WO2022145874A1 - Spunbond non-woven fabrics having sheath-core structure and manufacturing method thereof - Google Patents

Spunbond non-woven fabrics having sheath-core structure and manufacturing method thereof Download PDF

Info

Publication number
WO2022145874A1
WO2022145874A1 PCT/KR2021/019707 KR2021019707W WO2022145874A1 WO 2022145874 A1 WO2022145874 A1 WO 2022145874A1 KR 2021019707 W KR2021019707 W KR 2021019707W WO 2022145874 A1 WO2022145874 A1 WO 2022145874A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheath
nonwoven fabric
core
thickness
melting point
Prior art date
Application number
PCT/KR2021/019707
Other languages
French (fr)
Korean (ko)
Inventor
장정순
이민호
조희정
박영신
최우석
강동헌
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210185018A external-priority patent/KR102617463B1/en
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Publication of WO2022145874A1 publication Critical patent/WO2022145874A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/018Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the shape
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments

Definitions

  • the present invention relates to a core-sheath-type spunboard nonwoven fabric for a high-breathable filter support excellent in mechanical properties, air permeability and anti-wrinkle properties, and a method for manufacturing the same.
  • Non-woven fabric is a product made by arranging filaments in the form of cotton, and is largely divided into short-fiber non-woven fabric and long-fiber non-woven fabric depending on the length of the filament.
  • Short fiber nonwoven fabric is a product made by arranging short fibers of 5 mm or less in the form of cotton and entangling between fibers or bonding with resin, and has a high elongation.
  • Long-fiber nonwoven fabric is a product made by arranging unbroken fibers in a cotton pattern, entangling fibers or bonding resin, and has high strength.
  • nonwoven fabric for filter support it was manufactured by performing complex spinning in a fineness range of 2.0 to 4.0 denier.
  • the method showed a limitation in improving the air permeability of the nonwoven fabric due to the fineness of the filament too fine.
  • An object of the present specification is to provide a spunbond nonwoven fabric having excellent air permeability and mechanical properties, as well as excellent anti-wrinkle properties, and a method for manufacturing the same.
  • a core portion including polyester having a melting point of 255° C. or higher;
  • the sheath has a thickness of 0.8 to 1.9 ⁇ m based on the thickness of the nonwoven fabric 0.24 mm to 0.29 mm when the weight per unit area is 65 ⁇ 5 g / m 2 ,
  • a spunbond nonwoven fabric is provided.
  • It provides a method for manufacturing the core-sheath-type spunbond nonwoven fabric comprising a.
  • first component may be referred to as a second component
  • second component may be referred to as a first component
  • a core portion comprising a polyester having a melting point of 255 °C or more; and a sheath portion including a copolymer having a melting point of 160 to 230°C; a nonwoven fabric comprising a nonwoven web of core-sheath type composite fibers formed by composite spinning, and having an overall average fineness of 7 to 12 denier, wherein the sheath portion per unit area
  • a spunbond nonwoven fabric having a thickness of 0.8 to 1.9 ⁇ m based on a thickness of 0.24 mm to 0.29 mm of the nonwoven fabric may be provided.
  • the present inventors solved the problem of the limitation of air permeability improvement of the conventional nonwoven fabric for filter support and conducted continuous research to provide a nonwoven fabric with excellent anti-wrinkle properties and mechanical properties.
  • melting points having high and low melting points By using two different types of resins to exhibit coarse fineness (average fineness) in a certain range with a sheath-core type composite melt spinning method, and at the same time, by controlling the thickness of the low melting point resin constituting the sheath , it was confirmed that it can exhibit superior air permeability, tensile strength, and anti-wrinkle rate and can provide a product with excellent radioactivity compared to the prior art, thereby completing the present invention.
  • the spunbond nonwoven fabric according to the present specification is a core-sheath type, and has excellent mechanical properties and quality index as well as air permeability.
  • the core-sheath-type spunbond nonwoven fabric may be a nonwoven fabric made of a core-sheath composite fiber using two types of resin raw materials having different melting points.
  • the spunbond nonwoven fabric may include a polyester resin having a high melting point as a core part and a copolymer having a low melting point as a sheath part.
  • the polyester resin having a high melting point may include a polyester having a melting point of 255 °C or higher.
  • the copolymer having a low melting point may include a copolymer having a melting point of 160 to 230°C.
  • the spunbond nonwoven fabric is provided using a sheath-core-type composite spinning method, and by controlling the thickness and overall denier of the sheath in a specific range, it is possible to control the properties of the spinning and nonwoven fabric.
  • the core-sheath-type spunbond nonwoven fabric may have an overall average fineness (large fineness) of 7 to 12 denier. If the overall average fineness is 7 denier or less, air permeability may be defective due to a decrease in pore size. In addition, if the overall average fineness is 12 denier or more, spinning failure (cutting, agglomeration) may occur due to poor cooling, and thus a nonwoven fabric cannot be manufactured.
  • the core-sheath-type spunbond nonwoven fabric according to the present specification is characterized in that it has an average fineness in the above range and a thickness of the sheath portion of a certain thickness.
  • FIG. 1 is a cross-sectional view of a filament of a core-sheath-type spunbond nonwoven fabric according to an embodiment of the present invention (a: thickness of the sheath).
  • the core-sheath-type spunbond nonwoven fabric may include a sheath portion having a core portion in the center, and a predetermined thickness (a) on the periphery thereof.
  • the shape of the spunbond nonwoven fabric is not limited, and may have a circular cross-sectional structure in FIG. 1 .
