WO2022153919A1 - ヒータユニット及び車両用シート - Google Patents

ヒータユニット及び車両用シート Download PDF

Info

Publication number
WO2022153919A1
WO2022153919A1 PCT/JP2022/000271 JP2022000271W WO2022153919A1 WO 2022153919 A1 WO2022153919 A1 WO 2022153919A1 JP 2022000271 W JP2022000271 W JP 2022000271W WO 2022153919 A1 WO2022153919 A1 WO 2022153919A1
Authority
WO
WIPO (PCT)
Prior art keywords
cord
structural
heater
base material
heater unit
Prior art date
Application number
PCT/JP2022/000271
Other languages
English (en)
French (fr)
Inventor
寛剛 藤井
Original Assignee
株式会社クラベ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021012569A external-priority patent/JP2022108228A/ja
Priority claimed from JP2021012570A external-priority patent/JP2022108229A/ja
Application filed by 株式会社クラベ filed Critical 株式会社クラベ
Priority to CN202280009726.4A priority Critical patent/CN116761532A/zh
Priority to EP22739328.7A priority patent/EP4278930A1/en
Priority to US18/260,887 priority patent/US20240059198A1/en
Publication of WO2022153919A1 publication Critical patent/WO2022153919A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/56Heating or ventilating devices
    • B60N2/5678Heating or ventilating devices characterised by electrical systems
    • B60N2/5685Resistance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/342Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/54Heating elements having the shape of rods or tubes flexible
    • H05B3/56Heating cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/014Heaters using resistive wires or cables not provided for in H05B3/54
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/029Heaters specially adapted for seat warmers

