WO2022166617A1 - 可穿戴设备及佩戴状态检测方法 - Google Patents

可穿戴设备及佩戴状态检测方法 Download PDF

Info

Publication number
WO2022166617A1
WO2022166617A1 PCT/CN2022/073187 CN2022073187W WO2022166617A1 WO 2022166617 A1 WO2022166617 A1 WO 2022166617A1 CN 2022073187 W CN2022073187 W CN 2022073187W WO 2022166617 A1 WO2022166617 A1 WO 2022166617A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wearable device
sensor
wearing state
wearing
Prior art date
Application number
PCT/CN2022/073187
Other languages
English (en)
French (fr)
Inventor
刘雪莲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22748896.2A priority Critical patent/EP4278969A4/en
Priority to US18/264,132 priority patent/US20240090784A1/en
Publication of WO2022166617A1 publication Critical patent/WO2022166617A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0017Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system transmitting optical signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • A61B5/02433Details of sensor for infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6844Monitoring or controlling distance between sensor and tissue
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G17/00Structural details; Housings
    • G04G17/02Component assemblies
    • G04G17/04Mounting of electronic components
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G21/00Input or output devices integrated in time-pieces
    • G04G21/02Detectors of external physical values, e.g. temperature
    • G04G21/025Detectors of external physical values, e.g. temperature for measuring physiological data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/332Portable devices specially adapted therefor