  • the core-sheath-type spunbond nonwoven fabric including the core part and the sheath part has a weight per unit area of 65 ⁇ 5 g/m 2 (ie, 60-70 g/m 2 ) or 65 g
  • the nonwoven fabric may have a thickness of 0.24 mm to 0.29 mm or 0.24 mm to 0.28 mm.
  • the sheath portion when the weight per unit area is 65 ⁇ 5 g/m 2 , the sheath portion may have a thickness of 0.8 to 1.9 ⁇ m based on the thickness of the nonwoven fabric 0.24 mm to 0.29 mm.
  • the sheath portion may have a thickness of 0.8 to 1.9 ⁇ m based on the thickness of the nonwoven fabric 0.24 mm to 0.28 mm when the weight per unit area is 65 ⁇ 5 g/m 2 .
  • the sheath portion may have a thickness of 0.8 to 1.8 ⁇ m based on the thickness of the nonwoven fabric 0.24 mm to 0.29 mm.
  • the inter-filament bonding force can be optimized, and the spinning and nonwoven properties can be more effectively controlled.
  • the sheath portion may have a thickness of 0.8 to 1.8 ⁇ m based on the thickness of the nonwoven fabric 0.24 mm to 0.28 mm when the weight per unit area is 65 ⁇ 5 g/m 2 .
  • the thickness of the sheath is less than 0.8 ⁇ m, the bonding force between the filaments is reduced, and there is a problem of delamination of the nonwoven fabric and poor strength and bending state.
  • the thickness of the sheath may be performed by appropriately adjusting the discharge amount of the melt of the core and the sheath and the number of pore pores in the nozzle in the complex spinning process of the core and sheath materials.
  • the core-sheath-type spunbond nonwoven fabric may exhibit an overall average fineness (large fineness) of 7 to 12 denier.
  • the core-sheath type spunbond nonwoven fabric includes a composite fiber web using a sheath-core type composite spinning method using the high-melting point and low-melting point resin, and thus has excellent mechanical properties, as well as air permeability and anti-wrinkle compared to the prior art performance can be improved.
  • the spunbond nonwoven fabric has a tensile strength of 19 kgf/5 cm or more according to the standard test method of KS K 0521, an anti-wrinkle rate of 50% or less according to the standard test method of MS 343-11, and a breathability of 350 ccs according to the standard test method of ASTM D737 can have more
  • the core-sheath spunbond nonwoven fabric has a tensile strength of 19 kgf/5 cm or more or 19 to 25 kgf/5 cm according to the standard test method of KS K 0521 based on a weight per unit area of 65 ⁇ 5 g/m2 can indicate
  • the core-sheath-type spunbond nonwoven fabric has an anti-wrinkle rate of 50% or less or 45-50% or 45-49 according to the standard test method of MS 343-11 based on a weight per unit area of 65 ⁇ 5 g/m2 % can be expressed.
  • the core-sheath type spunbond nonwoven fabric may exhibit air permeability of 350 ccs or more or 350 to 380 ccs according to the standard test method of ASTM D737 based on a weight per unit area of 65 ⁇ 5 g/m 2 .
  • the polyester resin having a high melting point has an intrinsic viscosity (IV) of at least one selected from the group consisting of polyethylene terephthalate, polybutylene terephthalate, polynaphthalene terephthalate, and recycled raw materials thereof of 0.60 to 0.90 dl/g and 255 It may include a polyester polymer having a melting point of °C or higher.
  • the copolymer having a low melting point may be at least one selected from the group consisting of copolyesters and polyamide-based resins having a melting point of 160 to 230°C.
  • the copolyester may include copolyethylene terephthalate having a melting point of 160 to 230° C. copolymerized with adipic acid (AA), isophthalic acid (IPA), and NPG.
  • AA adipic acid
  • IPA isophthalic acid
  • NPG NPG
  • the polyamide-based resin may be at least one selected from the group consisting of nylon 6, nylon 66, nylon 46, nylon 11, nylon 12, nylon 610, nylon 612, and a copolymer of nylon 6/66.
  • the spunbond nonwoven fabric may have an apparent density of 0.23 to 0.27 g/cm 3 when the weight per unit area is 65 ⁇ 5 g/m 2 . If the apparent density is 0.23 g/cm 3 or less, there is a problem in that strength and anti-wrinkle properties are poor, and when it exceeds 0.27 g/cm 3 , there is a problem in that air permeability is poor.
  • the filament constituting the spunbond nonwoven fabric according to the present specification has a strength of 3.4 g/d or more or 3.41 to 4.0 g/d according to the standard test method of KS K 0412 based on a weight per unit area of 65 ⁇ 5 g/m can have
  • a polyester having a melting point of 255 ° C. or higher as a core portion using a polyester having a melting point of 255 ° C. or higher as a core portion, and composite melt spinning a copolymer having a melting point of 160 to 230 ° C. as a sheath to obtain a core-sheath composite filament; forming a web of fibers by stacking the core-sheath composite filaments on a continuous conveyor belt; and thermally bonding the fiber web.
  • the thickness of the sheath may be adjusted by adjusting the discharge amount of the polyester melt of the core and the sheath and the number of capillaries in the nozzle.
  • the overall average fineness can also be adjusted.
  • the discharge amount and the number of capillaries of the nozzle are not particularly limited, and may be appropriately adjusted according to the size of the equipment of the spinning process.
  • the thickness of the nonwoven fabric including the core portion and the sheath portion may be 0.8 to 1.9 ⁇ m based on 0.24 mm to 0.29 mm.
  • the sheath portion may have a thickness of 0.8 to 1.9 ⁇ m or 0.8 to 1.8 ⁇ m based on the thickness of the nonwoven fabric 0.24 mm to 0.28 mm when the weight per unit area is 65 ⁇ 5 g/m 2 .