Definitions

  • the present invention relates to a heater unit that can be suitably used for electric blankets, electric carpets, car seat heaters, etc., and has excellent breathability and mechanical strength.
  • a cord-shaped heater having a heat-sealing portion is serpentinely wired on a base material, and heat-sealing by heating and pressurizing is performed.
  • a structure in which the base material and the heat-sealed portion are adhered and fixed see, for example, Patent Document 1.
  • a vehicle seat incorporating an air conditioner has been put into practical use. Specifically, it is known that the heater unit and the seat skin are made breathable, and air is blown from the surface of the vehicle seat by blowing air to the skin side through a ventilation path formed inside the seat. (See, for example, Patent Document 2).
  • a heater unit having particularly excellent ventilation is required. Therefore, as the base material of the heater unit, a base material having a plurality of through holes, a base material made of a highly breathable material such as a spunbonded non-woven fabric or a spunlaced non-woven fabric, a base material having a mesh structure, etc. are used. , It is known to improve the air permeability (see Patent Documents 3 to 7).
  • Japanese Patent No. 4202071 Clave Japanese Patent No. 4999455: Clave Japanese Patent No. 3991750: Matsushita Electric Industrial Co., Ltd. JP-A-2005-285602: Matsushita Electric Industrial Co., Ltd. Special Table 8-507404 Gazette: Scandomec JP 2015-74375: TS TECH Japanese Patent No. 6636825: Clave
  • the mechanical strength is significantly reduced at the cost of air permeability.
  • a load is repeatedly applied by seating and leaving the driver, etc., but a device with sufficient characteristics that does not deform or break even with such a load can be obtained. I wasn't.
  • the air permeability is only slightly improved, and further improvement of the air permeability is required.
  • the heater unit described in Patent Document 7 solves the problems of the heater unit described in Patent Documents 3 to 6.
  • the mechanical strength and rigidity of the base material are lowered, and breakage and deformation are likely to occur. If the base material is deformed, for example, when arranging the heater unit on the vehicle seat, the work becomes difficult, and the heater unit may be arranged even in an unintended place in the design. .. Therefore, it has been necessary to further reinforce the mechanical strength and rigidity of the heater unit.
  • the present invention has been made to solve such a problem of the prior art, and an object of the present invention is to provide a heater unit having excellent air permeability and mechanical strength.
  • the heater unit according to the present invention has a base material and a cord-shaped heater, and the cord-shaped heater is arranged and fixed on the base material in the heater unit.
  • the material is a combination of a structural yarn arranged in a substantially flat shape and a non-woven fabric, and the cord-shaped heater is fixed in direct contact with the structural yarn.
  • a heat-sealing portion is formed in the outermost layer of the cord-shaped heater, and the heat-sealing portion is heat-sealed and fixed to the non-woven fabric and the structural yarn.
  • the structural yarn is woven, knitted, or aligned in different directions, and has an opening larger than the apparent diameter of the structural yarn.
  • the base material is composed of a structural thread and a pair of non-woven fabrics, and the structural threads are sandwiched between the pair of non-woven fabrics.
  • the vehicle seat according to the present invention has a seat skin and a seat pad, and the heater unit is arranged between the seat skin and the seat pad.
  • the heater unit according to the present invention has a base material and a cord-shaped heater, and in the heater unit in which the cord-shaped heater is arranged and fixed on the base material, the base material is substantially flat.
  • the base material is composed of a structural thread and a pair of non-woven fabrics, and the structural threads are sandwiched between the pair of non-woven fabrics.
  • a heat-sealing portion is formed in the outermost layer of the cord-shaped heater, and the heat-sealing portion is heat-sealed and fixed to the non-woven fabric and the structural yarn.
  • the vehicle seat according to the present invention has a seat skin and a seat pad, and the heater unit is arranged between the seat skin and the seat pad.
  • the heater unit in order to improve the air permeability, it is effective to reduce the amount of fibers per unit area of the base material, but this also greatly reduces the mechanical strength and rigidity of the base material. ..
  • tensile strength is obtained by the structural yarns arranged in a substantially planar shape. Therefore, even the equipment with improved air permeability has excellent mechanical strength.
  • by directly fixing the heat-sealed portion and the structural yarn it is possible to prevent the cord-shaped heater from peeling off due to fiber loss of the non-woven fabric.
  • the cord-shaped heater and the structural thread are firmly integrated, there is also an effect that the heater unit is less likely to be deformed. Further, since the direction of the structural thread and the direction of the straight portion of the cord-shaped heater are at different angles, the shape of the base material can be maintained even by the cord-shaped heater.
  • the cord-shaped heater 10 in the present embodiment has a configuration as shown in FIG. First, there is a heater core 3 made of an aromatic polyamide fiber bundle having an outer diameter of about 0.2 mm, and on the outer periphery of the heater core 3, a tin-plated hard tin-containing copper alloy wire (TH-SNCC) having a wire diameter of 0.08 mm is provided.
  • TH-SNCC tin-plated hard tin-containing copper alloy wire
  • An ethylene tetrafluoride-propylene hexafluoride copolymer (FEP) as an insulator layer 7 is extruded to a wall thickness of about 0.15 mm on the outer circumference of a conductor wire 5a wound around the heater core 3. It is covered and the heating wire 1 is configured. Further, the outer periphery of the heating wire 1 is further extruded and coated with a polyester resin containing a flame retardant as the heat-sealing portion 9 to a thickness of 0.2 mm.
  • the cord-shaped heater 10 has such a configuration, and its finished outer diameter is 1.1 mm.
  • the heater core 3 is effective in consideration of flexibility and tensile strength, it is also possible to use a plurality of heating element wires aligned or twisted instead of the heater core 3. Conceivable. Further, it is preferable that the cord-shaped heater 10 has a flame retardancy that passes the UL1581 horizontal combustion test: 2008, 4th edition by itself because the flame retardancy of the heater unit can be improved. ..
  • the base material 11 in this embodiment is formed by sandwiching the structural threads 11a between a pair of non-woven fabrics 11b and attaching them with an adhesive.
  • the non-woven fabric 11b is, for example, a non-woven fabric made of flame-retardant polyester fiber having a basis weight of 27 g / m 2 and an apparent thickness of about 1 mm.
  • the structural yarn 11a is a polyester multifilament having an apparent diameter of 0.5 mm.
  • the structural threads 11a were made into a plain weave having a lattice spacing of 10 mm, an opening 11c having a size of 9.5 mm, and a shielding rate of 12.9%.
  • the structural yarn 11a is composed of a first structural yarn group 11x arranged linearly in the left-right direction in FIG. 2 and a second structural yarn group 11y arranged linearly in the front-rear direction in FIG.
  • This non-woven fabric is obtained by melting and extruding a material constituting a fiber and laminating it while spinning to form a web, and is made of filaments (long fibers).
  • Structural threads 11a are sandwiched between such a pair of non-woven fabrics 11b, and these are fixed with an adhesive. The intersections of the structural threads 11a are also fixed with an adhesive.
  • the base material 11 having such a structure has a basis weight of 100 g / m 2 as a whole.
  • FIG. 4 is a diagram showing a configuration of a hot press type heater manufacturing apparatus 13 for adhering and fixing the cord-shaped heater 10 on the base material 11.
  • the anchoring mechanism 17 includes a pin 19, and the pin 19 is inserted into a hole 21 drilled in the hot press jig 15 from below.
  • a retaining member 23 is attached to the upper portion of the pin 19 so as to be movable in the axial direction, and is always urged upward by a coil spring 25. Then, as shown by a virtual line in FIG. 5, the cord-shaped heater 10 is hooked on the locking member 23 of the plurality of locking mechanisms 17 and arranged in a meandering shape.
  • a press hot plate 27 is arranged so as to be able to move up and down above the plurality of retaining mechanisms 17. That is, the cord-shaped heater 10 is arranged in a meandering shape while being hooked on the engagement member 23 of the plurality of engagement mechanisms 17, and the base material 11 is placed on the cord-shaped heater 10. In that state, the press hot plate 27 is lowered to heat and pressurize the cord-shaped heater 10 and the base material 11 at, for example, 230 ° C./5 seconds. As a result, the heat-sealing portion 9 on the cord-shaped heater 10 side and the heat-sealing fiber on the base material 11 side are fused, and as a result, the cord-shaped heater 10 and the base material 11 are adhered and fixed. It will be. During heating and pressurization due to the lowering of the press hot plate 27, the retaining members 23 of the plurality of fastening mechanisms 17 move downward against the urging force of the coil spring 25.
  • the meandering shape of the cord-shaped heater 10 is formed by combining the straight portion 10a and the curved portion 10b. At this time, it is preferable that the straight portion 10a of the cord-shaped heater 10 is arranged at an angle different from that of the first structural yarn group 11x and the second structural yarn group 11y as in the present embodiment.
  • the mechanical strength of the base material 11 is strong with respect to the direction in which the structural yarn 11a is arranged, but with respect to tension at an angle different from the direction in which the structural yarn 11a is arranged, the base material becomes as the angle changes. Is easily deformed.
  • the first structural yarn group 11x and the second structural yarn group 11y are orthogonal to each other as in the present embodiment, the first structural yarn group 11x and the second structural yarn group 11y are most easily deformed by tension at an angle deviated by 45 degrees from the first structural yarn group 11x. Since the straight portion 10a of the cord-shaped heater 10 has an angle different from that of the first structural yarn group 11x and the second structural yarn group 11y, it becomes difficult to be deformed even when pulled at various angles. In addition, in FIG. 6, the non-woven fabric 11b of the base material 11 is permeated and shown.
  • An adhesive layer may be formed or a double-sided tape may be attached to the surface of the base material 11 on the side where the cord-shaped heater 10 is not arranged. This is for fixing the heater unit 31 to the seat when it is attached to the seat.
  • the heater unit 31 of the vehicle seat heater as shown in FIG. 1 can be obtained.
  • a cord is connected to both ends of the cord-shaped heater 10 and the temperature control device 39 in the heater unit 31, and the cord-shaped heater 10, the temperature control device 39, and the connector 35 are connected by this cord. ing. Then, the connector 35 is connected to an electric system of a vehicle (not shown).
  • the heater unit 31 having the above configuration is embedded and arranged in the vehicle seat 41 in the state shown in FIG. That is, as described above, the heater unit 31 is attached to the seat skin 43 or the seat pad 45 of the vehicle seat 41.
  • the heat-sealed portion 9 of the cord-shaped heater 10 permeates the inside of the non-woven fabric 11b of the base material 11 and surrounds the fibers constituting the non-woven fabric 11b. , The cord-shaped heater 10 and the base material 11 are firmly adhered to each other.
  • the base material 11 contains heat-sealing fibers, and the heat-sealing fibers have a core-sheath structure and the sheath portion has a low melting point, the sheath portion surrounds the core portion.
  • the portion and the heat-sealing portion 9 of the cord-shaped heater are fused and integrated with each other. As a result, the cord-shaped heater 10 and the base material 11 are more firmly adhered to each other.
  • the heat-sealing portion 9 of the cord-shaped heater 10 penetrates beyond the non-woven fabric 11b of the base material 11 until it further comes into direct contact with the structural yarn 11a, and the heat-sealing portion 9 and the heat-sealing portion 9 It is preferable that the structural yarn 11a is fixed by heat fusion.
  • the density (base weight) of the non-woven fabric 11b of the base material 11 becomes small, so that the cord-shaped heater 10 is likely to be peeled off due to fiber loss of the non-woven fabric 11b.
  • FIG. 14 is a photograph of the heater unit taken from the surface of the base material opposite to the surface on which the cord-shaped heater is fixed.
  • FIG. 15 is a photograph of the heater unit cut along the direction of the cord-shaped heater and a cross section thereof taken. In both FIGS. 14 and 15, it can be confirmed that the heat-sealing portion of the cord-shaped heater surrounds the structural yarn, and the heat-sealing portion and the structural yarn are fixed by heat fusion.
  • the present invention is not limited to the above embodiment.
  • the cord-shaped heater 10 various conventionally known cord-shaped heaters can be used.
  • a plurality of conductor strands 5a coated with an insulating coating 5b are twisted or aligned and wound on a heater core 3 (FIG. 11).
  • a heater core 3 (See), those in which the heat-sealing portion 9 is intermittently formed (see FIG. 12), and the like can be mentioned.
  • the temperature detection line, the short circuit detection line, and the like may be wound together. Specific examples of such other aspects are shown below.