Definitions

  • the present application relates to the technical field of electronic devices, and in particular, to a wearable device that supports wearing detection.
  • IR infrared
  • PD photodiode
  • a capacitive sensor is added to realize wearing detection.
  • the IR light source and PD module solution used to measure the heart rate are used to realize the wearing detection function. In the non-wearing state, the material cannot be accurately distinguished, and the wearing state will be misjudged in the loose wearing state, which becomes a key factor affecting the user experience.
  • the embodiments of the present application provide a wearable device and a wearing state detection method, which do not significantly increase the power consumption of the system, and can effectively detect the wearing state of the wearable device, so as to improve the accuracy of measurement of physiological data such as heart rate.
  • a wearable device comprising: a first light transmitter for transmitting light of at least one color; a first light sensor for receiving light of the at least one color; a second light an emitter, the second light emitter is a vertical cavity surface laser emitter (VCSEL) light-emitting element, used for sending laser light; a second light sensor, used for detecting the laser light sent by the second light emitter; a processor, connected with the first light transmitter, the first light sensor, the second light transmitter and the second light sensor, according to the light detected by the first light sensor and the second light sensor
  • the signal determines the wearing state of the wearable device, and the wearing state reflects whether the user has worn the wearable device and the tightness of the wearing, which solves the problems of high misrecognition rate of loose wearing state, high power consumption and high power consumption in the past. , so as to further optimize the experience of measuring physiological data such as heart rate, blood pressure, and electrocardiogram of wearable devices, and improve the accuracy of measurement.
  • the wearable device includes at least one second light emitter and at least four second light sensors, and the at least four second light sensors are uniform around the second light emitter
  • the second light sensor is arranged between the second light emitter and the first light sensor.
  • At least four second light sensors are evenly arranged around the second light emitter, which can cover at least laser detection in four directions of up, down, left, and right, and improve the accuracy of wearing state detection.
  • the wearable device includes four first light sensors, and the four first light sensors are arranged in a one-to-one correspondence with four of the at least four second light sensors.
  • This setting can detect the laser light leaking in four directions, up, down, left, and right, to determine which direction is looser to wear, and to improve the accuracy of wearing state detection.
  • the wearable device includes eight of the first light sensors and four of the second light sensors, and the first light sensors surround the second light emitter and the first light sensor.
  • the two light sensors are evenly arranged, and four of the eight first light sensors are arranged in a one-to-one correspondence with the four second light sensors. This setting can more comprehensively detect the laser leaking in eight directions, finely judge the tightness of the wearing, and improve the accuracy of the wearing state detection.
  • the processor determines that the wearable device has a The wearing state is comfortable wearing; when the number of first light sensors that receive the laser is ⁇ 1, and the number of second light sensors that receive the laser is ⁇ 1, the processor determines the wearing state of the wearable device For loose wear.
  • the processor determines that the wearable device has The wearing state is comfortable wearing; when the number of first light sensors that receive the laser is ⁇ 1, and the number of second light sensors that receive the laser is ⁇ 1, the processor determines the wearing state of the wearable device For loose wear.
  • the wearable device further includes a display screen, configured to display the wearing state determined by the processor, so that the user can view and understand the wearing state of the wearable device.
  • the wearable device further includes a prompter for prompting the user when the wearing state of the wearable device is loose.
  • the wearable device includes a capacitance sensor, and the capacitance sensor is used to detect the contact capacitance and send the detected capacitance value to the processor; the processor according to the first The light signal detected by the light sensor and the second light sensor, and the capacitance value determine the wearing state of the wearable device.
  • the VCSEL reflection feature detection is mainly enabled in loose wearing scenarios, which will not significantly increase the power consumption of the system.
  • the first light transmitter is used for sending infrared light; the first light sensor is used for detecting the reflected infrared light, and sending the detected infrared light signal to the processor ; the processor determines the wearable device according to the laser signal detected by the first light sensor and the second light sensor, the infrared light signal detected by the first light sensor and the capacitance value wearing status.
  • the IR reflection feature is used to first detect whether the user is wearing a wearable device, and then use the VCSEL to detect the tightness of the wearable device.
  • the VCSEL reflection feature detection is mainly enabled in loose wearing scenarios without significantly increasing the power consumption of the system.
  • the first optical transmitter and the first optical sensor multiplex the optical transmitter and the optical sensor in the PPG module, and the second optical transmitter is located in the center of the PPG module.
  • a light shielding wall is arranged between the light sensor and the first light emitter, so as to prevent light leakage and prevent light from interfering with each other.
  • a second aspect provides a wearing state detection method, the method is applied to the wearable device of the first aspect, the method includes: a second optical transmitter sending laser light, and the second optical transmitter is a vertical cavity surface A light-emitting element of a laser transmitter; a first light sensor and a second light sensor detect the reflected laser light; determine the wearable device according to the laser signals detected by the first light sensor and the second light sensor wearing state.
  • the wearing state of the user can be judged more accurately, thereby improving the accuracy of detecting physiological data such as heart rate, blood pressure, and electrocardiogram.
  • the method before the second optical transmitter transmits the laser light, the method further includes: the first optical transmitter transmits infrared light; the first optical sensor receives the infrared light; according to the The infrared light signal received by the first light sensor determines the wearing state of the wearable device; when the wearing state of the wearable device is worn, the second light transmitter sends laser light; the first The optical sensor and the second optical sensor detect the reflected laser light; the wearing state of the wearable device is determined according to the laser signals detected by the first optical sensor and the second optical sensor.
  • the IR reflection feature is used to detect whether the user is wearing a wearable device, and then the VCSEL is used to detect the wearing tightness.
  • the VCSEL reflection feature detection is mainly enabled in the loose wearing scenario, and the power consumption of the system will not be significantly increased.
  • the wearable device includes a capacitive sensor, and the capacitive sensor is used to detect contact capacitance; before the second light transmitter sends laser light, the method further includes: according to the capacitive sensor The detected contact capacitance determines the wearing state of the wearable device; when the wearing state of the wearable device is worn, the second light transmitter sends laser light; the first light sensor and the second light sensor The optical sensor detects the reflected laser light; the wearing state of the wearable device is determined according to the laser signals detected by the first optical sensor and the second optical sensor.
  • the capacitive sensor first detects whether the user is wearing the wearable device, and then uses the VCSEL to detect the wearing tightness.
  • the VCSEL reflection feature detection is mainly turned on in the loose wearing scenario, and the power consumption of the system will not be significantly increased.
  • determining the wearing state of the wearable device according to the laser signals detected by the first optical sensor and the second optical sensor specifically includes: when receiving the first light of the laser When the number of sensors is 0, and the number of the second light sensors that have received laser light is ⁇ 1, it is determined that the wearing state of the wearable device is comfortable wearing; when the number of first light sensors that have received the laser light is ⁇ 1, and When the number of second optical sensors that receive the laser light is greater than or equal to 1, it is determined that the wearing state of the wearable device is loose wearing.
  • determining the wearing state of the wearable device according to the laser signals detected by the first optical sensor and the second optical sensor specifically includes:
  • determining the wearing state of the wearable device according to the laser signals detected by the first light sensor and the second light sensor specifically includes: according to the first light signal that detects the laser light A number of light sensors and the number of the second light sensors that detect the laser light determine the wearing state of the wearable device; when the wearing state of the wearable device is not loosely worn, the first light sensor is further used to determine the wearing state of the wearable device.
  • the received infrared light signal, the contact capacitance detected by the capacitive sensor, the number of the first photosensors that detected the laser, and the number of the second photosensors that detected the laser determine the possible Wearing state of the wearable device.
  • the method when the wearing state of the wearable device is worn, the method further includes: a first light transmitter transmits light of at least one color; the first light sensor receives the at least one color of light; determining the wearing state of the wearable device according to the at least one color light signal received by the first light sensor.
  • the method further includes: when the wearing state of the wearable device is comfortable wearing, displaying the wearing state.
  • the method further includes: when the wearing state of the wearable device is loosely worn, displaying first prompt information, where the first prompt information is used to prompt the user that the current wearing is too loose.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method described in the second aspect above is implemented.
  • a computer program product comprising instructions which, when executed on a computer, cause the computer to perform the method described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a wearable device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a wristband provided by an embodiment of the present application.
  • FIG. 3 is a top view of an implementation manner of the smart watch provided by the embodiment of the present application.
  • FIG. 4 is a bottom view of an embodiment of the smart watch shown in FIG. 3;
  • 5A is a cross-sectional view of the smart watch shown in FIG. 4 comfortably worn at the rear edge A-A of the user's wrist;
  • 5B is a cross-sectional view of the smart watch shown in FIG. 4 loosely worn at the rear edge A-A of the user's wrist;
  • Fig. 6 is the enlarged schematic diagram of the structure at B in Fig. 5;
  • FIG. 7 is a bottom view of another embodiment of the smart watch shown in FIG. 3;
  • FIG. 8A is a cross-sectional view of the smart watch shown in FIG. 7 being comfortably worn at the rear edge C-C of the user's wrist;
  • FIG. 8B is a cross-sectional view of the smart watch shown in FIG. 7 loosely worn at the rear edge C-C of the user's wrist;
  • FIG. 9 is a schematic diagram of the structure of the wearing state detection system in the wristband shown in FIG. 2;
  • FIG. 10 is a schematic flowchart of a method for detecting a wearing state provided by an embodiment of the present application
  • 11A-11B are a set of interface schematic diagrams of the smart watch shown in FIG. 3;
  • connection should be understood in a broad sense.
  • connection may be a fixed connection, a detachable connection, or an integrated body; it may be directly connected, or Can be indirectly connected through an intermediary.
  • electrical connection may be a direct electrical connection or an indirect electrical connection through an intermediate medium.
  • wearable devices As the functions of wearable devices become more and more perfect, wearable devices have increasingly become one of the indispensable electronic devices for people.
  • the working mode of a wearable device in the wearing state and the non-wearing state is different. For example, when the wearable device is in the wearing state, all functions of the device can be supported, and when the wearable device is in the non-wearing state, all functions of the device can be supported.
  • some unnecessary applications may be closed to reduce the power consumption of the wearable device and prolong the standby time of the device. In this scenario, it is particularly important to identify whether the wearable device is in the wearing state or not.
  • the wear detection method adopted is usually to detect whether the wearable device is blocked by an object through the IR light source and PD module used to measure the heart rate.
  • the above-mentioned light source and PD module used for measuring heart rate are also called photoplethysmograph (PPG) module (hereinafter referred to as PPG module).
  • PPG module photoplethysmograph
  • the measurement principle of this method utilizes the reflection characteristics of light. When the front is blocked, the reflectivity of light is high. Specifically, the IR light source emits infrared light, and after being reflected by the skin, the reflected light is received by the PD, and then the wearable detection information is obtained through the processing and calculation of the processor of the wearable device.
  • the wearable device If it is detected that it is blocked by an object, it is considered that the wearable device is currently being worn. However, the above method recognizes that the wearable device is blocked by the object, which is not completely equivalent to the wearable device being worn. For example, when the user puts the wearable device on other objects, it is not worn, and the IR light source and The PD module recognizes that there is an object blocking it, then it will make a wrong judgment, which will also cause the wearable device to enter the working mode or open/close the application program according to the wearing state. That is to say, the above-mentioned wearing detection method cannot effectively distinguish human skin from the surface of objects made of other materials, resulting in a wrong judgment of wearing.
  • a capacitive sensor is combined to detect whether the wearable device is worn by the human body, which can effectively improve the accuracy of wearing detection.
  • Different substances have different dielectric constants, and the dielectric constant is one of the key factors determining the capacitance value of the parallel plate. Therefore, the capacitance value collected by the capacitive sensor can effectively distinguish most materials with different dielectric constants from the human body.
  • the dielectric constants of metals and the human body are not much different, so false wear detections can still occur on metals.
  • the optical reflection scheme has high requirements on the wearing posture of the wearable device. Even if the user wears the wearable device normally, if the wearing is loose, the light path is easily disturbed by the external ambient light in this loose wearing scene, which will also lead to misjudgment.
  • an embodiment of the present application provides a wearable device that supports wear detection, by adding a Vertical-Cavity Surface-Emitting Laser (VCSEL) and a corresponding light sensor, the corresponding light sensor It is used to detect the laser light emitted by the VCSEL, and judge whether the user wears the wearable device based on the number and position of the light sensors that detect the laser light. In some embodiments of the present application, whether the user is wearing a wearable device can be correctly determined only by the VCSEL and its surrounding light sensors.
  • VCSEL Vertical-Cavity Surface-Emitting Laser
  • the capacitive sensor or the existing PPG module can be further combined on the basis of the VCSEL and its surrounding light sensors, and the capacitive sensor or the existing PPG module can be used in the capacitive sensor or the existing PPG module. Based on the preliminary judgment that the user has worn the wearable device, turn on the VCSEL to further determine whether the user wears the wearable device comfortably or loosely.
  • the above-mentioned VCSEL light emitter (hereinafter referred to as the second light transmitter) and the light sensor (hereinafter referred to as the second light sensor) are placed in the middle of the PPG module, and the original light sensor (hereinafter referred to as the first light sensor) of the PPG module is laid out. around the light source (hereinafter referred to as the first light emitter).
  • the wearable device provided by this application can be a smart watch, a smart bracelet, etc., which can be worn on the wrist by a user to detect physiological data such as the user's electrocardiogram, blood pressure, blood oxygen saturation, and electrocardiogram.
  • FIG. 1 is a schematic structural diagram of a wearable device according to an embodiment of the present application.
  • the wearable device 100 includes a processor 110 , a memory 120 , a PPG module 140 and a capacitive sensor 160
  • the PPG module 140 includes a light transmitter 141 and a light sensor 142
  • the processor 110 , the memory 120 , the PPG module Group 140 and capacitive sensor 160 may be connected by a bus.
  • the light transmitter 141 and the light sensor 142 may respectively include one or more; the light transmitter 141 is used to transmit light or laser light of at least one color, wherein at least one of the light transmitters 141 is a VCSEL, used to transmit laser light , the remaining light transmitters 141 transmit light of one or more colors, such as red light, green light or infrared light; the light sensor 142 is used to detect the light or laser of the at least one color, and the light sensor 142 is connected with the processor 110 is coupled to send the detected light to the processor 110, for example, the light sensor 142 is connected to the processor 110 through a bus; the capacitive sensor 160 is used to detect the capacitance value, and determine whether the wearable device is worn on the human skin according to the capacitance value On the surface, the capacitance sensor 160 is coupled with the processor 110 to send the detected capacitance value to the processor 110, for example, the capacitance sensor 160 is connected with the processor 110 through a bus; the memory 120 is used to store programs and data; the
  • the wearable device 100 may further include a transceiver 130, and the transceiver is used to communicate with other electronic devices, and the other electronic devices include mobile phones or tablets.
  • the wearable device 100 may The determined wearing state is transmitted to other electronic devices through the transceiver 130 .
  • the wearable device 100 may further include a prompter 150, the prompter 150 is connected to the processor 110, and is used for generating prompt information according to the instruction of the processor, and the prompt information is used for Indicates the wearing status of the wearable device.
  • the prompter 150 can be a display, and the prompt information can prompt the user about the wearing state of the wearable device in the form of pictures and texts.
  • the prompter 150 can also be a speaker, and the prompt information can prompt the user about the wearing state of the wearable device in the form of audio.
  • the prompter 150 may be a buzzer, and the prompt information may prompt the user about the wearing state of the wearable device in the form of vibration.
  • the prompter 150 is used to prompt the user when the wearing state of the wearable device 100 is loose.
  • FIG. 2 is a schematic structural diagram of a wristband according to an embodiment of the present application.
  • the wristband 200 may include a processor 210, an external memory interface 220, an internal memory 221, a universal serial bus (USB) interface 230, a charge management module 240, a power management module 241, a battery 242, an antenna 1, an antenna 2 , mobile communication module 250, wireless communication module 260, audio module 270, speaker 270A, receiver 270B, microphone 270C, headphone jack 270D, sensor module 280, buttons 290, motor 291, indicator 292, camera 293, display screen 294, and Subscriber identification module (subscriber identification module, SIM) card interface 295 and so on.
  • the sensor module 280 may include a capacitive sensor 280G, a PPG sensor 280H, and the like.
  • the structures illustrated in the embodiments of the present application do not constitute a specific limitation on the wristband 200 .
  • the wristband 200 may include more or less components than those shown, or some components may be combined, or some components may be separated, or different component arrangements.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 210 may include one or more processing units, for example, the processor 210 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 210 for storing instructions and data.
  • the memory in processor 210 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 210 . If the processor 210 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided and the latency of the processor 110 is reduced, thereby increasing the efficiency of the system.
  • the USB interface 230 is an interface that conforms to the USB standard specification, and can specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 230 can be used to connect a charger to charge the wristband 200, and can also be used to transmit data between the wristband 200 and peripheral devices. It can also be used to connect headphones to play audio through the headphones.
  • the interface can also be used to connect other electronic devices, such as AR devices.
  • the charging management module 240 is used to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 240 may receive charging input from the wired charger through the USB interface 230 .
  • the charging management module 240 may receive wireless charging input through the wireless charging coil of the wristband 200 . While the charging management module 240 charges the battery 242 , the power management module 241 can also supply power to the electronic device.
  • the power management module 241 is used to connect the battery 242 , the charging management module 240 and the processor 210 .
  • the power management module 241 receives input from the battery 242 and/or the charging management module 240, and supplies power to the processor 210, the internal memory 221, the display screen 294, the camera 293, and the wireless communication module 260.
  • the power management module 241 can also be used to monitor parameters such as battery capacity, battery cycle times, battery health status (leakage, impedance).
  • the power management module 241 may also be provided in the processor 210 .
  • the power management module 241 and the charging management module 240 may also be provided in the same device.
  • the wireless communication function of the wristband 200 may be implemented by the antenna 1, the antenna 2, the mobile communication module 250, the wireless communication module 260, the modem processor, the baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed into a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 250 can provide a wireless communication solution including 2G/3G/4G/5G etc. applied on the wristband 200 .
  • the mobile communication module 250 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), and the like.
  • the mobile communication module 250 can receive electromagnetic waves from the antenna 1, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 250 can also amplify the signal modulated by the modulation and demodulation processor, and then convert it into electromagnetic waves for radiation through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 250 may be provided in the processor 210 .
  • at least part of the functional modules of the mobile communication module 250 may be provided in the same device as at least part of the modules of the processor 210 .
  • the wireless communication module 260 can provide wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), global navigation satellites applied on the wristband 200 Wireless communication solutions such as global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), and infrared technology (IR).
  • WLAN wireless local area networks
  • BT wireless fidelity
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the wireless communication module 260 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 260 receives electromagnetic waves via the antenna 2 , modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 210 .
  • the wireless communication module 260 can also receive the signal to be sent from the processor 210 , perform frequency modulation on the signal, amplify the signal, and then convert it into an electromagnetic wave for radiation through the antenna 2 .
  • the antenna 1 of the wristband 200 is coupled with the mobile communication module 250, and the antenna 2 is coupled with the wireless communication module 260, so that the wristband 200 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code Division Multiple Access (WCDMA), Time Division Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (global positioning system, GPS), global navigation satellite system (global navigation satellite system, GLONASS), Beidou navigation satellite system (beidou navigation satellite system, BDS), quasi-zenith satellite system (quasi satellite system) -zenith satellite system, QZSS) and/or satellite based augmentation systems (SBAS).
  • global positioning system global positioning system, GPS
  • global navigation satellite system global navigation satellite system, GLONASS
  • Beidou navigation satellite system beidou navigation satellite system, BDS
  • quasi-zenith satellite system quadsi satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the wristband 200 realizes the display function through the GPU, the display screen 194, and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 294 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 210 may include one or more GPUs that execute program instructions to generate or alter display information.
  • Display screen 294 is used to display images, videos, and the like.
  • Display screen 294 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light).
  • LED diode AMOLED
  • flexible light-emitting diode flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (quantum dot light emitting diodes, QLED) and so on.
  • wristband 200 may include 1 or N display screens 294, where N is a positive integer greater than 1.
  • prompt information such as wearing mode, wearing state, etc.
  • the detected physiological data such as heart rate can be displayed in visual (digital, tabular, graphic) or audible (synthetic speech or tone) form.
  • historical information As a non-limiting example, a visual graph may be displayed showing each time during a previous fixed time interval (eg, 1 hour) or after the exercise period has ended (as determined by his indication from the user). Heart rate calculated for 5 minutes. Average heart rate information or heart rate statistics during the previous period or periods of time may also be provided on the display screen 294 under the control of the processor 210 .
  • the current heart rate value may be provided on the display screen 294 as a "real time" heart rate value displayed to the user periodically (eg, every second) during the course of an ongoing exercise program.
  • the wristband 200 can realize the shooting function through the ISP, the camera 293, the video codec, the GPU, the display screen 294 and the application processor.
  • the ISP is used to process the data fed back by the camera 293 .
  • the shutter is opened, the light is transmitted to the camera photosensitive element through the lens, the light signal is converted into an electrical signal, and the camera photosensitive element transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin tone. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 293 .
  • Camera 293 is used to capture still images or video.
  • the object is projected through the lens to generate an optical image onto the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
  • the wristband 200 may include 1 or N cameras 293 , where N is a positive integer greater than 1.
  • a digital signal processor is used to process digital signals, in addition to processing digital image signals, it can also process other digital signals. For example, when the wristband 200 is selected at a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy, and the like.
  • Video codecs are used to compress or decompress digital video.
  • the wristband 200 may support one or more video codecs. In this way, the wristband 200 can play or record videos in various encoding formats, such as: Moving Picture Experts Group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4 and so on.
