WO2022156298A1 - 一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器 - Google Patents

一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器 Download PDF

Info

Publication number
WO2022156298A1
WO2022156298A1 PCT/CN2021/126881 CN2021126881W WO2022156298A1 WO 2022156298 A1 WO2022156298 A1 WO 2022156298A1 CN 2021126881 W CN2021126881 W CN 2021126881W WO 2022156298 A1 WO2022156298 A1 WO 2022156298A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber
core
hole
suspended
Prior art date
Application number
PCT/CN2021/126881
Other languages
English (en)
French (fr)
Inventor
王骥
杨玉强
刘洺辛
Original Assignee
广东海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东海洋大学 filed Critical 广东海洋大学
Priority to US17/669,816 priority Critical patent/US11630014B2/en
Publication of WO2022156298A1 publication Critical patent/WO2022156298A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means

Definitions

  • the invention belongs to the field of optical fiber sensing, and relates to a high-sensitivity air pressure sensor based on a suspended core optical fiber and an edge-hole optical fiber.
  • Air pressure measurement is widely used in medical and health, instrumentation, barometer and other industrial equipment.
  • the fiber optic air pressure sensor based on Fabry-Perot interferometer (FPI) has the advantages of small size, light weight, no electromagnetic interference, corrosion resistance, high measurement accuracy and can be applied to various extreme environments and other electronic air pressure sensors. The advantages have been widely concerned by researchers.
  • FPI air pressure sensors are mainly divided into two types. The first type is to measure the air pressure by measuring the change of the cavity length of the FP cavity. This type of sensor is divided into thin film type and optical fiber bubble type, both of which are fragile in structure and easy to break. shortcoming. The second type is the measurement of air pressure by the change of the refractive index in the air cavity of the optical fiber.
  • This type of air pressure sensor is usually prepared by splicing microstructured optical fibers.
  • the air holes of the microstructured optical fibers are used to form an open air cavity.
  • the air pressure sensitivity of a single open cavity is about 3.9 nm/Mpa.
  • Using the double-chamber cascade vernier effect can further improve the barometric pressure measurement sensitivity by 1-2 orders of magnitude.
  • the dual-cavity cascade adopts the method of connecting an air cavity and a quartz cavity in sequence, which has large incident light loss and low interference spectrum contrast.
  • the present invention provides a high-sensitivity barometric pressure sensor based on a suspended core optical fiber and an edge-hole optical fiber, including:
  • Broadband light source fiber optic circulator, sensor head, spectrometer
  • the fiber optic circulator is connected with the broadband light source, the sensor head and the spectrometer;
  • the sensing head includes single-mode fiber, multi-mode fiber, suspended core fiber, and edge-hole fiber;
  • the single-mode fiber is connected to the suspended core fiber through the multi-mode fiber;
  • the multimode fiber is connected with the side hole fiber through the suspended core fiber.
  • the wavelength band of the broadband light source is 1200nm-1600nm.
  • the optical fiber circulator includes a first end of the optical fiber circulator, a second end of the optical fiber circulator, and a third end of the optical fiber circulator; the first end of the optical fiber circulator is connected to the broadband light source; the second end of the optical fiber circulator is connected to the sensor head The third end of the optical fiber circulator is connected to the spectrometer; the broadband light source transmits the band signal to the sensing head through the first end of the optical fiber circulator for processing; the sensing head transmits the processed band signal to the spectrometer through the second end of the optical fiber circulator .
  • the single-mode fiber includes a first core; the multi-mode fiber includes a second core; the suspended core fiber includes a third core and a first air hole; and the edge-hole fiber includes a fourth core and a second air hole.
  • the single-mode optical fiber and the multi-mode optical fiber are spliced without dislocation.
  • the multimode fiber length is 50-150 microns.
  • the multimode optical fiber and the suspended core optical fiber are dislocated and spliced, and the dislocation amount is 10-30 microns;
  • the second fiber core is connected to the third fiber core and the first air hole.
  • the length of the suspended core fiber is 200-300 microns.
  • the suspended core optical fiber and the edge hole optical fiber are staggered and spliced; the third core and the fourth core are connected core-to-core; the first air hole and the second air hole are dislocated and connected.
