WO2022160822A1 - 一种基于悬浮光纤错位熔接的高灵敏度高温传感器 - Google Patents

一种基于悬浮光纤错位熔接的高灵敏度高温传感器 Download PDF

Info

Publication number
WO2022160822A1
WO2022160822A1 PCT/CN2021/126961 CN2021126961W WO2022160822A1 WO 2022160822 A1 WO2022160822 A1 WO 2022160822A1 CN 2021126961 W CN2021126961 W CN 2021126961W WO 2022160822 A1 WO2022160822 A1 WO 2022160822A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core
fiber
suspended
circulator
Prior art date
Application number
PCT/CN2021/126961
Other languages
English (en)
French (fr)
Inventor
杨玉强
王骥
刘洺辛
Original Assignee
广东海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东海洋大学 filed Critical 广东海洋大学
Priority to US17/581,053 priority Critical patent/US11359977B2/en
Publication of WO2022160822A1 publication Critical patent/WO2022160822A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement

Definitions

  • the invention relates to the technical field of optical fiber sensing, in particular to a high-sensitivity high-temperature sensor based on dislocation fusion of suspended optical fibers.
  • High temperature sensing has always been an important research direction of researchers in various countries. It has broad application prospects in aerospace, petrochemical, marine and other fields, and is a cutting-edge technology related to national advanced equipment manufacturing.
  • Optical fiber sensors have always been a research hotspot in this field due to their inherent safety, small size, high sensing accuracy, anti-electromagnetic interference, easy networking, and high temperature resistance of the material itself.
  • Optical fiber temperature sensors are mainly designed with fiber gratings and fiber microcavities. The development of fiber grating is relatively mature and has been used in all walks of life.
  • the grating when the fiber grating is at a high temperature above 300 °C, the grating will attenuate or disappear, which seriously affects its performance.
  • the performance of the optical fiber microcavity depends on the surface shape of its two reflecting surfaces, and the performance does not change if the surface shape is unchanged. Therefore, its measurable temperature can reach 1100 °C, which is relatively close to the melting point of quartz.
  • the short cavity length of fiber microcavity usually 50-400 ⁇ m
  • its temperature sensitivity is low, usually below 10pm/°C.
  • the present invention provides a high-sensitivity high-temperature sensor based on dislocation fusion of suspended optical fibers, which can measure a high temperature of 1100 ° C, and utilizes the dual-cavity vernier effect, and its sensitivity is higher than that of a single optical fiber microcavity (Fabry-Perot interference). ) increased by 1 order of magnitude.
  • the present invention provides the following solutions: the present invention provides a high-sensitivity high-temperature sensor based on dislocation fusion of suspended optical fibers, including a broadband light source, an optical fiber circulator, a sensing head and a spectrometer;
  • the optical fiber circulator is respectively connected with the broadband light source, the sensing head and the spectrometer;
  • the sensing head comprises a first single-mode optical fiber, a multi-mode optical fiber, a suspended core optical fiber and a second single-mode optical fiber connected in sequence;
  • the first single-mode optical fiber includes a first core
  • the multimode fiber includes a second core
  • the suspended core optical fiber includes a third core and a first air hole
  • the second single-mode optical fiber includes a fourth core
  • the first single-mode optical fiber and the multi-mode optical fiber are fused to the core;
  • the first fiber core is connected to the second fiber core-to-core.
  • the wavelength band of the broadband light source is 1200nm-1600nm.
  • the optical fiber circulator includes a first end of the optical fiber circulator, a second end of the optical fiber circulator, and a third end of the optical fiber circulator;
  • the first end of the optical fiber circulator is connected with the broadband light source
  • the second end of the optical fiber circulator is connected with the sensing head
  • the third end of the optical fiber circulator is connected to the spectrometer
  • the broadband light source transmits the band signal to the sensing head for processing through the first end of the optical fiber circulator;
  • the sensing head transmits the processed signal of the wavelength band to the spectrometer through the second end of the optical fiber circulator.
