WO2018150897A1 - Anisotropic conductive connection structure body, production method for anisotropic conductive connection structure body, anisotropic conductive film, and anisotropic conductive paste - Google Patents

Anisotropic conductive connection structure body, production method for anisotropic conductive connection structure body, anisotropic conductive film, and anisotropic conductive paste Download PDF

Info

Publication number
WO2018150897A1
WO2018150897A1 PCT/JP2018/003448 JP2018003448W WO2018150897A1 WO 2018150897 A1 WO2018150897 A1 WO 2018150897A1 JP 2018003448 W JP2018003448 W JP 2018003448W WO 2018150897 A1 WO2018150897 A1 WO 2018150897A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic conductive
electronic component
connection structure
less
film
Prior art date
Application number
PCT/JP2018/003448
Other languages
French (fr)
Japanese (ja)
Inventor
宮内 幸一
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2018150897A1 publication Critical patent/WO2018150897A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits

Definitions

  • the present invention relates to an anisotropic conductive connection structure, a method for manufacturing an anisotropic conductive connection structure, an anisotropic conductive film, and an anisotropic conductive paste.
  • Patent Documents 1 to 4 a technique for anisotropically connecting a plurality of electronic components using an anisotropic conductive film is known.
  • an anisotropic conductive film is temporarily pressure-bonded onto the first electronic component.
  • a 2nd electronic component is laminated
  • the resultant anisotropic conductive connection structure includes a plurality of electronic components and an anisotropic conductive layer that anisotropically connects these electronic components.
  • electrode terminals are provided on each electronic component, and the anisotropic conductive layer connects these electrode terminals to each other in an anisotropic conductive manner.
  • One of the electronic components is generally a substrate.
  • JP 2010-37539 A Japanese Patent Laying-Open No. 2015-170581 Japanese Patent Laid-Open No. 62-260877 JP 2016-131152 A
  • the first electronic component is often composed of a plastic substrate (for example, a polyethylene terephthalate (PET) substrate). Since such a plastic substrate has low rigidity, it is likely to be deformed by the applied pressure during the main press bonding. If the first electronic component is excessively deformed, the characteristics of the first electronic component may be impaired.
  • a plastic substrate for example, a polyethylene terephthalate (PET) substrate. Since such a plastic substrate has low rigidity, it is likely to be deformed by the applied pressure during the main press bonding. If the first electronic component is excessively deformed, the characteristics of the first electronic component may be impaired.
  • PET polyethylene terephthalate
  • the first electronic component when used for a touch panel, it is often laminated on the surface of an image display device or the like via an optical resin layer. Since the optical resin layer is very soft, it is easily deformed by the pressure applied during the main press bonding. Therefore, the first electronic component is also deformed following the deformation of the optical resin layer at the time of connection.
  • the resin in the anisotropic conductive film is pressed by the pressure at the main pressing. May not flow sufficiently. In this case, the conductive particles are not sufficiently sandwiched, which may cause another problem such as poor conduction.
  • an object of the present invention is to provide the first electronic component and the second electronic even when the main pressure bonding is performed at a low pressure.
  • the first electronic component, the second electronic component, and the first electronic component and the second electronic component are anisotropically conductively connected.
  • An anisotropic conductive layer, the anisotropic conductive layer includes a film-forming resin having a weight average molecular weight of less than 55000 and a glass transition point of less than 70 ° C., and having a minimum melt viscosity of 7000 Pa ⁇ S or less.
  • An anisotropic conductive connection structure is provided.
  • the minimum melt viscosity of the anisotropic conductive layer may be 4000 Pa ⁇ S or more.
  • the film forming resin may be a polyester resin.
  • the anisotropic conductive layer may include conductive particles for anisotropic conductive connection between the first electronic component and the second electronic component, and the conductive particles may be metal-coated resin particles. .
  • the particle diameter of the metal-coated resin particles may be 10 ⁇ m or more.
  • the first electronic component may be a plastic substrate.
  • the first electronic component may be a substrate having a transparent wiring for a touch panel.
  • the first electronic component may be laminated on the third electronic component via an optical resin layer.
  • the third electronic component may be a substrate for an image display device.
  • an image display device provided with the above anisotropic conductive connection structure.
  • a method for manufacturing the above anisotropic conductive connection structure wherein the first electronic component and the second electronic component are made anisotropic using an anisotropic conductive film.
  • An anisotropic conductive film comprising a film-forming resin having a weight average molecular weight of less than 55000 and a glass transition point of less than 70 ° C., and having a minimum melt viscosity of 7000 Pa ⁇ S or less.
  • a method for manufacturing an isotropic conductive connection structure is provided.
  • the minimum melt viscosity of the anisotropic conductive film may be 4000 Pa ⁇ S or more.
  • the anisotropic conductive film includes conductive particles for anisotropic conductive connection between the first electronic component and the second electronic component, and the anisotropic conductive film has a thickness of the conductive particles. It may be less than twice the particle size.
  • the conductive particles may be metal-coated resin particles.
  • the applied pressure at the time of anisotropic conductive connection may be less than 2 MPa.
  • an anisotropic conductive film used in the above method for manufacturing an anisotropic conductive connection structure, wherein the anisotropic conductive film has a weight average molecular weight of less than 55000,
  • an anisotropic conductive film including a film-forming resin having a glass transition point of less than 70 ° C. and having a minimum melt viscosity of 7000 Pa ⁇ S or less is provided.
  • the minimum melt viscosity of the anisotropic conductive film may be 4000 Pa ⁇ S or more.
  • an anisotropic conductive film used for anisotropic conductive connection between a plastic substrate and an electronic component wherein the anisotropic conductive film has a weight average molecular weight of less than 55000
  • an anisotropic conductive film including a film-forming resin having a glass transition point of less than 70 ° C. and having a minimum melt viscosity of 7000 Pa ⁇ S or less is provided.
  • the minimum melt viscosity of the anisotropic conductive film may be 4000 Pa ⁇ S or more.
  • An anisotropic conductive paste including a base resin having a molecular weight of less than 55000 and a glass transition point of less than 70 ° C. and having a minimum melt viscosity of 7000 Pa ⁇ S or less is provided.
  • the minimum melt viscosity of the anisotropic conductive paste may be 4000 Pa ⁇ S or more.
  • the film-forming resin has a weight average molecular weight of less than 55000 and a glass transition point of less than 70 ° C. Furthermore, the minimum melt viscosity is 7000 Pa ⁇ S or less. For this reason, even when the main pressure bonding is performed at a low pressure, the first electronic component and the second electronic component can be more reliably anisotropically connected.
  • the anisotropic conductive film 10 is temporarily attached on the first electronic component 30.
  • the first electronic component 30 is laminated on the third electronic component 70 via the optical resin layer 40.
  • the first electronic component 30 is a touch panel substrate. This is a substrate having transparent wiring. That is, on the first electronic component 30, an electrode group for detecting a touch operation by the user and an electrode terminal group connected to these electrode groups (hereinafter, also referred to as “first electrode terminal group”). And are formed.
  • the first electrode terminal group is disposed at the end of the first electronic component 30.
  • the first electrode terminal group is anisotropically conductively connected to an electrode terminal group (hereinafter also referred to as “second electrode terminal group”) of the second electronic component 60 described later.
  • the material constituting the electrode group and the electrode terminal group is not particularly limited.
  • the electrode group and the electrode terminal group may be made of ITO (indium tin oxide) or a metal film.
  • the metal constituting the metal film include gold, silver, copper, aluminum, zinc, and alloys of two or more thereof.
  • An insulating layer may be formed on the surface of the metal film.
  • the insulating layer may be a rust-proofing layer that has been rust-proofed.
  • the electrode group and the electrode terminal group may be composed of metal particles. In this case, a recess is formed on the first electronic component 30 and the recess is filled with metal particles.
  • the metal constituting the metal paste include gold, silver, copper, aluminum, zinc, and alloys of two or more thereof.
  • the electrode group and the electrode terminal group may be comprised with the metal nanowire.
  • the metal nanowire is fixed on the first electronic component 30 by the binder.
  • the metal constituting the metal nanowire include Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir, Ru, Os, Fe, Co, and Sn.
  • the metal nanowire may be subjected to a treatment (for example, dyeing or blackening treatment) for lowering the haze value (that is, reducing visibility).
  • the first electronic component 30 is made of a plastic substrate having transparency.
  • examples of the first electronic component 30 include polycarbonate, acrylic, polyethylene terephthalate (PET), triacetyl cellulose, and cyclic olefin resin (COC).
  • the first electronic component 30 may be made of transparent glass or the like.
  • the tensile elastic modulus of the first electronic component 30 may be about 1800 to 4500 MPa, for example.
  • the tensile elastic modulus of the first electronic component 30 is 2000 to 4100 MPa.
  • the tensile elastic modulus of the first electronic component 30 is 2600 to 3000 MPa.
  • the thickness of the first electronic component 30 is not particularly limited, and may be set as appropriate according to characteristics required for the first electronic component 30.
  • the thickness of the first electronic component 30 may be, for example, 25 to 300 ⁇ m. The same applies when the first electronic component 30 is a plastic substrate.
  • the first electronic component 30 is not limited to the above-described example, and may be a substrate that is a target of anisotropic conductive connection.
  • the first electronic component 30 may be a glass substrate or the like.
  • the rigidity of the first electronic component 30 is low, so that the first electronic component 30 is easily deformed by the applied pressure during the main press bonding.
  • the problem that it becomes difficult to fully hold electroconductive particle may arise.
  • the electrode group and the first electrode terminal group formed on the first electronic component 30 are easily damaged by the applied pressure during the main press bonding. For this reason, the effect of this embodiment is acquired suitably.
  • the first electronic component 30 is a relatively high rigidity material such as a glass substrate, when the first electronic component 30 is laminated on the optical resin layer 40 as will be described later, It is preferable to reduce the applied pressure at the time of pressure bonding. When the applied pressure during the main press bonding is high, the optical resin layer 40 is easily affected by deformation. Therefore, even when the first electronic component 30 is a relatively rigid material such as a glass substrate, there may be a problem that the conductive particles are not easily sandwiched. Therefore, it is preferable to perform anisotropic conductive connection under the conditions of this embodiment.
  • the optical resin layer 40 is a layer for adhering the first electronic component 30 to the third electronic component 70, and is composed of, for example, OCA (Optically Clear Adhesive), OCR (Optically Clear Resin), or the like.
  • OCA Optically Clear Adhesive
  • OCR Optically Clear Resin
  • the thickness of the optical resin layer 40 is not particularly limited, the thinner the optical resin layer 40 is, the more the deformation of the optical resin layer 40 is suppressed, and thus the deformation (distortion) of the first electronic component 30 can be suppressed.
  • the thickness of the optical resin layer 40 is preferably, for example, 250 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the tensile elastic modulus of the optical resin layer 40 is not particularly limited, but may be, for example, 10 to 200 KPa. Alternatively, the storage elastic modulus at 25 ° C. may be 1 ⁇ 10 3 to 2 ⁇ 10 6 Pa.
  • the third electronic component 70 is, for example, a substrate of an image display device, that is, a top plate of the image display device.
  • the material of the third electronic component 70 is not particularly limited, and may be the same material as the first electronic component, for example.
  • the third electronic component 70 is not limited to the substrate of the image display device, and may be another type of substrate.
  • the first electronic component 30 is laminated on the optical resin layer 40 and the third electronic component 70, but the present embodiment can naturally be applied to other types of substrates. It is.
  • the first electronic component 30 may not be stacked on the optical resin layer 40 and the third electronic component 70.
  • One surface of the anisotropic conductive film 10 is temporarily attached on the first electronic component 30. Specifically, the anisotropic conductive film 10 is temporarily attached to the region where the first electrode terminal group is formed. A release film may be attached to the other surface of the anisotropic conductive film 10.
  • the anisotropic conductive film 10 becomes an anisotropic conductive layer 10a (see FIG. 2) by a final press-bonding described later, and connects the first electronic component 30 and the second electronic component 60 in an anisotropic conductive connection. More specifically, the anisotropic conductive layer 10 a includes a first electrode terminal group formed on the first electronic component 30 and a second electrode terminal group formed on the second electronic component 60. An anisotropic conductive connection.
  • the anisotropic conductive film 10 includes a film forming resin, a curable resin, and conductive particles.
  • the curable resin includes a polymerizable compound and a curing initiator.
  • the film-forming resin is a resin for maintaining the shape of the anisotropic conductive film.
  • a resin having a weight average molecular weight of less than 55000 and a glass transition point of less than 70 ° C. is used.
  • the resin that satisfies such conditions include various resins such as epoxy resin, phenoxy resin, polyester urethane resin, polyester resin, polyurethane resin, acrylic resin, polyimide resin, and butyral resin. In the present embodiment, only one of these film-forming resins can be used, or two or more can be used in any combination.
  • the weight average molecular weight can be measured, for example, by gel permeation chromatography (GPC), and the glass transition point can be measured by differential thermal scanning analysis (DSC).
  • GPC gel permeation chromatography
  • DSC differential thermal scanning analysis
  • a weight average molecular weight can be measured as a styrene conversion value.
  • Measuring device Q100, manufactured by TA Instruments Inc.
  • Measuring sample 5 mg (aluminum pan)
  • Measurement temperature range 30 ° C-250 ° C
  • the glass transition point can be determined under the condition of the temperature rising rate: 10 ° C./min.
  • a resin having a weight average molecular weight of less than 55000 and a glass transition point of less than 70 ° C. is used as the film-forming resin.
  • the resin in the anisotropic conductive film 10 particularly the film-forming resin, tends to flow at the time of the main pressing, particularly at the start of the main pressing. That is, the exclusion property of the film forming resin is increased.
  • the resin in the anisotropic conductive film 10 flows greatly even if the applied pressure at the time of the main pressure bonding is low, the conductive particles more reliably connect the first electrode terminal group and the second electrode terminal group. Can conduct.
  • a particularly preferable resin is a polyester resin.
  • the film-forming resin becomes easier to flow during the main press bonding.
  • the weight average molecular weight is preferably 50000 or less, more preferably 45000 or less, and even more preferably 41000 or less.
  • the lower limit of the weight average molecular weight is not particularly limited, but is preferably 4000 or more, and more preferably 6000 or more. When the weight average molecular weight is less than 4000, film formation may be difficult.
  • the anisotropic conductive film 10 is wound around a reel, it may protrude and block.
  • the polymerizable compound is a resin that is cured by a curing initiator.
  • the cured polymerizable compound adheres the first electronic component 30 and the second electronic component 60 and holds the conductive particles in the anisotropic conductive layer.
  • Examples of the polymerizable compound include an epoxy polymerizable compound and an acrylic polymerizable compound.
  • the epoxy polymerizable compound is a monomer, oligomer, or prepolymer having one or more epoxy groups in the molecule.
  • epoxy polymerizable compounds various bisphenol type epoxy resins (bisphenol A type, F type, etc.), novolac type epoxy resins, various modified epoxy resins such as rubber and urethane, naphthalene type epoxy resins, biphenyl type epoxy resins, phenol novolac type Examples thereof include epoxy resins, stilbene type epoxy resins, triphenolmethane type epoxy resins, dicyclopentadiene type epoxy resins, triphenylmethane type epoxy resins, and prepolymers thereof.
  • the acrylic polymerizable compound is a monomer, oligomer, or prepolymer having one or more acrylic groups in the molecule.
  • acrylic polymerizable compounds include methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylol propane triacrylate, dimethylol tricyclodecane diacrylate, and tetramethylene glycol.
  • any one of the polymerizable compounds listed above may be used, or two or more may be used in any combination.
  • an acrylic polymerizable compound is preferred from the viewpoint of curing at a low temperature for a short time.
  • the curing initiator is, for example, a thermosetting initiator.
  • the thermosetting initiator is a material that is cured together with the polymerizable compound by heat.
  • the kind of thermosetting initiator is not particularly limited.
  • the thermosetting initiator include a thermal anion or thermal cation curing initiator that cures the epoxy polymerizable compound, and a thermal radical polymerization curing agent that cures the acrylic polymerizable compound.
  • an appropriate thermosetting initiator may be selected depending on the polymerizable compound.
  • a photocuring initiator is mentioned as another example of a curing initiator.
  • the photocuring initiator include a photoanion or photocationic curing initiator that cures an epoxy polymerizable compound, and a photo radical polymerization curing agent that cures an acrylic polymerizable compound.
  • the anisotropic conductive film may contain various additives in addition to the above components.
  • additives that can be added to the anisotropic conductive film include silane coupling agents, inorganic fillers, colorants, antioxidants, and rust inhibitors.
  • the kind of silane coupling agent is not particularly limited.
  • examples of the silane coupling agent include epoxy-based, amino-based, mercapto-sulfide-based, and ureido-based silane coupling agents.
  • the inorganic filler is an additive for adjusting the fluidity and film strength of the anisotropic conductive film, particularly the minimum melt viscosity described later.
  • the kind of inorganic filler is not particularly limited. Examples of the inorganic filler include silica, talc, titanium oxide, calcium carbonate, and magnesium oxide.
  • the minimum melt viscosity of the anisotropic conductive film 10 (specifically, the minimum melt viscosity when not used and before the main press bonding) is preferably 7000 Pa ⁇ S or less.
  • the anisotropic conductive film 10 is melted by heating during the main press bonding. And when the minimum melt viscosity becomes a value within the above-mentioned range, the anisotropic conductive film 10 has sufficiently high fluidity (resin eliminability) at the time of melting. For this reason, the anisotropic conductive film 10 flows greatly even if the applied pressure during the main press-bonding is low. Further, unnecessary resin that prevents the conductive particles from being sandwiched between the terminals is removed, and connection can be made even at low pressure.
  • the conductive particles can more reliably conduct the first electrode terminal group and the second electrode terminal group.
