WO2022158231A1 - Ag alloy film, and ag alloy sputtering target - Google Patents

Ag alloy film, and ag alloy sputtering target Download PDF

Info

Publication number
WO2022158231A1
WO2022158231A1 PCT/JP2021/047503 JP2021047503W WO2022158231A1 WO 2022158231 A1 WO2022158231 A1 WO 2022158231A1 JP 2021047503 W JP2021047503 W JP 2021047503W WO 2022158231 A1 WO2022158231 A1 WO 2022158231A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
mass
less
alloy film
content
Prior art date
Application number
PCT/JP2021/047503
Other languages
French (fr)
Japanese (ja)
Inventor
悠人 歳森
智博 大谷
誠 漆原
荘平 野中
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021177712A external-priority patent/JP2022113107A/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2022158231A1 publication Critical patent/WO2022158231A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to a Ga-containing Ag alloy film and an Ag alloy sputtering target used when forming this Ag alloy film.
  • This application claims priority based on Japanese Patent Application No. 2021-009035 filed in Japan on January 22, 2021 and Japanese Patent Application No. 2021-177712 filed in Japan on October 29, 2021. The contents are hereby incorporated by reference.
  • Ag films or Ag alloy films are excellent in optical properties and electrical properties, so they are used as reflective films and conductive films of various parts such as reflective electrode films such as displays and LEDs, and wiring films such as touch panels.
  • an Ag alloy film it is known that by adding a specific element to form an oxide on the surface of the film, for example, the reflectance and electrical conductivity can be improved when used as a reflective electrode film.
  • Patent Document 1 describes an Ag alloy film in which AgSbMg or AgSbZn is used as an Ag alloy and Sb is an oxide. Such Ag alloy films are said to be excellent in low resistance, heat resistance, and chloride resistance.
  • Patent Document 2 describes an Ag alloy film using AgIn as an Ag alloy and using In as an oxide.
  • Patent Document 3 describes an Ag alloy film in which AgSbAl or AgSbMn is used as an Ag alloy and Sb is an oxide. Such Ag alloy films are said to be excellent in low resistance, heat resistance, and chloride resistance.
  • Patent Document 4 describes an Ag alloy film using AgSb as an Ag alloy and Sb as an oxide. Such an Ag alloy film is said to have excellent moisture resistance, sulfurization resistance, heat resistance, high reflectance, and low resistance.
  • the various Ag alloy films described above are formed by sputtering targets made of Ag alloys.
  • the present invention has been made in view of the circumstances described above, and aims to provide an Ag alloy film having excellent heat resistance and sulfidation resistance, and an Ag alloy sputtering target for forming this Ag alloy film. aim.
  • the present inventors have made intensive studies and found that by forming a Ga segregation portion in which Ga is concentrated in the surface side region of the Ag alloy containing Ga, the heat resistance and It was found that sulfuration resistance can be improved.
  • an Ag alloy film according to an aspect of the present invention contains Ga in the range of 0.3% by mass to 3.5% by mass, and the balance is composed of Ag and unavoidable impurities, and the Ag alloy film has a Ga segregation portion in which Ga is concentrated in a surface side region of the Ag alloy film.
  • the Ag alloy film contains Ga in the range of 0.3% by mass or more and 3.5% by mass or less, and the balance is Ag and unavoidable impurities. Therefore, it has excellent heat resistance and is particularly suitable for use as a reflective conductive film, for example. Further, since the Ag alloy film has a Ga segregation portion in which Ga concentrates in the surface side region, the heat resistance and sulfuration resistance of the Ag alloy film can be improved.
  • the Ag alloy further includes one or more selected from Cu and Mg in a total amount of 0.5 mass ppm or more and 50.0 mass ppm or less. may be included in In this case, by adding Cu and Mg, it is possible to suppress the diffusion movement of Ag atoms due to heat, and to further improve the heat resistance of the Ag alloy film.
  • the Ag alloy further contains one or more selected from Pd, Pt, Au, and Rh, and the Pd content is 40 mass ppm or less, the Pt content is 20 mass ppm or less, the Au content is 20 mass ppm or less, the Rh content is 10 mass ppm or less, and the total content of Pd, Pt, Au and Rh is 1 It is preferable that the mass ppm or more and 50 mass ppm or less.
  • Pd, Pt, Au, and Rh are solid-dissolved in Ag, so that heat resistance and sulfuration resistance can be further improved.
  • Pd, Pt, Au, and Rh act as catalysts in the reduction reaction of nitric acid. could be higher.
  • the Ag alloy may further contain Ca in the range of 0.005% by mass or more and 0.050% by mass or less.
  • Ca is segregated at the grain boundaries of Ag, grain boundary diffusion of Ag can be suppressed, and heat resistance can be further improved.
  • the Ag alloy further contains one or more selected from In, Sn, Ti, and Al in a total content of 0.1% by mass or more1. It may be contained in the range of 5% by mass or less. In this case, like Ga, In, Sn, Ti, and Al segregate in the surface-side region of the Ag alloy film, thereby further improving heat resistance and sulfurization resistance.
  • the length in the film thickness direction of the Ga segregation portion is preferably in the range of 2.0 nm or more and 12.0 nm or less.
  • the Ga segregation portion since the Ga segregation portion has a length in the film thickness direction within the above range, it is possible to sufficiently improve heat resistance and sulfurization resistance and prevent a decrease in reflectance.
  • Ga oxide may exist in the Ga segregation portion.
  • the presence of Ga oxide in the Ga segregation portion formed in the surface side region of the Ag alloy film can further improve the sulfuration resistance.
  • the Ga oxide is a transparent oxide, it can further improve the reflectance of the Ag alloy film.
  • the Ga segregation part may be distributed in a mesh shape along the grain boundaries as an oxide.
  • the Ga segregation portion formed in the surface side region of the Ag alloy film is distributed in a mesh shape along the grain boundaries as an oxide, so that the sulfidation resistance can be further improved, and the reflectance can be improved.
  • An Ag alloy sputtering target according to an aspect of the present invention contains Ga in the range of 0.3% by mass to 3.5% by mass, and the balance is Ag and inevitable impurities.
  • an Ag alloy film having a Ga segregation portion in which Ga is concentrated in the surface side region by sputtering and having excellent heat resistance and sulfidation resistance can be deposited.
  • the Ag alloy sputtering target according to one aspect of the present invention further contains one or more selected from Cu and Mg in a total range of 0.5 mass ppm or more and 50.0 mass ppm or less. good too.
  • the Ag alloy sputtering target according to one aspect of the present invention further contains one or more selected from Cu and Mg in a total range of 0.5 mass ppm or more and 50.0 mass ppm or less. good too.
  • the Ag alloy sputtering target according to one aspect of the present invention further contains one or more selected from Pd, Pt, Au, and Rh, and the Pd content is 40 ppm by mass or less.
  • the Pt content is 20 mass ppm or less
  • the Au content is 20 mass ppm or less
  • the Rh content is 10 mass ppm or less
  • the total content of Pd, Pt, Au and Rh is 1 mass ppm or more and 50 It may be mass ppm or less.
  • one or more selected from Pd, Pt, Au, and Rh are contained, and an Ag alloy film having excellent heat resistance and sulfurization resistance can be formed.
  • the Ag alloy sputtering target according to one aspect of the present invention may further contain Ca in the range of 0.005% by mass or more and 0.050% by mass or less.
  • an Ag alloy film containing Ca in addition to Ga and having excellent heat resistance can be formed.
  • one or more selected from In, Sn, Ti, and Al are added in a total amount of 0.1% by mass or more and 1.5% by mass or less. may be included in the range of In this case, in addition to Ga, it is possible to form an Ag alloy film containing one or more selected from In, Sn, Ti, and Al, and having excellent heat resistance and sulfurization resistance.
  • the oxygen content is preferably 0.005% by mass or less.
  • the oxygen content is limited to 0.005% by mass or less, it is possible to suppress the chemical adsorption of oxygen atoms to the growing Ag alloy film during the sputtering film formation. It is possible to suppress the deterioration of the properties.
  • the Ag alloy sputtering target is composed of a polycrystalline body containing a plurality of Ag alloy crystal grains, and is calculated from the grain size of the Ag alloy crystal grains measured at a plurality of measurement points.
  • the average grain size C is in the range of 10 ⁇ m or more and 200 ⁇ m or less, and the absolute deviation of the average grain size D from the average grain size C of the Ag alloy crystal grains at each measurement point
  • the grain size variation of the Ag alloy crystal grains is small and the average grain size C is within the above range, the occurrence of abnormal discharge during the sputtering film formation can be suppressed, and the Ag alloy can be stably formed.
  • a film can be deposited.
  • an Ag alloy film excellent in heat resistance and sulfidation resistance it is possible to provide an Ag alloy film excellent in heat resistance and sulfidation resistance, and an Ag alloy sputtering target for forming this Ag alloy film.
  • FIG. 10 is a graph showing the results of XPS analysis of the Ag alloy film (after heat treatment) of Inventive Example 102.
  • FIG. It is an example of the spectrum of the outermost surface of the Ag alloy film (after heat treatment) of Example 102 of the present invention. It is an example of the spectrum of the outermost surface of the Ag alloy film (before heat treatment) of Example 102 of the present invention. It is a surface observation result after heat processing of Ag alloy film in Example 120 of the present invention. 10 shows the surface observation results of the Ag alloy film after heat treatment in Comparative Example 101.
  • the Ag alloy film which is one embodiment of the present invention, is excellent in reflectance, heat resistance, and sulfidation resistance, and is particularly suitable for use as a reflective electrode film formed in contact with an organic layer in an organic EL device, for example. .
  • the Ag alloy film of the present embodiment contains Ga in the range of 0.3% by mass or more and 3.5% by mass or less, and the balance is Ag and unavoidable impurities.
  • a Ga segregation portion in which Ga is concentrated is formed in the side region.
  • This Ga segregation part is a part where the concentration of Ga is higher than other parts.
  • the portion where the Ga concentration is higher than other portions includes the surface side region of the Ag alloy film.
  • the Ga segregation part is not formed as a layer in which a clear interface or the like exists with the surrounding area, but a Ga concentration concentrated part where the concentration gradually changes from the Ga concentration peak position , identified by the peak intensity of the XPS analysis.
  • the Ag alloy film of the present embodiment contains Ga contained in the range of 0.3% by mass or more and 3.5% by mass or less, and the balance is Ag and unavoidable impurities, and the surface side region of the Ag alloy film A Ga segregation portion in which Ga is concentrated is formed in the .
  • a Ga segregation portion is formed in the surface side region of at least one of the two surfaces present at both ends in the film thickness direction of the Ag alloy film.
  • a Ga segregation portion is formed at least in the surface side region of the surface opposite to the substrate.
  • the Ga segregation portion may also be formed in the surface-side region of the substrate-side surface.
  • the surface side region of the Ag alloy film is a region extending from the surface of the Ag alloy film to 20% of the total thickness of the Ag alloy film in the thickness direction.
  • the Ag alloy constituting the Ag alloy film of the present embodiment further contains one or more selected from Cu and Mg in a total range of 0.5 mass ppm or more and 50.0 mass ppm or less. good.
  • the Ag alloy constituting the Ag alloy film of the present embodiment further contains one or more selected from Pd, Pt, Au, and Rh, and the Pd content is 40 ppm by mass or less.
  • the Pt content is 20 mass ppm or less
  • the Au content is 20 mass ppm or less
  • the Rh content is 10 mass ppm or less
  • the total content of Pd, Pt, Au and Rh is 1 mass ppm or more and 50 It may be mass ppm or less.
  • the Ag alloy forming the Ag alloy film of the present embodiment may further contain Ca in the range of 0.005% by mass or more and 0.050% by mass or less.
  • the Ag alloy constituting the Ag alloy film of the present embodiment one or two or more selected from In, Sn, Ti, and Al are further added in a total amount of 0.1% by mass or more and 1.5% by mass or less. may be included in the range of
  • the length in the film thickness direction of the Ga segregation portion is preferably in the range of 2.0 nm or more and 12.0 nm or less.
  • Ga oxide is preferably present in the Ga segregation portion.
  • the Ga segregation parts are preferably distributed as oxides in a network along the grain boundaries.
  • the Ga segregation part may be distributed entirely along the grain boundary as an oxide in the surface side region of the Ag alloy film, or may be distributed as an oxide. It may be partially distributed along grain boundaries.
  • the Ag alloy film contains oxygen, but the amount of oxygen is at the level of unavoidable impurities.
  • the Ag alloy sputtering target of the present embodiment is for forming the Ag alloy film of the above-described present embodiment, and has the same composition as the Ag alloy film to be formed. That is, it is composed of an Ag alloy having a composition containing Ga in the range of 0.3% by mass or more and 3.5% by mass or less, with the balance being Ag and unavoidable impurities.
  • one or more selected from Cu and Mg may be included in a total range of 0.5 ppm by mass or more and 50.0 ppm by mass or less.
  • it further contains one or more selected from Pd, Pt, Au, and Rh, the Pd content is 40 mass ppm or less, and the Pt content is 20 mass ppm.
  • the Au content may be 20 mass ppm or less
  • the Rh content may be 10 mass ppm or less
  • the total content of Pd, Pt, Au, and Rh may be 1 mass ppm or more and 50 mass ppm or less.
  • Ca may also be included in the range of 0.005% by mass or more and 0.050% by mass or less.
  • one or more selected from In, Sn, Ti, and Al may be contained in a total amount of 0.1% by mass or more and 1.5% by mass or less.
  • the oxygen content is preferably 50 mass ppm or less (0.005 mass% or less).
  • it is made of a polycrystalline body containing a plurality of Ag alloy crystal grains, and the average The crystal grain size C is in the range of 10 ⁇ m or more and 200 ⁇ m or less, and the absolute value of the deviation from the average crystal grain size C of the average value D of the grain size of the Ag alloy crystal grains at each measurement point.
  • the grain size variation E of the Ag alloy crystal grains defined by the following formula (1) is 20% or less, where D max is the average value at which the is maximum.
  • Formula: E (%) (D max -C) / C x 100
  • the Ga segregation portion of the Ag alloy film, the composition of the Ag alloy constituting the Ag alloy film and the Ag alloy sputtering target, the oxygen content of the Ag alloy sputtering target, and the crystal structure of the Ag alloy sputtering target are as described above. The reason for the stipulation is explained below.
  • Ga segregation part By forming a Ga segregation part in which Ga is segregated on the surface of the Ag alloy film, heat resistance and sulfurization resistance are improved, and it is possible to suppress the occurrence of protruding defects even in heat treatment and in a sulfurization atmosphere. .
  • a heat treatment at, for example, 200° C. or higher and 300° C. or lower can be performed to reliably form the Ga segregation part in the surface side region of the Ag alloy film.
  • the thickness direction length of the Ga segregation part is 1.0 nm or more, the heat resistance and the sulfuration resistance can be reliably improved. Further, when the length of the Ga segregation portion in the film thickness direction is 15.0 nm or less, it is possible to maintain a high reflectance. In order to more reliably improve the heat resistance and sulfuration resistance, it is more preferable to set the lower limit of the length of the Ga segregation portion in the film thickness direction to 5.0 nm or more. Further, in order to more reliably maintain a high reflectance, it is more preferable to set the upper limit of the length in the film thickness direction of the Ga segregation portion to 10.0 nm or less.
  • the sulfuration resistance of the Ag alloy film can be improved.
  • the Ga oxide formed in the surface-side region of the Ag alloy film acts as a stronger barrier against sulfur (hydrogen sulfide), improving the sulfuration resistance of the Ag alloy film.
  • the Ga oxide is a transparent oxide, it can improve the reflectance of the Ag alloy film.
  • the sulfuration resistance of the Ag alloy film can be further improved, and the reflectance of the Ag alloy film can be further improved. can be improved.
  • the Ga content in the Ag alloy constituting the Ag alloy film and the Ag alloy sputtering target is less than 0.3% by mass, the Ga segregation portion may not be sufficiently formed.
  • the Ga content exceeds 3.5% by mass the reflectance of the Ag alloy film may decrease. Therefore, in the present embodiment, the content of Ga in the Ag alloy forming the Ag alloy film and the Ag alloy sputtering target is set within the range of 0.3% by mass or more and 3.5% by mass or less.
  • the lower limit of the Ga content is preferably 0.5% by mass or more, more preferably 1.0% by mass or more.
  • the upper limit of the Ga content is preferably 2.5% by mass or less, more preferably 2.0% by mass or less.
  • the Ag alloy constituting the Ag alloy film and the Ag alloy sputtering target contains, in addition to Ga, one or more selected from Cu and Mg in a total of 0.5 ppm by mass or more, the number of Ag atoms Diffusion due to heat can be suppressed, and heat resistance can be further improved.
  • the total content of one or more elements selected from Cu and Mg is more preferably 1.0 ppm by mass or more, more preferably 2.0 ppm by mass or more. is more preferable.
  • the upper limit of the total content of one or more selected from Cu and Mg is 20.0 ppm by mass or less, and 10.0 mass ppm. It is more preferable to make it below ppm.
  • the Ag alloy constituting the Ag alloy film and the Ag alloy sputtering target contains, in addition to Ga, one or more selected from Pd, Pt, Au, and Rh, and Pd, Pt and Au and Rh is 1 ppm by mass or more, these elements form a solid solution in Ag, thereby making it possible to further improve heat resistance and sulfurization resistance. Since elements such as Pd, Pt, Au, and Rh act as catalysts in the reduction reaction of nitric acid, when an Ag alloy film is etched with a nitric acid etchant, the etching rate of the film increases, and the etching process is stable.
  • the content of Pd is 40 ppm by mass or less
  • the content of Pt is 20 ppm by mass or less
  • the content of Au It is preferable that the amount is 20 mass ppm or less
  • the Rh content is 10 mass ppm or less
  • the total content of Pd, Pt, Au and Rh is 50 mass ppm or less.
  • the content of Pd is 40 ppm by mass or less
  • the content of Pt is 14 ppm by mass or less
  • the content of Au is 13 mass ppm or less
  • the Rh content is 10 mass ppm or less
  • the total content of Pd, Pt, Au and Rh is 50 mass ppm or less.
  • the total content of Pd, Pt, Au, and Rh is preferably 50 ppm by mass or less, and 40 mass It is more preferable to set it to ppm or less.
  • the total content of Pd, Pt, Au, and Rh is more preferably 2 ppm by mass or more, more preferably 3 ppm by mass or more.
  • the Pd content should be 20 mass ppm or less
  • the Pt content should be 10 mass ppm or less
  • the Au content should be 10 mass ppm or less
  • the Rh content should be 10 mass ppm or less.
  • the content of 8 ppm by mass or less, and the total content of Pd, Pt, Au and Rh is more preferably 20 ppm by mass or less, the Pd content is 10 mass ppm or less, and the Pt
  • the content is 5 ppm by mass or less
  • the content of Au is 5 ppm by mass or less
  • the content of Rh is 5 ppm by mass or less
  • the total content of Pd, Pt, Au and Rh is 10 ppm by mass or less. is more preferable.
  • the lower limits of the contents of Pd, Pt, Au, and Rh are not limited, but the content of Pd is 0.2 mass ppm or more, the Pt content is 0.01 mass ppm or more, and the Au content is 0.01 mass ppm or more. It is preferable to set the content of Rh to 2 ppm by mass or more and 0.01 ppm by mass or more.
  • the Ag alloy constituting the Ag alloy film and the Ag alloy sputtering target further contains 0.005% by mass or more of Ca in addition to Ga
  • the added Ca segregates at the grain boundary of Ag. It is possible to suppress the grain boundary diffusion of Ag and further improve the heat resistance.
  • the lower limit of the Ca content is more preferably 0.008% by mass or more, more preferably 0.010% by mass or more.
  • the upper limit of the Ca content is more preferably 0.040% by mass or less, and 0.030% by mass or less. is more preferred.
  • one or more selected from In, Sn, Ti, Al is added in a total of 0.1% by mass or more When it is contained, like Ga, In, Sn, Ti, and Al agglomerate in the surface-side region of the Ag alloy film, making it possible to further improve heat resistance and sulfurization resistance.
  • the total content of one or more selected from In, Sn, Ti, and Al may be set to 0.2% by mass or more.
  • the upper limit of the total content of one or more selected from In, Sn, Ti, and Al is 0.3% by mass or more.
  • the oxygen content of the Ag alloy sputtering target of the present embodiment when the oxygen content is 0.005% by mass or less, it is possible to suppress chemical adsorption of the oxygen element to the growing Ag alloy film during sputtering film formation. , deterioration of reflectance, heat resistance, and sulfidation resistance due to deterioration of crystallinity of the Ag alloy film can be suppressed.
  • the oxygen content of the Ag alloy sputtering target is more preferably 0.004% by mass or less, and more preferably 0.002% by mass. % or less.
  • the lower limit of the oxygen content of the Ag alloy sputtering target is preferably 0.001% by mass or more.
  • the average crystal grain size C of the Ag alloy crystal grains measured at a plurality of locations, and the average grain size of the Ag alloy crystal grains at each measured location. From the average value D max at which the absolute value of the deviation from the grain size C is maximum, when the grain size variation E of the Ag alloy crystal grains defined by the above formula (1) is set to 20% or less, It is possible to suppress the occurrence of unevenness on the sputtering surface even when sputtering progresses, and it is possible to suppress the occurrence of abnormal discharge during sputtering even after the sputtering progresses.
  • the lower limit of grain size variation E of Ag alloy crystal grains is not particularly limited, it is preferably 0.1% or more. Moreover, when the average crystal grain size C of the Ag alloy crystal grains is 200 ⁇ m or less, the occurrence of abnormal discharge can be suppressed. It should be noted that setting the average crystal grain size C of the Ag alloy crystal grains to less than 10 ⁇ m is not preferable because the manufacturing cost increases.
  • the grain size variation E of the Ag alloy crystal grains it is more preferable to set the grain size variation E of the Ag alloy crystal grains to 19% or less, more preferably 18% or less.
  • the average crystal grain size C of the Ag alloy crystal grains is more preferably 180 ⁇ m or less, more preferably 150 ⁇ m or less.
  • the lower limit of the average crystal grain size C of the Ag alloy crystal grains is more preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more.
  • an Ag raw material with a purity of 99.99% by mass or more and a Ga raw material with a purity of 99.9% by mass or more are prepared.
  • various raw materials (Cu, Mg, Pd, Pt, Au, Rh, Ca, In, Sn, Ti, Al) having a purity of 99.9% by mass or more are prepared as necessary.
  • the Ag raw material is leached with nitric acid or sulfuric acid, then electrorefined using an electrolytic solution having a predetermined silver concentration, and the refined Ag raw material is analyzed for impurities. It is preferable to reduce the amount of impurities in the Ag raw material by repeating these steps.
  • the above-mentioned Ag raw material, Ga raw material, and various raw materials according to need are weighed. Then, the Ag raw material is charged into the crucible of the atmosphere melting furnace. Next, the Ag raw material is melted under a high vacuum atmosphere or an inert gas atmosphere, and Ga and various raw materials are added to the obtained Ag molten metal to obtain an Ag alloy molten metal. An Ag alloy ingot is obtained by pouring this Ag alloy molten metal into a mold having a predetermined shape.
  • the easily oxidizable additive elements should be It is preferable to keep it in a state where it is not exposed to the atmosphere by vacuum packing or the like. Furthermore, it is preferable to keep the inside of the melting furnace in a state in which the operation of replacing the inert gas atmosphere has been performed several times during charging and melting. Moreover, in order to suppress the segregation of additive elements and variations in grain size in the Ag alloy ingot, it is preferable to pour the ingot into a water-cooled mold and rapidly cool it.
  • a unidirectional solidification method can be used.
  • the unidirectional solidification method for example, while the bottom of the mold is water-cooled, the molten metal is poured into the mold whose side parts are preheated by resistance heating, and then the set temperature of the resistance heating part at the bottom of the mold is gradually lowered.
  • a complete continuous casting method, a semi-continuous casting method, or the like may be used instead of the unidirectional solidification method described above.
  • the Ag alloy ingot is subjected to plastic working and formed into a predetermined shape.
  • the plastic working may be performed either hot or cold.
  • a plate material is formed by rolling an Ag alloy ingot.
  • the cumulative rolling reduction is 70% or more.
  • at least the last pass of rolling has a rolling reduction of 20% or more.
  • the heat treatment temperature is preferably 500° C. or higher and 700° C. or lower, and the holding time is preferably 1 hour or longer and 5 hours or shorter. Moreover, after the heat treatment, it is rapidly cooled by air cooling or water cooling.
  • the atmosphere for the heat treatment is not particularly limited, and may be, for example, an air atmosphere or an inert atmosphere.
  • the heat treatment temperature is less than 500° C., the effect of removing work hardening may not be sufficient.
  • the heat treatment temperature exceeds 700° C., the crystal grains may become coarse, or a liquid phase may appear.
  • the holding time is less than 1 hour, there is a possibility that the crystal grain size cannot be made sufficiently uniform.
  • the heat-treated material that has undergone the heat treatment described above is machined (cut) to finish it into a predetermined shape and dimensions.
  • the Ag alloy sputtering target of the present embodiment is manufactured through the steps described above.
  • the Ag alloy sputtering target of this embodiment is set in a target holder of a sputtering film forming apparatus. Then, a substrate on which a film is to be formed is attached, and an Ag alloy film is formed on the substrate.
  • An example of film formation conditions is shown below.
  • Deposition power density 2.0 to 5.0 (W/cm 2 )
  • Deposition gas Ar
  • Deposition gas pressure 0.2 to 0.4
  • Target-substrate distance 60 to 80 (mm)
  • a Ga segregation portion in which Ga is concentrated is formed in the surface side region of the Ag alloy film containing Ga.
  • the oxidation of Ga in the Ga segregation portion can be promoted.
  • a heat treatment condition for the Ag alloy film for example, it may be heated at 250 to 300° C. for about 1 to 2 hours in an atmosphere containing oxygen.
  • the atmosphere containing oxygen may be heating in an atmosphere containing 2% or more of oxygen, for example, air.
  • Ga is contained in the range of 0.3% by mass or more and 3.5% by mass or less, and the balance is Ag and unavoidable impurities. Since it is made of alloy, it has excellent heat resistance. Further, since the Ag alloy film has a Ga segregation portion in which Ga concentrates in the surface side region, the heat resistance and sulfuration resistance of the Ag alloy film can be improved.
  • Cu, and Mg in addition to Ga, when one or more selected from Cu and Mg are contained in a total range of 0.5 mass ppm or more and 50.0 mass ppm or less , Cu, and Mg can suppress the diffusion movement of Ag atoms due to heat, and can further improve the heat resistance of the Ag alloy film.
  • the Ag alloy film of the present embodiment further contains one or more selected from Pd, Pt, Au, and Rh, and the Pd content is 40 ppm by mass or less, and the Pt The content of is 20 mass ppm or less, the Au content is 20 mass ppm or less, the Rh content is 10 mass ppm or less, and the total content of Pd, Pt, Au and Rh is 1 mass ppm or more and 50 mass ppm
  • Pd, Pt, Au, and Rh are solid-dissolved in Ag, so that heat resistance and sulfurization resistance can be further improved, and an etching solution containing nitric acid is used. The etching rate can be kept low even if the etching process is performed by
  • the Ag alloy film of the present embodiment in addition to Ga, when Ca is contained in the range of 0.005% by mass or more and 0.050% by mass or less, Ca segregates at the grain boundaries of Ag. By the presence of these elements, the grain boundary diffusion of Ag can be suppressed, and the heat resistance can be further improved.
  • In the Ag alloy film of the present embodiment in addition to Ga, one or more selected from In, Sn, Ti, and Al are added in a total amount of 0.1% by mass or more and 1.5% by mass or less. , In, Sn, Ti, and Al segregate in the surface-side region of the Ag alloy film in the same manner as Ga, thereby further improving heat resistance and sulfurization resistance.
  • the length in the film thickness direction of the Ga segregation part is within the range of 2.0 nm or more and 12.0 nm or less, the heat resistance and sulfuration resistance are sufficiently improved, and the reflection It is possible to prevent a decrease in the rate.
  • Ga oxide which is a transparent oxide
  • the reflectance of the Ag alloy film can be further improved, and the sulfidation resistance can be further improved. can be improved.
  • the Ga segregation part is distributed in a network along the grain boundary as an oxide, it is possible to further improve the sulfidation resistance and further improve the reflectance. can be made
  • the Ag alloy sputtering target of this embodiment by sputtering film formation, it has a Ga segregation part in which Ga is concentrated in the surface side region, and has excellent heat resistance and sulfidation resistance.
  • An alloy film can be deposited.
  • the Ag alloy sputtering target of the present embodiment in addition to Ga, when further containing one or more selected from Cu and Mg in a total range of 0.5 mass ppm or more and 50.0 mass ppm or less makes it possible to form an Ag alloy film with even better heat resistance.
  • the Ag alloy sputtering target of the present embodiment in addition to Ga, it further contains one or more selected from Pd, Pt, Au, and Rh, and the Pd content is 40 mass ppm or less, The Pt content is 20 mass ppm or less, the Au content is 20 mass ppm or less, the Rh content is 10 mass ppm or less, and the total content of Pd, Pt, Au, and Rh is 1 mass ppm or more and 50 mass ppm. When the concentration is set to ppm or less, an Ag alloy film having even better heat resistance and sulfurization resistance can be formed.
  • the Ag alloy sputtering target of the present embodiment in addition to Ga, when further containing Ca in the range of 0.005% by mass or more and 0.050% by mass or less, the Ag alloy film further excellent in heat resistance can be deposited.
  • the Ag alloy sputtering target of the present embodiment in addition to Ga, one or two or more selected from In, Sn, Ti, Al in a total amount of 0.1% by mass or more and 1.5% by mass or less When it is contained within the range, it is possible to form an Ag alloy film having even better heat resistance and sulfurization resistance.
  • the oxygen content is 0.005% by mass or less, it is possible to suppress the chemical adsorption of oxygen atoms to the growing Ag alloy film during sputtering film formation. It is possible to suppress deterioration of the reflectance, heat resistance, and sulfuration resistance of the Ag alloy film.
  • the average crystal grain size C calculated from the grain size of the Ag alloy crystal grains measured at a plurality of measurement points is within the range of 10 ⁇ m or more and 200 ⁇ m or less,
  • D max the average value of the average value D of the grain size of the Ag alloy crystal grains at each measurement point that has the maximum absolute value of the deviation from the average grain size C
  • E (%) (D max - C) / C ⁇ 100
  • the grain size variation E of the Ag alloy crystal grains is 20% or less, the occurrence of abnormal discharge during sputtering film formation can be suppressed, It becomes possible to form an Ag alloy film stably.
  • the present invention is not limited to this, and can be modified as appropriate without departing from the technical requirements of the invention.
  • a plate-shaped Ag alloy sputtering target has been described, but the present invention is not limited to this, and a cylindrical Ag alloy sputtering target may be used.
  • the obtained Ag alloy ingot was subjected to cold rolling (reduction rate of 80%, final reduction rate of 25%), and then heat treatment under conditions of a heat treatment temperature of 600°C and a holding time of 1 hour. Then, after the heat treatment, machining was performed to produce Ag alloy sputtering targets shown in Tables 1 to 3 in the form of discs having a diameter of 152.4 mm and a thickness of 6 mm.
  • an Ag alloy film was formed on a substrate under the following conditions.
  • film formation was performed for calculating the film formation rate.
  • an Ag alloy film having a film thickness of 100 nm was formed using the calculated film formation rate, and the Ag alloy films shown in Tables 4 to 6 were obtained.
  • Component composition A sample for analysis was cut out from each Ag alloy sputtering target, and the component composition was measured by ICP emission spectrometry. Further, the oxygen content was analyzed by heating a graphite crucible containing an analysis sample with high frequency, melting it in an inert gas, and detecting it by an infrared absorption method. The measurement results are shown in Tables 1-3.
  • the Ag alloy film As for the Ag alloy film, an Ag alloy film having a thickness of 500 nm was formed on a 4-inch silicon substrate by sputtering using the Ag alloy sputtering target described above. A sample for analysis was taken from this Ag alloy film, and the component composition was measured by ICP emission spectrometry. As a result, it was confirmed that the composition was the same as that of the Ag alloy sputtering target used for film formation.
  • the average value of the average grain sizes of the samples sampled from 16 locations was taken as the crystal grain size of the silver alloy crystal of the target.
  • the above average grain size d is the average value D of the grain size of the Ag alloy crystal grains at each measurement point, and the average value of the average grain size d at the 16 points is the average crystal grain size C.
  • the deviation between the average grain size C of the Ag alloy crystal grains measured at a plurality of locations and the average grain size C of the average value D of the grain size of the Ag alloy crystal grains at each measurement location The grain size variation E of the Ag alloy crystal grains was calculated from the average value D max that maximizes the absolute value of .
  • the absolute value of the deviation from the average value of the average particle diameter was identified.
  • the variation in particle size was calculated according to the following formula. ⁇
  • the inside of the sputtering apparatus was evacuated to 5 ⁇ 10 ⁇ 5 Pa, and then discharge was performed for 1 hour as preliminary sputtering under the conditions of Ar gas pressure: 0.4 Pa, input power: DC 500 W, and target-substrate distance: 70 mm. Next, continuous discharge was performed for 6 hours as the main sputtering, and the total number of abnormal discharges during the main sputtering was measured.
  • the arc count function of a DC power supply (RPDG-50A manufactured by MKS Instruments) was used to measure the abnormal discharge.
  • the peak intensity at the Ga peak position in the number of scans to excavate 50 nm is the Ga peak intensity (Ga amount) at a position at a depth of 50 nm from the surface.
  • the region of the number of scans in which the Ga peak intensity of 2.0 times or more the reference peak intensity described above is obtained is regarded as the Ga segregation portion where Ga is concentrated, and the thickness of the Ga segregation portion is set as described above. It was calculated by multiplying the number of scans by the etching rate.
  • the oxidation state of the Ga segregation part was confirmed from the position of each detected peak in the XPS depth analysis. Note that in reality, Ga is oxidized into Ga oxide Ga 2 O 3 by atmospheric transport, atmospheric heat treatment, etc. before the film is analyzed by XPS, so when using the peak intensity of Ga Similarly, the presence or absence of a Ga segregation part where Ga is concentrated may be judged from the change in the peak intensity of Ga 2 O 3 .
  • Each detection peak position is as follows. Ga: 1116.5 eV Ga2O3 : 1119.2 eV
  • FIG. 1 shows the XPS analysis results of the Ag alloy film (after heat treatment) of Example 102 of the present invention.
  • FIG. 2 shows the Ga2p3 spectrum (XPS) of the outermost surface of the Ag alloy film (after heat treatment) of Example 102 of the present invention. Ga is confirmed to be in an oxidized state. Regarding the intensity (Intensity) on the vertical axis in FIG. 1, the value of a ⁇ 10 b is expressed as aE+b.
  • FIG. 3 shows the Ga2p3 spectrum of the outermost surface of the Ag alloy film (before heat treatment) of Example 102 of the present invention. It has a peak between the metal and the oxide, confirming that Ga is in an incompletely oxidized state.
  • the reflectance was measured using a spectrophotometer (U-4100 manufactured by Hitachi High-Technologies Corporation). After film formation, heat treatment was performed at 250° C. for 2 hours in the air. Tables 4 to 6 show the reflectance of the Ag alloy film after this heat treatment. The table shows the reflectance at a wavelength of 450 nm.
  • a wiring pattern (wiring film) was formed by photolithography on a 100 nm-thick Ag alloy single film formed on a glass substrate. Specifically, a photoresist agent (OFPR-8600 manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied onto the formed Ag alloy film by a spin coater, and prebaked at 110°C. Then, it was exposed, and then the pattern was developed with a developing solution (NMD-W manufactured by Tokyo Ohka Kogyo Co., Ltd.) and post-baked at 150°C. Thus, a comb-shaped wiring pattern having a width of 100 ⁇ m and an interval of 100 ⁇ m was formed on the Ag alloy film.
  • a photoresist agent OFPR-8600 manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • the Ga content is lower than the range of the present embodiment, and a Ga segregation part is formed in the surface side region of the Ag alloy film. it wasn't. Therefore, the heat resistance and sulfuration resistance were insufficient.
  • the Ga content is higher than the range of the present embodiment, and the reflectance after the formation of the Ag alloy film is low. rice field.
  • the Ag alloy film of Comparative Example 105 formed by the Ag alloy sputtering target of Comparative Example 5 the total content of Pd, Pt, Au and Rh is larger than the range of the present embodiment, and the amount of overetching is large. rice field.
  • Comparative Example 6 the Ca content was higher than the range of the present embodiment, cracks occurred during rolling, and an Ag alloy sputtering target could not be produced.
  • the total content of In, Sn, Ti, and Al was larger than the range of the present embodiment, and the reflectance after the formation of the Ag alloy film was low. .
  • the abnormal discharge during sputtering film formation could be suppressed, and the Ag alloy film could be stably formed.
  • the Ag alloy films of Inventive Examples 101 to 142 formed from the Ag alloy sputtering targets of Inventive Examples 1 to 42 had high reflectance and excellent heat resistance and sulfidation resistance. Also, the amount of over-etching was small.
  • the Ag alloy film of the present embodiment is excellent in heat resistance and sulfuration resistance, and is suitably applied as a reflective film and a conductive film for various parts such as reflective electrode films such as displays and LEDs, and wiring films such as touch panels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

This Ag alloy film is composed of an Ag alloy having a composition containing 0.3-3.5 mass% of Ga and the remainder comprising Ag and inevitable impurities, and has, in a surface-side region of the Ag alloy film, a Ga segregated portion in which Ga is concentrated. It is preferable that the length of the Ga segregated portion in the film thickness direction is within the range of 2.0-12.0 nm. In addition, it is preferable that a Ga oxide is present in the Ga segregated portion.

