WO2022152093A1 - 一种制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法 - Google Patents

一种制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法 Download PDF

Info

Publication number
WO2022152093A1
WO2022152093A1 PCT/CN2022/071153 CN2022071153W WO2022152093A1 WO 2022152093 A1 WO2022152093 A1 WO 2022152093A1 CN 2022071153 W CN2022071153 W CN 2022071153W WO 2022152093 A1 WO2022152093 A1 WO 2022152093A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional layer
nano
apatite
nio
powder
Prior art date
Application number
PCT/CN2022/071153
Other languages
English (en)
French (fr)
Inventor
项礼
魏育航
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US18/268,495 priority Critical patent/US20240039003A1/en
Publication of WO2022152093A1 publication Critical patent/WO2022152093A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • H01M4/8835Screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the field of solid oxide fuel cells, and relates to a method for preparing a sub-micro-nano porous anode functional layer, in particular to a method for preparing a NiO/apatite type lanthanum silicate sub-micro-nano porous anode functional layer,
  • the apatite-type lanthanum silicate includes various doped apatite-type lanthanum silicates.
  • Solid Oxide Fuel Cells are electrochemical devices with an all-solid structure, which can directly convert the chemical energy of fuel into electrical energy through electrochemical reactions. Broad application prospects.
  • Solid oxide fuel cells are mainly composed of a porous anode, a porous cathode and a dense electrolyte. Since the operating temperature of traditional solid oxide fuel cells is above 800 °C, the high temperature leads to high cost of the battery system, high degradation rate, slow startup and thermal cycling (HanruiSu, Yun Hang Hu. Progress in low-temperature solid oxide fuel cells with hydrocarbon fuels [J]. Chemical Engineering Journal, 2020, 402, 126235.). Reducing the operating temperature of solid oxide fuel cells has become the key to their commercial application. In order to achieve the medium and low temperature of SOFCs and reduce their working temperature to 500°C-700°C, the following two technical routes are mainly adopted at present. One is to develop new materials with high ionic conductivity at low temperature, and the other is to reduce the electrolyte as much as possible. thickness of.
  • Mg-doped Lanthanum Silicate (MDLS) prepared by Yoshioka et al. has the highest oxygen ion conductivity and low activation energy: the oxygen ion conductivity of La 10 Si 5.8 Mg 0.2 O 26.8 The rate is 14x10 -3 Scm -1 and 51x10 -3 Scm -1 at 500 °C and 700 °C, respectively, and its activation energy is 0.43 eV; the oxygen ion conductivity of La 9.8 Si 5.7 Mg 0.3 O 26.4 is at 500 °C and 700 °C are 12x10 -3 Scm -1 and 43x10 -3 Scm -1 respectively, and their activation energy is 0.42eV (Hideki Yoshioka, Yoshihiro Nojiri, ShigeoTanase.
  • Mg-doped apatite-type lanthanum silicate has higher oxygen ion conductivity and lower activation energy at medium and low temperature, which is an excellent way to realize solid oxidation. It is the preferred oxygen ion conductor material for low temperature in fuel cells.
  • SOFCs using thin-film electrolytes employ an anode-supported structure in which an electrolyte film and a cathode are supported by an anode matrix, and the thickness of the electrolyte film is several micrometers.
  • most of the currently prepared apatite-type lanthanum silicate SOFCs use a microporous anode matrix, and the thickness of the electrolyte on it is mostly above 10 ⁇ m.
  • Liu et al. fabricated a MDLS electrolyte film with a thickness of 2.8 ⁇ m on a NiO/Sm 0.2 Ce0 8- ⁇ (SDC) submicron porous anode substrate by RF magnetron sputtering, and fabricated a cathode on it to complete the full cell was prepared at 700 °C to obtain a maximum power density of 212 mWcm -2 (Yi-Xin Liu, Sea-Fue Wang, Yung-Fu Hsu, Chi-Hua Wang.
  • Liu et al. used the casting method to prepare the anode matrix, the anode porosity was low.
  • the anode matrix also does not use the same MDLS oxygen ion conductor as the electrolyte, which increases the resistance of the anode/electrolyte interface.
  • the anode of the solid oxide fuel cell is a porous anode with a porosity of 30%-40% and a pore size greater than 1 ⁇ m.
  • dense electrolyte films with a thickness of several micrometers cannot be fabricated on micrometer-scale porous anode substrates. Because when the thickness of the film is less than or equal to the pore size of the substrate, the film cannot completely cover the pores on the surface of the substrate to form a dense film.
  • a functional layer the anode functional layer
  • the anode functional layer In order to prepare a dense electrolyte film with a thickness of several microns, a functional layer, the anode functional layer, must be added between the microporous anode substrate and the electrolyte film, and the macropore pore size of this functional layer is required to be in the submicron range and the surface is flat.
  • the finer grains and pores of the anode functional layer the number of three-phase interfaces will be greatly increased, thereby reducing the anode polarization loss and improving the power density of SOFCs.
  • Dong Yue prepared the NiO/apatite-type lanthanum silicate porous anode functional layer on the NiO/apatite-type lanthanum silicate microporous anode substrate by screen printing.
  • the maximum pore size is 2 ⁇ m, and there are few nano-sized pores.
  • Li Sen prepared an anode functional layer with a maximum deep hole diameter of 1 ⁇ m and a large number of nano-sized pores by improving the heat treatment process of the anode functional layer.
  • the anode functional layer contains microcracks (Li Sen. Preparation of anode functional layer and electrolyte film for medium and low temperature solid oxide fuel cells [Master]. Dalian University of Technology, 2019.). It can be seen that the NiO/apatite-type lanthanum silicate porous anode functional layers prepared at present are not ideal.
  • NiO/apatite-type silicic acid with a pore size of less than 1 ⁇ m and no cracks on the NiO/apatite-type lanthanum silicate microporous anode substrate.
  • Lanthanum anode functional layer is urgent to use.
  • the object of the present invention is to provide a method for preparing a NiO/apatite-type lanthanum silicate submicron-nanoporous anode functional layer, to prepare a porous anode functional layer with a smooth surface, no cracks, and macropores with submicron pore size, which is suitable for It lays the foundation for the preparation of dense solid electrolyte films to solve the problem that thin and dense film electrolytes are difficult to prepare by magnetron sputtering on microporous anode substrates; in addition, the three-phase reaction interface is increased by reducing the pore size to improve solid oxidation. power density of fuel cells.