  • a conductor wire 5a made of a tin-copper alloy wire having a wire diameter of 0.08 mm is formed on the outer periphery of a heater core 3 made of an aromatic polyamide fiber bundle having an outer diameter of about 0.2 mm and having a configuration as shown in FIG.
  • the conductor wire 5a is covered with an insulating coating 5b made of polyurethane with a thickness of about 0.005 mm.
  • a polyethylene resin containing a flame retardant as a heat-sealing portion 9 is extruded and coated on the outer periphery of the heating wire 1 to a thickness of 0.25 mm.
  • the cord-shaped heater 10 has such a configuration, and its finished outer diameter is 0.9 mm.
  • the heater core 3 examples include inorganic fibers such as glass fibers, polyester fibers such as polyethylene terephthalate, aliphatic polyamide fibers, aromatic polyamide fibers, monofilaments of organic fibers such as total aromatic polyester fibers, multifilaments, and spun yarns.
  • these fiber materials, or fibers having a structure in which an organic polymer material constituting the fiber material is used as a core material and a thermoplastic organic polymer material is coated on the circumference thereof can be mentioned.
  • the heater core 3 has heat shrinkage and heat meltability, the core wire is melt-cut and shrunk due to abnormal heating when the conductor wire 5a is broken, so that the conductor core 3 is wound.
  • the conductor wire 5a also follows the operation of the heater core 3 and separates the ends of the broken conductor wire 5a from each other. Therefore, the ends of the broken conductor wires do not come into contact with each other or come into contact with each other with a small contact area such as point contact, and abnormal heat generation can be prevented. Further, if the conductor wire 5a is insulated by the insulating coating 5b, the heater core 3 does not need to be particular about the insulating material. For example, stainless steel wire, titanium alloy wire, or the like can be used. However, considering the case where the conductor wire 5a is broken, it is preferable that the heater core 3 is made of an insulating material.
  • the conductor strand 5a conventionally known ones can be used, for example, copper wire, copper alloy wire, nickel wire, iron wire, aluminum wire, nickel-chromium alloy wire, copper-nickel alloy, iron-chromium alloy.
  • a copper alloy wire containing silver in which a copper solid solution and a copper-silver co-crystal are in the form of fibers can be used.
  • various cross-sectional shapes can be used, and the cross-sectional shape is not limited to the one having a circular cross section, which is usually used, and a so-called flat wire may be used.
  • the conductor wire 5a is wound around the heater core 3, it is preferable that the amount of springback when the heating wire 1 is wound is small.
  • a silver-containing copper alloy wire in which a copper solid solution and a copper-silver eutectic are in the form of fibers has excellent tensile strength and tensile strength and bending strength, but easily springs back when a heating wire is wound. Therefore, when the conductor wire 5a is wound around the heater core 3, the conductor wire 5a is likely to float, the conductor wire 5a is likely to be broken due to excessive winding tension, and a twisting habit is likely to occur after processing, which is not preferable. In particular, when the conductor wire 5a is covered with the insulating coating 5b, the restoring force of the insulating coating 5b is also applied. Therefore, it is important to select a conductor wire 5a having a small restoration rate to cover the restoration force of the insulating coating 5b.
  • a conventionally known resin material or the like can be used as the insulating coating 5b coated on the conductor wire 5a.
  • a resin material or the like can be used.
  • nylon resin, polyethylene resin, polyester resin, vinyl chloride resin, fluororesin, and silicone resin examples thereof include nylon resin, polyethylene resin, polyester resin, vinyl chloride resin, fluororesin, and silicone resin. These may be formed in a plurality of layers.
  • the conductor strands 5a can be fused to each other, so that the heating wire 1 does not come apart during terminal processing such as connection with the connection terminal.
  • the workability can be improved.
  • soldering as terminal processing, the workability is greatly improved when the insulating film 5b is removed by the heat during soldering, so that the material of the insulating film 5b has good thermal decomposability. Is preferable.
  • the conductor strands 5a are aligned or twisted and wound on the heater core 3, it is preferable to align them rather than twisting them together. This is because the diameter of the heating core 4 becomes smaller and the surface becomes smooth. Further, in addition to aligning or twisting, it is also conceivable to braid the conductor wire 5a on the heater core 3.
  • the insulator layer 7 When the insulator layer 7 is formed, it may be formed by extrusion molding or the like, or it may be covered with the insulator layer 7 which has been molded into a tube shape in advance, and the forming method is not particularly limited.
  • the material constituting the insulator layer 7 may be appropriately designed according to the usage pattern and usage environment of the cord-shaped heater.
  • polyethylene-based resin polyethylene-based resin, polyester-based resin, polyurethane-based resin, polyamide-based resin, vinyl chloride resin, etc.
  • Various materials such as fluororesins, synthetic rubbers, fluororubbers, polyethylene-based thermoplastic elastomers, and urethane-based thermoplastic elastomers can be mentioned.
  • a protective coating may be further formed on the outer periphery of the insulator layer 7.
  • the heat-sealing portion 9 is formed on the outer periphery of the heating wire 1
  • the heat-sealing portion is formed not only on the entire circumference of the outer periphery of the heating wire, but also, for example, is linear along the length direction of the cord-shaped heater. , Spiral linear formation, dot pattern formation, intermittent formation as shown in FIG. 12, and the like can be considered.
  • the heat-sealing portion is not continuous in the length direction of the cord-shaped heater, even if a part of the heat-sealing portion is ignited, the combustion portion does not spread, which is preferable.
  • the volume of the heat-sealed portion is sufficiently small, even if the heat-sealed portion is made of a combustible material, the combustible material will soon disappear and the fire will be extinguished, and drip (combustion droplets) will also occur. It disappears. Therefore, it is preferable that the volume of the heat-sealed portion is minimized so that the adhesiveness with the base material can be maintained.
  • the insulator layer 7 or the insulating coating 5b is made of a flame-retardant material.
  • a flame-retardant polymer composition As a material constituting the heat-sealing portion 9, a flame-retardant polymer composition is preferably used.
  • the flame-retardant polymer composition here refers to a polymer composition having an oxygen index of 21 or more in the JIS-K7201 (1999) flammability test. Those having an oxygen index of 26 or more are particularly preferable.
  • Specific materials include, for example, olefin resin, polyester resin, polyamide resin, vinyl chloride resin, polyurethane resin, modified noryl resin (polyphenylene oxide resin), aliphatic polyamide resin, polystyrene resin, and polyolefin thermoplastic elastomer.
  • Polyplastic polymer materials such as polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, and polyamide-based thermoplastic elastomers, and those obtained by appropriately blending flame retardant agents with these thermoplastic polymer materials.
  • the olefin resin include high-density polyethylene, low-density polyethylene, ultra-low-density polyethylene, linear low-density polyethylene, polypropylene, polybutene, ethylene- ⁇ -olefin copolymer, and ethylene-unsaturated ester co-weight. Coalescence etc. can be mentioned.
  • Examples of the ethylene-unsaturated ester copolymer include an ethylene-vinyl acetate copolymer, an ethylene- (meth) methyl acrylate copolymer, an ethylene- (meth) ethyl acrylate copolymer, and an ethylene- (meth).
  • Examples thereof include butyl acrylate copolymers, and these may be used alone or in admixture of two or more.
  • "(meth) acrylic acid” represents both acrylic acid and methacrylic acid.
  • the polyester-based thermoplastic elastomer there are polyester-polyester type and polyester-polyester type, but the polyester-polyester type is preferable because it has higher adhesiveness.
  • the aliphatic polyamide resin is called nylon, and includes n-nylon synthesized by a polycondensation reaction of ⁇ amino acids and n, m-nylon synthesized by a polycondensation reaction of diamine and a dicarboxylic acid. ..
  • n-nylon include nylon 6, nylon 11, nylon 12, and the like
  • n, m-nylon include nylon 66, nylon 610, nylon 6I, nylon 6T, nylon 9T, nylon M5T, and the like.
  • the polyamide-based thermoplastic elastomer a block copolymer having polyamide as a hard segment and polyether as a soft segment is known.
  • polyamide used as a hard segment for example, in addition to the above-mentioned aliphatic polyamide, various kinds such as aromatic polyamides such as para-aramid and meta-aramid can be considered.
  • Polymers used as soft segments include polyethylene glycol, poly (1,2- and 1,3-) propylene ether glycol, polytetramethylene ether glycol, polyalkylene ether glycol such as polyhexamethylene ether glycol, and ethylene oxide.
  • Various things are conceivable, such as a block or random copolymer with propylene oxide, a block or random copolymer with ethylene oxide and tetrahydrofuran, and one containing divalent phenol such as bisphenol A and hydroquinone.
  • polyamide-based thermoplastic elastomers which are particularly excellent in adhesiveness at high temperatures and have good compatibility in terms of melting point and adhesiveness when a polyester fiber non-woven fabric is used as a base material, are preferable, and aliphatic polyamides and polyalkylene ethers are preferable.
  • a block copolymer of glycol is more preferable, and a block copolymer of nylon 11 or nylon 12 and polytetramethylene ether glycol is particularly preferable. Any of these may be selected, but it is preferable that the material melts at a temperature equal to or lower than the decomposition start temperature or a temperature equal to or lower than the melting point of the material constituting the insulating coating 5b or the insulator layer 7 described above.
  • the melt flow rate of the material constituting the heat-sealing portion 9 is 5.0 cm 3/10 minutes or more. It is preferable to have. This melt flow rate is measured by the method A described in JIS-K7210: 1999 at a temperature of 200 ° C. and a load of 2.16 kg.
  • the flame retardant include metal hydrates such as magnesium hydroxide and aluminum hydroxide, antimony oxide, melamine compounds, phosphorus-based compounds, chlorine-based flame retardants, and bromine-based flame retardants.
  • These flame retardants may be appropriately surface-treated by a known method.
  • the surface treatment is such that the viscosity of the polymer composition constituting the heat-sealed portion 9 at the time of melting is lowered.
  • the method for forming the heat-sealed portion 9 is not particularly limited, and may be formed by, for example, known extrusion molding or coating.
  • the adhesive strength between the cord-shaped heater and the base material is very important. If this adhesive strength is not sufficient, the base material and the cord-shaped heater will peel off during use, which will cause unexpected bending of the cord-shaped heater. There is a possibility of disconnection.
  • a good electric conductor such as a metal foil can be wound around the outer circumference of the conductor wire 5a in a part in the length direction.
  • a good electric conductor such as a metal foil can be wound around the outer circumference of the heater core 3 (inner surface of the conductor wire 5a) in a part in the length direction. .. By doing so, in the portion around which the good electric conductor is wound, electricity conducts to the good electric conductor and hardly conducts to the conductor wire 5a, so that this portion does not generate heat.
  • cord-shaped heater 10 not only one cord-shaped heater 10 but also two or more cord-shaped heaters 10 may be arranged. In that case, one cord-shaped heater and the other cord-shaped heater may be arranged on the same surface of the base material, or may be arranged on different surfaces of the base material. It is also conceivable to dispose a cord-shaped sensor together with the cord-shaped heater. As the cord-shaped sensor, in the above-mentioned cord-shaped heater, the heat generating wire is replaced with the detection wire. Regarding this cord-shaped sensor, for example, a temperature sensor that measures a change in resistance value depending on the temperature of the detection wire, a temperature sensor that detects that the insulating material that melts at a predetermined temperature melts and conducts to the detection wire, and detection.
  • a grip sensor or a seating sensor that measures a change in the capacitance of the wire, a pressure sensor or a load sensor that detects or measures the tension or displacement of the detection wire can be considered.
  • the cord-shaped sensor may also be arranged on the same surface of the base material as the cord-shaped heater, or may be arranged on different surfaces of the base material.
  • the base material 11 a material formed by combining structural threads 11a arranged in a substantially flat shape and a non-woven fabric 11b is used.
  • the structural yarn 11a various forms such as multifilament, monofilament, and spun yarn can be used. Among these, multifilament is preferable because it has excellent flexibility and strength.
  • the apparent diameter of the structural yarn may be appropriately set according to the usage environment of the heater unit 31, but is preferably 0.25 to 1 mm from the viewpoint of the balance between flexibility, mechanical strength and air permeability.