  • the lengths of the third fiber core and the fourth fiber core satisfy that the sum of the optical paths of the incident light transmitted in the third fiber core and the fourth fiber core is 1.9-1.99 times the optical path of the incident light transmitted in the first air hole or 2.01-2.10 times.
  • the invention adopts the optical fiber fusion splicing preparation method, which is simple to manufacture; small in size, compact in structure, easy to use; does not need gluing, and has good sensor stability; double-cavity parallel connection can produce vernier effect, good interference spectrum contrast, and high sensitivity.
  • Fig. 1 is the sensing system of the present invention
  • Fig. 2 is the sensor head of the present invention
  • FIG. 3 is a schematic diagram of the interference spectrum envelope generation according to the present invention, wherein (a) air cavity interference spectrum; (b) quartz cavity interference spectrum; (c) parallel interference spectrum;
  • FIG. 4 is a schematic diagram of the cursor effect according to the present invention, wherein (a) the quartz cavity spectral shift; (b) the interference spectrum envelope spectral shift.
  • the technical problem to be solved by the present invention is to provide an all-fiber air pressure sensor based on vernier effect sensitization, which is simple to manufacture and does not require expensive equipment.
  • the prepared optical fiber double cavity is a parallel structure, which can not only realize the vernier effect, but also control the proportion of incident light in the double cavity, thereby improving the interference spectrum contrast.
  • the sensor sensitivity is improved by 1-2 orders of magnitude.
  • the present invention provides a high-sensitivity barometric pressure sensor based on a suspended core optical fiber and an edge-hole optical fiber, including: a broadband light source, a fiber optic circulator, a sensing head, and a spectrometer; an optical fiber circulator, a broadband light source, and a sensing head , Spectrometer connection; the sensing head includes single-mode fiber, multi-mode fiber, suspended core fiber, side-hole fiber; single-mode fiber is connected to the suspended core fiber through the multi-mode fiber; multi-mode fiber is connected to the side-hole fiber through the suspended core fiber,
  • the wavelength band of the broadband light source is 1200nm-1600nm.
  • the optical fiber circulator includes the first end of the optical fiber circulator, the second end of the optical fiber circulator, and the third end of the optical fiber circulator; the first end of the optical fiber circulator is connected with the broadband light source; the second end of the optical fiber circulator The third end of the optical fiber circulator is connected to the spectrometer; the broadband light source transmits the band signal to the sensing head through the first end of the optical fiber circulator for processing; the sensing head passes through the second end of the optical fiber circulator to process the The band signal is transmitted to the spectrometer.
  • the single-mode fiber includes a first core; the multi-mode fiber includes a second core; the suspended core fiber includes a third core and a first air hole; and the edge-hole fiber includes a fourth core and a second air hole.
  • the single-mode optical fiber and the multi-mode optical fiber are fused core-to-core; the first core and the second core are connected core-to-core.
  • Multimode fiber lengths are 50-150 microns.
  • the multi-mode optical fiber and the suspended core optical fiber are dislocated and spliced, and the dislocation amount is 10-30 microns; the second fiber core is connected with the third fiber core and the first air hole.
  • the length of the suspended core fiber is 200-300 microns.
  • the suspension core optical fiber and the side hole optical fiber are staggered and spliced; the third fiber core is connected to the fourth fiber core to the core; the first air hole and the second air hole are dislocated and connected.
  • the length of the third fiber core and the fourth fiber core is such that the sum of the optical paths of the incident light transmitted in the third fiber core and the fourth fiber core is 1.9-1.99 times or 2.01-2.10 times the optical path of the incident light transmitted in the first air hole times.
  • the sensor structure is shown in Figure 1, which consists of a broad-spectrum light source (1200nm-1600nm), an optical fiber circulator, a sensor head and a spectrometer.
  • the structure of the sensor head is shown in Figure 2, which consists of a single-mode optical fiber fused to one end of a multi-mode optical fiber, a suspended core optical fiber, and a side-hole optical fiber.
  • the outer diameter of single-mode fiber, multi-mode fiber, suspended core fiber and side-hole fiber is 125 microns
  • the core diameter of single-mode fiber, suspended core fiber and side-hole fiber is 10 microns
  • the core diameter of multi-mode fiber is 10 microns.
  • the air hole of the suspended core fiber is located in the center of the cross section, and the diameter is 50 microns. is 50 microns