  • the present invention adopts functional layer nano-powder, uses ethyl cellulose as a binder, and terpineol as a solvent, The ingredients are mixed and anhydrous ethanol is added for ultrasonic dispersion, so that the ingredients are uniformly dispersed, and a suspension of the functional layer slurry is obtained. Anhydrous ethanol in the suspension of the functional layer slurry was evaporated using a rotary evaporator to obtain a viscous paste.
  • the anode functional layer was prepared on the microporous NiO/apatite-type lanthanum silicate anode substrate by screen printing method, the best heat treatment parameters were formulated, the heating process was strictly controlled, and the decomposition rate of organic matter in the anode functional layer during the heating process was reduced.
  • a NiO/apatite-type lanthanum silicate submicro-nano porous anode functional layer that meets the requirements is prepared. The NiO of the prepared anode functional layer will be reduced to Ni in H2 atmosphere in use.
  • the technical scheme adopted in the present invention is as follows: using functional layer nano-powder, ethyl cellulose and terpineol, adding them into a rotary evaporation bottle filled with absolute ethanol in a certain proportion and order, and mixing the resulting
  • the suspension of the functional layer slurry is ultrasonically dispersed. Remove the absolute ethanol in the suspension of the functional layer slurry by a rotary evaporator.
  • the suspension of the functional layer slurry in the rotary evaporation bottle becomes a viscous paste
  • remove the rotary evaporation bottle and put the The viscous paste is scraped into a mortar for grinding to complete the preparation of the functional layer slurry.
  • the prepared functional layer slurry was brushed on the microporous NiO/apatite-type lanthanum silicate anode substrate by screen printing method, and three layers were brushed. After drying, the corresponding heat treatment and sintering were carried out, and the heating was strictly controlled. The heating rate, cooling rate and holding time in the process are used to make a NiO/apatite type lanthanum silicate submicron-nanoporous anode functional layer.
  • the steps to realize the technical solution are as follows:
  • Step 1 prepare functional layer nano-powder, and weigh apatite-type lanthanum silicate nano-powder and NiO nano-powder in proportion; add absolute ethanol to the ball mill, and weigh the weighed apatite-type silicate Lanthanum nano-powder and NiO nano-powder are put into a ball-milling tank for ball-milling and mixing to obtain a suspension; specifically, the ball-milling tank and the ball-milling bead materials are agate;
  • Step 2 Pour the suspension obtained after mixing by ball milling in step 1) into a container, put it into a constant temperature drying box, carry out drying treatment at a temperature of 55 ° C, and cool it naturally to obtain a ball milling mixture;
  • Step 3 Put the ball-milling mixture obtained after drying in step 2) into a mortar for grinding to obtain functional layer nano-powder; specifically, the mortar material is agate;
  • Step 4 Measure the functional layer nano-powder, terpineol and ethyl cellulose obtained in step 3) according to the proportion; add the terpineol into a rotary evaporation bottle filled with absolute ethanol, and ultrasonically disperse to make the pine oil.
  • the alcohol is uniformly dispersed in anhydrous ethanol to obtain a mixed solution;
  • Step 5 Grind the functional layer nano-powder and ethyl cellulose measured in step 4), and mix them uniformly, then add the mixed powder to the mixed solution obtained in step 4), ultrasonically disperse, and obtain the function Layer slurry suspension;
  • Step 6 Install the rotary evaporation bottle on the rotary evaporator, and remove the absolute ethanol in the suspension of the functional layer slurry obtained in step 5) by rotary evaporation until the suspension of the functional layer slurry in the rotary evaporation bottle is reached. into a viscous paste;
  • Step 7 Take out the paste in the rotary evaporation bottle obtained in step 6) and put it into a mortar, and grind it under water bath conditions to complete the preparation of the functional layer slurry;
  • Step 8 Take the functional layer slurry obtained in step 7), apply the functional layer slurry evenly on the anode substrate with a squeegee by the screen printing method, and then place the prepared first layer of the anode functional layer on the anode substrate. Put it into a constant temperature drying box for drying, and take it out after drying;
  • Step 9 Repeat step 8) to prepare the second anode functional layer and the third anode functional layer;
  • Step 10 The anode functional layer prepared in step 9) is placed in an Al 2 O 3 crucible, and placed in a high-temperature box furnace for heat treatment and sintering to obtain NiO/apatite-type lanthanum silicate sub-micro-nano Porous anode functional layer.
  • the particle size of the apatite-type lanthanum silicate nano-powder is 50-100 nm, and the NiO nano-powder is commercially available NiO nano-powder, and the particle size is 20-70nm.
  • step 1) the apatite-type lanthanum silicate nano-powder and NiO nano-powder are added to a ball mill tank containing anhydrous ethanol for ball milling and mixing, and the mixing time is 18-22h .
  • the mass ratio of the functional layer nano-powder and terpineol is 5:5-7:3, ethyl cellulose accounts for the functional layer nano-powder, pine oil 10%-14% of the total mixed mass of alcohol and ethyl cellulose.
  • step 6 the absolute ethanol in the suspension of the functional layer slurry is removed by a rotary evaporator, the parameters of the rotary evaporator are set as the rotation speed of 50-100r/min, the water bath The temperature is 30-50°C, the vacuum degree is 0.05-0.098MPa, and the rotary evaporation time is 0.5-4h.
  • step 7 grinding is performed for 10-30 min under the condition of a 35° C. water bath to complete the preparation of the functional layer slurry.
  • the anode substrate adopts 30 nm NiO, which is prepared according to Chinese invention patent CN201310357158.X, which is incorporated herein by reference in its entirety.
  • the screen printing method uses a 300-mesh screen printing plate.
  • step 8 the anode functional layer is placed in a constant temperature drying oven for drying, and the drying temperature is 50°C-70°C.
  • the sintering temperature of the anode functional layer is 1000°C-1200°C.
  • the invention can be used to prepare NiO/apatite-type lanthanum silicate submicro-nano-porous anode functional layer, wherein apatite-type lanthanum silicate includes apatite-type lanthanum silicate doped with various elements to prepare oxygen ions
  • the anode functional layer of the same conductor and electrolyte material can be used to prepare NiO/apatite-type lanthanum silicate submicro-nano-porous anode functional layer, wherein apatite-type lanthanum silicate includes apatite-type lanthanum silicate doped with various elements to prepare oxygen ions