  • the apparent diameter of the structural yarn is a value obtained by actual measurement including the voids between the fibers constituting the structural yarn, and can be approximately calculated by the following formula.
  • D 0.0357 ⁇ ⁇ T / ( ⁇ ⁇ ⁇ ) ⁇ 0.5 D: Apparent diameter of structural thread (mm) T: Structural thread thickness (tex) ⁇ : Density of fibers constituting structural yarn (g / cm 3 ) ⁇ : Filling rate of structural yarn (ratio of apparent density of structural yarn to fiber density)
  • Examples of the material constituting the structural yarn 11a include inorganic fibers such as glass fiber, alumina fiber, silica fiber, alumina-silica fiber and carbon fiber, and polyester fiber such as polyethylene terephthalate fiber, polyethylene naphthalate fiber and polybutylene terephthalate fiber.
  • inorganic fibers such as glass fiber, alumina fiber, silica fiber, alumina-silica fiber and carbon fiber
  • polyester fiber such as polyethylene terephthalate fiber, polyethylene naphthalate fiber and polybutylene terephthalate fiber.
  • synthetic fibers such as ethylene tetrafluoride fibers and natural fibers such as cotton, hemp, flax, silk and wool
  • a fiber having a core-sheath structure in which a sheath of the low melting point material is formed on the outer periphery of the core of the high melting point material may be used. These may be appropriately selected in consideration of usage conditions and the like.
  • the structural yarn 11a made of a single type of fiber may be used, or the structural yarn 11a made of a combination of a plurality of types of fibers may be used.
  • the structural threads 11a are arranged in a substantially flat shape
  • the structural threads 11a are arranged in a serpentine shape
  • a plurality of structural threads 11a are aligned at predetermined intervals
  • a plurality of structural threads 11a are predetermined.
  • Those that are aligned at intervals are stacked in multiple layers so that the alignment direction is different, those that weave structural yarn 11a (for example, plain weave, twill weave, satin weave, etc.), those that knit structural yarn 11a (plain). Knitting, rubber knitting, pearl knitting, double-sided knitting, satin knitting, jacquard knitting, raschel knitting, tricot knitting, etc.) can be considered.
  • the opening 11c Therefore, sufficient air permeability can be obtained. Further, the structure by weaving or knitting can prevent the structural yarn 11a from being displaced even when an external force is applied.
  • the size of the opening 11c is preferably, for example, about 10 to 30 times the apparent diameter of the structural thread 11a. The size of the opening 11c is determined by the portion having the maximum diameter in the opening 11c. For example, if the opening 11c is square, the diagonal length is the size of the opening 11c.
  • the shielding rate of the structural yarn 11a is preferably 8.8 to 23.2%.
  • the shielding rate is the ratio of the area occupied by the structural thread 11a to the unit area.
  • the angle between the first structural yarn group 11x and the second structural yarn group 11y was 90 degrees, but of course, they may be different angles. However, if this angle is too small, the mechanical strength in a predetermined direction may be insufficient, so an angle of 45 degrees or more is preferable. Further, not only the first structural yarn group 11x and the second structural yarn group 11y, but also the third structural yarn group, the fourth structural yarn group, and the like having different angles may be used. For example, as shown in FIG. 13, a base material 11 in which the first structural yarn group 11x, the second structural yarn group 11y, and the third structural yarn group 11z are arranged at different angles of 60 degrees is also conceivable. In the case of the embodiment shown in FIG.
  • non-woven fabric 11b those formed by various methods such as a wet method, a thermal bond method, a chemical bond method, a needle punch method, and a spunlace method can be considered.
  • the fibers constituting the non-woven fabric 11b include inorganic fibers such as glass fibers, alumina fibers, silica fibers, alumina-silica fibers and carbon fibers, polyester fibers such as polyethylene terephthalate fibers, polyethylene naphthalate fibers and polybutylene terephthalate fibers.
  • Polyvinyl alcohol fiber polyvinyl chloride fiber, polyvinylidene chloride fiber, polyethylene fiber, polypropylene fiber, polyacrylonitrile fiber, polystyrene fiber, polyurethane fiber, polyphenylene sulfide fiber, aramid fiber, nylon fiber, polyether sulfone fiber, polyether ketone fiber
  • synthetic fibers such as ethylene tetrafluoride fibers and natural fibers such as cotton, hemp, flax, silk and wool
  • a heat-sealing fiber having a core-sheath structure in which a sheath of the low melting point material is formed on the outer periphery of the core of the high melting point material may be used.
  • the heat-sealing portion 9 When such a heat-sealing fiber is used, when the heat-sealing portion 9 is formed in the outermost layer of the cord-shaped heater 10, the heat-sealing portion 9 is surrounded by the core portion of the heat-sealing fiber. Since the sheath portion of the sex fiber and the heat fusion portion 9 are fused and integrated with each other, the adhesion between the cord-shaped heater 10 and the base material 11 becomes very strong. These fibers may be appropriately selected in consideration of usage conditions and the like. Of course, the non-woven fabric 11b made of a single type of fiber may be used, or the hybrid non-woven fabric 11b made of a combination of a plurality of types of fibers may be used.
  • filaments long fibers
  • staples short fibers
  • predetermined fiber length may be used as the fibers constituting the nonwoven fabric 11b.
  • the filament is preferable because it has higher strength as the non-woven fabric 11b and the cord-shaped heater 10 can be securely fixed.
  • the base material 11 those having flame retardancy that pass the combustion test of FMVSS No. 302 automobile inner layer material are preferable.
  • FMVSS is Federal Motor Vehicle Safety Standard, that is, the US Federal Motor Vehicle Safety Standard, and its No. 302 defines the combustion test of automobile interior materials.
  • the base material is imparted with excellent flame-retardant property.
  • the thickness of the non-woven fabric 11b is preferably about 0.6 mm to 1.4 mm, for example.
  • the non-woven fabric 11b having such a thickness when the cord-shaped heater 10 and the base material 11 are adhered and fixed by heating and pressurizing, the non-woven fabric 11b is 30% or more of the outer circumference of the cord-shaped heater, preferably 50. This is because it adheres well to the portion of% or more, whereby a strong adhesive state can be obtained. Further, it is desirable that the basis weight (weight per unit area) of the non-woven fabric 11b is about 80 to 120 g / m2 for the entire base material 11. With the non-woven fabric 11b having such a basis weight, it is possible to obtain excellent breathability and sufficient mechanical strength.
  • the mixing ratio of the heat-sealing fibers is preferably 5% or more, and more preferably 20% or less. If the mixing ratio of the heat-sealing fibers is less than 5%, it is difficult to obtain sufficient adhesiveness. Further, if the mixing ratio of the heat-sealing fibers exceeds 20%, the non-woven fabric becomes hard and not only the seated person may complain of discomfort, but also the adhesiveness with the cord-shaped heater is lowered. Sometimes.
  • the mixing ratio of the flame-retardant fiber is 70% or more, preferably 70% or more and 95% or less.
  • the mixing ratio of the flame-retardant fibers is less than 70%, sufficient flame-retardant properties may not be obtained. Further, if the mixing ratio of the flame-retardant fibers exceeds 95%, the mixing ratio of the heat-sealing fibers becomes relatively insufficient, and it is difficult to obtain sufficient adhesiveness. It is not necessary to add up the mixing ratio of the heat-sealing fibers and the mixing ratio of the flame-retardant fibers to 100%, and other fibers may be mixed as appropriate.
  • the fibers constituting the non-woven fabric 11b are colored.
  • the fibers constituting the non-woven fabric 11b are colored black or a color similar to that of the sheet skin so as to be as inconspicuous as possible.
  • the structural thread 11a and the cord-shaped heater 10 are colord in black or in a color similar to that of the seat skin.
  • the structural thread 11a and the non-woven fabric 11b are combined, for example, the structural thread 11a arranged in a plane is attached to one side of the non-woven fabric 11b, and the structural thread 11a arranged in a plane is sandwiched by a pair of non-woven fabrics 11b. It is possible that the material has been used. At this time, it is conceivable that the structural thread 11a and the non-woven fabric 11b are attached by, for example, an adhesive. Further, when a pair of non-woven fabrics 11b are used, it is conceivable that the non-woven fabrics 11b are attached to each other by, for example, an adhesive.
  • Various adhesives are known, and they may be appropriately selected in consideration of compatibility with the structural yarn 11a and the non-woven fabric 11b, but it is preferable to select an adhesive in consideration of VOC in view of recent environmental circumstances. .. Further, if a thermoplastic resin is used as the fiber material of the structural yarn 11a and / or the non-woven fabric 11b, the structural yarn 11a and the non-woven fabric 11b are heated and pressed under appropriate conditions in a state where the structural yarn 11a and the non-woven fabric 11b are overlapped with each other. 11a and the non-woven fabric 11b, or the non-woven fabric 11b can be attached to each other. Specifically, for example, a method using a press hot plate as described above, a method of passing between heating rolls, and the like can be mentioned.
  • a pair of non-woven fabrics 11b may be made of different materials. For example, the following can be considered.
  • the non-woven fabrics 11b it is conceivable to select one having a high porosity, that is, a non-woven fabric having a small amount of fibers per unit volume. By making the non-woven fabric 11b on the side where the cord-shaped heater 10 exists on the surface of the heater unit having a high porosity, the cord-shaped heater 10 more reliably enters the non-woven fabric 11b to obtain a flat heater unit 31. be able to. It is also conceivable that one of the nonwoven fabrics 11b has a high porosity and the nonwoven fabric 11b is melt-filled with another resin to form a composite material.
  • non-woven fabric with excellent flame retardancy non-woven fabric with high tensile strength, non-woven fabric with excellent chemical resistance, non-woven fabric with excellent heat resistance, non-woven fabric with excellent withstand voltage characteristics, non-woven fabric with electromagnetic wave shielding characteristics, non-woven fabric with low resilience, low temperature
  • non-woven fabrics such as a non-woven fabric having excellent brittleness and a non-woven fabric having high (or low) thermal conductivity, the heater unit 31 with additional functions can be obtained.
  • the adhesive layer for fixing the heater unit 31 to the seat from the viewpoint of the elasticity of the base material 11 and the maintenance of a good quality texture, the adhesive is formed only on the release sheet or the like. It is preferable to form a layer and transfer the adhesive layer from the release sheet to the surface of the base material 11 to form the adhesive layer. Further, the adhesive layer preferably has flame retardancy, and FMVSS No. 1 by itself. 302 A material having flame retardancy that passes a combustion test of an automobile interior material is preferable. For example, a high molecular weight acrylic pressure-sensitive adhesive may be mentioned.
  • the cord-shaped heater 10 when the cord-shaped heater 10 is arranged on the base material 11, the cord-shaped heater 10 may be fixed to the base material 11 by another mode, instead of adhering and fixing by fusion by heating and pressurizing.
  • the cord-shaped heater 10 may be fixed to the base material 11 by sewing, or the cord-shaped heater 10 may be fixed to the base material 11 by sandwiching and fixing the cord-shaped heater 10 to the base material 11 with a pair of adhesives. Other embodiments may be used.
  • fixing the cord-shaped heater 10 to the base material 11 it is preferable that the cord-shaped heater 10 is fixed in direct contact with the structural thread 11a of the base material 11.
  • the cord-shaped heater 10 When the cord-shaped heater 10 is fixed to the base material 11 by sewing, for example, the base material 11 in which the structural thread 11a is arranged on the surface is used, or the density (weighting) of the non-woven fabric 11b of the base material 11 is sufficiently small. It is conceivable to make the cord-shaped heater 10 and the structural thread 11a sufficiently close to each other by using the above, and tighten them by sewing to bring them into contact with each other.
  • the straight portion 10a and the curved portion 10b may be appropriately combined and designed into a predetermined shape according to the object to be heated, the installation location, and the like. It is preferable that the straight portion 10a is arranged at an angle different from that of the first structural yarn group 11x and the second structural yarn group 11y, but it is not necessary to satisfy this in all the linear portions 10a. A part of the straight portion 10a may be parallel to the first structural yarn group 11x or the second structural yarn group 11y. The effect of the present invention is sufficient if it is arranged at an angle different from that of the first structural yarn group 11x and the second structural yarn group 11y in a region of 50% or more of the linear portion 10a of the arranged cord-shaped heater 10. Can be obtained.
  • This heater unit is suitable as a heating means that requires air permeability, such as an electric blanket, an electric carpet, a car seat heater, a steering heater, a heating toilet seat, a heater for an anti-fog mirror, a cooking utensil, and a heater for floor heating. It can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Surface Heating Bodies (AREA)