  • the distance between the center of the edge hole and the center of the fiber core is 50 microns.
  • the preparation process of the sensor head the single-mode optical fiber and the multi-mode optical fiber are spliced without dislocation, and then the multi-mode optical fiber is cut, and the length after cutting is 50-150 microns;
  • the cut end of the multimode fiber is spliced with the suspended core fiber in dislocation, and the dislocation amount is 10-30 microns, so that the core and air holes of the suspended core fiber are overlapped with the core part of the multimode fiber, so that part of the incident light enters the suspension.
  • the core of the core fiber, the other part enters the air hole of the suspended core fiber, and then the suspended core fiber is cut, and the length after cutting is 200-300 microns;
  • the incident light enters the multi-mode fiber from the single-mode fiber, and expands the beam in the multi-mode fiber (the role of the multi-mode fiber: reduce the accuracy of the dislocation amount when the suspended core fiber is dislocated and spliced); part of the incident light is absorbed by the multi-mode fiber and the suspended core fiber.
  • the interface M2 formed by the air hole is reflected, and is received by the spectrometer after passing through the fiber coupler, while the other part of the light enters the suspended core fiber; the incident light entering the suspended core fiber is divided into two bundles in the suspended core fiber, one of which is transmitted in the core.
  • the other beam is transmitted in the air hole; the beam transmitted in the suspended core fiber core enters the core of the edge-hole fiber, and then part of the beam is reflected back to the sensor head by the interface M4 of the single-mode fiber, and is transmitted by the spectrometer after passing through the fiber circulator. Receive; part of the light beam transmitted in the air hole of the suspended core fiber is reflected back to the sensor head by the interface M3 formed by the air hole of the suspended core fiber and the side hole fiber, and then received by the spectrometer through the fiber coupler. Therefore, the interfaces M2 and M3 constitute the optical fiber air cavity, and the interfaces M2 and M4 constitute the optical fiber silica cavity.
  • the interference spectra of the above two cavities are expressed as:
  • is the wavelength of the incident light
  • I air ( ⁇ ) and I silica ( ⁇ ) represent the interference spectrum of the air cavity and the quartz cavity, respectively
  • A, B, and C are the reflections from the interfaces M2, M3, and M4 back to the spectrometer, respectively.
  • the complex amplitude of light, L 2 , L 2 +L 3 are the lengths of the air cavity and the quartz cavity, respectively
  • n air and n silica are the refractive indices of the air cavity and the quartz cavity, respectively.
  • the air cavity and the quartz cavity form a parallel structure, and the spectrum received by the spectrometer is the superposition of the interference spectrum of the air cavity and the quartz cavity, which is expressed as:
  • the optical path length n silica (L 2 +L 3 ) of the quartz cavity is about twice the optical path n air L 2 of the air cavity, but not equal to 2 times (that is, the free spectral range of the air cavity FSR air is about the same as that of the quartz cavity)
  • the free spectral range of FSR silica is 2 times, but not equal to 2 times)
  • the interference spectrum of the parallel double cavity will generate an envelope, as shown in Figure 4, the envelope can be expressed as:
  • M is the magnification factor.
  • the refractive index in the air hole of the suspended core fiber changes accordingly, resulting in the translation of the interference spectrum of the air cavity. Since the free spectral range of the quartz cavity is about twice that of the air cavity, but not equal to 2 times, the parallel interference spectrum of the double cavity will produce a vernier effect.
  • the translation of the network is M times the translation of a single air cavity, as shown in Figure 5.
  • the air pressure sensitivity S air of a single quartz cavity can be expressed as:
  • is the rate of change of the refractive index of the gas with the gas pressure
  • ⁇ m is the peak wavelength
  • the invention provides an all-fiber air pressure sensor based on vernier effect sensitization.
  • the sensor is simple to prepare and does not require expensive equipment.
  • the prepared optical fiber double cavity is a parallel structure, which can not only realize the vernier effect, but also control the incidence in the double cavity. Compared with a single open air cavity, the sensitivity of the sensor is improved by 1-2 orders of magnitude.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器,包括,宽带光源、光纤环形器、传感头、光谱仪;光纤环形器与宽带光源、传感头、光谱仪连接;传感头包括单模光纤、多模光纤、悬浮芯光纤、边孔光纤;单模光纤通过所述多模光纤与悬浮芯光纤连接;多模光纤通过悬浮芯光纤与边孔光纤连接,采用光纤熔接制备方法,制作简单;体积小、结构紧凑,便于使用;不需要胶粘,传感器稳定性好;双腔并联可产生游标效应,干涉谱对比度好,灵敏度高。

