WO2022160356A1 - 多孔交联材料及其制备方法与应用 - Google Patents

多孔交联材料及其制备方法与应用 Download PDF

Info

Publication number
WO2022160356A1
WO2022160356A1 PCT/CN2021/074735 CN2021074735W WO2022160356A1 WO 2022160356 A1 WO2022160356 A1 WO 2022160356A1 CN 2021074735 W CN2021074735 W CN 2021074735W WO 2022160356 A1 WO2022160356 A1 WO 2022160356A1
Authority
WO
WIPO (PCT)
Prior art keywords
tpc
cross
porous
linked
otbs
Prior art date
Application number
PCT/CN2021/074735
Other languages
English (en)
French (fr)
Inventor
路建美
徐庆锋
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to PCT/CN2021/074735 priority Critical patent/WO2022160356A1/zh
Priority to US18/011,425 priority patent/US20230330628A1/en
Publication of WO2022160356A1 publication Critical patent/WO2022160356A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/24Polysulfonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/08Polysulfonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/202Single element halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character

Definitions

  • the invention belongs to the material preparation technology, and specifically relates to a porous cross-linked material and a preparation method and application thereof.
  • Porous organic polymers as an emerging organic porous material, have the advantages of strong designability, easy preparation, stable and diverse structure, light weight, and excellent adsorption performance compared with inorganic porous materials. wide attention.
  • porous organic polymers are mostly cross-linked polymers.
  • the cross-linking method can use the polymer body to form the skeleton, thereby forming pores.
  • the usual size of these pores is often closely related to the structure of the polymer monomer and the cross-linking agent.
  • Some porous organic polymer adsorbents successfully synthesized by cross-linking can effectively treat pollutants in water, such as metal ions, organic pollutants and drug residues such as antibiotics.
  • POPs Persistent Organic Pollutants
  • water pollution problem brought about by industrial development.
  • persistent organic pollutants generally have strong biological toxicity, many of which are mutagenic and carcinogenic, and are extremely harmful, and it is difficult to remove them by common biological methods.
  • Adsorption technology has the advantages of relatively low cost, simple adsorption and regeneration process, simple operation, no harmful by-products, and is considered to be a water purification technology with wide application prospects.
  • the various advantages of porous organic polymers make them extremely advantageous in the removal of persistent organic pollutants from water bodies.
  • TPC-OH 4,4',4''-trihydroxytriphenylmethane
  • a porous cross-linked material is prepared from a cross-linked solvogel
  • the cross-linked solvogel is prepared from a monomer for cross-linked solvogel in the presence of DBU.
  • the preparation method of the porous cross-linked material disclosed in the present invention is as follows: adding a TPC-OTBS n-hexane solution to a mixed solution of TPC-OSO 2 F, DMF and DBU, and leaving it to stand to obtain a cross-linked solvogel; The cross-linked solvogel is added to alcohol, stirred and dried to obtain a porous cross-linked material.
  • the invention discloses a cross-linking solvent gel.
  • the preparation method is as follows: adding a TPC-OTBS n-hexane solution to a mixed solution of TPC-OSO 2 F, DMF and DBU, and standing to obtain the cross-linking solvent gel.
  • the dosage ratio of TPC-OSO 2 F, DMF, DBU, TPC-OTBS n-hexane solution is (200-210 mg): (1-4.5 mL): 50 ⁇ g: 2.15 mL, preferably (200-210 mg): (3.5 ⁇ 4.2mL): 50 ⁇ g: 2.15mL;
  • the dosage ratio of TPC-OTBS and n-hexane is (2.2 ⁇ 2.205g): 22mL;
  • the alcohol is a small molecular alcohol, such as methanol; cross-linking
  • the amount of solvogel and alcohol is not limited, so that the alcohol can submerge the gel, and stirring and drying are conventional techniques, such as drying at 70-90°C for 10-15 hours, preferably at 80°C for 12 hours.
  • a typical process of synthesizing the cross-linked solvogel (TPC-cPS-gel) of the present invention is as follows: weigh TPC-OSO 2 F in a sample bottle, use a pipette to measure DMF and add it to the sample bottle as a solvent, and make it by ultrasonic All solids were dissolved, then DBU was added, ultrasonicated again to dissolve and disperse uniformly, and then the pre-configured n-hexane solution of TPC-OTBS was sucked by a pipette and added to the sample bottle along the bottle wall to form a clear layered interface.
  • TPC-OTBS and TPC-OSO 2 F are as follows.
  • the invention discloses the application of the above-mentioned porous cross-linked material as an adsorbent; specifically, a method for adsorbing pollutants by using the above-mentioned porous cross-linked material includes the following steps: adding the porous cross-linked material to a solution containing pollutants to realize the pollutants adsorption; the pollutants include iodine, rhodamine B, bisphenol A, tetracycline; the solution can be an aqueous solution or an organic solvent solution.
  • multifunctional monomers TPC-OSO 2 F and TPC-OTBS are synthesized, and chemically synthesized cross-linked polysulfate gel is applied.
  • the cross-linked polysulfate was formed into a solvogel in DMF solution using a two-liquid phase interfacial extraction reaction.
  • the obtained gels can be used to prepare solid porous organic polymer materials with abundant macropores by solvent exchange.
  • the surface and internal morphology of the solid material were characterized by SEM and TEM, and the porous morphology was found, and most of them were macropores.
  • Figure 1 is the NMR spectrum of TPC-OTBS.
  • Figure 2 is the NMR spectrum of TPC-OSO 2 F.
  • Figure 3 is a schematic diagram of the preparation and physical objects of TPC-cPS-gel.
  • FIG. 4 is a schematic diagram of the preparation of porous solid TPC-cPS from TPC-cPS-gel by methanol solvent exchange.
  • Figure 5 is SEM images of TPC-cPS-1 to TPC-cPS-8.
  • Figure 6 is a TEM image of TPC-cPS-1 to TPC-cPS-8.
  • Figure 7 shows the infrared spectra of TPC-cPS-1 and TPC-cPS-7.
  • Figure 8 is a thermogravimetric diagram of TPC-cPS-7.
  • Figure 9 is a DSC chart of TPC-cPS-7.