  • the anode functional layer of the same conductor and electrolyte material.
  • the prepared NiO/apatite-type lanthanum silicate submicro-nano porous anode functional layer has a maximum pore diameter of less than 1 ⁇ m and a smooth surface without cracks, which is prepared by magnetron sputtering on it.
  • the thin and dense electrolyte film provides the substrate to realize the thinning of the electrolyte;
  • the functional layer contains a large number of nano-sized pores, which greatly increases the three-phase reaction interface, thus laying the foundation for the realization of medium and low temperature of solid oxide fuel cells.
  • Figure 1 is the FE-SEM micrograph of the surface of the anode functional layer in the comparative example.
  • FIG. 2 is a FE-SEM micrograph of the surface of the anode functional layer prepared by the method for preparing the NiO/apatite-type lanthanum silicate submicro-nanoporous anode functional layer provided in the embodiment of the present invention.
  • FIG. 3 is a FE-SEM microscopic topography photo of the surface of the anode functional layer prepared by the method for preparing the NiO/apatite-type lanthanum silicate submicron-nanoporous anode functional layer provided in the embodiment of the present invention, which is FIG. 2 High magnification photo of the middle part.
  • FIG. 4 is a FE-SEM micrograph of the cross-section of the anode functional layer prepared by the method for preparing the NiO/apatite-type lanthanum silicate submicro-nano porous anode functional layer provided in the embodiment of the present invention.
  • NiO/apatite-type lanthanum silicate submicron-nanoporous anode functional layer comprises the following steps:
  • the first step prepare the functional layer powder, and weigh 80nm apatite-type lanthanum silicate (La 10 Si 5.8 Mg 0.2 O 26.8 ) nano-powder and 30-nm NiO nano-powder in a mass ratio of 4:6, where La 10 Si 5.8 Mg 0.2 O 26.8 nano-powder is prepared according to Chinese invention patent CN201310357158.X; anhydrous ethanol is added to the ball mill, and the weighed apatite-type lanthanum silicate nano-powder and NiO nano-powder are put into the ball mill The ball-milling in the tank is mixed to obtain a suspension; specifically, the ball-milling tank and the ball-milling bead material are agate;
  • the second step pour the suspension obtained after ball milling into a container, put it into a constant temperature drying box, dry at 55°C for 24 hours, and cool it naturally to obtain a ball mill mixture;
  • the third step put the ball-milling mixture obtained after drying into a mortar and grind for 1 hour to obtain functional layer nano-powder; specifically, the mortar material is agate;
  • Step 4 According to the mass ratio of functional layer nano-powder and terpineol to 6:4, weigh 1.5g functional layer nano-powder and measure 1.0753ml terpineol, according to the proportion of ethyl cellulose in functional layer nano-powder. 12.5% of the total mixed mass of terpineol, terpineol and ethyl cellulose, weigh 0.3571 g of ethyl cellulose; add terpineol into a rotary steamer containing 30 ml of absolute ethanol, and ultrasonically disperse for 10 min to make the pine oil The alcohol is uniformly dispersed in anhydrous ethanol to obtain a mixed solution. Terpineol and ethyl cellulose are all analytically pure reagents;
  • Step 5 Put 1.5g of functional layer nano-powder and 0.3571g of ethyl cellulose in a mortar and grind for 20min to make the two evenly mixed, and then add the mixed powder to the powder obtained in the fourth step.
  • the mixed solution ultrasonically dispersed for 20 minutes to obtain a suspension of the functional layer slurry;
  • Step 6 Install the rotary evaporation bottle on the rotary evaporator, and remove the anhydrous ethanol in the suspension of the functional layer slurry by rotary evaporation.
  • the rotary evaporation time is 30min.
  • the suspension of the functional layer slurry The turbid liquid turned into a viscous paste.
  • the parameters of the rotary evaporator are set as the rotation speed is 90r/min, the water bath temperature is 45°C, and the vacuum degree is 0.098MPa;
  • Step 7 Take out the viscous paste in the rotary evaporation bottle, put it in a mortar, grind it at a temperature of 35°C water bath for 20 minutes, and complete the preparation of the functional layer slurry;
  • the eighth step using a 300-mesh screen printing plate, through screen printing, the functional layer slurry obtained in the seventh step is uniformly coated on the micro-porous NiO/La 10 Si 5.8 Mg 0.2 O 26.8 anode substrate with a squeegee
  • the first anode functional layer is obtained, and then the prepared first anode functional layer is placed in a constant temperature drying oven at 70° C. for drying for 10 minutes, and taken out after drying is completed;
  • the ninth step repeat the eighth step to prepare the second anode functional layer and the third anode functional layer;
  • the tenth step place the anode functional layer prepared in the ninth step in an Al 2 O 3 crucible and put it into a high-temperature box furnace for heat treatment and sintering. Heating to 260°C, within this range, take 2°C as a step, and keep each step for 5 minutes; 260°C-288°C, with a heating rate of 2°C/min, take 10°C as a step, and keep each step for 20 minutes, And keep at 288°C for 20min; 288°C-550°C, take 2°C as a step, the heating rate is 2°C/min, and each step is kept for 10min; from 550°C, the heating rate rises to 1050 °C, sintered for 2h. Then, the temperature was lowered to 600°C at 2°C/min, and then cooled to room temperature with the furnace.
  • FIG. 2 is a FE-SEM micrograph of the surface of the anode functional layer prepared by the method for preparing the NiO/apatite-type lanthanum silicate submicro-nanoporous anode functional layer provided in the embodiment of the present invention.
  • FIG. 3 is a high-magnification photo of the middle part of FIG. 2 .
  • 4 is a FE-SEM micrograph of the cross-section of the anode functional layer prepared by the method for preparing the NiO/apatite-type lanthanum silicate submicro-nano porous anode functional layer provided in the embodiment of the present invention. Referring to FIGS.
  • the NiO/apatite-type lanthanum silicate sub-micro-nano-porous anode functional layer prepared by the method of this embodiment is tested, and the maximum pore size is less than 1 ⁇ m and the surface is smooth and free of cracks.
  • the anode functional layer The thickness is 13.5 ⁇ m, which provides a substrate for preparing thin and dense electrolyte films by RF magnetron sputtering thereon.
  • the sub-micro-nano functional layer prepared by the method of this embodiment contains a large number of nano-sized pores.
  • the crystal particles of the anode functional layer are also finer, thereby greatly increasing the number of three
  • the number of corresponding interfaces can therefore be reduced, thereby reducing the anodic polarization loss and increasing the power density of SOFCs.
  • FIG. 1 is a comparative example.

