第2電子部品と第1電子部品との対向面間で挟持される第1領域と、第1領域に隣接し、第1電子部品には対向しているが第2電子部品には対向していない第2領域とを有する、接続体の製造方法。
    A method for manufacturing a connecting body for anisotropically conductively connecting a terminal portion of a first electronic component to a wiring region within a mounting region of a second electronic component via an anisotropic conductive film,
    A temporary attachment step of temporarily attaching an anisotropic conductive film to the first electronic component;
    A placing step of placing the anisotropic conductive film temporarily attached to the first electronic component on the wiring region of the second electronic component;
    a thermocompression bonding step of thermocompression bonding with a thermocompression bonding tool from the first electronic component side;
    The anisotropic conductive film includes a first region sandwiched between facing surfaces of the second electronic component and the first electronic component, and an anisotropic conductive film adjacent to the first region and facing the first electronic component but not the second electronic component. and a second region not facing the electronic component.
  2.  載置工程において、第1電子部品に仮貼りされた異方性導電フィルムの第1領域の第2電子部品の配線領域へのアライメントを行う請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein in the placing step, the first region of the anisotropic conductive film temporarily attached to the first electronic component is aligned with the wiring region of the second electronic component.
  3.  異方性導電フィルムが、バインダー樹脂層とそれに含有されている導電粒子とからなる導電粒子含有層を有し、バインダー樹脂層の片面に導電粒子が偏在している請求項1又は2に記載の製造方法。 3. The anisotropic conductive film according to claim 1 or 2, wherein the anisotropic conductive film has a conductive particle-containing layer consisting of a binder resin layer and conductive particles contained therein, and the conductive particles are unevenly distributed on one side of the binder resin layer. Production method.
  4.  異方性導電フィルムの導電粒子含有層のバインダー樹脂層の該片面から導電粒子までの距離をDとし、バインダー樹脂層の層厚をLaとしたとき、距離Dの層厚Laに対する比率(%)[(D/La)×100]が、-5%以上40%以下である請求項3記載の製造方法。 When the distance from the one side of the binder resin layer of the conductive particle-containing layer of the anisotropic conductive film to the conductive particles is D, and the layer thickness of the binder resin layer is La, the ratio of the distance D to the layer thickness La (%) 4. The production method according to claim 3, wherein [(D/La)×100] is −5% or more and 40% or less.
  5.  前記仮貼り工程において、前記異方性導電フィルムを第1電子部品に仮貼りする際に、導電粒子が偏在していない側から仮貼りを行う請求項4記載の製造方法。 The manufacturing method according to claim 4, wherein in the temporary attachment step, when the anisotropic conductive film is temporarily attached to the first electronic component, the temporary attachment is performed from the side where the conductive particles are not unevenly distributed.
  6.  異方性導電フィルムとして、導電粒子含有層において前記導電粒子が規則的に配置されているものを使用する請求項3~5のいずれかに記載の製造方法。 The production method according to any one of claims 3 to 5, wherein the anisotropic conductive film is a conductive particle-containing layer in which the conductive particles are regularly arranged.
  7.  前記異方性導電フィルムとして、導電粒子含有層に、絶縁性樹脂層が更に積層された構造を有するものを使用する請求項3~6のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 3 to 6, wherein the anisotropic conductive film has a structure in which an insulating resin layer is further laminated on the conductive particle-containing layer.
  8.  前記仮貼り工程において、前記異方性導電フィルムを第1電子部品に仮貼りする際に、絶縁性樹脂層側が第1電子部品側に位置するように仮貼りを行う請求項7記載の製造方法。 8. The manufacturing method according to claim 7, wherein in the temporary attaching step, when temporarily attaching the anisotropic conductive film to the first electronic component, the temporary attaching is performed so that the insulating resin layer side is positioned on the first electronic component side. .
  9.  前記異方性導電フィルムの全幅に対する前記異方性導電フィルムの前記第1領域幅の割合が25%以上である請求項1~8のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 8, wherein the ratio of the width of the first region of the anisotropic conductive film to the total width of the anisotropic conductive film is 25% or more.
  10.  前記熱圧着ツールの幅は、異方性導電フィルムの幅よりも大である請求項1~9のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 9, wherein the width of the thermocompression bonding tool is larger than the width of the anisotropic conductive film.
  11.  前記熱圧着ツール幅は、第2電子部品の実装幅の0.8倍以上3倍以下である請求項1~10のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 10, wherein the thermocompression bonding tool width is 0.8 to 3 times the mounting width of the second electronic component.
  12.  前記第1電子部品がFPC基板であり、前記第2電子部品がディスプレイパネルである請求項1~11のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 11, wherein the first electronic component is an FPC board and the second electronic component is a display panel.
  13.  第1電子部品の端子部と第2電子部品の配線領域とが、バインダー樹脂層に導電粒子が含有されてなる導電粒子含有層を有する異方性導電フィルムを介して異方性導電接続されている接続体であって、
     前記異方性導電フィルムは、前記第2電子部品と第1電子部品との対向面間に挟持されている第1領域と、第1領域に隣接し、第1電子部品には対向しているが第2電子部品には対向していない第2領域と、を備えることを特徴とする接続体。
    The terminal portion of the first electronic component and the wiring region of the second electronic component are anisotropically conductively connected through an anisotropic conductive film having a conductive particle-containing layer in which conductive particles are contained in a binder resin layer. a connection body having
    The anisotropic conductive film is adjacent to the first region sandwiched between the facing surfaces of the second electronic component and the first electronic component, and faces the first electronic component. and a second region that does not face the second electronic component.
PCT/JP2022/004667 2021-02-08 2022-02-07 Method for manufacturing connector, and connector WO2022168972A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021018340A JP2022121154A (en) 2021-02-08 2021-02-08 Manufacturing method of connection body and the connection body
JP2021-018340 2021-02-08

