WO2022158593A1 - 絞りしごき缶の製造方法及び絞りしごき缶 - Google Patents

絞りしごき缶の製造方法及び絞りしごき缶 Download PDF

Info

Publication number
WO2022158593A1
WO2022158593A1 PCT/JP2022/002425 JP2022002425W WO2022158593A1 WO 2022158593 A1 WO2022158593 A1 WO 2022158593A1 JP 2022002425 W JP2022002425 W JP 2022002425W WO 2022158593 A1 WO2022158593 A1 WO 2022158593A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
ironed
drawn
polyester resin
inner coating
Prior art date
Application number
PCT/JP2022/002425
Other languages
English (en)
French (fr)
Inventor
拓也 柏倉
宏美 山本
新 櫻木
楠 張
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to JP2022548037A priority Critical patent/JP7235180B2/ja
Priority to EP22742712.7A priority patent/EP4282542A1/en
Priority to CN202280006095.0A priority patent/CN116056808B/zh
Priority to US18/006,222 priority patent/US20230348143A1/en
Publication of WO2022158593A1 publication Critical patent/WO2022158593A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/14Linings or internal coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/28Deep-drawing of cylindrical articles using consecutive dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/12Cans, casks, barrels, or drums
    • B65D1/14Cans, casks, barrels, or drums characterised by shape
    • B65D1/16Cans, casks, barrels, or drums characterised by shape of curved cross-section, e.g. cylindrical
    • B65D1/165Cylindrical cans
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/87Non-metals or inter-compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/04Crosslinking with phenolic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen

Definitions

  • the present invention relates to a method for producing a drawn and ironed can using a coated metal sheet, and a drawn and ironed can obtained by this method, and more particularly, to a method for producing a drawn and ironed can obtained by this method, and more specifically, to a method for producing a drawn and ironed can, which is resistant to flavor sorption without causing metal exposure or peeling of the paint film.
  • the present invention relates to a manufacturing method capable of forming excellent drawn and ironed cans with good productivity.
  • thermoplastic resin-coated metal plate in which a metal plate such as aluminum is coated with a plastic film (thermoplastic resin film) made of a thermoplastic resin has long been known as a material for cans. It is also well known that the organic resin-coated metal sheet is subjected to drawing or drawing and ironing to form a seamless can for filling beverages or the like, or is press-molded to form a can lid such as an easy-open end. It is for example, an organic resin-coated metal sheet having a thermoplastic resin film made of a crystalline thermoplastic polyester resin mainly composed of ethylene terephthalate units as an organic resin coating layer is a seamless can (drawn and ironed can) formed by drawing and ironing. (Patent Document 1, etc.). Such organic resin-coated metal sheets can be drawn and ironed under dry conditions without the use of coolant (coolant/lubricant). There are advantages in terms of environment.
  • Such an organic resin-coated metal sheet is produced by laminating a pre-formed plastic film made of thermoplastic polyester resin or the like to the metal sheet by thermal bonding, or extruding a molten thin film of thermoplastic polyester resin or the like onto the metal sheet. It is manufactured by a film lamination method such as an extrusion lamination method. However, in the film lamination method, it is difficult to control the thickness of the film to be thin due to film formation.
  • Patent Document 2 describes a double-sided coated metal plate in which the dry coating amount of the film that will be the inner surface of the can after processing is 90 to 400 mg/100 cm 2 , the glass transition temperature is 50 to 120°C, and the glass transition temperature is 60°C.
  • the pencil hardness is H or higher
  • the elongation rate is 200 to 600%
  • the dynamic friction coefficient is in the range of 0.03 to 0.25
  • the dry coating amount of the film that will be the outer surface of the can after processing is 15 to
  • a coated metal sheet for drawn and ironed cans having a pencil hardness of H or higher under test conditions of 150 mg/100 cm 2 , a glass transition temperature of 50 to 120° C., and 60° C. has been proposed.
  • the polyester-based inner coating film formed on the inner surface side in contact with the contents has various properties other than can-making workability. That is, it is required that the elution of paint components etc. is suppressed and that the flavor (aroma) components of the contents are not sorbed (flavor sorption resistance). Sometimes. In order to form a coating film with excellent flavor sorption resistance, it is preferable to use a polyester resin with a high glass transition temperature as the main component.
  • Patent Document 2 described above, a polyester-based coating film that can maintain hardness, elongation, etc. even when heat generation near 60 ° C. occurs due to continuous drawing and ironing on the can inner surface side of the coated metal plate.
  • a painted metal sheet that can withstand drawing and ironing by forming the
  • the object of the present invention is to maintain good flavor sorption resistance, even when using a coated metal plate having a coating made of a polyester resin with a high glass transition temperature, the occurrence of coating film defects during molding. It is possible to suppress the occurrence of peeling of the paint film due to heat treatment after molding, and to manufacture a drawn and ironed can with excellent flavor sorption resistance, excellent paint film coverage with little exposed metal part, and excellent corrosion resistance with good productivity. to provide a method. Another object of the present invention is to provide a drawn and ironed can which is excellent in coating coverage and corrosion resistance with less exposed metal portions while maintaining flavor sorption resistance.
  • a method for producing a drawn and ironed in a method for producing a drawn and ironed can obtained by drawing and ironing a coated metal sheet having an inner coating film on at least the inner surface of the can, the inner coating film contains a polyester resin, and the polyester resin
  • the glass transition temperature (Tg) of is 55 ° C. or higher
  • the ironing rate in the drawing and ironing is 40% or more
  • the processing speed at the time of ironing in the drawing and ironing is 2000 mm / sec or more.
  • the inner coating film has a glass transition temperature of 55° C. or higher; 2.
  • the inner coating film further contains a curing agent, and the curing agent is a resol-type phenolic resin and/or an amino resin; 3.
  • the coated metal sheet further has an outer coating film on the surface that will be the outer surface of the can, and the outer coating film contains a polyester resin; 4.
  • the coverage of the inner surface coating of the drawn and ironed can is 200 mA or less in terms of ERV, 5. heat treatment at a temperature of 55 ° C. or higher after the drawing and ironing; is preferred.
  • a drawn and ironed can having an inner coating film at least on the inner surface side of the can, wherein the inner coating film contains a polyester resin as a main component, and the inner coating film has a glass transition temperature (Tg) of 55. ° C. or more, and the coating degree of the inner coating film is 200 mA or less in terms of ERV.
  • Tg glass transition temperature
  • the inner coating film further contains a curing agent, and the curing agent is a resol-type phenolic resin and/or an amino resin; 2.
  • the inner coating film does not contain a curing agent; 3. further having an outer coating film on the outer surface of the can, wherein the outer coating film contains a polyester resin; 4.
  • the thickness of the central part of the can body is 60% or less of the thickness of the central part of the can bottom, 5.
  • the thickness of the inner coating film at the center of the can body is 60% or less of the thickness of the inner coating film at the center of the can bottom, 6.
  • the thickness ratio of the inner coating film to the metal substrate is substantially the same between the can bottom and the can body; 7.
  • L 0 Initial length in the height direction of the coating film isolated from the central part of the can body
  • ⁇ L 1 At a heating rate of 5 ° C./min while applying a load of 5.20 ⁇ 10 5 N/m 2 per unit area 8.
  • the elongation of the inner coating film on the can bottom under test conditions of 60 ° C. is less than 200%, is preferred.
  • the drawn and ironed can made of the above-mentioned coated metal sheet, in order to ensure sufficient flavor sorption resistance, it is preferable to use a polyester resin having a high glass transition temperature as the polyester resin contained as the main component in the inner coating film.
  • a polyester resin with a high glass transition temperature is used, the elongation of the coating film and the can manufacturing processability tend to decrease. is likely to occur, metal exposed portions may occur, and the coating film coverage of the inner surface may deteriorate.
  • the present inventors have found that even when the glass transition temperature of the polyester resin contained as the main component in the inner coating film is high, the inner coating can be obtained by setting the forming speed (processing speed) in the drawing and ironing process to 2000 mm / sec or more.
  • the glass transition temperature of the polyester resin contained in the inner coating film of the painted metal plate to be drawn and ironed is as high as 55 ° C. Excellent adhesion.
  • high-speed processing increases the heat generated during processing, softening the coating film and significantly improving the elongation of the coating film and can-making processability.
  • coating film defects and metal exposure during molding can be prevented, and coating film coverage on the inner surface of the can can be improved.
  • the heat generated by processing increases, the residual stress of the coating film after processing can be reduced, so that the occurrence of peeling of the coating film during heat treatment as described above can be effectively suppressed.
  • the resulting drawn and ironed can effectively prevents exposure of the metal, and the degree of coverage of the inner coating film expressed in terms of ERV can be kept at 200 mA or less even after the heat treatment, and excellent corrosion resistance can be exhibited. becomes.
  • the drawn and ironed can obtained by the manufacturing method of the drawn and ironed can of the present invention has excellent flavor sorption resistance and excellent coating film coverage on the inner surface. is. That is, in a drawn and ironed can obtained by drawing and ironing at a molding speed of 2000 mm/sec or more using a coated metal plate having an inner coating film made of a polyester resin having a glass transition temperature of 55 ° C. or higher, the coating of the inner coating film The degree of coating is 200 mA or less in terms of ERV, which is satisfactory. Limonene sorption rate is less than 5% (Examples 1-9).
  • breakage in the present invention occurs.
  • it has excellent can manufacturing workability and can effectively suppress peeling of the coating film during heat treatment. , it is possible to effectively prevent metal exposure even after heat treatment.
  • the coated metal sheet used in the method for producing a drawn and ironed can of the present invention is a metal sheet coated with a coating composition, and is a coated metal sheet having an inner coating film on at least the surface that will become the inner surface of the can after drawing and ironing.
  • the inner coating film is characterized by containing a polyester resin having a glass transition temperature of 55° C. or higher as a main component, and desirably further containing a curing agent.
  • the glass transition temperature (Tg) of the inner coating film is 55°C or higher, preferably 55°C to 120°C, more preferably 60°C to 110°C, still more preferably 65°C to 100°C, and particularly preferably higher than 65°C to 95°C.
  • the Tg is lower than the above range, when the content is filled into the molded can body, the flavor component of the content is likely to be sorbed, and the flavor sorption resistance may be deteriorated. There is a possibility that the barrier property of the film is lowered and the corrosion resistance is deteriorated.
  • the Tg exceeds 120°C, the elongation of the coating film is reduced, and metal exposure may occur during molding, resulting in poor can-making workability and increased residual stress in the coating film. As a result, the coating may peel off during the heat treatment, resulting in poor coating coverage of the inner surface.
  • the coated metal sheet used in the method for producing a drawn and ironed can of the present invention is preferably a double-sided coated metal sheet having an outer coating film on the surface that will become the outer surface of the can after drawing and ironing.
  • a polyester resin as a main component, preferably a curing agent.
  • the Tg of the outer coating film is 30° C. or higher, preferably higher than 40° C., more preferably higher than 50° C. and 120° C. or lower, still more preferably 55 to 110° C., particularly preferably 65 to 100° C. or lower, and most preferably. It is preferably in the range of 67-90°C.
  • the Tg When the Tg is lower than the above range, the hardness of the coating film becomes low, and there is a possibility that the outer surface defects such as coating film scraping may occur. On the other hand, if the Tg exceeds 120° C., the workability and elongation of the coating film are lowered, and the metal may be exposed during molding, resulting in poor can-making workability.
  • the inner coating film that is continuous from the bottom to the body on the inner surface side of the can is coated. It becomes possible to Furthermore, in the case of using a double-sided coated metal sheet having an outer coating film on the surface that will become the outer surface of the can after drawing and ironing, the entire outer surface coating film is coated continuously from the bottom to the body of the can on the outer surface side. becomes possible.
  • the elongation of the inner coating film under the 60°C test conditions is less than 200%. That is, as described above, in the method for manufacturing a drawn and ironed can of the present invention, the ironing is performed at a high processing speed of 2000 mm / sec or more, so the heat generated during processing is increased, and the temperature exceeds the glass transition temperature of the polyester resin. In this state, the can-manufacturing processability (elongation) of the coating film is improved. Therefore, even if the inner coating film has an elongation of less than 200% under the test conditions of 60° C., satisfactory can-manufacturing processability and good flavor sorption resistance can be obtained. On the other hand, when the elongation under the 60° C. test conditions is 200% or more, the flavor sorption resistance becomes poor.
  • the dry film thickness of the internal coating film is preferably in the range of 0.2 to 20 ⁇ m, preferably 1 to 12 ⁇ m, more preferably greater than 2 ⁇ m and less than or equal to 12 ⁇ m.
  • the dry coating mass is preferably in the range of 3 to 300 mg/dm 2 , preferably 15 to 150 mg/dm 2 , more preferably greater than 25 mg/dm 2 and less than or equal to 150 mg/dm 2 . If the thickness is thinner than the above range, the metal tends to be exposed during molding, resulting in poor coverage of the inner coating film.
  • the film thickness is preferably in the range of ⁇ 10 ⁇ m.
  • the dry coating mass is more than 85 mg/dm 2 and 150 mg/dm 2 or less, preferably in the range of 90 to 140 mg/dm 2 . If the thickness is thinner than the above range, the corrosion resistance is inferior.
  • the content to be filled in the drawn and ironed can is a low-acid beverage with relatively weak corrosiveness
  • corrosion resistance can be ensured even with a relatively thin film. It is preferably less than 5 ⁇ m, more preferably in the range of 2.5-6 ⁇ m.
  • the dry coating mass is 15 mg/dm 2 or more and less than 90 mg/dm 2 , preferably more than 25 mg/dm 2 and less than 90 mg/dm 2 , more preferably 30 to 85 mg/dm 2 . be. If the thickness is thinner than the above range, the corrosion resistance is inferior, and if the thickness exceeds the above range, the thickness becomes unnecessarily thick, resulting in poor economy.
  • the dry film thickness of the outer coating film is 0.2 to 20 ⁇ m, preferably 1 to 12 ⁇ m, more preferably greater than 2 ⁇ m and 10 ⁇ m or less, still more preferably greater than 2 ⁇ m and 6.5 ⁇ m or less. is preferred.
  • the dry coating mass is from 3 to 300 mg/dm 2 , preferably from 15 to 150 mg/dm 2 , more preferably from 25 mg/dm 2 to 140 mg/dm 2 , still more preferably from 25 mg/dm 2 to 90 mg/dm 2 . A range of less than dm 2 is preferred. If the thickness is thinner than the above range, the metal tends to be exposed during molding, resulting in poor coating coverage of the outer surface.
  • the film is thicker than the above range, the residual stress generated during processing increases, and the coating film tends to peel off during the heat treatment after drawing and ironing.
  • the inner coating film which requires higher coverage, be thicker than the outer coating film.
  • the content of the polyester resin, preferably the amorphous polyester resin described later is preferably higher than 50% by mass, more preferably 60% by mass or more, and further preferably 70% by mass or more. It is preferably 80% by mass or more, and particularly preferably 80% by mass or more.
  • the content of the polyester resin, preferably the amorphous polyester resin is preferably higher than 50% by mass, more preferably 60% by mass or more, further preferably 70% by mass or more, and 80% by mass. % by mass or more is particularly preferred.
  • a polyester resin is used as the main component constituting the inner coating film and the outer coating film.
  • the content (mass ratio) is the largest.
  • the mass ratio of the polyester resin is preferably higher than 50% by mass, more preferably 60% by mass or more, and more preferably 70% by mass. The above is more preferable, and 80% by mass or more is particularly preferable.
  • the glass transition temperature (Tg) of the polyester resin contained as a main component in the inner coating film is 55° C.
  • Tg is lower than the above range, when the content is filled into the drawn and ironed can as described above, the moisture in the content acts as a kind of plasticizer, and the motion of the molecular chains of the polyester resin is reduced. As a result, the flavor component contained in the content tends to diffuse into the coating film, resulting in an increase in the sorption amount and a deterioration in flavor sorption resistance.
  • the glass transition temperature (Tg) of the polyester resin contained as the main component in the outer coating film is 30° C. or higher, preferably higher than 40° C., more preferably higher than 50° C. and 120° C.
  • the Tg is lower than the above range, the hardness of the coating film becomes low, and there is a possibility that the outer surface defects such as coating film scraping may occur.
  • the Tg exceeds 120° C., the elongation of the coating film is lowered, resulting in poor can-manufacturing workability, and there is a risk that the metal will be exposed during molding.
  • a blend of two or more polyester resins with different Tg's can be used, and by blending polyester resins with different Tg's, the impact resistance is improved compared to the case where only one polyester resin is used.
  • the Tg mix of the polyester resin blend calculated by the following formula (2) should be within the above Tg range.
  • Tg mix represents the glass transition temperature (K) of the polyester resin blend
  • W1, W2, . . . , Wm represent the mass fraction of each polyester resin (polyester resin 1, polyester resin 2, .
  • a known method can be applied as a method for measuring the glass transition temperature.
  • a differential scanning calorimeter can be used at a heating rate of 10°C/min.
  • polyester resin examples include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, and 2,6-naphthalenedicarboxylic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, and sebacine.
  • aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, and 2,6-naphthalenedicarboxylic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, and sebacine.
  • acids such as dodecanedioic acid and dimer acid, (anhydrous) maleic acid, fumaric acid, unsaturated dicarboxylic acids such as terpene-maleic acid adducts, 1,4-cyclohexanedicarboxylic acid, tetrahydrophthalic acid, hexa alicyclic dicarboxylic acids such as hydroisophthalic acid and 1,2-cyclohexenedicarboxylic acid; One or more of these can be selected and used.
  • isophthalic acid isophthalic acid, orthophthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, trimellitic acid, adipic acid, sebacic acid, fumaric acid, maleic acid, dimer acid and 1,4-cyclohexanedicarboxylic acid It is preferable to use one or more selected from the group consisting of acids.
  • terephthalic acid and isophthalic acid are particularly preferable.
  • the aromatic dicarboxylic acid At least one selected from certain terephthalic acid, orthophthalic acid, isophthalic acid, and 2,6-naphthalene dicarboxylic acid, or two or more selected from 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol % or more.
  • the total content of terephthalic acid and isophthalic acid is preferably 70 mol% or more when the total amount of all polycarboxylic acid components constituting the polyester resin blend is 100 mol%. is 80 mol % or more, more preferably 90 mol % or more.
  • a component other than the aromatic dicarboxylic acid such as an aliphatic dicarboxylic acid such as adipic acid or sebacic acid, is added to the remaining proportion of the aromatic dicarboxylic acid, that is, 30 mol. %, but it is presumed that if the ratio of components other than the aromatic dicarboxylic acid such as the aliphatic dicarboxylic acid component increases, the flavor sorption resistance of the coating film will deteriorate.
  • the ratio of the components other than the aromatic dicarboxylic acid such as the aliphatic dicarboxylic acid component to the polycarboxylic acid component constituting the polyester resin is less than 30 mol%, preferably less than 20 mol%, more preferably 10 mol%. less than, particularly preferably less than 5 mol %.
  • the aliphatic dicarboxylic acid component is preferably less than 30 mol%, preferably less than 20 mol%, more preferably less than 10 mol%, and particularly preferably less than 5 mol%.
  • the polyhydric alcohol component constituting the polyester resin is not particularly limited, and may be ethylene glycol, propylene glycol (1,2-propanediol), 1,3-propanediol, 1,4-butanediol, 1,2-butane.
  • Trihydric or higher polyalcohols such as cyclic polyalcohols, trimethylolpropane, trimethylolethane, and pentaerythritol can be used singly or in combination of two or more.
  • ethylene glycol, propylene glycol, neopentyl glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, and diethylene glycol are suitable as components constituting the polyester resin. can be used for
  • the total amount of polyhydric alcohol components constituting the polyester resin is 100 mol%
  • ethylene glycol, propylene glycol, 2-methyl-1 At least one selected from 3-propanediol, or a combination of two or more selected from 3-propanediol, is 20 mol% or more, preferably 30 mol% or more, more preferably 40 mol% or more, still more preferably 50 mol% or more, particularly preferably From the viewpoint of flavor sorption resistance, it is preferably contained in an amount of 60 mol % or more, most preferably 70 mol % or more.
  • the polyester resin can be obtained by polycondensing one or more of the above polycarboxylic acid components and one or more of the polyhydric alcohol components, or polycondensing polyhydric carboxylic acid components such as terephthalic acid, isophthalic acid, and trianhydride after polycondensation.
  • the polyester resin has an acid value of 0.1 to 40 mgKOH/g, preferably 0.5 to 25 mgKOH/g, more preferably 0.5 to 25 mgKOH/g, more preferably, from the viewpoint of curability, retort whitening resistance, adhesion to metal substrates, and the like. It is desirable to be in the range of 1 to 10 mgKOH/g, more preferably higher than 2 mgKOH/g to 10 mgKOH/g or less, particularly preferably 2.5 to 8 mgKOH/g, most preferably 3 to 7 mgKOH/g. If the acid value is lower than the above range, the adhesion between the metal substrate and the coating film may deteriorate.
  • the coating film is more likely to absorb water than when it is within the above range, and the resistance to retort whitening may be lowered, and the crosslink density of the coating film is reduced.
  • the polyester resin is a blend obtained by blending two or more polyester resins
  • the sum of the values obtained by multiplying the acid value and mass fraction of each polyester resin is the average acid value of the blend. (AV mix ), and the average acid value should be within the acid value range described above.
  • the hydroxyl value of the polyester resin is not limited to this, but is 20 mgKOH/g or less, preferably 10 mgKOH/g or less, from the viewpoint of can-making processability, coating film peeling during heat treatment, retort whitening resistance, etc. It is more preferably in the range of 1 to 10 mgKOH/g, still more preferably in the range of 2 to 10 mgKOH/g.
  • the number average molecular weight (Mn) of the polyester resin is not limited to this, but is 1,000 to 100,000, preferably 3,000 to 50,000, more preferably 5 from the viewpoint of can manufacturing processability. ,000 to 30,000, more preferably 10,000 to 20,000. If it is smaller than the above range, the coating film may become brittle and may be inferior in can-making processability.
  • the polyester resin is preferably an amorphous polyester resin from the viewpoint of can-making workability, dent resistance, and paintability.
  • amorphous as used herein means that a crystalline component does not exhibit a distinct melting point in measurement with a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the mass ratio of the amorphous polyester resin among all the polyester resin components contained in the inner coating film and/or the outer coating film is preferably higher than 40% by mass, preferably 50% by mass. %, more preferably 60% by mass or more, particularly preferably 70% by mass or more, most preferably 80% by mass or more.
  • the inner coating film and outer coating film of the coated metal sheet used in the manufacturing method of the drawn and ironed can of the present invention desirably contain a curing agent in addition to the polyester resin described above.
  • the curing agent reacts with functional groups such as carboxyl groups and hydroxyl groups of the polyester resin, which is the main component, to form a crosslinked structure, thereby significantly improving the heat resistance and retort whitening resistance of the coating film.
  • the inner and outer coatings contain a curing agent.
  • curing agents examples include isocyanate compounds, resol-type phenolic resins, amino resins, epoxy group-containing compounds, oxazoline group-containing compounds, carbodiimide group-containing compounds, ⁇ -hydroxyalkylamide compounds, and the like.
  • resol-type phenolic resins and amino resins are suitable from the viewpoint of curability and sanitation.
  • resol-type phenolic resins and amino resins are suitable for the coating composition forming the inner coating film (hereinafter sometimes referred to as "inner coating composition”).
  • ner coating composition resol-type phenolic resins
  • An amino resin capable of forming a transparent coating film without coloration derived from a curing agent is preferably used for the coating composition forming the outer coating film (hereinafter sometimes referred to as "external coating composition”). can be done.
  • the resol-type phenolic resin described above causes yellowing of the formed coating film, so care must be taken when using it in a coating composition for forming an external coating film.
  • Resol type phenolic resin examples include o-cresol, p-cresol, p-tert-butylphenol, p-ethylphenol, 2,3-xylenol, 2,5-xylenol, phenol, m-cresol, m-ethylphenol, 3,5-xylenol, m-methoxyphenol and other phenolic compounds are used in combination of one or more, and these phenolic compounds are reacted with formaldehyde in the presence of an alkali catalyst to produce a resol-type phenolic resin. can be used.
  • a phenol compound that becomes trifunctional upon reaction with formaldehyde is used as a starting material in an amount of more than 20% by mass, preferably more than 30% by mass, more preferably more than 50% by mass, more preferably more than 50% by mass.
  • phenolic compounds that become trifunctional by reaction with formalins include phenol, m-cresol, m-ethylphenol, 3,5-xylenol, and m-methoxyphenol, and one or more of these can be used. can be selected and used.
  • the content of these trifunctional phenol compounds is 20% by mass or less, sufficient curability cannot be obtained, and the degree of curing of the coating film may decrease.
  • these trifunctional phenolic compounds m-cresol is more preferable from the viewpoint of curability. ) is particularly preferred. Thereby, a sufficient degree of curing of the coating film can be obtained, which is desirable from the viewpoint of heat resistance, corrosion resistance, retort whitening resistance, etc. of the coating film.
  • the main component is the one having the highest content (mass ratio) among the phenol compounds that are the starting materials.
  • m-cresol-based resol-type phenolic resin those containing more than 50% by mass, preferably more than 60% by mass, more preferably more than 70% by mass, and still more preferably more than 80% by mass of m-cresol as a starting material are desirable. .
  • the content is less than 50% by mass, preferably less than 30% by mass, more preferably 20% by mass. % is preferable. If it is 50% by mass or more, the curability may be lowered.
  • bifunctional phenol compounds include o-cresol, p-cresol, p-tert-butylphenol, p-ethylphenol, 2,3-xylenol and 2,5-xylenol.
  • methylol groups are alkyl-etherified with alcohols having 1 to 12 carbon atoms (alkoxymethyl ) can be preferably used.
  • the ratio of methylol groups to be alkyl-etherified is preferably 50% or more, more preferably 60% or more, and even more preferably 80% or more. If the ratio of alkyl-etherification is less than 50%, the compatibility with the polyester resin becomes low, and the coating film becomes turbid and sufficient curability cannot be obtained.
  • the alcohol used for the alkyl etherification is a monohydric alcohol having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms.
  • Preferred monohydric alcohols include methanol, ethanol, n-propanol, n- Examples include butanol and isobutanol, and n-butanol is more preferred.
  • the number of alkyl-etherified methylol groups is preferably 0.3 or more, preferably 0.5 to 3, on average per phenol nucleus. be. If the number is less than 0.3, the curability with the polyester resin is inferior.
  • the number average molecular weight (Mn) of the resol-type phenolic resin is preferably in the range of 500-3,000, preferably 800-2,500. If it is smaller than the above range, the coating film formed tends to have a high cross-linking density, so that the residual stress of the coating film after the can manufacturing process increases, which may cause the coating film to peel off during heat treatment. On the other hand, if it is larger than the above range, the curability will be inferior, and as a result, there is a possibility that the heat resistance, corrosion resistance, retort whitening resistance, etc. of the coating film will be inferior.
  • amino resins examples include methylol obtained by reacting amino components such as melamine, urea, benzoguanamine, acetoguanamine, steroguanamine, spiroguanamine, and dicyandiamide with aldehyde components such as formaldehyde, paraformaldehyde, acetaldehyde, and benzaldehyde. modified amino resins.
  • Amino resins obtained by alkyletherifying some or all of the methylol groups of this methylolated amino resin with alcohols having 1 to 12 carbon atoms are also included in the above amino resins. These can be used alone or in combination of two or more.
  • amino resin from the viewpoint of hygiene, can-manufacturing processability, curability, etc., methylolated amino resin using benzoguanamine (benzoguanamine resin), methylolated amino resin using melamine (melamine resin), and urea were used.
  • Methylolated amino resins (urea resins) are preferred, benzoguanamine resins and melamine resins are more preferred, and benzoguanamine resins are even more preferred.
  • Benzoguanamine resins include benzoguanamine resins obtained by alkyl-etherifying some or all of the methylol groups of benzoguanamine resins with alcohols such as methanol, ethanol, n-butanol and i-butanol, such as methyl-etherified benzoguanamine resins and ethyl-etherified benzoguanamine resins.
  • a resin, a butyl-etherified benzoguanamine resin, a mixed-etherified benzoguanamine resin of methyl ether and butyl ether, a mixed-etherified benzoguanamine resin of methyl ether and ethyl ether, and a mixed-etherified benzoguanamine resin of ethyl ether and butyl ether are preferred.
  • a methyl-etherified benzoguanamine resin and a butyl-etherified benzoguanamine resin are more preferable.
  • Melamine resins include melamine resins obtained by alkyl-etherifying some or all of the methylol groups of melamine resins with alcohols such as methanol, ethanol, n-butanol and i-butanol, such as methyl-etherified melamine resins and ethyl-etherified melamine.
  • a resin, a butyl-etherified melamine resin, or a mixed etherified melamine resin of methyl ether and butyl ether, a mixed etherified melamine resin of methyl ether and ethyl ether, and a mixed etherified melamine resin of ethyl ether and butyl ether are preferred.
  • a methyl-etherified melamine resin is more preferable, and a full-etherified type methyl-etherified melamine resin is particularly preferable.
  • Urea resins include urea resins obtained by alkyl-etherifying some or all of the methylol groups of urea resins with alcohols such as methanol, ethanol, n-butanol and i-butanol, such as methyl-etherified urea resins and ethyl-etherified urea. Resins, butyl-etherified urea resins, mixed etherified urea resins of methyl ether and butyl ether, mixed etherified urea resins of methyl ether and ethyl ether, and mixed etherified urea resins of ethyl ether and butyl ether are preferred.
  • Examples of functional groups possessed by the melamine resin and benzoguanamine resin described above include an imino group (>NH), an N-methylol group (>NCH 2 OH), and an N-alkoxymethyl group (>NCH 2 OR; R is an alkyl group). These functional groups act as reaction points in cross-linking reactions with carboxyl groups (--COOH) and hydroxyl groups (--OH) contained in the polyester resin that is the main ingredient, or in self-condensation reactions between amino resins. , the imino group contributes only to the self-condensation reaction).
  • the number of the melamine resin is considered to be larger than that of the melamine resin due to the molecular structure.
  • the melamine resin is excellent in curability, the crosslink density of the coating film formed tends to be high, and depending on the blending amount, peeling of the coating film may occur during heat treatment.
  • the benzoguanamine resin is inferior to the melamine resin in curability, but the crosslink density of the formed coating film is less likely to increase, and it can be said that the benzoguanamine resin is more suitable than the melamine resin from the viewpoint of coating peel resistance.
  • a mixed amino resin in which melamine resin and benzoguanamine resin are used in combination at a predetermined ratio may be used.
  • the compounding ratio (mass ratio) of the melamine resin and the benzoguanamine resin is preferably such that the compounding ratio of the benzoguanamine resin is higher, specifically 49:51 to 5:95, preferably 40:60 to 5. :95, more preferably 35:65 to 10:90, more preferably 30:70 to 10:90.
  • the curing agent is desirably blended in the range of 1 to 40 parts by mass, preferably 1 to 30 parts by mass, and more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the polyester resin.
  • a resol type phenolic resin as a curing agent, it is 1 to 40 parts by mass, preferably 2 to 30 parts by mass, more preferably 2 to 25 parts by mass with respect to 100 parts by mass of the polyester resin (solid content) as the main agent. , more preferably 2.5 to 20 parts by mass, and particularly preferably 3 to 15 parts by mass.
  • a melamine resin when used as a curing agent, 1 to 15 parts by mass, preferably 1 to 10 parts by mass, more preferably 1 to 5.5 parts by mass, with respect to 100 parts by mass of the polyester resin. It is preferably blended in an amount of 2 to 5 parts by mass.
  • benzoguanamine resin when used as a curing agent, 4 to 40 parts by mass, preferably 5 to 30 parts by mass, more preferably 6 to 28 parts by mass, and still more preferably 8 to 25 parts by mass with respect to 100 parts by mass of polyester resin, Particularly preferably, it is blended in an amount of 8 to 24 parts by mass.
  • the amount is 2 to 25 parts by mass, preferably 2 to 20 parts by mass, more preferably 2 to 20 parts by mass, with respect to 100 parts by mass of the polyester resin. 5 to 15 parts by mass, more preferably 3 parts by mass or more and less than 10 parts by mass.
  • the amount of the curing agent is less than the above range, sufficient curability cannot be obtained, the degree of curing of the coating film becomes low, and the heat resistance tends to decrease. Therefore, when a drawn and ironed can is formed at a high speed, the temperature rise becomes more pronounced, and there is a possibility that the coating film tends to stick to the mold during forming.
  • the can body is extracted from the punch after drawing and ironing, the can body sticks to the punch, and a phenomenon occurs in which the punch and the can body are difficult to separate (poor stripping property). The body may buckle or the body may break, reducing productivity.
  • the coating film may whiten, and the retort whitening resistance may be lowered.
  • the amount of curing agent is larger than the above range, depending on the type of curing agent used, the can-making workability of the coating film may deteriorate, and metal exposure may occur during drawing and ironing. As the degree of cure of the film increases, the residual stress after processing may increase, which may cause peeling of the coating film during heat treatment, resulting in a decrease in the coverage of the coating film.
  • a curing catalyst into the inner surface coating composition and the outer surface coating composition used in the present invention for the purpose of promoting the cross-linking reaction between the polyester resin and the curing agent.
  • the curing catalyst conventionally known curing catalysts can be used, such as p-toluenesulfonic acid, dodecylbenzenesulfonic acid, dinonylnaphthalenedisulfonic acid, phosphoric acid, alkylphosphoric acid, or amine neutralized products thereof.
  • Organic sulfonic acid-based and phosphoric acid-based acid catalysts can be used.
  • organic sulfonic acid-based acid catalysts are preferably used, and dodecylbenzene sulfone and its amine-neutralized product are particularly suitable.
  • the curing catalyst is used in an amount of 0.01 to 3 parts by mass, preferably 0.02 to 1.0 parts by mass, more preferably 0.02 to 1.0 parts by mass, more preferably 0.02 to 1.0 parts by mass based on 100 parts by mass of the solid content of the polyester resin. Less than 5 parts by mass, more preferably 0.03 parts by mass or more and less than 0.3 parts by mass, particularly preferably 0.04 parts by mass or more and less than 0.2 parts by mass.
  • the amine-neutralized acid catalyst for example, the amine-neutralized dodecylbenzenesulfonic acid
  • the content of the acid catalyst excluding the amine may be within the above range.
  • the content of the curing catalyst is less than the above range, the effect of accelerating the curing reaction may not be obtained sufficiently, while if the content of the curing catalyst is greater than the above range, the effect is greater than that.
  • the water resistance of the coating film is lowered, and as a result, the corrosion resistance, retort whitening resistance, etc. may be deteriorated.
  • the acid catalyst since the acid catalyst localizes on the surface of the metal substrate due to acid-base interaction, there is a risk that the adhesion between the coating film and the metal substrate will decrease, causing problems such as peeling of the coating film during can molding. There is a risk.
  • the coating composition for forming the coating film of the coated metal sheet used in the present invention contains at least the polyester resin described above as a main component, preferably the curing agent described above, and more preferably the curing catalyst described above.
  • the component with the highest content is defined as a principal component.
  • the content of the above-mentioned polyester resin, preferably the amorphous polyester resin, which is the main ingredient of all the resin components contained in the coating composition is higher than 50% by mass.
  • the form (kind) of the coating composition that can be used to form a coating film is preferably a solvent-based coating composition or a water-based coating composition, and more preferably a solvent-based coating composition from the viewpoint of coating properties.
  • the coating composition is a solvent-based coating composition
  • it contains the polyester resin described above, preferably a curing agent, and an organic solvent as a solvent.
  • the solvent-based coating composition in the present invention is a coating made by dissolving or dispersing the main resin, curing agent, etc. in a known organic solvent, and the organic solvent occupies the coating composition. It is defined as a coating composition having a mass ratio of 40% by mass or more.
  • organic solvent examples include toluene, xylene, aromatic hydrocarbon compounds, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, isophorone, methyl cellosolve, butyl cellosolve, ethylene glycol monoethyl ether acetate, and diethylene glycol monoethyl ether acetate.
  • the coating composition when it is a water-based coating composition, it contains an aqueous medium as a solvent together with a conventionally known water-dispersible or water-soluble polyester resin, preferably a curing agent.
  • the water-based coating composition in the present invention is a coating made by dissolving or dispersing the main resin, curing agent, etc. in a known aqueous medium, and the weight occupied by the aqueous medium in the coating composition. It is defined as a coating composition with a proportion of 40% by mass or more.
  • aqueous medium water or a mixture of water and an organic solvent such as an alcohol, a polyhydric alcohol, or a derivative thereof can be used as the aqueous medium in the same manner as a known aqueous coating composition.
  • an organic solvent it is preferably contained in an amount of 1% by mass or more and less than 40% by mass, particularly 5 to 30% by mass, based on the total amount of the aqueous medium in the aqueous coating composition. is preferred. By containing the organic solvent in the above range, the film-forming performance is improved.
  • an organic solvent those having amphipathic properties are preferable, and examples thereof include methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, ethylene glycol, methyl ethyl ketone, butyl cellosolve, carbitol, butyl carbitol, and propylene glycol monopropyl.
  • ether propylene glycol ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, 3-methyl-3-methoxybutanol and the like.
  • the paint composition may contain a lubricant as necessary.
  • the blending amount is 0.1 to 20 parts by mass, preferably 0.2 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polyester resin. is preferably By adding a lubricant, it is possible to suppress scratches on the coating film during molding and improve the lubricity of the coating film during molding.