  • the filament spun in the composite spinning form is sufficiently stretched so that the spinning speed is 4,500 to 5,500 m/min using a high-pressure air stretching device, so that the core part (the first component) is formed with the thickness range of the sheath part described above. It is possible to provide a core sheathing composite filament having a fineness of 5 to 10 denier. It is possible to maintain the desired fineness and thickness of the sheath by spinning within the spinning speed range.
  • the filament fiber prepared by the above method is positioned in the form of a web on a conveyor net, then goes through a calendering process of a heated smooth roll to adjust the thickness of the nonwoven fabric, and then adheres using hot air to produce a nonwoven fabric do.
  • the thermal bonding may include a calendering step using a smooth roll, and a thermal bonding step using a hot air process.
  • the calendering step may be performed at 120 to 150 °C.
  • the thickness of the nonwoven fabric may be controlled by the calendering process. For example, in the present invention, when the weight per unit area is 65 ⁇ 5 g/m 2 , the calendering process may be performed so that the thickness of the spunbond is 0.24 mm to 0.29 mm or 0.24 mm to 0.28 mm.
  • the hot air process may be performed at 170 to 230°C.
  • first component may serve as a core
  • second component may function as an adhesive in the sheath layer.
  • the final core-sheath type spunbond nonwoven fabric may have an average fineness of 7 to 12 denier, and a tensile strength of 19 kgf/5 cm or more according to the standard test method of KS K 0521, according to the standard test method of MS 343-11 Anti-wrinkle rate of 50% or less, and air permeability according to the standard test method of ASTM D737 may have physical properties of 350ccs or more.
  • the nonwoven fabric may be used as a filter support in various fields to improve filtration performance. Specifically, it may be used as a filter support for the air purifier, a filter support for an automobile cabin, or a filter support for an HVAC air conditioner.
  • FIG. 1 is a cross-sectional view of a filament of a core-sheath-type spunbond nonwoven fabric according to an embodiment of the present invention (a: thickness of the sheath).
  • Polyethylene terephthalate having an intrinsic viscosity (IV) of 0.65 dl/g and a melting point of 255 ° C is used as the core part (first component), and adipic acid and isophthalic acid are copolymerized as the sheath part (second component) to 214 ° C.
  • Polyethylene terephthalate having a melting point of was prepared.
  • the core and sheath materials were melted using a continuous extruder at a spinning temperature of 280° C., and then the core and sheath from the spinning nozzle were so that the overall average fineness was 7 denier and the thickness of the sheath excluding the core was 0.8 ⁇ m.
  • the negative discharge amount and the number of pores in the nozzle were controlled.
  • the continuous filaments released from the capillaries were solidified with cooling air, and then stretched using a high-pressure air stretching device at a spinning speed of 5,000 m/min to prepare filament fibers.
  • the prepared filament fibers are laminated in the form of a web on a conveyor net by a conventional opening method.
  • the laminated web was subjected to a calendering process using a heated smooth roll to impart smoothness and an appropriate thickness.
  • the laminated filaments were thermally bonded at a hot air temperature of 208° C. to prepare a spunbond nonwoven fabric for a filter support having a weight per unit area of 65 g/m 2 and an apparent density of 0.25 g/cm 3 .
  • a nonwoven fabric was prepared in the same manner as in Example 1, except that the discharge amount and the number of pores in the nozzle were adjusted so that the average fineness was 9 denier and the thickness of the sheath was 1.8 ⁇ m.
  • a nonwoven fabric was prepared in the same manner as in Example 2, except that the apparent density was applied to be 0.23 g/cm 3 .
  • a nonwoven fabric was prepared in the same manner as in Example 2, except that the apparent density was applied to be 0.27 g/cm 3 .
  • a nonwoven fabric was prepared in the same manner as in Example 1, except that the discharge amount and the number of pores in the nozzle were adjusted so that the average fineness was 12 denier and the thickness of the sheath was 1.8 ⁇ m.
  • a nonwoven fabric was prepared in the same manner as in Example 1, except that the discharge amount and the number of pores in the nozzle were adjusted so that the average fineness was 5 denier and the thickness of the sheath was 0.8 ⁇ m.
  • a nonwoven fabric was prepared in the same manner as in Example 1, except that the discharge amount and the number of pores in the nozzle were adjusted so that the average fineness was 5 denier and the thickness of the sheath was 2.0 ⁇ m.
  • a nonwoven fabric was prepared in the same manner as in Example 1, except that the discharge amount and the number of pores in the nozzle were adjusted so that the average fineness was 15 denier and the thickness of the sheath was 1.8 ⁇ m.
  • a nonwoven fabric was prepared in the same manner as in Example 1, except that the discharge amount and the number of pores in the nozzle were adjusted so that the average fineness was 15 denier and the thickness of the sheath was 0.7 ⁇ m.
  • a nonwoven fabric was prepared in the same manner as in Example 2, except that the apparent density was applied to be 0.20 g/cm 3 .
  • a nonwoven fabric was prepared in the same manner as in Example 2, except that the apparent density was applied to be 0.30 g/cm 3 .