  • the minimum melt viscosity exceeds 7000 Pa ⁇ S, the flowability at the time of melting is not sufficiently increased if the pressure applied during the main pressure bonding is low.
  • the lower limit of the minimum melt viscosity is not particularly limited, but is preferably 4000 Pa ⁇ S or more.
  • the minimum melt viscosity is less than 4000 Pa ⁇ S, there is a concern that the fluidity of the anisotropic conductive film 10 is increased. For this reason, even if the applied pressure at the time of this press-bonding is low, the anisotropic conductive film 10 flows greatly.
  • the anisotropic conductive film 10 may flow too much, and the amount of resin contributing to the connection may be reduced, and there is a concern that the adhesive force may be reduced.
  • This varies depending on the object to be connected and its connection conditions, but may be dealt with by adjusting the thickness individually at the time of connection, such as an anisotropic conductive paste, and may be selected according to the purpose. Therefore, even if the minimum melt viscosity is less than 4000 Pa ⁇ S, there is no technically significant problem in connection, but from the viewpoint of process control, the minimum melt viscosity is preferably 4000 Pa ⁇ S or more.
  • the minimum melt viscosity is preferably 4000 to 6000 Pa ⁇ S, more preferably 5000 to 6000 Pa ⁇ S.
  • the minimum melt viscosity of the anisotropic conductive film 10 can be adjusted by changing the kind of the polymerizable compound, but can also be adjusted by the amount of the inorganic filler added. There exists a tendency for the minimum melt viscosity of the anisotropic conductive film 10 to become small, so that the addition amount of an inorganic filler is small. Therefore, the minimum melt viscosity of the anisotropic conductive film 10 can be easily adjusted by adjusting the addition amount of the inorganic filler. You may adjust with formulations other than these.
  • the conductive particles are a material that conducts the first electrode terminal group on the first electronic component 30 and the second electrode terminal group on the second electronic component 60 in the anisotropic conductive layer 10a. Specifically, the conductive particles sandwiched between the first electrode terminal group and the second electrode terminal group in the anisotropic conductive layer 10a make these electrode terminal groups conductive. On the other hand, other conductive particles (for example, conductive particles that have entered the gap between the electrode terminals constituting the first electrode terminal group, and conductivity that have entered the gap between the electrode terminals that constitute the second electrode terminal group. Particles, etc.) do not conduct between any terminals (that is, the first electrode terminal group and the second electrode terminal group are electrically connected at the respective terminals by conductive particles, while in the terminal arrangement direction.
  • the conductive particles are aggregated or connected between the electrode terminals, that is, the conductive particles are formed in the first electrode terminal group and the second electrode terminal group in the anisotropic conductive layer 10a.
  • the conductive particles are kneaded to be anisotropically conductive, and the conductive particles may be kneaded and dispersed in the insulating resin, and arranged so as to be independent of the anisotropic conductive film. This arrangement may be Although is appropriately set depending on the distance in the arrangement direction of the size and the electrode terminals of the electrode terminals may be regular.
  • the structure of the conductive particles is not particularly limited, and may be so-called metal-coated resin particles or metal particles.
  • the conductive particles are metal-coated resin particles, it is expected that the electrical connection between the first electrode terminal group and the second electrode terminal group can be easily maintained over a long period due to the repulsion after the resin particles are compressed. it can. That is, the first electrode terminal group and the second electrode terminal group can be directly and stably anisotropically conductively connected.
  • the resin particles constituting the core of the metal-coated resin particles are preferably particles made of a plastic material excellent in compressive deformation.
  • the material constituting the resin particles examples include (meth) acrylate resins, polystyrene resins, styrene- (meth) acrylic copolymer resins, urethane resins, epoxy resins, phenol resins, acrylonitrile / styrene (AS) resins. Benzoguanamine resin, divinylbenzene resin, styrene resin, polyester resin and the like.
  • the (meth) acrylic resin has a (meth) acrylic acid ester and, if necessary, a reactive double bond copolymerizable therewith.
  • a copolymer of a compound and a bifunctional or polyfunctional monomer is preferable.
  • the coating layer covering the resin particles is made of a conductive material.
  • the material constituting the coating layer include silver, gold, nickel, copper, and palladium.
  • the coating layer may be composed of any one or more of these.
  • electroconductive particle when electroconductive particle is comprised with a metal particle, electroconductive particle can be comprised with these materials.
  • the metal constituting the conductive particles may be the same as the metal constituting the coating layer.
  • the particle size (diameter) of the conductive particles is not particularly limited, but may be 1 to 50 ⁇ m, preferably 2 to 40 ⁇ m, more preferably 7 to 40 ⁇ m, and still more preferably 10 to 30 ⁇ m.
  • This is a number average of N 1000 or more, and can be obtained by an image type particle size distribution measuring apparatus (FPIA-3000, Malvern). Or after making into a film form, you may obtain
  • require by N 200 or more from an observation image. In this case, even if the applied pressure at the time of the main pressure bonding is low, the conductive particles can more reliably conduct the first electrode terminal group and the second electrode terminal group.
  • the thickness of the anisotropic conductive film approximates the sum of the terminal heights of the opposing electronic components, but the amount of resin eliminated during connection due to the particle size of the conductive particles approaching the sum of the terminal heights. This is because the amount of resin is relatively reduced and the restrictions on the resin that can be used are reduced.
  • the particle size of the conductive particles may be adjusted according to L / S (terminal width / inter-terminal space) of the first electronic component 30 and the second electronic component 60.
  • the L value of the first electronic component 30 and the second electronic component 60 may be, for example, 50 to 300 ⁇ m
  • the S value may be, for example, 50 to 300 ⁇ m.
  • the particle diameter of the conductive particles may be about 5 ⁇ m.
  • the particle size of the conductive particles may be about 10 ⁇ m.
  • the particle size of the conductive particles may be about 20 ⁇ m.
  • the number density (number / mm 2 ) of the conductive particles may be about 100 to 3000 / mm 2 , and the number density may be adjusted according to L / S. The number density may be increased if the L value is small and the S value is large, for example.
  • the terminal width is narrowed, it is necessary to improve the capturing property to the terminals, and if the space between the terminals is sufficiently large, the risk of occurrence of a short circuit is reduced. Therefore, it may be set appropriately in consideration of the particle diameter.
  • the thickness of the anisotropic conductive film (the thickness of the paste before connection is the same.
  • the paste will be described later) is not particularly limited, but the total of the terminal heights (the terminal height of the first electronic component 30 and the second height).
  • the sum of the terminal heights of the electronic components 60) can be determined.
  • the thickness of the anisotropic conductive film may be 10 to 50 ⁇ m.
  • the minimum of thickness is 1 time or more of the particle size of electroconductive particle, and it is more preferable if it is 1.5 times or more. This is because the amount of the resin is relatively reduced, the trapping property is increased, and the short-circuit risk is also reduced.
  • the upper limit of the thickness is preferably 8 times or less of the particle size, more preferably 5 times or less, still more preferably 3 times or less, and still more preferably less than 2 times. .
  • the effect of increasing the adhesive strength can be expected by sufficiently filling the resin between the terminals. Furthermore, even if the applied pressure at the time of the main pressure bonding is low, the conductive particles can more reliably conduct the first electrode terminal group and the second electrode terminal group.
  • the thickness of the anisotropic conductive film refers to the total thickness of the resin layers, whether a single layer or multiple layers.
  • the anisotropic conductive film (or the paste before connection) is preferably a single layer. Since productivity and connection man-hours can be reduced, an effect of cost reduction can be expected. This is because it is not necessary to separate the resin layer filled between the terminals and the high-viscosity layer that prevents the conductive particles from moving unnecessarily at the time of connection by being a single layer.
  • the anisotropic conductive film may have a long shape. In this case, the long length is 5 m or more, preferably 50 m or more. If it is too long, there is a concern that the resin may protrude, and handling becomes difficult, and the length is 5000 m or less, preferably 500 m or less.
  • Such a long anisotropic conductive film may be cut to an appropriate length and used for connection.
  • the anisotropic conductive film of the present embodiment has very high fluidity, it is considered that the same effect can be obtained even when used as a paste. That is, the anisotropic conductive paste can be provided in a film form before being connected (extruded linearly). In addition, it is not limited to a film form, You may provide in a connection part by a point and a line form. In this case, the first electronic component 30 and the second electronic component 60 are anisotropically conductively connected by the anisotropic conductive paste.
  • the present embodiment includes the anisotropic conductive connection between the first electronic component 30 and the second electronic component 60 using the anisotropic conductive paste.
  • the form of the anisotropic conductive material is not necessarily limited to a film shape, and may be a paste shape. When it is made into a film in advance, it is excellent in handleability, and when it is used in the form of a paste, the effect of reducing the cost of film formation and a high degree of freedom that can be used in a form that matches the state of the connecting portion can be expected. These may be properly used according to the equipment used for connection.
  • the anisotropic conductive material is an anisotropic conductive paste
  • the film forming resin functions as a base resin for the anisotropic conductive paste.
  • the anisotropic conductive film 10 is temporarily bonded onto the first electronic component 30. Specifically, a buffer material is placed on the release film 20. Next, the temporary pressure bonding tool head is pressed against the cushioning material. Thereby, the anisotropic conductive film 10 is temporarily press-bonded to the first electronic component 30.
  • the pressurizing temperature and the applied pressure at the time of temporary pressing are, for example, 60 to 80 ° C. and 0.5 MPa or more and less than 2 MPa.
  • the pressing time is appropriately adjusted depending on the material of the anisotropic conductive film 10 and the like, but is set to a value at least enough to fix the anisotropic conductive film 10 on the first electronic component 30.
  • the release film is peeled off from the anisotropic conductive film 10.
  • the second electronic component 60 is laminated on the anisotropic conductive film 10. More specifically, the second electronic component 60 is formed on the anisotropic conductive film 10 such that the second electrode terminal group formed on the second electronic component 60 faces the anisotropic conductive film 10. Are laminated.
  • the type of the second electronic component 60 is not particularly limited, but may be a flexible substrate, for example.
  • the material constituting the flexible substrate include thin-film metal or glass in addition to resins such as polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyethylene, polycarbonate, polyimide, and acrylic resin.
  • the material which comprises a 2nd electrode terminal group is not ask
  • the second electronic component 60 is finally bonded to the anisotropic conductive film 10.
  • the buffer material 200 a is installed on the second electronic component 60.
  • the second electronic component 60 is finally pressure-bonded onto the anisotropic conductive film 10 by pressing the main pressure-bonding tool head 400 against the buffer material 200a.
  • the pressurizing temperature and the applied pressure during the main pressure bonding vary depending on the material such as the anisotropic conductive film, but may be set within a range of, for example, 120 to 190 ° C. and 0.5 MPa or more and less than 2 MPa.
  • the pressurization temperature and the applied pressure are preferably as low as possible within the above ranges.
  • the applied pressure is preferably 0.5 MPa or more and 1 MPa or less.
  • the pressing time is appropriately adjusted depending on the material of the anisotropic conductive film 10 and the like, but is set to a value at least that allows the anisotropic conductive film 10 to flow and cure.
  • the anisotropic conductive film 10 is cured to become an anisotropic conductive layer 10a as shown in FIG. That is, the anisotropic conductive connection structure 1 is produced.
  • the pressurizing force at the time of the main pressure bonding can be reduced, so that the deformation of the first electronic component 30 at the time of the main pressure bonding can be suppressed.
  • the anisotropic conductive film 10 flows greatly even if the pressure applied during the main press bonding is low, so that the conductive particles more reliably differ between the first electronic component 30 and the second electronic component 60.
  • An isotropic conductive connection can be made.
  • the main crimping process itself may be performed by a conventional main crimping apparatus.
  • the applied pressure at the anisotropic conductive connection that is, the applied pressure at the time of temporary press-bonding and the pressurized pressure at the time of final press-bonding are both less than 2 MPa. Damage to the electrode terminal group can be suppressed.
  • FIG. 2 shows the structure of the anisotropic conductive connection structure 1 manufactured according to this embodiment.
  • the anisotropic conductive connection structure 1 includes a first electronic component 30, an optical resin layer 40, a second electronic component 60, an anisotropic conductive layer 10a, and a third electronic component 70.
  • the first electronic component 30 and the second electronic component 60 can be more reliably anisotropically connected while suppressing deformation of the first electronic component 30.
  • the third electronic component 70 is a substrate of the image display device, the image display device includes the anisotropic conductive connection structure 1.
  • anisotropic conductive films according to Test Examples 1 to 16 were produced by the following steps. That is, phenoxy resins YP-50 and YP-70 (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), polyester resins Byron 200, Byron 220, Byron 600, Byron 802 (all manufactured by Toyobo Co., Ltd.), bifunctional DCP (manufactured by Shin-Nakamura Chemical Co., Ltd.) as an acrylate monomer, M1600 (manufactured by Toagosei Co., Ltd.) as a urethane acrylate, SG80H (manufactured by Nagase ChemteX Corporation) as a rubber component, and P-1M as a phosphoric acid acrylate (Manufactured by Kyoeisha Chemical Industry Co., Ltd.), Perroyl L (manufactured by Kyoeisha Chemical Industry Co., Ltd.), Perroyl L (manufacture
  • the particle size of the conductive particles was 10 ⁇ m.
  • this coating solution was applied onto a release film so as to have a thickness of 18 ⁇ m after drying, and dried in an oven at 60 ° C. for 40 minutes.
  • anisotropic conductive films according to Test Examples 1 to 16 were obtained.
  • the number density of conductive particles contained in the anisotropic conductive films according to Test Examples 1 to 16 was determined by the following method. That is, the number density of conductive particles was determined by analyzing an image obtained by observing the anisotropic conductive film with a metal microscope using image analysis software WinROOF (manufactured by Mitani Corporation). . As a result, in any of the anisotropic conductive films, the number density was about 500 to 800 pieces / mm 2 .
  • the minimum melt viscosity of the produced anisotropic conductive film was measured. First, a laminated sheet having a thickness of 300 ⁇ m was prepared by overlaying anisotropic conductive films. Next, the laminated sheet was set on a melt viscometer (manufactured by Thermo Fisher Scientific). Then, the minimum melt viscosity of the anisotropic conductive film was measured by driving the melt viscometer under the conditions of a temperature rising rate of 10 ° C./min, a frequency of 1 Hz, a pressure of 1 N, and a measurement temperature range of 30 to 180 ° C.
  • the weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC), and the glass transition point was measured by differential thermal scanning analysis (DSC).
  • GPC gel permeation chromatography
  • DSC differential thermal scanning analysis
  • the weight average molecular weight (Mw) was calculated
  • Measuring device Q100, manufactured by TA Instruments Inc.
  • Measuring sample 5 mg (aluminum pan)
  • Temperature rising rate The glass transition point was measured by heating at 10 ° C./min.
  • ITO pattern glass was prepared as the first electronic component 30.
  • a flexible substrate made of polyimide was prepared as the second electronic component.
  • the thickness of the flexible substrate was 25 ⁇ m.
  • an anisotropic conductive film was temporarily pressure-bonded on the first electronic component 30.
  • the applied pressure at the time of pre-bonding was 1 MPa, the pressing temperature was 45 ° C., and the pressing time was 2 seconds.
  • the release film was peeled off from the anisotropic conductive film, and the anisotropic conductive film and the second electronic component 60 were finally pressure bonded.
  • the pressurizing force at the time of the main pressure bonding was set to the values shown in Tables 1 and 2, the pressurizing temperature was 130 ° C., and the pressurizing time was 10 seconds.
  • connection resistance of the anisotropic conductive connection structure was measured with a digital multimeter (trade name: Digital Multimeter 7561, manufactured by Yokogawa Electric Corporation). When the connection resistance was 1 ⁇ or more, the connection resistance was evaluated as B (defect), and when it was less than 1 ⁇ , the connection resistance was evaluated as A (good).
  • the anisotropic conductive films according to Test Examples 1 to 6 and 11 to 16 satisfy the requirements of this embodiment. For this reason, the connection resistance was good even when the applied pressure during the main pressure bonding was 0.5 MPa and 1 MPa. On the other hand, the anisotropic conductive films according to Test Examples 7 to 10 do not satisfy the requirements of this embodiment. For this reason, when the applied pressure at the time of the main pressure bonding is 1 MPa, the connection resistance is poor. On the other hand, when the applied pressure is 2 MPa, the connection resistance is good in all the test examples. However, when the first electronic component 30 is a plastic substrate, the first electronic component 30 is greatly deformed by this applied pressure. There is a possibility that.
  • a plastic substrate (PET) was prepared as the first electronic component 30.
  • Test Examples 1 to 6 the same test as in Test Examples 1 to 6 was conducted except that the conductive particles were changed to Au / Ni plating coated resin particles (average particle size 5 ⁇ m, manufactured by Nippon Chemical Industry Co., Ltd.) and L / S was 50/50. As a result, the same results as in Test Examples 1 to 6 were obtained.
  • the same tests as in Test Examples 1 to 6 were conducted except that the conductive particles were changed to Au / Ni plating coated resin particles (average particle size 20 ⁇ m, manufactured by Nippon Chemical Industry Co., Ltd.) and L / S was changed to 300/300. However, the same results as in Test Examples 1 to 6 were obtained.
  • the peel strength of the connection structure was measured in all the above test examples.
  • the peel strength was measured using a tensile tester (trade name: Tensilon, manufactured by A & D). Specifically, after placing the connection structure cut to a width of 1 cm horizontally, the tensile strength (peel strength) at which the connection structure peeled when it was pulled at an angle of 90 degrees was measured. As a result, the peel strength was 6 N / cm or more in all the test examples. This is a value that causes no problem in practical use.
  • Anisotropic conductive connection structure 10 Anisotropic conductive film (anisotropic conductive paste) 20 Release film 30 First electronic component 40 Optical resin layer 60 Second electronic component 70 Third electronic component