Abstract

従来のヒータユニットでは、通気性及び機械的強度の両方の特性を同時に満たすことが出来ない問題があった。基材(11)と、コード状ヒータ(10)とを有し、コード状ヒータ(10)が、基材(11)上に配設され固定されているヒータユニットにおいて、基材(11)が略平面状に配置された構造糸(11a)と不織布(11b)を組合せてなるものであり、コード状ヒータ(10)が、構造糸(11a)と直接接触して固定されているヒータユニット。

Description

ヒータユニット及び車両用シート
 本発明は、電気毛布、電気カーペット、カーシートヒータなどに好適に使用可能なヒータユニットに係り、通気性及び機械的強度に優れるものに関する。
 従来より、車両用シートに装着されカーシートヒータとして供されるヒータユニットとしては、例えば、基材上に熱融着部を備えたコード状ヒータを蛇行配線し、加熱加圧による熱融着により基材と熱融着部を接着固定した構成のものなどがある(例えば、特許文献1参照)。また、近年では車室内環境の快適性を更に向上するものとして、車両用シートに空調装置を組み込んだものが実用化されてきている。具体的には、ヒータユニット及びシート表皮に通気性を持たせ、シート内部に形成された通風路を通して表皮側に送風することで、車両用シートの表面から空気が吹き出すようにしたものが知られている(例えば、特許文献2参照)。
 このような空調装置が組み込まれた車両用シートに適用されるヒータユニットとしては、特に通気性に優れたものが必要とされる。そのため、ヒータユニットの基材として、複数の貫通孔を形成した基材、スパンボンド不織布やスパンレース不織布のような通気性の優れた材料からなる基材、メッシュ構造を有する基材などを使用し、通気性を向上させることが知られている(特許文献3~7参照)。
特許第4202071号公報:クラベ 特許第4999455号公報:クラベ 特許第3991750号公報:松下電器産業 特開2005-285602公報:松下電器産業 特表平8-507404公報:スカンドメック 特開2015-74375公報:テイ・エステック 特許第6636825号公報:クラベ
 しかしながら、上記特許文献3~6に記載されたヒータユニットの基材では、通気性の代償として、機械的強度が格段に落ちてしまうことになっていた。特に車両用シートに適用されるヒータユニットにおいては、運転者等の着座・離座によって繰り返し荷重が加えられるが、このような荷重に対しても変形や破断のない充分な特性のものは得られていなかった。また、複数の貫通孔を形成した基材では、通気性についても若干の向上がなされるのみであり、更なる通気性の向上も必要とされていた。
 上記特許文献7に記載されたヒータユニットは、上記特許文献3~6に記載されたヒータユニットの課題を解決するものである。しかしながら、更なる通気性の向上が必要となり、不織布の密度(目付け)を減少させるよう要求があった。これにより、基材としての機械的強度や剛性が低下して、破断や変形が生じやすくなることになる。基材に変形が生じると、例えばヒータユニットを車両用シートに配置する際、作業が困難となってしまい、また、設計で意図しない箇所にまでヒータユニットが配置されてしまうことにもなりかねない。そのため、ヒータユニットとしての機械的強度や剛性に更なる補強を図る必要が生じていた。
 本発明はこのような従来技術の課題を解決するためになされたもので、その目的とするところは、通気性及び機械的強度に優れるヒータユニットを提供することにある。
 上記目的を達成するべく、本発明によるヒータユニットは、基材と、コード状ヒータとを有し、上記コード状ヒータが、上記基材上に配設され固定されているヒータユニットにおいて、上記基材が略平面状に配置された構造糸と不織布を組合せてなるものであり、上記コード状ヒータが、上記構造糸と直接接触して固定されているものである。
 また、上記コード状ヒータの最外層には熱融着部が形成されており、上記熱融着部が、上記不織布及び上記構造糸と熱融着されて固定されていることが考えられる。
 また、上記構造糸が、織られているか、編まれているか、または、異なる方向の引き揃えが重ねられているものであり、上記構造糸の見かけ径よりも大きい開口部を有することが考えられる。
 また、上記基材が、構造糸と一対の不織布とからなり、上記構造糸が上記一対の不織布によって挟持されていることが考えられる。
 また、本発明による車両用シートは、シート表皮とシートパットを有し、上記シート表皮と上記シートパットの間に上記のヒータユニットが配設されたものである。
 また、本発明によるヒータユニットは、基材と、コード状ヒータとを有し、上記コード状ヒータが、上記基材上に配設され固定されているヒータユニットにおいて、上記基材が、略平面状に配置された複数の構造糸と不織布を組合せてなるものであり、複数の構造糸が、所定の方向に対して直線状に配置された第1構造糸群と、上記第1構造糸群と異なる方向に対して直線状に配置された第2構造糸群とから少なくとも構成されており、上記コード状ヒータが、直線部と曲線部の組合せによる蛇行形状によって基材上に配置されており、上記コード状ヒータの直線部が、上記第1構造糸群及び上記第2構造糸群と異なる角度になるよう配置されているものである。
 また、上記構造糸が、織られているか、または、異なる方向の引き揃えが重ねられているものであり、上記構造糸の見かけ径よりも大きい開口部を有することが考えられる。
 また、上記基材が、構造糸と一対の不織布とからなり、上記構造糸が上記一対の不織布によって挟持されていることが考えられる。
 また、上記コード状ヒータの最外層には熱融着部が形成されており、上記熱融着部が、上記不織布及び上記構造糸と熱融着されて固定されていることが考えられる。
 また、本発明による車両用シートは、シート表皮とシートパットを有し、上記シート表皮と上記シートパットの間に上記のヒータユニットが配設されたものである。
 一般的に、通気性を向上させるためには、基材の単位面積辺りの繊維量を減少させることが有効であるが、これにより、基材の機械的強度や剛性も大きく減少することになる。ここで、本発明によるヒータユニットによれば、略平面状に配置された構造糸によって抗張力が得られる。従って、通気性が向上された機材であっても機械的強度に優れたものとなる。
 更に、熱融着部と構造糸が直接固定されることで、不織布の繊維抜けによるコード状ヒータの剥離を防止することができる。また、コード状ヒータと構造糸が強固に一体化することになるため、ヒータユニットが変形しにくくなるという効果もある。
 更に、構造糸の方向とコード状ヒータの直線部の方向が異なる角度となっていることで、コード状ヒータによっても基材の形状を保持することができる。
本発明による実施の形態を示す図で、ヒータユニットの構成を示す平面図である。 本発明による実施の形態を示す図で、基材の構成を示す一部切り欠き斜視図である。 本発明による実施の形態を示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による実施の形態を示す図で、ホットプレス式ヒータ製造装置の構成を示す図である。 本発明による実施の形態を示す図で、コード状ヒータを所定のパターン形状に配設する様子を示す一部斜視図である。 本発明による実施の形態を示す図で、ヒータユニットの一部について基材を透過させて示す拡大平面図である。 本発明による実施の形態を示す図で、ヒータユニットの一部についての拡大断面図である。 本発明による実施の形態を示す図で、ヒータユニットを車両用シート内に埋め込んだ様子を一部切り欠いて部示す斜視図である。 本発明による他の実施の形態を示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による他の実施の形態を示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による他の実施の形態を示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による他の実施の形態を示す図で、コード状ヒータの構成を示す一部切り欠き側面図である。 本発明による他の実施の形態を示す図で、基材の他の形態による構成を示す一部切り欠き斜視図である。 本発明による実施の形態を示す写真で、ヒータユニットの要部の拡大写真である。 本発明による実施の形態を示す写真で、ヒータユニットの要部断面の拡大写真である。
 以下、図面を参照して本発明の実施の形態を説明する。これらの実施の形態は、本発明を車両用シートヒータに適用することを想定した例を示すものである。
 まず、本実施の形態1におけるコード状ヒータ10の構成から説明する。本実施の形態におけるコード状ヒータ10は図3に示すような構成になっている。まず、外径約0.2mmの芳香族ポリアミド繊維束からなるヒータ芯3があり、該ヒータ芯3の外周には、素線径0.08mmの錫鍍金硬質錫入り銅合金線(TH-SNCC-3)からなる6本の導体素線5aを引き揃えて構成されたものがピッチ約0.7mmで螺旋状に巻装されている。このヒータ芯3上に導体素線5aを巻装したものの外周に、絶縁体層7としての四フッ化エチレン-六フッ化プロピレン共重合体(FEP)が約0.15mmの肉厚で押出・被覆され、発熱線1が構成されている。又、この発熱線1の外周には、更に、熱融着部9としての難燃剤が配合されたポリエステル樹脂が0.2mmの厚さで押出・被覆されている。コード状ヒータ10はこのような構成になっていて、その仕上外径は1.1mmである。又、屈曲性や引張強度を考慮した場合には上記ヒータ芯3は有効であるが、ヒータ芯3の代わりに複数本の発熱体素線を引き揃えるか或いは撚り合わせたものを使用することも考えられる。また、このコード状ヒータ10が、それ単体でUL1581水平燃焼試験:2008年、第4版 に合格する難燃性を有するものであると、ヒータユニットの難燃性を向上させることができるため好ましい。
 次に、上記構成をなすコード状ヒータ10を接着・固定する基材11の構成について説明する。本実施例における基材11は、図2に示すように、構造糸11aを一対の不織布11bで挟持し接着剤で貼付したものである。不織布11bは、例えば、目付け27g/m,見かけ厚さ1mm程度の難燃性ポリエステル繊維からなる不織布である。ここで、構造糸11aは、見かけ径が0.5mmのポリエステルマルチフィラメントである。そして、基材11では、構造糸11aを格子間隔10mm、開口部11cの大きさ9.5mm、遮蔽率12.9%の平織りにした。また、構造糸11aは、図2において左右方向に直線状に配置された第1構造糸群11xと、図2において前後方向に直線状に配置された第2構造糸群11yとから構成されている。なお、この不織布は、繊維を構成する材料を溶融押出して紡糸しながら積層してウェブを形成して得たものであり、フィラメント(長繊維)からなるものである。このような一対の不織布11bの間に構造糸11aは挟持されており、これらは接着剤で固定されている。なお、構造糸11a同士の交点についても接着剤で固定されている。このような構成の基材11は、全体として目付け100g/mとなっている。
 次に、上記コード状ヒータ10を基材11上に蛇行形状で配設して接着・固定する構成について説明する。本実施の形態においては、蛇行間隔を20mmとした。図4はコード状ヒータ10を基材11上に接着・固定させるためのホットプレス式ヒータ製造装置13の構成を示す図である。まず、ホットプレス治具15があり、このホットプレス治具15上には複数個の係り止め機構17が設けられている。上記係り止め機構17は、図5に示すように、ピン19を備えていて、このピン19はホットプレス治具15に穿孔された孔21内に下方より差し込まれている。このピン19の上部には係り止め部材23が軸方向に移動可能に取り付けられていて、コイルスプリング25によって常時上方に付勢されている。そして、図5中仮想線で示すように、これら複数個の係り止め機構17の係り止め部材23にコード状ヒータ10を引っ掛けながら蛇行形状にて配設することになる。
 図4に戻って、上記複数個の係り止め機構17の上方にはプレス熱板27が昇降可能に配置されている。すなわち、コード状ヒータ10を複数個の係り止め機構17の係り止め部材23に引っ掛けながら蛇行形状にて配設し、その上に基材11を置く。その状態で上記プレス熱板27を降下させてコード状ヒータ10と基材11に、例えば、230℃/5秒間の加熱・加圧を施すものである。それによって、コード状ヒータ10側の熱融着部9と基材11側の熱融着性繊維が融着することになり、その結果、コード状ヒータ10と基材11が接着・固定されることになる。尚、上記プレス熱板27の降下による加熱・加圧時には複数個の係り止め機構17の係り止め部材23はコイルスプリング25の付勢力に抗して下方に移動するものである。
 コード状ヒータ10の蛇行形状は、図6に示すように、直線部10aと曲線部10bを組合せていくことによって構成されるものである。この際、本実施の形態のように、コード状ヒータ10の直線部10aが、第1構造糸群11x及び上記第2構造糸群11yと異なる角度になるように配置されていることが好ましい。基材11の機械的強度としては、構造糸11aが配置される方向に対して強いが、構造糸11aが配置される方向と異なる角度の引張に対しては、角度が変わっていくに従い基材は変形しやすくなる。特に、本実施の形態のように、第1構造糸群11xと第2構造糸群11yを直行させた場合、第1構造糸群11xから45度ずれた角度への引張に対して最も変形しやすくなる。コード状ヒータ10の直線部10aが、第1構造糸群11x及び上記第2構造糸群11yと異なる角度になることで、様々な角度での引張に対しても変形しにくくなるようになる。なお、図6においては、基材11の不織布11bを透過させて示している。
 基材11のコード状ヒータ10を配設しない側の面には、接着層の形成、或いは、両面テープの貼り付けがなされても良い。これは、座席に取り付ける際、ヒータユニット31を座席に固定するためのものである。
 上記作業を行うことにより、図1に示すような車両用シートヒータのヒータユニット31を得ることができる。尚、上記ヒータユニット31におけるコード状ヒータ10の両端、及び、温度制御装置39にはコードが接続されており、このコードにより、コード状ヒータ10、温度制御装置39、及び、コネクタ35が接続されている。そして、このコネクタ35を介して図示しない車両の電気系統に接続されることになる。
 そして、上記構成をなすヒータユニット31は、図8に示すような状態で、車両用シート41内に埋め込まれて配置されることになる。すなわち、上記した通り、車両用シート41のシート表皮43又は座席パット45に、ヒータユニット31が貼り付けられることとなるものである。