Abstract

本发明涉及一种制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法,其采用功能层纳米粉体、乙基纤维素、松油醇加入到盛有无水乙醇的旋蒸瓶中,对混合后的悬浊液超声分散;采用旋转蒸发仪去除悬浊液中的无水乙醇,当悬浊液变为粘稠膏状体时,取出膏状体研磨,完成功能层浆料制备。将功能层浆料刷制在阳极基体上,刷制3层,烘干后进行相应的热处理和烧结,控制加热过程中的升、降温速率及保温时间,制成阳极功能层。本发明的益处是所制备的NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层,其最大孔径小于1μm且表面平整无裂纹,为在其上用磁控溅射制备几微米厚的致密电解质薄膜提供基底;功能层含有大量纳米小孔使三相界面大幅增加。

Description

一种制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法 技术领域
本发明属于固体氧化物燃料电池领域,涉及到一种制备亚微-纳米多孔阳极功能层的方法,特别涉及到制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法,其中磷灰石型硅酸镧包括各种掺杂的磷灰石型硅酸镧。
背景技术
固体氧化物燃料电池(Solid Oxide Fuel Cells,SOFCs)是一种全固体结构的电化学装置,可以将燃料的化学能通过电化学反应直接转换成电能,且燃料的利用率高、清洁环保,有着广阔的应用前景。
固体氧化物燃料电池主要由多孔阳极、多孔阴极和致密电解质组成。由于传统的固体氧化物燃料电池工作温度在800℃以上,高温导致电池***成本高、退化率高、启动和热循环缓慢(HanruiSu,Yun Hang Hu.Progress in low-temperature solid oxide fuel cells with hydrocarbon fuels[J].Chemical Engineering Journal,2020,402,126235.)。降低固体氧化物燃料电池的工作温度已经成为其商业化应用的关键。为了实现SOFCs的中低温化,将其工作温度降到500℃-700℃,目前主要采取以下两条技术路线,一是开发新的低温下具有高离子电导率的材料,二是尽可能降低电解质的厚度。
磷灰石型硅酸镧是Nakayama等人于1995年首先发现的新型氧离子导体,在中低温下具有较高的氧离子电导率和低的活化能,其氧离子电导率在500℃和700℃下分别为1.8x10 -4Scm -1和1.4x10 -3Scm -1,活化能为69kJmol -1(Susumu Nakayama,TatsuyaKageyama,HiromichiAono,YoshihikoSadaoka.Ionic conductivity of lanthanoid silicates,Ln 10(SiO 4) 6O 3(Ln=La,Nd,Sm,Gd,Dy,Y,Ho,Er and Yb)[J].Journal of Materials Chemistry,1995,5(11),1801-1805.)。之后,人们通过掺杂提高了磷灰石型硅酸镧的氧离子电导率(H.Gasparyan,S.Neophytides,D.Niakolas,V.Stathopoulos,T.Kharlamova,V.Sadykov,O.Van der Biest,E.Jothinathan,E.Louradour,J.-P.Joulin,S.Bebelis.Synthesis and characterization of doped  apatite-type lanthanum silicates for SOFC applications[J].Solid State Ionics,2011,192,158-162(1);TianrangYang,HaileiZhao,MengyaFang,
Figure PCTCN2022071153-appb-000001
k,JieWang,Zhihong Du.A New Family of Cu-doped Lanthanum Silicate Apatites as Electrolyte Materials for SOFCs:Synthesis,Structural and Electrical Properties[J].Journal of the European Ceramic Society,2019,39,424-431(2).)。目前,Yoshioka等人制备的Mg掺杂磷灰石型硅酸镧(Mg doped Lanthanum Silicate,MDLS)具有最高的氧离子电导率和低的活化能:La 10Si 5.8Mg 0.2O 26.8的氧离子电导率在500℃和700℃下分别为14x10 -3Scm -1和51x10 -3Scm -1,其活化能为0.43eV;La 9.8Si 5.7Mg 0.3O 26.4的氧离子电导率在500℃和700℃下分别为12x10 -3Scm -1和43x10 -3Scm -1,其活化能为0.42eV(Hideki Yoshioka,YoshihiroNojiri,ShigeoTanase.Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions[J].Solid State Ionics,2008,179,2165-2169.)。与传统钇稳定氧化锆(YSZ)的氧离子导体相比,Mg掺杂磷灰石型硅酸镧在中低温下具有更高的氧离子电导率及更低的活化能,它是实现固体氧化物燃料电池中低温化的首选氧离子导体材料。
如上所述,为了实现SOFCs的中低温化,必须使用薄膜电解质。使用薄膜电解质的SOFCs采用阳极支撑结构,由阳极基体支撑电解质薄膜及阴极,电解质薄膜厚度为几微米。然而,目前制备的磷灰石型硅酸镧SOFCs,多数采用微米多孔阳极基体,其上的电解质厚度大多在10μm以上。Yoshioka等人采用旋涂法在NiO/La 9.8Si 5.7Mg 0.3O 26.4微米多孔阳极基体上制备了厚度为15μm的La 9.8Si 5.7Mg 0.3O 26.4电解质薄膜,并完成了全电池的制备,在700℃下其最大功率密度为51mWcm -2(Hideki Yoshioka,HiroyukiMieda,TakahiroFunahashi,AtsushiMineshige,TetsuoYazawa,Ryoh ei Mori.Fabrication of apatite-type lanthanum silicate films and anode supported solid oxide fuel cells using nano-sized printable paste[J].Journal of the European Ceramic Society,2014,34,373-379.)。Wang等人制备了微管型的阳极支撑的SOFCs,采用NiO/LSMO复合微米多孔阳极基体,在其表面用浸渍法制备了厚度为12μm的La 9.8Si 5.7Mg 0.3O 26±δ(LSMO)电解质薄膜,在700℃下,其功率密度为 44mWcm -2(Sea-FueWang,Yung-Fu Hsu,PuHsia,Wei-Kai Hung,PiotrJasinski.Design and characterization of apatite La 9.8Si 5.7Mg 0.3O 26±δ-based micro-tubular solid oxide fuel cells[J].Journal of Power Sources,2020,460,228072.)。Liu等人采用射频磁控溅射法在NiO/Sm 0.2Ce0 8-δ(SDC)亚微米多孔阳极基体上制备了厚度为2.8μm的MDLS电解质薄膜,并在其上制备阴极,完成了全电池的制备,在700℃下获得最大功率密度为212mWcm -2(Yi-Xin Liu,Sea-Fue Wang,Yung-Fu Hsu,Chi-Hua Wang.Solid oxide fuel cells with apatite-type lanthanum silicate-based electrolyte films deposited by radio frequency magnetron sputtering[J].Journal of Power Sources,2018,381,101-106)。但由于Liu等人采用流延法制备阳极基体,使阳极孔隙率偏低。此外,阳极基体也未采用与电解质相同的MDLS氧离子导体,使阳极/电解质界面电阻增加。