  • MPEG Moving Picture Experts Group
  • MPEG2 Moving picture experts group
  • MPEG3 Moving Picture Experts Group
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the wristband 200 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the external memory interface 220 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the wristband 200 .
  • the external memory card communicates with the processor 210 through the external memory interface 220 to realize the data storage function. For example, save music, video, etc. files in an external memory card.
  • Internal memory 221 may be used to store computer executable program code, which includes instructions.
  • the internal memory 221 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the wristband 200 and the like.
  • the internal memory 221 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the processor 210 executes various functional applications and data processing of the wristband 200 by executing the instructions stored in the internal memory 221 and/or the instructions stored in the memory provided in the processor.
  • the wristband 200 can implement audio functions through an audio module 270, a speaker 270A, a receiver 270B, a microphone 270C, an earphone interface 270D, and an application processor. Such as music playback, recording, etc.
  • the audio module 270 is used for converting digital audio information into analog audio signal output, and also for converting analog audio input into digital audio signal. Audio module 270 may also be used to encode and decode audio signals. In some embodiments, the audio module 270 may be provided in the processor 210 , or some functional modules of the audio module 270 may be provided in the processor 210 .
  • Speaker 270A also referred to as a "speaker" is used to convert audio electrical signals into sound signals.
  • the wristband 200 can listen to music through the speaker 270A, or listen to hands-free calls.
  • the receiver 270B also referred to as an "earpiece" is used to convert audio electrical signals into sound signals.
  • the wristband 200 answers a call or a voice message, the voice can be answered by placing the receiver 270B close to the human ear.
  • the microphone 270C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the user can make a sound by approaching the microphone 270C through the human mouth, and input the sound signal into the microphone 270C.
  • the wristband 200 may be provided with at least one microphone 270C.
  • the wristband 200 may be provided with two microphones 270C, which can implement a noise reduction function in addition to collecting sound signals.
  • the wristband 200 may be further provided with three, four or more microphones 270C to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions.
  • the headphone jack 270D is used to connect wired headphones.
  • the earphone interface 270D can be a USB interface 230, or a 3.5mm open mobile terminal platform (OMTP) standard interface, a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the capacitive sensor 280G includes a parallel-plate capacitor with two polar plates, one of which is disposed on the surface of the wristband 200, and the other plate can be disposed on a flexible printed circuit (FPC). After the polar plate disposed on the surface of the wristband 200 is in contact with the user's skin or objects of other materials, the capacitance sensor 280G can detect the change of the capacitance value, and judge whether the wristband 200 is worn according to the capacitance value. For example, it is detected whether the capacitance value of the capacitance sensor 280G is within the predetermined capacitance value range, and when the predetermined capacitance value is within the predetermined capacitance value range, it is determined that the wristband 200 is worn.
  • FPC flexible printed circuit
  • the capacitance value of the parallel plate capacitor is mainly determined by the plate area and the distance between the plates, the distance between the above two plates is relatively small. In order to obtain a larger capacitance input signal, it is generally considered to place the plate on the surface of the wristband 200 as much as possible. The area is designed to be large enough.
  • the PPG sensor 280H includes a light emitter and a light sensor.
  • the heart rate measurement by the PPG sensor 280H is based on the principle of light absorption by substances.
  • the light emitter in the PPG sensor 280H illuminates the blood vessels of the skin, and the light sensor receives the light penetrating from the skin. Since different volumes of blood in the blood vessels absorb light differently, when the heart beats, the blood flow increases, and the light absorption will increase accordingly; when the blood flow is in the gap between the heart beats, the absorbed light will also decrease. . Therefore, the heart rate can be measured from the absorbance of blood.
  • the light transmitter can transmit a light beam to the user's skin, and the light beam can be reflected by the user's skin and received by the light sensor.
  • a light sensor can convert this light into an electrical signal that indicates its intensity.
  • the electrical signal can be in analog form and can be converted to digital form by an analog-to-digital converter.
  • the digital signal from the analog-to-digital converter may be a time domain PPG signal fed to processor 210 .
  • the processor 210 may receive digitized signals from the light sensor and may process these signals to provide a heart rate or wearing status output signal to a memory, visual display, audible annunciator, touch screen, or other output indicator.
  • the PPG sensor 280H constitutes the aforementioned PPG module for measuring physiological data such as heart rate
  • the light transmitter for sending laser light can be set at the center of the PPG sensor 280H
  • the light sensor for detecting the reflected laser light can be set at the center of the PPG sensor 280H.
  • the above-mentioned light transmitter and light sensor for measuring physiological data such as heart rate are arranged at the periphery of the laser light sensor.
  • the wristband 200 may also be configured with other sensors such as a pressure sensor, a gyroscope, an acceleration sensor, an ambient light sensor, a barometer, a hygrometer, a thermometer, an infrared sensor, etc., which will not be repeated here.
  • sensors such as a pressure sensor, a gyroscope, an acceleration sensor, an ambient light sensor, a barometer, a hygrometer, a thermometer, an infrared sensor, etc., which will not be repeated here.
  • the keys 290 include a power-on key, a volume key, and the like. Keys 290 may be mechanical keys. Touch buttons are also possible.
  • the wristband 200 can receive key inputs and generate key signal inputs related to user settings and function control of the wristband 200 .
  • Motor 291 can generate vibrating cues.
  • the motor 291 can be used for vibrating alerts for incoming calls, and can also be used for touch vibration feedback.
  • touch operations acting on different applications can correspond to different vibration feedback effects.
  • the motor 291 can also correspond to different vibration feedback effects for touch operations on different areas of the display screen 294 .
  • Different application scenarios for example: time reminder, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 292 can be an indicator light, which can be used to indicate the charging status, the change of power, and can also be used to indicate messages, missed calls, notifications, and the like.
  • the SIM card interface 295 is used to connect a SIM card.
  • the SIM card can be contacted and separated from the wristband 200 by inserting into the SIM card interface 295 or pulling out from the SIM card interface 295 .
  • the wristband 200 can support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • the SIM card interface 295 can support Nano SIM card, Micro SIM card, SIM card and so on.
  • the same SIM card interface 295 can insert multiple cards at the same time.
  • the types of the plurality of cards may be the same or different.
  • the SIM card interface 295 can also be compatible with different types of SIM cards.
  • the SIM card interface 295 is also compatible with external memory cards.
  • the wristband 200 interacts with the network through the SIM card to realize functions such as call and data communication.
  • the wristband 200 employs an eSIM, ie: an embedded SIM card.
  • the eSIM card can be embedded in the wristband 200 and cannot be separated from the wristband 200 .
  • FIG. 3 is a schematic structural diagram of a smart watch according to an embodiment of the present application.
  • the smart watch 300 includes a dial 310 and a watch strap 320 .
  • the front of the dial 310 includes a display screen 311 for displaying information such as time, exercise status, wearer's body index or wearing status, and the like.
  • a light emitter and a light sensor are arranged on the back of the dial 310 .
  • the smart watch can be worn on the wrist through the strap 320, and at this time, the back of the dial 310 is in contact with the skin.
  • the smart watch includes one first light transmitter 410 and four first light sensors 420 .
  • the light-emitting elements of the first light emitter 410 include green LEDs 411 , red LEDs 412 and infrared LEDs 413 .
  • the light emitter 410 can transmit green light, red light and infrared light through green LED 411, red LED 412 and infrared LED 413, respectively.
  • the LED is only an example of a light-emitting element, and the LED may also be other light-emitting components such as a VCSEL.
  • One or more of green light, red light and infrared light may be transmitted toward the wrist through the first light emitter 410 .
  • the light sent by the light transmitter 410 is reflected by the wrist, and the reflected light is received by the first light sensor 420 .
  • the first light transmitter 410 and the first light sensor 420 described above constitute a PPG module of the smart watch, so as to detect physiological data such as heart rate and blood oxygen saturation of the user wearing the smart watch.
  • the smart watch further includes a second light emitter 430 and four second light sensors 440 .
  • the second light emitter 430 is a VCSEL light-emitting component, and is disposed at the center of the back of the dial.
  • the four second light sensors 440 are evenly arranged around the second light emitter 430, and each second light sensor 440 is arranged between the second light emitter 430 and the corresponding first light sensor 420.
  • the four first photosensors 420 and the four second photosensors 440 are respectively disposed in one-to-one correspondence in four directions of up, down, left, and right. As shown in FIG.
  • the plane on the back of the dial is parallel to the surface 500 in contact with the human body.
  • the VCSEL light-emitting component has the characteristics of perfect beam quality and small divergence angle, the beam 510 sent by the VCSEL , 520 after being reflected by the skin, the light is all reflected back to the second light sensor 440 around the VCSEL, see beams 530, 540 shown in FIG. 5A, thereby generating a photocurrent on the second light sensor 440 without light reflection A photocurrent is generated on the first light sensor 420; as shown in FIG.
  • the smart watch also includes a capacitive sensor 450 .
  • the capacitive sensor 450 can be designed as a single ring as shown in FIG. 4 , can also be designed as two symmetrical rings, and can also be designed into a rectangle or other shapes.
  • the capacitive sensor 450 is one of the parallel-plate capacitive plates, and the other plate can be disposed on a flexible circuit board (FPC). Since the capacitance value of the capacitive sensor 450 is mainly determined by the plate area and the distance between the plates, it is generally considered to design the area of the capacitive sensor 450 as large as possible.
  • the VCSEL reflection feature detection is mainly enabled in loose wearing scenarios, which will not significantly increase the power consumption of the system.
  • FIG. 6 is a partial enlarged schematic view of the structure at B in FIG. 5A , a light blocking wall 460 is provided between the second light sensor 440 and the first light emitter 410 , mainly to prevent light leakage.
  • a light blocking wall can also be provided between the second light emitter 430 and the second light sensor 440, and between the first light emitter 410 and the first light sensor 420, a light blocking wall can also be provided to prevent light from entering directly from the light source light sensor. It can be seen from FIG. 6 that the light beam emitted by the second light emitter 430 (VCSEL) has a small divergence angle (Field of View, FOV), usually 15°-20°.
  • FOV Field of View
  • the light beam emitted from the second light emitter 430 has good collimation, and when the user wears the smart watch comfortably, the light beam emitted from the second light emitter 430 (VCSEL) passes through the skin of the user's body. After the reflection, basically all of them enter the second light sensor 440 disposed around the second light emitter 430 , and will not enter the first light sensor 420 which is far from the second light emitter 430 .
  • the first light emitters are 6 monochromatic light emitters, and the number of the first light sensors is 8, which are evenly distributed on the back of the dial, so as to more accurately judge the wearing state of the smart watch.
  • the smart watch includes 6 first light emitters 710 and 8 first light sensors 720 .
  • Each of the first light emitters 710 includes a light-emitting element, which may be one of a green LED, a red LED, and an infrared LED.
  • the six light emitters 710 may include two green LEDs, two red LEDs, and two infrared LEDs, which are arranged at intervals and transmit green light, red light and infrared light respectively.
  • the number of the first light emitters 710 is greater than or equal to 6, which is not limited in this embodiment of the present application.
  • One or more of green light, red light and infrared light may be transmitted toward the wrist through the first light emitter 710 .
  • the reflected light after the light sent by the first light transmitter 710 is reflected by the wrist is received by the first light sensor 720 .
  • the above-mentioned first light transmitter 710 and first light sensor 720 constitute a PPG module of a smart watch to detect physiological data such as heart rate and blood oxygen saturation of a user wearing the smart watch.
  • the smart watch further includes one second light emitter 730 and four second light sensors 740 .
  • the second light emitter 730 is a VCSEL light-emitting component, which is arranged at the center of the back of the dial.
  • Four second light sensors 740 are evenly distributed around the second light emitter 730, between the second light emitter 730 and the first light emitter. between devices 710.
  • the first light sensors 720 are evenly arranged around the second light transmitter 730 , the second light sensor 740 and the first light transmitter 710 , and 4 and 4 of the 8 first light sensors 720
  • the second light sensors 740 are respectively arranged in a one-to-one correspondence in four directions of up, down, left, and right. As shown in Fig.
  • the plane on the back of the dial is parallel to the surface 500 in contact with the human body, because the VCSEL light-emitting component has the characteristics of perfect beam quality and small divergence angle, and the beam sent by the VCSEL passes through After the skin is reflected, all the light is reflected back to the second light sensor 740 around the VCSEL to generate photocurrent, and no light is reflected to the first light sensor 720 to generate photocurrent; as shown in FIG.
  • the back of the dial will form a certain angle a with the arm, which will cause the light beam sent by the VCSEL to be reflected by the skin and not only reflect on the second light sensor 740 around the VCSEL, but also reflect at the same time.
  • the first light sensor 720 by measuring the increased photocurrent in the first light sensor 720, it can be judged that the user's wearing posture is incorrect, and the user is reminded to wear it correctly, so as to improve the wearing experience, thereby improving the detection accuracy of heart rate, blood oxygen saturation, etc. sex.
  • the smart watch also includes a capacitive sensor 750 .
  • the capacitive sensor 750 can be designed as two symmetrical rings as shown in FIG. 7 , or can be designed as a single ring, a rectangle or other shapes, and its function and function are the same as those of the capacitive sensor 450 shown in FIG. 4 , here No longer.
  • the number of the second light sensors 740 may be greater than or equal to 4, for example, 5, 6, as long as the light information of the second light emitter 730 can be covered and detected in four directions of up, down, left, right, and so on.
  • the number of settings can accurately detect the comfortable wearing state and avoid misjudgment of the state caused by shaking.
  • FIG. 8A in a comfortable wearing state (the back of the dial corresponding to the PPG module is in contact with the skin, that is, in zero-distance contact), the back of the dial on which the light emitter and the light sensor are installed is parallel to the user's skin 500, and the first light The distance of the transmitter 710 from the skin 500 is d1.
  • the distance d1 may include the thickness of the PPG sensor module itself, or the overall thickness of the PPG sensor module after adding a light-transmitting lens.
  • the distance d1 of the first light emitter 710 from the skin 500 is 1.45mm
  • the divergence angle FOV of the second light emitter 730 is 17°
  • the wavelength is 850nm
  • d2 0.22mm.
  • the second light sensor 740 is very close to the second light transmitter 730, and the device structure composed of the second light transmitter 730 and the second light sensor 740 is relatively compact, and the wearable device will not be increased when the PPG module is reused. volume, keeping the wearable device thin and light.
  • the number of the first optical sensors 720 mainly depends on the accuracy requirements of the physiological data detection scheme such as heart rate and blood oxygen saturation.
  • One light sensor it can be understood that, in order to more accurately detect the laser light leaking from all directions, the number of first light sensors can also be increased, and 8 first light sensors can be arranged as shown in FIG. 7 . Therefore, in this embodiment of the present application, in order to detect the light emitted by the VCSEL when it is loosely worn, the number of the first optical sensors 720 is ⁇ 4, which may be 4 or 8, such as the implementation shown in FIG. 4 and FIG. 7 . example.
  • FIG. 9 is a schematic structural diagram of a system for detecting a wearing state in a wristband shown in FIG. 2
  • FIG. 10 is a schematic flowchart of a method for detecting a wearing state according to an embodiment of the present application.
  • the wearing state detection method can be applied to a wearable device having the structure of a light emitter, a light sensor, and a capacitive sensor arranged in FIG. 4 or FIG. 7 , and the wearable device has a wearing state detection system architecture as shown in FIG. 9 .
  • the method specifically includes the following steps:
  • wearing judgment is performed by detecting the reflectivity of the IR light.
  • the IR light can be multiplexed with light emitters in the PPG module, such as the first light emitter 410 including infrared LEDs 413 shown in FIG. 4 , and the first light emitter 410 including infrared LEDs shown in FIG. 7 A light transmitter 710.
  • the above infrared LEDs are in a normally-on state, and the reflected signals of infrared light are collected at predetermined time intervals. When the front of the infrared LEDs is blocked, the reflectivity of the light increases.
  • the PPG sensor 280H receives the drive signal sent by the processor 210, drives the infrared LED to emit light, and the infrared light is received by a light sensor such as a photodiode after being reflected by the skin, and the reflected infrared light signal is input to the processor 210.
  • the processor 210 performs signal amplification, analog-to-digital conversion and other processing through an analog front end (AFE), and then the DSP processes and calculates the reflectivity of infrared light according to a relevant algorithm, thereby judging whether the user wears the wearable device.
  • AFE analog front end
  • step S1012 is further executed; if the judgment result obtained by the processor operation is No, that is, the IR judgment is used If it is found that the wearable device is not currently worn by the user, step S1022 is executed, and a judgment result of "not worn” is output.
  • a prompt message of "not wearing” is displayed on a user interface (User Interface, UI) of the display screen of the wearable device.
  • the IR light can not reuse the light emitter in the PPG module, but the infrared light emitter and infrared light sensor set independently in the wearable device, as long as the change of the infrared light reflectivity can be detected. Can.
  • a capacitance sensor is used to measure the change in capacitance value after the wearable device is in contact with the user.
  • the capacitive sensor may be capacitive sensor 450 as shown in FIG. 4 , or capacitive sensor 750 as shown in FIG. 7 .
  • the above capacitive sensor is in the normally-on state. It can be seen from FIG. 9 that the capacitive sensor 280G collects the capacitive signal according to the preset sampling frequency, and sends the detected capacitive signal to the processor.
  • the processor uses the preset capacitance value or capacitance value range. As a criterion for judging whether the wearable device is in a worn state.
  • step S1014 is further executed; if the judgment result of the processor is no, that is to say, the wearable device is judged through capacitance. If it is not currently worn by the user, step S1022 is executed, and a judgment result of "not worn” is output. Optionally, a prompt message of "not wearing” is displayed on the user interface (User Interface, UI) of the display screen of the wearable device.
  • UI User Interface
  • the processor sends a drive signal to start the PPG module, such as the second light emission shown in FIG. 4 .
  • the second light emitter above is a VCSEL light-emitting component.
  • the PPG sensor 280H emits laser light after starting, detects the photocurrent signal in the first light sensor and the second light sensor, and sends the photocurrent signal to the processor.
  • step S1024 is further executed; if the judgment result obtained by the processor operation is No, that is, through If the VCSEL detects and determines that the wearable device is not in a loose wearing state, step S1016 is executed.
  • the wearing state of the wearable device can be set in various situations according to actual needs.
  • the wearing state includes at least loose wearing and comfortable wearing.
  • the wearing state of the wearable device is loose. Wearing; when the number of second light sensors that receive laser light is greater than or equal to 2, and the number of first light sensors that receive laser light is 0, the wearing state of the wearable device is comfortable wearing.
  • the algorithm threshold for comfortable wearing can be lowered.
  • the wearing state may further include wearing too tight, not wearing, wearing and so on.
  • the wearing state may also include correct wearing and incorrect wearing, and the like.
  • steps S1010 , S1012 , and S1014 can be selected to be executed, and the execution order thereof can also be changed accordingly.
  • steps S1010 and S1012 may not be performed, and the wearing state can be judged only according to the VCSEL, including various wearing states such as worn, not worn, loosely worn, and comfortable to wear.
  • S1014 may be performed only after step S1010 is performed, or step S1010 may not be performed, and S1014 may be performed only after step S1012 is performed.
  • the elastic wearing judgment can also be obtained based on the capacitive sensor wearing detection and the VCSEL elastic wearing judgment.
  • the wearing and non-wearing detection is performed first, and then the tightness of the wearing is judged according to the VCSEL.
  • the power consumption required to only turn on the VCSEL light-emitting element to detect all wearing states will be higher, but the detection The results will also be more accurate.
  • the processor can also use the wear judgment results of the above steps to judge the wearing state of the wearable device through a fusion algorithm, for example, it can be Different weighting coefficients are set for the detected VCSEL reflection characteristics, IR light reflectivity and contact capacitance, and the final wearing state is determined by multiplying these three detection results by their weighting coefficients.
  • step S1018 is executed; if the result of the fusion judgment by the processor is no, that is to say , the wearable device is not currently worn by the user, step S1022 is executed, and a judgment result of "not worn” is output.
  • liveness detection may also be performed to ensure that the wearable device is worn by the user.
  • liveness detection may also be performed to ensure that the wearable device is worn by the user.
  • the green light will be partially absorbed when irradiated on the material, and the reflected green light can be detected by the light sensor to determine whether the material is a living body.
  • the reflected light signal detected by the light sensor can be processed to obtain a direct current (DC) component and an alternating current (AC) component.
  • DC direct current
  • AC alternating current
  • step S1020 is executed; if the result of the living body detection is no, then step S1022 is executed.
  • step S1018 is an optional and additional step for further improving the wearing detection accuracy.
  • the processor determines that the current wearing state is comfortable wearing.
  • step S1018 the processor judges which wearing state the wearable device is currently in according to one or more of the detection results in the aforementioned S1010, S1012, S1014, S1016 and S1018, and obtains the judgment result as Comfortable to wear.
  • the processor determines that the current wearing state is not wearing.
  • step S1010 If the IR wearing judgment result in step S1010 is NO, or the capacitive sensor wearing judgment result in step S1012 is NO, or the judgment result of the fusion judgment by the IR, capacitive sensor and VCSEL wearing judgment results in step S1016 is NO, or the living body in step 1018 If the detection result is no, the processor judges which wearing state the wearable device is currently in according to one or more of the foregoing detection results in S1010, S1012, S1016, and S1018, and obtains a judgment result of not being worn.
  • the processor determines that the current wearing state is loose wearing.
  • step S1014 If the judging result of the loose wearing of the VCSEL in step S1014 is yes, the processor obtains, according to the judgment result, that the current wearing state of the wearable device is loosely worn.
  • the processor may output the judgment results obtained in the above S1020-S1024 to the display screen, and the user may know the current wearing state by viewing the display screen.
  • the following description will be given by taking the wearing state including three states of not wearing, comfortable wearing and loose wearing as an example.
  • a prompt can be generated when the wearing state is abnormal. It can be prompted in the form of pictures and texts, for example, in the form of system notifications, or in the interface of applications such as heart rate measurement and exercise measurement.
  • the wearing status does not meet the regulations. For example, as shown in Figure 11A, when the wearing status is too loose, you can The display screen of the wearable device shows the wearing status of the text information "The current wearing is too loose, please keep wearing comfortably 1101", and further, after receiving the user's instruction, it can also display the correct wearing instruction video or instruction graphics.
  • the state of the wristband does not meet the regulations, it can also be vibrated, for example, a buzzer can be used to vibrate.
  • a voice prompt can also be provided, for example, a voice prompt is performed through a speaker.
  • a voice prompt is performed through a speaker.
  • the wearing state of the wearable device After determining the wearing state of the wearable device, when the wearing state is normal, you can directly detect physiological data such as heart rate, blood pressure, blood oxygen saturation, and electrocardiogram, and display the wearing state and the detected values of physiological parameters on the display screen of the wearable device. superior. It can be prompted in the form of pictures and texts, for example, in the form of system notifications, or in the interface of applications such as heart rate measurement, exercise measurement, etc. to provide compliance with the wearing status and physiological detection values, such as shown in Figure 11B, when the wearing status is normal , the text information can be displayed on the display screen of the wearable device "wearing state: comfortable wearing” 1102, and the detected physiological data values "resting heart rate: 65 beats/min” 1103, "blood pressure: 60/90mmHg” 1104.
  • physiological data such as heart rate, blood pressure, blood oxygen saturation, and electrocardiogram
  • a voice prompt can also be provided, for example, a voice prompt is performed through a speaker.
  • the above embodiments of the present invention may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable medium to another computer-readable medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state drives), and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pulmonology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种可穿戴设备(100),包括第一光发射器(410),用于发送至少一种颜色的光;第一光传感器(420),用于接收至少一种颜色的光;用于发送激光的第二光发射器(430),可以是垂直腔面激光发射器发光元件;第二光传感器(440),用于检测第二光发射器(430)发送的激光;处理器(210),与第一光发射器(410)、第一光传感器(420)、第二光发射器(430)和第二光传感器(440)连接,根据第一光传感器(420)和第二光传感器(440)检测到的光信号确定可穿戴设备(100)的佩戴状态。上述可穿戴设备(100)能够检测用户佩戴的松紧程度,并在佩戴过松的情况下提醒用户保持舒适佩戴。