Description

Ag合金膜、および、Ag合金スパッタリングターゲットAg alloy film and Ag alloy sputtering target
 本発明は、Gaを含むAg合金膜、および、このAg合金膜を成膜する際に用いられるAg合金スパッタリングターゲットに関するものである。
 本願は、2021年1月22日に日本に出願された特願2021-009035号、及び2021年10月29日に日本に出願された特願2021-177712号に基づき優先権を主張し、その内容をここに援用する。
TECHNICAL FIELD The present invention relates to a Ga-containing Ag alloy film and an Ag alloy sputtering target used when forming this Ag alloy film.
This application claims priority based on Japanese Patent Application No. 2021-009035 filed in Japan on January 22, 2021 and Japanese Patent Application No. 2021-177712 filed in Japan on October 29, 2021. The contents are hereby incorporated by reference.
 一般に、Ag膜又はAg合金膜は、光学特性および電気特性に優れていることから、ディスプレイやLED等の反射電極膜、タッチパネル等の配線膜等の各種部品の反射膜及び導電膜として使用されている。
 Ag合金膜として、特定の元素を添加して膜の表面に酸化物を形成するなどによって、例えば、反射電極膜として用いた際の反射率、導電率などを改善できることが知られている。
 例えば、特許文献1には、Ag合金としてAgSbMgまたはAgSbZnを用い、Sbを酸化物にしたAg合金膜が記載されている。このようなAg合金膜は、低抵抗性、耐熱性、および耐塩化性に優れているとされている。
 また、例えば、特許文献2には、Ag合金としてAgInを用い、Inを酸化物にしたAg合金膜が記載されている。このようなAg合金膜は、反射率を高めることができるとされている。
 また、例えば、特許文献3には、Ag合金としてAgSbAlまたはAgSbMnを用いてSbを酸化物にしたAg合金膜が記載されている。このようなAg合金膜は、低抵抗性、耐熱性、および耐塩化性に優れているとされている。
 更に、例えば、特許文献4には、Ag合金としてAgSbを用い、Sbを酸化物にしたAg合金膜が記載されている。このようなAg合金膜は、耐湿性、耐硫化性、耐熱性に優れ、高反射率、かつ低抵抗であるとされている。
 ここで、上述の各種Ag合金膜は、Ag合金からなるスパッタリングターゲットによって成膜されている。
In general, Ag films or Ag alloy films are excellent in optical properties and electrical properties, so they are used as reflective films and conductive films of various parts such as reflective electrode films such as displays and LEDs, and wiring films such as touch panels. there is
As an Ag alloy film, it is known that by adding a specific element to form an oxide on the surface of the film, for example, the reflectance and electrical conductivity can be improved when used as a reflective electrode film.
For example, Patent Document 1 describes an Ag alloy film in which AgSbMg or AgSbZn is used as an Ag alloy and Sb is an oxide. Such Ag alloy films are said to be excellent in low resistance, heat resistance, and chloride resistance.
Further, for example, Patent Document 2 describes an Ag alloy film using AgIn as an Ag alloy and using In as an oxide. It is said that such an Ag alloy film can increase the reflectance.
Further, for example, Patent Document 3 describes an Ag alloy film in which AgSbAl or AgSbMn is used as an Ag alloy and Sb is an oxide. Such Ag alloy films are said to be excellent in low resistance, heat resistance, and chloride resistance.
Further, for example, Patent Document 4 describes an Ag alloy film using AgSb as an Ag alloy and Sb as an oxide. Such an Ag alloy film is said to have excellent moisture resistance, sulfurization resistance, heat resistance, high reflectance, and low resistance.
Here, the various Ag alloy films described above are formed by sputtering targets made of Ag alloys.
 ところで、上述のAg合金膜においては、製造プロセス中の熱処理時の熱や雰囲気に含まれる微量の硫黄(硫化水素)により、Ag合金膜の表面や端部に突起状の欠陥が生じ、電気的短絡などの原因となるおそれがあった。 By the way, in the Ag alloy film described above, due to heat during heat treatment during the manufacturing process and a small amount of sulfur (hydrogen sulfide) contained in the atmosphere, protruding defects occur on the surface and edges of the Ag alloy film, causing electrical damage. There was a risk of causing a short circuit or the like.
特開2014-074225号公報JP 2014-074225 A 特開2014-019932号公報JP 2014-019932 A 特開2014-005503号公報JP 2014-005503 A 特開2013-209724号公報JP 2013-209724 A
 この発明は、前述した事情に鑑みてなされたものであって、耐熱性、耐硫化性に優れたAg合金膜、およびこのAg合金膜を成膜するためのAg合金スパッタリングターゲットを提供することを目的とする。 The present invention has been made in view of the circumstances described above, and aims to provide an Ag alloy film having excellent heat resistance and sulfidation resistance, and an Ag alloy sputtering target for forming this Ag alloy film. aim.
 上記課題を解決するために、本発明者らが鋭意検討した結果、Gaを含むAg合金の表面側領域に、Gaが濃集したGa偏析部を形成することによって、Ag合金膜の耐熱性および耐硫化性を向上させることができるとの知見を得た。 In order to solve the above problems, the present inventors have made intensive studies and found that by forming a Ga segregation portion in which Ga is concentrated in the surface side region of the Ag alloy containing Ga, the heat resistance and It was found that sulfuration resistance can be improved.
 本発明は、上述の知見に基づいてなされたものであって、本発明の一態様に係るAg合金膜は、Gaを0.3質量%以上3.5質量%以下の範囲で含有し、残部がAgおよび不可避不純物からなる組成のAg合金からなるAg合金膜であって、前記Ag合金膜の表面側領域に、Gaが濃集したGa偏析部を有することを特徴とする。 The present invention has been made based on the above findings, and an Ag alloy film according to an aspect of the present invention contains Ga in the range of 0.3% by mass to 3.5% by mass, and the balance is composed of Ag and unavoidable impurities, and the Ag alloy film has a Ga segregation portion in which Ga is concentrated in a surface side region of the Ag alloy film.
 本発明の一態様に係るAg合金膜によれば、Gaを0.3質量%以上3.5質量%以下の範囲で含有し、残部がAgおよび不可避不純物からなる組成のAg合金で構成されているので、耐熱性に優れており、例えば反射導電膜用途として特に適している。
 そして、前記Ag合金膜の表面側領域に、Gaが濃集したGa偏析部を有しているので、Ag合金膜の耐熱性および耐硫化性を向上させることができる。
According to the Ag alloy film according to one aspect of the present invention, the Ag alloy film contains Ga in the range of 0.3% by mass or more and 3.5% by mass or less, and the balance is Ag and unavoidable impurities. Therefore, it has excellent heat resistance and is particularly suitable for use as a reflective conductive film, for example.
Further, since the Ag alloy film has a Ga segregation portion in which Ga concentrates in the surface side region, the heat resistance and sulfuration resistance of the Ag alloy film can be improved.
 ここで、本発明の一態様に係るAg合金膜においては、前記Ag合金は、さらに、Cu,Mgから選択される1種以上を合計で0.5質量ppm以上50.0質量ppm以下の範囲で含んでいてもよい。
 この場合、Cu,Mgを添加することで、Ag原子の熱による拡散移動を抑制でき、Ag合金膜の耐熱性をさらに向上させることができる。
Here, in the Ag alloy film according to one aspect of the present invention, the Ag alloy further includes one or more selected from Cu and Mg in a total amount of 0.5 mass ppm or more and 50.0 mass ppm or less. may be included in
In this case, by adding Cu and Mg, it is possible to suppress the diffusion movement of Ag atoms due to heat, and to further improve the heat resistance of the Ag alloy film.
 また、本発明の一態様に係るAg合金膜においては、前記Ag合金は、さらに、Pd,Pt,Au,Rhから選択される1種又は2種以上を含有しており、Pdの含有量が40質量ppm以下、Ptの含有量が20質量ppm以下、Auの含有量が20質量ppm以下、Rhの含有量が10質量ppm以下、かつ、PdとPtとAuとRhの合計含有量が1質量ppm以上50質量ppm以下とされていることが好ましい。
 この場合、Pd,Pt,Au,RhがAg中に固溶することで、耐熱性および耐硫化性をさらに向上させることが可能となる。
 また、Pd,Pt,Au,Rhは、硝酸の還元反応において触媒として作用するため、これらの元素を多く含むと、成膜したAg合金膜を硝酸エッチング液でエッチングした際に膜のエッチングレートが高くなるおそれがある。このため、Ag合金にPd,Pt,Au,Rhが含まれる場合、Pd,Pt,Au,Rhの含有量を上述のように制限することで、硝酸を含むエッチング液を用いてエッチング処理しても、エッチングレートを低く抑えることが可能となる。
Further, in the Ag alloy film according to one aspect of the present invention, the Ag alloy further contains one or more selected from Pd, Pt, Au, and Rh, and the Pd content is 40 mass ppm or less, the Pt content is 20 mass ppm or less, the Au content is 20 mass ppm or less, the Rh content is 10 mass ppm or less, and the total content of Pd, Pt, Au and Rh is 1 It is preferable that the mass ppm or more and 50 mass ppm or less.
In this case, Pd, Pt, Au, and Rh are solid-dissolved in Ag, so that heat resistance and sulfuration resistance can be further improved.
In addition, Pd, Pt, Au, and Rh act as catalysts in the reduction reaction of nitric acid. could be higher. Therefore, when Pd, Pt, Au, and Rh are contained in the Ag alloy, by limiting the content of Pd, Pt, Au, and Rh as described above, etching is performed using an etchant containing nitric acid. Also, the etching rate can be kept low.
 また、本発明の一態様に係るAg合金膜においては、前記Ag合金は、さらに、Caを0.005質量%以上0.050質量%以下の範囲で含んでいてもよい。
 この場合、CaがAgの結晶粒界に偏析して存在することにより、Agの粒界拡散を抑制でき、さらに耐熱性を向上させることができる。
Moreover, in the Ag alloy film according to one aspect of the present invention, the Ag alloy may further contain Ca in the range of 0.005% by mass or more and 0.050% by mass or less.
In this case, since Ca is segregated at the grain boundaries of Ag, grain boundary diffusion of Ag can be suppressed, and heat resistance can be further improved.
 また、本発明の一態様に係るAg合金膜においては、前記Ag合金は、さらに、In,Sn,Ti,Alから選択される1種又は2種以上を合計で0.1質量%以上1.5質量%以下の範囲で含んでいてもよい。
 この場合、Gaと同様に、In,Sn,Ti,AlがAg合金膜の表面側領域に偏析することにより、耐熱性および耐硫化性をさらに向上させることができる。
In addition, in the Ag alloy film according to one aspect of the present invention, the Ag alloy further contains one or more selected from In, Sn, Ti, and Al in a total content of 0.1% by mass or more1. It may be contained in the range of 5% by mass or less.
In this case, like Ga, In, Sn, Ti, and Al segregate in the surface-side region of the Ag alloy film, thereby further improving heat resistance and sulfurization resistance.
 また、本発明の一態様に係るAg合金膜においては、前記Ga偏析部の膜厚方向長さが2.0nm以上12.0nm以下の範囲内であることが好ましい。
 この場合、前記Ga偏析部の膜厚方向長さが上述の範囲内とされているので、耐熱性および耐硫化性を十分に向上させるとともに、反射率の低下を防止することができる。
Moreover, in the Ag alloy film according to one aspect of the present invention, the length in the film thickness direction of the Ga segregation portion is preferably in the range of 2.0 nm or more and 12.0 nm or less.
In this case, since the Ga segregation portion has a length in the film thickness direction within the above range, it is possible to sufficiently improve heat resistance and sulfurization resistance and prevent a decrease in reflectance.
 また、本発明の一態様に係るAg合金膜においては、前記Ga偏析部には、Ga酸化物が存在していてもよい。
 この場合、Ag合金膜の表面側領域に形成された前記Ga偏析部に、Ga酸化物が存在することで、より耐硫化性を向上させることができる。また、Ga酸化物は透明酸化物であるため、Ag合金膜の反射率をさらに向上させることができる。
Further, in the Ag alloy film according to one aspect of the present invention, Ga oxide may exist in the Ga segregation portion.
In this case, the presence of Ga oxide in the Ga segregation portion formed in the surface side region of the Ag alloy film can further improve the sulfuration resistance. Moreover, since the Ga oxide is a transparent oxide, it can further improve the reflectance of the Ag alloy film.
 さらに、本発明の一態様に係るAg合金膜においては、前記Ga偏析部は、酸化物として結晶粒界に沿い網目状に分布していてもよい。
 この場合、Ag合金膜の表面側領域に形成された前記Ga偏析部が、酸化物として結晶粒界に沿い網目状に分布することで、より耐硫化性を向上させることができるとともに、反射率を向上させることができる。
Furthermore, in the Ag alloy film according to one aspect of the present invention, the Ga segregation part may be distributed in a mesh shape along the grain boundaries as an oxide.
In this case, the Ga segregation portion formed in the surface side region of the Ag alloy film is distributed in a mesh shape along the grain boundaries as an oxide, so that the sulfidation resistance can be further improved, and the reflectance can be improved.
 本発明の一態様に係るAg合金スパッタリングターゲットは、Gaを0.3質量%以上3.5質量%以下の範囲で含有し、残部がAgおよび不可避不純物からなる組成のAg合金からなることを特徴とする。 An Ag alloy sputtering target according to an aspect of the present invention contains Ga in the range of 0.3% by mass to 3.5% by mass, and the balance is Ag and inevitable impurities. and
 本発明の一態様に係るAg合金スパッタリングターゲットによれば、スパッタ成膜することにより、表面側領域にGaが濃集したGa偏析部を有し、耐熱性および耐硫化性に優れたAg合金膜を成膜することができる。 According to the Ag alloy sputtering target according to one aspect of the present invention, an Ag alloy film having a Ga segregation portion in which Ga is concentrated in the surface side region by sputtering and having excellent heat resistance and sulfidation resistance can be deposited.
 ここで、本発明の一態様に係るAg合金スパッタリングターゲットにおいては、さらに、Cu,Mgから選択される1種以上を合計で0.5質量ppm以上50.0質量ppm以下の範囲で含んでいてもよい。
 この場合、Gaに加えてCu,Mgから選択される1種以上を含み、さらに耐熱性に優れたAg合金膜を成膜することができる。
Here, the Ag alloy sputtering target according to one aspect of the present invention further contains one or more selected from Cu and Mg in a total range of 0.5 mass ppm or more and 50.0 mass ppm or less. good too.
In this case, in addition to Ga, it is possible to form an Ag alloy film that contains one or more selected from Cu and Mg and has excellent heat resistance.
 また、本発明の一態様に係るAg合金スパッタリングターゲットにおいては、さらに、Pd,Pt,Au,Rhから選択される1種又は2種以上を含有しており、Pdの含有量が40質量ppm以下、Ptの含有量が20質量ppm以下、Auの含有量が20質量ppm以下、Rhの含有量が10質量ppm以下、かつ、PdとPtとAuとRhの合計含有量が1質量ppm以上50質量ppm以下とされていてもよい。
 この場合、Gaに加えてPd,Pt,Au,Rhから選択される1種又は2種以上を含有し、さらに耐熱性および耐硫化性に優れたAg合金膜を成膜することができる。
In addition, the Ag alloy sputtering target according to one aspect of the present invention further contains one or more selected from Pd, Pt, Au, and Rh, and the Pd content is 40 ppm by mass or less. , the Pt content is 20 mass ppm or less, the Au content is 20 mass ppm or less, the Rh content is 10 mass ppm or less, and the total content of Pd, Pt, Au and Rh is 1 mass ppm or more and 50 It may be mass ppm or less.
In this case, in addition to Ga, one or more selected from Pd, Pt, Au, and Rh are contained, and an Ag alloy film having excellent heat resistance and sulfurization resistance can be formed.
 また、本発明の一態様に係るAg合金スパッタリングターゲットにおいては、さらに、Caを0.005質量%以上0.050質量%以下の範囲で含んでいてもよい。
 この場合、Gaに加えCaを含有し、さらに耐熱性に優れたAg合金膜を成膜することができる。
Further, the Ag alloy sputtering target according to one aspect of the present invention may further contain Ca in the range of 0.005% by mass or more and 0.050% by mass or less.
In this case, an Ag alloy film containing Ca in addition to Ga and having excellent heat resistance can be formed.
 また、本発明の一態様に係るAg合金スパッタリングターゲットにおいては、さらに、In,Sn,Ti,Alから選択される1種又は2種以上を合計で0.1質量%以上1.5質量%以下の範囲で含んでいてもよい。
 この場合、Gaに加えIn,Sn,Ti,Alから選択される1種又は2種以上を含有し、さらに耐熱性および耐硫化性に優れたAg合金膜を成膜することができる。
Further, in the Ag alloy sputtering target according to one aspect of the present invention, one or more selected from In, Sn, Ti, and Al are added in a total amount of 0.1% by mass or more and 1.5% by mass or less. may be included in the range of
In this case, in addition to Ga, it is possible to form an Ag alloy film containing one or more selected from In, Sn, Ti, and Al, and having excellent heat resistance and sulfurization resistance.
 また、本発明の一態様に係るAg合金スパッタリングターゲットにおいては、酸素含有量が0.005質量%以下であることが好ましい。
 この場合、酸素含有量が0.005質量%以下に制限されているので、スパッタ成膜時に酸素原子が成長中のAg合金膜に化学吸着することを抑制でき、反射率、耐熱性、耐硫化性が低下することを抑制できる。
Moreover, in the Ag alloy sputtering target according to one aspect of the present invention, the oxygen content is preferably 0.005% by mass or less.
In this case, since the oxygen content is limited to 0.005% by mass or less, it is possible to suppress the chemical adsorption of oxygen atoms to the growing Ag alloy film during the sputtering film formation. It is possible to suppress the deterioration of the properties.
 また、本発明の一態様に係るAg合金スパッタリングターゲットにおいては、複数のAg合金結晶粒を含む多結晶体からなり、複数の測定箇所で測定された前記Ag合金結晶粒の粒径から算出される平均結晶粒径Cが10μm以上200μm以下の範囲内とされているとともに、それぞれの測定箇所での前記Ag合金結晶粒の粒径の平均値Dのうち前記平均結晶粒径Cとの偏差の絶対値が最大となる平均値をDmaxとした場合に、E(%)=(Dmax-C)/C×100で定義される前記Ag合金結晶粒の粒径ばらつきEが20%以下であることが好ましい。
 この場合、Ag合金結晶粒の粒径ばらつきが小さく、かつ、平均結晶粒径Cが上述の範囲内とされているので、スパッタ成膜時の異常放電の発生を抑制でき、安定してAg合金膜を成膜することができる。
Further, in the Ag alloy sputtering target according to one aspect of the present invention, it is composed of a polycrystalline body containing a plurality of Ag alloy crystal grains, and is calculated from the grain size of the Ag alloy crystal grains measured at a plurality of measurement points. The average grain size C is in the range of 10 μm or more and 200 μm or less, and the absolute deviation of the average grain size D from the average grain size C of the Ag alloy crystal grains at each measurement point When the average value with the maximum value is D max , the grain size variation E of the Ag alloy crystal grains defined by E (%) = (D max - C) / C × 100 is 20% or less. is preferred.
In this case, since the grain size variation of the Ag alloy crystal grains is small and the average grain size C is within the above range, the occurrence of abnormal discharge during the sputtering film formation can be suppressed, and the Ag alloy can be stably formed. A film can be deposited.
 本発明の一態様によれば、耐熱性、耐硫化性に優れたAg合金膜、およびこのAg合金膜を成膜するためのAg合金スパッタリングターゲットを提供することが可能となる。 According to one aspect of the present invention, it is possible to provide an Ag alloy film excellent in heat resistance and sulfidation resistance, and an Ag alloy sputtering target for forming this Ag alloy film.