  • the length of the multimode fiber is 50-150 microns.
  • the multimode optical fiber and the suspended core optical fiber are dislocated and spliced, and the dislocation amount is 10-30 microns;
  • the second fiber core is connected to the third fiber core and the first air hole.
  • the length of the suspended core optical fiber is 200-300 microns.
  • the suspended core optical fiber and the second single-mode optical fiber are dislocated and spliced;
  • the third core is connected to the fourth core.
  • the lengths of the third fiber core and the fourth fiber core satisfy that the sum of the transmitted optical paths of the incident light in the third fiber core and the fourth fiber core is the incident light in the first air hole. 1.90-1.99 times or 2.01-2.10 times the transmission optical path
  • the invention adopts the optical fiber fusion preparation method, which is simple to manufacture and does not need expensive special equipment; small size, compact structure, easy to use; all-fiber structure, can measure high temperature up to 1000 degrees; no glue is required, and the sensor has good stability;
  • the parallel connection of cavities can produce a vernier effect and has high sensitivity.
  • FIG. 1 is a schematic diagram of the sensor structure of the present invention
  • FIG. 2 is a schematic structural diagram of the sensor head of the present invention.
  • Fig. 3 is a schematic cross-sectional view of an optical fiber of the present invention, wherein: Fig. 3(a) is a schematic cross-sectional view of the first single-mode fiber and the second single-mode fiber, Fig. 3(b) is a schematic cross-sectional view of a multi-mode fiber, and Fig. 3(c) is a suspension Schematic diagram of the cross-section of the core fiber;
  • FIG. 4 is a schematic diagram of an interference spectrum envelope generated by an embodiment of the present invention, wherein: (a) is an air cavity interference spectrum, (b) is a quartz cavity interference spectrum, and (c) is a parallel interference spectrum;
  • FIG. 5 is a schematic diagram of the cursor effect generated by the embodiment of the present invention; wherein: (a) is the quartz spectral shift, and (b) is the interference spectrum envelope spectral shift.
  • the present invention provides a high-sensitivity high-temperature sensor based on suspended optical fiber dislocation fusion, including a broadband light source, an optical fiber circulator, a sensor head and a spectrometer;
  • the optical fiber circulator is respectively connected with the broadband light source, the sensor head and the spectrometer;
  • the optical fiber circulator includes the first end of the optical fiber circulator, the second end of the optical fiber circulator, and the third end of the optical fiber circulator; the first end of the optical fiber circulator is connected with the broadband light source; the second end of the optical fiber circulator is connected with the sensing head; The third end of the device is connected to the spectrometer;
  • the broadband light source transmits the band signal to the sensor head for processing through the first end of the optical fiber circulator;
  • the sensing head transmits the processed band signal to the spectrometer through the second end of the fiber circulator.
  • the sensing head includes a first single-mode optical fiber, a multi-mode optical fiber, a suspended core optical fiber and a second single-mode optical fiber which are connected in sequence.
  • the first single-mode optical fiber includes a first core; the multi-mode optical fiber includes a second core; the suspended core optical fiber includes a third core and a first air hole; and the second single-mode optical fiber includes a fourth core.
  • the cross-sections of several optical fibers are shown in Figure 3.
  • the outer diameters of the first single-mode fiber, the second single-mode fiber, the multi-mode fiber and the suspended core fiber are all 125 microns.
  • the core diameter of the suspended core fiber is 10 microns
  • the core diameter of the multimode fiber is 30-50 microns
  • the first air hole of the suspended core fiber is located in the center of the cross section, and the diameter is 50 microns
  • the third core of the suspended core fiber is 50 microns. Located on the edge of the first air hole, part of it is exposed to the air.
  • the preparation process of the sensor head is as follows:
  • the cut end of the multimode fiber is dislocated and spliced with the suspended core fiber, and the dislocation amount is 10-30 microns, so that the core and air holes of the suspended core fiber are overlapped with the core part of the multimode fiber, so that part of the incident light enters the suspended core fiber.
  • the other part enters the air hole of the suspended core fiber, and then the suspended core fiber is cut, and the length after cutting is 200-300 microns;
  • the incident light enters the multi-mode fiber from the first single-mode fiber, and expands the beam in the multi-mode fiber (the role of the multi-mode fiber: reducing the accuracy requirements of the dislocation amount when the suspended core fiber is dislocated and spliced); part of the incident light is absorbed by the multi-mode fiber and suspended.
  • the interface M2 formed by the air hole of the core fiber is reflected and received by the spectrometer after passing through the fiber coupler, and another part of the light enters the suspended core fiber; the incident light entering the suspended core fiber is divided into two bundles in the suspended core fiber, one of which is in the core fiber.
  • the other beam is transmitted in the air hole; the beam transmitted in the suspended core fiber core enters the core of the second single-mode fiber, and then a part of the light is reflected by the interface M4 back to the sensor head, and is received by the spectrometer after passing through the fiber circulator ;
  • the interface M3 formed by the air hole of the suspended core fiber and the second single-mode fiber, and then received by the spectrometer through the fiber coupler. Therefore, the interfaces M2 and M3 constitute an air cavity, and the interfaces M2 and M4 constitute a quartz cavity.
  • the interference spectra of the above two cavities are expressed as:
  • is the wavelength of the incident light
  • Iair( ⁇ ) and Isilica( ⁇ ) represent the interference spectra of the air cavity and the quartz cavity, respectively
  • A, B, and C are the reflected light from the interfaces M2, M3, and M4, respectively, back to the spectrometer.
  • Complex amplitude; L 2 , L 2 +L 3 are the lengths of the air cavity and the quartz cavity, respectively; n air and n silica are the refractive indices of the air cavity and the quartz cavity, respectively.
  • the air cavity and the quartz cavity form a parallel structure, and the spectrum received by the spectrometer is the superposition of the interference spectrum of the air cavity and the quartz cavity, which is expressed as:
  • the optical path length n silica (L 2 +L 3 ) of the quartz cavity is about twice the optical path n air L 2 of the air cavity, but not equal to 2 times (that is, the free spectral range of the air cavity FSR air is about the same as that of the quartz cavity)
  • the free spectral range of FSR silica is 2 times, but not equal to 2 times)
  • the interference spectrum of the parallel double cavity will generate an envelope, as shown in Figure 4, the envelope can be expressed as:
  • thermo-optic coefficient of the fiber is one order of magnitude higher than the thermal expansion coefficient (the thermo-optic coefficient of the fiber is about 6.7 ⁇ 10 -6 /°C, and the thermal expansion coefficient of the fiber is about 0.55 ⁇ 10 -6 /°C), the thermo-optic coefficient of air is much smaller than that of quartz (The thermo-optic coefficient of air is about 5.6 ⁇ 10 -7 /°C), therefore, when the temperature changes, the thermal expansion of the optical fiber and the thermo-optic effect of the air can be ignored, and only the thermo-optic effect of the optical fiber is considered. Based on this, when the temperature changes, the interference spectrum of the air cavity does not change, but the interference spectrum of the quartz cavity shifts.
  • the free spectral range of the quartz cavity is about twice that of the air cavity, but not equal to 2 times, at this time, the parallel interference spectrum of the double cavity will produce a vernier effect, that is, when the interference spectrum of the quartz cavity is shifted under the action of temperature, the interference spectrum will The translation of the envelope is M times the translation of a single quartz cavity, as shown in Figure 5.
  • the temperature sensitivity S silica of a single quartz cavity can be expressed as
  • is the thermo-optic coefficient of the optical fiber
  • ⁇ m is the peak wavelength
  • the temperature sensitivity S envelope of the parallel dual-chamber sensor can be expressed as