Description

可穿戴设备及佩戴状态检测方法
本申请要求在2021年2月4日提交中国国家知识产权局、申请号为202110156315.5的中国专利申请的优先权,发明名称为“可穿戴设备及佩戴状态检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种支持佩戴检测的可穿戴设备。
背景技术
目前的很多可穿戴设备均支持佩戴检测功能。可穿戴设备的佩戴检测主要有两种方式,一种是采用测量心率所使用的红外线(Infra-red,IR)光源及光电二极管(Photo-Diode,PD)模组进行佩戴检测,二是在第一种方式所采用的IR光源及PD模组的基础上增加电容传感器来实现佩戴检测。其中,采用测量心率所使用的IR光源及PD模组方案实现佩戴检测功能,非佩戴状态下无法准确区分材质,松佩戴状态下会发生佩戴状态误判,成为影响用户体验的关键因素。而进一步增加电容传感器实现佩戴检测功能,虽然可以有效提升非佩戴状态下的材质区分准确度,但是对于部分介电常数和人体接近的材质以及松佩戴状态下的佩戴体验并无明显提升,且可穿戴设备体积较小,堆叠空间受限,电容传感器很容易受寄生电容的影响,以上都成为影响用户体验的关键因素。
随着用户对可穿戴设备上测量心率、血压、心电图等体验的要求逐步提高,低功耗、高可靠性的佩戴检测方案日益成为用户的主要需求。
发明内容
本申请实施例提供一种可穿戴设备及佩戴状态检测方法,不会显著增加***的功耗,可以有效检测可穿戴设备的佩戴状态,以提升心率等生理数据测量的准确度。
为了实现上述目的,本申请实施方式采用如下技术方案:
第一方面,提供了一种可穿戴设备,包括:第一光发射器,用于发送至少一种颜色的光;第一光传感器,用于接收所述至少一种颜色的光;第二光发射器,所述第二光发射器为垂直腔面激光发射器(VCSEL)发光元件,用于发送激光;第二光传感器,用于检测所述第二光发射器发送的激光;处理器,与所述第一光发射器、所述第一光传感器、所述第二光发射器和所述第二光传感器连接,根据所述第一光传感器和所述第二光传感器检测到的光信号确定所述可穿戴设备的佩戴状态,该佩戴状态反映出用户是否已佩戴可穿戴设备以及佩戴的松紧程度,解决了以往松佩戴状态误识别率高、电容易受环境影响、功耗高等问题,从而进一步优化可穿戴设备的心率、血压、心电图等生理数据测量的体验,提升测量的准确度。
作为一种可选实施例,所述可穿戴设备包括至少一个第二光发射器和至少四个所述第二光传感器,至少四个所述第二光传感器围绕所述第二光发射器均匀设置,所述第二光传感器设置于所述第二光发射器和所述第一光传感器之间。在第二光发射器周围均匀设置至少四个第二光传感器,能够至少覆盖上下左右四个方向上的激光检测,提升佩戴状态检测的准确性。
作为一种可选实施例,所述可穿戴设备包括四个所述第一光传感器,四个所述第一光传感器与至少四个所述第二光传感器中的四个一一对应设置。如此设置,能够对上下左右四个 方向上漏出的激光进行检测,判断哪个方向佩戴较松,提升佩戴状态检测的准确性。
作为一种可选实施例,所述可穿戴设备包括八个所述第一光传感器和四个所述第二光传感器,所述第一光传感器围绕所述第二光发射器和所述第二光传感器均匀设置,八个所述第一光传感器中的四个与四个所述第二光传感器一一对应设置。如此设置,可以更加全面检测八个方向上漏出的激光,精细判断佩戴松紧度,提升佩戴状态检测的准确性。
作为一种可选实施例,当接收到所述激光的第一光传感器数量为0,且接收到激光的所述第二光传感器数量≥1时,所述处理器确定所述可穿戴设备的佩戴状态为舒适佩戴;当接收到所述激光的第一光传感器数量≥1,且接收到所述激光的第二光传感器数量≥1时,所述处理器确定所述可穿戴设备的佩戴状态为松佩戴。
作为一种可选实施例,当接收到的所述激光第一光传感器数量为0,且接收到激光的所述第二光传感器数量≥2时,所述处理器确定所述可穿戴设备的佩戴状态为舒适佩戴;当接收到所述激光的第一光传感器数量≥1,且接收到所述激光的第二光传感器数量≥1时,所述处理器确定所述可穿戴设备的佩戴状态为松佩戴。
作为一种可选实施例,所述可穿戴设备还包括显示屏,用于显示所述处理器所确定的所述佩戴状态,以便用户查看和了解可穿戴设备的佩戴状态。
作为一种可选实施例,所述可穿戴设备还包括提示器,用于当所述可穿戴设备佩戴状态为松佩戴时提示用户。
作为一种可选实施例,所述可穿戴设备包括电容传感器,所述电容传感器用于检测接触电容,并将检测到的电容值发送至所述处理器;所述处理器根据所述第一光传感器和所述第二光传感器检测到的光信号,以及所述电容值确定所述可穿戴设备的佩戴状态。通过增加电容传感器先检测用户是否佩戴可穿戴设备,在佩戴后再通过VCSEL检测佩戴松紧度,实现VCSEL反射特征检测主要在松佩戴场景开启,这样不会显著增加***的功耗。
作为一种可选实施例,所述第一光发射器用于发送红外光;所述第一光传感器用于检测经反射后的红外光,并将检测到的红外光信号发送给所述处理器;所述处理器根据所述第一光传感器和所述第二光传感器检测到的激光信号,所述第一光传感器检测到的所述红外光信号以及所述电容值确定所述可穿戴设备的佩戴状态。通过I R反射特征先检测用户是否佩戴可穿戴设备,在佩戴后再通过VCSEL检测佩戴松紧度,实现VCSEL反射特征检测主要在松佩戴场景开启,不会显著增加***的功耗。
作为一种可选实施例,所述第一光发射器和第一光传感器复用PPG模组中的光发射器和光传感器,所述第二光发射器位于所述PPG模组中心。利用已有的PPG模组进行光的发送和检测,可以减少制造成本和节约堆叠空间。
作为一种可选实施例,在所述第一光发射器和所述第一光传感器之间,所述第二光发射器和所述第二光发射器之间和/或所述第二光传感器和所述第一光发射器之间设置遮光挡墙,从而防止漏光,避免光线相互干扰。
第二方面,提供了一种佩戴状态检测方法,所述方法应用于第一方面的可穿戴设备,所述方法包括:第二光发射器发送激光,所述第二光发射器为垂直腔面激光发射器发光元件;第一光传感器和第二光传感器检测经反射后的所述激光;根据所述第一光传感器和所述第二光传感器检测到的激光信号确定所述可穿戴设备的佩戴状态。通过测量第一光传感器和第二光传感器上增加的光电流,可以更加准确地判断用户佩戴状态,进而提升心率、血压、心电等生理数据检测的准确性。
作为一种可选实施例,在所述第二光发射器发送激光之前,所述方法还包括:第一光发 射器发送红外光;所述第一光传感器接收所述红外光;根据所述第一光传感器接收到的所述红外光信号确定所述可穿戴设备的佩戴状态;当所述可穿戴设备的佩戴状态为已佩戴时,所述第二光发射器发送激光;所述第一光传感器和所述第二光传感器检测经反射后的所述激光;根据所述第一光传感器和所述第二光传感器检测到的激光信号确定所述可穿戴设备的佩戴状态。此时,通过IR反射特征先检测用户是否佩戴可穿戴设备,在佩戴后再通过VCSEL检测佩戴松紧度,实现VCSEL反射特征检测主要在松佩戴场景开启,不会显著增加***的功耗。
作为一种可选实施例,所述可穿戴设备包括电容传感器,所述电容传感器用于检测接触电容;在所述第二光发射器发送激光之前,所述方法还包括:根据所述电容传感器检测到的接触电容确定所述可穿戴设备的佩戴状态;当所述可穿戴设备的佩戴状态为已佩戴时,所述第二光发射器发送激光;所述第一光传感器和所述第二光传感器检测经反射后的所述激光;根据所述第一光传感器和所述第二光传感器检测到的激光信号确定所述可穿戴设备的佩戴状态。此时,通过电容传感器先检测用户是否佩戴可穿戴设备,在佩戴后再通过VCSEL检测佩戴松紧度,实现VCSEL反射特征检测主要在松佩戴场景开启,不会显著增加***的功耗。
作为一种可选实施例,根据所述第一光传感器和所述第二光传感器检测到的激光信号确定所述可穿戴设备的佩戴状态,具体包括:当接收到所述激光的第一光传感器数量为0,且接收到激光的所述第二光传感器数量≥1时,确定所述可穿戴设备的佩戴状态为舒适佩戴;当接收到所述激光的第一光传感器数量≥1,且接收到所述激光的第二光传感器数量≥1时,确定所述可穿戴设备的佩戴状态为松佩戴。
作为一种可选实施例,根据所述第一光传感器和所述第二光传感器检测到的激光信号确定所述可穿戴设备的佩戴状态,具体包括:
当接收到所述激光的第一光传感器数量为0,且接收到激光的所述第二光传感器数量≥2时,确定所述可穿戴设备的佩戴状态为舒适佩戴;当接收到所述激光的第一光传感器数量≥1,且接收到所述激光的第二光传感器数量≥1时,确定所述可穿戴设备的佩戴状态为松佩戴。
作为一种可选实施例,根据所述第一光传感器和所述第二光传感器检测到的激光信号确定所述可穿戴设备的佩戴状态,具体包括:根据检测到所述激光的所述第一光传感器数量、检测到所述激光的所述第二光传感器数量确定所述可穿戴设备的佩戴状态;当所述可穿戴设备的佩戴状态不是松佩戴时,进一步根据所述第一光传感器接收到的所述红外光信号、所述电容传感器检测到的接触电容、检测到所述激光的所述第一光传感器数量以及检测到所述激光的所述第二光传感器数量确定所述可穿戴设备的佩戴状态。通过接触电容、IR反射特征、VCSEL反射特征检测结果进行综合判断,能够进一步提升佩戴状态检测的准确性。
作为一种可选实施例,当所述可穿戴设备的佩戴状态是已佩戴时,所述方法还包括:第一光发射器发送至少一种颜色的光;所述第一光传感器接收所述至少一种颜色的光;根据所述第一光传感器接收到的至少一种颜色的光信号确定所述可穿戴设备的佩戴状态。通过增加活体检测,可以进一步提高佩戴状态判断的准确度。
作为一种可选实施例,所述方法还包括:当所述可穿戴设备的佩戴状态为舒适佩戴时,显示所述佩戴状态。
作为一种可选实施例,所述方法还包括:当所述可穿戴设备的佩戴状态为松佩戴时,显示第一提示信息,所述第一提示信息用于提示用户当前佩戴过松。
第三方面,提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述第二方面中所述的方法。
第四方面,提供了一种包含指令的计算机程序产品,当计算机程序产品的指令在计算机 上运行时,使得计算机执行上述第二方面中所述的方法。
附图说明
图1是本申请实施例提供的一种可穿戴设备的结构示意图;
图2是本申请实施例提供的一种腕带的结构示意图;
图3是本申请实施例提供的智能手表的一种实施方式的俯视图;
图4是图3所示智能手表的一种实施方式的仰视图;
图5A是图4所示智能手表舒适佩戴于用户腕部后沿A-A处的剖视图;
图5B是图4所示智能手表松佩戴于用户腕部后沿A-A处的剖视图;
图6是图5中B处结构的放大示意图;
图7是图3所示智能手表的另一种实施方式的仰视图;
图8A是图7所示智能手表舒适佩戴于用户腕部后沿C-C处的剖视图;
图8B是图7所示智能手表松佩戴于用户腕部后沿C-C处的剖视图;
图9是图2所示的腕带内佩戴状态检测***架构示意图;
图10是本申请实施例提供的一种佩戴状态检测方法流程示意图;
图11A-11B是图3所示智能手表的一组界面示意图;
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
以下,术语“第一”、“第二”等仅用于描述方便,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本申请实施例中,“上”、“下”、“左”以及“右”不限于相对附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语可以是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件附图所放置的方位的变化而相应地发生变化。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。此外,术语“电连接”可以是直接的电性连接,也可以通过中间媒介间接的电性连接。
随着可穿戴设备的功能越来越多越来越完善,可穿戴设备也日渐成为人们必不可少的一种电子设备之一。一般来说,可穿戴设备在佩戴状态和非佩戴状态时的工作模式是有所区别的,例如,当可穿戴设备处于佩戴状态时,可以支持该设备的所有功能,而当可穿戴设备处于非佩戴状态时,可能会关闭一些非必要的应用以减少可穿戴设备的功耗,延长设备待机时间。在这种情景下,识别可穿戴设备究竟是处于佩戴状态还是非佩戴状态就显得尤为重要。
目前,采用的佩戴检测方法通常是通过测量心率使用的IR光源及PD模组检测可穿戴设备是否被物体遮挡。上述测量心率使用的光源及PD模组也称为光体积扫描器(Photoplethysmograph,PPG)模组(以下简称PPG模组)。该方法的测量原理利用了光的反射特征,当前方有遮挡时,光的反射率高。具体而言,IR光源发出红外光,经过皮肤反射后,由PD接收反射光,然后经由可穿戴设备的处理器处理运算得到佩戴检测的信息。如果检测到 被物体遮挡,则认为可穿戴设备当前是处于佩戴状态的。但是,上述方法识别到可穿戴设备被物体遮挡是不能完全等同于可穿戴设备处于佩戴状态的,例如,当用户将可穿戴设备放在其他物体上时,并没有佩戴它,而I R光源及PD模组识别出来却有物体遮挡,那么就会做出错误的判断,进而也会导致可穿戴设备依据佩戴状态所进入的工作模式或者开启/关闭的应用程序发生错误。也就是说,上述佩戴检测方法无法有效区分人体皮肤和其他材质的物体表面,从而产生佩戴的错误判断。
为解决上述错误判断佩戴状态的问题,在上述光学反射方案的基础上结合电容传感器来检测可穿戴设备是否被人体所佩戴,可以有效提升佩戴检测准确度。不同的物质具有不同的介电常数,介电常数是决定平行板电容容值大小的关键因素之一,因此利用电容传感器采集的电容值可以有效区分大部分与人体介电常数不一样的材质。然而,金属和人体的介电常数相差不大,因此在金属上仍然会产生错误的佩戴检测。
不仅如此,光学反射方案对可穿戴设备的佩戴姿势要求高,即使用户正常佩戴了可穿戴设备,但如果佩戴较松,在此松佩戴场景下光路很容易受外界环境光等干扰,也会导致误判。
基于上述问题,本申请实施例提供了一种支持佩戴检测的可穿戴设备,其通过增加垂直腔面激光发射器(Vertical-Cavity Surface-Emitting Laser,VCSEL)及对应的光传感器,对应的光传感器用于检测VCSEL发出的激光,基于检测到所述激光的光传感器数量及位置来判断用户是否佩戴该可穿戴设备。在本申请的一些实施例中,仅通过VCSEL及其周围的光传感器就能够正确判断用户是否佩戴可穿戴设备。考虑到VCSEL功耗较大,在另一些实施例中,可以在VCSEL及其周围的光传感器的基础上,进一步结合电容传感器或已有的PPG模组,在电容传感器或已有的PPG模组初步判断出用户已佩戴可穿戴设备的基础上,再开启VCSEL,进一步判断用户是舒适佩戴可穿戴设备还是松佩戴。上述VCSEL光发射器(以下简称第二光发射器)和光传感器(以下简称第二光传感器)被置于PPG模组正中间,PPG模组原有的光传感器(以下简称第一光传感器)布局在光源(以下简称第一光发射器)的周围。正常舒适水平佩戴下,因为VCSEL具有完美的光束质量、小的发散角等特征,经由VCSEL打出去的光束经过皮肤反射后,光线全部反射回VCSEL周围的第二光传感器上产生电流,不会有光线打到PPG模组周围的第一光传感器上产生光电流;但是当用户松佩戴场景下,因为PPG模组天然会与手臂形成一定夹角,这样会导致VCSEL打出去的光经由皮肤反射后光线不在仅仅落到VCSEL周围的第二光传感器上,同时也会落在PPG模组的第一光传感器上。通过测量PPG模组的第一光传感器上增加的光电流,可以判断用户佩戴姿势不正确,提醒用户正常佩戴,以提升佩戴体验,进而提升心率、血压、心电等检测准确性。
本申请提供的可穿戴设备可以是智能手表、智能手环等,可由用户佩戴于腕部,用于检测用户的心电、血压、血氧饱和度、心电图等生理数据。
图1为本申请实施例提供的一种可穿戴设备的结构示意图。如图1所示,该可穿戴设备100包括处理器110、存储器120、PPG模组140和电容传感器160,PPG模组140包括光发射器141和光传感器142,处理器110、存储器120、PPG模组140和电容传感器160可以通过总线连接。其中,光发射器141和光传感器142可以分别包括一个或多个;光发射器141用于发送至少一种颜色的光或激光,其中,光发射器141中的至少一个是VCSEL,用于发送激光,其余的光发射器141发送一种或多种颜色的光,例如红色光、绿色光或者红外光;光传感器142用于检测所述至少一种颜色的光或激光,光传感器142与处理器110耦合,以便将检测到的光发送给处理器110,例如,光传感器142与处理器110通过总线连接;电容传感器160用于检测电容值,根据电容值来确定可穿戴设备是否佩戴在人体皮肤表面,电容传感 器160与处理器110耦合,以便将检测到的电容值发送给处理器110,例如,电容传感器160与处理器110通过总线连接;存储器120用于存放程序和数据;处理器110用于执行存储器120存储的程序以及读取存储器120存储的数据,根据光传感器142检测到的激光、红外光以及电容传感器160检测到的电容值等中的一个或多个,确定可穿戴设备的佩戴状态。进一步的,处理器110还可以结合可穿戴设备的佩戴状态进行心率、血压、血氧饱和度、心电图的检测。