  • Lubricants that can be added to the coating composition include, for example, fatty acid ester waxes, which are esters of polyol compounds and fatty acids, silicone waxes, fluorine waxes such as polytetrafluoroethylene, polyolefin waxes such as polyethylene, and paraffin. Waxes, lanolin, montan wax, microcrystalline wax, carnauba wax, and silicon-based compounds, white petrolatum, and the like can be mentioned. These lubricants can be used singly or in combination of two or more.
  • the coating composition may also contain leveling agents, pigments, antifoaming agents, colorants, and the like, which have conventionally been blended in coating compositions, according to conventionally known formulations.
  • other resin components may be contained in addition to the polyester resin as long as the object of the present invention is not impaired.
  • the solid component forming the coating film is contained in an amount of 3 to 55% by mass, preferably 5 to 45% by mass, and the polyester resin is 3 to 50% by mass as a solid content. %, preferably 5 to 40 mass %. If the solid content is less than the above range, an appropriate coating amount cannot be secured, resulting in poor coatability. On the other hand, when the resin solid content is larger than the above range, workability and coatability may be inferior.
  • the coated metal plate used in the present invention is an inner surface coating composition containing a polyester resin as a main component, preferably a resol-type phenolic resin and/or an amino resin as a curing agent, more preferably a resol-type phenolic resin. It is produced by coating at least the inner surface of the metal plate.
  • the outer surface of the metal plate is further coated with the above-mentioned outer surface coating composition containing polyester resin as the main component, preferably amino resin as a curing agent.
  • the baking conditions of the coating composition are appropriately adjusted depending on the type of polyester resin, curing agent, metal substrate, coating amount, etc., but the coating composition described above should be baked at a temperature of 150° C. in order to obtain a sufficient degree of curing. C. to 350.degree. C., preferably higher than 200.degree. C. to 320.degree. If the baking temperature is lower than the above range, a sufficient degree of hardening may not be obtained. On the other hand, if the baking temperature is higher than the above range, the polyester resin may be thermally decomposed due to excessive heating. If the baking time is shorter than the above range, a sufficient degree of hardening may not be obtained, and if the baking time is longer than the above range, economy and productivity are poor.
  • the MEK extraction rate (MEK boiling point, 1 hour), which is an index of the degree of hardening, is 50% or less, preferably 1 to 40%, more preferably. is preferably in the range of 2 to 30%, more preferably 3 to 25%, and particularly preferably in the range of 3 to 20%, and the MEK extraction rate is in the above range, so that the degree of curing of the coating film is controlled.
  • the MEK extraction rate is higher than the above range, the degree of cure of the coating tends to be low, and the heat resistance tends to be low.
  • the coating film may easily stick to the mold when molded.
  • the can body when the can body is extracted from the punch after drawing and ironing, the can body sticks to the punch, and a phenomenon occurs in which the punch and the can body are difficult to separate (poor stripping property).
  • the body There is a possibility that the body may buckle or break, resulting in a decrease in productivity, and there is a possibility that the retort whitening resistance may be deteriorated.
  • On the outer surface side of the can there is a risk that the coating film will be scratched off and the like, and that the retort whitening resistance will be poor.
  • the MEK extraction rate when the MEK extraction rate is lower than 1%, the degree of curing of the coating film is high, and the residual stress at the time of molding increases, so that the coating film may peel off during heat treatment.
  • At least the can inner surface side of the metal plate, preferably both sides, is coated by a known coating method such as roll coater coating, spray coating, or dip coating, and then the coating is performed by a heating means such as a coil oven. It can be manufactured by baking.
  • a known coating method such as roll coater coating, spray coating, or dip coating
  • a heating means such as a coil oven. It can be manufactured by baking.
  • the metal plate used as the metal substrate of the coated metal plate is not limited to these, but for example, hot-drawn steel plate, cold-rolled steel plate, hot-dip galvanized steel plate, electro-galvanized steel plate, alloy-plated steel plate, aluminum-zinc alloy-plated steel plate, aluminum plate, tin-plated steel plate, stainless steel plate, copper plate, copper-plated steel plate, tin-free steel, nickel-plated steel plate, ultra-thin tin-plated steel plate, chromium-treated steel plate, etc., and if necessary, various surface treatments such as phosphate chromate treatment , zirconium-based chemical conversion treatment, coating type treatment using a combination of a water-soluble resin such as polyacrylic acid and a zirconium salt such as ammonium zirconium carbonate.
  • various surface treatments such as phosphate chromate treatment , zirconium-based chemical conversion treatment, coating type treatment using a combination of a water-soluble resin such as polyacrylic acid and a zirconium salt such
  • aluminum plates specifically aluminum alloy plates of 3000 series, 5000 series and 6000 series in "JIS H 4000" can be preferably used.
  • the aluminum alloy plate in addition to the surface-treated aluminum alloy plate subjected to various surface treatments described above, an untreated aluminum alloy plate that has not been surface-treated can also be suitably used.
  • the thickness of the metal plate is 0.1 to 1.00 mm, preferably 0.15 to 0.40 mm, more preferably 0.15 to 0.30 mm, still more preferably 0.20 mm, from the viewpoint of can body strength and formability. It should be in the range of ⁇ 0.28 mm.
  • the inner coating film formed on the surface that will become the inner surface of the can after drawing and ironing and/or the outer coating film formed on the surface that will become the outer surface of the can after drawing and ironing may be formed, but it is preferable not to form it from the viewpoint of economy.
  • the outermost layer of the can inner surface side of the coated metal sheet used in the present invention is a coating film formed from a coating composition, preferably the inner coating film made of the above-mentioned inner surface coating composition, or the inner surface It is desirable that the layer is formed of a wax-based lubricant, which will be described later, formed on the coating film.
  • the outermost layer of the can outer surface side of the coated metal sheet used in the present invention is a coating film formed from a coating composition, preferably the outer surface coating film composed of the above-described exterior coating composition, Alternatively, it is preferably a layer formed on the outer surface coating film and made of a wax-based lubricant, which will be described later.
  • the inner coating film and the outer coating film made of the coating composition described above have excellent adhesion to the metal substrate, so that the inner coating film and/or the outer coating film are formed on the metal substrate. It is preferable that it is formed so as to be in direct contact with the certain metal plate.
  • a coated metal plate having an inner coating film containing a polyester resin having a glass transition temperature (Tg) of 55 ° C. or higher as a main component is used at least on the inner surface of the can, and ironed. It is an important feature that the ironing rate in the working is 40% or more and the drawing and ironing is performed at a working speed of 2000 mm/sec or more. As described above, the present inventors used a coated metal plate having an inner coating film containing a polyester with a high glass transition temperature in order to improve the flavor sorption resistance, and subjected to severe processing with an ironing rate of 40% or more.
  • Tg glass transition temperature
  • the production method of the present invention by performing drawing and ironing at a high processing speed as described above, the elongation of the coating film of the coated metal sheet and the can-making workability can be improved. Even in the drawing and ironing process, the drawn and ironed can can be formed without coating film defects, breakage, or peeling of the coating film at the can mouth end during processing.
  • the coated metal sheet preferably used in the present invention has excellent formability and lubricity, so it can be used not only when using coolant but also when forming under dry conditions without using coolant. Ironing cans can be molded.
  • wax-based lubricants include, but are not limited to, fatty acid ester wax, silicon-based wax, white petrolatum, rice wax, beeswax, Japan wax, mineral-derived waxes such as montan wax, Fischer-Tropsch wax, polyethylene and polypropylene.
  • polyolefin wax, paraffin wax, liquid paraffin, lanolin wax, microcrystalline wax, carnauba wax, etc., and paraffin wax and white petrolatum are more preferably used.
  • wax-based lubricants that pose no food sanitation problem and can be easily volatilized and removed by heating at a temperature of 150 to 250 ° C., preferably about 200 ° C. are desirable. Since the wax-based lubricant can be volatilized and removed by heat treatment in a post-process after can molding, there is no possibility that the ink will be repelled by the wax-based lubricant when the outer surface of the can body is printed, which is convenient. These wax-based lubricants can be used singly or in combination of two or more.
  • the coating amount of the wax-based lubricant is 5 to 200 mg/m 2 , preferably 10 to 100 mg/m 2 , more preferably 20 to 80 mg/m 2 per side of the coated metal plate from the viewpoint of formability and productivity.
  • a range is desirable.
  • a painted metal plate coated with a wax-based lubricant is punched into a blank by a cupping press, and a drawn cup is formed by a drawing method.
  • the drawing ratio RD defined by the following formula (3) is in the range of 1.1 to 2.6 in total (up to the drawing and ironing can), especially in the range of 1.4 to 2.6. is desirable. If the drawing ratio is higher than the above range, drawing wrinkles may increase, cracks may occur in the coating film, and the metal may be exposed.
  • RD D/d (3)
  • D represents the blank diameter and d represents the can body diameter.
  • the drawn cup is subjected to redrawing and one-step or several-step ironing (drawing and ironing) to thin the can body.
  • a punch whose temperature is adjusted to 10 to 80° C., preferably 15 to 70° C., more preferably 20 to 60° C., and still more preferably 20 to 50° C. can be used. desirable.
  • a method of temperature control for example, a method of circulating temperature control water inside the punch can be used. If the punch temperature is lower than the above range, the wax-based lubricant applied to the coated metal sheet cannot exhibit sufficient lubricity, and stripping performance (ejection) is poor when the can body is extracted from the punch.
  • the ironing rate R represented by the following formula (4) is 40% or more, preferably 40 to 80%, more preferably 50 to 80%, more preferably 55% to 75%, Particularly preferably, the range is higher than 60% and 70% or less. If the ironing rate is lower than the above range, the thickness cannot be sufficiently reduced and the economic efficiency is not fully satisfied.
  • R (%) (tp-tw)/tp x 100 (4)
  • tp represents the thickness of the metal substrate of the original coated metal sheet
  • tw represents the thickness of the metal substrate at the center of the can body (the thinnest portion) of the drawn and ironed can.
  • the thickness of the central portion of the can body (the central portion in the height direction, the thinnest portion) is the thickness of the central portion of the can bottom. 60% or less, preferably 20 to 60%, more preferably 20 to 50%, still more preferably 25 to 45%, particularly preferably 30 to 45%, and most preferably 30 to 40%. be.
  • the thickness of the metal substrate of the drawn and ironed can the thickness of the metal substrate at the center of the can body is 60% or less, preferably 20 to 60%, more preferably 20 to 50% of the thickness of the metal substrate at the center of the can bottom. %, more preferably 25-45%, particularly preferably 30-45%, most preferably 30-40%.
  • the thickness of the inner coating film located on the can body portion is reduced by the processing in the same manner as the metal substrate. Therefore, the thickness of the inner coating film and the outer coating film in the central part of the can body is 60% or less, preferably 20 to 60%, more preferably 20 to 60% of the thickness of the inner coating film in the central part of the can bottom, which is hardly thinned during can manufacturing.
  • a thickness of 20 to 50%, more preferably 25 to 45%, particularly preferably 30 to 45%, and most preferably 30 to 40% is suitable. The same applies to the outer coating film.
  • the thickness of the metal substrate at the center of the can bottom is 0.10 to 0.50 mm, preferably 0.15 to 0.40 mm, more preferably 0.15 to 0.30 mm, still more preferably 0.20 to 0.30 mm. A thickness of 28 mm is preferred.
  • the dry film thickness of the inner coating film at the center of the can bottom is preferably 0.2 to 20 ⁇ m, preferably 1 to 12 ⁇ m, more preferably greater than 2 ⁇ m and less than or equal to 12 ⁇ m.
  • the dry coating mass is preferably in the range of 3 to 300 mg/dm 2 , preferably 15 to 150 mg/dm 2 , more preferably greater than 25 mg/dm 2 and less than or equal to 150 mg/dm 2 .
  • the diameter is more than 6 ⁇ m and 12 ⁇ m or less, preferably in the range of 6.5 to 10 ⁇ m.
  • the dry coating mass is more than 85 mg/dm 2 and 150 mg/dm 2 or less, preferably in the range of 90 to 140 mg/dm 2 .
  • the content to be filled in the drawn and ironed can is a low-acid beverage with relatively weak corrosiveness, it has a diameter of 1 ⁇ m or more and less than 6.5 ⁇ m, preferably more than 2 ⁇ m and less than 6.5 ⁇ m, more preferably 2.5 to 6 ⁇ m. A range is preferred.
  • the dry coating mass is 15 mg/dm 2 or more and less than 90 mg/dm 2 , preferably more than 25 mg/dm 2 and less than 90 mg/dm 2 , more preferably 30 to 85 mg/dm 2 . be.
  • the dry film thickness of the outer coating film at the center of the can bottom is 0.2 to 20 ⁇ m, preferably 1 to 12 ⁇ m, more preferably more than 2 ⁇ m and 10 ⁇ m or less, still more preferably more than 2 ⁇ m and 6.5 ⁇ m or less. is preferably in the range of
  • the dry coating mass is 3 to 300 mg/dm 2 , preferably 15 to 150 mg/dm 2 , more preferably greater than 25 to 140 mg/dm 2 , still more preferably greater than 25 mg/dm 2 to less than 90 mg/dm 2 . is preferably in the range of
  • the thickness ratio of the inner coating film to the metal substrate is It is characterized by being substantially the same throughout the trunk. The same applies to the outer coating film.
  • the processing speed in the present invention is the processing speed (moving speed of the punch die) in one-stage or several-stage ironing, and as described above, 2000 mm/sec or more, preferably 3000 mm/sec or more, more preferably 4000 mm/sec. Above, more preferably 5000 mm/sec or more, particularly preferably 5500 mm/sec or more. As described above, by setting the processing speed during ironing to the above speed or higher, the heat generated during processing increases, and the high temperature state exceeding 55 ° C. improves the workability (elongation) of the coating film.
  • the upper limit of the processing speed is not particularly limited, it is desirable to set it to 20,000 mm/sec or less, preferably 15,000 mm/sec or less, for example. If it exceeds 20000 mm/sec, it is presumed that the cylinder is likely to break during processing. After drawing and ironing, if desired, doming of the bottom and trimming of the opening edge are performed according to conventional methods.
  • the method for manufacturing a drawn and ironed can of the present invention it is desirable to subject the drawn and ironed can to a heat treatment step after drawing and ironing the above-described coated metal plate.
  • the drawn and ironed can By subjecting the drawn and ironed can after forming to at least one stage of heat treatment, the residual stress of the coating film caused by working can be removed.
  • the residual stress of the coating film By removing the residual stress of the coating film, it is possible to improve the adhesion between the coating film and the metal substrate after processing (coating film adhesion).
  • the corrosion resistance of the coating film is remarkably improved, and the occurrence of corrosion under the coating film can be suppressed when, for example, a drawn and ironed can is filled with highly corrosive contents.
  • the temperature of the heat treatment must be higher than the glass transition temperature of the coating film, preferably 55°C or higher, preferably 100 to 300°C, more preferably 150 to 250°C.
  • the heat treatment time is not limited to this, it is preferable to heat for 0.1 to 600 seconds, preferably 1 to 300 seconds, more preferably 20 to 180 seconds.
  • the wax-based lubricant used during processing can be volatilized and removed from the surface.
  • the heat treatment temperature is preferably in the range of 150 to 250 ° C.
  • the time is not limited to this, it is preferable to heat for 0.1 to 600 seconds, preferably 1 to 300 seconds, more preferably 10 to 180 seconds.
  • the residual stress in the paint film of the drawn and ironed can is not removed by heat treatment, the residual stress is released by isolating the paint film in the central part of the can body (central part in the height direction), which is highly worked, from the metal substrate and heating it. Since the dimension changes greatly in the direction (mainly in the height direction of the can), it is possible to determine whether the residual stress is removed by heat treatment by measuring the amount of dimensional change (thermal shrinkage) of the isolated coating film due to heating. can be used as a guideline.
  • the heat shrinkage (with load) represented by the following formula (5) in the inner coating film at the center of the can body isolated from the drawn and ironed can is 30% or less, preferably 20% or less, more preferably 15% or less.
  • the thermal shrinkage ratio (without load) represented by the following formula (6) is 50% or less, preferably 45% or less, more preferably 40% or less, and still more preferably 35% or less.
  • the thermal shrinkage ratio is within the above range, the coating film adhesion is improved, and excellent corrosion resistance can be exhibited. If the heat shrinkage rate is larger than the above range, the residual stress may not be sufficiently removed and the coating adhesion may be insufficient, resulting in a decrease in corrosion resistance. The film may peel off. Further, in the case where the outer surface coating film is provided on the outer surface of the can, it is desirable that the heat shrinkage ratio of the outer surface coating film at the center of the can body is also within the above range.
  • the amount of dimensional change (amount of shrinkage) due to heating of the isolated coating film can be measured using a thermomechanical analyzer (TMA) or the like.
  • Thermal shrinkage rate (with load) ( ⁇ L 1 /L 0 ) x 100 (%) (5)
  • L 0 is the initial length in the height direction of the coating film isolated from the central part of the can body (measurement part)
  • ⁇ L 1 is the load of 5.20 ⁇ 10 5 N / m 2 per unit area
  • It is the maximum amount of shrinkage (maximum value of shrinkage length) in the height direction of the coating film of the portion corresponding to L0 when the temperature is increased from 30°C to 200°C at a temperature increase rate of 5°C/min.
  • Thermal contraction rate (without load) ( ⁇ L 2 /L 0 ) x 100 (%) (6)
  • L 0 is the initial length in the height direction of the coating film isolated from the center of the can body
  • ⁇ L 2 is when the temperature is raised from 30 ° C to 200 ° C at a temperature increase rate of 5 ° C / min under no load.
  • a printing layer is formed on the outer surface of the can body by a conventionally known method as needed, and a finishing varnish is applied on the printing layer to protect the printing layer.
  • a layer is formed. If desired, it is subjected to one-step or multi-step neck-in processing and flange processing to form a can for seaming.
  • the upper portion can be deformed into a bottle shape, or the bottom portion can be cut off and another can end can be attached to form a bottle shape.
  • the capacity of the drawn and ironed can of the present invention is preferably 150 mL or more, preferably 150 to 2200 mL, more preferably 180 to 1200 mL, still more preferably 300 to 700 mL.
  • the coverage of the inner coating film obtained by ERV conversion was obtained by filling the obtained drawn and ironed can with a salt solution having a concentration of 1% by mass as an electrolytic solution to the vicinity of the can mouth, and measuring the ERV with an enamel meter.
  • a metal exposed portion was formed on the outer surface of the bottom of the can and connected to the anode, while the cathode was immersed in a saline solution filled in the can.
  • a current value after applying a DC voltage of 3 V for 4 seconds the more current flows, the more defects are present in the inner coating film, which is an insulator, and the larger the area of metal exposure on the inner surface of the can.
  • the coverage of the internal coating film in terms of ERV is 200 mA or less, preferably less than 100 mA, and more preferably less than 50 mA.
  • the ERV per unit area (cm 2 ) is preferably 0.70 mA/cm 2 or less, preferably less than 0.35 mA/cm 2 , more preferably less than 0.18 mA/cm 2 .
  • the ERV per unit area is the ERV of the drawn and ironed can measured by the above method, with the evaluation area (the total area of the inner surface of the can body and can bottom in contact with the above-mentioned saline solution). It is the divided (divided) value.
  • the inner surface of the drawn and ironed after molding, if necessary, the inner surface may be further spray-coated with a correction paint or the like to form a coating film made of another coating composition on the inner coating film.
  • the inner coating film has a high degree of coverage even after molding, it is not necessary to spray coat, and it is preferable to not spray coat from the economical point of view.
  • the outermost layer on the inner surface side of the drawn and ironed can is a coating film composed of a coating composition, preferably the inner coating film composed of the above-described inner coating composition, or the above-described inner coating film formed on the inner coating film.
  • a layer made of a wax-based lubricant is preferred.
  • At least the outermost layer of the bottom where the printed layer is basically not formed is the outer surface coating, or a layer formed on the outer surface coating and made of the aforementioned wax-based lubricant.
  • a coating film made of another coating composition may be formed on the outer surface coating film formed on the bottom outer surface side.
  • the drawn and ironed can of the present invention is a drawn and ironed can formed from the above-described coated metal sheet by the above-described method for manufacturing a drawn and ironed can, and has an inner coating film at least on the inner surface of the can, wherein the inner coating film.
  • it contains a polyester resin as a main component, preferably further a curing agent, the glass transition temperature (Tg) of the inner coating film is 55 ° C. or higher, and the coverage of the inner coating film is 200 mA or less in terms of ERV. is an important feature.
  • the glass transition temperature of the polyester resin contained in the inner coating film of the drawn and ironed can is as high as 55° C. or higher, so that the flavor sorption resistance is excellent.
  • ironing at high speed increases the heat generated during processing, which significantly improves can-making processability. It can be suppressed and the coating film coverage of the inner surface can be improved.
  • the heat generated by processing increases, the residual stress of the coating film after processing can be reduced, so that the occurrence of peeling of the coating film during heat treatment as described above can be effectively suppressed.
  • the resulting drawn and ironed can can effectively prevent exposure of the metal, can have a coverage of the inner coating film in terms of ERV of 200 mA or less, and can exhibit excellent corrosion resistance.
  • the drawn and ironed can further has an outer coating film on the outer surface of the can, and the outer coating film contains a polyester resin, preferably a curing agent.
  • the drawn and ironed can it is preferable that at least the can bottom and can body on the inner surface side of the can are continuously coated with the inner surface coating film, and further, the can bottom and can body on the outer surface side of the can are It is preferable that the outer surface coating film is continuously coated.
  • the elongation rate of the inner coating film on the bottom of the can under test conditions of 60°C is less than 200%.
  • a coated metal sheet having an inner coating film having an elongation of less than 200% under test conditions of 60° C. is used. is desirable.
  • the bottom of the drawn and ironed can is hardly thinned during can manufacturing, and the inner coating film of the coated metal plate is Since it shows the same elongation rate as , the elongation rate of the inner coating film on the bottom of the can is less than 200%.
  • polyester resins A to F are all amorphous polyester resins.
  • GPC gel permeation chromatography
  • DSC differential scanning calorimeter
  • 1 g of the polyester resin solid was dissolved in 10 ml of chloroform and titrated with a 0.1N KOH ethanol solution to determine the resin acid value (mgKOH/g).
  • Phenolphthalein was used as an indicator. (Measurement of monomer composition) 30 mg of the polyester resin solid was dissolved in 0.6 mL of deuterated chloroform, subjected to 1 H-NMR measurement, and the monomer composition ratio was determined from the peak intensity. The composition ratio was determined except for a very small amount of components (less than 1 mol % with respect to all monomer components).
  • An n-butanol solution of a resol-type phenolic resin (solid content: 50% by mass) was diluted with methyl ethyl ketone to obtain a resol-type phenolic resin solution with a solid content of 30% by mass.
  • Dodecylbenzenesulfonic acid was amine-neutralized with 2-dimethylaminoethanol and then dissolved in isopropanol to obtain a dodecylbenzenesulfonic acid solution with a solid content of 30% by mass (solid content of acid catalyst: 30% by mass).
  • polyester resin A solution solid content: 100 parts
  • 33.3 parts of resol type phenolic resin solution solid content: 10 parts
  • 0.33 parts of acid catalyst solution solid content of dodecylbenzenesulfonic acid: 0.10 Part
  • a solvent with a solid content concentration of about 30% by mass and a solid content blending ratio of polyester resin/curing agent/acid catalyst 100/10/0.1 (mass ratio)
  • a mold coating composition was prepared.
  • acid "dodecylbenzenesulfonic acid (soft type) (mixture)” manufactured by Tokyo Kasei Kogyo Co., Ltd. was used.
  • Polyester resin A and polyester resin E were mixed so that the mass ratio was 90:10 (Tg mix : 76 ° C.) as the polyester resin, and benzoguanamine resin (methyl-etherified benzoguanamine resin, imino group / methylol group A coating composition for internal surfaces was prepared in the same manner as in Production Example 1, except that a partially etherified content type, a weight average degree of polymerization of 1.5) was used, and the solid content blending ratio (mass ratio) shown in Table 1 was used. did.
  • Polyester resin A was used as the polyester resin, melamine resin (methyl-etherified melamine resin) and the above-mentioned benzoguanamine resin (methyl-etherified benzoguanamine resin) were used as the curing agent, and dodecylbenzenesulfonic acid was used as the curing catalyst (acid catalyst).
  • a melamine resin and a benzoguanamine resin were dissolved in methyl ethyl ketone to obtain a melamine resin solution and a benzoguanamine resin solution having a solid content of 30% by mass. After neutralizing dodecylbenzenesulfonic acid with 2-dimethylaminoethanol, it was dissolved in isopropanol to obtain a dodecylbenzenesulfonic acid solution with an acid catalyst solid content of 30% by mass.
  • polyester resin A solution 100 parts of solid content
  • 10 parts of melamine resin solution 3 parts of solid content
  • 10 parts of benzoguanamine resin solution 3 parts of solid content
  • 0.33 parts of acid catalyst solution dodecylbenzene Solid content of sulfonic acid 0.10 parts
  • Example 1 [Preparation of coated metal plate] A chromate phosphate-based surface - treated aluminum plate (3104 alloy, plate thickness: 0.27 mm) was used as the metal plate. 3 ⁇ m), the outer surface coating composition was applied with a bar coater and dried at 120° C. for 60 seconds. After that, the inner surface coating composition of Production Example 1 was applied with a bar coater to the opposite inner surface side so that the dry coating mass after baking was 88 mg/dm 2 (about 6.4 ⁇ m). C. for 60 seconds, and then baked at 250.degree. C. (the temperature inside the oven) for 30 seconds.
  • Paraffin wax that can be volatilized and removed by heating at about 200°C
  • application amount about 50 mg/m 2 per side
  • a circular plate with a diameter of 142 mm is applied.
  • a shallow-drawn cup was created by punching out.
  • punch temperature about 50 to 55° C.
  • the shallow-drawn cup was subjected to redrawing, ironing (three steps), and doming under dry conditions.
  • the average processing speed during the ironing process was about 5500 mm/sec.
  • the punch temperature was expressed by the temperature of the temperature-controlled water supplied to the inside of the punch. After that, heat treatment is performed at 201 ° C. for 75 seconds using an oven, and the can is drawn and ironed [can diameter: 66 mm, height: about 130 mm, capacity: about 370 ml, total drawing ratio: 2.15, ironing rate: about 61%.
  • Examples 2-8) As shown in Table 2, a painted metal sheet was produced in the same manner as in Example 1, except that the type of the coating composition for the inner surface was changed, and a drawn and ironed can was produced.
  • Example 9 A painted metal plate was produced in the same manner as in Example 1, except that the average processing speed (average moving speed of the punch) during ironing was about 6800 mm/sec, and a drawn and ironed can was produced. did.
  • Example 1 A drawn and ironed can was produced by producing a painted metal plate in the same manner as in Example 1, except that the average processing speed (average moving speed of the punch) during ironing was set to about 1000 mm/sec. did.
  • Example 2 the coated metal was coated in the same manner as in Example 1 except that the type of the inner surface coating composition was changed and the average processing speed (average moving speed of the punch) during ironing was set to about 1000 mm / sec. A plate was produced, and a drawn and ironed can was produced.
  • a coating film sample for measurement was prepared as follows. On a polytetrafluoroethylene (PTFE) sheet (thickness: 0.3 mm), the inner surface coating composition of each production example was applied so that the dry coating mass after baking was 88 mg/dm 2 (about 6.4 ⁇ m). After coating with a bar coater and drying at 120° C. for 60 seconds, baking was performed at 250° C. (the temperature inside the oven) for 30 seconds to form a coating film on the PTFE sheet. After cooling to room temperature, a sample for measurement was obtained by peeling off the coating film from the PTFE sheet.
  • PTFE polytetrafluoroethylene
  • the glass transition temperature of the obtained coating film was measured using a differential scanning calorimeter (DSC) under the following conditions.
  • DSC differential scanning calorimeter
  • the extrapolated glass transition start temperature that is, the slope of the straight line extending the baseline on the low temperature side to the high temperature side and the curve of the stepwise change part of the glass transition is maximized.
  • the temperature at the point of intersection with the tangent line drawn at the point was defined as the glass transition temperature (coating film Tg) of the coating film.
  • Table 1 shows the results. Apparatus: DSC6220 manufactured by Seiko Instruments Inc. Sample amount: 5 mg Heating rate: 10°C/min Temperature range: -80 to 200°C (heating, cooling, heating)
  • Environmental conditions under a stream of nitrogen
  • a coating film sample for measurement was prepared as follows.
  • the inner surface coating composition of each production example was applied to a PTFE sheet (thickness: 0.3 mm) with a bar coater so that the dry coating mass after baking was 88 mg/dm 2 (about 6.4 ⁇ m). After drying at 120° C. for 60 seconds, baking was performed at 250° C. (the temperature inside the oven) for 30 seconds to form a coating film on the PTFE sheet. After cooling to room temperature, the coated PTFE sheet was cut into 5 mm wide and 30 mm long, and the coated film was peeled off from the PTFE sheet to obtain a 5 mm wide and 30 mm long measurement sample.
  • the elongation rate is obtained by the following formula (7).
  • the amount of elongation (extended length) of the sample at break was substituted by the amount of movement of the crosshead of the testing machine at break.
  • Elongation rate (%) ( ⁇ L/L 0 ) ⁇ 100 (7)
  • L 0 original length of sample (mm)
  • ⁇ L elongation of the sample at break (mm)
  • Cut out the coated metal plate or the bottom of the can to a length of 30 mm dissolve the metal substrate (metal plate) by a conventional method such as immersing it in a diluted hydrochloric acid aqueous solution, remove the film-like isolated coating film, and fully A sample for measurement can be obtained by washing with distilled water and drying.
  • a coated metal plate was produced as follows. A chromate phosphate-based surface-treated aluminum plate (3104 alloy, plate thickness: 0.27 mm) was used as the metal plate, and the dry coating mass after baking was 88 mg/dm 2 (about 6.4 ⁇ m). A coated metal plate was produced by applying the inner surface coating composition with a bar coater, drying at 120° C. for 60 seconds, and then baking at 250° C. (inside oven temperature) for 30 seconds. A 2.5 cm ⁇ 10 cm size piece was cut from the obtained coated metal plate, and then subjected to retort treatment at 125° C. for 30 minutes in an autoclave. After the treatment, the coated metal plate was taken out and air-dried, and the whitening state (whether or not there was whitening) of the coating film portion was visually evaluated. Table 1 shows the results.
  • a model flavor test solution was placed in a sealed glass bottle (Duran bottle), the test piece was immersed, sealed, and stored at 30° C. for 2 weeks.
  • the test piece was taken out from the glass bottle, washed with water, water droplets were removed, immersed in 50 mL of diethyl ether, sealed, and stored at room temperature for one day and night.
  • the extract was concentrated with a concentrator and subjected to GC-MS analysis (gas chromatography mass spectrometry). From the component peak derived from limonene obtained from the GC-MS analysis, the sorption amount was determined from the calibration curve, and the ratio of limonene to the charged amount was determined as the limonene sorption rate (%) from the following formula (8). Table 2 shows the results.
  • Limonene sorption rate (%) (sorbed amount of limonene/amount of charged limonene) x 100 (8) Evaluation criteria are as follows. ⁇ : Limonene sorption rate is less than 2% ⁇ : Limonene sorption rate is 2% or more and less than 3% ⁇ : Limonene sorption rate is 3% or more and less than 5% ⁇ : Limonene sorption rate is 5% or more
  • Heat shrinkage rate evaluation The evaluation of the heat shrinkage rate was performed on the drawn and ironed can (without heat treatment) of Example 6, which was subjected to drawing and ironing and doming as described in the above section "Production of drawn and ironed can", and then 201 in an oven.
  • the inner coating film at the center of the can body of the drawn and ironed can (with heat treatment) of Example 6 after heat treatment at 9° C. for 75 seconds the following procedure was carried out.
  • a sample of 10 mm in the circumferential direction of the can body and 20 mm in the can height direction is centered on the center of the can body (the thinnest portion) in the 0° direction with respect to the rolling grain of the metal substrate.
  • the can was immersed in a diluted hydrochloric acid aqueous solution to dissolve the metal substrate.
  • the film-like coating on the inner surface of the can is taken out, thoroughly washed with distilled water and dried, and the obtained film-like coating is 4 mm wide (circumferential direction of the can body) and 20 mm long (can height). direction) to obtain a sample for measurement.
  • the sample for measurement was chucked in a thermomechanical analyzer so that the chuck-to-chuck distance (corresponding to the initial length of the measurement portion in the height direction of the coating film) was 5 mm.
  • the amount of displacement of the measurement sample was measured under the following conditions, and the heat shrinkage rate in the can height direction was evaluated with and without load.
  • Apparatus TMA/SS6100 manufactured by Seiko Instruments Inc. Heating rate: 5°C/min Temperature range: 30-200°C Measurement mode: tension mode Load during measurement: 5 mN (5.20 ⁇ 10 5 N/m 2 ) or no load Distance between chucks: 5 mm
  • the distance between the chucks before measurement (corresponding to the initial length of the measurement part of the coating film) is L 0 , and the temperature is raised to 30°C at a rate of 5°C/min while applying a load of 5.20 ⁇ 10 5 N/m 2 per unit area.
  • ⁇ L 1 is the maximum amount of shrinkage (maximum shrinkage length) in the height direction of the portion corresponding to L 0 when the temperature is raised from 1 to 200 ° C
  • the value calculated by the formula shown in the following formula (9) is Shrinkage rate (with load).
  • contraction was taken as a positive value, and expansion or elongation as a negative value. The results are shown below.
  • Thermal shrinkage rate (with load) (%) ( ⁇ L 1 /L 0 ) x 100 (9) Heat shrinkage rate (with load) of the inner coating film of the drawn and ironed can (without heat treatment) of Example 6: 68% Heat shrinkage rate (with load) of the inner coating film of the drawn and ironed can (with heat treatment) of Example 6: 9%
  • L 0 is the distance between chucks before measurement (corresponding to the initial length of the measurement part of the coating film), and L 0 corresponds to when the temperature is raised from 30 ° C. to 200 ° C. at a heating rate of 5 ° C./min in a no-load state.
  • the maximum amount of shrinkage (maximum shrinkage length) in the height direction of the portion was defined as ⁇ L2 , and the value calculated by the following formula (10) was defined as the thermal shrinkage rate (without load).
  • contraction was taken as a positive value, and expansion or elongation as a negative value. The results are shown below.
  • Thermal shrinkage rate (no load) (%) ( ⁇ L 2 /L 0 ) x 100 (10) Heat shrinkage rate (no load) of the inner coating film of the drawn and ironed can (no heat treatment) of Example 6: 69% Heat shrinkage rate (no load) of the inner coating film of the drawn and ironed can (with heat treatment) of Example 6: 30%
  • Example 6 The evaluation of corrosion resistance was performed on the drawn and ironed can (without heat treatment) of Example 6, which was subjected to drawing and ironing and doming as described in the above section "Production of drawn and ironed can", and then at 201 ° C. in an oven. After heat treatment for 75 seconds, the inner surface coating film on the central portion of the can body of the drawn and ironed can (with heat treatment) of Example 6 was treated as follows. Using the drawn and ironed can, a test piece of 40 mm in the can body circumferential direction and 40 mm in the can height direction was cut out centering on the can body central portion (thinned portion).
  • a 4-cm-long cross-cut scratch was made on the inner surface of the test piece with a cutter, and the test piece was immersed in an acidic model solution containing salt and aged at 37° C. for 2 weeks to evaluate the state of corrosion.
  • the model solution used in the test was prepared by adding 0.2% sodium chloride and adding citric acid to adjust the pH to 2.5.
  • the evaluation criteria were as follows: in the vicinity of the cross-cut part, the maximum width of corrosion under the paint film was 1.5 mm or more per side; ⁇ The results are shown below. Corrosion state of the drawn and ironed can (without heat treatment) of Example 6: ⁇ Corrosion state of the drawn and ironed can (with heat treatment) of Example 6: ⁇
  • Table 1 shows the composition of the coating composition (type of polyester resin, solid content blending ratio) in each production example, the properties of the coating film obtained with the coating composition of each production example (coating film Tg, elongation, retort whitening resistance ),
  • Table 2 shows the type of inner coating composition (manufacturing example number, composition) used in the coated metal sheets of each example and comparative example, the ironing speed at the time of making the drawn and ironed cans, and the evaluation results of the drawn and ironed cans. (inner surface coating film coverage, flavor sorption resistance).
  • the coating film at the time of molding is used. It is possible to suppress the occurrence of defects and the occurrence of peeling of the paint film due to heat treatment after molding, producing drawn and ironed cans that have excellent paint film coverage with few exposed metal parts on the inner surface of the can and excellent resistance to flavor sorption. It can be manufactured with good performance.
  • the drawn and ironed can obtained is excellent in flavor sorption resistance, corrosion resistance, etc., and therefore can be suitably used for beverage containers and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本発明は、少なくとも缶内面となる面に内面塗膜を有する塗装金属板を絞りしごき加工して成る絞りしごき缶の製造方法において、前記内面塗膜に含有されるポリエステル樹脂のガラス転移温度(Tg)が55℃以上であり、前記絞りしごき加工におけるしごき率が40%以上であり、前記絞りしごき加工におけるしごき加工時の加工速度が2000mm/sec以上であることにより、耐フレーバー収着性に優れるガラス転移温度の高いポリエステル樹脂を主成分とする塗膜を有する塗装金属板を用いた場合にも、成形時の塗膜欠陥の発生や成形後の熱処理による塗膜剥離の発生を抑制することができる。