固体氧化物燃料电池的阳极为多孔阳极,其孔隙率为30%-40%,气孔尺寸大于1μm。然而,在微米级的多孔阳极基体上不能制备出几微米厚度的致密电解质薄膜。因为当薄膜厚度小于或等于基体孔径尺寸时,薄膜无法完全覆盖基体表面的孔洞而形成致密薄膜。为了制备几微米厚度的致密电解质薄膜,必须在微米多孔阳极基体和电解质薄膜之间添加一个功能层,即阳极功能层,并要求这个功能层的大孔孔径在亚微米范围且表面平整。此外,由于阳极功能层的晶颗粒、气孔更加细小,将大大增加三相界面的数量,从而减小阳极极化损失,提高SOFCs的功率密度。
目前,有关NiO/磷灰石型硅酸镧多孔阳极功能层的研究很少。董岳在NiO/磷灰石型硅酸镧微米多孔阳极基体上通过丝网印刷法制备了NiO/磷灰石型硅酸镧多孔阳极功能层。但阳极功能层中存在直径较大的孔,最大孔径为2μm,且纳米尺寸的孔很少(董岳.磷灰石型硅酸镧固体氧化物燃料电池功能层及电解质制备[硕士].大连理工大学,2018.)。李森在董岳的基础上通过改善阳极功能层的热处理工艺,制备了最大深孔孔径为1μm且含大量纳米尺寸小孔的阳极功能层。然而,该阳极功能层中含有微裂纹(李森.中低温固体氧化物燃料电池阳极功能层及电解质薄膜制备[硕士].大连理工大学,2019.)。由此可见,目前制备的NiO/磷 灰石型硅酸镧多孔阳极功能层都不理想。因此,为实现固体氧化物燃料电池的中低温化,亟需采用新工艺在NiO/磷灰石型硅酸镧微米多孔阳极基体上制备孔径小于1μm且无裂纹的NiO/磷灰石型硅酸镧阳极功能层。
发明内容
本发明的目的在于提供一种制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法,制备表面平整、无裂纹且大孔具有亚微米孔径的多孔阳极功能层,为在其上制备致密的固体电解质薄膜打下基础,以解决在微米多孔阳极基体上通过磁控溅射难以制备薄而致密的薄膜电解质问题;此外,通过减小孔径增加三相反应界面,以提高固体氧化物燃料电池的功率密度。
为了克服目前NiO/磷灰石型硅酸镧阳极功能层中孔径较大、存在裂纹等问题,本发明采用功能层纳米粉体、以乙基纤维素为粘结剂、松油醇为溶剂,将配料混合并加入无水乙醇进行超声分散,使各配料分散均匀,获得功能层浆料的悬浊液。采用旋转蒸发仪蒸发去除功能层浆料的悬浊液中的无水乙醇,得到粘稠的膏状体。然后将粘稠的膏状体取出进行研磨,充分保证功能层浆料中各组成的均匀分布,完成功能层浆料的制备。采用丝网印刷法在微米多孔NiO/磷灰石型硅酸镧阳极基体上制备阳极功能层,制订最佳的热处理参数,严格控制加热过程,降低阳极功能层在加热过程中有机物的分解速率,避免加热过程中在阳极功能层中产生裂纹,制备符合要求的NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层。所制阳极功能层的NiO将在使用中在H 2气氛中还原成Ni。
本发明采用的技术方案是:采用功能层纳米粉体、乙基纤维素和松油醇,将它们按照一定的比例和顺序加入到盛有无水乙醇的旋蒸瓶中,对混合后形成的功能层浆料的悬浊液进行超声分散。通过旋转蒸发仪去除功能层浆料的悬浊液中的无水乙醇,当旋蒸瓶中的功能层浆料的悬浊液变为粘稠的膏状体时将旋蒸瓶取下,将粘稠的膏状体刮入到研钵中进行研磨,完成功能层浆料的制备。采用丝网印刷法将制备好的功能层浆料刷制在微米多孔NiO/磷灰石型硅酸镧阳极基体上,刷制3层,烘干后进行相应的热处理和烧结,并严格控制加热过程中的升温、降温速率及保温时间,制成NiO/磷灰石型硅酸镧亚微-纳米多孔阳极 功能层。实现该技术方案的步骤如下:
步骤1:制备功能层纳米粉体,按比例称量磷灰石型硅酸镧纳米粉体、NiO纳米粉体;在球磨罐中加入无水乙醇,将称量好的磷灰石型硅酸镧纳米粉体、NiO纳米粉体放入球磨罐内球磨混合,获得悬浊液;具体地,球磨罐及球磨珠材料为玛瑙;
步骤2:将步骤1)中经球磨混合后获得的悬浊液倒入容器中,并放入恒温干燥箱内,在55℃温度下进行干燥处理后,自然冷却,获得球磨混合料;
步骤3:将步骤2)中干燥处理后获得的球磨混合料放入研钵中研磨,获得功能层纳米粉体;具体地,研钵材料为玛瑙;
步骤4:按照比例量取步骤3)中获得的功能层纳米粉体以及松油醇、乙基纤维素;将松油醇加入盛有无水乙醇的旋蒸瓶中,超声分散,使松油醇均匀地分散在无水乙醇中,得到混合溶液;
步骤5:将步骤4)中量取的功能层纳米粉体和乙基纤维素研磨,并混合均匀,之后将混合好的粉体加入到步骤4)所得的混合溶液中,超声分散,获得功能层浆料的悬浊液;
步骤6:将旋蒸瓶安装在旋转蒸发仪上,旋转蒸发去除步骤5)所得的功能层浆料的悬浊液中的无水乙醇,直到旋蒸瓶中的功能层浆料的悬浊液变成粘稠的膏状体;
步骤7:将步骤6)中获得的旋蒸瓶中的膏状体取出放入研钵中,在水浴条件下进行研磨,完成功能层浆料的制备;
步骤8:取步骤7)中获得的功能层浆料,通过丝网印刷法,用刮板将功能层浆料均匀地涂敷在阳极基体上,然后将制备好的第一层阳极功能层放入恒温干燥箱中进行干燥,干燥完成后取出;
步骤9:重复步骤8),制备第二层阳极功能层、第三层阳极功能层;
步骤10:将步骤9)中制备好的阳极功能层安置在Al 2O 3坩埚里,并放入高温箱式炉中进行热处理和烧结,得到NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层。
在一个具体的实施方案中,在步骤1)中,所述磷灰石型硅酸镧纳米粉体的颗粒尺寸为50-100nm,NiO纳米粉体为市售NiO纳米粉体,其颗粒尺寸为20-70nm。
在一个具体的实施方案中,在步骤1)中,所述磷灰石型硅酸镧纳米粉体、NiO纳米粉体加入含无水乙醇的球磨罐中进行球磨混合,混合时间为18-22h。
在一个具体的实施方案中,在步骤4)中,所述功能层纳米粉体与松油醇的质量比为5:5-7:3,乙基纤维素占功能层纳米粉体、松油醇、乙基纤维素三者混合总质量的10%-14%。
在一个具体的实施方案中,在步骤6)中,通过旋转蒸发仪去除功能层浆料的悬浊液中的无水乙醇,旋转蒸发仪的参数设置为旋转速度为50-100r/min,水浴温度为30-50℃,真空度为0.05-0.098MPa,旋蒸时间为0.5-4h。
在一个具体的实施方案中,在步骤7)中,在35℃水浴条件下进行研磨10-30min,完成功能层浆料制备。
在一个具体的实施方案中,在步骤8)中,所述阳极基体采用30nmNiO,其按中国发明专利CN201310357158.X制备,其整体通过引用并入本文。
在一个具体的实施方案中,在步骤8)中,所述的丝网印刷法采用300目丝网印板。
在一个具体的实施方案中,在步骤8)中,将阳极功能层放入恒温干燥箱中进行干燥,干燥温度为50℃-70℃。