  • Figure 10 shows (a) XRD pattern, (b) high-resolution HR-TEM image and (c) TEM diffraction image of TPC-cPS-7.
  • Figure 11 shows the saturation adsorption curves of TPC-cPS-6, TPC-cPS-7 and TPC-cPS-8 for 2000 ppm iodine in carbon tetrachloride solution.
  • Figure 12 shows the saturated adsorption curves of TPC-cPS-6, TPC-cPS-7 and TPC-cPS-8 to 50 ppm bisphenol A aqueous solution.
  • Fig. 13 shows the adsorption and removal rates of TPC-cPS-7 to 10 ppm of iodine in carbon tetrachloride solution and aqueous solutions of bisphenol A, rhodamine B, and tetracycline.
  • Figure 14 is the 19 F-NMR solid nuclear magnetic fluorine spectrum of TPC-cPS-7.
  • the prior art is to use bifunctional monomers to synthesize long-chain biaryl polysulfate, and the use of multifunctional groups (the number of functional groups is 3 or more) to prepare the example of cross-linked polysulfate has not been reported, and the use of existing The method uses multifunctional monomers as raw materials and cannot obtain polymers with porous structures. It is gratifying that the present invention uses a new method to limit the formation conditions and trends of solvogels to obtain a solvent for cross-linked polysulfate. gel. Further, placing the obtained solvogel in methanol for solvent exchange can easily obtain abundant macropores (pore size 80-120 mm).
  • this material has a good effect as an adsorbent in the removal of persistent organic pollutants such as bisphenol A in water.
  • the porous cross-linked material is added to the solution containing pollutants to achieve adsorption of pollutants.
  • the synthesis method of the present invention does not require a template at all, and macropores can be formed spontaneously during solvent exchange. This work expands the synthesis direction and application scenarios of polysulfate.
  • the raw materials involved in the present invention are all commercially available products, and the specific operation methods and testing methods are conventional methods in the art.
  • N ,N-dimethylformamide (DMF), tetrahydrofuran (THF), methanol, n-hexane, dichloromethane (DCM) and triethylamine (TEA) were purchased from Sinopharm Holding Group Co., Ltd.
  • 4,4',4''-trihydroxytriphenylmethane was purchased from Shanghai Jiuding Chemical Technology Co., Ltd.
  • Imidazole, tert-butyldimethylsilyl chloride (TBSCl), and 1,8-diazabicycloundecaheptaene (DBU) were purchased from Tishi Ai (Tokyo) Chemical Industry Development Co., Ltd.
  • Sulfuryl fluoride gas was purchased from Hangzhou Maoyu Electronic Chemical Co., Ltd. All the above raw materials and reagents were used as received.
  • the 1 H-NMR spectrum was measured using an INOVA 400 MHz high-resolution nuclear magnetic resonance spectrometer, with tetramethylsilane (TMS) as the internal standard and CDCl 3 as the solvent.
  • 13 C-NMR and 19 F-NMR spectra were obtained by measuring 30-40 mg solid samples at room temperature by AVANCEIII/WB-400 solid wide-cavity superconducting nuclear magnetic resonance spectrometer.
  • the UV-Vis absorption spectrum (Uv-vis) was measured using a UV3600 UV-Vis-NIR spectrophotometer (Shimadzu UV-3600 Plus). The concentration of all pollutants was judged by the absorption intensity in the UV spectrum.
  • FT-IR Infrared spectroscopy
  • SEM Scanning electron microscope
  • 4,4',4''-trihydroxytriphenylmethane (1.46 g, 5 mmol) was placed in a 1000 mL flask, 20 mL of dichloromethane was added, stirred at room temperature and triethylamine (2.1 g, 20 mmol) was added. ), stirring continuously to dissolve all solids.
  • the flask was sealed, pumped to vacuum with a water pump, and then a 55 L air bag was used to pass sulfuryl fluoride gas. The entire reaction system was kept sealed and the reaction was continued to stir at room temperature for 12 hours. The degree of reaction progress was detected by TLC. After the raw materials were converted, the solid was removed by filtration.
  • TPC-cPS-gel The synthesis of TPC-cPS-gel goes through a typical process, taking the gel synthesis process of TPC-cPS-7 as an example. Weigh 206.5 mg of TPC-OSO 2 F into a 20 mL vial at room temperature, add 4 mL of DMF to the vial as solvent with a pipette, dissolve all solids by conventional sonication, then add 50 ug 2.15 mL of the pre-configured TPC-OTBS solution in n-hexane (2.2016 g TPC-OTBS dissolved in 22 mL of n-hexane) was added along the bottle wall.
  • a double-layer liquid with obvious layers and clear interface is formed; the sample bottle is left standing, the fluidity of the solution is observed by the tilting method, the formation of gel can be judged, and the monomer TPC in the upper n-hexane can be tracked by TLC -OTBS concentration, to determine the progress of the reaction, when the reaction is completed, pour off the upper layer of liquid, and take off the lower layer of solvogel, which is TPC-cPS-gel, which is sample 7 in Table 2.
  • reaction solvents The limitation of different reaction solvents is the primary condition for the two-liquid phase interfacial polymerization, and the present invention selects these two solvents with very different polarities as the two phases of the interfacial polymerization reaction.
  • TPC-OSO 2 F and catalyst DBU were dissolved in DMF, and then the n-hexane solution of TPC-OTBS was placed on the upper layer to form a DMF/n-hexane two-phase reaction system, which was allowed to stand for reaction. At a defined monomer concentration, the reaction was observed to occur. As shown in Figure 3, when the two-phase reaction time is not long (2 hours), both phases maintain fluidity.
  • the reaction time When the reaction time is extended to 24 hours, it can be found by the tilting method that the entire DMF layer loses fluidity and forms condensate.
  • the concentration of the upper layer solution is analyzed by TLC, and it can be found that the reaction of the monomer TPC-OTBS is completed, and almost no color is developed by observing TLC, indicating that the monomer concentration in the upper layer n-hexane reaches a very low level, the reaction is completed, and the judgment is this Conventional technology in the field; removing the upper layer solution, a gel can be obtained, which is still a transparent colloidal solid and has a certain mechanical strength. Since the upper layer solutes penetrate into the lower layer and react, the gel formation is not only carried out at the interface.