Description

絞りしごき缶の製造方法及び絞りしごき缶
 本発明は、塗装金属板を用いた絞りしごき缶の製造方法及びこの製造方法により得られる絞りしごき缶に関し、より詳細には、金属露出や塗膜剥離を生じることなく、耐フレーバー収着性に優れた絞りしごき缶を生産性良く成形可能な製造方法に関する。
 アルミニウム等の金属板を熱可塑性樹脂から構成されたプラスチックフィルム(熱可塑性樹脂フィルム)で被覆した有機樹脂被覆金属板(熱可塑性樹脂被覆金属板)は、缶用材料として古くから知られており、この有機樹脂被覆金属板を絞り加工或いは絞りしごき加工等に付して、飲料等を充填するためのシームレス缶とし、或いはこれをプレス成形してイージーオープンエンド等の缶蓋とすることもよく知られている。例えば、エチレンテレフタレート単位を主体とした結晶性の熱可塑性ポリエステル樹脂から成る熱可塑性樹脂フィルムを有機樹脂被覆層として有する有機樹脂被覆金属板は、絞りしごき加工により成形されるシームレス缶(絞りしごき缶)用の製缶材料として使用されている(特許文献1等)。このような有機樹脂被覆金属板は、クーラント(冷却・潤滑剤)を使用しないドライ条件下で絞りしごき成形を行うことができるため、従来の金属板からクーラントを使用して絞りしごき成形する場合に比して、環境面で利点がある。
 このような有機樹脂被覆金属板は、熱可塑性ポリエステル樹脂等から成る、予め形成されたプラスチックフィルムを金属板に熱接着により貼り合せる方法、押出された熱可塑性ポリエステル樹脂等の溶融薄膜を金属板に貼り合せる押出しラミネート法等のフィルムラミネート方式により製造されている。
 しかしながら、フィルムラミネート方式は、成膜の都合上、フィルム膜厚を薄膜に制御することが困難であるため、フィルムの厚みが厚くなりやすく、経済性の面で問題となる場合がある。
 このようなフィルムラミネート方式による有機樹脂被覆金属板に代えて、薄膜での成膜が可能な塗装方式により、金属板の両面に塗料組成物から成るポリエステル系塗膜を形成した塗装金属板から、ドライ条件下で絞りしごき缶を製造することも提案されている。
 例えば下記特許文献2には、両面塗装金属板であって、加工後に缶内面側となる皮膜の乾燥塗布量が90~400mg/100cm、ガラス転移温度が50~120℃であり、かつ60℃の試験条件において、鉛筆硬度H以上、伸び率200~600%及び動摩擦係数0.03~0.25の範囲内にあるものであり、加工後に缶外面側となる皮膜の乾燥塗布量が15~150mg/100cm、ガラス転移温度が50~120℃であり、かつ60℃の試験条件において、鉛筆硬度H以上である絞りしごき缶用塗装金属板が提案されている。
特開2001-246695号公報 特許第3872998号
 上述の両面にポリエステル系塗膜が形成された塗装金属板から成る絞りしごき缶において、内容物に接する内面側に形成されるポリエステル系内面塗膜には、製缶加工性等以外にも内容物の風味やフレーバーを損なうことがないこと、すなわち、塗料成分等の溶出が抑制されていると共に、内容物が有するフレーバー(香気)成分を収着しないこと(耐フレーバー収着性)が要求される場合がある。耐フレーバー収着性に優れた塗膜を形成するためには、主成分としてガラス転移温度の高いポリエステル樹脂を用いることが好ましいが、ガラス転移温度の高いポリエステル樹脂から成る塗膜は製缶加工性に劣る傾向にあり、成形条件によっては加工時に塗膜欠陥が生じることで金属が露出し、その結果、缶内面の塗膜被覆性が低くなるおそれがある。
 また塗装金属板からドライ条件下で成形された絞りしごき缶においては、缶体成形後に、加工により生じた塗膜の残留応力の除去を目的とした熱処理を施す際に、過酷な加工により生じた塗膜の残留応力が緩和されるに伴い、塗膜と金属基体界面に収縮力が作用し、特に缶胴部の加工が厳しく薄肉化されている部位において、塗膜剥離が発生する場合がある。上述したようなガラス転移温度の高いポリエステル樹脂から成る塗膜は、加工後の残留応力が大きくなる傾向があり、その場合上述した収縮力も大きくなるため、熱処理時に塗膜剥離が起こりやすく、缶内面の塗膜被覆性がさらに低下するおそれがある。
 上述した特許文献2においては、塗装金属板の缶内面側となる面に、連続での絞りしごき加工による60℃近い発熱が発生した際にも、硬度や伸び率等を維持できるポリエステル系塗膜を形成させることにより、絞りしごき加工にも耐え得る塗装金属板及びこの塗装金属板から成形される絞りしごき缶を提案しているが、良好な耐フレーバー収着性を維持しつつ、成形時の塗膜欠陥の発生や成形加工後の熱処理に起因する塗膜剥離を防止するための知見は一切なく、これらの問題を解決するものではなかった。
 従って本発明の目的は、良好な耐フレーバー収着性を維持するため、ガラス転移温度の高いポリエステル樹脂から成る塗膜を有する塗装金属板を用いた場合にも、成形時の塗膜欠陥の発生や成形後の熱処理による塗膜剥離の発生を抑制することができ、耐フレーバー収着性に優れると共に、金属露出部が少ない塗膜被覆性及び耐食性に優れた絞りしごき缶を生産性良く製造する方法を提供することである。
 また本発明の他の目的は、耐フレーバー収着性を維持しつつ、金属露出部が少ない塗膜被覆性及び耐食性に優れた絞りしごき缶を提供することである。
 本発明によれば、少なくとも缶内面となる面に内面塗膜を有する塗装金属板を絞りしごき加工して成る絞りしごき缶の製造方法において、前記内面塗膜がポリエステル樹脂を含有し、前記ポリエステル樹脂のガラス転移温度(Tg)が55℃以上であり、前記絞りしごき加工におけるしごき率が40%以上であり、前記絞りしごき加工におけるしごき加工時の加工速度が2000mm/sec以上であることを特徴とする絞りしごき缶の製造方法が提供される。
 本発明の絞りしごき缶の製造方法においては、
 1.前記内面塗膜のガラス転移温度が55℃以上であること、
 2.前記内面塗膜がさらに硬化剤を含有し、前記硬化剤が、レゾール型フェノール樹脂及び/又はアミノ樹脂であること、
 3.前記塗装金属板が、缶外面となる面にさらに外面塗膜を有し、前記外面塗膜がポリエステル樹脂を含有すること、
 4.前記絞りしごき缶の前記内面被覆の被覆度が、ERV換算で200mA以下であること、
 5.前記絞りしごき加工後に、55℃以上の温度で熱処理を施すこと、
が好適である。
 本発明によればまた、少なくとも缶内面側に内面塗膜を有する絞りしごき缶において、前記内面塗膜が、主成分としてポリエステル樹脂を含有し、前記内面塗膜のガラス転移温度(Tg)が55℃以上であり、且つ前記内面塗膜の被覆度が、ERV換算で200mA以下であることを特徴とする絞りしごき缶が提供される。
 本発明の絞りしごき缶においては、
 1.前記内面塗膜がさらに硬化剤を含有し、前記硬化剤が、レゾール型フェノール樹脂及び/又はアミノ樹脂であること、
 2.前記内面塗膜が、硬化剤を含有しないこと、
 3.缶外面側にさらに外面塗膜を有し、前記外面塗膜がポリエステル樹脂を含有すること、
 4.缶胴中央部の厚みが、缶底中央部の厚みの60%以下の厚みであること、
 5.缶胴中央部における前記内面塗膜の厚みが、缶底中央部の前記内面塗膜の厚みの60%以下の厚みであること、
 6.前記内面塗膜と金属基体の厚み比(前記内面塗膜の厚み/金属基体の厚み)が、缶底部及び缶胴部でほぼ同じであること、
 7.缶胴中央部の前記内面塗膜の下記式(1)で表される熱収縮率が30%以下であること、
  熱収縮率(%)=(ΔL/L)×100・・・(1)
  L:缶胴中央部から単離した塗膜の高さ方向の初期長さ
  ΔL:単位面積当たり5.20×10N/mの荷重をかけながら昇温速度5℃/minで30℃から200℃まで昇温した時のL該当部分の塗膜の高さ方向における最大収縮長さ
 8.缶底部における前記内面塗膜の60℃の試験条件における伸び率が200%未満であること、
が好適である。
 上述の塗装金属板から成る絞りしごき缶において、十分な耐フレーバー収着性を確保するためには、内面塗膜に主成分として含有されるポリエステル樹脂として、ガラス転移温度が高いものを用いることが望ましいが、ガラス転移温度が高いポリエステル樹脂を用いた場合、塗膜の伸び性、製缶加工性が低下する傾向にあるため、ドライ条件下で絞りしごき缶を成形する場合、加工時に塗膜欠陥が生じやすく、金属露出部が発生し、内面の塗膜被覆性が低下するおそれがある。
 本発明者等は、内面塗膜に主成分として含有されるポリエステル樹脂のガラス転移温度が高い場合でも、絞りしごき加工における成形速度(加工速度)を2000mm/sec以上とすることにより、内面の塗膜被覆性を低下させることなく、絞りしごき缶を効率よく製造することができることを見出した。
 すなわち、本発明の製造方法により得られる絞りしごき缶においては、絞りしごき加工を施す塗装金属板の内面塗膜に含有されるポリエステル樹脂のガラス転移温度が55℃以上と高いことから、耐フレーバー収着性に優れている。また、高速で加工を行うことにより加工発熱が大きくなり、塗膜が軟化することで塗膜の伸び性、製缶加工性が顕著に向上するため、ガラス転移温度が高いポリエステル樹脂を用いた場合でも、成形時の塗膜欠陥、金属露出が防止されて缶内面の塗膜被覆性を向上させることができる。更に、加工発熱が大きくなることで、加工後の塗膜の残留応力を小さくすることができるため、前述したような熱処理時の塗膜剥離の発生も有効に抑制される。その結果、得られる絞りしごき缶は、金属露出が有効に防止され、熱処理後においてもERV換算で表す内面塗膜の被覆度を200mA以下とすることができ、優れた耐食性を発現することが可能となる。
 本発明の絞りしごき缶の製造方法により得られた絞りしごき缶が、優れた耐フレーバー収着性を有すると共に、内面の塗膜被覆性に優れていることは後述する実施例の結果からも明らかである。
 すなわち、ガラス転移温度が55℃以上のポリエステル樹脂から成る内面塗膜を有する塗装金属板を用い、2000mm/sec以上の成形速度で絞りしごき加工を行った絞りしごき缶においては、内面塗膜の被覆度はERV換算で200mA以下と満足する被覆性を有すると共に、リモネン2ppm含有モデル液と共に、30℃14日間の条件下でデュラン壜に密閉保管した後の塗膜(2.5×5cm)のリモネン収着率が5%未満である(実施例1~9)。これに対して、1000mm/secの成形速度で成形した以外は、実施例と同様に絞りしごき加工することにより成形された絞りしごき缶においては、リモネン収着率は5%未満であるとしても、内面塗膜の被覆度はERV換算で200mAより高く、満足する内面の塗膜被覆性が得られていないことからも明らかである(比較例1~3)。
 また本発明の絞りしごき缶の製造方法においては、ドライ条件下での絞り加工やしごき加工のような過酷な加工に付された場合にも、缶胴部での破断(本発明で破胴ということがある)が生じてしまうことはもちろん、金属露出が有効に防止されるため、優れた製缶加工性を有していると共に、熱処理時の塗膜剥離を有効に抑制することが可能となり、熱処理後においても金属露出を有効に防止することが可能となる。
(塗装金属板)
 本発明の絞りしごき缶の製造方法に用いる塗装金属板は、金属板に塗料組成物が塗装されたものであり、少なくとも絞りしごき加工後に缶内面となる面に内面塗膜を有する塗装金属板であり、前記内面塗膜が、主成分としてガラス転移温度が55℃以上のポリエステル樹脂を含有することが特徴であり、更に硬化剤を含有することが望ましい。
 前記内面塗膜のガラス転移温度(Tg)としては、55℃以上、好ましくは55~120℃、より好ましくは60~110℃、更に好ましくは65~100℃、特に好ましくは65℃より高く95℃以下、最も好ましくは67~90℃の範囲にあることが望ましい。上記範囲よりもTgが低い場合には、成形後の缶体に内容物を充填した際に、内容物のフレーバー成分を収着しやすくなり、耐フレーバー収着性が劣るおそれがあると共に、塗膜のバリア性が低下し、耐食性が劣るようになるおそれがある。一方Tgが120℃を超える場合は、塗膜の伸び性が低下し、成形により金属露出が発生するおそれがあり、製缶加工性に劣るようになると共に、塗膜の残留応力が大きくなることで、熱処理時に塗膜剥離するおそれがあり、内面の塗膜被覆性が劣るようになる。
 また、本発明の絞りしごき缶の製造方法に用いる塗装金属板は、さらに絞りしごき加工後に缶外面側となる面にも外面塗膜を有する両面塗装金属板であることが望ましく、この外面塗膜が、主成分としてポリエステル樹脂、好ましくは更に硬化剤を含有することがより望ましい。
 上記外面塗膜のTgについては30℃以上、好ましくは40℃より高い、より好ましくは50℃より高く120℃以下、更に好ましくは55~110℃、特に好ましくは65~100℃以下、最も好ましくは67~90℃の範囲にあることが好適である。上記範囲よりもTgが低い場合には、塗膜の硬度が低くなることで、塗膜削れなどの外面不良が発生するおそれがある。一方Tgが120℃を超える場合は、塗膜の加工性及び伸び性が低下し、成形により金属露出が発生するおそれがあり、製缶加工性に劣るようになる。
 上述のような少なくとも缶内面となる面に内面塗膜を有する塗装金属板を用いて絞りしごき缶を成形することで、缶内面側の底部から胴部にかけて連続した前記内面塗膜で全体を被覆することが可能となる。
 さらに、絞りしごき加工後に缶外面となる面にも外面塗膜を有する両面塗装金属板を用いた場合には、缶外面側の底部から胴部にかけても連続した前記外面塗膜で全体を被覆することが可能となる。
 また内面塗膜の60℃試験条件下における伸び率は200%未満であることが好適である。すなわち、前述した通り、本発明の絞りしごき缶の製造方法においては、加工速度が2000mm/sec以上と高速でしごき加工を行うことから、加工発熱が大きくなり、ポリエステル樹脂のガラス転移温度を超える高温状態になることで塗膜の製缶加工性(伸び性)が向上する。そのため、内面塗膜の60℃試験条件下での伸び率が200%未満であっても、満足する製缶加工性が得られると共に、良好な耐フレーバー収着性が得られる。その一方、60℃試験条件下での伸び率が200%以上の場合には、耐フレーバー収着性が劣るようになる。
 また上記内面塗膜の膜厚は、乾燥膜厚で0.2~20μm、好ましくは1~12μm、より好ましくは2μmより大きく12μm以下の範囲にあることが好適である。また乾燥塗膜質量としては、3~300mg/dm、好ましくは15~150mg/dm、より好ましくは25mg/dmより大きく150mg/dm以下の範囲にあることが好適である。上記範囲よりも薄膜の場合は、成形時に金属露出が発生しやすくなり、内面塗膜の被覆性に劣るようになる。一方上記範囲よりも厚膜の場合は、加工時に生じる残留応力が大きくなるため、絞りしごき成形後の熱処理時に塗膜剥離が生じやすくなると共に、必要以上に厚膜となるため経済性に劣る。
 さらに絞りしごき缶に充填される内容物が、腐食性が強い酸性飲料の場合は、耐食性を確保するために膜厚を比較的厚くする必要があり、6μmより大きく12μm以下、好ましくは6.5~10μmの範囲にあることが好適である。また乾燥塗膜質量としては、85mg/dmより大きく150mg/dm以下、好ましくは90~140mg/dmの範囲であることが好適である。上記範囲よりも薄膜の場合は耐食性に劣り、上記範囲を超えた場合には絞りしごき成形後の熱処理時に塗膜剥離が生じやすくなる。
 一方絞りしごき缶に充填される内容物が、腐食性が比較的弱い低酸性飲料等の場合は、比較的薄膜でも耐食性を確保できるため、1μm以上6.5μm未満、好ましくは2μmより大きく6.5μm未満、より好ましくは2.5~6μmの範囲であることが好ましい。また乾燥塗膜質量としては、15mg/dm以上90mg/dm未満、好ましくは25mg/dmより大きく90mg/dm未満、より好ましくは30~85mg/dmの範囲であることが好適である。上記範囲よりも薄膜の場合は耐食性に劣り、上記範囲を超えた場合には必要以上に厚膜となり、経済性に劣る。
 また上記外面塗膜の膜厚は、乾燥膜厚で0.2~20μm、好ましくは1~12μm、より好ましくは2μmより大きく10μm以下、更に好ましくは2μmより大きく6.5μm以下の範囲にあることが好適である。また乾燥塗膜質量としては、3~300mg/dm、好ましくは15~150mg/dm、より好ましくは25mg/dmより大きく140mg/dm以下、更に好ましくは25mg/dmより大きく90mg/dm未満の範囲であることが好適である。上記範囲よりも薄膜の場合は、成形時に金属露出が発生しやすくなり、外面の塗膜被覆性に劣るようになる。一方上記範囲よりも厚膜の場合は、加工時に生じる残留応力が大きくなるため、絞りしごき成形後の熱処理時に塗膜剥離が生じやすくなる。
 なお、塗装金属板の内面塗膜と外面塗膜の膜厚に関して、より高い被覆性が求められる内面塗膜の方が、外面塗膜よりも膜厚が厚くなることが好ましい。
 塗装金属板における前記内面塗膜中において、ポリエステル樹脂、好ましくは後述の非結晶性ポリエステル樹脂の含有量が50質量%より高いことが好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましく、80質量%以上であることが特に好ましい。
 前記外面塗膜中においても同様に、ポリエステル樹脂、好ましくは非結晶性ポリエステル樹脂の含有量が50質量%より高いことが好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましく、80質量%以上であることが特に好ましい。
[ポリエステル樹脂]
 本発明の絞りしごき缶の製造方法に用いる塗装金属板においては、内面塗膜及び外面塗膜を構成する主成分としてポリエステル樹脂を用いるが、ここで主成分とは、塗膜を構成する成分の中で最も含有量(質量比率)が多いものとする。なお、本発明においては、上記内面塗膜及び外面塗膜を構成する樹脂成分のうち、ポリエステル樹脂の占める質量割合が50質量%より高いことが好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましく、80質量%以上であることが特に好ましい。
 内面塗膜に主成分として含有されるポリエステル樹脂のガラス転移温度(Tg)は55℃以上、好ましくは55~120℃、より好ましくは60~110℃、更に好ましくは65~100℃、特に好ましくは65℃より高く95℃以下、最も好ましくは67~90℃の範囲にあることが望ましい。上記範囲よりもTgが低くなると、上記したような絞りしごき缶に内容物を充填した際、内容物中の水分が一種の可塑剤として働くことも相俟って、ポリエステル樹脂の分子鎖の運動性が高くなり、その結果、内容物に含まれるフレーバー成分が塗膜内部に拡散しやすくなることで収着量が増加し、耐フレーバー収着性が劣るようになる。さらに塗膜の耐水性が低下することで耐食性や耐レトルト性も劣るようになるおそれがある。一方、Tgが120℃を超える場合は、塗膜の伸び性が低下し、成形により金属露出が発生するおそれがあり、製缶加工性に劣るようになると共に、成形後の塗膜の残留応力が大きくなるため、熱処理時に塗膜剥離するおそれがあり、内面の塗膜被覆性が劣るようになる。
 外面塗膜に主成分として含有されるポリエステル樹脂のガラス転移温度(Tg)は30℃以上、好ましくは40℃より高い、より好ましくは50℃より高く120℃以下、更に好ましくは55~110℃、特に好ましくは65~100℃、最も好ましくは67~90℃の範囲にあることが好適である。上記範囲よりもTgが低い場合には、塗膜の硬度が低くなることで、塗膜削れなどの外面不良が発生するおそれがある。一方Tgが120℃を超える場合は、塗膜の伸び性が低下することで製缶加工性が劣るようになり、成形により金属露出が発生するおそれがある。
 本発明においては、Tgの異なる2種以上のポリエステル樹脂をブレンドして用いることもでき、Tgの異なるポリエステル樹脂をブレンドすることで、ポリエステル樹脂1種のみを使用した場合に比べ、耐衝撃性に優れ、外部から衝撃を受けても塗膜欠陥のできにくい塗膜を形成できる場合がある。
 その場合においても、下記式(2)により算出されるポリエステル樹脂ブレンドのTgmixが上記のTg範囲にあれば良い。
1/Tgmix=(W1/Tg1)+(W2/Tg2)+…+(Wm/Tgm)・・・(2)
  W1+W2+…+Wm=1
  式中、Tgmixはポリエステル樹脂ブレンドのガラス転移温度(K)を表わし、Tg1,Tg2,…,Tgmは使用する各ポリエステル樹脂(ポリエステル樹脂1,ポリエステル樹脂2,…ポリエステル樹脂m)単体のガラス転移温度(K)を表わす。また、W1,W2,…,Wmは各ポリエステル樹脂(ポリエステル樹脂1,ポリエステル樹脂2,…ポリエステル樹脂m)の質量分率を表わす。
 ガラス転移温度の測定方法としては公知の方法を適用することが可能であり、たとえば示差走査熱量計(DSC)を用いて10℃/分の昇温速度で行うことが可能である。
 ポリエステル樹脂を構成する多価カルボン酸成分としては、例えばテレフタル酸、イソフタル酸、オルトフタル酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸、ダイマー酸等の脂肪族ジカルボン酸、(無水)マレイン酸、フマル酸、テルペン-マレイン酸付加体などの不飽和ジカルボン酸、1,4-シクロヘキサンジカルボン酸、テトラヒドロフタル酸、ヘキサヒドロイソフタル酸、1,2-シクロヘキセンジカルボン酸などの脂環式ジカルボン酸、(無水)トリメリット酸、(無水)ピロメリット酸、メチルシクロへキセントリカルボン酸等の3価以上の多価カルボン酸等が挙げられ、これらの中から1種または2種以上を選択し使用できる。上記多価カルボン酸の中でも、イソフタル酸、オルトフタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、トリメリット酸、アジピン酸、セバシン酸、フマル酸、マレイン酸、ダイマー酸および1,4-シクロヘキサンジカルボン酸からなる群より選ばれた1種以上を用いることが好適である。
 本発明においては、得られる塗膜の硬度や耐熱性、耐フレーバー収着性、耐レトルト性等の観点からポリエステル樹脂を構成する多価カルボン酸成分の合計量を100モル%としたとき、芳香族ジカルボン酸であるテレフタル酸やオルトフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸の中から選ばれる少なくとも1種、又は2種以上を併せて70モル%以上、好ましくは80モル%以上、より好ましくは90モル%以上の量で含有することが好ましい。さらに、上記芳香族ジカルボン酸の中でも特にテレフタル酸及びイソフタル酸が好ましく、ポリエステル樹脂を構成する多価カルボン酸成分の合計量を100モル%としたとき、テレフタル酸及びイソフタル酸の合計の含有量が70モル%以上であることが好ましく、好ましくは80モル%以上、更に好ましくは90モル%以上であることが好ましい。ポリエステル樹脂として、2種以上のポリエステル樹脂のブレンド体を用いる場合においては、ポリエステル樹脂のブレンド体を構成する全ての多価カルボン酸成分の合計量を100モル%としたとき、芳香族ジカルボン酸であるテレフタル酸やオルトフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸の中から選ばれる少なくとも1種、又は2種以上を併せて70モル%以上、好ましくは80モル%以上、より好ましくは90モル%以上の量で含有することが好ましい。また、ポリエステル樹脂のブレンド体を構成する全ての多価カルボン酸成分の合計量を100モル%としたとき、テレフタル酸及びイソフタル酸の合計の含有量が70モル%以上であることが好ましく、好ましくは80モル%以上、更に好ましくは90モル%以上であることがより好ましい。