 上記実施の形態のようにして得られたヒータユニットは、コード状ヒータ10の熱融着部9が、基材11の不織布11bの内部に浸透するとともに、不織布11bを構成する繊維を取り囲むことによって、コード状ヒータ10と基材11とが強固に接着することになる。特に、基材11が熱融着性繊維を含み、この熱融着性繊維が芯-鞘構造を有するとともに、鞘部分が低融点のものであれば、芯部分を取り囲んだ状態で、該鞘部分と上記コード状ヒータの熱融着部9とが、互いに融着し一体化することになる。これにより、コード状ヒータ10と基材11とが更に強固に接着することになる。
 コード状ヒータ10の熱融着部9は、図7に示す拡大断面図のように、基材11の不織布11bを越えて更に構造糸11aに直接接触するまで浸透し、熱融着部9と構造糸11aが熱融着により固定されていることが好ましい。基材11の通気性を向上させようとすると、基材11の不織布11bの密度(目付)が小さくなるため、不織布11bの繊維抜けによるコード状ヒータ10の剥離が生じやすくなる。熱融着部9と構造糸11aが直接固定されることで、このような剥離を防止することができる。また、コード状ヒータ10と構造糸11aが強固に一体化することになるため、ヒータユニットが変形しにくくなるという効果もある。図14、図15には、ヒータユニットの要部の拡大写真を示す。図14は、基材におけるコード状ヒータを固定した面と逆の面からヒータユニットを撮影した写真である。図15は、ヒータユニットをコード状ヒータの向きに沿って切断し、その断面を撮影した写真である。図14、図15の何れを見ても、コード状ヒータの熱融着部が構造糸を取り囲んでおり、熱融着部と構造糸が熱融着により固定されていることが確認できる。
 尚、本発明は、上記の実施の形態に限定されるものではない。コード状ヒータ10は、従来公知の種々のコード状ヒータを使用することができる。発熱線1の構成としては、例えば、上記実施の形態のように、導体素線5aを複数本撚り合わせ又は引き揃え、これをヒータ芯3上に巻装し、その外周に絶縁体層7を施したもの(図3参照)、絶縁被膜5bにより被覆された導体素線5aを複数本撚り合わせたもの(図9参照)、絶縁被膜5bにより被覆された導体素線5aを複数本引き揃えたもの(図10参照)、上記実施の形態2のように、絶縁被膜5bにより被覆された導体素線5aを複数本撚り合わせ又は引き揃え、これをヒータ芯3上に巻装したもの(図11参照)、熱融着部9を断続的に形成したもの(図12参照)などが挙げられる。また、温度検知線や短絡検知線などを併せて巻回しても良い。このような他の態様について、具体的なものを以下のように示す。まず、図11に示すような構成であり、外径約0.2mmの芳香族ポリアミド繊維束からなるヒータ芯3の外周に、素線径0.08mmの錫銅合金線からなる導体素線5aを7本引き揃え、ピッチ1mmで螺旋状に巻装して発熱線1を構成する。なお、導体素線5aには、ポリウレタンからなる絶縁被膜5bが厚さ約0.005mmで被覆されている。この発熱線1の外周に、熱融着部9としての難燃剤が配合されたポリエチレン樹脂が0.25mmの厚さで押出・被覆されている。コード状ヒータ10はこのような構成になっていて、その仕上外径は0.9mmである。
 ヒータ芯3としては、例えば、ガラス繊維等の無機繊維や、ポリエチレンテレフタレート等のポリエステル繊維、脂肪族ポリアミド繊維、芳香族ポリアミド繊維、全芳香族ポリエステル繊維等の有機繊維のモノフィラメント、マルチフィラメント、スパンヤーン、或いはそれらの繊維材料、若しくは、それらの繊維材料を構成する有機高分子材料を芯材とし、その周上に熱可塑性の有機高分子材料が被覆された構成を有する繊維などが挙げられる。また、ヒータ芯3を熱収縮性及び熱溶融性を有するものとすれば、導体素線5aが断線してしまった際の異常加熱により芯線が溶融切断されるとともに収縮することで、巻装された導体素線5aもこのヒータ芯3の動作に追従し、断線した導体素線5aの端部同士を分離することになる。そのため、断線した導体素線のそれぞれの端部が接したり離れたりすることや点接触のようなわずかな接触面積で接することがなくなり、異常発熱を防止することができる。また、導体素線5aが絶縁被膜5bにより絶縁されている構成であれば、ヒータ芯3は絶縁材料にこだわる必要はない。例えば、ステンレス鋼線やチタン合金線等を使用することも可能である。しかし、導体素線5aが断線したときのことを考慮すると、ヒータ芯3は絶縁材料であった方が良い。
 導体素線5aとしては、従来公知のものを使用することができ、例えば、銅線、銅合金線、ニッケル線、鉄線、アルミニウム線、ニッケル-クロム合金線、銅-ニッケル合金、鉄-クロム合金、銅固溶体と銅銀共晶がファイバー状になった銀入り銅合金線などが使用できる。また、その断面形状についても種々のものが使用でき、通常使用される断面円形のものに限られず、いわゆる平角線と称されるものを使用しても良い。但し、ヒータ芯3に導体素線5aを巻装する場合は、これらの中でも、発熱線1を巻付けたときのスプリングバックする量が小さいものが好ましい。例えば、銅固溶体と銅銀共晶がファイバー状になった銀入り銅合金線などは、抗張力性に優れ引張強度や屈曲強度には優れるものの、発熱線を巻付けたときスプリングバックし易い。そのため、ヒータ芯3に巻装する際に、導体素線5aの浮きや、過度の巻付けテンションによる導体素線5aの破断が生じ易く、また加工後には撚り癖が生じ易いため好ましくない。特に、導体素線5aに絶縁被膜5bが被覆される形態とした場合は、この絶縁被膜5bによる復元力も加わることになる。そのため、導体素線5aの復元率が小さいものを選定し、絶縁被膜5bによる復元力をカバーすることが重要となる。
 導体素線5aに被覆される絶縁被膜5bとしては、従来公知の樹脂材料等を使用することができ、例えば、ポリウレタン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂、ナイロン樹脂、ポリエステルナイロン樹脂、ポリエチレン樹脂、ポリエステル樹脂、塩化ビニル樹脂、フッ素樹脂、シリコーン樹脂などが挙げられる。これらを複数層形成しても良い。これらの中でも、熱融着性を有する材料を使用すれば、導体素線5a同士を融着することができることから、接続端子との接続等の端末加工時に発熱線1がバラけることがないため、加工性を向上させることができ好ましい。また、端末加工としてハンダ付けする場合には、ハンダ付けの際の熱により絶縁被膜5bが除去されると非常に加工性が向上するため、絶縁被膜5bの材料としては、熱分解性が良いものであることが好ましい。
 上記導体素線5aを引き揃え又は撚り合せてヒータ芯3上に巻装する際には、撚り合せるよりも、引き揃えた方が好ましい。これは、発熱芯4の径が細くなるとともに、表面も平滑になるためである。また、引き揃え又は撚り合わせの他に、ヒータ芯3上に導体素線5aを編組することも考えられる。
 絶縁体層7を形成する場合は、押出成形等によって行っても良いし、予めチューブ状に成形した絶縁体層7を被せても良く、形成の方法には特に限定はない。絶縁体層7を構成する材料としても、コード状ヒータの使用形態や使用環境などによって適宜設計すれば良く、例えば、ポリエチレン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、塩化ビニル樹脂、フッ素系樹脂、合成ゴム、フッ素ゴム、エチレン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー等、種々のものが挙げられる。また、この絶縁体層7の外周に、更に保護被覆を形成しても良い。
 発熱線1の外周に熱融着部9を形成する場合、熱融着部は、発熱線の外周の全周に形成する以外にも、例えば、コード状ヒータの長さ方向に沿って直線状やスパイラル線状に形成する、ドット模様に形成する、図12に示すように断続的に形成するなどの態様が考えられる。この際、熱融着部がコード状ヒータの長さ方向に連続していなければ、例え、熱融着部の一部に着火しても、燃焼部が広がらないため好ましい。また、熱融着部の体積が充分に小さければ、熱融着部が燃焼性の材料であっても、すぐに燃焼物がなくなり消火することになるし、ドリップ(燃焼滴下物)も発生しなくなる。従って、熱融着部の体積は、基材との接着性を保持できる最低限とすることが好ましい。但し、これらのような態様の場合は、絶縁体層7或いは絶縁被膜5bが難燃性の材料から構成されていることが好ましい。
 熱融着部9を構成する材料としては、難燃性を有する高分子組成物が好ましく使用される。ここでの難燃性を有する高分子組成物とは、JIS-K7201(1999年)燃焼性試験における酸素指数が21以上のものを示す。酸素指数が26以上のものは特に好ましい。具体的な材料としては、例えば、オレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、塩化ビニル樹脂、ポリウレタン樹脂、変性ノリル樹脂(ポリフェニレンオキサイド樹脂)、脂肪族ポリアミド樹脂、ポリスチレン樹脂、ポリオレフィン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどの熱可塑性高分子材料や、これら熱可塑性高分子材料に、適宜難燃剤が配合されたものなどが挙げられる。また、オレフィン系樹脂としては、例えば、高密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、ポリブテン、エチレン-α-オレフィン共重合体、エチレン-不飽和エステル共重合体などが挙げられる。エチレン-不飽和エステル共重合体としては、例えば、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸メチル共重合体、エチレン-(メタ)アクリル酸エチル共重合体、エチレン-(メタ)アクリル酸ブチル共重合体などが挙げられ、これらの単独または2種以上の混合物であってもよい。ここで「(メタ)アクリル酸」とは、アクリル酸とメタクリル酸の両方を表すものである。ポリエステル系熱可塑性エラストマーとしては、ポリエステル-ポリエステル型、ポリエステル-ポリエーテル型のものがあるが、ポリエステル-ポリエーテル型の方が高い接着性を有するため好ましい。脂肪族ポリアミド樹脂は、ナイロンと称されるもので、ωアミノ酸の重縮合反応で合成されるn-ナイロンと、ジアミンとジカルボン酸の共縮重合反応で合成されるn,m-ナイロンとがある。n-ナイロンとしては、ナイロン6、ナイロン11、ナイロン12等が挙げられ、n,m-ナイロンとしては、ナイロン66、ナイロン610、ナイロン6I、ナイロン6T、ナイロン9T、ナイロンM5T等が挙げられる。ポリアミド系熱可塑性エラストマーは、ポリアミドをハードセグメント、ポリエーテルをソフトセグメントとしたブロック共重合体が知られている。ハードセグメントとして使用されるポリアミドとしては、例えば、上記した脂肪族ポリアミドの他、パラ系アラミドやメタ系アラミドのような芳香族ポリアミドなど、種々のものが考えられる。ソフトセグメントとして使用されるポリエーテルとしては、ポリエチレングリコール、ポリ(1,2-及び1,3-)プロピレンエーテルグリコール、ポリテトラメチレンエーテルグリコール、ポリヘキサメチレンエーテルグリコール等のポリアルキレンエーテルグリコール、エチレンオキシドとプロピレンオキシドとのブロック又はランダム共重合体、エチレンオキシドとテトラヒドロフランとのブロック又はランダム共重合体等、ビスフェノールA、ヒドロキノン等の2価フェノールを含有したものなど、種々のものが考えられる。これらの中でも、高温時の接着性に特に優れ、基材としてポリエステル繊維の不織布を使用した際に融点や接着性の面で相性の良いポリアミド系熱可塑性エラストマーが好ましく、脂肪族ポリアミドとポリアルキレンエーテルグリコールのブロック共重合体のものが更に好ましく、ナイロン11又はナイロン12とポリテトラメチレンエーテルグリコールのブロック共重合体のものが特に好ましい。これらの内から任意に選択すれば良いが、上記した絶縁被膜5b或いは絶縁体層7を構成する材料の分解開始温度以下又は融点以下の温度で溶融する材料である方が良い。また、基材との接着性に優れる材料として、ポリエステル系熱可塑性エラストマーが挙げられる。更には、基材との接着を容易なものとし、且つ、接着後の接着強度を確保するために、熱融着部9を構成する材料のメルトフローレートが5.0cm/10分以上であることが好ましい。このメルトフローレートは、JIS-K7210:1999年に記載されたA法により、温度200℃、荷重2.16kgで測定される。難燃剤としては、例えば、水酸化マグネシウム、水酸化アルミニウム等の金属水和物、酸化アンチモン、メラミン化合物、リン系化合物、塩素系難燃剤、臭素系難燃剤などが挙げられる。これらの難燃剤には公知の方法で適宜表面処理を施しても良い。特に、熱融着部9を構成する高分子組成物の溶融時粘度を下げるような表面処理であることが好ましい。また、熱融着部9を形成する方法には特に限定はなく、例えば公知の押出成形により形成しても良いし、塗布により形成しても良い。尚、本発明において、コード状ヒータと基材との接着強度は非常に重要なものである。この接着強度が充分でないと、使用していくうちに基材とコード状ヒータとが剥離してしまい、それにより、コード状ヒータには予期せぬ屈曲が加わることになるため、導体素線が断線する可能性が生じる。
 また、図3に示すようなコード状ヒータを使用する場合、長さ方向の一部分において、導体素線5aの外周に金属箔などの電気良導体を巻き付けておくこともできる。また、図3に示すようなコード状ヒータを使用する場合、長さ方向の一部分において、ヒータ芯3の外周(導体素線5aの内面)に金属箔などの電気良導体を巻き付けておくこともできる。これらのようにすることで、電気良導体が巻き付けられた部分において、電気は電気良導体に導通し、導体素線5aにはほぼ導通しないため、この部分は発熱しなくなる。従って、発熱が不要な部分において、上記のように電気良導体を巻き付けることが考えられる。また、コード状ヒータの端部において、上記のように電気良導体が巻き付けられていれば、その部分はリード線部となる。従って、発熱部とリード線部が連続して形成されることになり、特別な接続加工、防水加工がなくても、防水がはかられることになる。そのため、このような構成は、多湿な環境、水がかかる環境、解氷を行う環境など、防水性が要求される用途に好適に使用される。