在一个具体的实施方案中,在步骤10)中,所述阳极功能层烧结温度为1000℃-1200℃。为了防止有机物分解过程中产生的气体导致阳极功能层表面孔径扩大和烧结升降温度过程中热应力过大造成微裂纹,在热处理和烧结中必须缓慢升温、降温及合理控制保温时间。从室温起以1-2℃/min的升温速率加热到260℃,在此区间内,以2℃为一个台阶,每个台阶保温5min;260℃-288℃,升温速率为1-2℃/min,以10℃为一个台阶,每个台阶保温20min,并在288℃处保温20min;288℃-550℃,以2℃为一个台阶,升温速率为1-2℃/min,每个台阶保温10min;从550℃起以1-2℃/min的升温速率升至1000℃-1200℃,烧结2 h。然后以1-2℃/min降温至600℃,之后随炉冷却至室温。
本发明可用于制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层,其中磷灰石型硅酸镧包括各种元素掺杂的磷灰石型硅酸镧,以制备氧离子导体与电解质材料相同的阳极功能层。
本发明的有益效果是:所制备的NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层,其最大孔径小于1μm且表面平整、无裂纹,为在其上通过磁控溅射制备薄而致密的电解质薄膜提供基底,以实现电解质的薄膜化;功能层中含有大量纳米尺寸的小孔,大幅度增加三相反应界面,从而为实现固体氧化物燃料电池的中低温化奠定基础。
附图说明
图1为对比例中阳极功能层表面FE-SEM显微形貌照片。
图2为采用本发明实施例中提供的制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法所制备的阳极功能层表面FE-SEM显微形貌照片。
图3为采用本发明实施例中提供的制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法所制备的阳极功能层表面FE-SEM显微形貌照片,是图2中间部位的高倍放大照片。
图4为采用本发明实施例中提供的制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法所制备的阳极功能层断面FE-SEM显微形貌照片。
具体实施方式
以下结合附图,通过实施例进一步说明本发明,但不作为对本发明的限制。以下提供了本发明实施方案中所使用的具体材料及其来源。但是,应当理解的是,这些仅仅是示例性的,并不意图限制本发明,与如下试剂和仪器的类型、型号、品质、性质或功能相同或相似的材料均可以用于实施本发明。下述实施例中所使用的实验方法如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例:制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层
本实施例中制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层包括以下 步骤:
第一步:制备功能层粉,按质量比4:6称量80nm的磷灰石型硅酸镧(La 10Si 5.8Mg 0.2O 26.8)纳米粉体、30nm的NiO纳米粉体,其中La 10Si 5.8Mg 0.2O 26.8纳米粉体按中国发明专利CN201310357158.X制备;在球磨罐中加入无水乙醇,将称量好的磷灰石型硅酸镧纳米粉体、NiO纳米粉体放入球磨罐内球磨混合,获得悬浊液;具体地,球磨罐及球磨珠材料为玛瑙;
第二步:将球磨混合后获得的悬浊液倒入容器中,并放入恒温干燥箱内,在55℃干燥处理24h后,自然冷却,获得球磨混合料;
第三步:将干燥处理后获得的球磨混合料放入研钵中研磨1h,获得功能层纳米粉体;具体地,研钵材料为玛瑙;
第四步:按照功能层纳米粉体和松油醇质量比为6:4,称取1.5g功能层纳米粉体、量取1.0753ml松油醇,按照乙基纤维素占功能层纳米粉体、松油醇、乙基纤维素三者混合总质量的12.5%称取0.3571g乙基纤维素;将松油醇加入盛有30ml无水乙醇的旋蒸瓶中,超声分散10min,使松油醇均匀地分散在无水乙醇中,得到混合溶液。松油醇、乙基纤维素均采用分析纯试剂;
第五步:将量取的1.5g功能层纳米粉体和0.3571g乙基纤维素放在研钵中研磨20min,使两者混合均匀,之后将混合好的粉体加入到第四步获得的混合溶液中,再超声分散20min,获得功能层浆料的悬浊液;
第六步:将旋蒸瓶安装在旋转蒸发仪上,旋转蒸发去除功能层浆料的悬浊液中的无水乙醇,旋转蒸发时间为30min,去除无水乙醇后,功能层浆料的悬浊液变成呈粘稠的膏状体。旋转蒸发仪的参数设置为旋转速度为90r/min,水浴温度为45℃,真空度为0.098MPa;
第七步:将旋蒸瓶中的粘稠的膏状体取出放在研钵中,在35℃水浴温度下研磨20min,完成功能层浆料的制备;
第八步:采用300目丝网印板,通过丝网印刷,用刮板将第七步获得的功能层浆料均匀地涂敷在微米多孔NiO/La 10Si 5.8Mg 0.2O 26.8阳极基体上得到第一层阳极功能层,然后将制备好的第一层阳极功能层放入70℃的恒温干燥箱中进行 干燥,时间为10min,干燥完成后取出;
第九步:重复第八步,制备第二层阳极功能层、第三层阳极功能层;
第十步:将第九步制备好的阳极功能层安置在Al 2O 3坩埚中并放入高温箱式炉中进行热处理及烧结,参数设置为:从室温起以2℃/min的升温速率加热到260℃,在此区间内,以2℃为一个台阶,每个台阶保温5min;260℃-288℃,升温速率为2℃/min,以10℃为一个台阶,每个台阶保温20min,并在288℃处保温20min;288℃-550℃,以2℃为一个台阶,升温速率为2℃/min,每个台阶保温10min;从550℃起以2℃/min的升温速率升至1050℃,烧结2h。然后以2℃/min降温至600℃,之后随炉冷却至室温。
图2为采用本发明实施例中提供的制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法所制备的阳极功能层表面FE-SEM显微形貌照片。图3为图2中间部位的高倍放大照片。图4为采用本发明实施例中提供的制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法所制备的阳极功能层断面FE-SEM显微形貌照片。参见图2至图4,采用本实施例的方法所制备的NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层经检测,最大孔径小于1μm且表面平整、无裂纹,阳极功能层厚度为13.5μm,为在其上通过射频磁控溅射制备薄而致密的电解质薄膜提供了基底。此外,参见图3,采用本实施例的方法所制备的亚微-纳米功能层中含有大量纳米尺寸的小孔,相较与阳极基体,阳极功能层晶颗粒也更加细小,从而大大增加了三相反应界面的数量,因此可减小阳极极化损失,提高SOFCs的功率密度。
对比例
本对比例采用李森(李森.中低温固体氧化物燃料电池阳极功能层及电解质薄膜制备[硕士].大连理工大学,2019.)中提及的方法制备阳极功能层,图1为对比例中阳极功能层表面FE-SEM显微形貌照片。参见图1,本对比例获得的阳极功能层深孔孔径较大并且表面存在裂纹,此外,阳极功能层表面平整度较差。
以上示例性实施方式所呈现的描述仅用以说明本发明的技术方案,并不想要成为毫无遗漏的,也不想要把本发明限制为所描述的精确形式。显然,本领 域的普通技术人员根据上述教导做出很多改变和变化都是可能的。选择示例性实施方式并进行描述是为了解释本发明的特定原理及其实际应用,从而使得本领域的其他技术人员便于理解、实现并利用本发明的各种示例性实施方式及其各种选择形式和修改形式。本发明的保护范围意在由所附权利要求书及其等效形式所限定。