在一个可选地实施例中,该可穿戴设备100还可以包括收发器130,该收发器用于与其他电子设备进行通信,该其他电子设备包括手机或平板,例如,该可穿戴设备100可以将确定的佩戴状态通过收发器130发送至其他电子设备。
在另一个可选地实施例中,该可穿戴设备100还可以包括提示器150,该提示器150与处理器110连接,用于根据所述处理器的指示生成提示信息,该提示信息用于提示可穿戴设备的佩戴状态。例如,该提示器150可以为显示器,该提示信息可以通过图文的形式提示用户可穿戴设备的佩戴状态。再例如,该提示器150还可以为扬声器,该提示信息可以音频的形式提示用户可穿戴设备的佩戴状态。再例如,该提示器150可以为蜂鸣器,该提示信息可以通过振动的形式提示用户可穿戴设备的佩戴状态。再例如,该提示器150用于当所述可穿戴设备100的佩戴状态为松佩戴时提示用户。
下面以腕带200作为可穿戴设备100的示例,对本申请进行进一步地介绍。图2为本申请实施例提供的一种腕带的结构示意图。
腕带200可以包括处理器210,外部存储器接口220,内部存储器221,通用串行总线(universal serial bus,USB)接口230,充电管理模块240,电源管理模块241,电池242,天线1,天线2,移动通信模块250,无线通信模块260,音频模块270,扬声器270A,受话器270B,麦克风270C,耳机接口270D,传感器模块280,按键290,马达291,指示器292,摄像头293,显示屏294,以及用户标识模块(subscriber identification module,SIM)卡接口295等。其中传感器模块280可以包括电容传感器280G,PPG传感器280H等。
可以理解的是,本申请实施例示意的结构并不构成对腕带200的具体限定。在本申请另一些实施例中,腕带200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器210可以包括一个或多个处理单元,例如:处理器210可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器210中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器210中的存储器为高速缓冲存储器。该存储器可以保存处理器210刚用过或循环使用的指令或数据。如果处理器210需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了***的效率。
USB接口230是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口230可以用于连接充电器为腕带200充电,也可以用于腕带200与***设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连 接其他电子设备,例如AR设备等。
充电管理模块240用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块240可以通过USB接口230接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块240可以通过腕带200的无线充电线圈接收无线充电输入。充电管理模块240为电池242充电的同时,还可以通过电源管理模块241为电子设备供电。
电源管理模块241用于连接电池242,充电管理模块240与处理器210。电源管理模块241接收电池242和/或充电管理模块240的输入,为处理器210,内部存储器221,显示屏294,摄像头293,和无线通信模块260等供电。电源管理模块241还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块241也可以设置于处理器210中。在另一些实施例中,电源管理模块241和充电管理模块240也可以设置于同一个器件中。
腕带200的无线通信功能可以通过天线1,天线2,移动通信模块250,无线通信模块260,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块250可以提供应用在腕带200上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块250可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块250可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块250还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块250的至少部分功能模块可以被设置于处理器210中。在一些实施例中,移动通信模块250的至少部分功能模块可以与处理器210的至少部分模块被设置在同一个器件中。
无线通信模块260可以提供应用在腕带200上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星***(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块260可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块260经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器210。无线通信模块260还可以从处理器210接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,腕带200的天线1和移动通信模块250耦合,天线2和无线通信模块260耦合,使得腕带200可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯***(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位***(global positioning system,GPS),全球导航卫星***(global navigation satellite system,GLONASS),北斗卫星导航***(beidou navigation satellite system, BDS),准天顶卫星***(quasi-zenith satellite system,QZSS)和/或星基增强***(satellite based augmentation systems,SBAS)。
腕带200通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏294和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器210可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏294用于显示图像,视频等。显示屏294包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,腕带200可以包括1个或N个显示屏294,N为大于1的正整数。
在显示屏294上可以在处理器210的程序控制下提供佩戴方式、佩戴状态等的提示信息,检测的心率等生理数据的视觉(数字、表格、图形)或可听(合成语音或音调)形式的历史信息。作为一个非限制例子,可以显示视觉曲线图,该视觉曲线图示出在先前的固定时间间隔(例如,1小时)期间或者在锻炼时间段已经结束(如由来自用户的其指示确定)之后每5分钟计算的心率。在显示屏294上还可以在处理器210的控制下提供先前的一个时间段或多个时间段期间的平均心率信息或心率的统计信息。作为另一例子,在显示屏294上可以将当前心率值提供为在进行中的锻炼计划的过程期间周期性地(例如,每一秒)显示给用户的“实时”心率值。
腕带200可以通过ISP,摄像头293,视频编解码器,GPU,显示屏294以及应用处理器等实现拍摄功能。
ISP用于处理摄像头293反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头293中。
摄像头293用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,腕带200可以包括1个或N个摄像头293,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当腕带200在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。腕带200可以支持一种或多种视频编解码器。这样,腕带200可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现腕带200的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口220可以用于连接外部存储卡,例如Micro SD卡,实现扩展腕带200的存储能力。外部存储卡通过外部存储器接口220与处理器210通信,实现数据存储功能。例 如将音乐,视频等文件保存在外部存储卡中。
内部存储器221可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器221可以包括存储程序区和存储数据区。其中,存储程序区可存储操作***,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储腕带200使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器221可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器210通过运行存储在内部存储器221的指令,和/或存储在设置于处理器中的存储器的指令,执行腕带200的各种功能应用以及数据处理。
腕带200可以通过音频模块270,扬声器270A,受话器270B,麦克风270C,耳机接口270D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块270用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块270还可以用于对音频信号编码和解码。在一些实施例中,音频模块270可以设置于处理器210中,或将音频模块270的部分功能模块设置于处理器210中。
扬声器270A,也称“喇叭”,用于将音频电信号转换为声音信号。腕带200可以通过扬声器270A收听音乐,或收听免提通话。
受话器270B,也称“听筒”,用于将音频电信号转换成声音信号。当腕带200接听电话或语音信息时,可以通过将受话器270B靠近人耳接听语音。
麦克风270C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风270C发声,将声音信号输入到麦克风270C。腕带200可以设置至少一个麦克风270C。在另一些实施例中,腕带200可以设置两个麦克风270C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,腕带200还可以设置三个,四个或更多麦克风270C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口270D用于连接有线耳机。耳机接口270D可以是USB接口230,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
电容传感器280G包括具有两个极板的平行板电容,其中一个极板设置于腕带200的表面,另一个极板可以设置于电路软板(Flexible Printed Circuit,FPC)。设置于腕带200表面的极板与用户皮肤或其他材质的物体接触后,电容传感器280G能够检测到电容值的变化,根据电容值判断腕带200是否被佩戴。例如,检测电容传感器280G的电容值是否位于预设电容值范围,当预设电容值位于预设电容值范围时,判定腕带200被佩戴。由于平行板电容的电容值主要由极板面积和极板间距决定,以上两个极板间距较小,为获得较大的电容输入信号,一般会考虑尽量把设置于腕带200表面的极板面积设计得足够大。
PPG传感器280H包括光发射器和光传感器。通过PPG传感器280H测量心率是基于物质对光的吸收原理,PPG传感器280H中的光发射器照射皮肤的血管,光传感器接收从皮肤透出来的光线。由于血管内不同容积的血液对光吸收不同,在心脏跳动时,血液流量增多,光的吸收量会随之变大;处于心脏跳动的间隙时血流会减少,吸收的光也会随之降低。因此,根据血液的吸光度可以测量心率。在操作中,光发射器可以将光束传送到用户的皮肤,并且该 光束可以被用户的皮肤反射并且被光传感器接收。光传感器可以将该光转换为指示其强度的电信号。该电信号可以是模拟形式,并且可以被模/数转换器转换为数字形式。来自模/数转换器的数字信号可以是馈送给处理器210的时域PPG信号。处理器210可以从光传感器接收数字化的信号,并且可以处理这些信号以将心率或佩戴状态输出信号提供给存储器、视觉显示器、可听信号器、触摸屏、或其它输出指示器。在一些实施例中,PPG传感器280H构成前述测量心率等生理数据的PPG模组,发送激光的光发射器可以设置在该PPG传感器280H的中心位置,检测经反射的激光的光传感器可以设置在发送激光的光发射器的周围,上述测量心率等生理数据的光发射器和光传感器布置在检测激光的光传感器的***。
腕带200还可配置压力传感器、陀螺仪、加速度传感器、环境光传感器、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
按键290包括开机键,音量键等。按键290可以是机械按键。也可以是触摸式按键。腕带200可以接收按键输入,产生与腕带200的用户设置以及功能控制有关的键信号输入。
马达291可以产生振动提示。马达291可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏294不同区域的触摸操作,马达291也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器292可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口295用于连接SIM卡。SIM卡可以通过***SIM卡接口295,或从SIM卡接口295拔出,实现和腕带200的接触和分离。腕带200可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口295可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口295可以同时***多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口295也可以兼容不同类型的SIM卡。SIM卡接口295也可以兼容外部存储卡。腕带200通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,腕带200采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在腕带200中,不能和腕带200分离。
下面以智能手表作为腕带200的示例,对本申请进行进一步地介绍。图3为本申请实施例提供的一种智能手表结构示意图。如图3所示,该智能手表300包括表盘310以及表带320。该表盘310的正面包括显示屏311,该显示屏311用于显示信息,例如,时间、运动状态、佩戴者身体指标或者佩戴状态等等。如图4、图7所示,该表盘310的背面设置光发射器和光传感器。通过表带320可以将该智能手表佩戴在腕部,此时该表盘310的背面贴合皮肤。
如图4所示,该智能手表包括1个第一光发射器410和4个第一光传感器420。该第一光发射器410的发光元件包括绿色LED411、红色LED412和红外LED413。该光发射器410可以通过绿色LED411、红色LED412和红外LED413分别发送绿色光、红色光和红外光。其中,该LED仅为发光元件的示例,该LED也可以为其他发光部件例如VCSEL。通过第一光发射器410可以向腕部方向发送绿色光、红色光和红外光中的一种或多种。该光发射器410发送的光经过腕部反射后的反射光,由第一光传感器420接收。示例性地,上述第一光发射器410和第一光传感器420构成了智能手表的PPG模组,以检测佩戴该智能手表的用户的心率、血氧饱和度等生理数据。