  • TPC-cPS porous cross-linked material The gel obtained above (TPC-cPS-7) was placed in methanol (submerged), and the solution was stirred for 1 hour to make it solvent exchange, remove the catalyst DBU, etc., According to 13 C-NMR and 19 F-NMR, all impurities were removed; the final white solid was dried in a vacuum oven at 80°C for 12 hours to obtain a white solid porous material, which was TPC-cPS.
  • 13 C NMR 101 MHz, Solid, ppm
  • 19 F NMR 377 MHz, Solid, ppm) ⁇ -122.98.
  • Table 1 BET data of TPC-cPS-1 to TPC-cPS-8, corresponding to the serial numbers: .
  • TPC-cPS-1 and TPC-cPS-2 present dense surface morphologies.
  • the entire polymer is a yellowish rigid plastic;
  • TPC-cPS-5 to TPC-cPS-8 small pores formed on the surface of cross-linked polysulfate have been observed, and
  • TPC-cPS- 6 and TPC-cPS-7 both have good morphologies, the pore size distribution is uniform and uniform, and the strength in the gel state is high, and will not be broken by external shear forces such as electromagnetic stirring;
  • the smallest TPC-cPS-8 it can be seen that there are many macroporous defects on it, its aggregate state is also powder, and the strength in the gel state is not high, and it is easily affected by external shear forces such as electromagnetic Stir to break up.
  • TPC-cPS-1, TPC-cPS-2, and TPC-cPS-5 can observe the skeleton formed by their polymers at the macroscopic level, they are extremely dense. After the concentration gradually decreases, the pore size increases. Large, macropores began to appear, and with the further reduction of the concentration, the defects of the skeleton became more and more, and the fracture of the skeleton appeared.
  • the concentration has a certain influence on the pore size of the cross-linked polysulfate finally formed. Under the conditions that the concentration can be formed, the lower the concentration, the larger the pore size, and the more uniform the pore size distribution tends to be. Increasing the concentration will reduce the pore size and even gradually densify.
  • TPC-cPS-1 and TPC-cPS-7 were characterized by infrared, and their infrared spectra showed complete agreement (Fig. 7). Based on the identical reaction conditions except for the volume of DMF, it is reasonable to believe that the chemical compositions of all TPC-cPS prepared are identical.
  • the results of TAG (Fig. 8) and DSC (Fig. 9) show that the cross-linked polysulfate has good thermal stability, its 5% weight loss temperature (Td5%) is 249.25 °C, and there is no obvious DSC endothermic peak, which is consistent with General characteristics of crosslinked polymers.
  • TPC-cPS-7 XRD analysis and TEM diffraction images of TPC-cPS-7 were carried out.
  • Fig. 10(a) there is no obvious sharp peak shape in the XRD pattern of TPC-cPS-7, indicating that there is no regular ordered structure at the molecular level.
  • the high-resolution TEM image (Fig. 10b) and TEM diffraction also prove that TPC-cPS-7 has no microscopically ordered structure, which is consistent with the BET data, which further proves that the pores in TPC-cPS are not established by the microscopic chemical structure Rather, they are formed at the macroscopic physical level; the formation of these channels is attributed to the aggregation of the gel fiber bundles and the volatilization of the solvent.
  • a two-liquid phase interface extraction reaction method can be used to easily prepare such a porous organic cross-linked polymer framework with excellent morphology, and the adsorption performance of such a porous material is further characterized.
  • SEM and TEM images It can be found that TPC-cPS-7 has excellent porous morphology and pore size distribution. Due to its good wettability to organic solvents, the adsorption performance of TPC-cPS-7 as an adsorbent in organic solutions was investigated. A relatively common adsorbed substance was used to investigate its adsorption performance. It was found that at a lower concentration, TPC-cPS had a good adsorption effect on iodine.
  • TPC-cPS-7 has the best adsorption effect among the three adsorbents, and its adsorption rate and adsorption capacity are the best, and the maximum adsorption capacity can reach 702 mg/g; the adsorption effect of TPC-cPS-8 was slightly worse than that of TPC-cPS-6. Under the same test, the adsorption effect of TPC-cPS-1, TPC-cPS-2 and TPC-cPS-5 was much worse than that of TPC-cPS-8. The results of iodine adsorption were similar to the morphological results observed by SEM for each sample.
  • TPC-cPS In the aqueous phase, TPC-cPS was found to have a good removal effect for some dyes and persistent organic pollutants as an adsorbent.
  • the aqueous solutions of rhodamine B, bisphenol A, and tetracycline were respectively prepared. When the concentration of organic matter was 10 ppm, using the adsorbent concentration of 1 mg/mL could achieve 100%, 93% and 70% of rhodamine B, bisphenol A, and tetracycline, respectively. % removal rate ( Figure 13).
  • Bisphenol A was selected as the research object of the saturated adsorption capacity of TPC-cPS in aqueous phase.
  • TPC-cPS-6 and TPC-cPS-8 were compared with TPC-cPS-7.
  • TPC-cPS-7 Use 50 ppm BPA in water (25 mg BPA in 500 mL deionized water), still using 1 mg/mL sorbent concentration (10 mg sorbent in 10 mL solution), every 15 minutes The solution point concentration was measured, and the total adsorption was 120 minutes, and the adsorption capacity was calculated. The adsorption results are shown in the figure. Similarly, TPC-cPS-7 still has a good effect, the general trend is similar to the adsorption of iodine, but it reaches saturation in a shorter time, indicating that the adsorption efficiency of bisphenol A is significantly higher. And, the three samples began to show a large gap. The maximum adsorption capacity of TPC-cPS-7 can reach 205 mg/g, but the worst TPC-cPS-8 is only 151 mg/g, which is significantly different from the result of iodine adsorption.
  • Comparative Example 1 During the synthesis of TPC-cPS-gel, the amounts of TPC-OSO 2 F and DMF in Example 1 were changed, and the rest remained unchanged, and no solvogel was obtained. See Table 2, samples 9 and 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