  • Example 1 De' Sheath layer Thickness ( ⁇ m) Non-woven thickness (mm) Non-woven fabric weight (g/m2) Apparent density (g/cm3)
  • Example 1 7 0.8 0.26 65 0.25
  • Example 2 9 1.8 0.26 65 0.25
  • Example 3 9 1.8 0.283 65 0.23
  • Example 4 9 1.8 0.24 65 0.27
  • Example 5 12 1.8 0.26 65 0.25 Comparative Example 1 5 0.8 0.26 65 0.25 Comparative Example 2 5 2.0 0.26 65 0.25 Comparative Example 3 15 1.8 0.26 65 0.25 Comparative Example 4 15 0.7 0.26 65 0.25 Reference Example 1 9 1.8 0.325 65 0.20 Reference Example 2 9 1.8 0.217 65 0.30
  • a standard test method according to KS K 0412 was used. Specifically, the filament was measured at a tensile speed of 200 mm/min. after applying an extra load of 500 mg using Instron's measuring equipment.
  • a standard test method according to KS K 0521 was used. Specifically, a specimen having a size of 5 cm x 20 cm in the MD and CD directions of the nonwoven fabric was prepared and measured at a tensile rate of 200 mm/min. using an Instron measuring instrument.
  • a standard test method according to ASTM D737 was used. Specifically, the air permeability was measured under the application of a 125pa pressure using an FX3300 device with respect to a nonwoven gripping area of 100 cm2.
  • a standard test method according to MS343-11 was used. Specifically, the nonwoven fabric was maintained in a mechanical bending state under a load condition of 1 kg for 5 minutes, and quantified through the opening angle recovered for 5 minutes after the load was removed. That is, the anti-wrinkle rate was measured according to Equation 1.
  • Anti-wrinkle rate (%) (open angle/180°) X 100
  • the quality index uses the Formation Tester (FMT-2) and measures the optical density (OD) and optical deviation (SD) through the transmittance and transmittance distribution of the light source per unit area. It was normalized to the optical density and expressed as an average value.
  • FMT-2 Formation Tester
  • OD optical density
  • SD optical deviation
  • the Examples of the present invention compared to the comparative examples, using a sheath-core type composite spinning method to exhibit a certain range of fineness (average fineness), and By adjusting the thickness of the constituting low-melting resin, it was confirmed that excellent physical properties such as air permeability of 350 ccs or more, tensile strength of 19 kgf/5 cm or more, and anti-wrinkle rate of 50% or less could be simultaneously satisfied. Indicating the deviated coarseness (average fineness) or the thickness of the sheath, the strength, air permeability, and anti-wrinkle rate were inferior to those of the Examples, which resulted in delamination or poor radiation.
  • Reference Examples 1 and 2 The apparent density did not satisfy the range of the present application of 0.23 to 0.27 g/cm 3 , and the strength was lowered or the air permeability was poor. In particular, in Reference Example 1, bending defects occurred due to delamination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)

Abstract

According to the invention, provided are spunbond non-woven fabrics having a sheath-core structure and a manufacturing method thereof, the spunbond non-woven fabrics using two types of resins having different melting points, each having a high melting point and a low melting point, so as to adjust the average fineness and the thickness of a low melting resin constituting a sheath by a sheath-core type composite spinning method, thereby having excellent mechanical properties and at the same time having improved air permeability and anti-wrinkle properties.

Description

심초형 스펀본드 부직포 및 그 제조 방법Core-sheath type spunbond nonwoven fabric and method for manufacturing the same
관련 출원(들)과의 상호 인용Cross-Citation with Related Application(s)
본 출원은 2020년 12월 29일자 한국 특허 출원 제10-2020-0186037호 및 2021년 12월 22일자 한국 특허 출원 제10-2021-0185018에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. This application claims the benefit of priority based on Korean Patent Application No. 10-2020-0186037 on December 29, 2020 and Korean Patent Application No. 10-2021-0185018 on December 22, 2021 All content disclosed in is incorporated as a part of this specification.
본 발명은 기계적 물성, 통기도 및 주름방지성이 우수한 고통기성 필터지지체용 심초형 스펀보드 부직포 및 그 제조방법에 관한 것이다.The present invention relates to a core-sheath-type spunboard nonwoven fabric for a high-breathable filter support excellent in mechanical properties, air permeability and anti-wrinkle properties, and a method for manufacturing the same.
부직포는 필라멘트를 면 형태로 배치하여 만들어진 제품으로 필라멘트의 길이에 따라 단섬유 부직포와 장섬유 부직포로 크게 나뉘어 진다. 단섬유 부직포는 5mm 이하의 짧은 섬유를 면 형태로 배치하고, 섬유간 교락 또는 수지 접착을 통해 만들어지는 제품으로 신율이 높은 특징을 가진다. 장섬유 부직포는 끊어짐 없는 섬유를 면 행태로 배치하고, 섬유간 교락 또는 수지 접착을 통해 만들어지는 제품으로 강도가 높은 특징을 가진다. Non-woven fabric is a product made by arranging filaments in the form of cotton, and is largely divided into short-fiber non-woven fabric and long-fiber non-woven fabric depending on the length of the filament. Short fiber nonwoven fabric is a product made by arranging short fibers of 5 mm or less in the form of cotton and entangling between fibers or bonding with resin, and has a high elongation. Long-fiber nonwoven fabric is a product made by arranging unbroken fibers in a cotton pattern, entangling fibers or bonding resin, and has high strength.
한편, 종래 필터지지체용 부직포의 제조공정은 2.0 내지 4.0 데니어의 세섬도 범위로 복합방사를 수행하여 제조되었다. 그러나, 상기 방법은 너무 가는 필라멘트 섬도로 인해, 부직포의 통기도 향상에 한계를 보였다. On the other hand, in the conventional manufacturing process of nonwoven fabric for filter support, it was manufactured by performing complex spinning in a fineness range of 2.0 to 4.0 denier. However, the method showed a limitation in improving the air permeability of the nonwoven fabric due to the fineness of the filament too fine.