 また、コード状ヒータ10は、1本だけでなく、2本又はそれ以上を配設しても良い。その場合、一方のコード状ヒータとその他のコード状ヒータは、それぞれ基材の同じ面に配設しても良いし、それぞれ基材の異なる面に配設しても良い。また、コード状ヒータと併せて、コード状センサを配設することも考えられる。コード状センサとしては、上記のようなコード状ヒータにおいて、発熱素線を検知素線に置き換えたものが考えられる。このコード状センサについては、例えば、検知素線の温度による抵抗値変化を測定する温度センサ、所定温度で溶融する絶縁材料が溶融することによって検知素線に導通することを検知する温度センサ、検知素線の静電容量の変化を測定する把持センサや着座センサ、検知素線の張力や変位を検知又は測定する圧力センサや荷重センサなどが考えられる。このコード状センサについても、コード状ヒータと、それぞれ基材の同じ面に配設しても良いし、それぞれ基材の異なる面に配設しても良い。
 基材11としては、略平面状に配置された構造糸11aと不織布11bを組合せてなるものが使用される。構造糸11aとしては、マルチフィラメント、モノフィラメント、スパンヤーン等、種々の形態のものが使用できる。これらの中でもマルチフィラメントが柔軟性と強度に優れるため好ましい。構造糸の見かけ径は、ヒータユニット31の使用環境等に応じて適宜設定すれば良いが、柔軟性と機械的強度と通気性のバランスの観点から、0.25~1mmであることが好ましい。なお、構造糸の見かけ径は、構造糸を構成する繊維間の空隙も含めた実測により得られる値であり、以下の式にて近似的に算出できる。
D=0.0357×{T/(ρ×φ)}0.5
 D:構造糸の見かけ径(mm)
 T:構造糸の太さ(tex)
 ρ:構造糸を構成する繊維の密度(g/cm
 φ:構造糸の充填率(構造糸の見かけの密度と繊維の密度の比)
 構造糸11aを構成する材料としては、例えば、ガラス繊維、アルミナ繊維、シリカ繊維、アルミナ-シリカ繊維、カーボン繊維等の無機繊維、ポリエチレンテレフタレート繊維、ポリエチレンナフタレート繊維、ポリブチレンテレフタレート繊維等のポリエステル繊維、ポリビニルアルコール繊維、ポリ塩化ビニル繊維、ポリ塩化ビニリデン繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリアクリロニトリル繊維、ポリスチレン繊維、ポリウレタン繊維、ポリフェニレンサルファイド繊維、アラミド繊維、ナイロン繊維、ポリエーテルサルフォン繊維、ポリエーテルケトン繊維、4フッ化エチレン繊維等の合成繊維、綿、麻、亜麻、絹、羊毛等の天然繊維など、種々のものが使用できる。また、高融点材料の芯の外周に低融点材料の鞘を構成した芯-鞘構造の繊維を使用しても良い。これらは使用条件等を考慮して適宜選択すれば良い。勿論、単独種の繊維からなる構造糸11aとしても良いし、複数種の繊維を組合せてなる構造糸11aとしても良い。
 構造糸11aが略平面状に配置された形態として、例えば、構造糸11aを蛇行形状に配置したもの、複数の構造糸11aを所定間隔で離して引き揃えたもの、複数の構造糸11aを所定間隔で離して引き揃えたものを引き揃え方向が異なるように複数層重ねたもの、構造糸11aを織ったもの(例えば、平織、綾織、朱子織等)、構造糸11aを編んだもの(平編み、ゴム編み、パール編み、両面編み、鹿の子編み、ジャカード編み、ラッシェル編み、トリコット編み等)、などが考えられる。特に、構造糸11aの見かけ径よりも大きい開口部11cを有するように織られているか、または、構造糸11aの見かけ径よりも大きい開口部11cを有するように編まれていれば、開口部11cにより充分な通気性が得られる。更には、織り又は編みによる構造によって、外力が加わったとしても構造糸11aのズレを防ぐことができる。開口部11cの大きさとしては、例えば、構造糸11aの見かけ径の10~30倍程度であることが好ましい。なお、開口部11cの大きさは、開口部11cにおける最大径となる部分で求められ、例えば、開口部11cが方形であれば対角線の長さが開口部11cの大きさとなる。また、別の観点からみると、構造糸11aの遮蔽率は8.8~23.2%であることが好ましい。遮蔽率は、単位面積における構造糸11aが占有している面積の割合のことであり、構造糸11aの見かけ径が一定の場合、開口部11cの大きさが大きくなるほど遮蔽率は小さくなり、開口部11cの大きさが一定の場合、構造糸11aの見かけ径が大きくなるほど遮蔽率は大きくなる。
 上記実施の形態では、第1構造糸群11xと第2構造糸群11yとの角度が90度であったが、もちろん異なる角度であっても良い。但し、この角度が小さすぎると、所定の方向に対する機械的強度が不十分になり得るので、45度以上の角度とすることが好ましい。また、第1構造糸群11xと第2構造糸群11yだけでなく、更に角度の異なる第3構造糸群、第4構造糸群等を使用してもよい。例えば、図13に示すように、第1構造糸群11x、第2構造糸群11y及び第3構造糸群11zがそれぞれ60度ずつ異なる角度になって配置されている基材11も考えられる。この図13のような態様の場合、コード状ヒータ10の直線部10aが、第1構造糸群11x、第2構造糸群11y及び第3構造糸群11zの全て異なる角度となるように配置されていても良いが、第1構造糸群11x、第2構造糸群11y及び第3構造糸群11zの内の2つと異なる角度になるよう配置されていれば、十分に本願発明の効果を得ることができる。
 不織布11bとしては、湿式法、サーマルボンド法、ケミカルボンド法、ニードルパンチ法、スパンレース法等の各種手法によって形成されたものが考えられる。不織布11bを構成する繊維としては、例えば、ガラス繊維、アルミナ繊維、シリカ繊維、アルミナ-シリカ繊維、カーボン繊維等の無機繊維、ポリエチレンテレフタレート繊維、ポリエチレンナフタレート繊維、ポリブチレンテレフタレート繊維等のポリエステル繊維、ポリビニルアルコール繊維、ポリ塩化ビニル繊維、ポリ塩化ビニリデン繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリアクリロニトリル繊維、ポリスチレン繊維、ポリウレタン繊維、ポリフェニレンサルファイド繊維、アラミド繊維、ナイロン繊維、ポリエーテルサルフォン繊維、ポリエーテルケトン繊維、4フッ化エチレン繊維等の合成繊維、綿、麻、亜麻、絹、羊毛等の天然繊維など、種々のものが使用できる。また、高融点材料の芯の外周に低融点材料の鞘を構成した芯-鞘構造の熱融着性繊維を使用しても良い。このような熱融着性繊維を使用すれば、コード状ヒータ10の最外層に熱融着部9が形成されている場合、熱融着性繊維の芯部を取り囲んだ状態で、熱融着性繊維の鞘部と上記熱融着部9とが互いに融着し一体化することとなるため、コード状ヒータ10と基材11との接着は非常に強固なものとなる。これらの繊維は使用条件等を考慮して適宜選択すれば良い。勿論、単独種の繊維からなる不織布11bとしても良いし、複数種の繊維を組合せてなるハイブリッドの不織布11bとしても良い。また、不織布11bを構成する繊維としては、繊維長を有さないフィラメント(長繊維)でもよいし、所定の繊維長を有するステープル(短繊維)を使用しても構わない。フィラメントの方が、不織布11bとしての強度が高く、また、コード状ヒータ10の固定も確実になるため好ましい。また、基材11としては、FMVSS No.302自動車内層材料の燃焼試験に合格する難燃性を有するものが好ましい。ここで、FMVSSとは、Federal Motor Vehicle Safety Standard、即ち、米国連邦自動車安全基準のことであり、そのNo.302として、自動車内装材料の燃焼試験が規定されている。そのために、構造糸11aや不織布11bを構成する繊維として、難燃性試験(例えば、JIS-L1091:1999年)に合格するような難燃性繊維を使用することが好ましい。このような難燃性繊維を使用することで、基材は優れた難燃性を付与されることとなる。不織布11bの厚さ(乾燥時に測定した値)は、例えば、0.6mm~1.4mm程度とすることが望ましい。このような厚さの不織布11bを使用すれば、加熱・加圧によりコード状ヒータ10と基材11とを接着・固定する場合、不織布11bがコード状ヒータの外周の30%以上、好ましくは50%以上の部分と良好に接着することになるからであり、それによって、強固な接着状態を得ることができるからである。また、不織布11bの目付け(単位面積辺りの重量)については、基材11全体として80~120g/m2程度とすることが望ましい。このような目付けの不織布11bであれば、通気性に優れるとともに充分な機械的強度を得ることできる。
 なお、不織布11bに熱融着性繊維を使用する場合、熱融着性繊維の混合割合は、5%以上が好ましく、また、20%以下が好ましい。熱融着性繊維の混合割合が5%未満だと、十分な接着性を得られにくい。又、熱融着性繊維の混合割合が20%を超えると、不織布が固くなり、着座者が違和感を訴えることになり得るのみでなく、逆にコード状ヒータとの接着性が低下してしまうことがある。難燃性繊維の混合割合は、70%以上であり、好ましくは70%以上95%以下である。難燃性繊維の混合割合が70%未満だと、十分な難燃性が得られないことがある。又、難燃性繊維の混合割合が95%を超えると、相対的に熱融着性繊維の混合割合が不足してしまい、十分な接着性が得られにくい。尚、熱融着性繊維の混合割合と難燃性繊維の混合割合を合算して100%になる必要はなく、他の繊維を適宜混合させても良い。
 また、不織布11bを構成する繊維について、着色しておくことが考えられる。例えば、シート表皮43の材料として合成皮革や天然皮革を使用した車両用シート41の場合、これら材料通気性がないことから、通気性を持たせるためシート表皮43に複数の貫通孔を形成することになる。このような車両用シート41内にヒータユニット31を配置すると、この貫通孔からヒータユニット31が目視されることになる。そのため、なるべく目立たないように、不織布11bを構成する繊維を黒色又はシート表皮と同系色に着色しておくことが好ましい。勿論、構造糸11aやコード状ヒータ10を黒色又はシート表皮と同系色に着色しておくことも考えられる。
 構造糸11aと不織布11bを組合せた形態については、例えば、不織布11bの片面に平面状に配置した構造糸11aが貼り付けられたもの、平面状に配置した構造糸11aが一対の不織布11bによって挟持されたものなどが考えられる。この際、構造糸11aと不織布11bとは、例えば接着剤によって貼り付けられていることが考えられる。また、一対の不織布11bを使用する場合は、不織布11b同士が、例えば接着剤によって貼り付けられていることが考えられる。接着剤としては種々のものが公知であるが、構造糸11aや不織布11bとの相性を考慮して適宜選定すれば良いが、昨今の環境事情より、VOCを考慮したものを選定することが好ましい。また、構造糸11a及び/又は不織布11bの繊維の材料として熱可塑性樹脂を使用したものであれば、構造糸11aと不織布11bを重ねた状態で、適切な条件で加熱加圧することで、構造糸11aと不織布11b、または不織布11b同士を貼り付けることができる。具体的には、例えば、上記のようなプレス熱板を使用する方法や、加熱ロールの間を通過させる方法等が挙げられる。
 また、一対の不織布11bを使用する場合、これらそれぞれを異なる材質のものとしても良い。例えば、以下のようなものが考えられる。一方の不織布11bについて、気孔率の高い、即ち単位体積辺りの繊維量が少ないものを選択することが考えられる。ヒータユニット表面にコード状ヒータ10が存在するようになる側の不織布11bを気孔率の高いものとすることで、コード状ヒータ10がより確実に不織布11b中に入り込み、平坦なヒータユニット31を得ることができる。また、一方の不織布11bを気孔率の高いものとし、その不織布11bにその他の樹脂を溶融充填して複合材料とすることも考えられる。また、難燃性に優れる不織布、引張強度の高い不織布、耐薬品性に優れる不織布、耐熱性に優れる不織布、耐電圧特性に優れる不織布、電磁波遮蔽特性を備える不織布、低反発性を有する不織布、低温脆性に優れる不織布、熱伝導率が高い(又は低い)不織布等、種々の不織布を組合せることによって、付加的な機能が付与されたヒータユニット31にすることができる。
 また、ヒータユニット31を座席に固定するための接着層については、基材11の伸縮性の点や、良質な風合いの保持という点からすると、離型シート等の上に接着剤のみからなる接着層を形成し、該接着層を上記離型シートから上記基材11表面に転写することによって接着層を形成することが好ましい。また、この接着層は、難燃性を有するものが好ましく、それ単独でFMVSS No.302自動車内装材料の燃焼試験に合格するような難燃性を有するものが好ましい。例えば、高分子アクリル系粘着剤などが挙げられる。
 また、コード状ヒータ10を基材11に配設する際、加熱加圧による融着によって接着・固定する態様でなく、他の態様によりコード状ヒータ10を基材11に固定しても良い。例えば、縫製によりコード状ヒータ10を基材11に固定しても良いし、一対の接着剤付き基材11で挟持固定することでコード状ヒータ10を基材11に固定しても良いし、他の態様を用いても良い。コード状ヒータ10を基材11に固定する際は、コード状ヒータ10が、基材11の構造糸11aと直接接触して固定されている態様が好ましい。縫製によりコード状ヒータ10を基材11に固定する場合、例えば、構造糸11aが表面に配置された基材11を使用したり、基材11の不織布11bの密度(目付け)が十分に小さいものを使用したりして、コード状ヒータ10と構造糸11aが十分に近接するようにし、これらを縫製で締め付けて接触させることが考えられる。
 コード状ヒータ10における蛇行形状の配置についても、被加熱対象物や設置場所等に応じ、適宜直線部10aと曲線部10bを組合せて、所定の形状に設計すればよい。直線部10aは、第1構造糸群11x及び第2構造糸群11yと異なる角度になるよう配置されていることが好ましいが、全ての直線部10aの部分でこれを満たす必要はない。直線部10aの一部分において、第1構造糸群11x又は第2構造糸群11yと平行になっていても良い。配置されたコード状ヒータ10の直線部10aの内、50%以上の領域で、第1構造糸群11x及び第2構造糸群11yと異なる角度になるよう配置されていれば、本発明の効果を十分に得ることができる。
 以上詳述したように本発明によれば、通気性及び機械的強度に優れるヒータユニットを得ることができる。このヒータユニットは、例えば、電気毛布、電気カーペット、カーシートヒータ、ステアリングヒータ、暖房便座、防曇鏡用ヒータ、加熱調理器具、床暖房用ヒータ等、通気性が要求される加熱手段として好適に使用可能である。
10 コード状ヒータ
10a 直線部
10b 曲線部
11 基材
11a 構造糸
11b 不織布
11c 開口部
11x 第1構造糸群
11y 第2構造糸群
31 ヒータユニット
41 車両用シート