Claims (10)

  1. 一种制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法,其特征在于,所述的方法包括以下步骤:
    步骤1、制备功能层纳米粉体,按比例称量磷灰石型硅酸镧纳米粉体、NiO纳米粉体;在球磨罐中加入无水乙醇,将称量好的磷灰石型硅酸镧纳米粉体、NiO纳米粉体放入球磨罐内球磨混合,获得悬浊液;
    步骤2、将步骤1)中经球磨混合后获得的悬浊液倒入容器中,并放入恒温干燥箱内,干燥处理后,自然冷却,获得球磨混合料;
    步骤3、将步骤2)中干燥处理后获得的球磨混合料放入研钵中研磨,获得功能层纳米粉体;
    步骤4、按照比例量取步骤3)中获得的功能层纳米粉体以及松油醇、乙基纤维素;将松油醇加入盛有无水乙醇的旋蒸瓶中,超声分散,使松油醇均匀地分散在无水乙醇中,得到混合溶液;
    步骤5、将步骤4)中量取的功能层纳米粉体和乙基纤维素研磨,并混合均匀,之后将混合好的粉体加入到步骤4)所得的混合溶液中,超声分散,获得功能层浆料的悬浊液;
    步骤6、将旋蒸瓶安装在旋转蒸发仪上,旋转蒸发去除步骤5)所得的功能层浆料的悬浊液中的无水乙醇,直到旋蒸瓶中的功能层浆料的悬浊液变成粘稠的膏状体;
    步骤7、将步骤6)中获得的旋蒸瓶中的膏状体取出放入研钵中,在水浴条件下进行研磨,完成功能层浆料的制备;
    步骤8、取步骤7)中获得的功能层浆料,通过丝网印刷法,用刮板将功能层浆料均匀地涂敷在阳极基体上,然后将制备好的第一层阳极功能层放入恒温干燥箱中进行干燥,干燥完成后取出;
    步骤9、重复步骤8),制备第二层阳极功能层、第三层阳极功能层;
    步骤10、将步骤9)中制备好的阳极功能层安置在Al 2O 3坩埚里,并放入高温箱式炉中进行热处理和烧结,得到NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功 能层。
  2. 根据权利要求1所述的制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法,其特征在于,在步骤10)中,所述的热处理和烧结包括:
    a)从室温起以1-2℃/min的升温速率加热到260℃,在此区间内,以2℃为一个台阶,每个台阶保温5min;
    b)260℃-288℃,升温速率为1-2℃/min,以10℃为一个台阶,每个台阶保温20min,并在288℃处保温20min;
    c)288℃-550℃,以2℃为一个台阶,升温速率为1-2℃/min,每个台阶保温10min;
    d)从550℃起以1-2℃/min的升温速率升至1000℃-1200℃,烧结2h;
    e)然后以1-2℃/min降温至600℃,之后随炉冷却至室温。
  3. 根据权利要求1或2所述的制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法,其特征在于,在步骤4)中,功能层纳米粉体与松油醇的质量比为5:5-7:3,乙基纤维素占功能层纳米粉体、松油醇、乙基纤维素三者混合总质量的10%-14%。
  4. 根据权利要求1或2所述的制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法,其特征在于,在步骤6)中,旋转蒸发仪的参数设置为旋转速度为50-100r/min,水浴温度为30-50℃,真空度为0.05-0.098MPa,旋蒸时间为0.5-4h。
  5. 根据权利要求3所述的制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法,其特征在于,在步骤6)中,旋转蒸发仪的参数设置为旋转速度为50-100r/min,水浴温度为30-50℃,真空度为0.05-0.098MPa,旋蒸时间为0.5-4h。
  6. 根据权利要求1、2或5所述的制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法,其特征在于,在步骤7)中,在35℃水浴条件下进行研磨10-30min,完成功能层浆料制备。
  7. 根据权利要求3所述的制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法,其特征在于,在步骤7)中,在35℃水浴条件下进行研磨10-30min,完成功能层浆料制备。
  8. 根据权利要求4所述的制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法,其特征在于,在步骤7)中,在35℃水浴条件下进行研磨10-30min,完成功能层浆料制备。
  9. 根据权利要求1、2、5、7或8所述的制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法,其特征在于,
    在步骤1)中,所述磷灰石型硅酸镧纳米粉体的颗粒尺寸为50-100nm,NiO纳米粉体的颗粒尺寸为20-70nm;
    在步骤8)中,所述阳极基体采用30nmNiO粉体制备;干燥温度为50℃-70℃。
  10. 根据权利要求4所述的制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法,其特征在于,
    在步骤1)中,所述磷灰石型硅酸镧纳米粉体的颗粒尺寸为50-100nm,NiO纳米粉体的颗粒尺寸为20-70nm;
    在步骤8)中,所述阳极基体采用30nmNiO粉体制备;干燥温度为50℃-70℃。
PCT/CN2022/071153 2021-01-17 2022-01-11 一种制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法 WO2022152093A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/268,495 US20240039003A1 (en) 2021-01-17 2022-01-11 A method for preparing a submicro/nano-porous nio/apatite-type lanthanum silicate anode functional layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110058873.8A CN112751041B (zh) 2021-01-17 2021-01-17 一种制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法
CN202110058873.8 2021-01-17