多孔交联材料及其制备方法与应用,将TPC-OTBS正己烷溶液加入TPC-OSO 2F、DMF、DBU的混合液上,静置,得到交联溶剂凝胶;将交联溶剂凝胶加入甲醇中,搅拌后干燥,得到多孔交联材料。获得的凝胶通过溶剂交换可以制备具有丰富孔的固体多孔有机聚合物材料。用SEM和TEM对固体材料的表明和内部形貌进行了表征,发现了其多孔的形貌,且较多为大孔。用红外,核磁表征了交联聚硫酸酯的结构,通过固体核磁氟谱和XPS元素分析证明了硫酰氟基团完全反应,交联聚硫酸酯的多孔结构使其在吸附方面有较好的应用前景;在有机相中对碘的吸附量最高可达702mg/g,在水相中对双酚A的吸附也有着较好的结果,最大吸附量可达205mg/g。

Description

多孔交联材料及其制备方法与应用 技术领域
本发明属于材料制备技术,具体涉及一种多孔交联材料及其制备方法与应用。
背景技术
多孔有机聚合物,作为新兴的一种有机多孔材料,相比于无机多孔材料,具有可设计性强,易制备,结构稳定且多样化,重量轻,吸附性能优秀等优点,受到了研究者们的广泛关注。通常地,多孔有机聚合物多为交联型聚合物。交联的方法可以以聚合物本体来形成骨架,从而形成孔隙,这些孔隙通常的大小往往和聚合物单体、交联剂结构有密切关系。已经有一些例子展示了一些通过交联来成功合成的多孔有机聚合物吸附剂可有效处理水中的污染物,如金属离子、有机污染物和药物残留如抗生素等。水体中的持久性有机污染物(Persistent Organic Pollutants,POPs)是工业发展带来的新型水环境污染问题。因为持久性有机污染物一般具有较强的生物毒性,许多都有致突变性和致癌性,危害极大,难以通过常用的生物法将其去除。吸附技术具有相对较低的成本,且吸附及再生过程简单和操作简便,无有害副产物的优点,被认为是一种具有广泛应用前景的水净化技术。多孔有机聚合物的多种优点使其在水体中持久性有机污染物的去除方面极具优势。
技术问题
本发明化学合成便捷,多官能度的单体制备简单。首先选取4,4',4''-三羟基三苯甲烷(TPC-OH)作为酚类前体,分别硫酰氟化和硅氧醚化,形成了三官能度的单体TPC-OTBS和TPC-OSO 2F,首次静置得到溶剂凝胶。本发明首次采用多官能团(官能团数为3或更多)来制备交联聚硫酸酯,目标就是使用新的方法合成多孔有机聚合物并将其应用于水污染修复。
技术解决方案
本发明采用如下技术方案:一种多孔交联材料,由交联溶剂凝胶制备得到;所述交联溶剂凝胶由交联溶剂凝胶用单体在DBU存在下制备得到。具体的,本发明公开的多孔交联材料,其制备方法为,将TPC-OTBS正己烷溶液加入TPC-OSO 2F、DMF、DBU的混合液上,静置,得到交联溶剂凝胶;将交联溶剂凝胶加入醇中,搅拌后干燥,得到多孔交联材料。
本发明公开了交联溶剂凝胶,其制备方法为,将TPC-OTBS正己烷溶液加入TPC-OSO 2F、DMF、DBU的混合液上,静置,得到交联溶剂凝胶。
本发明中,TPC-OSO 2F、DMF、DBU、TPC-OTBS正己烷溶液的用量比为(200~210mg)∶(1~4.5mL)∶50μg∶2.15 mL,优选为(200~210mg)∶(3.5~4.2mL)∶50μg∶2.15 mL;TPC-OTBS正己烷溶液中,TPC-OTBS、正己烷的用量比为(2.2~2.205g)∶22mL;醇为小分子醇,比如甲醇;交联溶剂凝胶与醇的用量没有限制,使得醇淹没凝胶即可,搅拌干燥为常规技术,比如干燥为70~90℃干燥10~15小时,优选80℃干燥12小时。
本发明合成交联溶剂凝胶(TPC-cPS-gel)的一个典型过程为:称TPC-OSO 2F在样品瓶中,用移液枪量取DMF加入到样品瓶中作为溶剂,通过超声使所有固体溶解,然后加入DBU,再次超声使其溶解并分散均匀,再用移液枪吸取事先配置好的TPC-OTBS的正己烷溶液,沿瓶壁加入到样品瓶中,形成分层明显、界面清晰的双层液体;将样品瓶室温静置,用倾斜法观察溶液的流动性,可判断凝胶的形成(为常规技术),倒掉上层液体,取下层溶剂凝胶,即为TPC-cPS-gel。本发明涉及的具体溶解、滴加、加料都为本领域常规技术。
本发明中,TPC-OTBS、TPC-OSO 2F的化学结构式如下。
Figure 598910dest_path_image001
Figure 943303dest_path_image002
本发明中,在咪唑存在下,4,4',4''-三羟基三苯甲烷与叔丁基二甲基氯硅烷反应,制备TPC-OTBS;进一步的,4,4',4''-三羟基三苯甲烷、叔丁基二甲基氯硅烷、咪唑的摩尔比为1∶(3~4)∶(3~4);反应在室温下进行。
本发明中,在三乙胺存在下,4,4',4''-三羟基三苯甲烷与硫酰氟反应,制备TPC-OSO 2F;进一步的,4,4',4''-三羟基三苯甲烷、三乙胺的摩尔比为1∶(3~4);反应在室温下进行。
本发明公开了上述多孔交联材料作为吸附剂的应用;具体的,利用上述多孔交联材料吸附污染物的方法,包括以下步骤,将多孔交联材料加入含有污染物的溶液中,实现污染物的吸附;所述污染物包括碘、罗丹明B、双酚A、四环素;溶液可以为水溶液,也可以为有机溶剂溶液。
有益效果
本发明中,合成了多官能度的单体TPC-OSO 2F和TPC-OTBS,并应用化学合成交联聚硫酸酯凝胶。在合适浓度时,采用双液相界面萃取反应使交联聚硫酸酯在DMF溶液中形成溶剂凝胶。获得的凝胶通过溶剂交换可以制备具有丰富大孔的固体多孔有机聚合物材料。用SEM和TEM对固体材料的表明和内部形貌进行了表征,发现了其多孔的形貌,且较多为大孔。XRD和HR-TEM及TEM衍射证明了聚合物是非晶态的,其孔洞可能是由于宏观的凝胶束聚集和溶剂挥发形成的。用红外,核磁表征了交联聚硫酸酯的结构,通过固体核磁氟谱和XPS元素分析确认了硫酰氟基团的残留。同时还发现,交联聚硫酸酯的多孔结构使其在吸附方面有较好的应用前景,在有机相中对碘的吸附量最高可达702 mg/g,在水相中对双酚A的吸附也有着较好的结果,最大吸附量可达205 mg/g。
附图说明
图1为TPC-OTBS的核磁图谱。
图2为TPC-OSO 2F的核磁图谱。
图3为TPC-cPS-gel的制备及实物示意图。
图4 为TPC-cPS-gel通过甲醇溶剂交换制备多孔固体TPC-cPS过程示意。
图5为TPC-cPS-1至TPC-cPS-8的SEM图像。
图6为 TPC-cPS-1至TPC-cPS-8的TEM图像。
图7为TPC-cPS-1和TPC-cPS-7的红外图谱。
图8为TPC-cPS-7的热失重图。
图9为TPC-cPS-7的DSC图。
图10为TPC-cPS-7的(a)XRD图谱,(b)高分辨率HR-TEM图像和(c)TEM衍射图像。
图11为TPC-cPS-6,TPC-cPS-7 和TPC-cPS-8对2000 ppm的碘的四氯化碳溶液的饱和吸附曲线。
图12为TPC-cPS-6,TPC-cPS-7 和TPC-cPS-8对50 ppm双酚A的水溶液的饱和吸附曲线。
图13为TPC-cPS-7对10ppm的碘的四氯化碳溶液和双酚A、罗丹明B、四环素的水溶液的吸附去除率。