 なお、ポリエステル樹脂を構成する多価カルボン酸成分として、芳香族ジカルボン酸以外の成分、例えばアジピン酸やセバシン酸等の脂肪族ジカルボン酸等を、上記芳香族ジカルボン酸の残余の割合、すなわち30モル%未満の量で含有しても良いが、脂肪族ジカルボン酸成分等の芳香族ジカルボン酸以外の成分の割合が多くなると、塗膜の耐フレーバー収着性が劣るようになると推察される。従って、ポリエステル樹脂を構成する多価カルボン酸成分に占める、脂肪族ジカルボン酸成分等の芳香族ジカルボン酸以外の成分の割合は30モル%未満、好ましくは20モル%未満、より好ましくは10モル%未満、特に好ましくは5モル%未満であることが望ましい。ポリエステル樹脂として、2種以上のポリエステル樹脂のブレンド体を用いる場合においては、ポリエステル樹脂のブレンド体を構成する全ての多価カルボン酸成分の合計量を100モル%としたとき、脂肪族ジカルボン酸成分等の芳香族ジカルボン酸以外の成分の割合は30モル%未満、好ましくは20モル%未満、より好ましくは10モル%未満、特に好ましくは5モル%未満であることが望ましい。
 ポリエステル樹脂を構成する多価アルコール成分としては、特に限定はなく、エチレングリコール、プロピレングリコール(1,2-プロパンジオール)、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2,4-ジエチル-1,5-ペンタンジオール、1-メチル-1,8-オクタンジオール、3-メチル-1,6-ヘキサンジオール、4-メチル-1,7-ヘプタンジオール、4-メチル-1,8-オクタンジオール、4-プロピル-1,8-オクタンジオール、1,9-ノナンジオール、などの脂肪族グリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のエーテルグリコール類、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、トリシクロデカングリコール類、などの脂環族ポリアルコール、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトール、などの3価以上のポリアルコール等から1種、または2種以上の組合せで使用することができる。本発明においては、上記の多価アルコール成分の中でも、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール、ジエチレングリコールを、ポリエステル樹脂を構成する成分として好適に用いることができる。
 特に、ポリエステル樹脂を構成する多価アルコール成分の合計量を100モル%としたとき、エチレングリコール、プロピレングリコール、2-メチル-1,3-プロパンジオールの中から選ばれる少なくとも1種、又は2種以上を併せて20モル%以上、好ましくは30モル%以上、より好ましくは40モル%以上、更に好ましく50モル%以上、特に好ましくは60モル%以上、最も好ましくは70モル%以上の量で含有することが耐フレーバー収着性の観点から好適である。ポリエステル樹脂として、2種以上のポリエステル樹脂のブレンド体を用いる場合においても、ポリエステル樹脂のブレンド体を構成する全ての多価アルコール成分のトータルに占める、エチレングリコール、プロピレングリコール、2-メチル-1,3-プロパンジオールの中から選ばれる少なくとも1種、又は2種以上を併せて20モル%以上、好ましくは30モル%以上、より好ましくは40モル%以上、更に好ましく50モル%以上、特に好ましくは60モル%以上、最も好ましくは70モル%以上の量で含有することが耐フレーバー収着性の観点から好適である。
 ポリエステル樹脂は、上記の多価カルボン酸成分の1種類以上と多価アルコール成分の1種類以上とを重縮合させることや、重縮合後に多価カルボン酸成分、例えばテレフタル酸、イソフタル酸、無水トリメリット酸、トリメリット酸、ピロメリット酸等で解重合する方法、また、重縮合後に酸無水物、例えば 無水フタル酸、無水マレイン酸、無水トリメリット酸、エチレングリコールビストリメリテート二無水物等を開環付加させること等、公知の方法によって製造することができる。
 ポリエステル樹脂は、硬化性及び耐レトルト白化性、金属基体との密着性等の観点から、酸価が0.1~40mgKOH/g、好ましくは酸価が0.5~25mgKOH/g、より好ましくは1~10mgKOH/g、更に好ましくは2mgKOH/gより高く10mgKOH/g以下、特に好ましくは2.5~8mgKOH/g、最も好ましくは3~7mgKOH/gの範囲にあることが望ましい。上記範囲よりも酸価が低い場合には、金属基体と塗膜の密着性が低下するおそれがある。一方、上記範囲よりも酸価が高い場合には、上記範囲にある場合に比して塗膜が吸水しやすくなり、耐レトルト白化性が低化するおそれがあると共に、塗膜の架橋密度が高くなり、製缶加工性や熱処理時の塗膜剥離耐性が低下し、塗膜被覆性が劣るようになるおそれがある。
 なお、ポリエステル樹脂が2種類以上のポリエステル樹脂をブレンドしたブレンド体である場合においては、各々のポリエステル樹脂の酸価と質量分率を乗じて得られた値の総和を、ブレンド体の平均酸価(AVmix)とし、その平均酸価が上述した酸価範囲内にあれば良い。
 ポリエステル樹脂の水酸基価については、これに限定されるものではないが、製缶加工性、熱処理時の塗膜剥離、耐レトルト白化性等の観点から20mgKOH/g以下、好ましくは10mgKOH/g以下、より好ましくは1~10mgKOH/g、更に好ましくは2~10mgKOH/gの範囲にあることが望ましい。
 ポリエステル樹脂の数平均分子量(Mn)は、これに限定されるものではないが、製缶加工性の観点から1,000~100,000、好ましくは3,000~50,000、より好ましくは5,000~30,000、更に好ましくは10,000~20,000の範囲であることが好適である。上記範囲よりも小さいと塗膜が脆くなり、製缶加工性に劣る場合があり、上記範囲よりも大きいと塗料安定性が低下するおそれがある。
 またポリエステル樹脂としては、製缶加工性や耐デント性、塗料化の観点から非結晶性ポリエステル樹脂であることが好ましい。ここで非結晶性とは、示査走査型熱量計(DSC)による測定において、明確な結晶成分の融点を示さないことを意味する。非結晶性ポリエステル樹脂の場合、結晶性のポリエステル樹脂に比して、溶剤への溶解性に優れ、塗料化が容易であると共に、製缶加工性や耐デント性に優れた塗膜を形成できる。なお、本発明においては、上記内面塗膜及び/又は外面塗膜に含有される全てのポリエステル樹脂成分のうち、非結晶性ポリエステル樹脂が占める質量割合が40質量%より高いことが好ましく、50質量%より高いことがより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、80質量%以上であることが最も好ましい。
[硬化剤]
 本発明の絞りしごき缶の製造方法に用いる塗装金属板の内面塗膜及び外面塗膜は、上述のポリエステル樹脂の他、更に硬化剤を含有することが望ましい。硬化剤が、主成分であるポリエステル樹脂の官能基、例えばカルボキシル基や水酸基と反応し架橋構造を形成することで、塗膜の耐熱性や耐レトルト白化性等を顕著に向上させることができる。特に、絞りしごき缶に充填される内容物が、充填後にレトルト処理が必要な内容物の場合は、内面塗膜及び外面塗膜には、硬化剤を含有することが望ましい。
 このような硬化剤としては、イソシアネート化合物、レゾール型フェノール樹脂、アミノ樹脂、エポキシ基含有化合物、オキサゾリン基含有化合物、カルボジイミド基含有化合物、β-ヒドロキシアルキルアミド化合物などを挙げることができる。特に硬化性や衛生性等の観点から、レゾール型フェノール樹脂、アミノ樹脂が好適である。
 本発明の塗装金属板及び絞りしごき缶においては、内面塗膜を形成する塗料組成物(以下、「内面用塗料組成物」ということがある)には、レゾール型フェノール樹脂、アミノ樹脂が好適であり、特に製缶加工性の観点からレゾール型フェノール樹脂を好適に使用することができる。外面塗膜を形成する塗料組成物(以下、「外面用塗料組成物」ということがある)には、硬化剤由来の着色がなく透明な塗膜を形成可能なアミノ樹脂を好適に使用することができる。一方、前述のレゾール型フェノール樹脂は、形成される塗膜が黄色くなることから、外面塗膜を形成する塗料組成物に使用する場合は注意が必要である。
(レゾール型フェノール樹脂)
 レゾール型フェノール樹脂としては、例えばo-クレゾール、p-クレゾール、p-tert-ブチルフェノール、p-エチルフェノール、2,3-キシレノール、2,5-キシレノール、フェノール、m-クレゾール、m-エチルフェノール、3,5-キシレノール、m-メトキシフェノール等のフェノール化合物の1種または2種以上を混合して使用し、これらフェノール化合物とホルムアルデヒドとをアルカリ触媒の存在下で反応させて成るレゾール型フェノール樹脂を使用することができる。
 硬化性の観点から、上記フェノール化合物の中でも、ホルムアルデヒドとの反応で3官能となるフェノール化合物を出発原料として20質量%超、好ましくは30質量%超、より好ましくは50質量%超、更に好ましくは60質量%以上、特に好ましくは80質量%以上含有するレゾール型フェノール樹脂が好ましい。ホルマリン類との反応で3官能となるフェノール化合物としてはフェノール、m-クレゾール、m-エチルフェノール、3,5-キシレノール、m-メトキシフェノールが挙げられ、これらの中から1種、または2種以上を選択し使用できる。これら3官能のフェノール化合物が20質量%以下だと硬化性が十分に得られず、塗膜の硬化度が低下するおそれがある。これら3官能となるフェノール化合物の中でも、硬化性の面からm-クレゾールがより好ましく、m-クレゾールを出発原料の主成分として含有するレゾール型フェノール樹脂(以下、「m-クレゾール系レゾール型フェノール樹脂」ということがある)が特に好ましい。それにより、十分な塗膜の硬化度を得ることができ、塗膜の耐熱性、耐食性、耐レトルト白化性等の観点から望ましい。尚、ここで主成分とは、出発原料となるフェノール化合物の中で最も含有量(質量比率)が多いものとする。m-クレゾール系レゾール型フェノール樹脂としては、m-クレゾールを出発原料として50質量%超、好ましくは60質量%超、より好ましくは70質量%超、更に好ましくは80質量%以上含有するものが望ましい。
 上述の3官能となるフェノール化合物の他、ホルムアルデヒドとの反応で2官能となるフェノール化合物を出発原料として使用する場合の含有量は50質量%未満、好ましくは30質量%未満、より好ましくは20質量%未満とすることが好ましい。50質量%以上だと、硬化性が低下するおそれがある。2官能となるフェノール化合物としては、o-クレゾール、p-クレゾール、p-tert-ブチルフェノール、p-エチルフェノール、2,3-キシレノール、2,5-キシレノール等がある。
 更に本発明に用いるレゾール型フェノール樹脂としては、ポリエステル樹脂との相溶性、硬化性の点から、含有するメチロール基の一部ないしは全部を炭素数1~12のアルコール類でアルキルエーテル化(アルコキシメチル化)したものを好適に使用することができる。アルキルエーテル化するメチロール基の割合としては50%以上が好ましく、60%以上がより好ましく、80%以上が更に好ましい。アルキルエーテル化の割合が50%未満だとポリエステル樹脂との相溶性が低くなり、塗膜に濁りが生じたり、十分な硬化性が得られなかったりする。アルキルエーテル化する際に使用されるアルコールとしては炭素原子数1~8個、好ましくは1~4個の1価アルコールであり、好適な1価アルコールとしてはメタノール、エタノール、n-プロパノール、n-ブタノール、イソブタノールなどを挙げることができ、より好ましくはn-ブタノールである。
 また、アルキルエーテル化されたメチロール基(アルコキシメチル基)の数は、フェノール核1核当たりのアルコキシメチル基を平均して0.3個以上、好ましくは0.5~3個有することが好適である。0.3個未満だとポリエステル樹脂との硬化性が劣るようになる。また上記レゾール型フェノール樹脂の数平均分子量(Mn)としては、500~3,000、好ましくは800~2,500の範囲であることが好適である。上記範囲よりも小さいと形成される塗膜の架橋密度が高くなる傾向にあるため、製缶加工後の塗膜の残留応力が大きくなることで、熱処理時に塗膜剥離するおそれがある。一方上記範囲よりも大きいと硬化性が劣るようになり、その結果、塗膜の耐熱性や耐食性、耐レトルト白化性等が劣るおそれがある。
(アミノ樹脂)
 アミノ樹脂としては、例えば、メラミン、尿素、ベンゾグアナミン、アセトグアナミン、ステログアナミン、スピログアナミン、ジシアンジアミド、などのアミノ成分と、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンツアルデヒドなどのアルデヒド成分との反応によって得られるメチロール化アミノ樹脂が挙げられる。このメチロール化アミノ樹脂のメチロール基の一部又は全部を炭素原子数1~12のアルコール類によってアルキルエーテル化したものも上記アミノ樹脂に含まれる。これらを単独或いは2種以上を併用して使用できる。アミノ樹脂としては、衛生性、製缶加工性、硬化性等の観点から、ベンゾグアナミンを使用したメチロール化アミノ樹脂(ベンゾグアナミン樹脂)、メラミンを使用したメチロール化アミノ樹脂(メラミン樹脂)、尿素を使用したメチロール化アミノ樹脂(尿素樹脂)が好ましく、ベンゾグアナミン樹脂、メラミン樹脂がより好ましく、ベンゾグアナミン樹脂が更に好ましい。
 ベンゾグアナミン樹脂としては、ベンゾグアナミン樹脂のメチロール基の一部又は全部を、メタノール、エタノール、n-ブタノール、i-ブタノール等のアルコールでアルキルエーテル化したベンゾグアナミン樹脂、例えばメチルエーテル化ベンゾグアナミン樹脂、エチルエーテル化ベンゾグアナミン樹脂、ブチルエーテル化ベンゾグアナミン樹脂、或いはメチルエーテルとブチルエーテルとの混合エーテル化ベンゾグアナミン樹脂、メチルエーテルとエチルエーテルと混合エーテル化ベンゾグアナミン樹脂、エチルエーテルとブチルエーテルの混合エーテル化ベンゾグアナミン樹脂が好ましい。中でもメチルエーテル化ベンゾグアナミン樹脂、ブチルエーテル化ベンゾグアナミン樹脂がより好ましい。
 メラミン樹脂としては、メラミン樹脂のメチロール基の一部又は全部を、メタノール、エタノール、n-ブタノール、i-ブタノール等のアルコールでアルキルエーテル化したメラミン樹脂、例えばメチルエーテル化メラミン樹脂、エチルエーテル化メラミン樹脂、ブチルエーテル化メラミン樹脂、或いはメチルエーテルとブチルエーテルとの混合エーテル化メラミン樹脂、メチルエーテルとエチルエーテルと混合エーテル化メラミン樹脂、エチルエーテルとブチルエーテルの混合エーテル化メラミン樹脂が好ましい。中でもメチルエーテル化メラミン樹脂がより好ましく、フルエーテル化タイプのメチルエーテル化メラミン樹脂が特に好ましい。
 尿素樹脂としては、尿素樹脂のメチロール基の一部又は全部を、メタノール、エタノール、n-ブタノール、i-ブタノール等のアルコールでアルキルエーテル化した尿素樹脂、例えばメチルエーテル化尿素樹脂、エチルエーテル化尿素樹脂、ブチルエーテル化尿素樹脂、或いはメチルエーテルとブチルエーテルとの混合エーテル化尿素樹脂、メチルエーテルとエチルエーテルと混合エーテル化尿素樹脂、エチルエーテルとブチルエーテルの混合エーテル化尿素樹脂が好ましい。
 上述のメラミン樹脂及びベンゾグアナミン樹脂が有する官能基としては、イミノ基(>NH)、N-メチロール基(>NCHOH)、N-アルコキシメチル基(>NCHOR;Rはアルキル基)が挙げられ、これらの官能基は、主剤であるポリエステル樹脂に含まれるカルボキシル基(-COOH)や水酸基(-OH)との架橋反応、或いはアミノ樹脂同士での自己縮合反応における反応点として作用する(なお、イミノ基については自己縮合反応のみに寄与する)。なお、上述の反応点(官能基)の数に関して、メラミン樹脂とベンゾグアナミン樹脂の単量体で比較すると、分子構造上、メラミン樹脂の方が多くなると考えられる。それにより、メラミン樹脂は硬化性に優れる反面、形成される塗膜の架橋密度が高くなりやすく、配合量によっては熱処理時に塗膜剥離が発生するおそれがある。一方ベンゾグアナミン樹脂は、メラミン樹脂に比べて硬化性に劣るものの、形成される塗膜の架橋密度は高くなりにくく、塗膜剥離耐性の観点からはメラミン樹脂よりも好適と言える。そのため、硬化性と熱処理時の塗膜剥離耐性のバランスを取るために、メラミン樹脂とベンゾグアナミン樹脂を併用し、それらを所定の比率で混合した混合アミノ樹脂を用いても良い。その場合、メラミン樹脂及びベンゾグアナミン樹脂の配合量比(質量比)は、ベンゾグアナミン樹脂の配合量比が高くなることが望ましく、具体的には49:51~5:95、好ましくは40:60~5:95、より好ましくは35:65~10:90、更に好ましくは30:70~10:90とすることが望ましい。
 硬化剤は、ポリエステル樹脂100質量部に対して1~40質量部、好ましくは1~30質量部、より好ましくは2~20質量部の範囲で配合することが望ましい。
 硬化剤としてレゾール型フェノール樹脂を用いる場合には、主剤となるポリエステル樹脂(固形分)100質量部に対して1~40質量部、好ましくは2~30質量部、より好ましくは2~25質量部、更に好ましくは2.5~20質量部、特に好ましくは3~15質量部の範囲で配合することが好ましい。また硬化剤としてメラミン樹脂を用いる場合には、ポリエステル樹脂100質量部に対して、1~15質量部、好ましくは1質量部以上10質量部未満、より好ましくは1~5.5質量部、特に好ましくは2~5質量部の量で配合することが好ましい。硬化剤としてベンゾグアナミン樹脂を用いる場合にはポリエステル樹脂100質量部に対して4~40質量部、好ましくは5~30質量部、より好ましくは6~28質量部、更に好ましくは8~25質量部、特に好ましくは8~24質量部で配合することが好ましい。硬化剤として、前述のメラミン樹脂とベンゾグアナミン樹脂の混合アミノ樹脂を用いた場合には、ポリエステル樹脂100質量部に対して、2~25質量部、好ましくは2~20質量部、より好ましくは2.5~15質量部、更に好ましくは3質量部以上10質量部未満で配合することが好ましい。
 上記範囲よりも硬化剤量が少ない場合には、十分な硬化性を得ることができず、塗膜の硬化度が低くなり、耐熱性が低下する傾向にある。そのため、絞りしごき缶を高速で成形する場合においては、温度上昇がより顕著になるため、成形した際に塗膜が金型に張り付きやすくなるおそれがある。特に缶内面側においては、絞りしごき成形後、パンチから缶体を抜き取る時点で、缶体がパンチに張り付き、パンチと缶体が分離しにくくなる現象(ストリッピング性不良)が生じ、それにより缶体が座屈、または破胴するなど、生産性が低下するおそれがある。一方、缶外面側においては、塗膜削れなどの外面不良が発生するおそれがある。また、内容物充填後の缶体にレトルト処理のような殺菌処理を施した場合に塗膜が白化する場合があり、耐レトルト白化性が低下するおそれがある。
 一方上記範囲よりも硬化剤量が多い場合には、用いる硬化剤の種類にもよるが、塗膜の製缶加工性が低下し、絞りしごき加工時に金属露出が発生するおそれがあると共に、塗膜の硬化度が高くなることで、加工後の残留応力が大きくなる場合があり、それにより熱処理時に塗膜剥離が起こり、結果として塗膜の被覆性が低下するおそれがある。
 本発明に用いる内面用塗料組成物及び外面用塗料組成物には、ポリエステル樹脂と硬化剤の架橋反応を促進する目的で硬化触媒を配合することが好ましい。
 硬化触媒としては、従来公知の硬化触媒を用いることができ、例えばp-トルエンスルホン酸、ドデシルベンゼンスルホン酸、ジノニルナフタレンジスルホン酸、リン酸、アルキルリン酸、またはこれらのアミン中和物等の有機スルホン酸系及びリン酸系の酸触媒を使用することができる。上記硬化触媒の中でも、有機スルホン酸系の酸触媒を用いることが好ましく、特にドデシルベンゼンスルホンやそのアミン中和物が好適である。
 硬化触媒は、ポリエステル樹脂の固形分100質量部に対して、固形分として0.01~3質量部、好ましくは0.02~1.0質量部、より好ましくは0.02質量部以上0.5質量部未満、更に好ましくは0.03質量部以上0.3質量部未満、特に好ましくは0.04質量部以上0.2質量部未満の範囲であることが望ましい。また、硬化触媒として上記酸触媒のアミン中和物(例えばドデシルベンゼンスルホン酸のアミン中和物)を用いる場合には、アミンを除いた酸触媒の含有量が上記範囲内であれば良い。上記範囲よりも硬化触媒の含有量が少ない場合には、硬化反応を促進する効果が十分得られないおそれがある一方、上記範囲よりも硬化触媒の含有量が多い場合には、それ以上の効果は望めず、また塗膜の耐水性が低下し、結果として耐食性や耐レトルト白化性等が劣化するおそれがある。また、酸触媒が酸-塩基相互作用により金属基体表面に局在化することで、塗膜と金属基体間の密着性が低下するおそれがあり、缶成形時に塗膜が剥がれる等の問題が生じるおそれがある。
[塗料組成物]
 本発明で用いる塗装金属板の塗膜を形成する塗料組成物は、少なくとも主成分として上述したポリエステル樹脂、好ましくは更に上述の硬化剤、より好ましくは更に上述の硬化触媒を含有する。なお、本発明においては、塗料組成物中の塗膜を形成する固形成分(水や溶剤などの揮発する物質を除いた不揮発成分)の中で、最も含有量(質量割合い)が多い成分のことを、主成分として定義する。また、本発明に用いる塗料組成物において、塗料組成物中に含まれる全ての樹脂成分のうち、主剤となる前述のポリエステル樹脂、好ましくは非結晶性ポリエステル樹脂の含有量が50質量%より高いことが好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましく、80質量%以上であることが特に好ましい。
 本発明において、塗膜の形成に使用可能な塗料組成物の形態(種類)としては溶剤型塗料組成物又は水性塗料組成物が好ましく、塗装性等の観点から溶剤型塗料組成物がより好ましい。
 塗料組成物が溶剤型塗料組成物である場合、上述したポリエステル樹脂、好ましくは硬化剤、並びに溶媒として有機溶媒を含有する。なお、本発明における溶剤型塗料組成物とは主剤樹脂、硬化剤等を公知の有機溶媒に溶解、或いは分散された状態で塗料化されたものであって、塗料組成物中における有機溶媒の占める質量割合が40質量%以上である塗料組成物と定義する。
 前記有機溶媒としては、トルエン、キシレン、芳香族系炭化水素化合物、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロン、メチルセロソルブ、ブチルセロソルブ、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノアセテート、メタノール、エタノール、ブタノール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、ソルベントナフサ等から溶解性、蒸発速度等を考慮して1種、または2種以上を選択し使用される。
 塗料組成物が水性塗料組成物の場合は、従来公知の水分散性又は水溶性のポリエステル樹脂、好ましくは硬化剤と共に、溶媒として水性媒体を含有する。なお、本発明における水性塗料組成物とは主剤樹脂、硬化剤等を公知の水性媒体に溶解、或いは分散させた状態で塗料化されたものであって、塗料組成物中における水性媒体の占める質量割合が40質量%以上である塗料組成物と定義する。
 水性媒体としては、公知の水性塗料組成物と同様に、水、或いは水とアルコールや多価アルコール、その誘導体等の有機溶剤を混合したものを水性媒体として用いることができる。有機溶剤を用いる場合には、水性塗料組成物中の水性媒体全体に対して、1質量%以上40質量%未満の量で含有することが好ましく、特に5~30質量%の量で含有することが好ましい。上記範囲で有機溶剤を含有することにより、製膜性能が向上する。
 このような有機溶剤としては、両親媒性を有するものが好ましく、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、n―ブタノール、エチレングリコール、メチルエチルケトン、ブチルセロソルブ、カルビトール、ブチルカルビトール、プロピレングリコールモノプロピルエーテル、プロピレングリコールエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、3-メチル-3-メトキシブタノールなどが挙げられる。
<潤滑剤>