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本发明提供一种基于悬浮光纤错位熔接的高灵敏度高温传感器,包括宽带光源、光纤环形器、传感头及光谱仪;光纤环形器分别与所述宽带光源、传感头及光谱仪连接;传感头包括依次连接的第一单模光纤、多模光纤、悬浮芯光纤及第二单模光纤。本发明制作简单,不需要昂贵的专用设备;体积小、结构紧凑,便于使用;全光纤结构,可测达1000度的高温;不需要胶粘,传感器稳定性好;双腔并联可产生游标效应,灵敏度高。

Description

一种基于悬浮光纤错位熔接的高灵敏度高温传感器 技术领域
本发明涉及光纤传感技术领域,特别涉及一种基于悬浮光纤错位熔接的高灵敏度高温传感器。
背景技术
高温传感一直是各个国家科研人员研究的重要方向,其在航空航天、石油化工、轮机船舶等领域具有广阔的应用前景,是关系国家先进装备制造的前沿技术。但是由于应用环境的复杂、严苛,不仅要求传感器材料可以承受高温,而且要保证在高温环境下工作的稳定性和准确性。光纤传感器由于其本征安全、尺寸小、传感精度高、抗电磁干扰、易组网以及材料本身耐高温等特点,一直是该领域研究的热点。光纤温度传感器主要以光纤光栅和光纤微腔设计为主。光纤光栅的发展较为成熟,已被应用于各行各业,但是,光纤光栅在300℃以上的高温情况下,光栅会衰减或消失,严重影响了其性能。光纤微腔性能依赖于其两反射面的面形情况,面形不变则性能不变,因此,其可测量温度可达1100℃,比较接近于石英熔点。然而,由于光纤微腔腔长较短(通常50-400微米),其温度灵敏度较低,通常低于10pm/℃。
发明内容
针对以上技术问题,本发明提供一种基于悬浮光纤错位熔接的高灵敏度高温传感器,能够测量1100℃的高温,而且利用双腔游标效应,其灵敏度比单个光纤微腔(法布里-珀罗干涉计)提高了1个数 量级。
为实现上述目的,本发明提供了如下方案:本发明提供一种基于悬浮光纤错位熔接的高灵敏度高温传感器,包括宽带光源、光纤环形器、传感头及光谱仪;
所述光纤环形器分别与所述宽带光源、所述传感头及所述光谱仪连接;
所述传感头包括依次连接的第一单模光纤、多模光纤、悬浮芯光纤及第二单模光纤;
所述第一单模光纤包括第一纤芯;
所述多模光纤包括第二纤芯;
所述悬浮芯光纤包括第三纤芯和第一气孔;
所述第二单模光纤包括第四纤芯;
所述第一单模光纤与所述多模光纤对芯熔接;
所述第一纤芯与所述第二纤芯对芯连接。
优选地,所述宽带光源的波段为1200nm-1600nm。
优选地,所述光纤环形器包括光纤环形器第一端、光纤环形器第二端、光纤环形器第三端;
所述光纤环形器第一端与所述宽带光源连接;
所述光纤环形器第二端与所述传感头连接;
所述光纤环形器第三端与所述光谱仪连接;
所述宽带光源通过所述光纤环形器第一端将波段信号传输到所 述传感头进行处理;
所述传感头通过所述光纤环形器第二端将处理后的所述波段信号传输到所述光谱仪。
优选地,所述多模光纤长度为50-150微米。
优选地,所述多模光纤与所述悬浮芯光纤错位熔接,错位量为10-30微米;
所述第二纤芯与所述第三纤芯和第一气孔连接。
优选地,所述悬浮芯光纤的长度为200-300微米。
优选地,所述悬浮芯光纤与所述第二单模光纤错位熔接;
所述第三纤芯与所述第四纤芯连接。
优选地,所述第三纤芯和所述第四纤芯的长度满足入射光在所述第三纤芯和所述第四纤芯内传输光程总和为入射光在所述第一气孔内传输光程的1.90-1.99倍或2.01-2.10倍
本发明公开了以下技术效果:
本发明采用光纤熔接制备方法,制作简单,不需要昂贵的专用设备;体积小、结构紧凑,便于使用;全光纤结构,可测达1000度的高温;不需要胶粘,传感器稳定性好;双腔并联可产生游标效应,灵敏度高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描 述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明传感器结构示意图;
图2为本发明传感头结构示意图;
图3为本发明光纤截面示意图,其中:图3(a)为第一单模光纤和第二单模光纤截面示意图,图3(b)为多模光纤截面示意图,图3(c)为悬浮芯光纤截面示意图;
图4为本发明实施例产生的干涉谱包络示意图,其中:(a)为空气腔干涉谱,(b)为石英腔干涉谱,(c)为并联干涉谱;
图5为本发明实施例产生的游标效应示意图;其中:(a)为石英光谱平移,(b)为干涉谱包络光谱平移。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,本发明提供一种基于悬浮光纤错位熔接的高灵敏度 高温传感器,包括宽带光源、光纤环形器、传感头及光谱仪;
光纤环形器分别与所述宽带光源、传感头及光谱仪连接;