이에, 또 다른 방법으로 부직포의 두께(=겉보기밀도)의 제어를 통해 통기도와 기계적 물성의 적합성을 제어하고자 하였다.Therefore, another method was attempted to control the suitability of air permeability and mechanical properties through control of the thickness (= apparent density) of the nonwoven fabric.
그러나, 상기 두께 제어 방법의 경우도 여전히 기계적 물성 및 통기도의 향상에 한계가 있고, 특히 주름도 발생하여, 필터지지체로 적합하지 않았다.However, in the case of the thickness control method, there is still a limit to the improvement of mechanical properties and air permeability, and in particular, wrinkles occur, and thus it is not suitable as a filter support.
본 명세서에서는 종래보다 우수한 통기도 및 기계적 물성 확보는 물론, 주름방지성이 뛰어난 스펀본드 부직포 및 그 제조방법을 제공하는 것이다.An object of the present specification is to provide a spunbond nonwoven fabric having excellent air permeability and mechanical properties, as well as excellent anti-wrinkle properties, and a method for manufacturing the same.
본 명세서에서는, In this specification,
255℃ 이상의 융점을 갖는 폴리에스테르를 포함한 코어부; 및a core portion including polyester having a melting point of 255° C. or higher; and
160 내지 230℃의 융점을 갖는 코폴리머를 포함한 시스부;가 복합 방사되어 이루어진 심초형 복합섬유의 부직포 웹을 포함하고,A sheath comprising a copolymer having a melting point of 160 to 230°C; includes a nonwoven web of core-sheath type composite fibers formed by composite spinning,
7 내지 12 데니어의 전체 평균 섬도를 가지며,having an overall average fineness of 7 to 12 denier,
7 내지 12 데니어의 전체 평균 섬도를 갖는 부직포이며,It is a nonwoven fabric having an overall average fineness of 7 to 12 denier,
상기 시스부는 단위면적당 중량이 65±5 g/㎡일 때, 부직포 두께 0.24mm 내지 0.29mm를 기준으로 0.8 내지 1.9㎛의 두께를 가지는,The sheath has a thickness of 0.8 to 1.9 μm based on the thickness of the nonwoven fabric 0.24 mm to 0.29 mm when the weight per unit area is 65 ± 5 g / m 2 ,
스펀본드 부직포를 제공한다. A spunbond nonwoven fabric is provided.
또한, 본 명세서에서는, 코어부로 255℃ 이상의 융점을 갖는 폴리에스테르를 사용하고, 시스부로 160 내지 230℃의 융점을 갖는 코폴리머를 복합 용융 방사하여 심초형 복합 필라멘트를 얻는 단계;In addition, in the present specification, using a polyester having a melting point of 255 ° C. or higher as a core portion, and composite melt spinning a copolymer having a melting point of 160 to 230 ° C. as a sheath to obtain a core-sheath composite filament;
상기 심초형 복합 필라멘트들을 연속 컨베이어 벨트상에 적층하여 섬유 웹(Web)을 형성하는 단계; 및forming a web of fibers by stacking the core-sheath composite filaments on a continuous conveyor belt; and
상기 섬유 웹을 열접착시키는 단계;thermally bonding the fibrous web;
를 포함하는, 상술한 심초형 스펀본드 부직포의 제조 방법을 제공한다.It provides a method for manufacturing the core-sheath-type spunbond nonwoven fabric comprising a.
이하, 발명의 구현 예들에 따른 타일 카페트 기포지로 사용될 수 있는 스펀본드 부직포 및 이의 제조방법에 대해 상세히 설명하기로 한다.Hereinafter, a spunbond nonwoven fabric that can be used as a tile carpet base paper according to embodiments of the present invention and a method for manufacturing the same will be described in detail.
그에 앞서, 본 명세서에서 명시적인 언급이 없는 한, 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다.Prior to that, unless explicitly stated herein, terminology is for the purpose of referring to specific embodiments only, and is not intended to limit the present invention.
본 명세서에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. As used herein, the singular forms also include the plural forms unless the phrases clearly indicate the opposite.
본 명세서에서 사용되는 '포함'의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.As used herein, the meaning of 'comprising' specifies a particular characteristic, region, integer, step, operation, element and/or component, and other specific characteristic, region, integer, step, operation, element, component, and/or group. It does not exclude the existence or addition of
그리고, 본 명세서에서 '제1' 및 '제2'와 같이 서수를 포함하는 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로 사용되며, 상기 서수에 의해 한정되지 않는다. 예를 들어, 본 발명의 권리 범위 내에서 제1 구성요소는 제2 구성요소로도 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로 명명될 수 있다.And, in the present specification, terms including ordinal numbers such as 'first' and 'second' are used for the purpose of distinguishing one component from other components, and are not limited by the ordinal number. For example, within the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may be referred to as a first component.
이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.
발명의 일 구현예에 따라, 255 ℃ 이상의 융점을 갖는 폴리에스테르를 포함한 코어부; 및 160 내지 230℃의 융점을 갖는 코폴리머를 포함한 시스부;가 복합 방사되어 이루어진 심초형 복합섬유의 부직포 웹을 포함하고, 7 내지 12 데니어의 전체 평균 섬도를 갖는 부직포이며, 상기 시스부는 단위면적당 중량이 65±5 g/㎡일 때, 부직포 두께 0.24mm 내지 0.29mm를 기준으로 0.8 내지 1.9㎛의 두께를 가지는, 스펀본드 부직포가 제공될 수 있다.According to an embodiment of the invention, a core portion comprising a polyester having a melting point of 255 ℃ or more; and a sheath portion including a copolymer having a melting point of 160 to 230°C; a nonwoven fabric comprising a nonwoven web of core-sheath type composite fibers formed by composite spinning, and having an overall average fineness of 7 to 12 denier, wherein the sheath portion per unit area When the weight is 65±5 g/m 2 , a spunbond nonwoven fabric having a thickness of 0.8 to 1.9 μm based on a thickness of 0.24 mm to 0.29 mm of the nonwoven fabric may be provided.