Publications (1)

Publication Number Publication Date
WO2022168972A1 true WO2022168972A1 (en) 2022-08-11

Family

ID=82741560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004667 WO2022168972A1 (en) 2021-02-08 2022-02-07 Method for manufacturing connector, and connector

Country Status (3)

Country Link
JP (1) JP2022121154A (en)
TW (1) TW202245565A (en)
WO (1) WO2022168972A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004902A1 (en) * 2007-07-03 2009-01-08 Sony Chemical & Information Device Corporation Anisotropic conductive film and method for producing the same, and bonded body
CN103513452A (en) * 2012-06-29 2014-01-15 北京京东方光电科技有限公司 Method for assembling display device
WO2014021424A1 (en) * 2012-08-01 2014-02-06 デクセリアルズ株式会社 Method for manufacturing anisotropically conductive film, anisotropically conductive film, and connective structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004902A1 (en) * 2007-07-03 2009-01-08 Sony Chemical & Information Device Corporation Anisotropic conductive film and method for producing the same, and bonded body
CN103513452A (en) * 2012-06-29 2014-01-15 北京京东方光电科技有限公司 Method for assembling display device
WO2014021424A1 (en) * 2012-08-01 2014-02-06 デクセリアルズ株式会社 Method for manufacturing anisotropically conductive film, anisotropically conductive film, and connective structure

Also Published As

Publication number Publication date
TW202245565A (en) 2022-11-16
JP2022121154A (en) 2022-08-19

Similar Documents

Publication Publication Date Title
JP5690648B2 (en) Anisotropic conductive film, connection method and connection structure
KR102276325B1 (en) Anisotropic conductive film
JP4924773B2 (en) Conductive connection material, method for manufacturing electronic component, electronic member with conductive connection material, and electronic component
JP5690637B2 (en) Anisotropic conductive film, connection method and connection structure
US8330052B2 (en) Joined structure and method for producing the same
WO2013146573A1 (en) Electroconductive particle, circuit connecting material, mounting body, and method for manufacturing mounting body
JP5695881B2 (en) Electronic component connection method and connection structure
JP2010251336A (en) Anisotropic conductive film and method for manufacturing connection structure using the same
WO2022168972A1 (en) Method for manufacturing connector, and connector
WO2015093362A1 (en) Mounting body manufacturing method and anisotropic conductive film
WO2020071271A1 (en) Anisotropic conductive film, connection structure, and method for manufacturing connection structure
WO2018150897A1 (en) Anisotropic conductive connection structure body, production method for anisotropic conductive connection structure body, anisotropic conductive film, and anisotropic conductive paste
JP2020095941A (en) Anisotropic conductive film, connection structure, and method for manufacturing connection structure
JP4670859B2 (en) Connection member and electrode connection structure using the same
JP2008112732A (en) Connecting method of electrode
JP4572929B2 (en) Connection member and electrode connection structure using the same
JP2011211245A (en) Method of manufacturing connection structure, connection structure, and connection method
JP2011165954A (en) Conductive connection material, connection method between terminals, method of manufacturing connection terminal, electronic member, and electric and electronic component
JP2017175015A (en) Method of manufacturing connection body
KR20070031525A (en) Anisotropic conductive film, manufacturing method thereof and its usage
JP4760993B2 (en) Connection member and electrode connection structure using the same
JP4760992B2 (en) Connection member and electrode connection structure using the same
JP4670858B2 (en) Repair property imparting method and connecting member
JP4670857B2 (en) Repair property imparting method and connecting member
JP2023051250A (en) connection structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749843

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749843

Country of ref document: EP

Kind code of ref document: A1