Abstract

[Problem] To provide a novel and improved anisotropic conductive connection structure body, a production method for the anisotropic conductive connection structure body, and an anisotropic conductive film, capable of ensuring an anisotropic conductive connection between a first electronic component and a second electronic component even when the main crimping is performed at a low pressure. [Solution] In order to solve the above problem, in one aspect of the present invention, the anisotropic conductive connection structure body is provided, comprising the first electronic component, the second electronic component, and the anisotropic conductive layer establishing the anisotropic conductive connection between the first electronic component and the second electronic component, wherein the anisotropic conductive layer contains a film-forming resin having a weight average molecular weight of lower than 55,000, and a glass transition point of lower than 70°C, the lowest melt viscosity thereof being 7,000 Pa∙S or lower.

Description

異方性導電接続構造体、異方性導電接続構造体の製造方法、異方性導電フィルム、及び異方性導電ペーストAnisotropic conductive connection structure, method for manufacturing anisotropic conductive connection structure, anisotropic conductive film, and anisotropic conductive paste
 本発明は、異方性導電接続構造体、異方性導電接続構造体の製造方法、異方性導電フィルム、及び異方性導電ペーストに関する。 The present invention relates to an anisotropic conductive connection structure, a method for manufacturing an anisotropic conductive connection structure, an anisotropic conductive film, and an anisotropic conductive paste.
 例えば特許文献1~4に開示されるように、異方性導電フィルムを用いて複数の電子部品を異方性導電接続する技術が知られている。この技術では、まず、第1の電子部品上に異方性導電フィルムを仮圧着する。その後、異方性導電フィルム上に第2の電子部品を積層し、これらの基板を本圧着することで、複数の電子部品を異方性導電接続する。結果物である異方性導電接続構造体は、複数の電子部品と、これらの電子部品を異方性導電接続する異方性導電層とを含む。なお、各電子部品上には電極端子が設けられており、異方性導電層は、これらの電極端子同士を異方性導電接続する。電子部品の一方は、基板である場合が一般的である。 For example, as disclosed in Patent Documents 1 to 4, a technique for anisotropically connecting a plurality of electronic components using an anisotropic conductive film is known. In this technique, first, an anisotropic conductive film is temporarily pressure-bonded onto the first electronic component. Then, a 2nd electronic component is laminated | stacked on an anisotropic conductive film, and several electronic components are anisotropically conductive-connected by carrying out this pressure bonding of these board | substrates. The resultant anisotropic conductive connection structure includes a plurality of electronic components and an anisotropic conductive layer that anisotropically connects these electronic components. Note that electrode terminals are provided on each electronic component, and the anisotropic conductive layer connects these electrode terminals to each other in an anisotropic conductive manner. One of the electronic components is generally a substrate.
特開2010-37539号公報JP 2010-37539 A 特開2015-170581号公報Japanese Patent Laying-Open No. 2015-170581 特開昭62-260877号公報Japanese Patent Laid-Open No. 62-260877 特開2016-131152号公報JP 2016-131152 A
 ところで、近年、本圧着時の加圧力を低下させることが求められていた。特に、第1の電子部品がタッチパネル用の基板となる場合、本圧着時の加圧力を大きく低下させることが求められていた。その理由は以下の通りである。 By the way, in recent years, it has been required to reduce the pressure applied during the main press bonding. In particular, when the first electronic component is a substrate for a touch panel, it has been required to greatly reduce the pressure applied during main press bonding. The reason is as follows.
 第1に、第1の電子部品はプラスチック基板(例えば、ポリエチレンテレフタレート(PET)基板)で構成されることが多い。このようなプラスチック基板は剛性が低いため、本圧着時の加圧力で変形しやすい。そして、第1の電子部品が過剰に変形すると、第1の電子部品の特性が損なわれる可能性がある。 First, the first electronic component is often composed of a plastic substrate (for example, a polyethylene terephthalate (PET) substrate). Since such a plastic substrate has low rigidity, it is likely to be deformed by the applied pressure during the main press bonding. If the first electronic component is excessively deformed, the characteristics of the first electronic component may be impaired.
 第2に、第1の電子部品は、タッチパネル用途に用いられる場合、画像表示装置等の表面に光学樹脂層を介して積層される場合が多い。光学樹脂層は非常に柔らかいので、本圧着時の加圧力で変形しやすい。そのため、接続時において光学樹脂層の変形に追従して第1の電子部品も変形してしまう。 Secondly, when the first electronic component is used for a touch panel, it is often laminated on the surface of an image display device or the like via an optical resin layer. Since the optical resin layer is very soft, it is easily deformed by the pressure applied during the main press bonding. Therefore, the first electronic component is also deformed following the deformation of the optical resin layer at the time of connection.
 このように、本圧着時の加圧力を低下させることが求められていたが、単に本圧着時の加圧力を低下させただけでは、本圧着時の加圧によって異方性導電フィルム中の樹脂が十分に流動しない可能性があった。この場合、導電性粒子が十分に挟持されず、導通不良といった別の問題が生じる可能性があった。 As described above, it has been required to reduce the pressing force at the time of the main press bonding, but simply by reducing the pressing force at the time of the main pressing, the resin in the anisotropic conductive film is pressed by the pressure at the main pressing. May not flow sufficiently. In this case, the conductive particles are not sufficiently sandwiched, which may cause another problem such as poor conduction.
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、低い圧力で本圧着を行った場合であっても、第1の電子部品と第2の電子部品とをより確実に異方性導電接続することが可能な、新規かつ改良された異方性導電接続構造体、異方性導電接続構造体の製造方法、異方性導電フィルム、及び異方性導電ペーストを提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide the first electronic component and the second electronic even when the main pressure bonding is performed at a low pressure. New and improved anisotropic conductive connection structure, anisotropic conductive connection structure manufacturing method, anisotropic conductive film, and anisotropic method capable of more reliably anisotropic conductive connection with parts It is to provide a conductive paste.
 上記課題を解決するために、本発明のある観点によれば、第1の電子部品と、第2の電子部品と、第1の電子部品と第2の電子部品とを異方性導電接続する異方性導電層と、を備え、異方性導電層は、重量平均分子量55000未満であり、かつガラス転移点が70℃未満である膜形成樹脂を含み、最低溶融粘度が7000Pa・S以下である、異方性導電接続構造体が提供される。 In order to solve the above problems, according to an aspect of the present invention, the first electronic component, the second electronic component, and the first electronic component and the second electronic component are anisotropically conductively connected. An anisotropic conductive layer, the anisotropic conductive layer includes a film-forming resin having a weight average molecular weight of less than 55000 and a glass transition point of less than 70 ° C., and having a minimum melt viscosity of 7000 Pa · S or less. An anisotropic conductive connection structure is provided.
 ここで、異方性導電層の最低溶融粘度は4000Pa・S以上であってもよい。 Here, the minimum melt viscosity of the anisotropic conductive layer may be 4000 Pa · S or more.
 また、膜形成樹脂は、ポリエステル樹脂であってもよい。 Further, the film forming resin may be a polyester resin.
 また、異方性導電層は、第1の電子部品と第2の電子部品とを異方性導電接続するための導電性粒子を含み、導電性粒子は、金属被覆樹脂粒子であってもよい。 The anisotropic conductive layer may include conductive particles for anisotropic conductive connection between the first electronic component and the second electronic component, and the conductive particles may be metal-coated resin particles. .
 また、金属被覆樹脂粒子の粒径は、10μm以上であってもよい。 Further, the particle diameter of the metal-coated resin particles may be 10 μm or more.
 また、第1の電子部品は、プラスチック基板であってもよい。 Further, the first electronic component may be a plastic substrate.
 また、第1の電子部品は、タッチパネル用の透明配線を有した基板であってもよい。 Further, the first electronic component may be a substrate having a transparent wiring for a touch panel.
 また、第1の電子部品は、光学樹脂層を介して第3の電子部品上に積層されていてもよい。 The first electronic component may be laminated on the third electronic component via an optical resin layer.
 また、第3の電子部品は、画像表示装置用の基板であってもよい。 Further, the third electronic component may be a substrate for an image display device.
 本発明の他の観点によれば、上記の異方性導電接続構造体を備えた、画像表示装置が提供される。 According to another aspect of the present invention, there is provided an image display device provided with the above anisotropic conductive connection structure.
 本発明の他の観点によれば、上記の異方性導電接続構造体の製造方法であって、異方性導電フィルムを用いて第1の電子部品と第2の電子部品とを異方性導電接続する工程を含み、異方性導電フィルムは、重量平均分子量55000未満であり、かつガラス転移点が70℃未満である膜形成樹脂を含み、最低溶融粘度が7000Pa・S以下である、異方性導電接続構造体の製造方法が提供される。 According to another aspect of the present invention, there is provided a method for manufacturing the above anisotropic conductive connection structure, wherein the first electronic component and the second electronic component are made anisotropic using an anisotropic conductive film. An anisotropic conductive film comprising a film-forming resin having a weight average molecular weight of less than 55000 and a glass transition point of less than 70 ° C., and having a minimum melt viscosity of 7000 Pa · S or less. A method for manufacturing an isotropic conductive connection structure is provided.
 ここで、異方性導電フィルムの最低溶融粘度は4000Pa・S以上であってもよい。 Here, the minimum melt viscosity of the anisotropic conductive film may be 4000 Pa · S or more.
 また、異方性導電フィルムは、第1の電子部品と第2の電子部品とを異方性導電接続するための導電性粒子を含み、異方性導電フィルムの厚さは、導電性粒子の粒径の2倍未満であってもよい。 The anisotropic conductive film includes conductive particles for anisotropic conductive connection between the first electronic component and the second electronic component, and the anisotropic conductive film has a thickness of the conductive particles. It may be less than twice the particle size.
 また、導電性粒子は、金属被覆樹脂粒子であってもよい。 The conductive particles may be metal-coated resin particles.
 また、異方性導電接続時の加圧力が2MPa未満であってもよい。 Further, the applied pressure at the time of anisotropic conductive connection may be less than 2 MPa.
 本発明の他の観点によれば、上記の異方性導電接続構造体の製造方法に使用される異方性導電フィルムであって、異方性導電フィルムは、重量平均分子量55000未満であり、かつガラス転移点が70℃未満である膜形成樹脂を含み、最低溶融粘度が7000Pa・S以下である、異方性導電フィルムが提供される。 According to another aspect of the present invention, there is provided an anisotropic conductive film used in the above method for manufacturing an anisotropic conductive connection structure, wherein the anisotropic conductive film has a weight average molecular weight of less than 55000, In addition, an anisotropic conductive film including a film-forming resin having a glass transition point of less than 70 ° C. and having a minimum melt viscosity of 7000 Pa · S or less is provided.
 ここで、異方性導電フィルムの最低溶融粘度は4000Pa・S以上であってもよい。 Here, the minimum melt viscosity of the anisotropic conductive film may be 4000 Pa · S or more.
 本発明の他の観点によれば、プラスチック基板と電子部品との異方性導電接続に使用される異方性導電フィルムであって、異方性導電フィルムは、重量平均分子量55000未満であり、かつガラス転移点が70℃未満である膜形成樹脂を含み、最低溶融粘度が7000Pa・S以下である、異方性導電フィルムが提供される。 According to another aspect of the present invention, an anisotropic conductive film used for anisotropic conductive connection between a plastic substrate and an electronic component, wherein the anisotropic conductive film has a weight average molecular weight of less than 55000, In addition, an anisotropic conductive film including a film-forming resin having a glass transition point of less than 70 ° C. and having a minimum melt viscosity of 7000 Pa · S or less is provided.
 ここで、異方性導電フィルムの最低溶融粘度は4000Pa・S以上であってもよい。 Here, the minimum melt viscosity of the anisotropic conductive film may be 4000 Pa · S or more.
 本発明の他の観点によれば、第1の電子部品と第2の電子部品との異方性導電接続に使用される異方性導電ペーストであって、異方性導電ペーストは、重量平均分子量55000未満であり、かつガラス転移点が70℃未満であるベース樹脂を含み、最低溶融粘度が7000Pa・S以下である、異方性導電ペーストが提供される。 According to another aspect of the present invention, an anisotropic conductive paste used for anisotropic conductive connection between a first electronic component and a second electronic component, wherein the anisotropic conductive paste has a weight average An anisotropic conductive paste including a base resin having a molecular weight of less than 55000 and a glass transition point of less than 70 ° C. and having a minimum melt viscosity of 7000 Pa · S or less is provided.
 ここで、異方性導電ペーストの最低溶融粘度は4000Pa・S以上であってもよい。 Here, the minimum melt viscosity of the anisotropic conductive paste may be 4000 Pa · S or more.
 以上説明したように本発明によれば、膜形成樹脂の重量平均分子量が55000未満であり、かつガラス転移点が70℃未満となっている。さらに、最低溶融粘度が7000Pa・S以下となっている。このため、低い圧力で本圧着を行った場合であっても、第1の電子部品と第2の電子部品とをより確実に異方性導電接続することが可能となる。 As described above, according to the present invention, the film-forming resin has a weight average molecular weight of less than 55000 and a glass transition point of less than 70 ° C. Furthermore, the minimum melt viscosity is 7000 Pa · S or less. For this reason, even when the main pressure bonding is performed at a low pressure, the first electronic component and the second electronic component can be more reliably anisotropically connected.
本発明の実施形態に係る異方性導電フィルムの本圧着方法を説明するための側断面図である。It is a sectional side view for demonstrating the main press-bonding method of the anisotropic conductive film which concerns on embodiment of this invention. 同実施形態に係る異方性導電接続構造体の構造を説明するための側断面図である。It is a sectional side view for demonstrating the structure of the anisotropic conductive connection structure which concerns on the same embodiment.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 <1.異方性導電接続構造体の製造方法>
 まず、図1および図2に基づいて、本実施形態に係る異方性導電接続構造体の製造方法について説明する。
<1. Method for manufacturing anisotropic conductive connection structure>
First, based on FIG. 1 and FIG. 2, the manufacturing method of the anisotropic conductive connection structure which concerns on this embodiment is demonstrated.
 (1-1.仮貼り工程)
 まず、第1の電子部品30上に異方性導電フィルム10を仮貼りする。第1の電子部品30は、第3の電子部品70上に光学樹脂層40を介して積層されている。
(1-1. Temporary bonding process)