본 발명자들은 종래 필터지지체용 부직포가 갖는 통기도 향상의 한계에 대한 문제를 해결하고, 주름방지성 및 기계적 물성도 우수한 부직포를 제공하고자 계속적인 연구를 진행한 결과, 고융점 및 저융점을 갖는 융점이 상이한 2종의 수지를 이용하여 시스(Sheath)-코어(Core)형 복합 용융 방사법으로 일정 범위의 태섬도(평균섬도)를 나타내도록 하고, 이와 동시에 시스를 구성하는 저융점 수지의 두께를 조절함으로써, 종래보다 우수한 통기도, 인장강도 및 주름방지율을 나타낼 수 있고 방사성도 우수한 제품을 제공할 수 있음을 확인하여, 본 발명을 완성하였다.The present inventors solved the problem of the limitation of air permeability improvement of the conventional nonwoven fabric for filter support and conducted continuous research to provide a nonwoven fabric with excellent anti-wrinkle properties and mechanical properties. As a result, melting points having high and low melting points By using two different types of resins to exhibit coarse fineness (average fineness) in a certain range with a sheath-core type composite melt spinning method, and at the same time, by controlling the thickness of the low melting point resin constituting the sheath , it was confirmed that it can exhibit superior air permeability, tensile strength, and anti-wrinkle rate and can provide a product with excellent radioactivity compared to the prior art, thereby completing the present invention.
따라서, 본 명세서에 따른 스펀본드 부직포는 심초형으로서, 통기도 뿐 아니라 기계적 물성 및 품위지수가 모두 우수하므로, 다양한 분야의 필터지지체(기체투과용)로 사용시 필터 성능 향상에 기여할 수 있다.Therefore, the spunbond nonwoven fabric according to the present specification is a core-sheath type, and has excellent mechanical properties and quality index as well as air permeability.
이러한 상기 심초형 스펀본드 부직포는 용융점 (Melting Temperature)가 서로 상이한 2종의 수지 원료를 이용한 심초형 복합섬유로 이루어진 부직포일 수 있다.The core-sheath-type spunbond nonwoven fabric may be a nonwoven fabric made of a core-sheath composite fiber using two types of resin raw materials having different melting points.
구체적으로, 상기 스펀본드 부직포는 고융점을 갖는 폴리에스테르 수지를 코어부로 포함하고, 저융점을 갖는 코폴리머를 시스부로 포함할 수 있다.Specifically, the spunbond nonwoven fabric may include a polyester resin having a high melting point as a core part and a copolymer having a low melting point as a sheath part.
상기 고융점을 갖는 폴리에스테르 수지는 255 ℃이상의 융점을 갖는 폴리에스테르를 포함할 수 있다.The polyester resin having a high melting point may include a polyester having a melting point of 255 °C or higher.
상기 저융점을 갖는 코폴리머는 160 내지 230℃의 융점을 갖는 코폴리머를 포함할 수 있다.The copolymer having a low melting point may include a copolymer having a melting point of 160 to 230°C.
특히, 상기 스펀본드 부직포는 시스(Sheath)-코어(Core)형 복합방사법을 사용하여 제공되는 것으로서, 특정 범위로 시스의 두께 및 전체 데니어를 조절하여 방사성 및 부직포의 특성을 제어할 수 있다. In particular, the spunbond nonwoven fabric is provided using a sheath-core-type composite spinning method, and by controlling the thickness and overall denier of the sheath in a specific range, it is possible to control the properties of the spinning and nonwoven fabric.
구체적으로, 상기 심초형 스펀본드 부직포는 7 내지 12 데니어의 전체 평균 섬도(태섬도)를 가질 수 있다. 상기 전체 평균 섬도가 7 데니어 이하이면 기공(Pore)크기의 감소로 인하여 공기투과도 불량이 발생될 수 있다. 또한 상기 전체 평균 섬도가 12 데니어 이상이면 냉각불량으로 인해 방사 불량(절사, 뭉침)이 발생될 수 있어 부직포를 제조할 수 없다.Specifically, the core-sheath-type spunbond nonwoven fabric may have an overall average fineness (large fineness) of 7 to 12 denier. If the overall average fineness is 7 denier or less, air permeability may be defective due to a decrease in pore size. In addition, if the overall average fineness is 12 denier or more, spinning failure (cutting, agglomeration) may occur due to poor cooling, and thus a nonwoven fabric cannot be manufactured.
또한, 본 명세서에 따른, 심초형 스펀본드 부직포는 상기 범위의 평균섬도를 가짐과 동시에 일정 두께의 시스부의 두께를 가지는 것을 특징으로 한다.In addition, the core-sheath-type spunbond nonwoven fabric according to the present specification is characterized in that it has an average fineness in the above range and a thickness of the sheath portion of a certain thickness.
도 1은 본 발명의 일 구현예에 따른 심초형 스펀본드 부직포의 필라멘트의 단면도이다(a:시스부의 두께).1 is a cross-sectional view of a filament of a core-sheath-type spunbond nonwoven fabric according to an embodiment of the present invention (a: thickness of the sheath).