Description

一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器 技术领域
本发明属于光纤传感领域,涉及一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器。
背景技术
气压测量在医疗卫生、仪器仪表、气压计等工业设备中有着广泛的应用。基于法布里-珀罗干涉计(FPI)的光纤气压传感器具有体积小、重量轻、不受电磁干扰、耐腐蚀、测量精度高和可适用于各种极端环境等电子气压传感器所不具备的优势,受到了研究者的广泛关注。FPI气压传感器主要分为两类,第一类是通过测量FP腔的腔长变化实现气压测量的,这类传感器分为薄膜型和光纤气泡型,这两种型号均存在结构脆弱、易于破碎的缺点。第二类是通过光纤空气腔内折射率的变化实现气压测量的。该类气压传感器通常采用微结构光纤熔接的方式制备而成,利用微结构光纤的气孔构成开放空气腔,单个开放腔的气压灵敏度约为3.9nm/Mpa。利用双腔级联游标效应可进一步提高气压测量灵敏度,可提高1-2个数量级。但目前双腔级联均采用空气腔和石英腔依次串联的方式,该方式入射光损耗大,干涉谱对比度低。
发明内容
为了解决上述的问题,本发明提供一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器,包括:
宽带光源、光纤环形器、传感头、光谱仪;
光纤环形器与宽带光源、传感头、光谱仪连接;
传感头包括单模光纤、多模光纤、悬浮芯光纤、边孔光纤;
单模光纤通过多模光纤与悬浮芯光纤连接;
多模光纤通过悬浮芯光纤与边孔光纤连接。
优选地,宽带光源的波段为1200nm-1600nm。
优选地,光纤环形器包括光纤环形器第一端、光纤环形器第二端、光纤环形器第三端;光纤环形器第一端与宽带光源连接;光纤环形器第二端与传感头连接;光纤环形器第三端与光谱仪连接;宽带光源通过光纤环形器第一端将波段信号传输到传感头进行处理;传感头通过光纤环形器第二端将处理后的波段信号传输到光谱仪。
优选地,单模光纤包括第一纤芯;多模光纤包括第二纤芯;悬浮芯光纤包括第三纤芯和第一气孔;边孔光纤包括第四纤芯和第二气孔。
优选地,单模光纤与多模光纤无错位熔接。
优选地,多模光纤长度为50-150微米。
优选地,多模光纤与悬浮芯光纤错位熔接,错位量为10-30微米;
第二纤芯与第三纤芯和第一气孔连接。
优选地,悬浮芯光纤的长度为200-300微米。
优选地,悬浮芯光纤与边孔光纤错位熔接;第三纤芯与第四纤芯对芯连接;第一气孔和第二气孔错位连接。
优选地,第三纤芯和第四纤芯的长度满足入射光在第三纤芯和第四纤芯中传输的光程总和为入射光在第一气孔中传输的光程的1.9-1.99倍或2.01-2.10倍。
本发明的积极进步效果在于:
本发明用于采用光纤熔接制备方法,制作简单;体积小、结构紧凑,便于使用;不需要胶粘,传感器稳定性好;双腔并联可产生游标效应,干涉谱对比度好,灵敏度高。
附图说明
图1为本发明所述的传感***;
图2为本发明所述的传感头;
图3为本发明所述的干涉谱包络产生示意图,其中,(a)空气腔干涉谱;(b)石英腔干涉谱;(c)并联干涉谱;
图4为本发明所述的游标效应示意图,其中,(a)石英腔光谱平移;(b)干涉谱包络光谱平移。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范 围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
本发明所要解决的技术问题在于提供一种基于游标效应增敏的全光纤气压传感器,该传感器制备简单,不需要昂贵设备。制备的光纤双腔为并联结构,该结构不仅可以实现游标效应,而且可调控双腔内入射光的比例,从而提高干涉谱对比度。相对于单个开放空气腔,该传感器灵敏度提高了1-2个数量级。
如图1所示,本发明提供一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器,包括:宽带光源、光纤环形器、传感头、光谱仪;光纤环形器与宽带光源、传感头、光谱仪连接;传感头包括单模光纤、多模光纤、悬浮芯光纤、边孔光纤;单模光纤通过多模光纤与悬浮芯光纤连接;多模光纤通过悬浮芯光纤与边孔光纤连接,宽带光源的波段为1200nm-1600nm,光纤环形器包括光纤环形器第一端、光纤环形器第二端、光纤环形器第三端;光纤环形器第一端与宽带光源连接;光纤环形器第二端与传感头连接;光纤环形器第三端与光谱仪连接;宽带光源通过光纤环形器第一端将波段信号传输到传感头进行处理;传感头通过光纤环形器第二端将处理后的波段信号传输到光谱仪。
单模光纤包括第一纤芯;多模光纤包括第二纤芯;悬浮芯光纤包括第三纤芯和第一气孔;边孔光纤包括第四纤芯和第二气孔。
单模光纤与多模光纤对芯熔接;第一纤芯与第二纤芯对芯连接。多模光纤长度为50-150微米。
多模光纤与悬浮芯光纤错位熔接,错位量为10-30微米;第二纤芯与第三纤芯和第一气孔连接。悬浮芯光纤的长度为200-300微米。