本発明例102のAg合金膜(熱処理後)をXPS分析した結果を示すグラフである。10 is a graph showing the results of XPS analysis of the Ag alloy film (after heat treatment) of Inventive Example 102. FIG. 本発明例102のAg合金膜(熱処理後)の最表面のスペクトル例である。It is an example of the spectrum of the outermost surface of the Ag alloy film (after heat treatment) of Example 102 of the present invention. 本発明例102のAg合金膜(熱処理前)の最表面のスペクトル例である。It is an example of the spectrum of the outermost surface of the Ag alloy film (before heat treatment) of Example 102 of the present invention. 本発明例120におけるAg合金膜の熱処理後の表面観察結果である。It is a surface observation result after heat processing of Ag alloy film in Example 120 of the present invention. 比較例101におけるAg合金膜の熱処理後の表面観察結果である。10 shows the surface observation results of the Ag alloy film after heat treatment in Comparative Example 101. FIG.
 以下に、本発明の一実施形態であるAg合金膜およびこれを成膜するためのスパッタリングターゲットについて説明する。
 本発明の一実施形態であるAg合金膜は、反射率、耐熱性、耐硫化性に優れ、例えば、有機EL素子において有機層に接して形成される反射電極膜としての用途に特に適している。
An Ag alloy film and a sputtering target for forming the Ag alloy film, which is one embodiment of the present invention, will be described below.
The Ag alloy film, which is one embodiment of the present invention, is excellent in reflectance, heat resistance, and sulfidation resistance, and is particularly suitable for use as a reflective electrode film formed in contact with an organic layer in an organic EL device, for example. .
 本実施形態であるAg合金膜は、Gaを0.3質量%以上3.5質量%以下の範囲で含有し、残部がAgおよび不可避不純物からなる組成のAg合金からなり、Ag合金膜の表面側領域にGaが濃集したGa偏析部が形成されている。
 このGa偏析部は、Gaの濃度が、他の部分よりも高くなっている部位である。ここで、このGaの濃度が他の部分よりも高くなっている部位は、Ag合金膜の表面側領域を含む。なお、Ga偏析部は、その周辺の領域との間に明瞭な界面等が存在する層として形成されるものではなく、Ga濃度のピーク位置からその濃度が徐々に変化するGa濃度の濃化部分であり、XPS分析のピーク強度によって特定される。
 なお、本実施形態であるAg合金膜は、0.3質量%以上3.5質量%以下の範囲で含有されたGaと、残部としてAgおよび不可避不純物とを含み、Ag合金膜の表面側領域にGaが濃集したGa偏析部が形成されている。
The Ag alloy film of the present embodiment contains Ga in the range of 0.3% by mass or more and 3.5% by mass or less, and the balance is Ag and unavoidable impurities. A Ga segregation portion in which Ga is concentrated is formed in the side region.
This Ga segregation part is a part where the concentration of Ga is higher than other parts. Here, the portion where the Ga concentration is higher than other portions includes the surface side region of the Ag alloy film. In addition, the Ga segregation part is not formed as a layer in which a clear interface or the like exists with the surrounding area, but a Ga concentration concentrated part where the concentration gradually changes from the Ga concentration peak position , identified by the peak intensity of the XPS analysis.
Note that the Ag alloy film of the present embodiment contains Ga contained in the range of 0.3% by mass or more and 3.5% by mass or less, and the balance is Ag and unavoidable impurities, and the surface side region of the Ag alloy film A Ga segregation portion in which Ga is concentrated is formed in the .
 ここで、本実施形態におけるAg合金膜においては、前記Ag合金膜の膜厚方向の両端部に存在する2つの表面のうち少なくとも一方の表面の表面側領域に、Ga偏析部が形成されている。例えば、基板上にAg合金膜を成膜した場合には、少なくとも基板とは反対側の表面の表面側領域にGa偏析部が形成されている。なお、基板側の表面の表面側領域にもGa偏析部が形成されていてもよい。
 また、本実施形態において、Ag合金膜の表面側領域とは、Ag合金膜の表面から厚さ方向にAg合金膜の全厚の20%までの領域である。
Here, in the Ag alloy film of the present embodiment, a Ga segregation portion is formed in the surface side region of at least one of the two surfaces present at both ends in the film thickness direction of the Ag alloy film. . For example, when an Ag alloy film is formed on a substrate, a Ga segregation portion is formed at least in the surface side region of the surface opposite to the substrate. Note that the Ga segregation portion may also be formed in the surface-side region of the substrate-side surface.
Further, in the present embodiment, the surface side region of the Ag alloy film is a region extending from the surface of the Ag alloy film to 20% of the total thickness of the Ag alloy film in the thickness direction.
 本実施形態であるAg合金膜を構成するAg合金においては、さらに、Cu,Mgから選択される1種以上を合計で0.5質量ppm以上50.0質量ppm以下の範囲で含んでいてもよい。
 本実施形態であるAg合金膜を構成するAg合金においては、さらに、Pd,Pt,Au,Rhから選択される1種又は2種以上を含有しており、Pdの含有量が40質量ppm以下、Ptの含有量が20質量ppm以下、Auの含有量が20質量ppm以下、Rhの含有量が10質量ppm以下、かつ、PdとPtとAuとRhの合計含有量が1質量ppm以上50質量ppm以下とされていてもよい。
The Ag alloy constituting the Ag alloy film of the present embodiment further contains one or more selected from Cu and Mg in a total range of 0.5 mass ppm or more and 50.0 mass ppm or less. good.
The Ag alloy constituting the Ag alloy film of the present embodiment further contains one or more selected from Pd, Pt, Au, and Rh, and the Pd content is 40 ppm by mass or less. , the Pt content is 20 mass ppm or less, the Au content is 20 mass ppm or less, the Rh content is 10 mass ppm or less, and the total content of Pd, Pt, Au and Rh is 1 mass ppm or more and 50 It may be mass ppm or less.
 本実施形態であるAg合金膜を構成するAg合金においては、さらに、Caを0.005質量%以上0.050質量%以下の範囲で含んでいてもよい。
 本実施形態であるAg合金膜を構成するAg合金においては、さらに、In,Sn,Ti,Alから選択される1種又は2種以上を合計で0.1質量%以上1.5質量%以下の範囲で含んでいてもよい。
The Ag alloy forming the Ag alloy film of the present embodiment may further contain Ca in the range of 0.005% by mass or more and 0.050% by mass or less.
In the Ag alloy constituting the Ag alloy film of the present embodiment, one or two or more selected from In, Sn, Ti, and Al are further added in a total amount of 0.1% by mass or more and 1.5% by mass or less. may be included in the range of
 本実施形態であるAg合金膜においては、Ga偏析部の膜厚方向長さが2.0nm以上12.0nm以下の範囲内であることが好ましい。
 本実施形態であるAg合金膜においては、Ga偏析部に、Ga酸化物が存在していることが好ましい。
 本実施形態であるAg合金膜においては、Ga偏析部は、酸化物として結晶粒界に沿い網目状に分布していることが好ましい。また、本実施形態であるAg合金膜においては、Ga偏析部は、Ag合金膜の表面側領域において、酸化物として結晶粒界に沿って全体的に分布してもよいし、酸化物として結晶粒界に沿って部分的に分布してもよい。
 なお、Ga偏析部にGa酸化物が存在している場合、Ag合金膜は、酸素を含むが、酸素の量は不可避不純物レベルである。
In the Ag alloy film of the present embodiment, the length in the film thickness direction of the Ga segregation portion is preferably in the range of 2.0 nm or more and 12.0 nm or less.
In the Ag alloy film of the present embodiment, Ga oxide is preferably present in the Ga segregation portion.
In the Ag alloy film of the present embodiment, the Ga segregation parts are preferably distributed as oxides in a network along the grain boundaries. In addition, in the Ag alloy film of the present embodiment, the Ga segregation part may be distributed entirely along the grain boundary as an oxide in the surface side region of the Ag alloy film, or may be distributed as an oxide. It may be partially distributed along grain boundaries.
When Ga oxide exists in the Ga segregation part, the Ag alloy film contains oxygen, but the amount of oxygen is at the level of unavoidable impurities.
 本実施形態であるAg合金スパッタリングターゲットは、上述の本実施形態であるAg合金膜を成膜するためのものであり、成膜するAg合金膜と同様の組成とされている。
 すなわち、Gaを0.3質量%以上3.5質量%以下の範囲で含有し、残部がAgおよび不可避不純物からなる組成のAg合金で構成されている。
The Ag alloy sputtering target of the present embodiment is for forming the Ag alloy film of the above-described present embodiment, and has the same composition as the Ag alloy film to be formed.
That is, it is composed of an Ag alloy having a composition containing Ga in the range of 0.3% by mass or more and 3.5% by mass or less, with the balance being Ag and unavoidable impurities.
 なお、Gaに加えて、Cu,Mgから選択される1種以上を合計で0.5質量ppm以上50.0質量ppm以下の範囲で含んでいてもよい。
 また、Gaに加えて、さらに、Pd,Pt,Au,Rhから選択される1種又は2種以上を含有しており、Pdの含有量が40質量ppm以下、Ptの含有量が20質量ppm以下、Auの含有量が20質量ppm以下、Rhの含有量が10質量ppm以下、かつ、PdとPtとAuとRhの合計含有量が1質量ppm以上50質量ppm以下とされていてもよい。
In addition to Ga, one or more selected from Cu and Mg may be included in a total range of 0.5 ppm by mass or more and 50.0 ppm by mass or less.
In addition to Ga, it further contains one or more selected from Pd, Pt, Au, and Rh, the Pd content is 40 mass ppm or less, and the Pt content is 20 mass ppm. Hereinafter, the Au content may be 20 mass ppm or less, the Rh content may be 10 mass ppm or less, and the total content of Pd, Pt, Au, and Rh may be 1 mass ppm or more and 50 mass ppm or less. .
 また、Gaに加えて、さらに、Caを0.005質量%以上0.050質量%以下の範囲で含んでいてもよい。
 また、Gaに加えて、さらに、In,Sn,Ti,Alから選択される1種又は2種以上を合計で0.1質量%以上1.5質量%以下の範囲で含んでいてもよい。
In addition to Ga, Ca may also be included in the range of 0.005% by mass or more and 0.050% by mass or less.
Further, in addition to Ga, one or more selected from In, Sn, Ti, and Al may be contained in a total amount of 0.1% by mass or more and 1.5% by mass or less.
 さらに、本実施形態であるAg合金スパッタリングターゲットにおいては、酸素含有量が50質量ppm以下(0.005質量%以下)であることが好ましい。
 また、本実施形態であるAg合金スパッタリングターゲットにおいては、複数のAg合金結晶粒を含む多結晶体からなり、複数の測定箇所で測定された前記Ag合金結晶粒の粒径から算出される前記平均結晶粒径Cが10μm以上200μm以下の範囲内とされているとともに、それぞれの測定箇所での前記Ag合金結晶粒の粒径の平均値Dのうち前記平均結晶粒径Cとの偏差の絶対値が最大となる平均値をDmaxとした場合に、下記の(1)式で定義される前記Ag合金結晶粒の粒径ばらつきEが20%以下であることが好ましい。
 (1)式:E(%)=(Dmax-C)/C×100
Furthermore, in the Ag alloy sputtering target of the present embodiment, the oxygen content is preferably 50 mass ppm or less (0.005 mass% or less).
Further, in the Ag alloy sputtering target of the present embodiment, it is made of a polycrystalline body containing a plurality of Ag alloy crystal grains, and the average The crystal grain size C is in the range of 10 μm or more and 200 μm or less, and the absolute value of the deviation from the average crystal grain size C of the average value D of the grain size of the Ag alloy crystal grains at each measurement point. It is preferable that the grain size variation E of the Ag alloy crystal grains defined by the following formula (1) is 20% or less, where D max is the average value at which the is maximum.
(1) Formula: E (%) = (D max -C) / C x 100
 本実施形態において、Ag合金膜のGa偏析部、Ag合金膜およびAg合金スパッタリングターゲットを構成するAg合金の組成、Ag合金スパッタリングターゲットの酸素含有量、Ag合金スパッタリングターゲットの結晶組織を、上述のように規定した理由について、以下に説明する。 In the present embodiment, the Ga segregation portion of the Ag alloy film, the composition of the Ag alloy constituting the Ag alloy film and the Ag alloy sputtering target, the oxygen content of the Ag alloy sputtering target, and the crystal structure of the Ag alloy sputtering target are as described above. The reason for the stipulation is explained below.
(Ga偏析部)
 Ag合金膜の表面に、Gaが偏析したGa偏析部が形成されることにより、耐熱性および耐硫化性が向上し、熱処理や硫化雰囲気においても突起状欠陥の発生を抑制することが可能となる。なお、Ag合金膜をスパッタ成膜した後に、例えば200℃以上300℃以下の熱処理を行うことにより、Ag合金膜の表面側領域にGa偏析部を確実に形成することが可能となる。
(Ga segregation part)
By forming a Ga segregation part in which Ga is segregated on the surface of the Ag alloy film, heat resistance and sulfurization resistance are improved, and it is possible to suppress the occurrence of protruding defects even in heat treatment and in a sulfurization atmosphere. . After forming the Ag alloy film by sputtering, a heat treatment at, for example, 200° C. or higher and 300° C. or lower can be performed to reliably form the Ga segregation part in the surface side region of the Ag alloy film.
 ここで、Ga偏析部の膜厚方向長さが1.0nm以上である場合には、耐熱性および耐硫化性を確実に向上することができる。また、Ga偏析部の膜厚方向長さが15.0nm以下である場合には、反射率を高く維持することが可能となる。
 なお、耐熱性および耐硫化性をさらに確実に向上するためには、Ga偏析部の膜厚方向長さの下限を5.0nm以上とすることがより好ましい。また、反射率をさらに確実に高く維持するためには、Ga偏析部の膜厚方向長さの上限を10.0nm以下とすることがより好ましい。
Here, when the thickness direction length of the Ga segregation part is 1.0 nm or more, the heat resistance and the sulfuration resistance can be reliably improved. Further, when the length of the Ga segregation portion in the film thickness direction is 15.0 nm or less, it is possible to maintain a high reflectance.
In order to more reliably improve the heat resistance and sulfuration resistance, it is more preferable to set the lower limit of the length of the Ga segregation portion in the film thickness direction to 5.0 nm or more. Further, in order to more reliably maintain a high reflectance, it is more preferable to set the upper limit of the length in the film thickness direction of the Ga segregation portion to 10.0 nm or less.
 Ga偏析部に、Ga酸化物が存在する場合には、Ag合金膜の耐硫化性を向上させることができる。Ag合金膜の表面側領域にGa酸化物が形成されることで、硫黄(硫化水素)に対してより強固なバリアとして働き、Ag合金膜の耐硫化性が向上する。さらに、Ga酸化物は透明酸化物であるため、Ag合金膜の反射率を向上させることができる。
 また、Ga偏析部が、酸化物として結晶粒界に沿い網目状に分布している場合には、Ag合金膜の耐硫化性をさらに向上させることができるとともに、Ag合金膜の反射率をさらに向上させることができる。
When Ga oxide exists in the Ga segregation part, the sulfuration resistance of the Ag alloy film can be improved. The Ga oxide formed in the surface-side region of the Ag alloy film acts as a stronger barrier against sulfur (hydrogen sulfide), improving the sulfuration resistance of the Ag alloy film. Furthermore, since the Ga oxide is a transparent oxide, it can improve the reflectance of the Ag alloy film.
In addition, when the Ga segregation part is distributed in a mesh shape along the grain boundary as an oxide, the sulfuration resistance of the Ag alloy film can be further improved, and the reflectance of the Ag alloy film can be further improved. can be improved.
(Ag合金膜およびAg合金スパッタリングターゲットの組成)
 Ag合金膜およびAg合金スパッタリングターゲットを構成するAg合金において、Gaの含有量が0.3質量%未満の場合には、上述のGa偏析部を十分に形成できないおそれがある。一方、Gaの含有量が3.5質量%を超える場合には、Ag合金膜の反射率が低下するおそれがある。
 このため、本実施形態では、Ag合金膜およびAg合金スパッタリングターゲットを構成するAg合金におけるGaの含有量を0.3質量%以上3.5%質量%以下の範囲内に設定している。
 なお、Gaの含有量の下限は0.5質量%以上であることが好ましく、1.0質量%以上であることがさらに好ましい。一方、Gaの含有量の上限は2.5質量%以下であることが好ましく、2.0質量%以下であることがさらに好ましい。
(Composition of Ag alloy film and Ag alloy sputtering target)
If the Ga content in the Ag alloy constituting the Ag alloy film and the Ag alloy sputtering target is less than 0.3% by mass, the Ga segregation portion may not be sufficiently formed. On the other hand, when the Ga content exceeds 3.5% by mass, the reflectance of the Ag alloy film may decrease.
Therefore, in the present embodiment, the content of Ga in the Ag alloy forming the Ag alloy film and the Ag alloy sputtering target is set within the range of 0.3% by mass or more and 3.5% by mass or less.
The lower limit of the Ga content is preferably 0.5% by mass or more, more preferably 1.0% by mass or more. On the other hand, the upper limit of the Ga content is preferably 2.5% by mass or less, more preferably 2.0% by mass or less.
 また、Ag合金膜およびAg合金スパッタリングターゲットを構成するAg合金において、Gaに加えて、Cu,Mgから選択される1種以上を合計で0.5質量ppm以上含有する場合には、Ag原子の熱による拡散を抑制でき、耐熱性をより向上させることが可能となる。一方、Cu,Mgから選択される1種以上の合計含有量を50.0質量ppm以下に制限することにより、耐硫化性の低下を抑制することが可能となる。
 なお、さらなる耐熱性の向上を図るには、Cu,Mgから選択される1種以上の合計含有量の下限を1.0質量ppm以上とすることがさらに好ましく、2.0質量ppm以上とすることがより好ましい。一方、耐硫化性の低下を確実に抑制するためには、Cu,Mgから選択される1種以上の合計含有量の上限を20.0質量ppm以下とすることがさらに好ましく、10.0質量ppm以下とすることがより好ましい。
Further, when the Ag alloy constituting the Ag alloy film and the Ag alloy sputtering target contains, in addition to Ga, one or more selected from Cu and Mg in a total of 0.5 ppm by mass or more, the number of Ag atoms Diffusion due to heat can be suppressed, and heat resistance can be further improved. On the other hand, by limiting the total content of one or more elements selected from Cu and Mg to 50.0 ppm by mass or less, it is possible to suppress deterioration in resistance to sulfurization.
In order to further improve heat resistance, the lower limit of the total content of one or more selected from Cu and Mg is more preferably 1.0 ppm by mass or more, more preferably 2.0 ppm by mass or more. is more preferable. On the other hand, in order to reliably suppress deterioration of sulfuration resistance, it is more preferable that the upper limit of the total content of one or more selected from Cu and Mg is 20.0 ppm by mass or less, and 10.0 mass ppm. It is more preferable to make it below ppm.
 また、Ag合金膜およびAg合金スパッタリングターゲットを構成するAg合金において、Gaに加えて、Pd,Pt,Au,Rhから選択される1種又は2種以上を含有しており、PdとPtとAuとRhの合計含有量が1質量ppm以上とされている場合には、これらの元素がAgに固溶することにより、耐熱性および耐硫化性をより向上させることが可能となる。
 なお、Pd,Pt,Au,Rhといった元素は、硝酸の還元反応において触媒として作用するため、Ag合金膜を硝酸エッチング液でエッチングした際に、膜のエッチングレートが高くなり、安定してエッチング処理をできなくなるおそれがある。このため、Pd,Pt,Au,Rhから選択される1種又は2種以上を含有する場合には、Pdの含有量を40質量ppm以下、Ptの含有量を20質量ppm以下、Auの含有量を20質量ppm以下、Rhの含有量を10質量ppm以下、かつ、PdとPtとAuとRhの合計含有量を50質量ppm以下とすることが好ましい。また、Pd,Pt,Au,Rhから選択される1種又は2種以上を含有する場合には、Pdの含有量を40質量ppm以下、Ptの含有量を14質量ppm以下、Auの含有量を13質量ppm以下、Rhの含有量を10質量ppm以下、かつ、PdとPtとAuとRhの合計含有量を50質量ppm以下とすることがさらに好ましい。なお、Pd,Pt,Au,Rhから選択される1種又は2種以上を含有する場合には、PdとPtとAuとRhの合計含有量は50質量ppm以下とすることが好ましく、40質量ppm以下とすることがさらに好ましい。