 塗料組成物には、必要に応じ潤滑剤を含有することができる。その場合の配合量としては、ポリエステル樹脂100質量部に対し、潤滑剤0.1質量部~20質量部、好ましくは0.2~10質量部、より好ましくは0.5~5質量部の範囲であることが好ましい。
 潤滑剤を加えることにより、成形加工時の塗膜の傷付きを抑制でき、また成形加工時の塗膜の滑り性を向上させることができる。
 塗料組成物に加えることのできる潤滑剤としては、例えば、ポリオール化合物と脂肪酸とのエステル化物である脂肪酸エステルワックス、シリコン系ワックス、ポリテトラフルオロエチレン等のフッ素系ワックス、ポリエチレンなどのポリオレフィンワックス、パラフィンワックス、ラノリン、モンタンワックス、マイクロクリスタリンワックス、カルナバろう、およびシリコン系化合物、白色ワセリンなどを挙げることができる。これらの潤滑剤は一種、または二種以上を混合し使用できる。
<その他>
 塗料組成物には、上記成分の他、従来より塗料組成物に配合されている、レベリング剤、顔料、消泡剤、着色剤等を従来公知の処方に従って添加することもできる。
 また、本発明の目的を損なわない範囲で、ポリエステル樹脂と併せてその他の樹脂成分が含まれていても良く、例えばポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、ポリオレフィン系樹脂、エポキシ樹脂、ポリウレタン樹脂、アクリル樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニル-酢酸ビニル共重合樹脂、ポリビニルアルコール、エチレン・ビニルアルコール共重合体、ポリビニルピロリドン、ポリビニルエチルエーテル、ポリアクリルアミド、アクリルアミド系化合物、ポリエチレンイミン、澱粉、アラビアガム、メチルセルロース等の樹脂が含まれていても良い。
 塗料組成物においては、塗膜を形成する固形成分が3~55質量%、好ましくは5~45質量%の量で含有されていることが好適であり、ポリエステル樹脂が固形分として3~50質量%、好ましくは5~40質量%の量で含有されていることが好適である。上記範囲よりも固形成分が少ない場合には、適正な塗膜量を確保することができず、被覆性が劣るようになる。一方、上記範囲よりも樹脂固形分が多い場合には、作業性及び塗工性に劣る場合がある。
(塗装金属板の製造方法)
 本発明に用いる塗装金属板は、前述した通り、主成分としてポリエステル樹脂、好ましくは硬化剤としてレゾール型フェノール樹脂及び/又はアミノ樹脂、より好ましくはレゾール型フェノール樹脂を含有する内面用塗料組成物を金属板の少なくとも内面となる面に塗工することにより製造する。好適には、更に金属板の外面となる面に、前述した主成分のポリエステル樹脂、好ましくは硬化剤としてアミノ樹脂を含有する外面用塗料組成物を塗工する。
 塗料組成物の焼き付け条件は、ポリエステル樹脂、硬化剤、金属基体の種類、塗工量等によって適宜調節されるが、上述した塗料組成物は、充分な硬化度を得るために、焼付け温度が150℃~350℃、好ましくは200℃より高く320℃以下の温度で、5秒以上、好ましくは5秒~30分間、特に好ましくは5秒~180秒間の条件で加熱硬化させることが好ましい。上記範囲よりも焼き付け温度が低い場合には、充分な硬化度を得られないおそれがある。一方で、上記範囲よりも焼き付け温度が高い場合には、過度な加熱によりポリエステル樹脂が熱分解するおそれがある。上記範囲よりも焼付け時間が短い場合には、充分な硬化度を得られないおそれがあり、上記範囲よりも焼付け時間が長い場合には、経済性や生産性に劣る。
 また焼付け後の塗装金属板上の内面塗膜及び/又は外面塗膜において、硬化度の指標であるMEK抽出率(MEK沸点、1時間)が50%以下、好ましくは1~40%、より好ましくは2~30%、更に好ましくは3~25%、特に好ましくは3~20%の範囲にあることが好適であり、MEK抽出率が上記範囲にあることにより、塗膜の硬化度が制御され、塗膜の耐熱性、耐食性、耐レトルト白化性、塗膜剥離耐性の観点から好ましい。
 上記範囲よりもMEK抽出率が高い場合には、塗膜の硬化度が低くなり、耐熱性が低下する傾向にあるため、絞りしごき缶を高速で成形する場合においては、温度上昇がより顕著になるため、成形した際に塗膜が金型に張り付きやすくなることがある。特に缶内面側においては、絞りしごき成形後、パンチから缶体を抜き取る時点で、缶体がパンチに張り付き、パンチと缶体が分離しにくくなる現象(ストリッピング性不良)が生じ、それにより缶体が座屈、または破胴するなど、生産性が低下するおそれがあると共に、耐レトルト白化性が劣るおそれがある。缶外面側においては、塗膜削れなどの外面不良が発生するおそれがあると共に、耐レトルト白化性が劣るおそれがある。
 一方MEK抽出率が1%よりも低い場合には、塗膜の硬化度が高く、成形時の残留応力が大きくなるため、熱処理時に塗膜剥離が発生するおそれがある。
 塗装方法としては、ロールコーター塗装、スプレー塗装、ディップ塗装などの公知の塗装方法によって、金属板の少なくとも缶内面側となる面に、好適には両面に塗装した後、コイルオーブン等の加熱手段によって焼き付けることにより製造することができる。
 塗装金属板の金属基体として用いる金属板としては、これに限定されないが、例えば、熱延伸鋼板、冷延鋼板、溶融亜鉛メッキ鋼板、電気亜鉛メッキ鋼板、合金メッキ鋼板、アルミニウム亜鉛合金メッキ鋼板、アルミニウム板、スズメッキ鋼板、ステンレス鋼板、銅板、銅メッキ鋼板、ティンフリースチール、ニッケルメッキ鋼板、極薄スズメッキ鋼板、クロム処理鋼板などが挙げられ、必要に応じてこれらに各種表面処理、例えばリン酸クロメート処理やジルコニウム系の化成処理、ポリアクリル酸などの水溶性樹脂と炭酸ジルコニウムアンモン等のジルコニウム塩を組み合わせた塗布型処理等を行ったものが使用できる。
 本発明においては、上記金属板の中でもアルミニウム板、具体的には「JIS H 4000」における3000番台、5000番台、6000番台のアルミニウム合金板を好適に使用することができる。アルミニウム合金板としては、前述の各種表面処理を施した表面処理アルミニウム合金板に加え、表面処理を施していない無処理のアルミニウム合金板も好適に用いることが出来る。
 金属板の厚みは、缶体強度、成形性の観点から0.1~1.00mm、好ましくは0.15~0.40mm、より好ましくは0.15~0.30mm、更に好ましくは0.20~0.28mmの範囲内にあるのが良い。
 本発明の塗装金属板においては、絞りしごき加工後に缶内面側となる面に形成された上記内面塗膜及び/又は絞りしごき加工後に缶外面側となる面に形成された上記外面塗膜上に、必要に応じて別の塗料組成物(溶剤型塗料組成物又は水性塗料組成物)から成る塗膜が形成されていても良いが、経済性の観点からは形成されていない方が好ましい。
本発明に用いる塗装金属板の缶内面側となる面の最表層は、塗料組成物から形成されて成る塗膜、好適には前述の内面用塗料組成物から成る前記内面塗膜、或いは前記内面塗膜上に形成された後述のワックス系潤滑剤から成る層であることが望ましい。同様に、本発明に用いる塗装金属板の缶外面側となる面の最表層は、塗料組成物から形成されて成る塗膜、好適には前述の外面用塗料組成物から成る前記外面塗膜、或いは前記外面塗膜上に形成された後述のワックス系潤滑剤から成る層であることが望ましい。
 また、本発明の塗装金属板においては、前述の塗料組成物から成る内面塗膜及び外面塗膜は、金属基体との密着性に優れるため、内面塗膜及び/又は外面塗膜が金属基体である上記金属板に直接接するように形成されていることが好適である。
(絞りしごき缶の製造方法)
 本発明の絞りしごき缶の製造方法は、少なくとも缶内面となる面に、ガラス転移温度(Tg)が55℃以上のポリエステル樹脂を主成分として含有する内面塗膜を有する塗装金属板を用い、しごき加工におけるしごき率が40%以上であり、2000mm/sec以上の加工速度で絞りしごき加工を行うことが重要な特徴である。
 前述した通り、本発明者等は、耐フレーバー収着性を向上させるためにガラス転移温度の高いポリエステルを含有する内面塗膜を有する塗装金属板を用い、しごき率が40%以上の過酷な加工を行う場合であっても、絞りしごき加工を2000mm/sec以上の成形速度(加工速度)で行うことにより、製缶加工性が改良されると共に、熱処理時の塗膜剥離の発生を有効に抑制できることを見出した。
 すなわち2000mm/sec以上の高速でのしごき加工では、加工発熱が大きく、ポリエステル樹脂のガラス転移温度を超えた温度で成形される結果、塗膜の伸び性が向上して製缶加工性が向上すると考えられる。更に、成形後の塗膜の残留応力が低減されるため、熱処理時の塗膜剥離を抑制することが可能となり、結果として内面の金属露出が防止され、内面の塗膜被覆性の高い絞りしごき缶を提供することができる。また、前述の絞りしごき加工後に缶外面となる面にも外面塗膜を有する両面塗装金属板を用いた場合には、外面の塗膜被覆性にも優れた絞りしごき缶を提供することができる。
 本発明の製造方法においては、前述した通り、上記のような高速の加工速度で絞りしごき加工を行うことにより、塗装金属板の塗膜の伸び性、製缶加工性を向上できることから、過酷な絞りしごき加工の際にも、加工時の塗膜欠陥や破胴、缶口端での塗膜剥離を生じることなく、絞りしごき缶を成形することができる。なお、本発明に好適に用いられる塗装金属板は、成形性や潤滑性に優れるものであるから、クーラントを用いる場合はもちろん、クーラントを用いず、ドライ条件下で成形を行った場合でも、絞りしごき缶を成形することができる。
 絞りしごき成形に先立って塗装金属板の表面には、ワックス系潤滑剤を塗布することが好ましく、これによりドライ条件下で効率よく絞りしごき加工を行うことができる。ワックス系潤滑剤としては、例えば、これに限定されないが、脂肪酸エステルワックス、シリコン系ワックス、白色ワセリン、ライスワックス、蜜蝋、木蝋、モンタンワックス等の鉱物由来ワックス、フィッシャー・トロプシュワックス、ポリエチレンやポリプロピレンなどのポリオレフィンワックス、パラフィン系ワックス、流動パラフィン、ラノリンワックス、マイクロクリスタリンワックス、カルナバワックス、などを挙げることができ、パラフィン系ワックス、白色ワセリンがより好適に使用できる。上記ワックス系潤滑剤の中でも、特に食品衛生上問題がないと共に、150~250℃、好ましくは200℃程度の温度での加熱で容易に揮発除去可能なワックス系潤滑剤が望ましく、それにより絞りしごき缶成形後の後工程でワックス系潤滑剤を熱処理により揮発除去できるようになるため、缶胴に外面印刷を施す場合において、ワックス系潤滑剤によってインキが弾かれるおそれがなくなり都合が良い。これらのワックス系潤滑剤は一種、または二種以上を混合し使用できる。ワックス系潤滑剤の塗布量としては、成形性、生産性の観点から塗装金属板の片面当たり5~200mg/m、好ましくは10~100mg/m、より好ましくは20~80mg/mの範囲であることが望ましい。ワックス系潤滑剤が塗布された塗装金属板を、カッピング・プレスで、ブランクを打抜き、絞り加工法により、絞りカップを成形する。本発明においては、下記式(3)で定義される絞り比RDが、トータル(絞りしごき缶まで)で1.1~2.6の範囲、特に1.4~2.6の範囲にあることが望ましい。上記範囲よりも絞り比が大きいと、絞りしわが大きくなり、塗膜に亀裂が発生して金属露出を発生するおそれがある。
  RD=D/d・・・(3)
  式中、Dはブランク径、dは缶胴径を表す。
 次いで、前記絞りカップを、再絞り-一段又は数段階のしごき加工(絞りしごき加工)を行って缶胴部の薄肉化を行う。この際本発明においては、成形に用いるパンチとして、10~80℃、好ましくは15~70℃、より好ましくは20~60℃、更に好ましくは20~50℃に温度調節されたパンチを用いることが望ましい。なお、温度調節の方法としては、例えばパンチ内部に温調水を循環させる等の方法が挙げられる。上記範囲よりもパンチ温度が低いと、塗装金属板に塗布したワックス系潤滑剤が十分に滑性を示すことができず、パンチから缶体を抜き取る時点で、ストリッピング性(抜け性)不良が生じるおそれがあると共に、成形後の塗膜被覆性が低下するおそれがある。一方上記範囲よりもパンチ温度が高い場合は、パンチから缶体を抜き取る時点で、塗膜が張り付きやすくなり、ストリッピング性不良が生じるおそれがある。また、ダイスとしては、10~80℃、好ましくは15~70℃となるように温度調節されたダイスを用いることが、安定して連続的に成形する観点から望ましい。
 また本発明においては、下記式(4)で表されるしごき率Rが、40%以上、好ましくは40~80%、より好ましくは50~80%、更に好ましくは55%より高く75%以下、特に好ましくは60%より高く70%以下の範囲にあることが望ましい。上記範囲よりもしごき率が低いと、十分に薄肉化できず、経済性の点で十分満足するものではなく、一方上記範囲よりもしごき率が高い場合には、金属露出のおそれがある。
  R(%)=(tp-tw)/tp×100・・・(4)
  式中、tpは元の塗装金属板の金属基体の厚み、twは絞りしごき缶の缶胴中央部(最も薄肉化されている部分)の金属基体の厚みを表す。
 また本発明の絞りしごき缶の製造方法により得られる絞りしごき缶においては、缶胴中央部(高さ方向の中央部、最も薄肉化されている部分)の厚みが、缶底中央部の厚みの60%以下、好ましくは20~60%、より好ましくは20~50%、更に好ましくは25~45%、特に好ましくは30~45%、最も好ましくは30~40%の厚みであることが好適である。絞りしごき缶の金属基体の厚みも同様に、缶胴中央部の金属基体の厚みが、缶底中央部の金属基体の厚みの60%以下、好ましくは20~60%、より好ましくは20~50%、更に好ましくは25~45%、特に好ましくは30~45%、最も好ましくは30~40%の厚みであることが好適である。また、塗装金属板から絞りしごき加工により絞りしごき缶を成形した場合には、缶胴部に位置する内面塗膜の厚みは、加工により金属基体と同じように薄くなる。従って、缶胴中央部の内面塗膜及び外面塗膜の厚みは、製缶時にほとんど薄肉化されない缶底中央部の内面塗膜の厚みの60%以下、好ましくは20~60%、より好ましくは20~50%、更に好ましくは25~45%、特に好ましくは30~45%、最も好ましくは30~40%の厚みであることが好適である。外面塗膜についても同様である。
 缶底中央部の金属基体の厚みとしては、0.10~0.50mm、好ましくは0.15~0.40mm、より好ましくは0.15~0.30mm、更に好ましくは0.20~0.28mmの厚みが好適である。
 また缶底中央部の上記内面塗膜の膜厚は、乾燥膜厚で0.2~20μm、好ましくは1~12μm、より好ましくは2μmより大きく12μm以下の範囲にあることが好適である。また乾燥塗膜質量としては、3~300mg/dm、好ましくは15~150mg/dm、より好ましくは25mg/dmより大きく150mg/dm以下の範囲にあることが好適である。さらに絞りしごき缶に充填される内容物が、腐食性が強い酸性飲料の場合は、6μmより大きく12μm以下、好ましくは6.5~10μmの範囲にあることが好適である。また乾燥塗膜質量としては、85mg/dmより大きく150mg/dm以下、好ましくは90~140mg/dmの範囲であることが好適である。一方絞りしごき缶に充填される内容物が、腐食性が比較的弱い低酸性飲料等の場合は1μm以上6.5μm未満、好ましくは2μmより大きく6.5μm未満、より好ましく2.5~6μmの範囲であることが好ましい。また乾燥塗膜質量としては、15mg/dm以上90mg/dm未満、好ましくは25mg/dmより大きく90mg/dm未満、より好ましくは30~85mg/dmの範囲であることが好適である。
 また缶底中央部の上記外面塗膜の膜厚は、乾燥膜厚で0.2~20μm、好ましくは1~12μm、より好ましくは2μmより大きく10μm以下、更に好ましくは2μmより大きく6.5μm以下の範囲にあることが好適である。また乾燥塗膜質量としては、3~300mg/dm、好ましくは15~150mg/dm、より好ましくは25より大きく140mg/dm以下、更に好ましくは25mg/dmより大きく90mg/dm未満の範囲であることが好適である。
 また上述したように内面塗膜を有する塗装金属板から絞りしごき加工により絞りしごき缶を成形した場合には、缶胴部に位置する内面塗膜の厚みは、加工により、缶胴部に位置する金属基体と同じように薄くなる。従って、本発明の絞りしごき缶においては、缶胴部における前記内面塗膜と金属基体の厚み比と、缶底部における前記内面塗膜と金属基体の厚み比は、ほぼ同じとなる。すなわち、本発明の絞りしごき缶においては、前記内面塗膜と金属基体の厚み比(=前記内面塗膜の厚み/金属基体の厚み)が、缶底部及び缶胴部で実質的にほぼ同じとなるのが特徴である。なおここでの「ほぼ同じ」とは、製造誤差がその範囲内に含まれるものを意味するものとし、例えば缶胴部の(前記内面塗膜の厚み/金属基体の厚み)が、缶底部の(前記内面塗膜の厚み/金属基体の厚み)の0.9~1.1倍の範囲内であることを意味する。なお、外面塗膜についても同様である。
 また、本発明の絞りしごき缶においては、缶胴部における前記内面塗膜と金属基体の厚み比(=前記内面塗膜の厚み/金属基体の厚み)が、缶胴部の位置によらず缶胴部全体で実質的にほぼ同じとなるのが特徴である。なお、外面塗膜についても同様である。
 本発明における加工速度は、一段又は数段階のしごき加工における加工速度(パンチ金型の移動速度)であり、上述した通り、2000mm/sec以上、好ましくは3000mm/sec以上、より好ましくは4000mm/sec以上、更に好ましくは5000mm/sec以上、特に好ましくは5500mm/sec以上とすることが望ましい。上述したように、しごき加工時の加工速度を上記速度以上とすることにより、加工発熱が大きくなり、55℃を超える高温状態になることで塗膜の加工性(伸び性)が向上する。その結果、ガラス転移温度の高いポリエステルを使用した場合においても、成形時の金属露出が抑制され、成形後の内面塗膜及び/又は外面塗膜の被覆性を更に向上させることができる。更に、ポリエステル樹脂のガラス転移温度より高い温度で成形されることで、成形加工中に応力緩和しやすくなるため、成形後の塗膜の残留応力を低減することができ、熱処理時の塗膜剥離を抑制することが可能となる。尚、加工速度の上限については特に制限はないが、例えば20000mm/sec以下、好ましくは15000mm/sec以下とすることが望ましい。20000mm/secを超えると、加工時に破胴しやすくなることが推察される。
 絞りしごき加工後、所望により常法に従って底部のドーミング成形及び開口端縁のトリミング加工を行う。
 本発明の絞りしごき缶の製造方法によれば、上述の塗装金属板を、絞りしごき加工した後、得られた絞りしごき缶を熱処理工程に付することが望ましい。成形後の絞りしごき缶に、少なくとも一段の熱処理を施すことにより、加工により生じた塗膜の残留応力を除去することができる。塗膜の当該残留応力が除去されることにより、加工後の塗膜と金属基体間の密着性(塗膜密着性)を向上させることが可能となる。その結果、塗膜の耐食性が顕著に向上され、例えば絞りしごき缶に腐食性の強い内容物を充填した際、塗膜下腐食の発生を抑制することができる。熱処理の温度は、塗膜のガラス転移温度以上の温度である必要があり、55℃以上、好ましくは100~300℃、より好ましくは150~250℃の温度範囲にあることが望ましい。熱処理の時間はこれに限定されないが、0.1~600秒間、好ましくは1~300秒間、より好ましくは、20~180秒間で加熱することが好ましい。なお、上記熱処理工程において、加工の際用いた前述のワックス系潤滑剤を表面から揮発除去することもでき、その場合は、熱処理の温度が150~250℃の温度範囲であることが望ましく、熱処理の時間はこれに限定されないが、0.1~600秒間、好ましくは1~300秒間、より好ましくは、10~180秒間で加熱することが好ましい。
 絞りしごき缶の塗膜の残留応力が熱処理によって除去されていない場合、加工度の大きい缶胴中央部(高さ方向における中央部)の塗膜を金属基体から単離し加熱すると残留応力を解放する方向(主に缶の高さ方向)に寸法が大きく変化することから、加熱による単離塗膜の寸法変化量(熱収縮率)を測定することにより、熱処理によって残留応力が除去されているかの目安とすることができる。絞りしごき缶から単離した缶胴中央部の上記内面塗膜における下記式(5)で表される熱収縮率(荷重あり)が30%以下、好ましくは20%以下、より好ましくは15%以下、更に好ましくは10%以下であることが望ましい。また、下記式(6)で表される熱収縮率(荷重なし)が50%以下、好ましくは45%以下、より好ましくは40%以下、更に好ましくは35%以下であることが望ましい。熱収縮率が上記範囲内にある場合、塗膜密着性が改善され、優れた耐食性を発現することができる。上記範囲よりも熱収縮率が大きい場合、残留応力が十分に除去されておらず、塗膜密着性の不足により、耐食性が低下するおそれがあると共に、缶が衝撃を受け凹むなどした際に塗膜が剥離するおそれがある。また、缶外面側に上記外面塗膜を有する場合には、缶胴中央部の外面塗膜においても、熱収縮率は上記範囲内にあることが望ましい。
 なお、単離した塗膜の加熱による寸法変化量(収縮量)は、熱機械分折装置(TMA)等により測定することができる。
  熱収縮率(荷重あり)=(ΔL/L)×100(%)・・・(5)
  式中、Lは缶胴中央部から単離した塗膜の高さ方向の初期長さ(測定部)、ΔLは単位面積当たり5.20×10N/mの荷重をかけながら昇温速度5℃/minで30℃から200℃まで昇温した時のL該当部分の塗膜の高さ方向における最大収縮量(収縮長さの最大値)である。
  熱収縮率(荷重なし)=(ΔL/L)×100(%)・・・(6)
  式中、Lは缶胴中央部から単離した塗膜の高さ方向の初期長さ、ΔLは無荷重状態で昇温速度5℃/minで30℃から200℃まで昇温した時のL該当部分の塗膜の高さ方向における最大収縮量(収縮長さの最大値)である。
 熱処理後は急冷或いは放冷した後、更に必要に応じて従来公知の方法により、印刷工程により缶胴部の外面に印刷層が形成され、印刷層の上に印刷層を保護するための仕上げニス層が形成される。所望により、一段或いは多段のネックイン加工に付し、フランジ加工を行って、巻締用の缶とする。また、絞りしごき缶を成形した後、その上部を変形させてボトル形状にすることもできるし、底部を切り取って、他の缶端を取り付けてボトル形状とすることもできる。
 本発明の絞りしごき缶の容量としては、150mL以上、好ましくは150~2200mL、より好ましくは180~1200mL、更に好ましくは300~700mLが好適である。
 また本発明の絞りしごき缶の製造方法によれば、前述した通り、成形加工時の金属露出はもちろん、熱処理時の塗膜剥離も生じないことから、内面塗膜がERV(エナメルレーター値;Enamel Rater Value)換算で200mA以下の被覆度を有する、塗膜被覆性に優れた絞りしごき缶を得ることができる。ここで、ERV換算により得られる内面塗膜の被覆度は、得られた絞りしごき缶に、電解液となる濃度1質量%の食塩水を缶口部付近まで満たし、エナメルレーターでERVを測定した値をいうものとし、缶底の外面側に金属露出部を形成して陽極に接続する一方、陰極を缶内に満たされた食塩水に浸して、室温(約20℃)下で、6.3Vの直流電圧を4秒間印加した後の電流値とする。このような測定において、電流が多く流れるほど絶縁体である内面塗膜に欠陥が存在し、缶内面の金属露出の面積が大きいことを示している。
 ERV換算での内面塗膜の被覆度は200mA以下、好ましくは100mA未満、より好ましくは50mA未満であることが望ましい。また、単位面積(cm)当りのERVで表した場合は0.70mA/cm以下、好ましくは0.35mA/cm未満、より好ましくは0.18mA/cm未満であることが望ましい。ここで単位面積当りのERVとは、上述の方法で測定した絞りしごき缶のERVを、評価面積(上述の食塩水が接触している、缶胴部及び缶底部の内面部分の総面積)で割った(除した)値である。