图14为TPC-cPS-7的 19F-NMR固体核磁氟谱落。
本发明的实施方式
现有技术都是采用双官能团的单体合成长链双芳基聚硫酸酯,采用多官能团(官能团数为3或更多)来制备交联聚硫酸酯的实例尚未被报道,而且采用现有方法以多官能度的单体为原料无法得到多孔结构的聚合物,令人欣喜的是,本发明通过新的方法,限定溶剂凝胶的形成条件和趋势,得到了交联聚硫酸酯的溶剂凝胶。进一步的,将所得的溶剂凝胶置于甲醇中进行溶剂交换可以很方便地得到含有丰富大孔(孔径80-120 nm)的交联聚硫酸酯固体材料,这个材料作为吸附剂在水体中去除双酚A等持久性有机污染物具有较好的效果,将该多孔交联材料加入含有污染物的溶液中,实现污染物的吸附。相比于一般的有机大孔材料需要使用模板法来制备,本发明合成方法中完全不需要模板,大孔可以在溶剂交换时自发形成。这一工作拓展了聚硫酸酯的合成方向和应用场景。本发明涉及的原料都为市售产品,具体操作方法以及测试方法都为本领域常规方法。
N,N-二甲基甲酰胺(DMF),四氢呋喃(THF),甲醇,正己烷,二氯甲烷(DCM)和三乙胺(TEA)购自国药控股集团有限公司。4,4',4''-三羟基三苯甲烷购自上海九鼎化学科技有限公司。咪唑,叔丁基二甲基氯硅烷(TBSCl)和1,8-二氮杂双环十一碳七烯(DBU)购自梯希爱(东京)化成工业发展有限公司。硫酰氟气体购自杭州茂宇电子化工有限公司。以上所有原料和试剂均按原样使用。
1H-NMR图谱使用INOVA 400 MHz高分辨率核磁共振谱仪测得,四甲基硅烷(TMS)为内标物,CDCl 3为溶剂。 13C-NMR和 19F-NMR图谱是通过AVANCEIII/WB-400固体宽腔超导核磁共振谱仪在室温下测量30-40 mg固体样品获得的。使用UV3600 日本岛津公司紫外可见近红外分光光度计(Shimadzu UV-3600 Plus)测得紫外-可见吸收光谱(Uv-vis)。所有污染物的浓度均由紫外图谱中的吸收强度判断。红外光谱(FT-IR)是在具有金刚石ATR附件的VERTEX 70红外光谱仪上测得。扫描型电子显微镜(SEM)图像通过日本日立公司HitachiS-4700扫描电子显微镜拍摄。TEM图像通过美国FEI公司的FEI TECNAI G20透射电子显微镜拍摄。
实施例一 :TPC-OTBS的合成:
Figure 706860dest_path_image003
4,4',4''-三羟基三苯甲烷(1.46 g, 5 mmol)和咪唑(1.36 g, 20 mmol)置于100 mL烧瓶中,加入20 mL二氯甲烷,在室温下搅拌15分钟,固体完全溶解。将叔丁基二甲基氯硅烷(3.02 g, 20 mmol)溶解于10 mL二氯甲烷中,通过恒压滴液漏斗滴加到上述烧瓶中,滴加时烧瓶中保持搅拌,30分钟滴加完毕。整个反应体系在室温下继续搅拌12小时。用TLC检测反应进行程度,原料转化后,过滤除去固体,将滤液旋干后对粗产物进行柱层析提纯,展开剂为二氯甲烷/石油醚(v/v=1/2)。纯产物为纯白色固体(2.3 g, 产率: 72%) TPC-OTBS,TBS来自叔丁基二甲基氯硅烷(TBSCl)。合成产物的核磁图谱见附图1。 1H NMR (400 MHz, CDCl 3,ppm) δ 6.91 (d, J = 8.0 Hz, 6H), 6.73 (d, J = 8.1 Hz, 6H), 5.33 (d, J = 13.5 Hz, 1H), 0.97 (s, 27H), 0.18 (s, 18H)。
TPC-OSO 2F的合成:
Figure 744086dest_path_image004
4,4',4''-三羟基三苯甲烷(1.46 g, 5 mmol)置于1000 mL烧瓶中,加入20 mL 二氯甲烷,在室温下搅拌并加入三乙胺(2.1 g, 20 mmol),持续搅拌使所有固体溶解。将烧瓶密封,用水泵抽至真空,然后用55 L气袋通入硫酰氟气体。整个反应体系保持密封并在室温下继续搅拌反应12小时。用TLC检测反应进行程度,原料转化后,过滤除去固体,将滤液旋干后对粗产物进行柱层析提纯,展开剂为乙酸乙酯/石油醚(v/v=1/4)。纯产物为白色细小晶体(2.5 g, 产率:93%)TPC-OSO 2F。合成产物的核磁图谱见附图2。 1H NMR (400 MHz, CDCl 3,ppm) δ 7.28 (d, J = 8.6 Hz, 6H), 7.16 (d, J = 8.7 Hz, 6H), 5.31 (s, 1H)。
TPC-cPS-gel的合成:TPC-cPS-gel的合成经过一个典型过程,以TPC-cPS-7的凝胶合成过程为例。室温下,称量206.5 mg的TPC-OSO 2F在20 mL样品瓶中,用移液枪量取4 mL的DMF加入到样品瓶中作为溶剂,通过常规超声使所有固体溶解,然后加入50 ug的DBU,再次超声使其溶解并分散均匀,再用移液枪吸取事先配置好的TPC-OTBS的正己烷溶液(2.2016 g TPC-OTBS溶于22 mL正己烷中)2.15 mL,沿瓶壁加入到样品瓶中,形成分层明显、界面清晰的双层液体;将样品瓶静置,用倾斜法观察溶液的流动性,可判断凝胶的形成,通过TLC跟踪上层正己烷中的单体TPC-OTBS浓度,判定反应的进行程度,反应完成时,倒掉上层液体,取下层溶剂凝胶,即为TPC-cPS-gel,为表2中样品7。
将上述TPC-OSO 2F的用量改变,其余不变,得到不同溶剂凝胶,见表2,样品1、样品2、样品5、样品6、样品8。
不同反应溶剂的限定是双液相界面聚合进行的首要条件,本发明选取了这两种极性差距很大的溶剂作为界面聚合反应的两相。将TPC-OSO 2F和催化剂DBU溶解于DMF中,再将TPC-OTBS的正己烷溶液置于其上层,形成了DMF/正己烷的双液相反应体系,并将其静置来进行反应。限定单体浓度下,观察到反应的发生。如图3所示,当两相反应时间不长时(2小时),两相均保持流动性,随着反应时间延长至24小时时通过倾斜法可以发现,整个DMF层失去流动性,形成凝胶,此时通过TLC分析上层溶液浓度,可以发现单体TPC-OTBS反应完成,观察TLC几乎不显色,说明上层正己烷中的单体浓度达到非常低的水平,反应完成,该判断为本领域常规技术;除去上层溶液,可获得凝胶,其仍然为透明胶状固体,且有一定机械强度,由于上层溶质都渗入了下层发生反应,因此凝胶的形成不仅仅在界面进行。
TPC-cPS多孔交联材料的制备:将上述获得的凝胶(TPC-cPS-7)置于甲醇中(淹没即可),常规搅拌溶液1小时,使其发生溶剂交换,去除催化剂DBU等,根据 13C-NMR和 19F-NMR发现所有杂质被去除;再将最终得到白色固体置于真空烘箱中80℃干燥12h后可得白色固体多孔材料,为TPC-cPS。 13C NMR (101 MHz, Solid, ppm) δ 149.84, 143.23, 130.98, 121.80, 55.02; 19F NMR (377 MHz, Solid, ppm) δ -122.98。