도 1에서 보는 바와 같이, 상기 심초형 스펀본드 부직포는 중심부에 코어부를 가지고, 그 둘레에 일정 두께(a)를 갖는 시스부를 포함할 수 있다. 또한, 상기 스펀본드 부직포의 형상이 한정되지 않은, 도 1의 원형 단면의 구조일 수 있다.As shown in Figure 1, the core-sheath-type spunbond nonwoven fabric may include a sheath portion having a core portion in the center, and a predetermined thickness (a) on the periphery thereof. In addition, the shape of the spunbond nonwoven fabric is not limited, and may have a circular cross-sectional structure in FIG. 1 .
구체적으로, 본 명세서에서 제공되는 일 구현예에 따라, 코어부 및 시스부를 포함하는 심초형 스펀본드 부직포는 단위면적당 중량이 65±5 g/㎡ (즉, 60~70 g/㎡) 또는 65 g/㎡일 때, 부직포 두께가 0.24mm 내지 0.29mm 혹은 0.24mm 내지 0.28mm일 수 있다.Specifically, according to one embodiment provided herein, the core-sheath-type spunbond nonwoven fabric including the core part and the sheath part has a weight per unit area of 65±5 g/m 2 (ie, 60-70 g/m 2 ) or 65 g When /m 2 , the nonwoven fabric may have a thickness of 0.24 mm to 0.29 mm or 0.24 mm to 0.28 mm.
이때, 상기 시스부는 단위면적당 중량이 65±5 g/㎡일 때, 상기 부직포 두께 0.24mm 내지 0.29mm를 기준으로 0.8 내지 1.9㎛의 두께를 가질 수 있다. 선택적으로, 상기 시스부는 단위면적당 중량이 65±5 g/㎡일 때, 상기 부직포 두께 0.24mm 내지 0.28mm를 기준으로 0.8 내지 1.9㎛의 두께를 가질 수 있다.In this case, when the weight per unit area is 65±5 g/m 2 , the sheath portion may have a thickness of 0.8 to 1.9 μm based on the thickness of the nonwoven fabric 0.24 mm to 0.29 mm. Optionally, the sheath portion may have a thickness of 0.8 to 1.9 μm based on the thickness of the nonwoven fabric 0.24 mm to 0.28 mm when the weight per unit area is 65±5 g/m 2 .
더 구체적으로, 상기 시스부는 단위면적당 중량이 65±5 g/㎡일 때, 상기 부직포 두께 0.24mm 내지 0.29mm를 기준으로 0.8 내지 1.8㎛의 두께를 가질 수 있다. 이러한 경우, 필라멘트간 결합력을 최적화할 수 있고, 또한 방사성 및 부직포 특성을 더 효과적으로 제어할 수 있다. 선택적으로, 상기 시스부는 단위면적당 중량이 65±5 g/㎡일 때, 상기 부직포 두께 0.24mm 내지 0.28mm를 기준으로 0.8 내지 1.8㎛의 두께를 가질 수 있다.More specifically, when the weight per unit area is 65±5 g/m 2 , the sheath portion may have a thickness of 0.8 to 1.8 μm based on the thickness of the nonwoven fabric 0.24 mm to 0.29 mm. In this case, the inter-filament bonding force can be optimized, and the spinning and nonwoven properties can be more effectively controlled. Optionally, the sheath portion may have a thickness of 0.8 to 1.8 μm based on the thickness of the nonwoven fabric 0.24 mm to 0.28 mm when the weight per unit area is 65±5 g/m 2 .
상기 시스부의 두께가 0.8 ㎛ 미만이면 필라멘트 간 결합력이 감소하여 부직포의 층박리현상과 강력 및 절곡상태가 불량한 문제가 있고, 그 두께가 1.9 ㎛를 초과하면 필라멘트 냉각불량으로 인한 뭉침현상이 발생하는 문제가 있다.If the thickness of the sheath is less than 0.8 μm, the bonding force between the filaments is reduced, and there is a problem of delamination of the nonwoven fabric and poor strength and bending state. there is
또한, 상기 시스부의 두께는 코어부 및 시스부 재료의 복합 방사 공정에서, 코어부 및 시스부의 용융물의 토출량과 구금의 모세공 수를 적절히 조절하여 수행할 수 있다.In addition, the thickness of the sheath may be performed by appropriately adjusting the discharge amount of the melt of the core and the sheath and the number of pore pores in the nozzle in the complex spinning process of the core and sheath materials.
따라서, 상기 시스부의 두께가 조절되어, 상기 심초형 스펀본드 부직포는 7 내지 12 데니어의 전체 평균 섬도(태섬도)를 나타낼 수 있다.Therefore, the thickness of the sheath portion is adjusted, the core-sheath-type spunbond nonwoven fabric may exhibit an overall average fineness (large fineness) of 7 to 12 denier.
상기 심초형 스펀본드 부직포는 상기 고융점 및 저융점 수지를 이용한 시스(Sheath)-코어(Core)형 복합방사법을 이용한 복합 섬유 웹을 포함함에 따라, 우수한 기계적 물성은 물론, 종래보다 통기도 및 주름방지성을 향상시킬 수 있다.The core-sheath type spunbond nonwoven fabric includes a composite fiber web using a sheath-core type composite spinning method using the high-melting point and low-melting point resin, and thus has excellent mechanical properties, as well as air permeability and anti-wrinkle compared to the prior art performance can be improved.