光纤环形器包括光纤环形器第一端、光纤环形器第二端、光纤环形器第三端;光纤环形器第一端与宽带光源连接;光纤环形器第二端与传感头连接;光纤环形器第三端与光谱仪连接;
宽带光源通过光纤环形器第一端将波段信号传输到传感头进行处理;
如图2所示,传感头通过光纤环形器第二端将处理后的波段信号传输到光谱仪。传感头包括依次连接的第一单模光纤、多模光纤、悬浮芯光纤及第二单模光纤。第一单模光纤包括第一纤芯;多模光纤包括第二纤芯;悬浮芯光纤包括第三纤芯和第一气孔;第二单模光纤包括第四纤芯。
几种光纤的横截面如图3所示,第一单模光纤、第二单模光纤、多模光纤及悬浮芯光纤的外径均为125微米,第一单模光纤、第二单模光纤和悬浮芯光纤的纤芯直径为10微米,多模光纤的纤芯直径为30-50微米,悬浮芯光纤的第一气孔位于横截面中心,直径为50微米,悬浮芯光纤的第三纤芯位于第一气孔边缘,部分裸露于空气中。
传感头的制备过程如下:
将第一单模光纤与多模光纤对芯熔接,然后将多模光纤切割,切割后的长度为50-150微米;
将多模光纤的切割端与悬浮芯光纤错位熔接,错位量为10-30微米,保证悬浮芯光纤的纤芯和气孔均与多模光纤的纤芯部分重叠,使 入射光一部分进入悬浮芯光纤的纤芯,另一部分进入悬浮芯光纤的气孔,然后将悬浮芯光纤切割,切割后的长度为200-300微米;
将切割后的悬浮芯光纤与第二单模光纤错位熔接,错位熔接后悬浮芯光纤的纤芯与第二单模光纤的纤芯重合,然后切割第二单模光纤,其长度由悬浮芯光纤的长度决定,满足入射光在悬浮芯光纤纤芯和第二单模光纤纤芯中传输的光程约为在悬浮芯光纤气孔中传输光程的1.90-1.99倍或2.01-2.10倍,以保证产生游标效应。
入射光由第一单模光纤进入多模光纤,在多模光纤中扩束(多模光纤的作用:减小悬浮芯光纤错位熔接时错位量精度要求);部分入射光被多模光纤和悬浮芯光纤气孔构成的界面M2反射,经光纤耦合器后被光谱仪接收,而另一部分光进入悬浮芯光纤;进入悬浮芯光纤的入射光在悬浮芯光纤中又分成两束,其中一束在纤芯中传输,另一束在气孔中传输;在悬浮芯纤芯中传输的光束进入第二单模光纤的纤芯,然后一部分光被界面M4反射回传感头,经光纤环形器后由光谱仪接收;在悬浮芯气孔中传输的光束,部分光被悬浮芯光纤气孔和第二单模光纤构成的界面M3反射回传感头,然后经光纤耦合器被光谱仪接收。因此,界面M2和M3构成空气腔,界面M2和M4构成石英腔。以上两腔干涉谱分别表示为:
Figure PCTCN2021126961-appb-000001
其中:λ为入射光波长;Iair(λ)、Isilica(λ)分别表示空气腔和石英腔的干涉谱;A、B、C分别为由界面M2、M3和M4反射回光 谱仪中的反射光的复振幅;L 2、L 2+L 3分别为空气腔和石英腔的长度;n air、n silica分别为空气腔和石英腔的折射率。
空气腔和石英腔构成并联结构,光谱仪接收到的光谱为空气腔和石英腔干涉谱的叠加,表示为:
I all(λ)=I air(λ)+I silica(λ)        (2)
当石英腔的长度光程n silica(L 2+L 3)约为空气腔光程n airL 2的2倍,但不等于2倍时(即空气腔的自由光谱范围FSR air约为石英腔自由光谱范围FSR silica的2倍,但不等于2倍),并联双腔的干涉谱就会产生包络,如图4所示,该包络可表示为:
Figure PCTCN2021126961-appb-000002
Figure PCTCN2021126961-appb-000003
其中:M为放大因子。由于光纤的热光系数比热膨胀系数高1个数量级(光纤热光系数约为6.7×10 -6/℃,光纤热膨胀系数约为0.55×10 -6/℃),空气的热光系数远小于石英(空气的热光系数约为5.6×10 -7/℃),因此,当温度变化时,可忽略光纤的热膨胀和空气的热光效应,而只考虑光纤的热光效应。基于此,当温度变化时,空气腔的干涉谱不发生变化,而石英腔的干涉谱会平移。又由于石英腔的自由光谱范围约为空气腔的2倍,但不等于2倍,此时双腔并联干涉谱会产生游标效应,即当石英腔在温度的作用下干涉谱平移时,干涉谱包络的平移量为单个石英腔平移量的M倍,如图5所示。
单个石英腔的温度灵敏度S silica可表示为
Figure PCTCN2021126961-appb-000004
其中:α为光纤的热光系数;λm为峰值波长。
并联双腔传感器温度灵敏度S envelope可表示为
Figure PCTCN2021126961-appb-000005
双腔并联后温度灵敏度为单个石英腔的M倍。假设峰值波长为λm=1550nm,石英折射率n silica=1.45,放大倍率M=50,光纤热光系数α=6.7×10 -6/℃,则单个石英腔的温度灵敏为7pm/℃,并联双腔传感器温度灵敏度为350pm/℃。
以上所述的实施例仅是对本发明优选方式进行的描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (8)