First, the anisotropic conductive film 10 is temporarily attached on the first electronic component 30. The first electronic component 30 is laminated on the third electronic component 70 via the optical resin layer 40.
 第1の電子部品30は、タッチパネル用の基板である。これは透明配線を有した基板である。つまり、第1の電子部品30上には、ユーザによるタッチ操作を検出するための電極群と、これらの電極群に接続される電極端子群(以下、「第1の電極端子群」とも称する)とが形成される。第1の電極端子群は、第1の電子部品30の端部に配置される。第1の電極端子群は、後述する第2の電子部品60の電極端子群(以下、「第2の電極端子群」とも称する)と異方性導電接続される。 The first electronic component 30 is a touch panel substrate. This is a substrate having transparent wiring. That is, on the first electronic component 30, an electrode group for detecting a touch operation by the user and an electrode terminal group connected to these electrode groups (hereinafter, also referred to as “first electrode terminal group”). And are formed. The first electrode terminal group is disposed at the end of the first electronic component 30. The first electrode terminal group is anisotropically conductively connected to an electrode terminal group (hereinafter also referred to as “second electrode terminal group”) of the second electronic component 60 described later.
 電極群および電極端子群を構成する材料は特に問われない。例えば、電極群および電極端子群は、ITO(酸化インジウムスズ)で構成されてもよいし、金属膜で構成されてもよい。金属膜を構成する金属としては、例えば金、銀、銅、アルミニウム、亜鉛、及びこれらの2種以上の合金等が挙げられる。金属膜の表面には絶縁層が形成されていてもよい。絶縁層は防錆処理を施した、防錆処理層であってもよい。また、電極群および電極端子群は、金属粒子で構成されてもよい。この場合、第1の電子部品30上に凹部が形成され、この凹部内に金属粒子が充填される。金属ペーストを構成する金属としては、例えば、金、銀、銅、アルミニウム、亜鉛、及びこれらの2種以上の合金等が挙げられる。また、電極群および電極端子群は、金属ナノワイヤで構成されていてもよい。この場合、金属ナノワイヤは、バインダによって第1の電子部品30上に固定される。金属ナノワイヤを構成する金属としては、例えば、Ag、Au、Ni、Cu、Pd、Pt、Rh、Ir、Ru、Os、Fe、Co及びSn等が挙げられる。金属ナノワイヤには、ヘイズ値を下げる(すなわち、被視認性を下げる)ための処理(例えば、染色や黒化処理など)を行ってもよい。 The material constituting the electrode group and the electrode terminal group is not particularly limited. For example, the electrode group and the electrode terminal group may be made of ITO (indium tin oxide) or a metal film. Examples of the metal constituting the metal film include gold, silver, copper, aluminum, zinc, and alloys of two or more thereof. An insulating layer may be formed on the surface of the metal film. The insulating layer may be a rust-proofing layer that has been rust-proofed. The electrode group and the electrode terminal group may be composed of metal particles. In this case, a recess is formed on the first electronic component 30 and the recess is filled with metal particles. Examples of the metal constituting the metal paste include gold, silver, copper, aluminum, zinc, and alloys of two or more thereof. Moreover, the electrode group and the electrode terminal group may be comprised with the metal nanowire. In this case, the metal nanowire is fixed on the first electronic component 30 by the binder. Examples of the metal constituting the metal nanowire include Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir, Ru, Os, Fe, Co, and Sn. The metal nanowire may be subjected to a treatment (for example, dyeing or blackening treatment) for lowering the haze value (that is, reducing visibility).
 また、第1の電子部品30は、透明性を有するプラスチック基板で構成される。例えば、第1の電子部品30は、ポリカーボネート、アクリル、ポリエチレンテレフタレート(PET)、トリアセチルセルロース、環状オレフィン系樹脂(COC)等が挙げられる。第1の電子部品30は、透明ガラス等で構成されてもよい。 Further, the first electronic component 30 is made of a plastic substrate having transparency. For example, examples of the first electronic component 30 include polycarbonate, acrylic, polyethylene terephthalate (PET), triacetyl cellulose, and cyclic olefin resin (COC). The first electronic component 30 may be made of transparent glass or the like.
 また、第1の電子部品30の引張弾性率は、例えば1800~4500MPa程度であってもよい。例えば、第1の電子部品30がPETで構成される場合、第1の電子部品30の引張弾性率は2000~4100MPaとなる。また、第1の電子部品30がCOCで構成される場合、第1の電子部品30の引張弾性率は2600~3000MPaとなる。 The tensile elastic modulus of the first electronic component 30 may be about 1800 to 4500 MPa, for example. For example, when the first electronic component 30 is made of PET, the tensile elastic modulus of the first electronic component 30 is 2000 to 4100 MPa. When the first electronic component 30 is made of COC, the tensile elastic modulus of the first electronic component 30 is 2600 to 3000 MPa.
 第1の電子部品30の厚さは特に制限されず、第1の電子部品30に求められる特性等に応じて適宜設定されればよい。第1の電子部品30の厚さは、例えば25~300μmであってもよい。第1の電子部品30がプラスチック基板となる場合も、同様である。 The thickness of the first electronic component 30 is not particularly limited, and may be set as appropriate according to characteristics required for the first electronic component 30. The thickness of the first electronic component 30 may be, for example, 25 to 300 μm. The same applies when the first electronic component 30 is a plastic substrate.
 なお、第1の電子部品30は上述した例に限定されず、異方性導電接続の対象となる基板であればよい。例えば、第1の電子部品30は、ガラス基板等であってもよい。ただし、第1の電子部品30が上述した構成を有する場合、第1の電子部品30の剛性が低くなるので、本圧着時の加圧力で変形しやすい。同様に、導電性粒子が十分に挟持されにくくなるという課題が生じうる。また、第1の電子部品30上に形成された電極群および第1の電極端子群は、本圧着時の加圧力で損傷しやすい。このため、本実施形態の効果が好適に得られる。なお、第1の電子部品30が、ガラス基板等の比較的剛性の高いものであったとしても、後述するように光学樹脂層40上に第1の電子部品30が積層されている場合、本圧着時の加圧力を低くすることが好ましい。本圧着時の加圧力が高い場合、光学樹脂層40の変形に影響を受け易くなる。したがって、第1の電子部品30がガラス基板等の比較的剛性の高いものであった場合にも、導電性粒子が十分に挟持されにくくなるという課題が生じうる。したがって、本実施形態の条件で異方性導電接続することが好適である。 The first electronic component 30 is not limited to the above-described example, and may be a substrate that is a target of anisotropic conductive connection. For example, the first electronic component 30 may be a glass substrate or the like. However, when the first electronic component 30 has the above-described configuration, the rigidity of the first electronic component 30 is low, so that the first electronic component 30 is easily deformed by the applied pressure during the main press bonding. Similarly, the problem that it becomes difficult to fully hold electroconductive particle may arise. In addition, the electrode group and the first electrode terminal group formed on the first electronic component 30 are easily damaged by the applied pressure during the main press bonding. For this reason, the effect of this embodiment is acquired suitably. Even if the first electronic component 30 is a relatively high rigidity material such as a glass substrate, when the first electronic component 30 is laminated on the optical resin layer 40 as will be described later, It is preferable to reduce the applied pressure at the time of pressure bonding. When the applied pressure during the main press bonding is high, the optical resin layer 40 is easily affected by deformation. Therefore, even when the first electronic component 30 is a relatively rigid material such as a glass substrate, there may be a problem that the conductive particles are not easily sandwiched. Therefore, it is preferable to perform anisotropic conductive connection under the conditions of this embodiment.
 光学樹脂層40は、第1の電子部品30を第3の電子部品70に接着するための層であり、例えばOCA(Optically Clear Adhesive)、OCR(Optically Clear Resin)等で構成される。光学樹脂層40は非常に柔らかく、本圧着時の加圧力で変形しやすい。このため、第1の電子部品30が光学樹脂層40の変形に追従して変形してしまう。 The optical resin layer 40 is a layer for adhering the first electronic component 30 to the third electronic component 70, and is composed of, for example, OCA (Optically Clear Adhesive), OCR (Optically Clear Resin), or the like. The optical resin layer 40 is very soft and easily deforms due to the pressure applied during the main press bonding. For this reason, the first electronic component 30 is deformed following the deformation of the optical resin layer 40.
 光学樹脂層40の厚さは特に制限されないが、光学樹脂層40が薄いほど光学樹脂層40の変形が抑えられ、ひいては、第1の電子部品30の変形(歪み)が抑制されうる。このため、光学樹脂層40の厚さは、例えば、250μm以下であることが好ましく、100μm以下であることがより好ましい。また、光学樹脂層40の引張弾性率は特に制限されないが、例えば10~200KPaであってもよい。もしくは、25℃における貯蔵弾性率が1×10~2×10Paであってもよい。 Although the thickness of the optical resin layer 40 is not particularly limited, the thinner the optical resin layer 40 is, the more the deformation of the optical resin layer 40 is suppressed, and thus the deformation (distortion) of the first electronic component 30 can be suppressed. For this reason, the thickness of the optical resin layer 40 is preferably, for example, 250 μm or less, and more preferably 100 μm or less. Further, the tensile elastic modulus of the optical resin layer 40 is not particularly limited, but may be, for example, 10 to 200 KPa. Alternatively, the storage elastic modulus at 25 ° C. may be 1 × 10 3 to 2 × 10 6 Pa.
 第3の電子部品70は、例えば画像表示装置の基板、すなわち画像表示装置のトッププレートである。第3の電子部品70の材質は特に制限されず、例えば第1の電子部品と同様の材質であってもよい。また、第3の電子部品70は画像表示装置の基板に限定されず、他の種類の基板であってもよい。このように、本実施形態では、第1の電子部品30は光学樹脂層40および第3の電子部品70上に積層されているが、本実施形態は他の種類の基板にも当然に適用可能である。例えば、第1の電子部品30は光学樹脂層40および第3の電子部品70上に積層されていなくてもよい。 The third electronic component 70 is, for example, a substrate of an image display device, that is, a top plate of the image display device. The material of the third electronic component 70 is not particularly limited, and may be the same material as the first electronic component, for example. The third electronic component 70 is not limited to the substrate of the image display device, and may be another type of substrate. As described above, in the present embodiment, the first electronic component 30 is laminated on the optical resin layer 40 and the third electronic component 70, but the present embodiment can naturally be applied to other types of substrates. It is. For example, the first electronic component 30 may not be stacked on the optical resin layer 40 and the third electronic component 70.
 異方性導電フィルム10の両面のうち、一方の面が第1の電子部品30上に仮貼りされる。具体的には、異方性導電フィルム10は、第1の電極端子群が形成されている領域に仮貼りされる。異方性導電フィルム10の他方の面には剥離フィルムが貼り付けられていてもよい。 One surface of the anisotropic conductive film 10 is temporarily attached on the first electronic component 30. Specifically, the anisotropic conductive film 10 is temporarily attached to the region where the first electrode terminal group is formed. A release film may be attached to the other surface of the anisotropic conductive film 10.
 異方性導電フィルム10は、後述する本圧着によって異方性導電層10a(図2参照)となり、第1の電子部品30と第2の電子部品60とを異方性導電接続する。より具体的には、異方性導電層10aは、第1の電子部品30に形成されている第1の電極端子群と第2の電子部品60に形成されている第2の電極端子群とを異方性導電接続する。 The anisotropic conductive film 10 becomes an anisotropic conductive layer 10a (see FIG. 2) by a final press-bonding described later, and connects the first electronic component 30 and the second electronic component 60 in an anisotropic conductive connection. More specifically, the anisotropic conductive layer 10 a includes a first electrode terminal group formed on the first electronic component 30 and a second electrode terminal group formed on the second electronic component 60. An anisotropic conductive connection.
 異方性導電フィルム10は、膜形成樹脂と、硬化性樹脂と、導電性粒子とを備える。硬化性樹脂は、重合性化合物、及び硬化開始剤を含む。 The anisotropic conductive film 10 includes a film forming resin, a curable resin, and conductive particles. The curable resin includes a polymerizable compound and a curing initiator.
 膜形成樹脂は、異方性導電フィルムの形状を維持するための樹脂である。膜形成樹脂としては、重量平均分子量55000未満であり、かつガラス転移点が70℃未満である樹脂が使用される。このような条件を満たす樹脂としては、例えば、エポキシ樹脂、フェノキシ樹脂、ポリエステルウレタン樹脂、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ブチラール樹脂などの種々の樹脂が挙げられる。また、本実施形態では、これらの膜形成樹脂のうちいずれか1種だけを使用することもできるし、2種以上を任意に組み合わせて使用することもできる。なお、重量平均分子量は、例えばゲル浸透クロマトグラフィー法(GPC)により測定することが可能であり、ガラス転移点は示差熱走査分析法(DSC)で測定することが可能である。ここで、前記GPCにおいては、重量平均分子量をスチレン換算値として測定することができる。前記DSCにおいては、一例として、
測定装置:Q100、ティー・エイ・インスツルメント社製
  測定試料:5mg(アルミパン)
  測定温度範囲:30℃~250℃
  昇温速度:10℃/分間
 の条件でガラス転移点を求めることができる。
The film-forming resin is a resin for maintaining the shape of the anisotropic conductive film. As the film-forming resin, a resin having a weight average molecular weight of less than 55000 and a glass transition point of less than 70 ° C. is used. Examples of the resin that satisfies such conditions include various resins such as epoxy resin, phenoxy resin, polyester urethane resin, polyester resin, polyurethane resin, acrylic resin, polyimide resin, and butyral resin. In the present embodiment, only one of these film-forming resins can be used, or two or more can be used in any combination. The weight average molecular weight can be measured, for example, by gel permeation chromatography (GPC), and the glass transition point can be measured by differential thermal scanning analysis (DSC). Here, in said GPC, a weight average molecular weight can be measured as a styrene conversion value. In the DSC, as an example,
Measuring device: Q100, manufactured by TA Instruments Inc. Measuring sample: 5 mg (aluminum pan)
Measurement temperature range: 30 ° C-250 ° C
The glass transition point can be determined under the condition of the temperature rising rate: 10 ° C./min.