将凝胶置于析出剂甲醇中会产生溶剂交换,过程如图4所示。凝胶不再透明,有白色聚合物固体产生。随着溶剂交换进行,整个凝胶中的DMF将被完全置换成甲醇,其中的催化剂DBU也被甲醇带走,凝胶被固化,不再具有凝胶的弹性,变成了白色固体。将固体烘干,通过SEM对固体的表面进行观察,发现其表面布满了细微的孔洞。通过TEM对固体的小碎片进行观察,发现其成骨架结构,内部可形成空洞。说明这个聚合物是一个具有大孔结构的材料,孔径大多在100 nm左右。
将样品1、样品2、样品5、样品6、样品8的凝胶取出,将其置于甲醇中,并采用电磁搅拌,用甲醇来置换凝胶中的DMF,去除DBU和单体;将所得到的交联聚合物固体放在真空烘箱中在80℃下烘干12小时,可以得到多孔的交联聚硫酸酯,分别命名为TPC-cPS-1、TPC-cPS-2、TPC-cPS-3、TPC-cPS-6、TPC-cPS-8,BET测试如表1所示。
表1 TPC-cPS-1至TPC-cPS-8的BET数据,分别与序号对应:
Figure 225883dest_path_image005
通过SEM对固体小颗粒的表面进行观察其表面形貌。如图5所示,可以看到,TPC-cPS-1和TPC-cPS-2呈现出致密的表面形貌。在浓度较高时,整个聚合物呈微黄的硬质塑料状;TPC-cPS-5至TPC-cPS-8,已经可以观察到交联聚硫酸酯表面形成的小孔,且TPC-cPS-6和TPC-cPS-7均有着较好的形貌,其孔径大小分布均一且分布均匀,凝胶态时的强度高,不会被外界施加的剪切力如电磁搅拌等打碎;而浓度最小的TPC-cPS-8,可以看到其上有较多的大孔缺陷,其本身的聚集态也成粉末,凝胶态时的强度也不高,易被外界施加的剪切力如电磁搅拌等打碎。
通过TEM对固体小颗粒进行观察,得到与SEM类似的结果。如图6所示,TPC-cPS-1和TPC-cPS-2、TPC-cPS-5虽然可以观察到其聚合物在宏观层面上形成的骨架,但是极其密集,浓度逐渐减小后,孔径增大,开始出现大孔,并且随着浓度的进一步降低,其骨架缺陷越来越来,出现骨架的断裂。
结合SEM和TEM图像可以发现,浓度对最终形成的交联聚硫酸酯的孔径有一定影响。在可形成浓度的条件下,浓度越低,孔径越大,孔径分布趋向于越均匀。加高浓度会使孔径减小,甚至逐渐密实。
为了研究孔道形成的原因,对制备的TPC-cPS进行了一系列表征。首先,对TPC-cPS-1和TPC-cPS-7进行了红外表征,它们的红外图谱表现出完全的一致性(图7)。根据反应条件除了DMF体积之外完全一样,有理由相信制备的所有TPC-cPS的化学成份是完全一致的。TAG(图8)和DSC(图9)结果表明交联聚硫酸酯具有较好的热稳定性,其的5%失重温度(Td5%)为249.25℃,没有明显的DSC吸放热峰,符合交联聚合物的一般特征。
同时对TPC-cPS-7进行了XRD分析和TEM衍射图像的拍摄。如图10(a)所示,TPC-cPS-7的XRD图谱中未见明显的尖锐峰型,说明在分子层面上没有规整的有序结构。高分辨率TEM图像(图10b)和TEM衍射也证明TPC-cPS-7在微观上没有有序结构,这与BET数据吻合,这也进一步证明了TPC-cPS中的孔道并非由微观化学结构建立而是在宏观物理层面形成的;这些孔道的形成归因于凝胶纤维束的聚集和溶剂的挥发。
本发明首次采用双液相界面萃取反应法可以很方便的制备这样一种形貌优良的多孔有机交联聚合物骨架,进一步对这样一种多孔材料的吸附性能进行了表征,通过SEM与TEM图像可以发现,TPC-cPS-7据有较优秀的多孔形貌与孔径分布,由于其对有机溶剂的良好浸润性,考察了其作为吸附剂在有机溶液中的吸附性能:采用了碘单质这样一种比较常见的被吸附物质来考察其吸附性能,发现在较低的浓度下,TPC-cPS对碘有很好的吸附效果,10 ppm的碘的四氯化碳溶液,采用1 mg/mL的吸附剂浓度(10 mL溶液中加入10 mg吸附剂),吸附半个小时就可以将碘的浓度降低至0.1 ppm以下,具体浓度已超出紫外检测限,常规认为去除率达到100%(图13);为了考察其吸附容量,配置了2000 ppm的碘的四氯化碳溶液,依然采用1 mg/mL的吸附剂浓度(10 mL溶液中加入10 mg吸附剂),每过15分钟测量溶液中碘的浓度,共总吸附150分钟,并计算其吸附量。同时,对TPC-cPS-6和TPC-cPS-8进行了同样测试作为对照,其吸附量结果如图11所示。可以看到,三个吸附剂中TPC-cPS-7的吸附效果最佳,其吸附速率和吸附容量均为最佳,最大吸附容量可达702 mg/g;TPC-cPS-8的吸附效果较TPC-cPS-6稍差。同样的测试下,TPC-cPS-1和TPC-cPS-2、TPC-cPS-5吸附效果较TPC-cPS-8差得多。碘吸附的结果与各样品通过SEM观察到的形貌结果类似。
在水相中,发现TPC-cPS做为吸附剂对于一些染料和持久性有机污染物也有不错的去除效果。分别配置罗丹明B、双酚A、四环素水溶液,在有机物浓度10 ppm时,采用1 mg/mL的吸附剂浓度可以分别对罗丹明B、双酚A、四环素分别达到100%、93%和70%的去除率(图13)。选取双酚A作为TPC-cPS在水相中的饱和吸附量研究对象。同样的,以TPC-cPS-6和TPC-cPS-8与TPC-cPS-7形成对照。使用50 ppm浓度的双酚A水溶液(25 mg双酚A溶于500 mL去离子水中),依然采用1 mg/mL的吸附剂浓度(10 mL溶液中加入10 mg吸附剂),每过15分钟测量溶液点浓度,共总吸附120分钟,并计算器吸附容量,其吸附结果如图所示。同样的,TPC-cPS-7依然具有较好的效果,总的趋势与碘的吸附相仿,但在更短的时间内达到饱和,说明对于双酚A的吸附效率明显更高。并且,三个样品开始呈现出较大的差距。TPC-cPS-7的最大吸附量可达205 mg/g,但最差的TPC-cPS-8仅有151 mg/g,这与碘吸附的结果有明显的不同。
首先在TPC-cPS红外测试中(图7),有硫氟键的振动吸收峰,表明产物中依然还存在硫氟键。进一步的,对TPC-cPS-7进行了 19F-NMR固体核磁氟谱的测试(图14),证明了氟元素的存在,其化学位移符合固体核磁中硫酰氟基团的中氟的化学位移,XPS元素分析同样印证了元素的存在,认为在一定程度下,硫酰氟基团在交联聚合物中得到了一定的保留,其可能作为吸附的驱动力的提供者。
对比例一:TPC-cPS-gel的合成时,将实施例一中TPC-OSO 2F与DMF的用量改变,其余不变,得不到溶剂凝胶,见表2,样品9和10。
表2 实施例一、对比例一反应中单体和溶剂的用量:
Figure 108388dest_path_image006
如表2中所示,采取了8个浓度梯度,将TPC-OSO 2F与50 ugDBU溶解于八个不同体积中的DMF溶剂中,在其上层加入等体积等浓度的TPC-OTBS的正己烷溶液,进行同样的反应。反应结果可见,在浓度较小时(样品8)时,难以保持良好的凝胶形态及强度,施加较弱的剪切力(使用常规电磁搅拌子300rpm搅拌)即可将凝胶打碎,强度不高;而对比样品9与样品10,均没有形成凝胶态;其余凝胶强度好,无法被电磁搅拌子搅拌打碎。