Further, the Ag alloy constituting the Ag alloy film and the Ag alloy sputtering target contains, in addition to Ga, one or more selected from Pd, Pt, Au, and Rh, and Pd, Pt and Au and Rh is 1 ppm by mass or more, these elements form a solid solution in Ag, thereby making it possible to further improve heat resistance and sulfurization resistance.
Since elements such as Pd, Pt, Au, and Rh act as catalysts in the reduction reaction of nitric acid, when an Ag alloy film is etched with a nitric acid etchant, the etching rate of the film increases, and the etching process is stable. may not be able to Therefore, when one or more selected from Pd, Pt, Au, and Rh are contained, the content of Pd is 40 ppm by mass or less, the content of Pt is 20 ppm by mass or less, and the content of Au It is preferable that the amount is 20 mass ppm or less, the Rh content is 10 mass ppm or less, and the total content of Pd, Pt, Au and Rh is 50 mass ppm or less. In addition, when one or more selected from Pd, Pt, Au, and Rh are contained, the content of Pd is 40 ppm by mass or less, the content of Pt is 14 ppm by mass or less, and the content of Au is 13 mass ppm or less, the Rh content is 10 mass ppm or less, and the total content of Pd, Pt, Au and Rh is 50 mass ppm or less. In addition, when one or more selected from Pd, Pt, Au, and Rh are contained, the total content of Pd, Pt, Au, and Rh is preferably 50 ppm by mass or less, and 40 mass It is more preferable to set it to ppm or less.
 ここで、耐熱性および耐硫化性をさらに向上させるためには、PdとPtとAuとRhの合計含有量を2質量ppm以上とすることがさらに好ましく、3質量ppm以上とすることがより好ましい。
 また、硝酸エッチング液によるエッチング時のエッチングレートをさらに低く抑えるためには、Pdの含有量を20質量ppm以下、Ptの含有量を10質量ppm以下、Auの含有量を10質量ppm以下、Rhの含有量含有量を8質量ppm以下、かつ、PdとPtとAuとRhの合計含有量含有量を20質量ppm以下とすることがさらに好ましく、Pdの含有量を10質量ppm以下、Ptの含有量を5質量ppm以下、Auの含有量を5質量ppm以下、Rhの含有量含有量を5質量ppm以下、かつ、PdとPtとAuとRhの合計含有量含有量を10質量ppm以下とすることがより好ましい。
 Pd,Pt,Au,Rhの含有量の下限値は、限定されないが、Pdの含有量を0.2質量ppm以上、Ptの含有量を0.01質量ppm以上、Auの含有量を0.2質量ppm以上、Rhの含有量を0.01質量ppm以上とすることが好ましい。
Here, in order to further improve heat resistance and sulfurization resistance, the total content of Pd, Pt, Au, and Rh is more preferably 2 ppm by mass or more, more preferably 3 ppm by mass or more. .
In order to further reduce the etching rate during etching with a nitric acid etchant, the Pd content should be 20 mass ppm or less, the Pt content should be 10 mass ppm or less, the Au content should be 10 mass ppm or less, and the Rh content should be 10 mass ppm or less. The content of 8 ppm by mass or less, and the total content of Pd, Pt, Au and Rh is more preferably 20 ppm by mass or less, the Pd content is 10 mass ppm or less, and the Pt The content is 5 ppm by mass or less, the content of Au is 5 ppm by mass or less, the content of Rh is 5 ppm by mass or less, and the total content of Pd, Pt, Au and Rh is 10 ppm by mass or less. is more preferable.
The lower limits of the contents of Pd, Pt, Au, and Rh are not limited, but the content of Pd is 0.2 mass ppm or more, the Pt content is 0.01 mass ppm or more, and the Au content is 0.01 mass ppm or more. It is preferable to set the content of Rh to 2 ppm by mass or more and 0.01 ppm by mass or more.
 また、Ag合金膜およびAg合金スパッタリングターゲットを構成するAg合金において、Gaに加えて、さらに、Caを0.005質量%以上含んでいる場合には、添加したCaがAgの粒界に偏析してAgの粒界拡散を抑制し、さらなる耐熱性の向上を図ることが可能となる。一方、Caの含有量を0.050質量%以下に制限することにより、Ag合金スパッタリングターゲットを製造する際に割れが発生することを抑制できる。
 なお、さらなる耐熱性の向上を図るには、Caの含有量の下限を0.008質量%以上とすることがさらに好ましく、0.010質量%以上とすることがより好ましい。一方、Ag合金スパッタリングターゲットを製造する際の割れを確実に抑制するためには、Caの含有量の上限を0.040質量%以下とすることがさらに好ましく、0.030質量%以下とすることがより好ましい。
Further, when the Ag alloy constituting the Ag alloy film and the Ag alloy sputtering target further contains 0.005% by mass or more of Ca in addition to Ga, the added Ca segregates at the grain boundary of Ag. It is possible to suppress the grain boundary diffusion of Ag and further improve the heat resistance. On the other hand, by limiting the Ca content to 0.050% by mass or less, it is possible to suppress the occurrence of cracks when manufacturing the Ag alloy sputtering target.
In order to further improve the heat resistance, the lower limit of the Ca content is more preferably 0.008% by mass or more, more preferably 0.010% by mass or more. On the other hand, in order to reliably suppress cracking when manufacturing an Ag alloy sputtering target, the upper limit of the Ca content is more preferably 0.040% by mass or less, and 0.030% by mass or less. is more preferred.
 また、Ag合金膜およびAg合金スパッタリングターゲットを構成するAg合金において、Gaに加えて、さらに、In,Sn,Ti,Alから選択される1種又は2種以上を合計で0.1質量%以上含有する場合には、Gaと同様に、In,Sn,Ti,AlがAg合金膜の表面側領域に凝集し、耐熱性および耐硫化性をさらに向上させることが可能となる。一方、In,Sn,Ti,Alから選択される1種又は2種以上の合計含有量を1.5質量%以下に制限することにより、反射率を高く維持することが可能となる。
 なお、さらなる耐熱性および耐硫化性の向上を図るには、In,Sn,Ti,Alから選択される1種又は2種以上の合計含有量の下限を0.2質量%以上とすることがさらに好ましく、0.3質量%以上とすることがより好ましい。一方、反射率の低減をさらに抑制するためには、In,Sn,Ti,Alから選択される1種又は2種以上の合計含有量の上限を1.0質量%以下とすることがさらに好ましく、0.8質量%以下とすることがより好ましい。
Further, in the Ag alloy constituting the Ag alloy film and the Ag alloy sputtering target, in addition to Ga, one or more selected from In, Sn, Ti, Al is added in a total of 0.1% by mass or more When it is contained, like Ga, In, Sn, Ti, and Al agglomerate in the surface-side region of the Ag alloy film, making it possible to further improve heat resistance and sulfurization resistance. On the other hand, by limiting the total content of one or more selected from In, Sn, Ti, and Al to 1.5% by mass or less, it is possible to maintain a high reflectance.
In order to further improve heat resistance and sulfurization resistance, the lower limit of the total content of one or more selected from In, Sn, Ti, and Al may be set to 0.2% by mass or more. More preferably, it is 0.3% by mass or more. On the other hand, in order to further suppress the decrease in reflectance, it is more preferable to set the upper limit of the total content of one or more selected from In, Sn, Ti, and Al to 1.0% by mass or less. , 0.8% by mass or less.
(Ag合金スパッタリングターゲットの酸素含有量)
 本実施形態であるAg合金スパッタリングターゲットにおいて、酸素含有量が0.005質量%以下である場合には、スパッタ成膜時に、酸素元素が成長中のAg合金膜に化学吸着されることを抑制でき、Ag合金膜の結晶性の低下による反射率、耐熱性、耐硫化性の劣化を抑制することができる。
 なお、反射率、耐熱性、耐硫化性の劣化をさらに確実に抑制するためには、Ag合金スパッタリングターゲットの酸素含有量は、0.004質量%以下であることがさらに好ましく、0.002質量%以下であることがより好ましい。Ag合金スパッタリングターゲットの酸素含有量の下限値は、0.001質量%以上であることが好ましい。
(Oxygen content of Ag alloy sputtering target)
In the Ag alloy sputtering target of the present embodiment, when the oxygen content is 0.005% by mass or less, it is possible to suppress chemical adsorption of the oxygen element to the growing Ag alloy film during sputtering film formation. , deterioration of reflectance, heat resistance, and sulfidation resistance due to deterioration of crystallinity of the Ag alloy film can be suppressed.
In order to more reliably suppress deterioration of reflectance, heat resistance, and sulfurization resistance, the oxygen content of the Ag alloy sputtering target is more preferably 0.004% by mass or less, and more preferably 0.002% by mass. % or less. The lower limit of the oxygen content of the Ag alloy sputtering target is preferably 0.001% by mass or more.
(Ag合金スパッタリングターゲットの結晶粒径)
 本実施形態であるAg合金スパッタリングターゲットにおいて、複数の箇所で測定されたAg合金結晶粒の平均結晶粒径Cと、測定した各箇所でのAg合金結晶粒の粒径の平均値のうち平均結晶粒径Cとの偏差の絶対値が最大となる平均値Dmaxとから、上記(1)式で定義されるAg合金結晶粒の粒径ばらつきEが20%以下とされている場合には、スパッタが進行してもスパッタ面に凹凸が生じることを抑制でき、スパッタが進行した後でもスパッタ時の異常放電の発生を抑制することが可能となる。Ag合金結晶粒の粒径ばらつきEの下限値は、特に限定されないが、0.1%以上であることが好ましい。
 また、Ag合金結晶粒の平均結晶粒径Cが200μm以下である場合には、異常放電の発生を抑制することができる。なお、Ag合金結晶粒の平均結晶粒径Cを10μm未満にすることは製造コストが増大するため好ましくない。
(Crystal grain size of Ag alloy sputtering target)
In the Ag alloy sputtering target of the present embodiment, the average crystal grain size C of the Ag alloy crystal grains measured at a plurality of locations, and the average grain size of the Ag alloy crystal grains at each measured location. From the average value D max at which the absolute value of the deviation from the grain size C is maximum, when the grain size variation E of the Ag alloy crystal grains defined by the above formula (1) is set to 20% or less, It is possible to suppress the occurrence of unevenness on the sputtering surface even when sputtering progresses, and it is possible to suppress the occurrence of abnormal discharge during sputtering even after the sputtering progresses. Although the lower limit of grain size variation E of Ag alloy crystal grains is not particularly limited, it is preferably 0.1% or more.
Moreover, when the average crystal grain size C of the Ag alloy crystal grains is 200 μm or less, the occurrence of abnormal discharge can be suppressed. It should be noted that setting the average crystal grain size C of the Ag alloy crystal grains to less than 10 μm is not preferable because the manufacturing cost increases.
 ここで、異常放電の発生をさらに抑制するためには、Ag合金結晶粒の粒径ばらつきEを19%以下とすることがさらに好ましく、18%以下とすることがより好ましい。また、Ag合金結晶粒の平均結晶粒径Cを180μm以下とすることがさらに好ましく、150μm以下とすることがより好ましい。
 また、Ag合金スパッタリングターゲットの製造コストをさらに抑制するためには、Ag合金結晶粒の平均結晶粒径Cの下限は、20μm以上とすることがさらに好ましく、30μm以上とすることがより好ましい。
Here, in order to further suppress the occurrence of abnormal discharge, it is more preferable to set the grain size variation E of the Ag alloy crystal grains to 19% or less, more preferably 18% or less. Further, the average crystal grain size C of the Ag alloy crystal grains is more preferably 180 μm or less, more preferably 150 μm or less.
In order to further reduce the production cost of the Ag alloy sputtering target, the lower limit of the average crystal grain size C of the Ag alloy crystal grains is more preferably 20 μm or more, more preferably 30 μm or more.
 次に、本実施形態であるAg合金スパッタリングターゲットの製造方法の一例を説明する。
 まず、純度が99.99質量%以上のAg原料と、純度が99.9質量%以上のGa原料を準備する。また、必要に応じて、純度が99.9質量%以上の各種原料(Cu,Mg,Pd,Pt,Au,Rh,Ca,In,Sn,Ti,Al)を準備する。
 なお、Ag合金の純度を向上させるために、Ag原料を硝酸または硫酸で浸出し、次いで所定の銀濃度の電解液を用いて電解精錬を行い、精錬したAg原料の不純物分析を実施する。これらを繰り返し行うことで、Ag原料の不純物量を低減することが好ましい。
Next, an example of the method for producing the Ag alloy sputtering target according to this embodiment will be described.
First, an Ag raw material with a purity of 99.99% by mass or more and a Ga raw material with a purity of 99.9% by mass or more are prepared. Moreover, various raw materials (Cu, Mg, Pd, Pt, Au, Rh, Ca, In, Sn, Ti, Al) having a purity of 99.9% by mass or more are prepared as necessary.
In order to improve the purity of the Ag alloy, the Ag raw material is leached with nitric acid or sulfuric acid, then electrorefined using an electrolytic solution having a predetermined silver concentration, and the refined Ag raw material is analyzed for impurities. It is preferable to reduce the amount of impurities in the Ag raw material by repeating these steps.
 次に、上述のAg原料とGa原料と必要に応じて各種原料を秤量する。そして、Ag原料を、雰囲気溶解炉の坩堝内に装入する。
 次いで、高真空下雰囲気又は不活性ガス雰囲気下でAg原料を溶解し、得られたAg溶湯に、Gaおよび各種原料を添加し、Ag合金溶湯を得る。このAg合金溶湯を所定の形状の鋳型に流し込むことでAg合金インゴットを得る。
Next, the above-mentioned Ag raw material, Ga raw material, and various raw materials according to need are weighed. Then, the Ag raw material is charged into the crucible of the atmosphere melting furnace.
Next, the Ag raw material is melted under a high vacuum atmosphere or an inert gas atmosphere, and Ga and various raw materials are added to the obtained Ag molten metal to obtain an Ag alloy molten metal. An Ag alloy ingot is obtained by pouring this Ag alloy molten metal into a mold having a predetermined shape.
 ここで、Ag合金インゴット中の添加元素を均一化するために、高周波で溶湯を攪拌できる高周波誘導溶解炉を用いることが好ましい。
 また、Ag合金インゴット中の酸素含有量を低減するためには、易酸化性の添加元素(Ga,Cu,Mg,In,Sn,Al,Ti,Ca)については、溶解炉に投入する直前まで、真空パック等で大気に晒されない状態としておくことが好ましい。さらに、投入時および溶解時には、溶解炉内を、不活性ガス雰囲気の置換操作を数回実施した状態としておくことが好ましい。
 また、Ag合金インゴットにおける添加元素の偏析や結晶粒径のばらつきを抑制するためには、水冷した鋳型に流し込んで急冷することが好ましい。
Here, in order to homogenize the additive elements in the Ag alloy ingot, it is preferable to use a high-frequency induction melting furnace capable of stirring the molten metal at high frequencies.
In addition, in order to reduce the oxygen content in the Ag alloy ingot, the easily oxidizable additive elements (Ga, Cu, Mg, In, Sn, Al, Ti, Ca) should be It is preferable to keep it in a state where it is not exposed to the atmosphere by vacuum packing or the like. Furthermore, it is preferable to keep the inside of the melting furnace in a state in which the operation of replacing the inert gas atmosphere has been performed several times during charging and melting.
Moreover, in order to suppress the segregation of additive elements and variations in grain size in the Ag alloy ingot, it is preferable to pour the ingot into a water-cooled mold and rapidly cool it.
 なお、鋳造方法としては、例えば、一方向凝固法を用いて実施することができる。一方向凝固法は、例えば、鋳型の底部を水冷させた状態で、抵抗加熱により予め側面部を加熱した鋳型に、溶湯を鋳込み、その後、鋳型下部の抵抗加熱部の設定温度を徐々に低下させることで実施できる。なお、鋳造方法としては、上記説明した一方向凝固法に替えて、完全連続鋳造法や半連続鋳造法等を用いて行ってもよい。 As a casting method, for example, a unidirectional solidification method can be used. In the unidirectional solidification method, for example, while the bottom of the mold is water-cooled, the molten metal is poured into the mold whose side parts are preheated by resistance heating, and then the set temperature of the resistance heating part at the bottom of the mold is gradually lowered. can be implemented by As the casting method, a complete continuous casting method, a semi-continuous casting method, or the like may be used instead of the unidirectional solidification method described above.
 次いで、Ag合金インゴットに対して塑性加工を行い、所定の形状に成形する。なお、塑性加工は、熱間および冷間のいずれで実施してもよい。
 本実施形態では、Ag合金インゴットに対して圧延を行い、板材を成形する構成とされている。なお、累計圧延率は70%以上であることが好ましい。また、結晶粒径の微細化の観点から、少なくとも圧延の最後の1パスは、圧下率が20%以上であることが好ましい。
Then, the Ag alloy ingot is subjected to plastic working and formed into a predetermined shape. The plastic working may be performed either hot or cold.
In the present embodiment, a plate material is formed by rolling an Ag alloy ingot. In addition, it is preferable that the cumulative rolling reduction is 70% or more. Moreover, from the viewpoint of refining the crystal grain size, it is preferable that at least the last pass of rolling has a rolling reduction of 20% or more.
 次いで、加工硬化の除去および結晶組織の均一化のために、板材に対して熱処理を実施する。熱処理温度は500℃以上700℃以下、保持時間は1時間以上5時間以下とすることが好ましい。また、熱処理後には、空冷又は水冷によって急冷する。なお、熱処理の雰囲気に特に制限はなく、例えば、大気雰囲気、不活性雰囲気であってもよい。
 ここで、熱処理温度が500℃未満の場合には、加工硬化を除去する効果が十分ではないおそれがある。一方、熱処理温度が700℃を超える場合には、結晶粒が粗大化したり、液相が出現したりするおそれがある。また、保持時間が1時間未満の場合には、結晶粒径を十分に均一化できないおそれがある。
Next, heat treatment is performed on the sheet material in order to remove work hardening and homogenize the crystal structure. The heat treatment temperature is preferably 500° C. or higher and 700° C. or lower, and the holding time is preferably 1 hour or longer and 5 hours or shorter. Moreover, after the heat treatment, it is rapidly cooled by air cooling or water cooling. The atmosphere for the heat treatment is not particularly limited, and may be, for example, an air atmosphere or an inert atmosphere.
Here, if the heat treatment temperature is less than 500° C., the effect of removing work hardening may not be sufficient. On the other hand, if the heat treatment temperature exceeds 700° C., the crystal grains may become coarse, or a liquid phase may appear. Moreover, when the holding time is less than 1 hour, there is a possibility that the crystal grain size cannot be made sufficiently uniform.
 次に、上述の熱処理を施した熱処理材に対して機械加工(切削加工)を行い、所定の形状および寸法に仕上げる。 Next, the heat-treated material that has undergone the heat treatment described above is machined (cut) to finish it into a predetermined shape and dimensions.
 以上のような工程により、本実施形態であるAg合金スパッタリングターゲットが製造される。 The Ag alloy sputtering target of the present embodiment is manufactured through the steps described above.