悬浮芯光纤与边孔光纤错位熔接;第三纤芯与第四纤芯对芯连接;第一气孔和第二气孔错位连接。
第三纤芯和第四纤芯长度满足入射光在第三纤芯和第四纤芯中传输的光程总和为入射光在第一气孔中传输的光程的1.9-1.99倍或2.01-2.10倍。
传感器结构如图1所示,由宽谱光源(1200nm-1600nm)、光纤环形器、传感头和光谱仪构成。
传感头结构如图2所示,由单模光纤一端依次熔接一段多模光纤、一段悬浮芯光纤和一段边孔光纤构成。单模光纤、多模光纤、悬浮芯光纤和边孔光纤的外径均为125微米,单模光纤、悬浮芯光纤和边孔光纤的纤芯直径均为10微米,多模光纤的纤芯直径为30-50微米,悬浮芯光纤的气孔位于横截面中心,直径为50微米,悬浮芯光纤的纤芯位于气孔边缘,部分裸露于空气中,边孔光纤的纤芯位于截面中心,边孔直径为50微米,边孔中心与纤芯中心的距离为50微米。
传感头的制备过程:将单模光纤与多模光纤无错位熔接,然后将多模光纤切割,切割后的长度为50-150微米;
将多模光纤的切割端与悬浮芯光纤错位熔接,错位量为10-30微米,保证悬浮芯光纤的纤芯和气孔均与多模光纤的纤芯部分重叠,目的是使入射光一部分进入悬浮芯光纤的纤芯,另一部分进入悬浮芯光纤的气孔,然后将悬浮芯光纤切割,切割后的长度为200-300微米;
将切割后的悬浮芯光纤与边孔光纤错位熔接,错位熔接后悬浮芯光纤的纤芯与边孔的纤芯重合,且悬浮芯光纤和边孔光纤的气孔部分重叠,目的是使外界气体进入悬浮芯光纤气孔内,实现外界气压测量,然后切割边孔光纤,其长度由悬浮芯光纤的长度决定,保证入射光在悬浮芯光纤和边孔光纤纤芯中传输的光程约为在悬浮芯气孔中传输的光程的2倍,目的是使入射光产生游标效应。
实施例1:
入射光由单模光纤进入多模光纤,在多模光纤中扩束(多模光纤的作用:减小悬浮芯光纤错位熔接时错位量精度要求);部分入射光被多模光纤和悬浮芯光纤气孔构成的界面M2反射,经光纤耦合器后被光谱仪接收,而另一部分光进入悬浮芯光纤;进入悬浮芯光纤的入射光在悬浮芯光纤中又分成两束,其中一束在纤芯中传输,另一束在气孔中传输;在悬浮芯纤芯中传输的光束进入边孔光纤的纤芯,然后由部分光束由单模光纤的界面M4反射回传感头,经光纤环形器后由光谱仪接收;在悬浮芯气孔中传输的光束,部分光被悬浮芯光纤气孔和边孔光纤构成的界面M3反射回传感头,然后经光纤耦合器被光谱仪接收。因此,界面M2和M3构成光纤空气腔,界面M2和M4构成光纤石英腔。以上两腔干涉谱分别表示为:
Figure PCTCN2021126881-appb-000001
其中,λ为入射光波长,I air(λ)、I silica(λ)分别表示空气腔和 石英腔的干涉谱,A、B、C分别为由界面M2、M3和M4反射回光谱仪中的反射光的复振幅,L 2、L 2+L 3分别为空气腔和石英腔的长度,n air、n silica分别为空气腔和石英腔的折射率。空气腔和石英腔构成并联结构,光谱仪接收到的光谱为空气腔和石英腔干涉谱的叠加,表示为:
I all(λ)=I air(λ)+I silica(λ)
当石英腔的长度光程n silica(L 2+L 3)约为空气腔光程n airL 2的2倍,但不等于2倍时(即空气腔的自由光谱范围FSR air约为石英腔自由光谱范围FSR silica的2倍,但不等于2倍),并联双腔的干涉谱就会产生包络,如图4所示,该包络可表示为:
Figure PCTCN2021126881-appb-000002
Figure PCTCN2021126881-appb-000003
其中,M为放大因子。当外界气压变化时,悬浮芯光纤气孔内的折射率随之发生变化,导致空气腔的干涉谱平移。由于石英腔的自由光谱范围约为空气腔的2倍,但不等于2倍,此时双腔并联干涉谱会产生游标效应,即当空气腔在气压的作用下干涉谱平移时,干涉谱包络的平移量为单个空气腔平移量的M倍,如图5所示。单个石英腔气压灵敏度S air可表示为:
Figure PCTCN2021126881-appb-000004
其中,α为气体折射率随气压的变化率,λ m为峰值波长。并联双腔传感器气压灵敏度S envelope可表示为:
Figure PCTCN2021126881-appb-000005
双腔并联后温度灵敏度为单个空气腔的M倍。假设峰值波长为λ m=1550nm,空气折射率n air=1,放大倍率M=50,系数α=2.5×10 -3/MPa,则单个空气腔的气压灵敏度约为3.88nm/MPa,并联双腔传感器温度灵敏度为193.75nm/MPa。
本发明提供一种基于游标效应增敏的全光纤气压传感器,该传感器制备简单,不需要昂贵设备,制备的光纤双腔为并联结构,该结构不仅可以实现游标效应,而且可调控双腔内入射光的比例,从而提高干涉谱对比度,相对于单个开放空气腔,该传感器灵敏度提高了1-2个数量级。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围。都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (10)