 なお、絞りしごき缶の内面側について、成形後に、必要に応じて内面に更に補正塗料などスプレー塗装し、内面塗膜上に別の塗料組成物から成る塗膜を形成しても良いが、前述の通り、内面塗膜が成形後も高い被覆度を有するため、スプレー塗装する必要はなく、経済性の面から、スプレー塗装されていないことが好ましい。即ち、絞りしごき缶の内面側の最表層は、塗料組成物から成る塗膜、好適には前述の内面用塗料組成物から成る前記内面塗膜、或いは前記内面塗膜上に形成された前述のワックス系潤滑剤から成る層であることが好ましい。
 また、缶外面側については、少なくとも基本的に印刷層が形成されない底部の最表層は、前記外面塗膜、或いは前記外面塗膜上に形成された前述のワックス系潤滑剤から成る層であることが好ましいが、缶体の搬送性の向上等を目的として、底部外面側に形成されている前記外面塗膜上に、更に別の塗料組成物から成る塗膜が形成されていても良い。
(絞りしごき缶)
 本発明の絞りしごき缶は、上述した塗装金属板から、上述した絞りしごき缶の製造方法により成形されて成り、少なくとも缶内面側に内面塗膜を有する絞りしごき缶であって、前記内面塗膜が、主成分としてポリエステル樹脂、好ましくは更に硬化剤を含有し、前記内面塗膜のガラス転移温度(Tg)が55℃以上であり、且つ前記内面塗膜の被覆度が、ERV換算で200mA以下であることが重要な特徴である。
 すなわち、本発明の絞りしごき缶においては、絞りしごき缶の内面塗膜に含有されるポリエステル樹脂のガラス転移温度が55℃以上と高いことから、耐フレーバー収着性に優れている。また、高速でしごき加工を行うことにより加工発熱が大きくなり、製缶加工性が顕著に向上するため、ガラス転移温度が55℃以上と高いポリエステル樹脂を用いた場合でも、成形時の金属露出が抑制されて内面の塗膜被覆性を向上させることができる。更に、加工発熱が大きくなることで、加工後の塗膜の残留応力を小さくすることができるため、前述したような熱処理時の塗膜剥離の発生も有効に抑制される。その結果、得られる絞りしごき缶は、金属露出が有効に防止され、ERV換算で表す内面塗膜の被覆度を200mA以下とすることができ、優れた耐食性を発現することが可能となる。
 また、前記絞りしごき缶が、さらに缶外面側に外面塗膜を有し、前記外面塗膜がポリエステル樹脂、好ましくは更に硬化剤を含有することが好適である。
 また、前記絞りしごき缶が、少なくとも缶内面側の缶底部及び缶胴部が、前記内面塗膜で連続的に被覆されていることが好ましく、更に缶外面側の缶底部及び缶胴部が、前記外面塗膜で連続的に被覆されていることが好ましい。
 また本発明の絞りしごき缶は、缶底部における60℃の試験条件下における内面塗膜の伸び率が200%未満であることが望ましい。前述した通り、本発明の絞りしごき缶の製造方法においては、耐フレーバー収着性の観点から、60℃の試験条件下における伸び率が200%未満の内面塗膜を有する塗装金属板を使用することが望ましい。60℃の試験条件下における伸び率が200%未満の内面塗膜を有する塗装金属板を使用した場合、絞りしごき缶の缶底部は製缶時にほとんど薄肉化されず、塗装金属板の内面塗膜と同様の伸び率を示していることから、缶底部の内面塗膜の伸び率は200%未満となる。
 以下実施例、比較例を挙げて、本発明を具体的に説明する。なお、単に部とあるものは質量部を示す。
 ポリエステル樹脂A~Fの各種測定項目は以下の方法に従った。なお、ポリエステル樹脂A、C、D、E、Fはいずれも非結晶性のポリエステル樹脂である。
(数平均分子量の測定)
 ゲル浸透クロマトグラフィー(GPC)によって標準ポリスチレンの検量線を用いて測定した。
(ガラス転移温度の測定)
 示差走査熱量計(DSC)を用いて10℃/分の昇温速度で測定した。
(酸価の測定)
 ポリエステル樹脂の固形物1gを10mlのクロロホルムに溶解し、0.1NのKOHエタノール溶液で滴定し、樹脂酸価(mgKOH/g)を求めた。指示薬はフェノールフタレインを用いた。
(モノマー組成の測定)
 ポリエステル樹脂の固形物30mgを重クロロホルム0.6mLに溶解させ、H-NMR測定し、ピーク強度からモノマー組成比を求めた。なおごく微量な成分(全モノマー成分に対して1モル%未満)は除き、組成比を決定した。
[内面用塗料組成物の調製]
(製造例1)
 ポリエステル樹脂としてポリエステル樹脂A(酸価:2mgKOH/g、水酸基価:5mgKOH/g、Tg:75℃、Mn=18,000、モノマー組成:テレフタル酸成分/イソフタル酸成分/エチレングリコール成分/プロピレングリコール成分=38/12/17/33mol%)、硬化剤としてレゾール型フェノール樹脂、硬化触媒(酸触媒)としてドデシルベンゼンスルホン酸(アミン中和物)を用いた。
 ポリエステル樹脂Aをメチルエチルケトン/ソルベントナフサ=50/50(質量比)の混合溶剤に溶解させ、固形分30質量%のポリエステル樹脂A溶液を得た。レゾール型フェノール樹脂のn―ブタノール溶液(固形分50質量%)をメチルエチルケトンで希釈し、固形分30質量%のレゾール型フェノール樹脂溶液を得た。ドデシルベンゼンスルホン酸を2-ジメチルアミノエタノールでアミン中和した後、イソプロパノールに溶解させ、固形分30質量%のドデシルベンゼンスルホン酸溶液(酸触媒の固形分30質量%)を得た。
 次に、ポリエステル樹脂A溶液333部(固形分100部)、レゾール型フェノール樹脂溶液33.3部(固形分10部)、酸触媒溶液0.33部(ドデシルベンゼンスルホン酸の固形分0.10部)をガラス容器内に入れて10分間攪拌し、固形分濃度が約30質量%、固形分配合比がポリエステル樹脂/硬化剤/酸触媒=100/10/0.1(質量比)の溶剤型塗料組成物を調製した。なお上記レゾール型フェノール樹脂としてはメチロール基をn-ブタノールでアルキルエーテル化したm-クレゾール系レゾール型フェノール樹脂(アルキルエーテル化されたメチロール基の割合:90モル%、Mn=1,200)、酸触媒としては、東京化成工業社製「ドデシルベンゼンスルホン酸(ソフト型)(混合物)」を用いた。
(製造例2)
 ポリエステル樹脂として、ポリエステル樹脂Aとポリエステル樹脂B(Tg:-25℃、Mn=17,000、酸価:11mgKOH/g、モノマー組成:テレフタル酸成分/イソフタル酸成分/セバシン酸成分/1,4-ブタンジオール成分=14/17/19/50mol%)を、固形分質量比で94:6となるように混合したもの(Tgmix:67℃)を用いた以外は、製造例1と同様に行い、内面用塗料組成物を調製した。
(製造例3)
 表1に示すポリエステル樹脂の固形分配合比(質量比)となるようにした以外は、製造例2と同様に内面用塗料組成物を調製した。
(製造例4,5)
 表1に示すようにポリエステル樹脂の種類を変えた以外は、製造例1と同様に内面用塗料組成物を調製した。ポリエステル樹脂として、前述のポリエステル樹脂以外は、ポリエステル樹脂C(酸価:2mgKOH/g、Tg:85℃、Mn=18,000、モノマー組成:テレフタル酸成分/エチレングリコール成分/プロピレングリコール成分=50/14/36mol%)、ポリエステル樹脂D(酸価:2mgKOH/g、Tg:65℃、Mn=20,000、モノマー組成:テレフタル酸成分/イソフタル酸成分/エチレングリコール成分/ネオペンチルグリコール成分=25/25/23/27mol%)を用いた。
(製造例6)
 ポリエステル樹脂としてポリエステル樹脂Aとポリエステル樹脂E(酸価:22mgKOH/g、Tg:82℃、Mn=6,000)を、質量比で90:10となるように混合したもの(Tgmix:76℃)を用いた以外は、製造例1と同様に内面用塗料組成物を調製した。
(製造例7)
 ポリエステル樹脂としてポリエステル樹脂Aとポリエステル樹脂Eを、質量比で90:10となるように混合したもの(Tgmix:76℃)、硬化剤としてベンゾグアナミン樹脂(メチルエーテル化ベンゾグアナミン樹脂、イミノ基・メチロール基含有部分エーテル化タイプ、重量平均重合度1.5)を用い、表1に示す固形分配合比(質量比)となるようにした以外は、製造例1と同様に内面用塗料組成物を調製した。
(製造例8)
 硬化剤、及び硬化触媒を配合しない以外は、製造例1と同様に内面用塗料組成物を調製した。
(製造例9,10)
 表1に示すポリエステル樹脂の固形分配合比(質量比)となるようにした以外は、製造例2と同様に内面用塗料組成物を調製した。
(製造例11)
 ポリエステル樹脂として、ポリエステル樹脂F(酸価:3mgKOH/g、Tg:40℃、Mn=15,000)を用いた以外は、製造例1と同様に内面用塗料組成物を調製した。
(外面用塗料組成物の調製)
 ポリエステル樹脂としてポリエステル樹脂A、硬化剤として、メラミン樹脂(メチルエーテル化メラミン樹脂)、及び上述のベンゾグアナミン樹脂(メチルエーテル化ベンゾグアナミン樹脂)、硬化触媒(酸触媒)としてドデシルベンゼンスルホン酸を用いた。
 ポリエステル樹脂Aをメチルエチルケトン/ソルベントナフサ=50/50(質量比)の混合溶剤に溶解させ、固形分30質量%のポリエステル樹脂A溶液を得た。メラミン樹脂及びベンゾグアナミン樹脂をメチルエチルケトンに溶解させ、固形分30質量%のメラミン樹脂溶液及びベンゾグアナミン樹脂溶液を得た。ドデシルベンゼンスルホン酸を2―ジメチルアミノエタノールでアミン中和した後、イソプロパノールに溶解させ、酸触媒固形分30質量%のドデシルベンゼンスルホン酸溶液を得た。
 次に、ポリエステル樹脂A溶液333部(固形分100部)、メラミン樹脂溶液10部(固形分3部)、ベンゾグアナミン樹脂溶液10部(固形分3部)、酸触媒溶液0.33部(ドデシルベンゼンスルホン酸の固形分0.10部)を用いて塗料組成物[固形分濃度:約30質量%、固形分配合比:ポリエステル樹脂/メラミン樹脂/ベンゾグアナミン樹脂/酸触媒=100/3/3/0.1(固形分質量比)]を調製した。
(実施例1)
[塗装金属板の作成]
 金属板としてリン酸クロメート系表面処理アルミニウム板(3104合金、板厚:0.27mm)を用い、まず、成形後に外面側となる面に、焼付け後の乾燥塗膜質量が40mg/dm(約3μm)になるように、外面用塗料組成物をバーコーターにて塗装し120℃で60秒間乾燥を行った。その後、反対側の内面側となる面に、焼付け後の乾燥塗膜質量が88mg/dm(約6.4μm)となるよう製造例1の内面用塗料組成物をバーコーターにて塗装し120℃で60秒乾燥を行った後、250℃(オーブンの炉内温度)で30秒間焼付けを行なうことにより作成した。
[絞りしごき缶の作製]
 上記の方法で作成した塗装金属板の両面に、パラフィンワックス(200℃程度の加熱で揮発除去可能なもの)を塗油(塗布量:片面当たり約50mg/m)した後、直径142mmの円形に打ち抜き、浅絞りカップを作成した。次いで、この浅絞りカップに対し、外径Φ66mmのパンチ(パンチ温度:約50~55℃)を用いて、ドライ条件下で再絞り加工、しごき加工(3段)、ドーミング加工を行った。しごき加工時の平均加工速度(しごき加工時のパンチの平均移動速度)は、約5500mm/secとした。なお、上記パンチ温度は、パンチ内部への温調水の温度で表した。その後、オーブンを用いて201℃で75秒間の熱処理を施し、絞りしごき缶[缶径:66mm、高さ:約130mm、容量:約370ml、トータル絞り比:2.15、しごき率:約61%、缶胴中央部厚み/缶底中央部厚み×100=約40%、缶胴中央部の金属基体の厚み/缶底中央部の金属基体の厚み×100=約40%、缶胴中央部の内面塗膜厚み/缶底中央部の内面塗膜厚み×100=約39%、缶底中央部の内面塗膜質量(膜厚):86mg/dm(約6.3μm)、缶底中央部の内面塗膜厚み/缶底中央部の金属基体の厚み=約0.024、缶胴中央部の内面塗膜厚み/缶胴中央部の金属基体の厚み=約0.023]を得た。
(実施例2~8)
 表2に示すとおりに、内面用塗料組成物の種類を変えた以外は、実施例1と同様に塗装金属板を作製し、絞りしごき缶を作製した。
(実施例9)
 絞りしごき缶の作製の際のしごき加工時の平均加工速度(パンチの平均移動速度)を約6800mm/secとした以外は、実施例1と同様に塗装金属板を作製し、絞りしごき缶を作製した。
(比較例1)
 絞りしごき缶の作製の際、しごき加工時の平均加工速度(パンチの平均移動速度)を約1000mm/secとした以外は、実施例1と同様に塗装金属板を作製し、絞りしごき缶を作製した。
(比較例2~5)
 表2に示すとおりに、内面用塗料組成物の種類を変え、さらにしごき加工時の平均加工速度(パンチの平均移動速度)を約1000mm/secとした以外は、実施例1と同様に塗装金属板を作製し、絞りしごき缶を作製した。
(比較例6~7)
 表2に示すとおりに、内面用塗料組成物の種類を変えた以外は、実施例1と同様に塗装金属板を作製し、絞りしごき缶を作製した。
 各製造例の内面用塗料組成物で得られる塗膜の性能、および上記方法で得られた絞りしごき缶において、下記の試験方法に従って試験を行った。
[塗膜のガラス転移温度(塗膜Tg)]
 各製造例の内面用塗料組成物を用いて下記の通り、測定用の塗膜サンプルを作製した。ポリテトラフルオロエチレン(PTFE)シート(膜厚:0.3mm)上に、焼付け後の乾燥塗膜質量が88mg/dm(約6.4μm)となるよう各製造例の内面用塗料組成物をバーコーターにて塗装し120℃で60秒乾燥を行った後、250℃(オーブンの炉内温度)で30秒間焼付けを行い、PTFEシート上に塗膜を形成した。室温まで冷ました後、PTFEシートから塗膜を引き剥がすことで、測定用サンプルを得た。得られた塗膜について、示差走査熱量計(DSC)を用いて、下記の条件で塗膜のガラス転移温度を測定した。なお、2nd-run(昇温)において、補外ガラス転移開始温度、すなわち低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線のこう配が最大になるような点で引いた接線との交点の温度を塗膜のガラス転移温度(塗膜Tg)とした。結果を表1に示す。
  装置:セイコーインスツルメント株式会社製 DSC6220
  試料量:5mg
  昇温速度:10℃/分
  温度範囲:-80~200℃(昇温、冷却、昇温)
  環境条件:窒素気流下
(塗膜の伸び率)
 各製造例の内面用塗料組成物を用いて下記の通り、測定用の塗膜サンプルを作製した。PTFEシート(膜厚:0.3mm)上に、焼付け後の乾燥塗膜質量が88mg/dm(約6.4μm)となるよう各製造例の内面用塗料組成物をバーコーターにて塗装し120℃で60秒乾燥を行った後、250℃(オーブンの炉内温度)で30秒間焼付けを行い、PTFEシート上に塗膜を形成した。室温まで冷ました後、塗膜を形成したPTFEシートを5mm幅で30mm長さに切り、PTFEシートから塗膜を引き剥がすことで、5mm幅で30mm長さの測定用サンプルを得た。上下5mmをつかみ代として、引張り試験機にチャッキングし、チャック間距離(サンプルの元長さ)が20mmとなるようにした。下記条件で引張試験を行い、塗膜の破断までの伸び率(破断伸度)を測定した。結果を表1に示す。
  装置:株式会社島津製作所製 オートグラフAG-IS
  測定雰囲気温度:60℃
  引っ張り速度:500mm/min
 伸び率は下記式(7)で求められる。なお、ここで破断時のサンプルの伸び量(伸びた長さ)は、破断時の試験機のクロスヘッド移動量で代用した。
  伸び率(%)=(ΔL/L)×100・・・(7)
  L:サンプルの元長さ(mm)
  ΔL:破断時のサンプルの伸び量(mm)
 なお、両面に塗膜を形成してある塗装金属板や絞りしごき缶の缶底から測定用サンプルを得る場合は、測定しない片側の塗膜をサンドペーバーで削るなどして除去した後、5mm幅で30mm長さに塗装金属板、又は缶底を切りだし、希釈した塩酸水溶液中に浸漬させるなど常法により金属基体(金属板)を溶解させ、フィルム状の単離塗膜を取り出し、十分に蒸留水で洗浄して乾燥させることで、測定用サンプルを得ることができる。
(塗膜の耐レトルト白化性)
 各製造例の内面用塗料組成物を用いて、下記の通り塗装金属板を作製した。金属板としてリン酸クロメート系表面処理アルミニウム板(3104合金、板厚:0.27mm)を用い、焼付け後の乾燥塗膜質量が88mg/dm(約6.4μm)となるよう各製造例の内面用塗料組成物をバーコーターで塗装し120℃で60秒乾燥を行った後、250℃(オーブンの炉内温度)で30秒間焼付けを行なうことにより塗装金属板を作製した。得られた塗装金属板から2.5cm×10cmサイズに切り出した後、オートクレーブで125℃30分のレトルト処理を施した。処理後、塗装金属板を取り出して風乾させた後、塗膜部分の白化状態(白化の有無)を目視で評価した。結果を表1に示す。
[内面塗膜被覆性評価(ERV評価)]
 内面塗膜被覆性評価は、上記「絞りしごき缶の作製」の項に記載した通りに、絞りしごき加工、及びドーミング加工まで行った絞りしごき缶(表中「熱処理なし」と表記)と、その後オーブンによる201℃で75秒間の熱処理を行った後の絞りしごき缶(表中「熱処理あり」と表記)について、下記の通り行った。
 絞りしごき缶の缶底の外面側に金属露出部を形成し、缶体をエナメルレーターの陽極に接続する一方、1%食塩水360mLを缶内へ注ぎ、エナメルレーターの陰極を缶内に満たされた食塩水に浸して、室温(約20℃)下で6.3Vの電圧を4秒間印加した後の電流値(ERV)を測定した。結果を表2に示す。
 評価基準は以下の通りである。
  ◎:電流値 50mA未満(単位面積当たり0.18mA/cm未満)
  ○:電流値 50mA以上200mA以下(0.18mA/cm以上0.70mA/cm以下)
  △:電流値 200mAより高く700mA未満(0.70mA/cmより高く2.50mA/cm未満)
  ×:電流値 700mA以上(2.50mA/cm以上)
[耐フレーバー収着性評価(フレーバー収着試験)]
 耐フレーバー収着性評価は、上記「絞りしごき缶の作製」の項に記載した通りに成形し、オーブンによる201℃75秒間の熱処理を施した後の絞りしごき缶を用いて下記の通り行った。
 絞りしごき缶の缶底から高さ8.0cmの位置を中心に2.5cm×5cmの大きさの試験片を切り出し、外面側の塗膜をサンドペーパー(紙やすり)で削り、洗浄・乾燥した。モデルフレーバー試験溶液として、リモネン2ppmを含む5%エタノール水溶液を調製した。パッキン付きガラス瓶(デュラン瓶)にモデルフレーバー試験溶液を入れ、試験片を浸漬、密閉し、30℃で2週間保存した。試験片をガラス瓶より取り出し、水洗後、水滴を取り除き、ジエチルエーテル50mLに浸漬、密封、一昼夜室温保存した。抽出液を濃縮装置で濃縮し、GC-MS分析(ガスクロマトグラフィー質量分析)を行った。GC-MS分析から得られたリモネン由来の成分ピークから、検量線により収着量を求め、下記式(8)よりリモネンの仕込み量に対する比率を、リモネン収着率(%)として求めた。結果を表2に示す。
  リモネン収着率(%)=(リモネンの収着量/リモネンの仕込み量)×100・・・(8)
 評価基準は以下の通りである。
  ◎:リモネン収着率が2%未満
  ○:リモネン収着率が2%以上3%未満
  △:リモネン収着率が3%以上5%未満
  ×:リモネン収着率が5%以上
(熱収縮率評価)
 熱収縮率の評価は、上記「絞りしごき缶の作製」の項に記載した通りに、絞りしごき加工、及びドーミング加工まで行った実施例6の絞りしごき缶(熱処理なし)と、その後オーブンによる201℃で75秒間の熱処理を行った後の実施例6の絞りしごき缶(熱処理あり)の缶胴中央部の内面塗膜を用いて、下記の通り行った。
 上記の絞りしごき缶を用いて、金属基体圧延目に対して0°方向の缶胴中央部(最も薄肉化されている部位)を中心として缶胴円周方向10mm缶高さ方向20mmのサンプルを切り出した。缶外面側の塗膜をサンドペーパーで削ることで除去し、金属面を露出させた後、希釈した塩酸水溶液中に浸漬して金属基体を溶解させた。次いで、フィルム状の缶内面側の塗膜を取り出し、十分に蒸留水で洗浄して乾燥させ、得られたフィルム状塗膜を4mm幅(缶胴円周方向)で20mm長さ(缶高さ方向)に切り出すことで測定用サンプルを得た。
 測定用サンプルを熱機械分析装置にチャッキングし、チャック間距離(塗膜の高さ方向における測定部初期長さに該当)が5mmとなるようにした。下記条件で測定サンプルの変位量を測定し、荷重あり及び無荷重状態での缶高さ方向における熱収縮率を評価した。
  装置:セイコーインスツルメンツ株式会社製 TMA/SS6100
  昇温速度:5℃/分
  温度範囲:30~200℃
  測定モード:引っ張りモード
  測定時荷重:5mN(5.20×10N/m)又は無荷重
  チャック間距離:5mm
 測定前のチャック間距離(塗膜の測定部初期長さに該当)をL、単位面積当たり5.20×10N/mの荷重をかけながら昇温速度5℃/minで30℃から200℃まで昇温した時のL該当部分の高さ方向における収縮量の最大値(最大収縮長さ)をΔLをとし、下記式(9)に示す数式で計算される値を熱収縮率(荷重あり)とした。なお、変位量は収縮を正、膨張若しくは伸長を負の値とした。結果を以下に示す。
  熱収縮率(荷重あり)(%)=(ΔL/L)×100・・・(9)
  実施例6の絞りしごき缶(熱処理なし)の内面塗膜の熱収縮率(荷重あり):68%
  実施例6の絞りしごき缶(熱処理あり)の内面塗膜の熱収縮率(荷重あり):9%
 また、測定前のチャック間距離(塗膜の測定部初期長さに該当)をL、無荷重状態で昇温速度5℃/minで30℃から200℃まで昇温した時のL該当部分の高さ方向における収縮量の最大値(最大収縮長さ)をΔLとし、下記式(10)に示す数式で計算される値を熱収縮率(荷重なし)とした。なお、変位量は収縮を正、膨張若しくは伸長を負の値とした。結果を下記に示す。
  熱収縮率(荷重なし)(%)=(ΔL/L)×100・・・(10)
  実施例6の絞りしごき缶(熱処理なし)の内面塗膜の熱収縮率(荷重なし):69%
  実施例6の絞りしごき缶(熱処理あり)の内面塗膜の熱収縮率(荷重なし):30%
(耐食性評価)
 耐食性の評価は、上記「絞りしごき缶の作製」の項に記載した通りに、絞りしごき加工、及びドーミング加工まで行った実施例6の絞りしごき缶(熱処理なし)と、その後オーブンによる201℃で75秒間の熱処理を行った後の実施例6の絞りしごき缶(熱処理あり)の缶胴中央部の内面塗膜について、下記の通り行った。
 上記の絞りしごき缶を用いて、缶胴中央部(最も薄肉化されている部位)を中心として缶胴円周方向40mm缶高さ方向40mmの試験片を切り出した。上記試験片の内面にカッターで長さ4cmの素地に達するクロスカット傷を入れ、食塩を含有する酸性のモデル液に浸漬させて37℃で2週間経時して、腐食状態を評価した。なお、試験に用いたモデル液は、食塩を0.2%とし、これにクエン酸を加えてpHが2.5となるよう調整したものを用いた。評価基準は、クロスカット部周辺において、塗膜下腐食の最大幅が片側あたり1.5mm以上であったものを×、0.5mm以上1.5mm未満ものを○、0.5mm未満のものを◎とした。結果を下記に示す。
  実施例6の絞りしごき缶(熱処理なし)の腐食状態:×
  実施例6の絞りしごき缶(熱処理あり)の腐食状態:◎
 表1に各製造例における塗料組成物の組成(ポリエステル樹脂の種類、固形分配合比)、各製造例の塗料組成物で得られる塗膜の特性(塗膜Tg、伸び率、耐レトルト白化性)、表2に各実施例および比較例の塗装金属板において用いた内面用塗料組成物の種類(製造例番号、組成)、絞りしごき缶作製時のしごき加工速度、及び絞りしごき缶の評価結果(内面塗膜被覆性、耐フレーバー収着性)を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の絞りしごき缶の製造方法においては、耐フレーバー収着性に優れるガラス転移温度の高いポリエステル樹脂を主成分とする塗膜を有する塗装金属板を用いた場合にも、成形時の塗膜欠陥の発生や成形後の熱処理による塗膜剥離の発生を抑制することができ、缶内面の金属露出部が少なく塗膜被覆性に優れると共に、耐フレーバー収着性に優れた絞りしごき缶を生産性良く製造することができる。また得られる絞りしごき缶は、耐フレーバー収着性、耐食性等に優れていることから、飲料容器等に好適に使用できる。