进一步参见图4,该智能手表还包括1个第二光发射器430和4个第二光传感器440。该第二光发射器430为VCSEL发光部件,设置于表盘背面中心位置。4个第二光传感器440围绕第二光发射器430均匀设置,且每个第二光传感器440均设置于第二光发射器430和对应的第一光传感 器420之间。在该示例中,4个所述第一光传感器420与4个第二光传感器440在上下左右四个方向上分别一一对应设置。如图5A所示,在舒适佩戴的场景下,表盘背面所在平面与人体接触的表面500是平行的,因为VCSEL发光部件具有完美的光束质量、小的发散角等特征,VCSEL发送出去的光束510、520经过皮肤反射后,光线全部反射回VCSEL周围的第二光传感器440上,参见图5A中所示光束530、540,从而在第二光传感器440上产生光电流,而不会有光线反射至第一光传感器420上产生光电流;如图5B所示,当用户松佩戴智能手表300的场景下,因为表盘背面会与手臂形成一定夹角,这样会导致VCSEL发送出去的光束510、520经由皮肤反射后光线不在仅仅反射至VCSEL周围的第二光传感器440上(参见图5B中所示光束530),同时也会反射至第一光传感器420上(参见图5B中所示光束540);通过测量第一光传感器420中增加的光电流,可以判断用户配戴姿势不正确,提醒用户正常佩戴,以提升佩戴体验,进而提升心率、血压、血氧饱和度、心电图等检测准确性。进一步地,由于对应4个第二光传感器在上下左右四个方向上设置了4个第一光传感器,则通过测量是哪个方向上的第一光传感器增加了光电流,可以判断哪个方向佩戴较松。
再次参见图4,该智能手表还包括电容传感器450。该电容传感器450可以设计成如图4所示的单个圆环,也可以设计成两个对称的圆环,还可以设计成矩形或者其他形态。该电容传感器450作为平行板电容极板之一,另一个极板可以设置于电路软板(FPC)。由于该电容传感器450的电容值主要由极板面积和极板间距决定,因此一般会考虑尽量把该电容传感器450的面积设计足够大。通过增加电容传感器先检测用户是否佩戴可穿戴设备,在佩戴后再通过VCSEL检测佩戴松紧度,实现VCSEL反射特征检测主要在松佩戴场景开启,这样不会显著增加***的功耗。
图6是图5A中B处的局部放大结构示意图,第二光传感器440和第一光发射器410之间设置有遮光挡墙460,主要是为了防止漏光。可选地,在第二光发射器430和第二光传感器440之间,在第一光发射器410和第一光传感器420之间,也可以设置遮光挡墙,以避免光从光源直接进入光传感器。从图6可以看出,第二光发射器430(VCSEL)发射出的光束具有较小的发散角(Field of View,FOV),通常为15°-20°。故而,从第二光发射器430(VCSEL)发射出的光束准直性很好,在用户舒适佩戴智能手表的情况下,从第二光发射器430(VCSEL)发射出的光束经用户身体皮肤反射后,基本上都进入了围绕第二光发射器430设置的第二光传感器440,而不会进入距离第二光发射器430较远的第一光传感器420中。
在另一个示例中,第一光发射器为6个单色光发射器,第一光传感器数量为8个,均匀分布在表盘的背面,以更准确判断智能手表的佩戴状态。
如图7所示,该智能手表包括6个第一光发射器710和8个第一光传感器720。该第一光发射器710中每一个包括一个发光元件,该发光元件可以为绿色LED、红色LED和红外LED中的一种。可选地,该6个光发射器710可以包括两个绿色LED、两个红色LED和两个红外LED,依次间隔排布,分别发送绿色光、红色光和红外光。在一些实施例中,第一光发射器710的数量≥6,本申请实施例对此不做限制。通过第一光发射器710可以向腕部方向发送绿色光、红色光和红外光中的一种或多种。结合图8A示意,该第一光发射器710发送的光经过腕部反射后的反射光,由第一光传感器720接收。示例性地,上述第一光发射器710和第一光传感器720构成了智能手表的PPG模组,以检测佩戴该智能手表的用户的心率、血氧饱和度等生理数据。
进一步参见图7,该智能手表还包括1个第二光发射器730和4个第二光传感器740。第二光发射器730为VCSEL发光部件,设置于表盘背面中心位置,4个第二光传感器740均匀分布在第二光发射器730的周围,介于第二光发射器730和第一光发射器710之间。在该示例中,所述第 一光传感器720围绕第二光发射器730、第二光传感器740以及第一光发射器710均匀设置,8个所述第一光传感器720中的4个与4个第二光传感器740在上下左右四个方向上分别一一对应设置。如图8A所示,在舒适佩戴的场景下,表盘背面所在平面与人体接触的表面500是平行的,因为VCSEL发光部件具有完美的光束质量、小的发散角等特征,VCSEL发送出去的光束经过皮肤反射后,光线全部反射回VCSEL周围的第二光传感器740上,从而产生光电流,而不会有光线反射至第一光传感器720上产生光电流;如图8B所示,当用户松佩戴智能手表300的场景下,因为表盘背面会与手臂形成一定夹角a,这样会导致VCSEL发送出去的光束经由皮肤反射后光线不在仅仅反射至VCSEL周围的第二光传感器740上,同时也会反射至第一光传感器720上;通过测量第一光传感器720中增加的光电流,可以判断用户佩戴姿势不正确,提醒用户正确佩戴,以提升佩戴体验,进而提升心率、血氧饱和度等检测准确性。
再次参见图7,该智能手表还包括电容传感器750。该电容传感器750可以设计成如图7所示的两个对称的圆环,也可以设计成单个圆环、矩形或者其他形态,其功能和作用与图4所示的电容传感器450相同,此处不再赘述。
在一些实施例中,第二光传感器740的数量可以大于等于4个,例如5个,6个,只要能够覆盖检测到第二光发射器730的上下左右四个方向的光信息即可,这样的数量设置能够准确检测舒适佩戴状态,避免晃动等引起的状态误判。如图8A所示,在舒适佩戴状态(PPG模组对应的表盘背面跟皮肤贴合,即零距离接触)下,安装有光发射器和光传感器的表盘背面与用户的皮肤500平行,第一光发射器710距离皮肤500的距离为d1。该距离d1可以包括PPG传感器模组本身的厚度,或者在PPG传感器模组上增加透光镜片后的整体厚度。图8A还示出了第二光传感器740与第二光发射器730之间的距离d2,且第二光发射器730的发散角为FOV,d2与d1之间的关系为:d2=d1*tan(FOV/2)。示例性地,舒适佩戴状态下第一光发射器710距离皮肤500的距离d1=1.45mm,第二光发射器730的发散角FOV为17°,波长为850nm,则d2=0.22mm。可见,第二光传感器740距离第二光发射器730很近,第二光发射器730和第二光传感器740组成的器件结构较为紧凑,在复用PPG模组时不会增加可穿戴设备的体积,保持可穿戴设备的轻薄。
第一光传感器720的数量主要取决于心率、血氧饱和度等生理数据检测方***度要求,为实现全面覆盖检测上下左右四个方向漏出的激光,可以如图4设置上下左右4个第一光传感器;可以理解的是,为了更加精确检测各个方向漏出的激光,还可以增设第一光传感器的数量,可以如图7设置8个第一光传感器。因此,在本申请实施例中,为了兼顾松佩戴的时候检测到VCSEL发出的光,第一光传感器720的数量≥4,可以为4个或者8个,例如图4和图7所示的实施例。
下面结合附图9和图10对本申请实施例涉及的佩戴状态检测的方法和流程进行进一步地介绍。
图9是图2所示的腕带内佩戴状态检测***架构示意图,图10为本申请实施例提供的一种佩戴状态检测方法流程示意图。该佩戴状态检测方法可以应用于具有如图4或图7所布置的光发射器、光传感器、电容传感器结构的可穿戴设备,该可穿戴设备具有如图9所示的佩戴状态检测***架构。参见图10,该方法具体包括如下步骤:
S1010,通过检测IR光的反射率进行佩戴判断。
在一些实施例中,该IR光可以复用PPG模组中的光发射器,例如图4所示的包括红外LED413的第一光发射器410,又如图7所示的包括红外LED的第一光发射器710。以上红外LED处于常开状态,按照预定的时间间隔采集红外光的反射信号,当红外LED的前方有遮挡时,光的反射率升高。结合图9可知,PPG传感器280H接收处理器210发出的驱动信号,驱动红外LED发光,红 外光经过皮肤反射后由光电二极管等光传感器接收,该反射的红外光信号输入处理器210。处理器210经过模拟前端(Analog Front End,AFE)进行信号放大、模数转换等处理,再由DSP根据相关算法对红外光的反射率进行处理运算,进而判断用户是否佩戴该可穿戴设备。如果处理器运算得到的判断结果为是,也就是说通过红外光检测判断可穿戴设备处于已佩戴状态,则进一步执行步骤S1012;如果处理器运算得到判断结果为否,也就是说,通过IR判断出可穿戴设备当前没有被用户佩戴,则执行步骤S1022,输出“未佩戴”的判断结果。可选地,在可穿戴设备的显示屏的用户界面(User Interface,UI)显示“未佩戴”的提示信息。
可以理解的是,该IR光可以不复用PPG模组中的光发射器,而是可穿戴设备中独立设置的红外光发射器和红外光传感器,只要能够检测到红外光反射率的变化即可。
S1012,通过电容传感器进行佩戴判断。
在一些实施例中,采用电容传感器测量可穿戴设备与用户接触后电容值的变化。电容传感器可以是如图4所示的电容传感器450,或者如图7所示的电容传感器750。以上电容传感器处于常开状态,结合图9可知,电容传感器280G按照预设的采样频率采集电容信号,并将检测得到的电容信号发送至处理器,处理器使用预设的电容值或电容值范围作为可穿戴设备是否处于已佩戴状态的判断标准。如果处理器的判断结果为是,也就是说通过电容检测判断可穿戴设备处于已佩戴状态,则进一步执行步骤S1014;如果处理器的判断结果为否,也就是说,通过电容判断出可穿戴设备当前没有被用户佩戴,则执行步骤S1022,输出“未佩戴”的判断结果。可选地,在可穿戴设备的显示屏的用户界面(User Interface,UI)显示“未佩戴”的提示信息。
S1014,通过VCSEL进行松紧佩戴判断。
具体地,当经过步骤S1012、步骤S1014,即IR反射特征和电容值均反映出用户已佩戴可穿戴设备时,处理器发出驱动信号启动PPG模组,例如图4所示的的第二光发射器430、第二光传感器440以及第一光传感器420,又如图7所示的第二光发射器730、第二光传感器740以及第一光传感器720。以上第二光发射器为VCSEL发光部件,结合图9可知,PPG传感器280H启动后发射激光,检测第一光传感器和第二光传感器内的光电流信号,将该光电流信号发送至处理器。该光电流信号经AFE处理、DSP运算后可以确定接收到激光的第一光传感器数量以及第二光传感器数量,处理器根据接收到激光的第一光传感器数量以及第二光传感器数量进行松紧佩戴判断,即判断可穿戴设备的佩戴状态。如果处理器运算得到判断结果为是,也就是说,也就是说通过VCSEL检测判断可穿戴设备处于松佩戴状态,则进一步执行步骤S1024;如果处理器运算得到判断结果为否,也就是说,通过VCSEL检测判断可穿戴设备并非处于松佩戴状态,则执行步骤S1016。
其中,可穿戴设备的佩戴状态可以根据实际需要设置多种情况。例如,所述佩戴状态至少包括松佩戴和舒适佩戴,当接收到激光的第二光传感器数量≥1,且接收到激光的第一光传感器数量≥1时,该可穿戴设备的佩戴状态为松佩戴;当接收到激光的第二光传感器数量≥2,且接收到激光的第一光传感器数量为0时,该可穿戴设备的佩戴状态为舒适佩戴。在另一个示例中,可以将舒适佩戴的算法阈值降低,当接收到激光的第二光传感器数量≥1,且接收到激光的第一传感器数量为0时,该可穿戴设备的佩戴状态为舒适佩戴。可选地,佩戴状态还可以包括佩戴过紧、未佩戴、已佩戴等等。可替换的,佩戴状态还可以包括正确佩戴和未正确佩戴等等。
以上步骤S1010、S1012、S1014可以选择执行其中的一项或多项,其执行顺序也可以相应发生变化。例如,可以不执行步骤S1010、S1012,仅根据VCSEL也能够进行佩戴状态的判断, 包括已佩戴、未佩戴、松佩戴、舒适佩戴等多种佩戴状态。又如,也可以仅执行步骤S1010之后就执行S1014,或者,可以不执行步骤S1010,仅执行步骤S1012之后就执行S1014,也就是说,本申请实施例提供的佩戴状态检测方法可以在IR佩戴检测的基础上基于VCSEL进行松紧佩戴判断,也可以基于电容传感器佩戴检测和VCSEL松紧佩戴判断得到判断结果。当然,相对于复用PPG模组中的红外LED先进行已佩戴、未佩戴检测再根据VCSEL进行松紧佩戴判断,仅开启VCSEL发光元件进行全部佩戴状态检测所需功耗会更高,但检测的结果也会更准确。
S1016,通过IR、电容传感器以及VCSEL佩戴判断结果进行融合判断。
在本申请的实施例中,在步骤S1010、步骤1012以及步骤1014的基础上,处理器还可以将以上各个步骤的佩戴判断结果通过融合算法判断可穿戴设备处于何种佩戴状态,例如,可以为检测到的VCSEL反射特征、IR光反射率和接触电容设置不同的加权系数,最终佩戴状态由这三种检测结果乘以其加权系数来决定。如果处理器融合判断的结果为是,也就是说通过IR、电容传感器以及VCSEL检测结果判断出可穿戴设备处于已佩戴状态,则执行步骤S1018;如果处理器融合判断的结果为否,也就是说,可穿戴设备当前没有被用户佩戴,则执行步骤S1022,输出“未佩戴”的判断结果。
S1018,活体检测。
在本申请的实施例中,还可以在步骤S1016处理器融合判断的结果为是的情况下进行活体检测,以确保是用户佩戴了可穿戴设备。例如,通过复用PPG模组中的光发射器发送绿光,绿光照射在物质上会被部分吸收,通过光传感器检测反射回的绿光,能够判断所述物质是否为活体。具体地,可以将光传感器检测到的反射光信号进行处理,获得直流(DC)分量和交流(AC)分量,如果直流(DC)分量和/或交流(AC)分量在预定范围内,可以判断所述物质为活体,即活体检测结果为是;如果获取到的直流(DC)分量和/或交流(AC)分量不在预定范围内,可以判断所述物质不是活体,即活体检测结果为否。如果活体检测的结果为是,则执行步骤S1020;如果活体检测的结果为否,则执行步骤S1022。
可以理解的是,步骤S1018是可选的、附加的步骤,用于进一步提高佩戴检测准确度。
S1020,处理器判断当前的佩戴状态为舒适佩戴。
如果步骤S1018中活体检测结果为是,处理器根据前述S1010、S1012、S1014、S1016以及S1018中的一项或多项检测结果,对可穿戴设备当前处于何种佩戴状态进行判断,得到判断结果为舒适佩戴。
S1022,处理器判断当前的佩戴状态为未佩戴。
如果步骤S1010中IR佩戴判断结果为否,或者步骤S1012中电容传感器佩戴判断结果为否,或者步骤S1016中通过IR、电容传感器以及VCSEL佩戴判断结果进行融合判断的判断结果为否,或者步骤1018活体检测结果为否,处理器根据前述S1010、S1012、S1016以及S1018中的一项或多项检测结果,对可穿戴设备当前处于何种佩戴状态进行判断,得到判断结果为未佩戴。
S1024,处理器判断当前的佩戴状态为松佩戴。
如果步骤S1014中VCSEL松紧佩戴判断结果为是,处理器根据该判断结果,得到可穿戴设备当前佩戴状态判断结果为松佩戴。
在一些实施例中,处理器可以将以上S1020-S1024得到的判断结果输出至显示屏,用户可以通过查看显示屏获知当前的佩戴状态。下面以佩戴状态包括未佩戴、舒适佩戴和松佩戴三种状态为例进行说明。
当确定可穿戴设备的佩戴状态后,当佩戴状态不正常时可以生成提示。可以通过图文的形式提示,例如,通过***通知的形式、或者在心率测量、运动测量等应用的界面中提供佩 戴状态不符合规定,例如图11A所示,当佩戴状态过松时,可以在可穿戴设备的显示屏显示文字信息的佩戴状态“当前佩戴过松,请保持舒适佩戴1101”,进一步地,根据接收到用户的指令后,还可以显示正确佩戴的指导视频或指导图文。还可以在腕带的状态不符合规定时,震动提示,例如通过蜂鸣器进行振动提示。还可以在腕带的状态不符合规定时,语音提示,例如通过扬声器进行语音提示。可选地,由于当前佩戴过松,用户未能保持舒适佩戴,可穿戴设备此时未进行心率、血压的测量,所以未能显示检测到的生理数据值。
当确定可穿戴设备的佩戴状态后,当佩戴状态正常时可以直接进行心率、血压、血氧饱和度、心电图等生理数据的检测,将佩戴状态、生理参数检测值显示在可穿戴设备的显示屏上。可以通过图文的形式提示,例如,通过***通知的形式、或者在心率测量、运动测量等应用的界面中提供符合规定的佩戴状态以及生理检测值,例如图11B所示,当佩戴状态正常时,可以在可穿戴设备的显示屏显示文字信息的佩戴状态“佩戴状态:舒适佩戴”1102,以及检测到的生理数据值“静息心率:65次/分”1103、“血压:60/90mmHg”1104。还可以在可穿戴设备的状态符合规定时,震动提示,例如通过蜂鸣器进行振动提示。还可以在可穿戴设备的状态符合规定时,语音提示,例如通过扬声器进行语音提示。
在上述各个本发明实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读介质向另一个计算机可读介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘)等。
以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (23)