  1. 一种基于悬浮光纤错位熔接的高灵敏度高温传感器,其特征在于,包括宽带光源、光纤环形器、传感头及光谱仪;
    所述光纤环形器分别与所述宽带光源、所述传感头及所述光谱仪连接;
    所述传感头包括依次连接的第一单模光纤、多模光纤、悬浮芯光纤及第二单模光纤;
    所述第一单模光纤包括第一纤芯;
    所述多模光纤包括第二纤芯;
    所述悬浮芯光纤包括第三纤芯和第一气孔;
    所述第二单模光纤包括第四纤芯;
    所述第一单模光纤与所述多模光纤对芯熔接;
    所述第一纤芯与所述第二纤芯对芯连接。
  2. 根据权利要求1所述的基于悬浮光纤错位熔接的高灵敏度高温传感器,其特征在于,所述宽带光源的波段为1200nm-1600nm。
  3. 根据权利要求1所述的基于悬浮光纤错位熔接的高灵敏度高温传感器,其特征在于,所述光纤环形器包括光纤环形器第一端、光纤环形器第二端、光纤环形器第三端;
    所述光纤环形器第一端与所述宽带光源连接;
    所述光纤环形器第二端与所述传感头连接;
    所述光纤环形器第三端与所述光谱仪连接;
    所述宽带光源通过所述光纤环形器第一端将波段信号传输到所述传感头进行处理;
    所述传感头通过所述光纤环形器第二端将处理后的所述波段信号传输到所述光谱仪。
  4. 根据权利要求1所述的基于悬浮光纤错位熔接的高灵敏度高温传感器,其特征在于,
    所述多模光纤长度为50-150微米。
  5. 根据权利要求1所述的基于悬浮光纤错位熔接的高灵敏度高温传感器,其特征在于,
    所述多模光纤与所述悬浮芯光纤错位熔接,错位量为10-30微米;
    所述第二纤芯与所述第三纤芯和第一气孔连接。
  6. 根据权利要求1所述的基于悬浮光纤错位熔接的高灵敏度高温传感器,其特征在于,
    所述悬浮芯光纤的长度为200-300微米。
  7. 根据权利要求1所述的基于悬浮光纤错位熔接的高灵敏度高温传感器,其特征在于,
    所述悬浮芯光纤与所述第二单模光纤错位熔接;
    所述第三纤芯与所述第四纤芯连接。
  8. 根据权利要求1所述基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器,其特征在于,
    所述第三纤芯和所述第四纤芯的长度满足入射光在所述第三纤芯和所述第四纤芯内传输光程总和为入射光在所述第一气孔内传输光程的1.90-1.99倍或2.01-2.10倍。
PCT/CN2021/126961 2021-01-26 2021-10-28 一种基于悬浮光纤错位熔接的高灵敏度高温传感器 WO2022160822A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/581,053 US11359977B2 (en) 2021-01-26 2022-01-21 High-sensitivity high-temperature sensor based on dislocation welding of suspended optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110103697.5 2021-01-26
CN202110103697.5A CN112945284B (zh) 2021-01-26 2021-01-26 一种基于悬浮光纤错位熔接的高灵敏度高温传感器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/581,053 Continuation US11359977B2 (en) 2021-01-26 2022-01-21 High-sensitivity high-temperature sensor based on dislocation welding of suspended optical fiber