 このように、本実施形態では、膜形成樹脂として重量平均分子量55000未満であり、かつガラス転移点が70℃未満である樹脂が使用される。このため、本圧着時、特に本圧着の開始時に異方性導電フィルム10中の樹脂、特に膜形成樹脂が流動しやすくなる。つまり、膜形成樹脂の排除性が高くなる。このため、本圧着時の加圧力が低くても異方性導電フィルム10中の樹脂が大きく流動するので、導電性粒子がより確実に第1の電極端子群と第2の電極端子群とを導通することができる。すなわち、第1の電子部品30と第2の電子部品60とをより確実に異方性導電接続することができる。このような観点から、特に好ましい樹脂はポリエステル樹脂である。膜形成樹脂としてポリエステル樹脂を使用することで、膜形成樹脂が本圧着時により流動しやすくなる。ここで、重量平均分子量は、好ましくは50000以下、より好ましくは45000以下、さらにより好ましくは41000以下である。重量平均分子量が50000以下となる場合、フィルム成形が容易となる。重量平均分子量の下限値は特に制限されないが、4000以上であることが好ましく、6000以上であることがより好ましい。重量平均分子量が4000未満となる場合、フィルム成形が難しくなる可能性がある。また、異方性導電フィルム10をリールに巻回した際に、はみ出し、ブロッキングが生じる可能性がある。 Thus, in this embodiment, a resin having a weight average molecular weight of less than 55000 and a glass transition point of less than 70 ° C. is used as the film-forming resin. For this reason, the resin in the anisotropic conductive film 10, particularly the film-forming resin, tends to flow at the time of the main pressing, particularly at the start of the main pressing. That is, the exclusion property of the film forming resin is increased. For this reason, since the resin in the anisotropic conductive film 10 flows greatly even if the applied pressure at the time of the main pressure bonding is low, the conductive particles more reliably connect the first electrode terminal group and the second electrode terminal group. Can conduct. In other words, the first electronic component 30 and the second electronic component 60 can be more reliably anisotropically conductively connected. From such a viewpoint, a particularly preferable resin is a polyester resin. By using a polyester resin as the film-forming resin, the film-forming resin becomes easier to flow during the main press bonding. Here, the weight average molecular weight is preferably 50000 or less, more preferably 45000 or less, and even more preferably 41000 or less. When the weight average molecular weight is 50000 or less, film forming becomes easy. The lower limit of the weight average molecular weight is not particularly limited, but is preferably 4000 or more, and more preferably 6000 or more. When the weight average molecular weight is less than 4000, film formation may be difficult. Moreover, when the anisotropic conductive film 10 is wound around a reel, it may protrude and block.
 重合性化合物は、硬化開始剤によって硬化する樹脂である。硬化した重合性化合物は、第1の電子部品30と第2の電子部品60とを接着するとともに、導電性粒子を異方性導電層内に保持する。重合性化合物としては、例えばエポキシ重合性化合物、及びアクリル重合性化合物等が挙げられる。エポキシ重合性化合物は、分子内に1つまたは2つ以上のエポキシ基を有するモノマー、オリゴマー、またはプレポリマーである。エポキシ重合性化合物としては、各種ビスフェノール型エポキシ樹脂(ビスフェノールA型、F型等)、ノボラック型エポキシ樹脂、ゴムおよびウレタン等の各種変性エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、及びこれらのプレポリマー等が挙げられる。 The polymerizable compound is a resin that is cured by a curing initiator. The cured polymerizable compound adheres the first electronic component 30 and the second electronic component 60 and holds the conductive particles in the anisotropic conductive layer. Examples of the polymerizable compound include an epoxy polymerizable compound and an acrylic polymerizable compound. The epoxy polymerizable compound is a monomer, oligomer, or prepolymer having one or more epoxy groups in the molecule. As epoxy polymerizable compounds, various bisphenol type epoxy resins (bisphenol A type, F type, etc.), novolac type epoxy resins, various modified epoxy resins such as rubber and urethane, naphthalene type epoxy resins, biphenyl type epoxy resins, phenol novolac type Examples thereof include epoxy resins, stilbene type epoxy resins, triphenolmethane type epoxy resins, dicyclopentadiene type epoxy resins, triphenylmethane type epoxy resins, and prepolymers thereof.
 アクリル重合性化合物は、分子内に1つまたは2つ以上のアクリル基を有するモノマー、オリゴマー、またはプレポリマーである。アクリル重合性化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアネレート、およびウレタンアクリレート等が挙げられる。本実施形態では、上記で列挙した重合性化合物のうちいずれか1種を用いてもよく、2種以上を任意に組み合わせて用いてもよい。ただし、低温、短時間で硬化するという観点から、アクリル重合性化合物が好ましい。 The acrylic polymerizable compound is a monomer, oligomer, or prepolymer having one or more acrylic groups in the molecule. Examples of acrylic polymerizable compounds include methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylol propane triacrylate, dimethylol tricyclodecane diacrylate, and tetramethylene glycol. Tetraacrylate, 2-hydroxy-1,3-diacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxyethoxy) phenyl] propane, Examples include dicyclopentenyl acrylate, tricyclodecanyl acrylate, tris (acryloxyethyl) isocyanate, and urethane acrylate. That. In the present embodiment, any one of the polymerizable compounds listed above may be used, or two or more may be used in any combination. However, an acrylic polymerizable compound is preferred from the viewpoint of curing at a low temperature for a short time.
 硬化開始剤は、例えば、熱硬化開始剤である。熱硬化開始剤は、熱によって上記重合性化合物とともに硬化する材料である。熱硬化開始剤の種類も特に制限されない。熱硬化開始剤としては、例えば、エポキシ重合性化合物を硬化させる熱アニオンまたは熱カチオン硬化開始剤、アクリル重合性化合物を硬化させる熱ラジカル重合型硬化剤等が挙げられる。本実施形態では、重合性化合物によって適切な熱硬化開始剤を選択すればよい。なお、硬化開始剤の他の例としては、光硬化開始剤が挙げられる。光硬化開始剤としては、例えば、エポキシ重合性化合物を硬化させる光アニオンまたは光カチオン硬化開始剤、アクリル重合性化合物を硬化させる光ラジカル重合型硬化剤等が挙げられる。 The curing initiator is, for example, a thermosetting initiator. The thermosetting initiator is a material that is cured together with the polymerizable compound by heat. The kind of thermosetting initiator is not particularly limited. Examples of the thermosetting initiator include a thermal anion or thermal cation curing initiator that cures the epoxy polymerizable compound, and a thermal radical polymerization curing agent that cures the acrylic polymerizable compound. In this embodiment, an appropriate thermosetting initiator may be selected depending on the polymerizable compound. In addition, a photocuring initiator is mentioned as another example of a curing initiator. Examples of the photocuring initiator include a photoanion or photocationic curing initiator that cures an epoxy polymerizable compound, and a photo radical polymerization curing agent that cures an acrylic polymerizable compound.
 また、異方性導電フィルムには、上記の成分の他、各種添加剤等を含めてもよい。異方性導電フィルムに添加可能な添加剤としては、シランカップリング剤、無機フィラー、着色剤、酸化防止剤、および防錆剤等が挙げられる。シランカップリング剤の種類は特に制限されない。シランカップリング剤としては、例えば、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系のシランカップリング剤等が挙げられる。 In addition, the anisotropic conductive film may contain various additives in addition to the above components. Examples of additives that can be added to the anisotropic conductive film include silane coupling agents, inorganic fillers, colorants, antioxidants, and rust inhibitors. The kind of silane coupling agent is not particularly limited. Examples of the silane coupling agent include epoxy-based, amino-based, mercapto-sulfide-based, and ureido-based silane coupling agents.
 また、無機フィラーは、異方性導電フィルムの流動性及び膜強度、特に後述する最低溶融粘度を調整するための添加剤である。無機フィラーの種類も特に制限されない。無機フィラーとしては、例えば、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等が挙げられる。 The inorganic filler is an additive for adjusting the fluidity and film strength of the anisotropic conductive film, particularly the minimum melt viscosity described later. The kind of inorganic filler is not particularly limited. Examples of the inorganic filler include silica, talc, titanium oxide, calcium carbonate, and magnesium oxide.
 異方性導電フィルム10の最低溶融粘度(具体的には、未使用時、本圧着前の最低溶融粘度)は、7000Pa・S以下であることが好ましい。異方性導電フィルム10は、本圧着時の加熱によって溶融する。そして、最低溶融粘度が上述した範囲内の値となる場合、異方性導電フィルム10は、溶融時の流動性(樹脂排除性)が十分に高くなる。このため、異方性導電フィルム10は、本圧着時の加圧力が低くても大きく流動する。また、導電性粒子を端子間で挟持するのを妨げる、不要な樹脂が除かれることになり低圧力でも接続ができることになる。したがって、導電性粒子がより確実に第1の電極端子群と第2の電極端子群とを導通することができる。最低溶融粘度が7000Pa・Sを超える場合、本圧着時の加圧力が低いと、溶融時の流動性が十分に大きくならないため、導通不良が生じうる虞がある。一方、最低溶融粘度の下限値は特に制限されないが、4000Pa・S以上であることが好ましい。最低溶融粘度が4000Pa・S未満となる場合、異方性導電フィルム10の流動性が高くなることが懸念される。このため、本圧着時の加圧力が低くても異方性導電フィルム10は大きく流動する。そのため、異方性導電フィルム10が流動しすぎてしまい、接続に寄与する樹脂量が少なくなり接着力の低下が懸念される場合がある。これは、接続対象物やその接続条件によって変動するが、例えば異方性導電ペーストのように厚みを接続時に個別に調整することで対応できる場合もあるので、目的に応じて選択すればよい。したがって、最低溶融粘度が4000Pa・S未満であっても接続において技術上では実用上の大きな問題は無いが、工程管理上の観点から、最低溶融粘度が4000Pa・S以上であることが好ましい。最低溶融粘度は、好ましくは4000~6000Pa・S、より好ましくは5000~6000Pa・Sである。 The minimum melt viscosity of the anisotropic conductive film 10 (specifically, the minimum melt viscosity when not used and before the main press bonding) is preferably 7000 Pa · S or less. The anisotropic conductive film 10 is melted by heating during the main press bonding. And when the minimum melt viscosity becomes a value within the above-mentioned range, the anisotropic conductive film 10 has sufficiently high fluidity (resin eliminability) at the time of melting. For this reason, the anisotropic conductive film 10 flows greatly even if the applied pressure during the main press-bonding is low. Further, unnecessary resin that prevents the conductive particles from being sandwiched between the terminals is removed, and connection can be made even at low pressure. Therefore, the conductive particles can more reliably conduct the first electrode terminal group and the second electrode terminal group. When the minimum melt viscosity exceeds 7000 Pa · S, the flowability at the time of melting is not sufficiently increased if the pressure applied during the main pressure bonding is low. On the other hand, the lower limit of the minimum melt viscosity is not particularly limited, but is preferably 4000 Pa · S or more. When the minimum melt viscosity is less than 4000 Pa · S, there is a concern that the fluidity of the anisotropic conductive film 10 is increased. For this reason, even if the applied pressure at the time of this press-bonding is low, the anisotropic conductive film 10 flows greatly. Therefore, the anisotropic conductive film 10 may flow too much, and the amount of resin contributing to the connection may be reduced, and there is a concern that the adhesive force may be reduced. This varies depending on the object to be connected and its connection conditions, but may be dealt with by adjusting the thickness individually at the time of connection, such as an anisotropic conductive paste, and may be selected according to the purpose. Therefore, even if the minimum melt viscosity is less than 4000 Pa · S, there is no technically significant problem in connection, but from the viewpoint of process control, the minimum melt viscosity is preferably 4000 Pa · S or more. The minimum melt viscosity is preferably 4000 to 6000 Pa · S, more preferably 5000 to 6000 Pa · S.
 ここで、異方性導電フィルム10の最低溶融粘度は、重合性化合物の種類を変更することで調整することもできるが、上記の無機フィラーの添加量によって調整することもできる。無機フィラーの添加量が少ないほど、異方性導電フィルム10の最低溶融粘度が小さくなる傾向がある。したがって、無機フィラーの添加量を調整することで、異方性導電フィルム10の最低溶融粘度を容易に調整することができる。これら以外の配合物で調整してもよい。 Here, the minimum melt viscosity of the anisotropic conductive film 10 can be adjusted by changing the kind of the polymerizable compound, but can also be adjusted by the amount of the inorganic filler added. There exists a tendency for the minimum melt viscosity of the anisotropic conductive film 10 to become small, so that the addition amount of an inorganic filler is small. Therefore, the minimum melt viscosity of the anisotropic conductive film 10 can be easily adjusted by adjusting the addition amount of the inorganic filler. You may adjust with formulations other than these.
 導電性粒子は、異方性導電層10a内で第1の電子部品30上の第1の電極端子群と第2の電子部品60上の第2の電極端子群とを導通する材料である。具体的には、異方性導電層10a内で第1の電極端子群と第2の電極端子群とで挟持された導電性粒子は、これらの電極端子群を導通させる。一方、他の導電性粒子(例えば、第1の電極端子群を構成する電極端子同士の隙間に入り込んだ導電性粒子、第2の電極端子群を構成する電極端子同士の隙間に入り込んだ導電性粒子等)は、何れの端子間も導通させない(すなわち、第1の電極端子群と第2の電極端子群が、導電性粒子により、それぞれの端子で導通されている一方で、端子配列方向における電極端子間で導電性粒子が集合もしくは連なる形でのショートなどを生じさせない。すなわち、導電性粒子は、異方性導電層10a内で第1の電極端子群と第2の電極端子群とに挟待されることでこれらを導通し、異方性導電接続する。導電性粒子は絶縁性樹脂に混練りされて分散されていてもよく、異方性導電フィルムに個々に独立するように配置されていてもよい。この配置は、各電極端子のサイズや電極端子の配列方向における距離などによって適宜設定されるが、規則的であってもよい。 The conductive particles are a material that conducts the first electrode terminal group on the first electronic component 30 and the second electrode terminal group on the second electronic component 60 in the anisotropic conductive layer 10a. Specifically, the conductive particles sandwiched between the first electrode terminal group and the second electrode terminal group in the anisotropic conductive layer 10a make these electrode terminal groups conductive. On the other hand, other conductive particles (for example, conductive particles that have entered the gap between the electrode terminals constituting the first electrode terminal group, and conductivity that have entered the gap between the electrode terminals that constitute the second electrode terminal group. Particles, etc.) do not conduct between any terminals (that is, the first electrode terminal group and the second electrode terminal group are electrically connected at the respective terminals by conductive particles, while in the terminal arrangement direction. It does not cause short-circuiting in the form in which the conductive particles are aggregated or connected between the electrode terminals, that is, the conductive particles are formed in the first electrode terminal group and the second electrode terminal group in the anisotropic conductive layer 10a. The conductive particles are kneaded to be anisotropically conductive, and the conductive particles may be kneaded and dispersed in the insulating resin, and arranged so as to be independent of the anisotropic conductive film. This arrangement may be Although is appropriately set depending on the distance in the arrangement direction of the size and the electrode terminals of the electrode terminals may be regular.
 導電性粒子の構造は特に問われず、いわゆる金属被覆樹脂粒子であってもよいし、金属粒子であってもよい。なお、導電性粒子が金属被覆樹脂粒子となる場合、樹脂粒子の圧縮後の反発により第1の電極端子群と第2の電極端子群との導通を長期に亘って維持し易くなることが期待できる。すなわち、第1の電極端子群と第2の電極端子群とを直接かつ安定して異方性導電接続することができる。金属被覆樹脂粒子のコアを構成する樹脂粒子は、圧縮変形に優れるプラスチック材料からなる粒子であることが好ましい。樹脂粒子を構成する材料としては、例えば、(メタ)アクリレート系樹脂、ポリスチレン系樹脂、スチレン-(メタ)アクリル共重合樹脂、ウレタン系樹脂、エポキシ系樹脂、フェノール樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂、ポリエステル樹脂等が挙げられる。例えば(メタ)アクリレート系樹脂で樹脂粒子を形成する場合には、この(メタ)アクリル系樹脂は、(メタ)アクリル酸エステルと、さらに必要によりこれと共重合可能な反応性二重結合を有する化合物および二官能あるいは多官能性モノマーとの共重合体であることが好ましい。 The structure of the conductive particles is not particularly limited, and may be so-called metal-coated resin particles or metal particles. When the conductive particles are metal-coated resin particles, it is expected that the electrical connection between the first electrode terminal group and the second electrode terminal group can be easily maintained over a long period due to the repulsion after the resin particles are compressed. it can. That is, the first electrode terminal group and the second electrode terminal group can be directly and stably anisotropically conductively connected. The resin particles constituting the core of the metal-coated resin particles are preferably particles made of a plastic material excellent in compressive deformation. Examples of the material constituting the resin particles include (meth) acrylate resins, polystyrene resins, styrene- (meth) acrylic copolymer resins, urethane resins, epoxy resins, phenol resins, acrylonitrile / styrene (AS) resins. Benzoguanamine resin, divinylbenzene resin, styrene resin, polyester resin and the like. For example, when forming resin particles with a (meth) acrylate resin, the (meth) acrylic resin has a (meth) acrylic acid ester and, if necessary, a reactive double bond copolymerizable therewith. A copolymer of a compound and a bifunctional or polyfunctional monomer is preferable.