  1. 一种可穿戴设备,其特征在于,包括:
    第一光发射器,用于发送至少一种颜色的光;
    第一光传感器,用于接收所述至少一种颜色的光;
    第二光发射器,所述第二光发射器为垂直腔面激光发射器发光元件,用于发送激光;
    第二光传感器,用于检测所述第二光发射器发送的激光;
    处理器,与所述第一光发射器、所述第一光传感器、所述第二光发射器和所述第二光传感器连接,根据所述第一光传感器和所述第二光传感器检测到的光信号确定所述可穿戴设备的佩戴状态。
  2. 根据权利要求1所述的可穿戴设备,其特征在于,所述可穿戴设备包括至少一个第二光发射器和至少四个所述第二光传感器,至少四个所述第二光传感器围绕所述第二光发射器均匀设置,所述第二光传感器设置于所述第二光发射器和所述第一光传感器之间。
  3. 根据权利要求2所述的可穿戴设备,其特征在于,所述可穿戴设备包括四个所述第一光传感器,四个所述第一光传感器与至少四个所述第二光传感器中的四个一一对应设置。
  4. 根据权利要求2所述的可穿戴设备,其特征在于,所述可穿戴设备包括八个所述第一光传感器和四个所述第二光传感器,所述第一光传感器围绕所述第二光发射器和所述第二光传感器均匀设置,八个所述第一光传感器中的四个与四个所述第二光传感器一一对应设置。
  5. 根据权利要求1-4所述的可穿戴设备,其特征在于,
    当接收到所述激光的第一光传感器数量为0,且接收到激光的所述第二光传感器数量≥1时,所述处理器确定所述可穿戴设备的佩戴状态为舒适佩戴;
    当接收到所述激光的第一光传感器数量≥1,且接收到所述激光的第二光传感器数量≥1时,所述处理器确定所述可穿戴设备的佩戴状态为松佩戴。
  6. 根据权利要求1-4所述的可穿戴设备,其特征在于,
    当接收到的所述激光第一光传感器数量为0,且接收到激光的所述第二光传感器数量≥2时,所述处理器确定所述可穿戴设备的佩戴状态为舒适佩戴;
    当接收到所述激光的第一光传感器数量≥1,且接收到所述激光的第二光传感器数量≥1时,所述处理器确定所述可穿戴设备的佩戴状态为松佩戴。
  7. 根据权利要求5或6所述的可穿戴设备,其特征在于,所述可穿戴设备还包括显示屏,用于显示所述处理器所确定的所述佩戴状态。
  8. 根据权利要求5或6所述的可穿戴设备,其特征在于,所述可穿戴设备还包括:
    提示器,用于当所述可穿戴设备佩戴状态为松佩戴时提示用户。
  9. 根据权利要求1-4所述的可穿戴设备,其特征在于,所述可穿戴设备包括电容传感器,所述电容传感器用于检测接触电容,并将检测到的电容值发送至所述处理器;
    所述处理器根据所述第一光传感器和所述第二光传感器检测到的光信号,以及所述电容值确定所述可穿戴设备的佩戴状态。
  10. 根据权利要求9所述的可穿戴设备,其特征在于,
    所述第一光发射器用于发送红外光;
    所述第一光传感器用于检测经反射后的红外光,并将检测到的红外光信号发送给所述处理器;
    所述处理器根据所述第一光传感器和所述第二光传感器检测到的激光信号,所述第一光传感器检测到的所述红外光信号以及所述电容值确定所述可穿戴设备的佩戴状态。
  11. 根据权利要求1-4任一项所述的可穿戴设备,其特征在于,所述第一光发射器和第一光传感器复用PPG模组中的光发射器和光传感器,所述第二光发射器位于所述PPG模组中心。
  12. 根据权利要求1-4任一项所述的可穿戴设备,其特征在于,在所述第一光发射器和所述第一光传感器之间,所述第二光发射器和所述第二光发射器之间和/或所述第二光传感器和所述第一光发射器之间设置遮光挡墙。
  13. 一种佩戴状态检测方法,所述方法应用于权利要求1所述的可穿戴设备,其特征在于,所述方法包括:
    第二光发射器发送激光,所述第二光发射器为垂直腔面激光发射器发光元件;
    第一光传感器和第二光传感器检测经反射后的所述激光;
    根据所述第一光传感器和所述第二光传感器检测到的激光信号确定所述可穿戴设备的佩戴状态。
  14. 根据权利要求13所述的方法,其特征在于,在所述第二光发射器发送激光之前,所述方法还包括:
    第一光发射器发送红外光;
    所述第一光传感器接收所述红外光;
    根据所述第一光传感器接收到的所述红外光信号确定所述可穿戴设备的佩戴状态;
    当所述可穿戴设备的佩戴状态为已佩戴时,所述第二光发射器发送激光;
    所述第一光传感器和所述第二光传感器检测经反射后的所述激光;
    根据所述第一光传感器和所述第二光传感器检测到的激光信号确定所述可穿戴设备的佩戴状态。
  15. 根据权利要求13所述的方法,其特征在于,所述可穿戴设备包括电容传感器,所述电容传感器用于检测接触电容;在所述第二光发射器发送激光之前,所述方法还包括:
    根据所述电容传感器检测到的接触电容确定所述可穿戴设备的佩戴状态;
    当所述可穿戴设备的佩戴状态为已佩戴时,所述第二光发射器发送激光;
    所述第一光传感器和所述第二光传感器检测经反射后的所述激光;
    根据所述第一光传感器和所述第二光传感器检测到的激光信号确定所述可穿戴设备的佩戴状态。
  16. 根据权利要求13-15任一项所述的方法,其特征在于,根据所述第一光传感器和所述第二光传感器检测到的激光信号确定所述可穿戴设备的佩戴状态,具体包括:
    当接收到所述激光的第一光传感器数量为0,且接收到激光的所述第二光传感器数量≥1时,确定所述可穿戴设备的佩戴状态为舒适佩戴;
    当接收到所述激光的第一光传感器数量≥1,且接收到所述激光的第二光传感器数量≥1时,确定所述可穿戴设备的佩戴状态为松佩戴。
  17. 根据权利要求13-15任一项所述的方法,其特征在于,根据所述第一光传感器和所述第二光传感器检测到的激光信号确定所述可穿戴设备的佩戴状态,具体包括:
    当接收到所述激光的第一光传感器数量为0,且接收到激光的所述第二光传感器数量≥2时,确定所述可穿戴设备的佩戴状态为舒适佩戴;
    当接收到所述激光的第一光传感器数量≥1,且接收到所述激光的第二光传感器数量≥1时,确定所述可穿戴设备的佩戴状态为松佩戴。
  18. 根据权利要求14或15所述的方法,其特征在于,根据所述第一光传感器和所述第 二光传感器检测到的激光信号确定所述可穿戴设备的佩戴状态,具体包括:
    根据检测到所述激光的所述第一光传感器数量、检测到所述激光的所述第二光传感器数量确定所述可穿戴设备的佩戴状态;
    当所述可穿戴设备的佩戴状态不是松佩戴时,进一步根据所述第一光传感器接收到的所述红外光信号、所述电容传感器检测到的接触电容、检测到所述激光的所述第一光传感器数量以及检测到所述激光的所述第二光传感器数量确定所述可穿戴设备的佩戴状态。
  19. 根据权利要求18所述的方法,其特征在于,当所述可穿戴设备的佩戴状态是已佩戴时,所述方法还包括:
    第一光发射器发送至少一种颜色的光;
    所述第一光传感器接收所述至少一种颜色的光;
    根据所述第一光传感器接收到的至少一种颜色的光信号确定所述可穿戴设备的佩戴状态。
  20. 根据权利要求13-19任一项所述的方法,其特征在于,所述方法还包括:
    当所述可穿戴设备的佩戴状态为舒适佩戴时,显示所述佩戴状态。
  21. 根据权利要求13-19任一项所述的方法,其特征在于,所述方法还包括:
    当所述可穿戴设备的佩戴状态为松佩戴时,显示第一提示信息,所述第一提示信息用于提示用户当前佩戴过松。
  22. 一种计算机可读存储介质,包括计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行如权利要求13-19任一项所述的方法。
  23. 一种计算机程序产品,包括计算机可读指令,当计算机读取并执行所述计算机可读指令,使得计算机执行如权利要求13-19任一项所述的方法
PCT/CN2022/073187 2021-02-04 2022-01-21 可穿戴设备及佩戴状态检测方法 WO2022166617A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22748896.2A EP4278969A4 (en) 2021-02-04 2022-01-21 WEARABLE DEVICE AND METHOD FOR DETECTING WEARING CONDITION
US18/264,132 US20240090784A1 (en) 2021-02-04 2022-01-21 Wearable Device and Wearing Status Detection Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110156315.5 2021-02-04
CN202110156315.5A CN114847892A (zh) 2021-02-04 2021-02-04 可穿戴设备及佩戴状态检测方法