  1. 一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器,其特征在于,包括:
    宽带光源、光纤环形器、传感头、光谱仪;
    所述光纤环形器与所述宽带光源、传感头、光谱仪连接;
    所述传感头包括单模光纤、多模光纤、悬浮芯光纤、边孔光纤;
    所述单模光纤通过所述多模光纤与所述悬浮芯光纤连接;
    所述多模光纤通过所述悬浮芯光纤与所述边孔光纤连接。
  2. 如权利要求1所述一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器,其特征在于,
    所述宽带光源的波段为1200nm-1600nm。
  3. 如权利要求1所述一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器,其特征在于,
    所述光纤环形器包括光纤环形器第一端、光纤环形器第二端、光纤环形器第三端;
    所述光纤环形器第一端与所述宽带光源连接;
    所述光纤环形器第二端与所述传感头连接;
    所述光纤环形器第三端与所述光谱仪连接;
    所述宽带光源通过所述光纤环形器第一端将波段信号传输到所述传感头进行处理;
    所述传感头通过所述光纤环形器第二端将处理后的所述波段信号传输到所述光谱仪。
  4. 如权利要求1所述一种基于悬浮芯光纤和边孔光纤的高灵敏 度气压传感器,其特征在于,
    所述单模光纤包括第一纤芯;
    所述多模光纤包括第二纤芯;
    所述悬浮芯光纤包括第三纤芯和第一气孔;
    所述边孔光纤包括第四纤芯和第二气孔。
  5. 如权利要求4所述的一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器,其特征在于,
    所述单模光纤与所述多模光纤无错位熔接。
  6. 如权利要求4所述的一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器,其特征在于,
    所述多模光纤长度为50-150微米。
  7. 如权利要求4所述一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器,其特征在于,
    所述多模光纤与所述悬浮芯光纤错位熔接,错位量为10-30微米;
    所述第二纤芯与所述第三纤芯和第一气孔连接。
  8. 如权利要求7所述一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器,其特征在于,
    所述悬浮芯光纤的长度为100-300微米。
  9. 如权利要求4所述一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器,其特征在于,
    所述悬浮芯光纤与所述边孔光纤错位熔接;
    所述第三纤芯与所述第四纤芯对芯连接;
    所述第一气孔和所述第二气孔错位连接。
  10. 如权利要求9所述一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器,其特征在于,
    所述第三纤芯和第四纤芯的长度满足入射光在第三纤芯和第四纤芯中传输的光程总和为所述入射光在所述第一气孔中传输的光程的1.9-1.99倍或2.01-2.10倍。
PCT/CN2021/126881 2021-01-25 2021-10-28 一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器 WO2022156298A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/669,816 US11630014B2 (en) 2021-01-25 2022-02-11 High-sensitivity air pressure sensor based on suspended-core fiber and side-hole fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110094621.0 2021-01-25
CN202110094621.0A CN112924082B (zh) 2021-01-25 2021-01-25 一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/669,816 Continuation US11630014B2 (en) 2021-01-25 2022-02-11 High-sensitivity air pressure sensor based on suspended-core fiber and side-hole fiber