Claims (10)

  1.  基材と、コード状ヒータとを有し、上記コード状ヒータが、上記基材上に配設され固定されているヒータユニットにおいて、
    上記基材が略平面状に配置された構造糸と不織布を組合せてなるものであり、
    上記コード状ヒータが、上記構造糸と直接接触して固定されているヒータユニット。
  2.  上記コード状ヒータの最外層には熱融着部が形成されており、上記熱融着部が、上記不織布及び上記構造糸と熱融着されて固定されている請求項1記載のヒータユニット。
  3.  上記構造糸が、織られているか、編まれているか、または、異なる方向の引き揃えが重ねられているものであり、上記構造糸の見かけ径よりも大きい開口部を有する請求項1又は請求項2記載のヒータユニット。
  4.  上記基材が、構造糸と一対の不織布とからなり、上記構造糸が上記一対の不織布によって挟持されている請求項1~請求項3何れか記載のヒータユニット。
  5.  シート表皮とシートパットを有し、上記シート表皮と上記シートパットの間に請求項1~請求項4何れか記載のヒータユニットが配設された車両用シート。
  6.  基材と、コード状ヒータとを有し、上記コード状ヒータが、上記基材上に配設され固定されているヒータユニットにおいて、
    上記基材が、略平面状に配置された複数の構造糸と不織布を組合せてなるものであり、
    上記複数の構造糸が、所定の方向に対して直線状に配置された第1構造糸群と、上記第1構造糸群と異なる方向に対して直線状に配置された第2構造糸群とから少なくとも構成されており、
    上記コード状ヒータが、直線部と曲線部の組合せによる蛇行形状によって基材上に配置されており、
    上記コード状ヒータの直線部が、上記第1構造糸群及び上記第2構造糸群と異なる角度になるよう配設されているヒータユニット。
  7.  上記構造糸が、織られているか、または、異なる方向の引き揃えが重ねられているものであり、上記構造糸の見かけ径よりも大きい開口部を有する請求項6記載のヒータユニット。
  8.  上記基材が、構造糸と一対の不織布とからなり、上記構造糸が上記一対の不織布によって挟持されている請求項6又は請求項7記載のヒータユニット。
  9.  上記コード状ヒータの最外層には熱融着部が形成されており、上記熱融着部が、上記不織布及び上記構造糸と熱融着されて固定されている請求項6~請求項8何れか記載のヒータユニット。
  10.  シート表皮とシートパットを有し、上記シート表皮と上記シートパットの間に請求項6~請求項9何れか記載のヒータユニットが配設された車両用シート。
PCT/JP2022/000271 2021-01-12 2022-01-06 ヒータユニット及び車両用シート WO2022153919A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280009726.4A CN116761532A (zh) 2021-01-12 2022-01-06 加热器单元和车辆座椅
EP22739328.7A EP4278930A1 (en) 2021-01-12 2022-01-06 Heater unit and vehicular seat
US18/260,887 US20240059198A1 (en) 2021-01-12 2022-01-06 Heater unit and vehicular seat

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2021-002906 2021-01-12
JP2021002905 2021-01-12
JP2021-002905 2021-01-12
JP2021002906 2021-01-12
JP2021012569A JP2022108228A (ja) 2021-01-12 2021-01-29 ヒータユニット及び車両用シート
JP2021-012570 2021-01-29
JP2021012570A JP2022108229A (ja) 2021-01-12 2021-01-29 ヒータユニット及び車両用シート
JP2021-012569 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022153919A1 true WO2022153919A1 (ja) 2022-07-21

Family

ID=82447295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000271 WO2022153919A1 (ja) 2021-01-12 2022-01-06 ヒータユニット及び車両用シート

Country Status (3)

Country Link
US (1) US20240059198A1 (ja)
EP (1) EP4278930A1 (ja)
WO (1) WO2022153919A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668964A (ja) * 1992-08-24 1994-03-11 Matsushita Electric Ind Co Ltd 面状発熱体
JP2005285602A (ja) 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 面状発熱体
JP3991750B2 (ja) 2002-04-08 2007-10-17 松下電器産業株式会社 面状発熱体
JP4202071B2 (ja) 2001-09-20 2008-12-24 株式会社クラベ シートヒータとシートヒータの製造方法
JP4999455B2 (ja) 2004-03-05 2012-08-15 株式会社クラベ 座席用通風装置と座席
JP2015074375A (ja) 2013-10-10 2015-04-20 テイ・エス テック株式会社 車両用シート
JP2017157279A (ja) * 2016-02-29 2017-09-07 株式会社クラベ ヒータユニット及び車両用シート

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668964A (ja) * 1992-08-24 1994-03-11 Matsushita Electric Ind Co Ltd 面状発熱体
JP4202071B2 (ja) 2001-09-20 2008-12-24 株式会社クラベ シートヒータとシートヒータの製造方法
JP3991750B2 (ja) 2002-04-08 2007-10-17 松下電器産業株式会社 面状発熱体
JP4999455B2 (ja) 2004-03-05 2012-08-15 株式会社クラベ 座席用通風装置と座席
JP2005285602A (ja) 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 面状発熱体
JP2015074375A (ja) 2013-10-10 2015-04-20 テイ・エス テック株式会社 車両用シート
JP2017157279A (ja) * 2016-02-29 2017-09-07 株式会社クラベ ヒータユニット及び車両用シート
JP6636825B2 (ja) 2016-02-29 2020-01-29 株式会社クラベ ヒータユニット及び車両用シート

Also Published As

Publication number Publication date
EP4278930A1 (en) 2023-11-22
US20240059198A1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
JP5916385B2 (ja) コード状ヒータと面状ヒータ
CA2892044C (en) Cord-shaped heater and sheet-shaped heater
JP6351999B2 (ja) ヒータユニット及びシート
JP2011181316A (ja) ヒータユニット
JP7360942B2 (ja) コード状ヒータ、面状ヒータおよび面状ヒータの製造方法
JP6636825B2 (ja) ヒータユニット及び車両用シート
WO2022153919A1 (ja) ヒータユニット及び車両用シート
JP2018073764A (ja) ヒータユニット及び車両用シート
JP5500792B2 (ja) ヒータユニット、シートヒータ及びシート
JP7210299B2 (ja) 面状ヒータ
JP2022108228A (ja) ヒータユニット及び車両用シート
JP2022108229A (ja) ヒータユニット及び車両用シート
WO2022054701A1 (ja) コード状ヒータと面状ヒータ
JP6101480B2 (ja) ヒータユニット
JP2013020951A (ja) コード状ヒータと面状ヒータ
CN116761532A (zh) 加热器单元和车辆座椅
JP7133905B2 (ja) ヒータユニット及び車両用シート
WO2024142835A1 (ja) 線状体を備えた面状ユニット、ステアリングホイール及び面状ユニットの製造方法
JP6512816B2 (ja) ヒータユニット及びステアリングホイール
WO2023204022A1 (ja) 面状ユニット、ステアリングホイール及び面状ユニットの製造方法
KR20220155270A (ko) 코드 형상 히터와 면 형상 히터
JP2015064926A (ja) ヒータユニット及び車両用シート
WO2023162409A1 (ja) コード状ヒータと面状ヒータ
JP2024075526A (ja) コード状ヒータと面状ヒータ
JP2023122598A (ja) コード状ヒータと面状ヒータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739328

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18260887

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280009726.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022739328

Country of ref document: EP

Effective date: 20230814