Publications (1)

Publication Number Publication Date
WO2022166617A1 true WO2022166617A1 (zh) 2022-08-11

Family

ID=82623298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073187 WO2022166617A1 (zh) 2021-02-04 2022-01-21 可穿戴设备及佩戴状态检测方法

Country Status (4)

Country Link
US (1) US20240090784A1 (zh)
EP (1) EP4278969A4 (zh)
CN (1) CN114847892A (zh)
WO (1) WO2022166617A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117856366A (zh) * 2022-09-30 2024-04-09 荣耀终端有限公司 一种手表、充电底座以及充电***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106551690A (zh) * 2015-09-30 2017-04-05 齐心 一种生命体征测量装置及方法
US20170215747A1 (en) * 2016-02-01 2017-08-03 Koninklijke Philips N.V. Optical vital signs sensor
CN108337903A (zh) * 2018-01-24 2018-07-27 深圳市汇顶科技股份有限公司 一种佩戴状态的检测方法及其检测模块、可穿戴设备
CN108348154A (zh) * 2015-08-12 2018-07-31 瓦伦赛尔公司 用于经由光机械来检测运动的方法和设备
CN109792573A (zh) * 2018-12-26 2019-05-21 深圳市汇顶科技股份有限公司 佩戴检测方法、装置、可穿戴设备及存储介质
CN109875572A (zh) * 2018-11-09 2019-06-14 唐庆圆 一种生理参数测量装置及方法
CN110584632A (zh) * 2019-10-21 2019-12-20 深圳市汇顶科技股份有限公司 佩戴检测方法、装置、芯片、设备及存储介质
CN111134648A (zh) * 2018-11-01 2020-05-12 华为终端有限公司 心率检测方法及电子设备
CN111265200A (zh) * 2020-02-21 2020-06-12 广东高驰运动科技有限公司 可穿戴式生理信号检测装置及检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170020399A1 (en) * 2015-06-02 2017-01-26 Sportracker Ltd. Methods Circuits Assemblies Devices Systems and Associated Machine Executable Code for Biological Sensing
KR102511513B1 (ko) * 2017-12-01 2023-03-20 삼성전자주식회사 복수의 센서를 이용한 착용 감지 방법 및 이를 구현한 전자 장치
US20220022814A1 (en) * 2018-11-01 2022-01-27 Huawei Technologies Co., Ltd. Method and Electronic Device for Detecting Heart Rate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108348154A (zh) * 2015-08-12 2018-07-31 瓦伦赛尔公司 用于经由光机械来检测运动的方法和设备
CN106551690A (zh) * 2015-09-30 2017-04-05 齐心 一种生命体征测量装置及方法
US20170215747A1 (en) * 2016-02-01 2017-08-03 Koninklijke Philips N.V. Optical vital signs sensor
CN108337903A (zh) * 2018-01-24 2018-07-27 深圳市汇顶科技股份有限公司 一种佩戴状态的检测方法及其检测模块、可穿戴设备
CN111134648A (zh) * 2018-11-01 2020-05-12 华为终端有限公司 心率检测方法及电子设备
CN109875572A (zh) * 2018-11-09 2019-06-14 唐庆圆 一种生理参数测量装置及方法
CN109792573A (zh) * 2018-12-26 2019-05-21 深圳市汇顶科技股份有限公司 佩戴检测方法、装置、可穿戴设备及存储介质
CN110584632A (zh) * 2019-10-21 2019-12-20 深圳市汇顶科技股份有限公司 佩戴检测方法、装置、芯片、设备及存储介质
CN111265200A (zh) * 2020-02-21 2020-06-12 广东高驰运动科技有限公司 可穿戴式生理信号检测装置及检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4278969A4

Also Published As

Publication number Publication date
US20240090784A1 (en) 2024-03-21
EP4278969A4 (en) 2024-07-03
CN114847892A (zh) 2022-08-05
EP4278969A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
JP7426470B2 (ja) 音声起動方法及び電子デバイス
WO2021000876A1 (zh) 一种语音控制方法、电子设备及***
US20220342074A1 (en) Electronic Device and Sensor Control Method
CN113827185B (zh) 穿戴设备佩戴松紧程度的检测方法、装置及穿戴设备
EP3952264B1 (en) Information processing method and device
US11606455B2 (en) Method for preventing mistouch by using top-emitted proximity light, and terminal
CN110557740A (zh) 一种电子设备控制方法及一种电子设备
WO2020019355A1 (zh) 一种可穿戴设备的触控方法、可穿戴设备及***
CN113552937A (zh) 显示控制方法和可穿戴设备
CN113892920A (zh) 可穿戴设备的佩戴检测方法、装置及电子设备
CN114822525A (zh) 语音控制方法和电子设备
US20240224357A1 (en) Data Download Method, Apparatus, and Terminal Device
WO2022105830A1 (zh) 睡眠评估方法、电子设备及存储介质
WO2022166617A1 (zh) 可穿戴设备及佩戴状态检测方法
US11978384B2 (en) Display method for electronic device and electronic device
CN113069089B (zh) 电子设备
US20240164725A1 (en) Physiological detection signal quality evaluation method, electronic device, and storage medium
CN113129916A (zh) 一种音频采集方法、***及相关装置
CN109285563A (zh) 在线翻译过程中的语音数据处理方法及装置
CN113509145B (zh) 睡眠风险监测方法、电子设备及存储介质
CN115706755A (zh) 回声消除方法、电子设备及存储介质
CN114431891A (zh) 监测睡眠的方法和相关电子设备
CN114698078A (zh) 发射功率调整方法、电子设备及存储介质
CN114375027A (zh) 降低功耗的方法和装置
US20230389832A1 (en) Method for periodically measuring blood oxygen and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748896

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18264132

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022748896

Country of ref document: EP

Effective date: 20230818

NENP Non-entry into the national phase

Ref country code: DE