Publications (1)

Publication Number Publication Date
WO2022156298A1 true WO2022156298A1 (zh) 2022-07-28

Family

ID=76165832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126881 WO2022156298A1 (zh) 2021-01-25 2021-10-28 一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器

Country Status (2)

Country Link
CN (1) CN112924082B (zh)
WO (1) WO2022156298A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924082B (zh) * 2021-01-25 2021-09-28 广东海洋大学 一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器
CN113959943B (zh) * 2021-09-22 2024-03-19 武汉雷施尔光电信息工程有限公司 一种平面型光纤探针传感器的空泡份额测量***及方法
CN114414134B (zh) * 2022-01-21 2022-11-29 吉林大学 一种基于pdms膜和游标效应增敏的光纤液压传感器
CN115752877B (zh) * 2022-11-10 2023-12-15 常州厚德再生资源科技有限公司 一种应用于再生有机树脂复合型材装置上的光纤相对气压传感器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1269881A (zh) * 1997-07-07 2000-10-11 施卢默格海外有限公司 光纤压力传感器以及包括这种压力传感器的压力传感***
US6448551B1 (en) * 1999-11-29 2002-09-10 Weatherford/Lamb, Inc. Fiber Bragg grating sensor system having enhanced strain-to-wavelength responsivity by using a spectral beating based vernier effect
US20040165809A1 (en) * 2003-02-21 2004-08-26 Weatherford/Lamb, Inc. Side-hole cane waveguide sensor
CN108225657A (zh) * 2017-09-28 2018-06-29 南京邮电大学 一种具有光学游标效应的光纤fp气压传感器及其制备方法
CN109186849A (zh) * 2018-08-24 2019-01-11 武汉理工大学 基于游标效应的可控灵敏度光纤法布里-珀罗气压传感器
CN210180567U (zh) * 2019-06-04 2020-03-24 深圳大学 光纤光栅方向性压力传感器和光纤光栅制备装置
CN111678540A (zh) * 2020-06-10 2020-09-18 杭州光飞秒科技有限公司 一种基于游标效应和并联式f-p干涉仪的应变光纤传感器
CN211824859U (zh) * 2019-12-12 2020-10-30 哈尔滨理工大学 基于错位熔接和游标效应的光纤气压传感器
CN112924082A (zh) * 2021-01-25 2021-06-08 广东海洋大学 一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139698A (ja) * 2005-11-22 2007-06-07 Mitsubishi Heavy Ind Ltd 歪センシング用光ファイバ
CN102147311A (zh) * 2010-12-29 2011-08-10 杭州光佑科技有限公司 光纤光栅气压传感器
KR101653908B1 (ko) * 2015-02-25 2016-09-02 부경대학교 산학협력단 광섬유 압력 센서 및 이를 이용한 압력 측정방법
CN206683813U (zh) * 2017-03-16 2017-11-28 中国计量大学 基于细芯光纤的迈克尔逊光纤气压传感器
CN209689810U (zh) * 2019-02-22 2019-11-26 中国计量大学 一种基于光子晶体光纤的马赫-曾德干涉仪型气压传感器
CN110793710B (zh) * 2019-11-15 2021-04-23 山东大学 一种双分辨率光纤气压测量传感器及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1269881A (zh) * 1997-07-07 2000-10-11 施卢默格海外有限公司 光纤压力传感器以及包括这种压力传感器的压力传感***
US6448551B1 (en) * 1999-11-29 2002-09-10 Weatherford/Lamb, Inc. Fiber Bragg grating sensor system having enhanced strain-to-wavelength responsivity by using a spectral beating based vernier effect
US20040165809A1 (en) * 2003-02-21 2004-08-26 Weatherford/Lamb, Inc. Side-hole cane waveguide sensor
CN108225657A (zh) * 2017-09-28 2018-06-29 南京邮电大学 一种具有光学游标效应的光纤fp气压传感器及其制备方法
CN109186849A (zh) * 2018-08-24 2019-01-11 武汉理工大学 基于游标效应的可控灵敏度光纤法布里-珀罗气压传感器
CN210180567U (zh) * 2019-06-04 2020-03-24 深圳大学 光纤光栅方向性压力传感器和光纤光栅制备装置
CN211824859U (zh) * 2019-12-12 2020-10-30 哈尔滨理工大学 基于错位熔接和游标效应的光纤气压传感器
CN111678540A (zh) * 2020-06-10 2020-09-18 杭州光飞秒科技有限公司 一种基于游标效应和并联式f-p干涉仪的应变光纤传感器
CN112924082A (zh) * 2021-01-25 2021-06-08 广东海洋大学 一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器