 樹脂粒子を被覆する被覆層は、導電性を有する材料で構成される。被覆層を構成する材料としては、例えば、銀、金、ニッケル、銅、及びパラジウム等が挙げられる。被覆層は、これらのうち、いずれか1種以上で構成されてもよい。なお、導電性粒子が金属粒子で構成される場合、導電性粒子は、これらの材料で構成されうる。導電性粒子が金属粒子で構成される場合、導電性粒子を構成する金属は、被覆層を構成する金属と同様であってもよい。 The coating layer covering the resin particles is made of a conductive material. Examples of the material constituting the coating layer include silver, gold, nickel, copper, and palladium. The coating layer may be composed of any one or more of these. In addition, when electroconductive particle is comprised with a metal particle, electroconductive particle can be comprised with these materials. When the conductive particles are composed of metal particles, the metal constituting the conductive particles may be the same as the metal constituting the coating layer.
 導電性粒子の粒径(直径)は特に制限されないが、1~50μmであってもよく、好ましくは2~40μm、より好ましくは7~40μm、更により好ましくは10~30μmである。これはN=1000以上の個数平均であり、画像型粒度分布測定装置(FPIA-3000,マルバーン社)などで求めることができる。もしくは、フィルム状にした後で、観察画像からN=200以上で求めてもよい。この場合、本圧着時の加圧力が低くても、導電性粒子がより確実に第1の電極端子群と第2の電極端子群とをより確実に導通することができる。異方性導電フィルムの厚さは、対向する電子部品の端子高さの合計に近似するが、端子高さの合計に導電性粒子の粒径が近づくことで、接続時に排除される樹脂の量が相対的に少なくなり、使用できる樹脂の制約が少なくなるからである。導電性粒子の粒径は、第1の電子部品30及び第2の電子部品60のL/S(端子幅/端子間スペース)に応じて調整されてもよい。ここで、第1の電子部品30及び第2の電子部品60のL値は、例えば50~300μmであってもよく、S値は、例えば50~300μmであってもよい。そして、L/Sが50/50~100/100となる場合、導電性粒子の粒径は5μm程度であってもよい。L/Sが100/100~200/200となる場合、導電性粒子の粒径は10μm程度であってもよい。L/Sが200/200~300/300となる場合、導電性粒子の粒径は20μm程度であってもよい。また、導電性粒子の個数密度(個/mm)は100~3000個/mm程度であってもよく、個数密度もL/Sに応じて調整されてもよい。個数密度は、例えばL値が小さく、S値が大きければ高くしてもよい。端子幅が狭くなることから端子への捕捉性を高める必要があり、且つ端子間スペースが十分に大きければショート発生のリスクは低下するためである。そのため、粒子径も勘案して適宜設定すればよい。 The particle size (diameter) of the conductive particles is not particularly limited, but may be 1 to 50 μm, preferably 2 to 40 μm, more preferably 7 to 40 μm, and still more preferably 10 to 30 μm. This is a number average of N = 1000 or more, and can be obtained by an image type particle size distribution measuring apparatus (FPIA-3000, Malvern). Or after making into a film form, you may obtain | require by N = 200 or more from an observation image. In this case, even if the applied pressure at the time of the main pressure bonding is low, the conductive particles can more reliably conduct the first electrode terminal group and the second electrode terminal group. The thickness of the anisotropic conductive film approximates the sum of the terminal heights of the opposing electronic components, but the amount of resin eliminated during connection due to the particle size of the conductive particles approaching the sum of the terminal heights. This is because the amount of resin is relatively reduced and the restrictions on the resin that can be used are reduced. The particle size of the conductive particles may be adjusted according to L / S (terminal width / inter-terminal space) of the first electronic component 30 and the second electronic component 60. Here, the L value of the first electronic component 30 and the second electronic component 60 may be, for example, 50 to 300 μm, and the S value may be, for example, 50 to 300 μm. When L / S is 50/50 to 100/100, the particle diameter of the conductive particles may be about 5 μm. When L / S is 100/100 to 200/200, the particle size of the conductive particles may be about 10 μm. When L / S is 200/200 to 300/300, the particle size of the conductive particles may be about 20 μm. Further, the number density (number / mm 2 ) of the conductive particles may be about 100 to 3000 / mm 2 , and the number density may be adjusted according to L / S. The number density may be increased if the L value is small and the S value is large, for example. This is because, since the terminal width is narrowed, it is necessary to improve the capturing property to the terminals, and if the space between the terminals is sufficiently large, the risk of occurrence of a short circuit is reduced. Therefore, it may be set appropriately in consideration of the particle diameter.
 異方性導電フィルムの厚さ(接続前のペーストの厚さも同様である。ペーストについては後述する)は特に制限されないが、端子高さの合計(第1の電子部品30の端子高さと第2の電子部品60の端子高さの合計)によって定めることができる。異方性導電フィルムの厚さは、一例として10~50μmであればよい。また、厚さの下限は導電性粒子の粒径の1倍以上であることが好ましく、1.5倍以上であればより好ましい。相対的に樹脂の量が少なくなり、捕捉性が高まり、ショートリスクも低減されるからである。また、厚さの上限は粒径の8倍以下であることが好ましく、5倍以下であることがより好ましく、3倍以下であることが更により好ましく、2倍未満であることが更により好ましい。端子間に十分に樹脂が充填されることで、接着強度が高まる効果が期待できる。さらに、本圧着時の加圧力が低くても、導電性粒子がより確実に第1の電極端子群と第2の電極端子群とをより確実に導通することができる。なお、異方性導電フィルムの厚さは、単層でも多層でも、樹脂層の合計の厚さを指す。 The thickness of the anisotropic conductive film (the thickness of the paste before connection is the same. The paste will be described later) is not particularly limited, but the total of the terminal heights (the terminal height of the first electronic component 30 and the second height). The sum of the terminal heights of the electronic components 60) can be determined. For example, the thickness of the anisotropic conductive film may be 10 to 50 μm. Moreover, it is preferable that the minimum of thickness is 1 time or more of the particle size of electroconductive particle, and it is more preferable if it is 1.5 times or more. This is because the amount of the resin is relatively reduced, the trapping property is increased, and the short-circuit risk is also reduced. The upper limit of the thickness is preferably 8 times or less of the particle size, more preferably 5 times or less, still more preferably 3 times or less, and still more preferably less than 2 times. . The effect of increasing the adhesive strength can be expected by sufficiently filling the resin between the terminals. Furthermore, even if the applied pressure at the time of the main pressure bonding is low, the conductive particles can more reliably conduct the first electrode terminal group and the second electrode terminal group. Note that the thickness of the anisotropic conductive film refers to the total thickness of the resin layers, whether a single layer or multiple layers.
 また、異方性導電フィルム(もしくは接続前のペースト)は、単層であることが好ましい。生産性や接続時の工数を削減できるため、コスト削減の効果が期待できる。単層であることで、端子間に充填される樹脂層と、接続時に導電性粒子を不要に動かさないようにする高粘度層とを区分けする必要も生じないからである。また、異方性導電フィルムは長尺な形状を有していてもよい。この場合の長尺とは5m以上、好ましくは50m以上であり、長すぎると樹脂のはみ出し発生が懸念されたり、取り扱い性が困難になるため、5000m以下、好ましくは500m以下である。このような長尺な異方性導電フィルムから、適切な長さに切断して接続に使用してもよい。ここで、上述したように、本実施形態の異方性導電フィルムは非常に流動性が高いので、ペーストとして使用しても同様の効果が得られると考えられる。即ち、異方性導電ペーストを接続前にフィルム状に設けて(線状に押し出して)使用することもできる。尚、フィルム状に限定されるものではなく、点や線状で接続部に設けてもよい。この場合、第1の電子部品30と第2の電子部品60とを異方性導電ペーストにより異方性導電接続することになる。従って、第1の電子部品30と第2の電子部品60とを異方性導電ペーストにより異方性導電接続することも、本実施形態は包含する。このように、本実施形態では、異方性導電材料の形態は必ずしもフィルム状に限られず、ペースト状であってもよい。予めフィルム状にしている場合は、取り扱い性に優れ、ペースト状で使用する場合は、フィルム形成するコストが削減できる効果や、接続部の状態に合わせた形態で使用できる高い自由度が期待できる。これらは、接続に使用する設備等に応じて使い分けてもよい。尚、異方性導電材料が異方性導電ペーストとなる場合、膜形成樹脂は異方性導電ペーストのベース樹脂として機能する。 Further, the anisotropic conductive film (or the paste before connection) is preferably a single layer. Since productivity and connection man-hours can be reduced, an effect of cost reduction can be expected. This is because it is not necessary to separate the resin layer filled between the terminals and the high-viscosity layer that prevents the conductive particles from moving unnecessarily at the time of connection by being a single layer. The anisotropic conductive film may have a long shape. In this case, the long length is 5 m or more, preferably 50 m or more. If it is too long, there is a concern that the resin may protrude, and handling becomes difficult, and the length is 5000 m or less, preferably 500 m or less. Such a long anisotropic conductive film may be cut to an appropriate length and used for connection. Here, as described above, since the anisotropic conductive film of the present embodiment has very high fluidity, it is considered that the same effect can be obtained even when used as a paste. That is, the anisotropic conductive paste can be provided in a film form before being connected (extruded linearly). In addition, it is not limited to a film form, You may provide in a connection part by a point and a line form. In this case, the first electronic component 30 and the second electronic component 60 are anisotropically conductively connected by the anisotropic conductive paste. Therefore, the present embodiment includes the anisotropic conductive connection between the first electronic component 30 and the second electronic component 60 using the anisotropic conductive paste. Thus, in this embodiment, the form of the anisotropic conductive material is not necessarily limited to a film shape, and may be a paste shape. When it is made into a film in advance, it is excellent in handleability, and when it is used in the form of a paste, the effect of reducing the cost of film formation and a high degree of freedom that can be used in a form that matches the state of the connecting portion can be expected. These may be properly used according to the equipment used for connection. When the anisotropic conductive material is an anisotropic conductive paste, the film forming resin functions as a base resin for the anisotropic conductive paste.
 (1-2.仮圧着工程)
 ついで、第1の電子部品30上に異方性導電フィルム10を仮圧着する。具体的には、緩衝材を剥離フィルム20上に設置する。ついで、仮圧着用ツールヘッドを緩衝材に押し当てる。これにより、異方性導電フィルム10を第1の電子部品30に仮圧着する。
(1-2. Temporary crimping process)
Next, the anisotropic conductive film 10 is temporarily bonded onto the first electronic component 30. Specifically, a buffer material is placed on the release film 20. Next, the temporary pressure bonding tool head is pressed against the cushioning material. Thereby, the anisotropic conductive film 10 is temporarily press-bonded to the first electronic component 30.
 仮圧着時の加圧温度、加圧力は、例えば60~80℃、0.5MPa以上2MPa未満である。加圧時間は異方性導電フィルム10の材質等によって適宜調整されるが、少なくとも異方性導電フィルム10が第1の電子部品30上に固定される程度の値に設定される。 The pressurizing temperature and the applied pressure at the time of temporary pressing are, for example, 60 to 80 ° C. and 0.5 MPa or more and less than 2 MPa. The pressing time is appropriately adjusted depending on the material of the anisotropic conductive film 10 and the like, but is set to a value at least enough to fix the anisotropic conductive film 10 on the first electronic component 30.
 (1-3.本圧着工程)
 つぎに、本圧着を行う。まず、剥離フィルムを異方性導電フィルム10から引き剥がす。ついで、異方性導電フィルム10上に第2の電子部品60を積層する。より具体的には、第2の電子部品60上に形成された第2の電極端子群が異方性導電フィルム10に対向するように、異方性導電フィルム10上に第2の電子部品60を積層する。
(1-3. Final crimping process)
Next, this pressure bonding is performed. First, the release film is peeled off from the anisotropic conductive film 10. Next, the second electronic component 60 is laminated on the anisotropic conductive film 10. More specifically, the second electronic component 60 is formed on the anisotropic conductive film 10 such that the second electrode terminal group formed on the second electronic component 60 faces the anisotropic conductive film 10. Are laminated.
 ここで、第2の電子部品60の種類は特に問われないが、例えばフレキシブル基板であってもよい。フレキシブル基板を構成する材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルサルフォン、ポリエチレン、ポリカーボネート、ポリイミド、およびアクリル樹脂などの樹脂の他、薄膜化された金属またはガラス等が挙げられる。また、第2の電極端子群を構成する材料は特に問われず、第1の電極端子群と同様の材料で構成されてもよい。 Here, the type of the second electronic component 60 is not particularly limited, but may be a flexible substrate, for example. Examples of the material constituting the flexible substrate include thin-film metal or glass in addition to resins such as polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyethylene, polycarbonate, polyimide, and acrylic resin. Moreover, the material which comprises a 2nd electrode terminal group is not ask | required in particular, You may be comprised with the material similar to a 1st electrode terminal group.