Claims (15)

  1.  少なくとも缶内面となる面に内面塗膜を有する塗装金属板を絞りしごき加工して成る絞りしごき缶の製造方法において、
     前記内面塗膜がポリエステル樹脂を含有し、前記ポリエステル樹脂のガラス転移温度(Tg)が55℃以上であり、
     前記絞りしごき加工におけるしごき率が40%以上であり、
     前記絞りしごき加工におけるしごき加工時の加工速度が2000mm/sec以上であることを特徴とする絞りしごき缶の製造方法。
  2.  前記内面塗膜のガラス転移温度が55℃以上である請求項1記載の絞りしごき缶の製造方法。
  3.  前記内面塗膜がさらに硬化剤を含有し、前記硬化剤が、レゾール型フェノール樹脂及び/又はアミノ樹脂である請求項1又は2に記載の絞りしごき缶の製造方法。
  4.  前記塗装金属板が、缶外面となる面にさらに外面塗膜を有し、前記外面塗膜がポリエステル樹脂を含有する請求項1~3の何れかに記載の絞りしごき缶の製造方法。
  5.  前記絞りしごき缶の前記内面塗膜の被覆度が、ERV換算で200mA以下であることを特徴とする請求項1~4の何れかに記載の絞りしごき缶の製造方法。
  6.  前記絞りしごき加工後に、55℃以上の温度で熱処理を施すことを特徴とする請求項1~5の何れかに記載の絞りしごき缶の製造方法。
  7.  少なくとも缶内面側に内面塗膜を有する絞りしごき缶において、前記内面塗膜が、主成分としてポリエステル樹脂を含有し、前記内面塗膜のガラス転移温度(Tg)が55℃以上であり、且つ前記内面塗膜の被覆度が、ERV換算で200mA以下であることを特徴とする絞りしごき缶。
  8.  前記内面塗膜がさらに硬化剤を含有し、前記硬化剤が、レゾール型フェノール樹脂及び/又はアミノ樹脂である請求項7に記載の絞りしごき缶。
  9.  前記内面塗膜が、硬化剤を含有しないことを特徴とする請求項7に記載の絞りしごき缶。
  10.  缶外面側にさらに外面塗膜を有し、前記外面塗膜がポリエステル樹脂を含有する請求項7~9の何れかに記載の絞りしごき缶。
  11.  缶胴中央部の厚みが、缶底中央部の厚みの60%以下の厚みである請求項7~10の何れかに記載の絞りしごき缶。
  12.  缶胴中央部における前記内面塗膜の厚みが、缶底中央部の前記内面塗膜の厚みの60%以下の厚みである請求項7~11の何れかに記載の絞りしごき缶。
  13.  前記内面塗膜と金属基体の厚み比(前記内面塗膜の厚み/金属基体の厚み)が、缶底部及び缶胴部でほぼ同じである請求項7~12の何れかに記載の絞りしごき缶。
  14.  缶胴中央部の前記内面塗膜の下記式で表される熱収縮率が30%以下である請求項7~13の何れかに記載の絞りしごき缶。
      熱収縮率(%)=(ΔL/L)×100
      L:缶胴中央部から単離した塗膜の高さ方向の初期長さ
      ΔL:単位面積当たり5.20×10N/mの荷重をかけながら昇温速度5℃/minで30℃から200℃まで昇温した時のL該当部分の塗膜の高さ方向における最大収縮長さ
  15.  缶底部における前記内面塗膜の60℃の試験条件における伸び率が200%未満である請求項7~14の何れかに記載の絞りしごき缶。
PCT/JP2022/002425 2021-01-25 2022-01-24 絞りしごき缶の製造方法及び絞りしごき缶 WO2022158593A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022548037A JP7235180B2 (ja) 2021-01-25 2022-01-24 絞りしごき缶の製造方法及び絞りしごき缶
EP22742712.7A EP4282542A1 (en) 2021-01-25 2022-01-24 Method for producing draw-ironed cans, and draw-ironed cans
CN202280006095.0A CN116056808B (zh) 2021-01-25 2022-01-24 拉深减薄罐的制造方法以及拉深减薄罐
US18/006,222 US20230348143A1 (en) 2021-01-25 2022-01-24 Method for producing drawn/ironed can and drawn/ironed can

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021009723 2021-01-25
JP2021-009723 2021-01-25
JP2021-126955 2021-08-02
JP2021126955 2021-08-02

Publications (1)

Publication Number Publication Date
WO2022158593A1 true WO2022158593A1 (ja) 2022-07-28

Family

ID=82549090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002425 WO2022158593A1 (ja) 2021-01-25 2022-01-24 絞りしごき缶の製造方法及び絞りしごき缶

Country Status (6)

Country Link
US (1) US20230348143A1 (ja)
EP (1) EP4282542A1 (ja)
JP (1) JP7235180B2 (ja)
CN (1) CN116056808B (ja)
TW (1) TW202237485A (ja)
WO (1) WO2022158593A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246695A (ja) 2000-03-02 2001-09-11 Toyo Seikan Kaisha Ltd 樹脂被覆シームレス缶
JP2002307604A (ja) * 2001-04-09 2002-10-23 Kansai Paint Co Ltd 絞りしごき加工性にすぐれた潤滑鋼板
JP2003034322A (ja) * 2001-04-09 2003-02-04 Kansai Paint Co Ltd 塗装金属板及びそれを用いた絞りしごき缶
JP2015089643A (ja) * 2013-11-06 2015-05-11 東洋製罐株式会社 樹脂被覆金属板及びシームレス缶
WO2016186138A1 (ja) * 2015-05-21 2016-11-24 東洋製罐グループホールディングス株式会社 表面処理金属板及び有機樹脂被覆表面処理金属板
WO2017033791A1 (ja) * 2015-08-26 2017-03-02 東洋製罐グループホールディングス株式会社 しごき加工用ダイス及びダイスモジュール
JP2019131275A (ja) * 2018-02-02 2019-08-08 東洋製罐株式会社 ワイン用アルミニウム製容器
JP2020142253A (ja) * 2019-03-05 2020-09-10 ユニバーサル製缶株式会社 缶の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5249447A (en) * 1989-02-16 1993-10-05 Toyo Seikan Kaisha Ltd. Process for preparation of thickness-reduced deep-draw-formed can
JP3041153B2 (ja) * 1993-02-08 2000-05-15 東洋鋼鈑株式会社 薄肉化深絞り缶用樹脂被覆金属板
JP2002178049A (ja) * 2000-12-12 2002-06-25 Toyo Seikan Kaisha Ltd 樹脂被覆シームレス缶体の製造方法
JP2003012904A (ja) 2001-06-28 2003-01-15 Mitsubishi Polyester Film Copp 成形加工金属板貼合せ用ポリエステルフィルム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246695A (ja) 2000-03-02 2001-09-11 Toyo Seikan Kaisha Ltd 樹脂被覆シームレス缶
JP2002307604A (ja) * 2001-04-09 2002-10-23 Kansai Paint Co Ltd 絞りしごき加工性にすぐれた潤滑鋼板
JP2003034322A (ja) * 2001-04-09 2003-02-04 Kansai Paint Co Ltd 塗装金属板及びそれを用いた絞りしごき缶
JP3872998B2 (ja) 2001-04-09 2007-01-24 関西ペイント株式会社 塗装金属板及びそれを用いた絞りしごき缶
JP2015089643A (ja) * 2013-11-06 2015-05-11 東洋製罐株式会社 樹脂被覆金属板及びシームレス缶
WO2016186138A1 (ja) * 2015-05-21 2016-11-24 東洋製罐グループホールディングス株式会社 表面処理金属板及び有機樹脂被覆表面処理金属板
WO2017033791A1 (ja) * 2015-08-26 2017-03-02 東洋製罐グループホールディングス株式会社 しごき加工用ダイス及びダイスモジュール
JP2019131275A (ja) * 2018-02-02 2019-08-08 東洋製罐株式会社 ワイン用アルミニウム製容器
JP2020142253A (ja) * 2019-03-05 2020-09-10 ユニバーサル製缶株式会社 缶の製造方法

Also Published As

Publication number Publication date
CN116056808B (zh) 2024-03-15
JPWO2022158593A1 (ja) 2022-07-28
TW202237485A (zh) 2022-10-01
EP4282542A1 (en) 2023-11-29
CN116056808A (zh) 2023-05-02
US20230348143A1 (en) 2023-11-02
JP7235180B2 (ja) 2023-03-08

Similar Documents

Publication Publication Date Title
JP6627771B2 (ja) 塗装金属板及び有機樹脂被覆塗装金属板
JP7388140B2 (ja) 塗料組成物及び該塗料組成物から成る塗膜を有する塗装金属基体
CN106794675B (zh) 有机树脂涂覆的涂装金属板及由其制成的罐体和罐盖
JP2006124497A (ja) 缶塗料用樹脂組成物及びこれを用いた塗装金属板
JP4596093B2 (ja) 缶用塗料樹脂組成物及びこれを塗布した缶用塗装金属板
JP7235180B2 (ja) 絞りしごき缶の製造方法及び絞りしごき缶
WO2021230210A1 (ja) 絞りしごき缶及び絞りしごき缶用塗装金属板
JP2001311041A (ja) 缶用塗料樹脂組成物及びこれを塗布した缶用塗装金属板
WO2023013631A1 (ja) シームレス缶及び塗装金属板
JP2023021956A (ja) シームレス缶及び塗装金属板
WO2023013614A1 (ja) シームレス缶及び塗装金属板
JP7415458B2 (ja) 塗装金属板及び絞りしごき缶
JP2023021955A (ja) シームレス缶及び塗装金属板
JP2001311039A (ja) 缶用塗料樹脂組成物及びこれを塗布した缶用塗装金属板
JP6690771B1 (ja) 塗装金属板及び絞りしごき缶
WO2021187622A1 (ja) 絞りしごき缶
WO2021187621A1 (ja) 絞りしごき缶
EP3882019A1 (en) Coated metal plate and drawn-and-ironed can

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022548037

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742712

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022742712

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022742712

Country of ref document: EP

Effective date: 20230825