Claims (10)

  1. 一种多孔交联材料,其特征在于,所述多孔交联材料由交联溶剂凝胶制备得到;所述交联溶剂凝胶由交联溶剂凝胶用单体在DBU存在下制备得到;所述交联溶剂凝胶用单体为TPC-OTBS、TPC-OSO 2F;所述TPC-OTBS、TPC-OSO 2F的化学结构式如下:
    Figure 950532dest_path_image001
  2. 根据权利要求1所述多孔交联材料,其特征在于,在咪唑存在下,4,4',4''-三羟基三苯甲烷与叔丁基二甲基氯硅烷反应,制备TPC-OTBS;在三乙胺存在下,4,4',4''-三羟基三苯甲烷与硫酰氟反应,制备TPC-OSO 2F。
  3. 根据权利要求1所述多孔交联材料,其特征在于,将TPC-OTBS正己烷溶液加入TPC-OSO 2F、DMF、DBU的混合液上,静置,得到交联溶剂凝胶。
  4. 根据权利要求3所述多孔交联材料,其特征在于,TPC-OSO 2F、DMF、DBU、TPC-OTBS正己烷溶液的用量比为(200~210mg)∶(1~4.5mL)∶50μg∶2.15 mL;TPC-OTBS正己烷溶液中,TPC-OTBS、正己烷的用量比为(2.2~2.205g)∶22mL。
  5. 权利要求1所述多孔交联材料的制备方法,其特征在于,包括以下步骤,将TPC-OTBS正己烷溶液加入TPC-OSO 2F、DMF、DBU的混合液上,静置,得到交联溶剂凝胶;将交联溶剂凝胶加入醇中,搅拌后干燥,得到多孔交联材料。
  6. 根据权利要求5所述多孔交联材料的制备方法,其特征在于,干燥为70~90℃干燥10~15小时。
  7. 权利要求5所述多孔交联材料在吸附污染物中的应用。
  8. 利用权利要求5所述多孔交联材料吸附污染物的方法,包括以下步骤,将所述多孔交联材料加入含有污染物的溶液中,实现污染物的吸附。
  9. 根据权利要求8所述的方法,其特征在于,所述污染物包括碘、罗丹明B、双酚A、四环素。
  10. 交联溶剂凝胶,其特征在于,将TPC-OTBS正己烷溶液加入TPC-OSO 2F、DMF、DBU的混合液上,静置,得到交联溶剂凝胶;所述TPC-OTBS、TPC-OSO 2F的化学结构式如下:
    Figure 816857dest_path_image002
PCT/CN2021/074735 2021-02-01 2021-02-01 多孔交联材料及其制备方法与应用 WO2022160356A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/074735 WO2022160356A1 (zh) 2021-02-01 2021-02-01 多孔交联材料及其制备方法与应用
US18/011,425 US20230330628A1 (en) 2021-02-01 2021-02-01 Porous crosslinked material, preparation and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074735 WO2022160356A1 (zh) 2021-02-01 2021-02-01 多孔交联材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2022160356A1 true WO2022160356A1 (zh) 2022-08-04