 次に、本実施形態であるAg合金スパッタリングターゲットを用いて、本実施形態であるAg合金膜を成膜する方法について説明する。
 まず、本実施形態であるAg合金スパッタリングターゲットをスパッタ成膜装置のターゲットホルダにセットする。そして、成膜する基板を取り付けて、基板上にAg合金膜を成膜する。
 成膜条件の一例を以下に示す。
 成膜電力密度:2.0~5.0(W/cm
 成膜ガス:Ar
 成膜ガス圧:0.2~0.4(Pa)
 ターゲット-基板間距離:60~80(mm)
Next, a method for forming an Ag alloy film according to this embodiment using the Ag alloy sputtering target according to this embodiment will be described.
First, the Ag alloy sputtering target of this embodiment is set in a target holder of a sputtering film forming apparatus. Then, a substrate on which a film is to be formed is attached, and an Ag alloy film is formed on the substrate.
An example of film formation conditions is shown below.
Deposition power density: 2.0 to 5.0 (W/cm 2 )
Deposition gas: Ar
Deposition gas pressure: 0.2 to 0.4 (Pa)
Target-substrate distance: 60 to 80 (mm)
 上述したAg合金スパッタリングターゲットを用い、上述した条件でスパッタリングを行うことにより、Gaを含むAg合金膜の表面側領域に、Gaが濃集したGa偏析部が形成される。
 次に、この成膜されたAg合金膜を熱処理することにより、Ga偏析部におけるGaの酸化を促進させることができる。Ag合金膜を熱処理条件としては、例えば、酸素を含む雰囲気下で250~300℃で1~2時間程度加熱すればよい。酸素を含む雰囲気下としては、酸素を2%以上含む雰囲気、例えば、空気中での加熱であればよい。
By performing sputtering under the conditions described above using the Ag alloy sputtering target described above, a Ga segregation portion in which Ga is concentrated is formed in the surface side region of the Ag alloy film containing Ga.
Next, by heat-treating the formed Ag alloy film, the oxidation of Ga in the Ga segregation portion can be promoted. As a heat treatment condition for the Ag alloy film, for example, it may be heated at 250 to 300° C. for about 1 to 2 hours in an atmosphere containing oxygen. The atmosphere containing oxygen may be heating in an atmosphere containing 2% or more of oxygen, for example, air.
 以上のような構成とされた本実施形態であるAg合金膜においては、Gaを0.3質量%以上3.5質量%以下の範囲で含有し、残部がAgおよび不可避不純物からなる組成のAg合金で構成されているので、耐熱性に優れている。
 そして、Ag合金膜の表面側領域にGaが濃集したGa偏析部を有しているので、Ag合金膜の耐熱性および耐硫化性を向上させることができる。
In the Ag alloy film of the present embodiment configured as described above, Ga is contained in the range of 0.3% by mass or more and 3.5% by mass or less, and the balance is Ag and unavoidable impurities. Since it is made of alloy, it has excellent heat resistance.
Further, since the Ag alloy film has a Ga segregation portion in which Ga concentrates in the surface side region, the heat resistance and sulfuration resistance of the Ag alloy film can be improved.
 本実施形態のAg合金膜において、Gaに加えて、さらに、Cu,Mgから選択される1種以上を合計で0.5質量ppm以上50.0質量ppm以下の範囲で含んでいる場合には、Cu,MgによってAg原子の熱による拡散移動を抑制でき、Ag合金膜の耐熱性をさらに向上させることができる。 In the Ag alloy film of the present embodiment, in addition to Ga, when one or more selected from Cu and Mg are contained in a total range of 0.5 mass ppm or more and 50.0 mass ppm or less , Cu, and Mg can suppress the diffusion movement of Ag atoms due to heat, and can further improve the heat resistance of the Ag alloy film.
 本実施形態のAg合金膜において、Gaに加えて、さらに、Pd,Pt,Au,Rhから選択される1種又は2種以上を含有しており、Pdの含有量が40質量ppm以下、Ptの含有量が20質量ppm以下、Auの含有量が20質量ppm以下、Rhの含有量が10質量ppm以下、かつ、PdとPtとAuとRhの合計含有量が1質量ppm以上50質量ppm以下とされている場合には、Pd,Pt,Au,RhがAg中に固溶することで、耐熱性および耐硫化性をさらに向上させることが可能となるとともに、硝酸を含むエッチング液を用いてエッチング処理しても、エッチングレートを低く抑えることが可能となる。 In addition to Ga, the Ag alloy film of the present embodiment further contains one or more selected from Pd, Pt, Au, and Rh, and the Pd content is 40 ppm by mass or less, and the Pt The content of is 20 mass ppm or less, the Au content is 20 mass ppm or less, the Rh content is 10 mass ppm or less, and the total content of Pd, Pt, Au and Rh is 1 mass ppm or more and 50 mass ppm In the following cases, Pd, Pt, Au, and Rh are solid-dissolved in Ag, so that heat resistance and sulfurization resistance can be further improved, and an etching solution containing nitric acid is used. The etching rate can be kept low even if the etching process is performed by
 本実施形態のAg合金膜において、Gaに加えて、さらに、Caを0.005質量%以上0.050質量%以下の範囲で含んでいる場合には、CaがAgの結晶粒界に偏析して存在することにより、Agの粒界拡散を抑制でき、さらに耐熱性を向上させることが可能となる。 In the Ag alloy film of the present embodiment, in addition to Ga, when Ca is contained in the range of 0.005% by mass or more and 0.050% by mass or less, Ca segregates at the grain boundaries of Ag. By the presence of these elements, the grain boundary diffusion of Ag can be suppressed, and the heat resistance can be further improved.
 本実施形態のAg合金膜において、Gaに加えて、さらに、In,Sn,Ti,Alから選択される1種又は2種以上を合計で0.1質量%以上1.5質量%以下の範囲で含んでいる場合には、In,Sn,Ti,Alが、Gaと同様にAg合金膜の表面側領域に偏析することにより、耐熱性および耐硫化性をさらに向上させることができる。 In the Ag alloy film of the present embodiment, in addition to Ga, one or more selected from In, Sn, Ti, and Al are added in a total amount of 0.1% by mass or more and 1.5% by mass or less. , In, Sn, Ti, and Al segregate in the surface-side region of the Ag alloy film in the same manner as Ga, thereby further improving heat resistance and sulfurization resistance.
 本実施形態のAg合金膜において、Ga偏析部の膜厚方向長さが2.0nm以上12.0nm以下の範囲内である場合には、耐熱性および耐硫化性を十分に向上させるとともに、反射率の低下を防止することができる。
 本実施形態のAg合金膜において、Ga偏析部に透明酸化物であるGa酸化物が存在している場合には、Ag合金膜の反射率をさらに向上させることができるとともに、より耐硫化性を向上させることができる。
 本実施形態のAg合金膜において、Ga偏析部が、酸化物として結晶粒界に沿い網目状に分布している場合には、さらに耐硫化性を向上させることができるとともに、さらに反射率を向上させることができる。
In the Ag alloy film of the present embodiment, when the length in the film thickness direction of the Ga segregation part is within the range of 2.0 nm or more and 12.0 nm or less, the heat resistance and sulfuration resistance are sufficiently improved, and the reflection It is possible to prevent a decrease in the rate.
In the Ag alloy film of the present embodiment, when Ga oxide, which is a transparent oxide, is present in the Ga segregation part, the reflectance of the Ag alloy film can be further improved, and the sulfidation resistance can be further improved. can be improved.
In the Ag alloy film of the present embodiment, when the Ga segregation part is distributed in a network along the grain boundary as an oxide, it is possible to further improve the sulfidation resistance and further improve the reflectance. can be made
 本実施形態のAg合金スパッタリングターゲットによれば、スパッタ成膜することにより、表面側領域にGaが濃集したGa偏析部を有し、耐熱性および耐硫化性に優れた本実施形態であるAg合金膜を成膜することができる。 According to the Ag alloy sputtering target of this embodiment, by sputtering film formation, it has a Ga segregation part in which Ga is concentrated in the surface side region, and has excellent heat resistance and sulfidation resistance. An alloy film can be deposited.
 本実施形態のAg合金スパッタリングターゲットにおいて、Gaに加えて、さらに、Cu,Mgから選択される1種以上を合計で0.5質量ppm以上50.0質量ppm以下の範囲で含んでいる場合には、さらに耐熱性に優れたAg合金膜を成膜することが可能となる。 In the Ag alloy sputtering target of the present embodiment, in addition to Ga, when further containing one or more selected from Cu and Mg in a total range of 0.5 mass ppm or more and 50.0 mass ppm or less makes it possible to form an Ag alloy film with even better heat resistance.
 本実施形態のAg合金スパッタリングターゲットにおいて、Gaに加えて、さらに、Pd,Pt,Au,Rhから選択される1種又は2種以上を含有しており、Pdの含有量が40質量ppm以下、Ptの含有量が20質量ppm以下、Auの含有量が20質量ppm以下、Rhの含有量が10質量ppm以下、かつ、PdとPtとAuとRhの合計含有量が1質量ppm以上50質量ppm以下とされている場合には、さらに耐熱性および耐硫化性に優れたAg合金膜を成膜することができる。 In the Ag alloy sputtering target of the present embodiment, in addition to Ga, it further contains one or more selected from Pd, Pt, Au, and Rh, and the Pd content is 40 mass ppm or less, The Pt content is 20 mass ppm or less, the Au content is 20 mass ppm or less, the Rh content is 10 mass ppm or less, and the total content of Pd, Pt, Au, and Rh is 1 mass ppm or more and 50 mass ppm. When the concentration is set to ppm or less, an Ag alloy film having even better heat resistance and sulfurization resistance can be formed.
 本実施形態のAg合金スパッタリングターゲットにおいて、Gaに加えて、さらに、Caを0.005質量%以上0.050質量%以下の範囲で含んでいる場合には、さらに耐熱性に優れたAg合金膜を成膜することができる。 In the Ag alloy sputtering target of the present embodiment, in addition to Ga, when further containing Ca in the range of 0.005% by mass or more and 0.050% by mass or less, the Ag alloy film further excellent in heat resistance can be deposited.
 本実施形態のAg合金スパッタリングターゲットにおいて、Gaに加えて、さらに、In,Sn,Ti,Alから選択される1種又は2種以上を合計で0.1質量%以上1.5質量%以下の範囲で含んでいる場合には、さらに耐熱性および耐硫化性に優れたAg合金膜を成膜することができる。 In the Ag alloy sputtering target of the present embodiment, in addition to Ga, one or two or more selected from In, Sn, Ti, Al in a total amount of 0.1% by mass or more and 1.5% by mass or less When it is contained within the range, it is possible to form an Ag alloy film having even better heat resistance and sulfurization resistance.
 本実施形態のAg合金スパッタリングターゲットにおいて、酸素含有量が0.005質量%以下である場合には、スパッタ成膜時に酸素原子が成長中のAg合金膜に化学吸着することを抑制でき、成膜したAg合金膜の反射率、耐熱性、耐硫化性が低下することを抑制できる。 In the Ag alloy sputtering target of the present embodiment, when the oxygen content is 0.005% by mass or less, it is possible to suppress the chemical adsorption of oxygen atoms to the growing Ag alloy film during sputtering film formation. It is possible to suppress deterioration of the reflectance, heat resistance, and sulfuration resistance of the Ag alloy film.
 本実施形態のAg合金スパッタリングターゲットにおいて、複数の測定箇所で測定された前記Ag合金結晶粒の粒径から算出される前記平均結晶粒径Cが10μm以上200μm以下の範囲内とされているとともに、それぞれの測定箇所での前記Ag合金結晶粒の粒径の平均値Dのうち前記平均結晶粒径Cとの偏差の絶対値が最大となる平均値をDmaxとした場合に、E(%)=(Dmax-C)/C×100で定義される前記Ag合金結晶粒の粒径ばらつきEが20%以下とされている場合には、スパッタ成膜時の異常放電の発生を抑制でき、安定してAg合金膜を成膜することが可能となる。 In the Ag alloy sputtering target of the present embodiment, the average crystal grain size C calculated from the grain size of the Ag alloy crystal grains measured at a plurality of measurement points is within the range of 10 μm or more and 200 μm or less, When the average value of the average value D of the grain size of the Ag alloy crystal grains at each measurement point that has the maximum absolute value of the deviation from the average grain size C is defined as D max , E (%) = (D max - C) / C × 100 When the grain size variation E of the Ag alloy crystal grains is 20% or less, the occurrence of abnormal discharge during sputtering film formation can be suppressed, It becomes possible to form an Ag alloy film stably.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的要件を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、板形状のAg合金スパッタリングターゲットとして説明したが、これに限定されることはなく、円筒形状のAg合金スパッタリングターゲットであってもよい。
Although the embodiment of the present invention has been described above, the present invention is not limited to this, and can be modified as appropriate without departing from the technical requirements of the invention.
For example, in the present embodiment, a plate-shaped Ag alloy sputtering target has been described, but the present invention is not limited to this, and a cylindrical Ag alloy sputtering target may be used.
 以下に、本発明の有効性を確認するために行った確認実験の結果について説明する。 The results of confirmation experiments conducted to confirm the effectiveness of the present invention are described below.
(試料の作製)
 純度99.99質量%以上のAg原料を準備し、このAg原料を真空雰囲気下の溶解炉で融解し、溶解炉内の雰囲気をArガスに置換する置換操作を3回実施した。次いで純度99.9質量%以上のGaおよび各種原料(Cu,Mg,Pd,Pt,Au,Rh,Ca,In,Sn,Ti,Al)を添加し、所定の組成のAg合金溶湯を溶製した。そして、このAg合金溶湯を、鋳造し、次いで水冷してAg合金インゴットを製造した。なお、Ag原料は、必要に応じて、発明の実施の形態の欄に記載されたように、電解精錬によってPd,Pt,Au,Rhの含有量を低減した。
(Preparation of sample)
An Ag raw material having a purity of 99.99% by mass or more was prepared, the Ag raw material was melted in a melting furnace under a vacuum atmosphere, and the replacement operation of replacing the atmosphere in the melting furnace with Ar gas was performed three times. Next, Ga with a purity of 99.9% by mass or more and various raw materials (Cu, Mg, Pd, Pt, Au, Rh, Ca, In, Sn, Ti, Al) are added to produce a molten Ag alloy of a predetermined composition. did. Then, this Ag alloy molten metal was cast and then water-cooled to produce an Ag alloy ingot. In addition, as described in the column of the embodiment of the invention, the contents of Pd, Pt, Au, and Rh in the Ag raw material were reduced by electrolytic refining, if necessary.
 得られたAg合金インゴットに対して、冷間圧延(圧下率80%、最終圧下率25%)を行い、その後、熱処理温度600℃、保持時間1時間の条件で熱処理を実施した。そして、熱処理後に機械加工を実施し、直径152.4mm、厚さ6mmの円板形状で表1~3に示すAg合金スパッタリングターゲットを製造した。 The obtained Ag alloy ingot was subjected to cold rolling (reduction rate of 80%, final reduction rate of 25%), and then heat treatment under conditions of a heat treatment temperature of 600°C and a holding time of 1 hour. Then, after the heat treatment, machining was performed to produce Ag alloy sputtering targets shown in Tables 1 to 3 in the form of discs having a diameter of 152.4 mm and a thickness of 6 mm.
 上記の方法で作製したAg合金スパッタリングターゲットを用いて、次の条件で基板にAg合金膜の成膜を行った。
 成膜開始真空度:7.0×10-4Pa以下
 スパッタガス:高純度アルゴン100vol%
 チャンバー内スパッタガス圧力:0.4Pa
 直流電力:100W
 なお、上述した成膜条件で30分間放電を行った(空スパッタ)。次いで、成膜レートを算出するための成膜を行った。そして、算出した成膜レートから膜厚100nmのAg合金膜を成膜し、表4~6に示すAg合金膜を得た。
Using the Ag alloy sputtering target produced by the above method, an Ag alloy film was formed on a substrate under the following conditions.
Deposition start vacuum degree: 7.0 × 10 -4 Pa or less Sputtering gas: 100 vol% high-purity argon
Sputtering gas pressure in the chamber: 0.4 Pa
DC power: 100W
In addition, discharge was performed for 30 minutes under the film forming conditions described above (empty sputtering). Next, film formation was performed for calculating the film formation rate. Then, an Ag alloy film having a film thickness of 100 nm was formed using the calculated film formation rate, and the Ag alloy films shown in Tables 4 to 6 were obtained.
(成分組成)
 それぞれのAg合金スパッタリングターゲットから分析用サンプルを切り出し、ICP発光分光分析法によって成分組成を測定した。また、酸素含有量は、分析用サンプルを入れた黒鉛るつぼを高周波加熱し、不活性ガス中で融解させ、赤外線吸収法にて検出して分析を行った。測定結果を表1~3に示す。
(Component composition)
A sample for analysis was cut out from each Ag alloy sputtering target, and the component composition was measured by ICP emission spectrometry. Further, the oxygen content was analyzed by heating a graphite crucible containing an analysis sample with high frequency, melting it in an inert gas, and detecting it by an infrared absorption method. The measurement results are shown in Tables 1-3.
 また、Ag合金膜については、4インチシリコン基板上に、上述のAg合金スパッタリングターゲットを用いてスパッタ成膜して厚さ500nmのAg合金膜を作製した。このAg合金膜から分析用サンプルを採取して、ICP発光分光分析法によって成分組成を測定した。その結果、成膜に用いたAg合金スパッタリングターゲットと同等の組成であることを確認した。 As for the Ag alloy film, an Ag alloy film having a thickness of 500 nm was formed on a 4-inch silicon substrate by sputtering using the Ag alloy sputtering target described above. A sample for analysis was taken from this Ag alloy film, and the component composition was measured by ICP emission spectrometry. As a result, it was confirmed that the composition was the same as that of the Ag alloy sputtering target used for film formation.
(Ag合金スパッタリングターゲットの結晶粒径)
 スパッタ面内で均等に16か所の地点から一辺が10mm程度の立方体の試料片を採取した。次に各試料片のスパッタ面を研磨した。この際、#180~#4000の耐水紙で研磨を行い、次いで3μm~1μmの砥粒でバフ研磨した。さらに、光学顕微鏡で粒界が見える程度にエッチングした。ここで、エッチング液には、過酸化水素水とアンモニア水との混合液を用い、室温で1~2秒間浸漬し、粒界を現出させた。次に、各試料について、光学顕微鏡で写真を撮影した。写真の倍率としては、結晶粒を計数し易い倍率を選択した。各写真において、60mmの線分を、井げた状に20mm間隔で縦横に合計4本引き、それぞれの直線で切断された結晶粒の数を数えた。なお、線分の端の結晶粒は、0.5個とカウントした。平均切片長さ:L(μm)を、L=60000/(M・N)(ここで、Mは実倍率、Nは切断された結晶粒数の平均値である)で求めた。次に、求めた平均切片長さ:L(μm)から、試料の平均粒径:d(μm)を、d=(3/2)・Lで算出した。このように16カ所からサンプリングした試料の平均粒径の平均値をターゲットの銀合金結晶の結晶粒径とした。
 なお、上記の平均粒径dは、それぞれの測定箇所でのAg合金結晶粒の粒径の平均値Dであり、16カ所の平均粒径dの平均値は、平均結晶粒径Cである。
(Crystal grain size of Ag alloy sputtering target)