Publications (1)

Publication Number Publication Date
WO2022152093A1 true WO2022152093A1 (zh) 2022-07-21

Family

ID=75652235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071153 WO2022152093A1 (zh) 2021-01-17 2022-01-11 一种制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法

Country Status (3)

Country Link
US (1) US20240039003A1 (zh)
CN (1) CN112751041B (zh)
WO (1) WO2022152093A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751041B (zh) * 2021-01-17 2021-12-03 大连理工大学 一种制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法
JP2023097845A (ja) * 2021-12-28 2023-07-10 株式会社デンソー 電気化学セル及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070077476A1 (en) * 2005-09-30 2007-04-05 Korea Institute Of Science And Technology Paste for solid oxide fuel cells, anode-supported solid oxide fuel cells using the same, and fabricating method thereof
JP2011165424A (ja) * 2010-02-08 2011-08-25 Hyogo Prefecture 固体酸化物型燃料電池用セル及びその製造方法
CN112751041A (zh) * 2021-01-17 2021-05-04 大连理工大学 一种制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279643C (zh) * 2004-12-22 2006-10-11 哈尔滨工业大学 一种阳极支撑型氧化钇稳定氧化锆电解质膜的制备方法
EP2194597B1 (en) * 2008-12-03 2014-03-05 Technical University of Denmark Solid oxide cell and solid oxide cell stack
KR101362894B1 (ko) * 2009-12-09 2014-02-14 한국세라믹기술원 전사 방법을 이용한 고체산화물 연료전지용 셀 제조방법
CN103456967B (zh) * 2013-08-14 2015-04-29 大连理工大学 一种制备多孔Ni/磷灰石型硅酸镧金属陶瓷阳极的方法
CN104638277B (zh) * 2015-01-30 2017-03-22 陕西煤业化工技术研究院有限责任公司 一种碳基固体氧化物燃料电池用梯度功能阳极及制备方法
CN104779409B (zh) * 2015-04-27 2018-08-24 上海邦民新能源科技有限公司 一种固体氧化物燃料电池及其制备方法
CN110137551B (zh) * 2019-05-17 2022-04-12 福州大学 一种三极共烧的sofc及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070077476A1 (en) * 2005-09-30 2007-04-05 Korea Institute Of Science And Technology Paste for solid oxide fuel cells, anode-supported solid oxide fuel cells using the same, and fabricating method thereof
JP2011165424A (ja) * 2010-02-08 2011-08-25 Hyogo Prefecture 固体酸化物型燃料電池用セル及びその製造方法
CN112751041A (zh) * 2021-01-17 2021-05-04 大连理工大学 一种制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI SHEN: "Fabrication of Anode Functional Layer and Thin Film Electrolyte for Low-Intermediate Temperature Solid Oxide Fuel Cells", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, no. 3, 15 March 2020 (2020-03-15), CN , XP055950608, ISSN: 1674-0246 *
XIE TIAN: "Fabrication of La10Si5.8Mg0.2O26.8 Electrolyte Films and Their Anode Functional Layers", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, no. 4, 15 April 2018 (2018-04-15), CN , XP055950605, ISSN: 1674-0246 *
YOSHIOKA HIDEKI, MIEDA HIROYUKI, FUNAHASHI TAKAHIRO, MINESHIGE ATSUSHI, YAZAWA TETSUO, MORI RYOHEI: "Fabrication of apatite-type lanthanum silicate films and anode supported solid oxide fuel cells using nano-sized printable paste", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, ELSEVIER, AMSTERDAM, NL, vol. 34, no. 2, 1 February 2014 (2014-02-01), AMSTERDAM, NL, pages 373 - 379, XP055950604, ISSN: 0955-2219, DOI: 10.1016/j.jeurceramsoc.2013.08.041 *

Also Published As

Publication number Publication date
CN112751041A (zh) 2021-05-04
US20240039003A1 (en) 2024-02-01
CN112751041B (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2022152093A1 (zh) 一种制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法
CN103367719B (zh) 蛋黄-壳结构二氧化锡-氮掺杂碳材料的制备方法
Chen et al. High performance low temperature solid oxide fuel cells with novel electrode architecture
Chen et al. Fabrication and performance of anode-supported YSZ films by slurry spin coating
CN111910201B (zh) 固体氧化物电解池的氢电极及其制备方法、固体氧化物电解池
CN113258111B (zh) 一种无隔离层锆基阳极支撑固体氧化物电池
CN113337834B (zh) 对称材料非对称结构电解池及其制备方法
Van Gestel et al. Nano-structured solid oxide fuel cell design with superior power output at high and intermediate operation temperatures
CN111933980B (zh) 固体氧化物燃料电池的制备方法
Ai et al. Preparation of Sm0. 2Ce0. 8O1. 9 membranes on porous substrates by a slurry spin coating method and its application in IT-SOFC
CN114349045B (zh) 一种高产量纯相锂镧锆氧固体电解质材料的制备方法
CN104037425B (zh) 一种中温sofc平板阳极支撑型单电池阳极结构及其制备方法
Huang et al. Study of LiFeO2 coated NiO as cathodes for MCFC by electrochemical impedance spectroscopy
KR20110096998A (ko) 고체산화물 연료전지용 lscf 파우더 제조방법 및 단위전지의 제조방법
CN111146443A (zh) 用于锌电池的锌电极材料及其制备方法
CN110120508A (zh) 一种全固态电池及其制备方法
CN108808081A (zh) 一种锂二次电池用杂交电解质及其制备方法和锂二次电池
CN110407577B (zh) 陶瓷薄膜材料、催化电极及其制备方法和应用
CN112687928A (zh) 一种固体氧化物电池的制备方法以及由此得到的固体氧化物电池
CN109346752B (zh) 一种电解质支撑的固体氧化物燃料电池锆基电解质薄膜的制备方法
TW201417383A (zh) 一種多孔氧化物電極層及其製作法
CN111653836A (zh) 一种具有功能层的高温熔盐电池及其制备方法
Dong et al. Thermosetting polymer templated nanoporous sinter-active layer for low temperature solid oxide fuel cells
Li et al. A facile and environment-friendly method to fabricate thin electrolyte films for solid oxide fuel cells
WO2023169552A1 (zh) 复合负极材料及其制备方法、负极极片、电池和用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22738974

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18268495

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22738974

Country of ref document: EP

Kind code of ref document: A1