Family

ID=82654142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074735 WO2022160356A1 (zh) 2021-02-01 2021-02-01 多孔交联材料及其制备方法与应用

Country Status (2)

Country Link
US (1) US20230330628A1 (zh)
WO (1) WO2022160356A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104059228A (zh) * 2013-10-25 2014-09-24 陈元文 一种双酚a型聚硫酸(氨)酯类化合物及其合成方法
CN110540647A (zh) * 2018-04-16 2019-12-06 白银图微新材料科技有限公司 硫酸(胺)酯类连接子聚合物的聚合方法
CN110804183A (zh) * 2019-12-09 2020-02-18 白银图微新材料科技有限公司 一种共聚聚硫酸酯及其制备方法
CN110922598A (zh) * 2019-12-19 2020-03-27 白银图微新材料科技有限公司 一种苯二酚衍生物型聚硫酸酯的合成方法
CN112898571A (zh) * 2021-01-29 2021-06-04 苏州大学 多孔交联材料及其制备方法与应用
CN113150024A (zh) * 2021-01-29 2021-07-23 苏州大学 高分子凝胶用单体及高分子凝胶与制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104059228A (zh) * 2013-10-25 2014-09-24 陈元文 一种双酚a型聚硫酸(氨)酯类化合物及其合成方法
CN110540647A (zh) * 2018-04-16 2019-12-06 白银图微新材料科技有限公司 硫酸(胺)酯类连接子聚合物的聚合方法
CN110804183A (zh) * 2019-12-09 2020-02-18 白银图微新材料科技有限公司 一种共聚聚硫酸酯及其制备方法
CN110922598A (zh) * 2019-12-19 2020-03-27 白银图微新材料科技有限公司 一种苯二酚衍生物型聚硫酸酯的合成方法
CN112898571A (zh) * 2021-01-29 2021-06-04 苏州大学 多孔交联材料及其制备方法与应用
CN113150024A (zh) * 2021-01-29 2021-07-23 苏州大学 高分子凝胶用单体及高分子凝胶与制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BUYUKCAKIR ONUR, SEO YONGBEOM, COSKUN ALI: "Thinking Outside the Cage: Controlling the Extrinsic Porosity and Gas Uptake Properties of Shape-Persistent Molecular Cages in Nanoporous Polymers", CHEMISTRY OF MATERIALS, AMERICAN CHEMICAL SOCIETY, US, vol. 27, no. 11, 9 June 2015 (2015-06-09), US , pages 4149 - 4155, XP055953579, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.5b01346 *
KARAK SUVENDU, DEY KAUSHIK, TORRIS ARUN, HALDER ARJUN, BERA SAIBAL, KANHEERAMPOCKIL FAYIS, BANERJEE RAHUL: "Inducing Disorder in Order: Hierarchically Porous Covalent Organic Framework Nanostructures for Rapid Removal of Persistent Organic Pollutants", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 141, no. 18, 8 May 2019 (2019-05-08), pages 7572 - 7581, XP055953584, ISSN: 0002-7863, DOI: 10.1021/jacs.9b02706 *

Also Published As

Publication number Publication date
US20230330628A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
CN112898571B (zh) 多孔交联材料及其制备方法与应用
JP5827735B2 (ja) 多孔質シリカの製造方法
CN114292374B (zh) 一种含氟基多结构单元共价有机框架材料、其制备方法及油水分离应用
Huang et al. 2-Methylol-12-crown-4 ether immobilized PolyHIPEs toward recovery of lithium (i)
CN107837796B (zh) 一种键合型色谱柱固定相
CN113522244A (zh) 一种共价有机框架复合材料及其制备方法与应用
Yan et al. Fabrication of cellulose derivative coated spherical covalent organic frameworks as chiral stationary phases for high-performance liquid chromatographic enantioseparation
CN109174049A (zh) 印迹多孔吸附锂/铷离子材料的制备方法及应用
CN113150024B (zh) 高分子凝胶用单体及高分子凝胶与制备方法
CN110152500B (zh) 一种分离膜及其制备方法和应用
CN114085345A (zh) 一种超快去除速率和超高吸附容量的杯芳烃类多孔聚合物及用于染料的选择性分离
WO2022160356A1 (zh) 多孔交联材料及其制备方法与应用
CN112156660A (zh) 一种金属有机骨架M-gallate混合基质膜及其制备和应用
Zhang et al. Facile one-pot preparation of chiral monoliths with a well-defined framework based on the thiol–ene click reaction for capillary liquid chromatography
CN109046231B (zh) 一种超声波辅助水热合成法制备介孔硅酸铜铋纳米复合材料的方法及应用
CN115124676B (zh) 一种卤素修饰的共价有机框架材料的制备方法及其应用
CN110614089A (zh) 一种功能化聚酰胺-胺树形分大子吸附剂的制备方法
Khaniani et al. Application of clickable nanoporous silica surface for immobilization of ionic liquids
CN110420622A (zh) 一种脱除水中铜离子的氧化石墨烯杂化膜的制备方法
CN103920432A (zh) 一种轻质、柔性超疏水多孔气体凝胶材料及其制备方法
CN106380579A (zh) 一类基于偶氮苯的有机多孔聚合物及其制备方法和应用
CN113185491A (zh) 凝胶剂修饰的多孔海绵疏水材料及制备方法及用途
CN112898540A (zh) 含柱芳烃或去柱芳烃的多孔共轭聚合物及其制备方法和应用
CN109320732B (zh) 一种高比面积金刚烷基多孔聚合物及其制备方法
CN111871363A (zh) 一种AMP/SiO2复合吸附剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921956

Country of ref document: EP

Kind code of ref document: A1