A cubic sample piece having a side of about 10 mm was sampled from 16 points evenly on the sputtering surface. The sputtered surface of each sample piece was then polished. At this time, polishing was performed with waterproof paper of #180 to #4000, followed by buffing with abrasive grains of 3 μm to 1 μm. Further, etching was performed to such an extent that grain boundaries were visible with an optical microscope. Here, a mixed solution of hydrogen peroxide water and ammonia water was used as an etchant, and the substrate was immersed at room temperature for 1 to 2 seconds to reveal grain boundaries. Each sample was then photographed with an optical microscope. As the magnification of the photograph, a magnification that facilitates counting of crystal grains was selected. In each photograph, a total of four 60-mm line segments were drawn vertically and horizontally at intervals of 20 mm, and the number of crystal grains cut by each straight line was counted. The number of crystal grains at the end of the line segment was counted as 0.5. Average intercept length: L (μm) was determined by L=60000/(M·N) (where M is the actual magnification and N is the average number of cut crystal grains). Next, from the obtained average intercept length: L (μm), the average particle diameter of the sample: d (μm) was calculated by d=(3/2)·L. The average value of the average grain sizes of the samples sampled from 16 locations was taken as the crystal grain size of the silver alloy crystal of the target.
The above average grain size d is the average value D of the grain size of the Ag alloy crystal grains at each measurement point, and the average value of the average grain size d at the 16 points is the average crystal grain size C.
 そして、複数の箇所で測定されたAg合金結晶粒の平均結晶粒径Cと、それぞれの測定箇所での前記Ag合金結晶粒の粒径の平均値Dのうち前記平均結晶粒径Cとの偏差の絶対値が最大となる平均値Dmaxとから、前記Ag合金結晶粒の粒径ばらつきEを算出した。具体的には、16カ所で求めた16個の平均粒径のうち、平均粒径の平均値との偏差の絶対値(|〔(ある1個の箇所の平均粒径)-(16カ所の平均粒径の平均値)〕|)が最大となるものを特定した。次いで、その特定した平均粒径(特定平均粒径)を用いて、下記の式により粒径のばらつきを算出した。
{|〔(特定平均粒径)-(16カ所の平均粒径の平均値)〕|/(16カ所の平均粒径の平均値)}×100(%)
Then, the deviation between the average grain size C of the Ag alloy crystal grains measured at a plurality of locations and the average grain size C of the average value D of the grain size of the Ag alloy crystal grains at each measurement location The grain size variation E of the Ag alloy crystal grains was calculated from the average value D max that maximizes the absolute value of . Specifically, among the 16 average particle diameters obtained at 16 locations, the absolute value of the deviation from the average value of the average particle diameter (|[(average particle diameter at one location) - (16 locations The one that maximizes the average value of average particle diameters)]|) was identified. Then, using the specified average particle size (specified average particle size), the variation in particle size was calculated according to the following formula.
{|[(specific average particle size)-(average value of average particle size at 16 locations)]|/(average value of average particle size at 16 locations)}×100 (%)
(異常放電発生回数)
 スパッタ装置内を5×10-5Paまで排気し、次いでArガス圧:0.4Pa、投入電力:直流500W、ターゲット基板間距離:70mmの条件で予備スパッタとして1時間放電を実施した。次いで、本スパッタとして6時間連続放電を実施し、本スパッタ中の異常放電の合計回数を計測した。異常放電の計測には、DC電源(MKSインスツルメント社製RPDG-50A)のアークカウント機能を用いた。
(Number of abnormal discharge occurrences)
The inside of the sputtering apparatus was evacuated to 5×10 −5 Pa, and then discharge was performed for 1 hour as preliminary sputtering under the conditions of Ar gas pressure: 0.4 Pa, input power: DC 500 W, and target-substrate distance: 70 mm. Next, continuous discharge was performed for 6 hours as the main sputtering, and the total number of abnormal discharges during the main sputtering was measured. The arc count function of a DC power supply (RPDG-50A manufactured by MKS Instruments) was used to measure the abnormal discharge.
(Ga偏析部の確認)
 成膜したAg合金膜の表面(この場合、基板とは反対側の面)から基板側の方向(膜厚方向)にかけて、X線光分子分光法(XPS)により深さ方向分析を行った。この分析には、X線光電子分光分析装置(ULVAC-PHI社製PHI Quantera)を用いた。そして、Ga偏析部の有無を確認し、Ga偏析部の厚さを算出した。具体的には、まず、100nmのAgを掘りきる時間(スキャン回数)からエッチングレート(nm/スキャン)を算出した。次に100nmの半分である50nmを掘りきるスキャン回数でのGaのピーク位置のピーク強度(カウント数/sec)を確認し、基準ピーク強度とした。なお、50nmを掘りきるスキャン回数でのGaのピーク位置のピーク強度とは、表面から深さ50nmの位置でのGaのピーク強度(Ga量)である。
 そして、上述の基準ピーク強度の2.0倍以上のGaのピーク強度が得られているスキャン回数の領域をGaが濃集しているGa偏析部とみなし、Ga偏析部の厚さを前述のスキャン回数×エッチングレートにて算出した。
(Confirmation of Ga segregation part)
Depth direction analysis was performed by X-ray photomolecule spectroscopy (XPS) from the surface of the formed Ag alloy film (in this case, the surface opposite to the substrate) toward the substrate side (film thickness direction). An X-ray photoelectron spectrometer (PHI Quantera manufactured by ULVAC-PHI) was used for this analysis. Then, the presence or absence of the Ga segregation portion was confirmed, and the thickness of the Ga segregation portion was calculated. Specifically, first, the etching rate (nm/scan) was calculated from the time (number of scans) required for digging 100 nm of Ag. Next, the peak intensity (number of counts/sec) at the Ga peak position in the number of scans to excavate 50 nm, which is half of 100 nm, was confirmed and used as the reference peak intensity. The peak intensity at the Ga peak position in the number of scans to excavate 50 nm is the Ga peak intensity (Ga amount) at a position at a depth of 50 nm from the surface.
Then, the region of the number of scans in which the Ga peak intensity of 2.0 times or more the reference peak intensity described above is obtained is regarded as the Ga segregation portion where Ga is concentrated, and the thickness of the Ga segregation portion is set as described above. It was calculated by multiplying the number of scans by the etching rate.
 また、XPSの深さ分析の各検出ピークの位置により、Ga偏析部の酸化状態を確認した。なお、現実的には、成膜してXPSにて分析するまでには大気搬送や大気熱処理等によってGaは酸化してGa酸化物のGaになるので、Gaのピーク強度を用いる場合と同様に、Gaのピーク強度の変化でGaが濃集しているGa偏析部の有無を判断してもよい。それぞれの検出ピーク位置は以下のとおりである。
 Ga:1116.5eV
 Ga:1119.2eV
Moreover, the oxidation state of the Ga segregation part was confirmed from the position of each detected peak in the XPS depth analysis. Note that in reality, Ga is oxidized into Ga oxide Ga 2 O 3 by atmospheric transport, atmospheric heat treatment, etc. before the film is analyzed by XPS, so when using the peak intensity of Ga Similarly, the presence or absence of a Ga segregation part where Ga is concentrated may be judged from the change in the peak intensity of Ga 2 O 3 . Each detection peak position is as follows.
Ga: 1116.5 eV
Ga2O3 : 1119.2 eV
 図1に本発明例102のAg合金膜(熱処理後)のXPS分析結果を示す。図2に本発明例102のAg合金膜(熱処理後)の最表面のGa2p3スペクトル(XPS)を示す。Gaが酸化状態であることが確認される。なお、図1の縦軸の強度(Intensity)に関して、a×10の値は、aE+bと表している。
 また、図3に、本発明例102のAg合金膜(熱処理前)の最表面のGa2p3スペクトルを示す。金属と酸化物の中間にピークを有し、Gaが不完全な酸化状態であることが確認される。
 また、Ga酸化物の網目状分布の確認として、走査型オージェ電子分光分析装置(ULVAC-PHI社製PHI700)を用いて、オージェ電子分光分析法(AES)により表面分析を行った。具体的には、100nmのAg膜表面に対して倍率20万倍にてSEM像及びGa元素のオージェマップを取得した。なお、最表層の汚染物を除去する目的でArスパッタリングを500eVで30秒間行い、その後に表面分析を行った。Ga元素のオージェマップからGa酸化物の網目状分布の有無を確認した。
FIG. 1 shows the XPS analysis results of the Ag alloy film (after heat treatment) of Example 102 of the present invention. FIG. 2 shows the Ga2p3 spectrum (XPS) of the outermost surface of the Ag alloy film (after heat treatment) of Example 102 of the present invention. Ga is confirmed to be in an oxidized state. Regarding the intensity (Intensity) on the vertical axis in FIG. 1, the value of a×10 b is expressed as aE+b.
Further, FIG. 3 shows the Ga2p3 spectrum of the outermost surface of the Ag alloy film (before heat treatment) of Example 102 of the present invention. It has a peak between the metal and the oxide, confirming that Ga is in an incompletely oxidized state.
Further, to confirm the mesh-like distribution of Ga oxide, surface analysis was performed by Auger electron spectroscopy (AES) using a scanning Auger electron spectrometer (ULVAC-PHI PHI700). Specifically, an SEM image and an Auger map of Ga element were obtained at a magnification of 200,000 times with respect to the Ag film surface of 100 nm. In order to remove contaminants on the outermost layer, Ar sputtering was performed at 500 eV for 30 seconds, after which surface analysis was performed. The presence or absence of network-like distribution of Ga oxide was confirmed from the Auger map of Ga element.
(反射率)
 反射率は分光光度計(株式会社日立ハイテクノロジーズ製U-4100)を用いて測定した。成膜後に、大気中にて250℃で2時間熱処理した。この熱処理後のAg合金膜の反射率を表4~6に示す。なお、表には波長450nmにおける反射率を記載した。
(Reflectance)
The reflectance was measured using a spectrophotometer (U-4100 manufactured by Hitachi High-Technologies Corporation). After film formation, heat treatment was performed at 250° C. for 2 hours in the air. Tables 4 to 6 show the reflectance of the Ag alloy film after this heat treatment. The table shows the reflectance at a wavelength of 450 nm.
(耐熱性評価)
 成膜後に大気中にて250℃で2時間熱処理した。この熱処理後のAg合金膜について、走査型電子顕微鏡(SEM)により倍率20000倍(観察面積:6000nm×4500nm)にて3箇所観察を行い、直径200nm以上のヒロック(突起)発生の有無(個数)を確認した。評価結果を表4~6に示す。また、観察結果の一例を図4A,図4Bに示す。図4Aが本発明例120のAg合金膜であり、図4Bが比較例101のAg合金膜である。比較例101では、ヒロック(突起)が多く発生していることが確認される。
(Heat resistance evaluation)
After film formation, heat treatment was performed at 250° C. for 2 hours in the air. The Ag alloy film after this heat treatment was observed at three locations with a scanning electron microscope (SEM) at a magnification of 20000 (observation area: 6000 nm × 4500 nm), and the presence or absence (number) of hillocks (projections) with a diameter of 200 nm or more. It was confirmed. The evaluation results are shown in Tables 4-6. An example of observation results is shown in FIGS. 4A and 4B. 4A is the Ag alloy film of Inventive Example 120, and FIG. 4B is the Ag alloy film of Comparative Example 101. FIG. In Comparative Example 101, it is confirmed that many hillocks (protrusions) are generated.
(耐硫化性評価)
 耐硫化性評価として、成膜後に大気中にて250℃で2時間熱処理した。この熱処理後のAg合金膜をガス腐食試験機にて25℃-75%RH雰囲気下にて3質量ppmのHSを導入して1時間保管した。次いで、分光光度計にて反射率を測定し、硫化処理前後における反射率の変化量を評価した。評価結果を表4~6に示す。
(Sulfurization resistance evaluation)
As a sulfidation resistance evaluation, heat treatment was performed at 250° C. for 2 hours in the atmosphere after the film formation. After this heat treatment, the Ag alloy film was stored for 1 hour in an atmosphere of 25° C.-75% RH by introducing 3 mass ppm of H 2 S using a gas corrosion tester. Then, the reflectance was measured with a spectrophotometer to evaluate the amount of change in reflectance before and after the sulfurization treatment. The evaluation results are shown in Tables 4-6.
(エッチング特性評価)
 ガラス基板上に成膜された厚さ100nmのAg合金単膜に、フォトリソグラフィーによって配線パターン(配線膜)を形成した。具体的には、成膜したAg合金膜上にフォトレジスト剤(東京応化工業株式会社製OFPR-8600)をスピンコーターにより塗布し、110℃でプリベークした。次いで露光し、その後現像液(東京応化工業株式会社製NMD-W)によりパターンを現像し、150℃でポストベークを行った。これにより、Ag合金膜上に幅100μm、間隔100μmの櫛形配線パターンを形成した。そして、上述のAg合金膜に対してウェットエッチングを行った。エッチング液としては、関東化学社製SEA-5を用い、液温40℃、浸漬時間30秒にてエッチングを行った。以上のようにして得られた配線膜について、配線断面を観察するために基板を劈開し、その断面を、SEM(走査型電子顕微鏡)を用いて観察した。そして、SEMにより観察されたAg合金膜端部とフォトレジスト端部の平行な位置の差分をAg合金膜のオーバーエッチング量として測定した。評価結果を表4~6に示す。
(Evaluation of etching characteristics)
A wiring pattern (wiring film) was formed by photolithography on a 100 nm-thick Ag alloy single film formed on a glass substrate. Specifically, a photoresist agent (OFPR-8600 manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied onto the formed Ag alloy film by a spin coater, and prebaked at 110°C. Then, it was exposed, and then the pattern was developed with a developing solution (NMD-W manufactured by Tokyo Ohka Kogyo Co., Ltd.) and post-baked at 150°C. Thus, a comb-shaped wiring pattern having a width of 100 μm and an interval of 100 μm was formed on the Ag alloy film. Then, wet etching was performed on the Ag alloy film. As an etchant, SEA-5 manufactured by Kanto Kagaku Co., Ltd. was used, and etching was performed at a liquid temperature of 40° C. and an immersion time of 30 seconds. For the wiring film obtained as described above, the substrate was cleaved to observe the cross section of the wiring, and the cross section was observed using an SEM (scanning electron microscope). Then, the difference between the parallel positions of the edge of the Ag alloy film and the edge of the photoresist observed by SEM was measured as the amount of overetching of the Ag alloy film. The evaluation results are shown in Tables 4-6.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 比較例1のAg合金スパッタリングターゲットで成膜された比較例101のAg合金膜においては、Gaの含有量が本実施形態の範囲よりも少なく、Ag合金膜の表面側領域にGa偏析部が形成されなかった。このため、耐熱性および耐硫化性が不十分であった。
 比較例2のAg合金スパッタリングターゲットで成膜された比較例102のAg合金膜においては、Gaの含有量が本実施形態の範囲よりも多く、Ag合金膜の成膜後の反射率が低くなった。
In the Ag alloy film of Comparative Example 101 formed with the Ag alloy sputtering target of Comparative Example 1, the Ga content is lower than the range of the present embodiment, and a Ga segregation part is formed in the surface side region of the Ag alloy film. it wasn't. Therefore, the heat resistance and sulfuration resistance were insufficient.
In the Ag alloy film of Comparative Example 102 formed by the Ag alloy sputtering target of Comparative Example 2, the Ga content is higher than the range of the present embodiment, and the reflectance after the formation of the Ag alloy film is low. rice field.
 比較例3のAg合金スパッタリングターゲットで成膜された比較例103のAg合金膜および比較例4のAg合金スパッタリングターゲットで成膜された比較例104のAg合金膜においては、Cu,Mgの合計含有量が本実施形態の範囲よりも多く、耐硫化性が不十分であった。
 比較例5のAg合金スパッタリングターゲットで成膜された比較例105のAg合金膜においては、PdとPtとAuとRhの合計含有量が本実施形態の範囲よりも多く、オーバーエッチング量が大きくなった。
In the Ag alloy film of Comparative Example 103 formed with the Ag alloy sputtering target of Comparative Example 3 and the Ag alloy film of Comparative Example 104 formed with the Ag alloy sputtering target of Comparative Example 4, the total content of Cu and Mg The amount was larger than the range of this embodiment, and the sulfuration resistance was insufficient.
In the Ag alloy film of Comparative Example 105 formed by the Ag alloy sputtering target of Comparative Example 5, the total content of Pd, Pt, Au and Rh is larger than the range of the present embodiment, and the amount of overetching is large. rice field.
 比較例6においては、Caの含有量が本実施形態の範囲よりも多く、圧延加工時に割れが発生し、Ag合金スパッタリングターゲットを製造することができなかった。
 比較例7のAg合金スパッタリングターゲットで成膜された比較例107のAg合金膜、比較例8のAg合金スパッタリングターゲットで成膜された比較例108のAg合金膜および比較例9のAg合金スパッタリングターゲットで成膜された比較例109のAg合金膜においては、In,Sn,Ti,Alの合計含有量が本実施形態の範囲よりも多く、Ag合金膜の成膜後の反射率が低くなった。
In Comparative Example 6, the Ca content was higher than the range of the present embodiment, cracks occurred during rolling, and an Ag alloy sputtering target could not be produced.
The Ag alloy film of Comparative Example 107 formed with the Ag alloy sputtering target of Comparative Example 7, the Ag alloy film of Comparative Example 108 formed with the Ag alloy sputtering target of Comparative Example 8, and the Ag alloy sputtering target of Comparative Example 9 In the Ag alloy film of Comparative Example 109 formed by , the total content of In, Sn, Ti, and Al was larger than the range of the present embodiment, and the reflectance after the formation of the Ag alloy film was low. .
 これに対して、本発明例1~42のAg合金スパッタリングターゲットにおいては、スパッタ成膜時の異常放電を抑制でき、安定してAg合金膜を成膜することができた。
 また、本発明例1~42のAg合金スパッタリングターゲットで成膜された本発明例101~142のAg合金膜においては、反射率が高く、かつ、耐熱性および耐硫化性に優れていた。また、オーバーエッチング量が少なかった。
On the other hand, in the Ag alloy sputtering targets of Examples 1 to 42 of the present invention, the abnormal discharge during sputtering film formation could be suppressed, and the Ag alloy film could be stably formed.
In addition, the Ag alloy films of Inventive Examples 101 to 142 formed from the Ag alloy sputtering targets of Inventive Examples 1 to 42 had high reflectance and excellent heat resistance and sulfidation resistance. Also, the amount of over-etching was small.
 以上のことから、本発明例によれば、耐熱性、耐硫化性に優れたAg合金膜、およびこのAg合金膜を成膜するためのAg合金スパッタリングターゲットを提供可能であることが確認された。 From the above, it was confirmed that according to the example of the present invention, it is possible to provide an Ag alloy film excellent in heat resistance and sulfidation resistance, and an Ag alloy sputtering target for forming this Ag alloy film. .
 本実施形態のAg合金膜は、耐熱性、耐硫化性に優れ、ディスプレイやLED等の反射電極膜、タッチパネル等の配線膜等の各種部品の反射膜及び導電膜として好適に適用される。 The Ag alloy film of the present embodiment is excellent in heat resistance and sulfuration resistance, and is suitably applied as a reflective film and a conductive film for various parts such as reflective electrode films such as displays and LEDs, and wiring films such as touch panels.