Publications (1)

Publication Number Publication Date
WO2022160822A1 true WO2022160822A1 (zh) 2022-08-04

Family

ID=76236978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126961 WO2022160822A1 (zh) 2021-01-26 2021-10-28 一种基于悬浮光纤错位熔接的高灵敏度高温传感器

Country Status (2)

Country Link
CN (1) CN112945284B (zh)
WO (1) WO2022160822A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110514233A (zh) * 2019-10-10 2019-11-29 中国计量大学 一种空腔悬浮通道型光纤线上马赫-曾德干涉仪
CN115435923A (zh) * 2022-11-07 2022-12-06 哈尔滨翰奥科技有限公司 光纤传感头及温度传感器
CN115435924A (zh) * 2022-11-09 2022-12-06 哈尔滨翰奥科技有限公司 基于双孔光纤的温度传感器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945284B (zh) * 2021-01-26 2021-09-21 广东海洋大学 一种基于悬浮光纤错位熔接的高灵敏度高温传感器
CN113281303A (zh) * 2021-06-29 2021-08-20 哈尔滨理工大学 一种游标增敏的半填充聚酰亚胺光纤fpi湿度传感器
CN113218532A (zh) * 2021-06-29 2021-08-06 哈尔滨理工大学 一种基于光纤双腔二倍游标效应增敏的温度传感器
CN114964604B (zh) * 2022-06-10 2023-07-18 长春理工大学 光纤压力传感器及螺旋感应光纤压力探测头的制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089893A (ja) * 2006-09-29 2008-04-17 Seikoh Giken Co Ltd 集光機能を備えた先球ファイバと先球ファイバの製造方法
CN108761649A (zh) * 2018-03-30 2018-11-06 山西大学 一种基于悬浮芯光纤的在线式光流体微fp腔
CN109060169A (zh) * 2018-08-29 2018-12-21 厦门大学 一种基于细径光纤的高温传感器
CN211824859U (zh) * 2019-12-12 2020-10-30 哈尔滨理工大学 基于错位熔接和游标效应的光纤气压传感器
CN112945284A (zh) * 2021-01-26 2021-06-11 广东海洋大学 一种基于悬浮光纤错位熔接的高灵敏度高温传感器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0818991D0 (en) * 2008-10-16 2008-11-26 Univ Strathclyde Fibre optic sensor system
CN104236602B (zh) * 2014-09-26 2017-05-10 安徽大学 一种可同时测量温度和湿度的全光纤传感器
CN108709569A (zh) * 2018-05-07 2018-10-26 哈尔滨工程大学 基于悬挂芯长周期光纤光栅抗弯曲传感器
CN108627187A (zh) * 2018-05-07 2018-10-09 哈尔滨工程大学 被覆氧化还原石墨烯的悬挂芯光纤干涉型传感器
CN110333016A (zh) * 2019-07-19 2019-10-15 陕西高速公路工程咨询有限公司 基于混合级联光纤干涉仪的应力传感装置及解调方法
CN111006716B (zh) * 2019-11-14 2020-10-27 东北大学 生物分子和温度双参数光纤传感器及其制作方法和应用
CN211904458U (zh) * 2019-11-28 2020-11-10 哈尔滨理工大学 基于多光束干涉的全光纤反射式带阻滤波器温度传感装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089893A (ja) * 2006-09-29 2008-04-17 Seikoh Giken Co Ltd 集光機能を備えた先球ファイバと先球ファイバの製造方法
CN108761649A (zh) * 2018-03-30 2018-11-06 山西大学 一种基于悬浮芯光纤的在线式光流体微fp腔
CN109060169A (zh) * 2018-08-29 2018-12-21 厦门大学 一种基于细径光纤的高温传感器
CN211824859U (zh) * 2019-12-12 2020-10-30 哈尔滨理工大学 基于错位熔接和游标效应的光纤气压传感器
CN112945284A (zh) * 2021-01-26 2021-06-11 广东海洋大学 一种基于悬浮光纤错位熔接的高灵敏度高温传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FU HAI-WEI;YAN XU;SHAO MIN;LI HUI-DONG;ZHAO NA: "Optical Fiber Core-mismatched Mach-Zehnder Refractive Sensor", OPTICS AND PRECISION ENGINEERING, vol. 22, no. 9, 10 September 2014 (2014-09-10), pages 2285 - 2291, XP055954535, ISSN: 1004-924X, DOI: 10.3788/OPE.20144409.2285 *
ZHANG YUFENG: "Sensing characteristics of interferometric fiber optic sensor and suspended core microstructure fiber grating", CHINESE MASTER'S THESES FULL-TEXT DATABASE, no. 3, 15 March 2017 (2017-03-15), pages 1 - 70, XP055954531, ISSN: 1674-0246 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110514233A (zh) * 2019-10-10 2019-11-29 中国计量大学 一种空腔悬浮通道型光纤线上马赫-曾德干涉仪
CN110514233B (zh) * 2019-10-10 2024-04-26 中国计量大学 一种空腔悬浮通道型光纤线上马赫-曾德干涉仪
CN115435923A (zh) * 2022-11-07 2022-12-06 哈尔滨翰奥科技有限公司 光纤传感头及温度传感器
CN115435923B (zh) * 2022-11-07 2023-05-30 中国科学院新疆理化技术研究所 光纤传感头及温度传感器
CN115435924A (zh) * 2022-11-09 2022-12-06 哈尔滨翰奥科技有限公司 基于双孔光纤的温度传感器