Also Published As

Publication number Publication date
CN112924082A (zh) 2021-06-08
CN112924082B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2022156298A1 (zh) 一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器
CN108225657B (zh) 一种具有光学游标效应的光纤fp气压传感器及其制备方法
WO2022160822A1 (zh) 一种基于悬浮光纤错位熔接的高灵敏度高温传感器
US11112316B2 (en) Optical fiber temperature sensor
CN206618529U (zh) 一种简易反射式干涉型光纤气压传感器
CN205691170U (zh) 一种气压和温度同时测量的光纤传感器
CN211824859U (zh) 基于错位熔接和游标效应的光纤气压传感器
CN206618528U (zh) 一种基于多个法布里‑珀罗微腔的光纤气压传感装置
CN107515054B (zh) 一种基于迈克尔逊干涉仪的光纤温度和折射率测量传感装置
CN113029381B (zh) 基于石英管封装pdms腔和空气腔的高精度温度传感器
WO2022199637A1 (zh) 光纤温度传感器及传感头结构
CN210221338U (zh) 一种基于并联游标效应的光纤高温传感器
CN113008406B (zh) 基于增强型游标效应的高精度温度传感器
CN208155479U (zh) 双腔结构的光纤温度与压力传感器
CN108572047A (zh) 一种基于多个法布里-珀罗微腔的光纤气压传感装置
CN112629744A (zh) 一种基于级联光纤珐珀干涉计的气压传感器
CN108759983A (zh) 一种开腔压差式光纤法珀液位传感器及其液位测量方法
Guo et al. High sensitivity gas pressure sensor based on two parallel-connected Fabry–Perot interferometers and Vernier effect
CN112629743A (zh) 一种基于光纤双腔游标效应增敏的气压传感器
CN113029429A (zh) 具有温度补偿功能的气压传感器
Luo et al. Ultrasensitive fiber-based gas pressure sensor based on harmonic Vernier effect with enhanced contrast
CN109855555B (zh) 一种可实现轴向应变补偿的光纤弯曲传感器
CN114167084B (zh) 一种单光纤三维加速度传感探头及传感器
Tian et al. High-sensitivity gas pressure sensor with low temperature cross-talk based on Vernier effect of cascaded Fabry-Perot interferometers
CN114111857A (zh) 一种基于游标效应的光纤fpi级联mi传感装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920676

Country of ref document: EP

Kind code of ref document: A1