Claims (15)

  1.  Gaを0.3質量%以上3.5質量%以下の範囲で含有し、残部がAgおよび不可避不純物からなる組成のAg合金からなるAg合金膜であって、
     前記Ag合金膜の表面側領域に、Gaが濃集したGa偏析部を有することを特徴とするAg合金膜。
    An Ag alloy film made of an Ag alloy having a composition containing Ga in the range of 0.3% by mass or more and 3.5% by mass or less, the balance being Ag and inevitable impurities,
    An Ag alloy film comprising a Ga segregation portion in which Ga is concentrated in a surface side region of the Ag alloy film.
  2.  前記Ag合金は、さらに、Cu,Mgから選択される1種以上を合計で0.5質量ppm以上50.0質量ppm以下の範囲で含むことを特徴とする請求項1に記載のAg合金膜。 The Ag alloy film according to claim 1, wherein the Ag alloy further contains one or more selected from Cu and Mg in a total range of 0.5 ppm by mass or more and 50.0 ppm by mass or less. .
  3.  前記Ag合金は、さらに、Pd,Pt,Au,Rhから選択される1種又は2種以上を含有しており、Pdの含有量が40質量ppm以下、Ptの含有量が20質量ppm以下、Auの含有量が20質量ppm以下、Rhの含有量が10質量ppm以下、かつ、PdとPtとAuとRhの合計含有量が1質量ppm以上50質量ppm以下とされていることを特徴とする請求項1又は請求項2に記載のAg合金膜。 The Ag alloy further contains one or more selected from Pd, Pt, Au, and Rh, and has a Pd content of 40 mass ppm or less, a Pt content of 20 mass ppm or less, The Au content is 20 mass ppm or less, the Rh content is 10 mass ppm or less, and the total content of Pd, Pt, Au, and Rh is 1 mass ppm or more and 50 mass ppm or less. The Ag alloy film according to claim 1 or 2.
  4.  前記Ag合金は、さらに、Caを0.005質量%以上0.050質量%以下の範囲で含むことを特徴とする請求項1から請求項3のいずれか一項に記載のAg合金膜。 The Ag alloy film according to any one of claims 1 to 3, wherein the Ag alloy further contains Ca in a range of 0.005% by mass to 0.050% by mass.
  5.  前記Ag合金は、さらに、In,Sn,Ti,Alから選択される1種又は2種以上を合計で0.1質量%以上1.5質量%以下の範囲で含むことを特徴とする請求項1から請求項4のいずれか一項に記載のAg合金膜。 The Ag alloy further contains one or more selected from In, Sn, Ti, and Al in a total amount of 0.1% by mass or more and 1.5% by mass or less. The Ag alloy film according to any one of claims 1 to 4.
  6.  前記Ga偏析部の膜厚方向長さが2.0nm以上12.0nm以下の範囲であることを特徴とする請求項1から請求項5のいずれか一項に記載のAg合金膜。 The Ag alloy film according to any one of claims 1 to 5, wherein the length in the film thickness direction of the Ga segregation part is in the range of 2.0 nm or more and 12.0 nm or less.
  7.  前記Ga偏析部には、Ga酸化物が存在することを特徴とする請求項1から請求項6のいずれか一項に記載のAg合金膜。 The Ag alloy film according to any one of claims 1 to 6, characterized in that Ga oxide is present in the Ga segregation part.
  8.  前記Ga偏析部は、酸化物として結晶粒界に沿い網目状に分布していることを特徴とする請求項1から請求項7のいずれか一項に記載のAg合金膜。 The Ag alloy film according to any one of claims 1 to 7, characterized in that the Ga segregation parts are distributed as oxides in a network along grain boundaries.
  9.  Gaを0.3質量%以上3.5質量%以下の範囲で含有し、残部がAgおよび不可避不純物からなる組成のAg合金からなることを特徴とするAg合金スパッタリングターゲット。 An Ag alloy sputtering target characterized by comprising an Ag alloy having a composition containing Ga in the range of 0.3% by mass or more and 3.5% by mass or less, with the balance being Ag and unavoidable impurities.
  10.  さらに、Cu,Mgから選択される1種以上を合計で0.5質量ppm以上50.0質量ppm以下の範囲で含むことを特徴とする請求項9に記載のAg合金スパッタリングターゲット。 The Ag alloy sputtering target according to claim 9, further comprising one or more selected from Cu and Mg in a total amount of 0.5 ppm by mass or more and 50.0 ppm by mass or less.
  11.  さらに、Pd,Pt,Au,Rhから選択される1種又は2種以上を含有しており、Pdの含有量が40質量ppm以下、Ptの含有量が20質量ppm以下、Auの含有量が20質量ppm以下、Rhの含有量が10質量ppm以下、かつ、PdとPtとAuとRhの合計含有量が1質量ppm以上50質量ppm以下とされていることを特徴とする請求項9又は請求項10に記載のAg合金スパッタリングターゲット。 Furthermore, it contains one or more selected from Pd, Pt, Au, and Rh, the Pd content is 40 mass ppm or less, the Pt content is 20 mass ppm or less, and the Au content is 20 mass ppm or less, the content of Rh is 10 mass ppm or less, and the total content of Pd, Pt, Au and Rh is 1 mass ppm or more and 50 mass ppm or less. The Ag alloy sputtering target according to claim 10.
  12.  さらに、Caを0.005質量%以上0.050質量%以下の範囲で含むことを特徴とする請求項9から請求項11のいずれか一項に記載のAg合金スパッタリングターゲット。 The Ag alloy sputtering target according to any one of claims 9 to 11, further comprising Ca in the range of 0.005% by mass to 0.050% by mass.
  13.  さらに、In,Sn,Ti,Alから選択される1種又は2種以上を合計で0.1質量%以上1.5質量%以下の範囲で含むことを特徴とする請求項9から請求項12のいずれか一項に記載のAg合金スパッタリングターゲット。 Further, one or more selected from In, Sn, Ti, and Al are contained in a total amount of 0.1% by mass or more and 1.5% by mass or less. Ag alloy sputtering target according to any one of.
  14.  酸素含有量が0.005質量%以下であることを特徴とする請求項9から請求項13のいずれか一項に記載のAg合金スパッタリングターゲット。 The Ag alloy sputtering target according to any one of claims 9 to 13, characterized in that the oxygen content is 0.005% by mass or less.
  15.  複数のAg合金結晶粒を含む多結晶体からなり、
     複数の測定箇所で測定された前記Ag合金結晶粒の粒径から算出される平均結晶粒径Cが10μm以上200μm以下の範囲内とされているとともに、
     それぞれの測定箇所での前記Ag合金結晶粒の粒径の平均値Dのうち前記平均結晶粒径Cとの偏差の絶対値が最大となる平均値をDmaxとした場合に、下記の式で定義される前記Ag合金結晶粒の粒径ばらつきEが20%以下であることを特徴とする請求項9から請求項14のいずれか一項に記載のAg合金スパッタリングターゲット。
     E(%)=(Dmax-C)/C×100
    Consisting of a polycrystalline body containing a plurality of Ag alloy crystal grains,
    The average crystal grain size C calculated from the grain size of the Ag alloy crystal grains measured at a plurality of measurement points is in the range of 10 μm or more and 200 μm or less,
    When D max is the average value of the maximum absolute value of the deviation from the average grain size C of the average value D of the grain size of the Ag alloy crystal grains at each measurement point, the following formula is used. The Ag alloy sputtering target according to any one of claims 9 to 14, characterized in that the defined grain size variation E of the Ag alloy crystal grains is 20% or less.
    E (%) = (D max -C)/C x 100
PCT/JP2021/047503 2021-01-22 2021-12-22 Ag alloy film, and ag alloy sputtering target WO2022158231A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021009035 2021-01-22
JP2021-009035 2021-01-22
JP2021-177712 2021-10-29
JP2021177712A JP2022113107A (en) 2021-01-22 2021-10-29 Ag ALLOY FILM, AND Ag ALLOY SPUTTERING TARGET