 ついで、第2の電子部品60を異方性導電フィルム10に本圧着する。具体的には、緩衝材200aを第2の電子部品60上に設置する。ついで、本圧着用ツールヘッド400を緩衝材200aに押し当てることで、第2の電子部品60を異方性導電フィルム10上に本圧着する。本圧着時の加圧温度、加圧力は、異方性導電フィルム等の材質によって変動するが、例えば120~190℃、0.5MPa以上2MPa未満の範囲内で設定されてもよい。特に、第1の電子部品30がプラスチック基板となる場合、加圧温度、加圧力は上記範囲内でなるべく低いことが好ましい。例えば、加圧力は0.5MPa以上1MPa以下であることが好ましい。加圧時間は異方性導電フィルム10の材質等によって適宜調整されるが、少なくとも異方性導電フィルム10が流動、硬化する程度の値に設定される。本圧着により、異方性導電フィルム10が硬化し、図4に示すように異方性導電層10aとなる。すなわち、異方性導電接続構造体1が作製される。本実施形態では、本圧着時の加圧力を低下させることができるので、本圧着時の第1の電子部品30の変形を抑制することができる。その一方で、異方性導電フィルム10は、本圧着時の加圧力が低くても大きく流動するので、導電性粒子はより確実に第1の電子部品30と第2の電子部品60とを異方性導電接続することができる。なお、本圧着工程自体は、従来の本圧着装置によって行われればよい。 Next, the second electronic component 60 is finally bonded to the anisotropic conductive film 10. Specifically, the buffer material 200 a is installed on the second electronic component 60. Next, the second electronic component 60 is finally pressure-bonded onto the anisotropic conductive film 10 by pressing the main pressure-bonding tool head 400 against the buffer material 200a. The pressurizing temperature and the applied pressure during the main pressure bonding vary depending on the material such as the anisotropic conductive film, but may be set within a range of, for example, 120 to 190 ° C. and 0.5 MPa or more and less than 2 MPa. In particular, when the first electronic component 30 is a plastic substrate, the pressurization temperature and the applied pressure are preferably as low as possible within the above ranges. For example, the applied pressure is preferably 0.5 MPa or more and 1 MPa or less. The pressing time is appropriately adjusted depending on the material of the anisotropic conductive film 10 and the like, but is set to a value at least that allows the anisotropic conductive film 10 to flow and cure. By the main compression bonding, the anisotropic conductive film 10 is cured to become an anisotropic conductive layer 10a as shown in FIG. That is, the anisotropic conductive connection structure 1 is produced. In the present embodiment, the pressurizing force at the time of the main pressure bonding can be reduced, so that the deformation of the first electronic component 30 at the time of the main pressure bonding can be suppressed. On the other hand, the anisotropic conductive film 10 flows greatly even if the pressure applied during the main press bonding is low, so that the conductive particles more reliably differ between the first electronic component 30 and the second electronic component 60. An isotropic conductive connection can be made. The main crimping process itself may be performed by a conventional main crimping apparatus.
 このように、本実施形態では、異方性導電接続時の加圧力、すなわち仮圧着時の加圧力および本圧着時の加圧力をいずれも2MPa未満とするので、第1の電子部品30の変形、電極端子群の損傷を抑制することができる。 As described above, in this embodiment, the applied pressure at the anisotropic conductive connection, that is, the applied pressure at the time of temporary press-bonding and the pressurized pressure at the time of final press-bonding are both less than 2 MPa. Damage to the electrode terminal group can be suppressed.
 <2.異方性導電接続構造体>
 図2は、本実施形態によって作製された異方性導電接続構造体1の構造を示す。異方性導電接続構造体1は、第1の電子部品30と、光学樹脂層40と、第2の電子部品60と、異方性導電層10aと、第3の電子部品70とを備える。本実施形態によれば、第1の電子部品30の変形を抑制しつつ、第1の電子部品30と第2の電子部品60とをより確実に異方性導電接続することができる。第3の電子部品70が画像表示装置の基板となる場合、画像表示装置は、異方性導電接続構造体1を備えることとなる。
<2. Anisotropic Conductive Connection Structure>
FIG. 2 shows the structure of the anisotropic conductive connection structure 1 manufactured according to this embodiment. The anisotropic conductive connection structure 1 includes a first electronic component 30, an optical resin layer 40, a second electronic component 60, an anisotropic conductive layer 10a, and a third electronic component 70. According to the present embodiment, the first electronic component 30 and the second electronic component 60 can be more reliably anisotropically connected while suppressing deformation of the first electronic component 30. When the third electronic component 70 is a substrate of the image display device, the image display device includes the anisotropic conductive connection structure 1.
 <1.異方性導電フィルムの作製>
 次に、本実施形態の実施例について説明する。まず、以下の工程で試験例1~16に係る異方性導電フィルムを作製した。すなわち、フェノキシ樹脂であるYP-50、YP-70(いずれも新日鉄住金化学株式会社製)、ポリエステル樹脂であるバイロン200、バイロン220、バイロン600、バイロン802(いずれも東洋紡株式会社製)、2官能アクリレートモノマーであるDCP(新中村化学工業株式会社製)、ウレタンアクリレートであるM1600(東亞合成株式会社製)、ゴム成分であるSG80H(ナガセケムテックス株式会社製)、リン酸アクリレートであるP-1M(共栄社化学工業株式会社製)、過酸化物であるパーロイルL(日本油脂株式会社製)、導電性粒子(Au/Niメッキ被覆樹脂粒子、平均粒径(粒径の算術平均値)10μm、日本化学工業社製)を表1、表2に示す組成(各材料に対する数値は全固形分の総質量に対する質量%を示す)で混合することで、塗布液を作製した。導電性粒子の粒径は10μmであった。ついで、この塗布液を剥離フィルム上に乾燥後厚さが18μmとなるように塗布し、オーブンにて60℃、40分の条件で乾燥させた。この工程により、試験例1~16に係る異方性導電フィルムを得た。試験例1~16に係る異方性導電フィルムに含まれる導電性粒子の個数密度を以下の方法で求めた。すなわち、異方性導電フィルムを金属顕微鏡で観察することで得た画像を、画像解析ソフトWinROOF(三谷商事(株)社製)を用いて解析することで、導電性粒子の個数密度を求めた。この結果、いずれの異方性導電フィルムにおいても、個数密度は概ね500~800個/mm程度であった。
<1. Production of anisotropic conductive film>
Next, examples of the present embodiment will be described. First, anisotropic conductive films according to Test Examples 1 to 16 were produced by the following steps. That is, phenoxy resins YP-50 and YP-70 (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), polyester resins Byron 200, Byron 220, Byron 600, Byron 802 (all manufactured by Toyobo Co., Ltd.), bifunctional DCP (manufactured by Shin-Nakamura Chemical Co., Ltd.) as an acrylate monomer, M1600 (manufactured by Toagosei Co., Ltd.) as a urethane acrylate, SG80H (manufactured by Nagase ChemteX Corporation) as a rubber component, and P-1M as a phosphoric acid acrylate (Manufactured by Kyoeisha Chemical Industry Co., Ltd.), Perroyl L (manufactured by Nippon Oil & Fats Co., Ltd.), conductive particles (Au / Ni plating coated resin particles, average particle size (arithmetic mean value of particle size) 10 μm, Japan Chemical Industries) shown in Tables 1 and 2 (the values for each material are relative to the total mass of the total solids) By mixing with shows the mass%), to prepare a coating solution. The particle size of the conductive particles was 10 μm. Next, this coating solution was applied onto a release film so as to have a thickness of 18 μm after drying, and dried in an oven at 60 ° C. for 40 minutes. Through this step, anisotropic conductive films according to Test Examples 1 to 16 were obtained. The number density of conductive particles contained in the anisotropic conductive films according to Test Examples 1 to 16 was determined by the following method. That is, the number density of conductive particles was determined by analyzing an image obtained by observing the anisotropic conductive film with a metal microscope using image analysis software WinROOF (manufactured by Mitani Corporation). . As a result, in any of the anisotropic conductive films, the number density was about 500 to 800 pieces / mm 2 .
 <2.最低溶融粘度の測定>
 作成した異方性導電フィルムの最低溶融粘度を測定した。まず異方性導電フィルムを重ね合わせて厚さ300μmの積層シートを作成した。ついで、溶融粘度計(Thermo Fisher Scientific社製)に積層シートをセットした。そして、昇温速度10℃/min、周波数1Hz、加圧力1N、測定温度範囲30~180℃の条件で溶融粘度計を駆動することで、異方性導電フィルムの最低溶融粘度を測定した。また、重量平均分子量(Mw)はゲル浸透クロマトグラフィー法(GPC)により測定し、ガラス転移点は示差熱走査分析法(DSC)で測定した。ここで、前記GPCにおいては、重量平均分子量(Mw)をスチレン換算値で求めた。
 また、前記DSCにおいては、
  測定装置:Q100、ティー・エイ・インスツルメント社製
  測定試料:5mg(アルミパン)
  測定温度範囲:30℃~250℃
  昇温速度:10℃/分間
 の条件で昇温してガラス転移点を測定した。測定結果を表1、表2にまとめて示す。
<2. Measurement of minimum melt viscosity>
The minimum melt viscosity of the produced anisotropic conductive film was measured. First, a laminated sheet having a thickness of 300 μm was prepared by overlaying anisotropic conductive films. Next, the laminated sheet was set on a melt viscometer (manufactured by Thermo Fisher Scientific). Then, the minimum melt viscosity of the anisotropic conductive film was measured by driving the melt viscometer under the conditions of a temperature rising rate of 10 ° C./min, a frequency of 1 Hz, a pressure of 1 N, and a measurement temperature range of 30 to 180 ° C. The weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC), and the glass transition point was measured by differential thermal scanning analysis (DSC). Here, in the said GPC, the weight average molecular weight (Mw) was calculated | required by the styrene conversion value.
In the DSC,
Measuring device: Q100, manufactured by TA Instruments Inc. Measuring sample: 5 mg (aluminum pan)
Measurement temperature range: 30 ° C-250 ° C
Temperature rising rate: The glass transition point was measured by heating at 10 ° C./min. The measurement results are summarized in Tables 1 and 2.
 <3.異方性導電接続構造体の作製>
 第1の電子部品30として、ITOパターンガラスを用意した。このITOパターンガラスには、ITOからなる電極端子が200μmピッチ(L/S=100/100)で形成されている。また、ガラス部分の厚さは0.7μmであった。
<3. Production of anisotropic conductive connection structure>
An ITO pattern glass was prepared as the first electronic component 30. In this ITO pattern glass, electrode terminals made of ITO are formed at a pitch of 200 μm (L / S = 100/100). Moreover, the thickness of the glass part was 0.7 micrometer.
 また、第2の電子部品として、ポリイミド製のフレキシブル基板を準備した。フレキシブル基板の厚さは25μmであった。また、このフレキシブル基板には、金めっきされた銅箔からなる電極端子が上述のITOパターンガラスと同様に電極端子が200μmピッチ(L/S=100/100)で形成されていた。 Also, a flexible substrate made of polyimide was prepared as the second electronic component. The thickness of the flexible substrate was 25 μm. In addition, on this flexible substrate, electrode terminals made of gold-plated copper foil were formed at a pitch of 200 μm (L / S = 100/100) in the same manner as the ITO pattern glass described above.
 ついで、第1の電子部品30上に異方性導電フィルムを仮圧着した。仮圧着時の加圧力は1MPa、加圧温度は45℃、加圧時間は2秒とした。ついで、異方性導電フィルムから剥離フィルムを引き剥がし、異方性導電フィルムと第2の電子部品60とを本圧着した。本圧着時の加圧力は表1、表2に示す値とし、加圧温度は130℃、加圧時間は10秒とした。以上の工程により、異方性導電接続構造体を得た。 Next, an anisotropic conductive film was temporarily pressure-bonded on the first electronic component 30. The applied pressure at the time of pre-bonding was 1 MPa, the pressing temperature was 45 ° C., and the pressing time was 2 seconds. Next, the release film was peeled off from the anisotropic conductive film, and the anisotropic conductive film and the second electronic component 60 were finally pressure bonded. The pressurizing force at the time of the main pressure bonding was set to the values shown in Tables 1 and 2, the pressurizing temperature was 130 ° C., and the pressurizing time was 10 seconds. Through the above steps, an anisotropic conductive connection structure was obtained.
 <4.異方性導電接続構造体の評価>
 異方性導電接続構造体の接続抵抗をデジタルマルチメーター(商品名:デジタルマルチメーター7561、横河電機社製)で測定した。接続抵抗が1Ω以上となる場合には接続抵抗の評価をB(不良)とし、1Ω未満となる場合には、接続抵抗の評価をA(良好)とした。
<4. Evaluation of anisotropic conductive connection structure>
The connection resistance of the anisotropic conductive connection structure was measured with a digital multimeter (trade name: Digital Multimeter 7561, manufactured by Yokogawa Electric Corporation). When the connection resistance was 1Ω or more, the connection resistance was evaluated as B (defect), and when it was less than 1Ω, the connection resistance was evaluated as A (good).
 <5.評価>
 試験例1~6、11~16に係る異方性導電フィルムは、本実施形態の要件を満たす。このため、本圧着時の加圧力を0.5MPa、1MPaとしても接続抵抗が良好であった。一方、試験例7~10に係る異方性導電フィルムは、本実施形態の要件を満たさない。このため、本圧着時の加圧力が1MPaとなる場合、接続抵抗が不良となった。一方、加圧力が2MPaとなる場合、全ての試験例で接続抵抗が良好となったが、第1の電子部品30がプラスチック基板となる場合、この加圧力では第1の電子部品30が大きく変形してしまう可能性がある。
<5. Evaluation>
The anisotropic conductive films according to Test Examples 1 to 6 and 11 to 16 satisfy the requirements of this embodiment. For this reason, the connection resistance was good even when the applied pressure during the main pressure bonding was 0.5 MPa and 1 MPa. On the other hand, the anisotropic conductive films according to Test Examples 7 to 10 do not satisfy the requirements of this embodiment. For this reason, when the applied pressure at the time of the main pressure bonding is 1 MPa, the connection resistance is poor. On the other hand, when the applied pressure is 2 MPa, the connection resistance is good in all the test examples. However, when the first electronic component 30 is a plastic substrate, the first electronic component 30 is greatly deformed by this applied pressure. There is a possibility that.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
  第1の電子部品30として、プラスチック基板(PET)を用意した。このプラスチック基板には、ITOからなる電極端子が200μmピッチ(L/S=100/100)で形成されている。このプラスチック基板を用いて試験例1~6と同様の試験を行ったところ、試験例1~6と同様の結果が得られた。 A plastic substrate (PET) was prepared as the first electronic component 30. On this plastic substrate, electrode terminals made of ITO are formed at a pitch of 200 μm (L / S = 100/100). When the same test as in Test Examples 1 to 6 was performed using this plastic substrate, the same results as in Test Examples 1 to 6 were obtained.
 また、導電性粒子をAu/Niメッキ被覆樹脂粒子(平均粒径5μm、日本化学工業社製)に変更し、L/Sを50/50とした他は試験例1~6と同様の試験を行ったところ、試験例1~6と同様の結果が得られた。導電性粒子をAu/Niメッキ被覆樹脂粒子(平均粒径20μm、日本化学工業社製)に変更し、L/Sを300/300とした他は試験例1~6と同様の試験を行ったところ、試験例1~6と同様の結果が得られた。上記の全ての試験例で接続構造体のピール強度を測定した。ピール強度は、引張試験機(商品名:テンシロン、エーアンドディー社製)を用いて測定した。具体的には、1cm幅に切断した接続構造体を水平に載置した後、90度の角度で引っ張った際に、接続構造体が剥離した引張強度(ピール強度)を測定した。この結果、全ての試験例でピール強度が6N/cm以上となった。これは、実用上問題ない値である。 In addition, the same test as in Test Examples 1 to 6 was conducted except that the conductive particles were changed to Au / Ni plating coated resin particles (average particle size 5 μm, manufactured by Nippon Chemical Industry Co., Ltd.) and L / S was 50/50. As a result, the same results as in Test Examples 1 to 6 were obtained. The same tests as in Test Examples 1 to 6 were conducted except that the conductive particles were changed to Au / Ni plating coated resin particles (average particle size 20 μm, manufactured by Nippon Chemical Industry Co., Ltd.) and L / S was changed to 300/300. However, the same results as in Test Examples 1 to 6 were obtained. The peel strength of the connection structure was measured in all the above test examples. The peel strength was measured using a tensile tester (trade name: Tensilon, manufactured by A & D). Specifically, after placing the connection structure cut to a width of 1 cm horizontally, the tensile strength (peel strength) at which the connection structure peeled when it was pulled at an angle of 90 degrees was measured. As a result, the peel strength was 6 N / cm or more in all the test examples. This is a value that causes no problem in practical use.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
  1   異方性導電接続構造体
 10   異方性導電フィルム(異方性導電ペースト)
 20   剥離フィルム
 30   第1の電子部品
 40   光学樹脂層
 60   第2の電子部品
 70   第3の電子部品
 