Also Published As

Publication number Publication date
CN112945284B (zh) 2021-09-21
CN112945284A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
WO2022160822A1 (zh) 一种基于悬浮光纤错位熔接的高灵敏度高温传感器
CN205808610U (zh) 一种光纤fp腔气压传感器
CN205691170U (zh) 一种气压和温度同时测量的光纤传感器
CN211824859U (zh) 基于错位熔接和游标效应的光纤气压传感器
CN206618528U (zh) 一种基于多个法布里‑珀罗微腔的光纤气压传感装置
US11112316B2 (en) Optical fiber temperature sensor
CN210221338U (zh) 一种基于并联游标效应的光纤高温传感器
WO2022156298A1 (zh) 一种基于悬浮芯光纤和边孔光纤的高灵敏度气压传感器
Chen et al. Review of femtosecond laser machining technologies for optical fiber microstructures fabrication
CN208155479U (zh) 双腔结构的光纤温度与压力传感器
CN102374874A (zh) 内嵌石英毛细管的全石英光纤Fabry-Perot干涉传感器及制作方法
CN101614601A (zh) 光纤内集成式微型迈克尔逊干涉传感器及其制作方法
CN109974759A (zh) 用飞秒激光诱导基于游标效应的光纤线内级联法布里-珀罗腔传感器
CN108731712B (zh) 一种基于飞秒激光刻写波导的光纤线上马赫-曾德干涉仪
CN113008406A (zh) 基于增强型游标效应的高精度温度传感器
CN112414581B (zh) 一种基于多芯光纤的温度传感器
CN110470240A (zh) 一种光纤曲率测量传感器及其制作方法、测量***
CN112629744A (zh) 一种基于级联光纤珐珀干涉计的气压传感器
CN108387173A (zh) 一种超紧凑全光纤马赫-泽德干涉仪及其制作方法
CN112629743A (zh) 一种基于光纤双腔游标效应增敏的气压传感器
CN105953958A (zh) 全石英光纤珐珀压力传感器
Li et al. Micro-cap on 2-core-fiber facet hybrid interferometer for dual-parameter sensing
CN114111857A (zh) 一种基于游标效应的光纤fpi级联mi传感装置
Li et al. An ultrasensitive gas pressure sensor based on single-core side-hole fiber with optical vernier effect
Tian et al. High-sensitivity gas pressure sensor with low temperature cross-talk based on Vernier effect of cascaded Fabry-Perot interferometers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922413

Country of ref document: EP

Kind code of ref document: A1