Publications (1)

Publication Number Publication Date
WO2022158231A1 true WO2022158231A1 (en) 2022-07-28

Family

ID=82548216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047503 WO2022158231A1 (en) 2021-01-22 2021-12-22 Ag alloy film, and ag alloy sputtering target

Country Status (2)

Country Link
TW (1) TW202246534A (en)
WO (1) WO2022158231A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115976478B (en) * 2022-12-13 2023-11-28 江苏迪纳科精细材料股份有限公司 Silver sulfide resistant alloy target and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219307A (en) * 2011-04-06 2012-11-12 Mitsubishi Materials Corp Silver alloy sputtering target for forming conductive film and method for manufacturing the same
JP2017031503A (en) * 2015-07-28 2017-02-09 三菱マテリアル株式会社 Ag ALLOY FILM AND METHOD FOR PRODUCING SAME, Ag ALLOY SPUTTERING TARGET AND LAMINATED FILM
JP2017088984A (en) * 2015-11-16 2017-05-25 三菱マテリアル株式会社 Ag ALLOY FILM, MANUFACTURING METHOD OF Ag ALLOY FILM, AND Ag ALLOY SPUTTERING TARGET

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219307A (en) * 2011-04-06 2012-11-12 Mitsubishi Materials Corp Silver alloy sputtering target for forming conductive film and method for manufacturing the same
JP2017031503A (en) * 2015-07-28 2017-02-09 三菱マテリアル株式会社 Ag ALLOY FILM AND METHOD FOR PRODUCING SAME, Ag ALLOY SPUTTERING TARGET AND LAMINATED FILM
JP2017088984A (en) * 2015-11-16 2017-05-25 三菱マテリアル株式会社 Ag ALLOY FILM, MANUFACTURING METHOD OF Ag ALLOY FILM, AND Ag ALLOY SPUTTERING TARGET

Also Published As

Publication number Publication date
TW202246534A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
WO2004001093A1 (en) Silver alloy sputtering target and process for producing the same
KR101854009B1 (en) Silver-alloy sputtering target for conductive-film formation, and method for producing same
CN111587300A (en) Ag alloy sputtering target and method for producing Ag alloy sputtering target
WO2022158231A1 (en) Ag alloy film, and ag alloy sputtering target
TWI627291B (en) Sputter target based on a silver alloy
JP2005330591A (en) Sputtering target
TWI673374B (en) Sputtering target and layered film
JP2018176493A (en) LAMINATED FILM AND Ag ALLOY SPUTTERING TARGET
JP2022113107A (en) Ag ALLOY FILM, AND Ag ALLOY SPUTTERING TARGET
JP2004084065A (en) Silver alloy sputtering target and its producing method
JP2023067697A (en) Ag alloy film and Ag alloy sputtering target
JP6908164B2 (en) Ag alloy film
WO2021111974A1 (en) Ag alloy film and ag alloy sputtering target
WO2015099119A1 (en) High-purity copper or copper alloy sputtering target, and method for producing same
WO2020116545A1 (en) Metal film and sputtering target
WO2021112004A1 (en) Ag alloy sputtering target
JP6908163B2 (en) Ag alloy sputtering target
JP6965963B2 (en) Ag alloy sputtering target
WO2020116557A1 (en) Metal film and sputtering target
WO2020116558A1 (en) Metal film and sputtering target
WO2019163745A1 (en) Ag alloy sputtering target and method for manufacturing ag alloy sputtering target
JP2006057178A (en) Sputtering target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921332

Country of ref document: EP

Kind code of ref document: A1