1 Anisotropic conductive connection structure 10 Anisotropic conductive film (anisotropic conductive paste)
20 Release film 30 First electronic component 40 Optical resin layer 60 Second electronic component 70 Third electronic component

Claims (21)

  1.  第1の電子部品と、
     第2の電子部品と、
     前記第1の電子部品と前記第2の電子部品とを異方性導電接続する異方性導電層と、を備え、
     前記異方性導電層は、重量平均分子量55000未満であり、かつガラス転移点が70℃未満である膜形成樹脂を含み、最低溶融粘度が7000Pa・S以下である、異方性導電接続構造体。
    A first electronic component;
    A second electronic component;
    An anisotropic conductive layer that anisotropically conductively connects the first electronic component and the second electronic component,
    The anisotropic conductive layer includes a film-forming resin having a weight average molecular weight of less than 55000 and a glass transition point of less than 70 ° C., and an anisotropic conductive connection structure having a minimum melt viscosity of 7000 Pa · S or less. .
  2.  前記異方性導電層の最低溶融粘度は4000Pa・S以上である、請求項1記載の異方性導電接続構造体。 The anisotropic conductive connection structure according to claim 1, wherein the anisotropic melt layer has a minimum melt viscosity of 4000 Pa · S or more.
  3.  前記膜形成樹脂は、ポリエステル樹脂である、請求項1または2に記載の異方性導電接続構造体。 The anisotropic conductive connection structure according to claim 1 or 2, wherein the film-forming resin is a polyester resin.
  4.  前記異方性導電層は、前記第1の電子部品と前記第2の電子部品とを異方性導電接続するための導電性粒子を含み、
     前記導電性粒子は、金属被覆樹脂粒子である、請求項1~3の何れか1項に記載の異方性導電接続構造体。
    The anisotropic conductive layer includes conductive particles for anisotropically conductively connecting the first electronic component and the second electronic component,
    The anisotropic conductive connection structure according to any one of claims 1 to 3, wherein the conductive particles are metal-coated resin particles.
  5.  前記金属被覆樹脂粒子の粒径は、10μm以上である、請求項4記載の異方性導電接続構造体。 The anisotropic conductive connection structure according to claim 4, wherein the particle diameter of the metal-coated resin particles is 10 μm or more.
  6.  前記第1の電子部品は、プラスチック基板である、請求項1~5の何れか1項に記載の異方性導電接続構造体。 The anisotropic conductive connection structure according to any one of claims 1 to 5, wherein the first electronic component is a plastic substrate.
  7.  前記第1の電子部品は、タッチパネル用の透明配線を有した基板である、請求項6記載の異方性導電接続構造体。 The anisotropic conductive connection structure according to claim 6, wherein the first electronic component is a substrate having a transparent wiring for a touch panel.
  8.  前記第1の電子部品は、光学樹脂層を介して第3の電子部品上に積層されている、請求項1~7の何れか1項に記載の異方性導電接続構造体。 The anisotropic conductive connection structure according to any one of claims 1 to 7, wherein the first electronic component is laminated on the third electronic component via an optical resin layer.
  9.  前記第3の電子部品は、画像表示装置用の基板である、請求項8記載の異方性導電接続構造体。 The anisotropic conductive connection structure according to claim 8, wherein the third electronic component is a substrate for an image display device.
  10.  請求項1~9の何れか1項に記載の異方性導電接続構造体を備えた、画像表示装置。 An image display device comprising the anisotropic conductive connection structure according to any one of claims 1 to 9.
  11.  請求項1~9の何れか1項に記載の異方性導電接続構造体の製造方法であって、
     異方性導電フィルムを用いて前記第1の電子部品と前記第2の電子部品とを異方性導電接続する工程を含み、
     前記異方性導電フィルムは、重量平均分子量55000未満であり、かつガラス転移点が70℃未満である膜形成樹脂を含み、最低溶融粘度が7000Pa・S以下である、異方性導電接続構造体の製造方法。
    A method for producing an anisotropic conductive connection structure according to any one of claims 1 to 9,
    Including anisotropic conductive connection between the first electronic component and the second electronic component using an anisotropic conductive film,
    The anisotropic conductive film includes a film-forming resin having a weight average molecular weight of less than 55000, a glass transition point of less than 70 ° C., and a minimum melt viscosity of 7000 Pa · S or less. Manufacturing method.
  12.  前記異方性導電フィルムの最低溶融粘度は4000Pa・S以上である、請求項11記載の異方性導電接続構造体の製造方法。 The method for producing an anisotropic conductive connection structure according to claim 11, wherein the minimum melt viscosity of the anisotropic conductive film is 4000 Pa · S or more.
  13.  前記異方性導電フィルムは、前記第1の電子部品と前記第2の電子部品とを異方性導電接続するための導電性粒子を含み、
     前記異方性導電フィルムの厚さは、前記導電性粒子の粒径の2倍未満である、請求項11または12に記載の異方性導電接続構造体の製造方法。
    The anisotropic conductive film includes conductive particles for anisotropically conductively connecting the first electronic component and the second electronic component,
    The method for producing an anisotropic conductive connection structure according to claim 11 or 12, wherein the thickness of the anisotropic conductive film is less than twice the particle size of the conductive particles.
  14.  前記導電性粒子は、金属被覆樹脂粒子である、請求項13記載の異方性導電接続構造体の製造方法。 The method for producing an anisotropic conductive connection structure according to claim 13, wherein the conductive particles are metal-coated resin particles.
  15.  前記異方性導電接続時の加圧力が2MPa未満である、請求項11~14の何れか1項に記載の異方性導電接続構造体の製造方法。 The method for producing an anisotropic conductive connection structure according to any one of claims 11 to 14, wherein the applied pressure during the anisotropic conductive connection is less than 2 MPa.
  16.  請求項11~15の何れか1項に記載の異方性導電接続構造体の製造方法に使用される異方性導電フィルムであって、
     前記異方性導電フィルムは、重量平均分子量55000未満であり、かつガラス転移点が70℃未満である膜形成樹脂を含み、最低溶融粘度が7000Pa・S以下である、異方性導電フィルム。
    An anisotropic conductive film used in the method for producing an anisotropic conductive connection structure according to any one of claims 11 to 15,
    The anisotropic conductive film includes a film-forming resin having a weight average molecular weight of less than 55000, a glass transition point of less than 70 ° C., and a minimum melt viscosity of 7000 Pa · S or less.
  17.  前記異方性導電フィルムの最低溶融粘度は4000Pa・S以上である、請求項16記載の異方性導電フィルム。 The anisotropic conductive film according to claim 16, wherein the anisotropic melt film has a minimum melt viscosity of 4000 Pa · S or more.
  18.  プラスチック基板と電子部品との異方性導電接続に使用される異方性導電フィルムであって、
     前記異方性導電フィルムは、重量平均分子量55000未満であり、かつガラス転移点が70℃未満である膜形成樹脂を含み、最低溶融粘度が7000Pa・S以下である、異方性導電フィルム。
    An anisotropic conductive film used for anisotropic conductive connection between a plastic substrate and an electronic component,
    The anisotropic conductive film includes a film-forming resin having a weight average molecular weight of less than 55000, a glass transition point of less than 70 ° C., and a minimum melt viscosity of 7000 Pa · S or less.
  19.  前記異方性導電フィルムの最低溶融粘度は4000Pa・S以上である、請求項18記載の異方性導電フィルム。 The anisotropic conductive film according to claim 18, wherein the anisotropic melt film has a minimum melt viscosity of 4000 Pa · S or more.
  20.  第1の電子部品と第2の電子部品との異方性導電接続に使用される異方性導電ペーストであって、
     前記異方性導電ペーストは、重量平均分子量55000未満であり、かつガラス転移点が70℃未満であるベース樹脂を含み、最低溶融粘度が7000Pa・S以下である、異方性導電ペースト。
    An anisotropic conductive paste used for anisotropic conductive connection between a first electronic component and a second electronic component,
    The anisotropic conductive paste includes a base resin having a weight average molecular weight of less than 55000, a glass transition point of less than 70 ° C., and a minimum melt viscosity of 7000 Pa · S or less.
  21.  前記異方性導電ペーストの最低溶融粘度は4000Pa・S以上である、請求項20記載の異方性導電ペースト。
     
    The anisotropic conductive paste according to claim 20, wherein a minimum melt viscosity of the anisotropic conductive paste is 4000 Pa · S or more.
PCT/JP2018/003448 2017-02-15 2018-02-01 Anisotropic conductive connection structure body, production method for anisotropic conductive connection structure body, anisotropic conductive film, and anisotropic conductive paste WO2018150897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017026025 2017-02-15
JP2017-026025 2017-02-15

Publications (1)

Publication Number Publication Date
WO2018150897A1 true WO2018150897A1 (en) 2018-08-23

Family

ID=63169276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003448 WO2018150897A1 (en) 2017-02-15 2018-02-01 Anisotropic conductive connection structure body, production method for anisotropic conductive connection structure body, anisotropic conductive film, and anisotropic conductive paste

Country Status (3)

Country Link
JP (1) JP2018133331A (en)
TW (1) TW201834858A (en)
WO (1) WO2018150897A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022019451A (en) * 2020-07-17 2022-01-27 京都エレックス株式会社 Conductive adhesive composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040542A (en) * 1998-07-23 2000-02-08 Sharp Corp Anisotropic conductive film and electrode connection structure using it
JP2010199527A (en) * 2009-03-31 2010-09-09 Sony Chemical & Information Device Corp Junction element and method for manufacturing the same
JP2013055331A (en) * 2011-08-05 2013-03-21 Sekisui Chem Co Ltd Manufacturing method of connection structure
JP2014046622A (en) * 2012-08-31 2014-03-17 Dexerials Corp Transparent conductive body, input device and electronic apparatus
JP2014078479A (en) * 2012-09-24 2014-05-01 Tamura Seisakusho Co Ltd Anisotropic conductive paste and printed wiring board using the same
JP2014102943A (en) * 2012-11-19 2014-06-05 Dexerials Corp Anisotropic conductive film, connection method and joined body
JP2016082070A (en) * 2014-10-16 2016-05-16 デクセリアルズ株式会社 Method of manufacturing connection body, connection method of electronic component, connection body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11224976A (en) * 1998-02-05 1999-08-17 Matsushita Electric Ind Co Ltd Wiring board
JP6024235B2 (en) * 2011-08-30 2016-11-09 日立化成株式会社 Adhesive composition and circuit connection structure
JP2013199525A (en) * 2012-03-23 2013-10-03 Dic Corp Copolyester resin and resin composition
KR20150059376A (en) * 2013-11-22 2015-06-01 삼성전기주식회사 Touch sensor module and manufacturing method thereof
JP2016072097A (en) * 2014-09-30 2016-05-09 デクセリアルズ株式会社 Connection method, conjugate and touch panel device
JP2016170330A (en) * 2015-03-13 2016-09-23 富士ゼロックス株式会社 Image forming method, image forming apparatus, liquid developer cartridge, and liquid developer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040542A (en) * 1998-07-23 2000-02-08 Sharp Corp Anisotropic conductive film and electrode connection structure using it
JP2010199527A (en) * 2009-03-31 2010-09-09 Sony Chemical & Information Device Corp Junction element and method for manufacturing the same
JP2013055331A (en) * 2011-08-05 2013-03-21 Sekisui Chem Co Ltd Manufacturing method of connection structure
JP2014046622A (en) * 2012-08-31 2014-03-17 Dexerials Corp Transparent conductive body, input device and electronic apparatus
JP2014078479A (en) * 2012-09-24 2014-05-01 Tamura Seisakusho Co Ltd Anisotropic conductive paste and printed wiring board using the same
JP2014102943A (en) * 2012-11-19 2014-06-05 Dexerials Corp Anisotropic conductive film, connection method and joined body
JP2016082070A (en) * 2014-10-16 2016-05-16 デクセリアルズ株式会社 Method of manufacturing connection body, connection method of electronic component, connection body

Also Published As

Publication number Publication date
JP2018133331A (en) 2018-08-23
TW201834858A (en) 2018-10-01

Similar Documents

Publication Publication Date Title
TWI540048B (en) Anisotropic conductive film, joined structure and connecting method
JP5690637B2 (en) Anisotropic conductive film, connection method and connection structure
JP5685473B2 (en) Anisotropic conductive film, method for manufacturing bonded body, and bonded body
KR101886909B1 (en) Anisotropic conductive connection material, connection structure, manufacturing method and connection method for connection structure
JP6169347B2 (en) Anisotropic conductive film and semiconductor device with improved pre-bonding processability
JP2009283606A (en) Connection structure of wiring member, and connection method of wiring member
KR20140064651A (en) Anisotropic conductive film, connecting method, and joined structure
KR20120106789A (en) Anisotropic conductive film, united object, and process for producing united object
JP2013182823A (en) Manufacturing method of connection body and anisotropic conductive adhesive
JP5608426B2 (en) Method for manufacturing anisotropic conductive film
JP5654289B2 (en) Manufacturing method of mounting body, mounting body, and anisotropic conductive film
JP5816456B2 (en) Anisotropic conductive connection material, film laminate, connection method and connection structure
WO2018150897A1 (en) Anisotropic conductive connection structure body, production method for anisotropic conductive connection structure body, anisotropic conductive film, and anisotropic conductive paste
JP2010251336A (en) Anisotropic conductive film and method for manufacturing connection structure using the same
JP6505423B2 (en) Method of manufacturing mounting body, and anisotropic conductive film
JP6639079B2 (en) Anisotropic conductive material
JP6654954B2 (en) Anisotropic conductive connection structure
WO2020071271A1 (en) Anisotropic conductive film, connection structure, and method for manufacturing connection structure
JP2016173982A (en) Anisotropic conductive film
KR102524175B1 (en) Manufacturing method of connection structure and connection film
JP6483958B2 (en) Conductive film and connection structure
JP6431572B2 (en) Connection film, connection film manufacturing method, connection structure, connection structure manufacturing method, and connection method
JP2018093055A (en) Temporarily crimping method of anisotropic conductive film, temporarily crimping device of anisotropic conductive film, and anisotropic conductive connection structure
JP6177642B2 (en) Connection film, connection structure, method for manufacturing connection structure, connection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754796

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754796

Country of ref document: EP

Kind code of ref document: A1