상기 스펀본드 부직포는 KS K 0521의 표준 시험법에 따른 인장강도 19kgf/5㎝ 이상, MS 343-11의 표준 시험법에 따른 주름방지율 50% 이하, 및 ASTM D737의 표준 시험법에 따른 통기도 350ccs 이상을 가질 수 있다.The spunbond nonwoven fabric has a tensile strength of 19 kgf/5 cm or more according to the standard test method of KS K 0521, an anti-wrinkle rate of 50% or less according to the standard test method of MS 343-11, and a breathability of 350 ccs according to the standard test method of ASTM D737 can have more
구체적인 일례에 따라, 상기 심초형 스펀본드 부직포는 65±5 g/㎡의 단위면적당 중량을 기준으로 KS K 0521의 표준 시험법에 따른 인장강도 19kgf/5㎝ 이상 혹은 19 내지 25 kgf/5㎝를 나타낼 수 있다.According to a specific example, the core-sheath spunbond nonwoven fabric has a tensile strength of 19 kgf/5 cm or more or 19 to 25 kgf/5 cm according to the standard test method of KS K 0521 based on a weight per unit area of 65±5 g/m2 can indicate
구체적인 일례에 따라, 상기 심초형 스펀본드 부직포는 65±5 g/㎡의 단위면적당 중량을 기준으로 MS 343-11의 표준 시험법에 따른 주름방지율 50% 이하 혹은 45 내지 50% 혹은 45 내지 49%를 나타낼 수 있다.According to a specific example, the core-sheath-type spunbond nonwoven fabric has an anti-wrinkle rate of 50% or less or 45-50% or 45-49 according to the standard test method of MS 343-11 based on a weight per unit area of 65±5 g/m2 % can be expressed.
구체적인 일례에 따라, 상기 심초형 스펀본드 부직포는 65±5 g/㎡의 단위면적당 중량을 기준으로 ASTM D737의 표준 시험법에 따른 통기도 350ccs 이상 혹은 350 내지 380 ccs를 나타낼 수 있다.According to a specific example, the core-sheath type spunbond nonwoven fabric may exhibit air permeability of 350 ccs or more or 350 to 380 ccs according to the standard test method of ASTM D737 based on a weight per unit area of 65±5 g/m 2 .
상기 고융점을 갖는 폴리에스테르 수지는 폴리에틸렌테레프탈레이트, 폴리부틸렌 테레프탈레이트, 폴리나프탈렌테레프탈레이트 및 이들의 재생 원료로 이루어진 군에서 선택된 1종 이상의 고유점도(IV)가 0.60 내지 0.90dl/g이고 255 ℃ㄴ이상의 융점을 갖는 폴리에스테르 중합체를 포함할 수 있다.The polyester resin having a high melting point has an intrinsic viscosity (IV) of at least one selected from the group consisting of polyethylene terephthalate, polybutylene terephthalate, polynaphthalene terephthalate, and recycled raw materials thereof of 0.60 to 0.90 dl/g and 255 It may include a polyester polymer having a melting point of ℃ or higher.
상기 저융점을 갖는 코폴리머는 160 내지 230℃의 융점을 갖는 코폴리에스테르 및 폴리아마이드계 수지로 이루어진 군에서 선택된 1종 이상일 수 있다.The copolymer having a low melting point may be at least one selected from the group consisting of copolyesters and polyamide-based resins having a melting point of 160 to 230°C.
상기 코폴리에스테르는 아디프산(AA), 이소프탈산(IPA), 및 NPG로 공중합된 160 내지 230℃의 융점을 갖는 코폴리에틸렌 테레프탈레이트를 포함할 수 있다.The copolyester may include copolyethylene terephthalate having a melting point of 160 to 230° C. copolymerized with adipic acid (AA), isophthalic acid (IPA), and NPG.
상기 폴리아마이드계 수지는 나일론 6, 나일론 66, 나일론 46, 나일론 11, 나일론 12, 나일론 610, 나일론 612, 및 나일론 6/66의 공중합체로 이루어진 군에서 선택된 1종 이상일 수 있다.The polyamide-based resin may be at least one selected from the group consisting of nylon 6, nylon 66, nylon 46, nylon 11, nylon 12, nylon 610, nylon 612, and a copolymer of nylon 6/66.
상기 스펀본드 부직포는 단위면적당 중량이 65±5 g/㎡일 때, 겉보기 밀도가 0.23 내지 0.27 g/㎤일 수 있다. 상기 겉보기 밀도가 0.23 g/㎤ 이하이면 강도 및 주름방지성이 불량해지는 문제가 있고, 0.27 g/㎤을 초과하면 공기투과도가 불량해지는 문제가 있다.The spunbond nonwoven fabric may have an apparent density of 0.23 to 0.27 g/cm 3 when the weight per unit area is 65±5 g/m 2 . If the apparent density is 0.23 g/cm 3 or less, there is a problem in that strength and anti-wrinkle properties are poor, and when it exceeds 0.27 g/cm 3 , there is a problem in that air permeability is poor.
또한, 본 명세서에 따른 스펀본드 부직포를 이루는 필라멘트는 65±5 g/㎡의 단위면적당 중량을 기준으로 KS K 0412의 표준 시험법에 따른 3.4g/d 이상 혹은 3.41 내지 4.0g/d의 강도를 가질 수 있다.In addition, the filament constituting the spunbond nonwoven fabric according to the present specification has a strength of 3.4 g/d or more or 3.41 to 4.0 g/d according to the standard test method of KS K 0412 based on a weight per unit area of 65±5 g/m can have
한편, 발명의 다른 구현예에 따라, 코어부로 255 ℃이상의 융점을 갖는 폴리에스테르를 사용하고, 시스부로 160 내지 230℃의 융점을 갖는 코폴리머를 복합 용융 방사하여 심초형 복합 필라멘트를 얻는 단계; 상기 심초형 복합 필라멘트들을 연속 컨베이어 벨트상에 적층하여 섬유 웹(Web)을 형성하는 단계; 및 상기 섬유 웹을 열접착시키는 단계;를 포함하는, 상술한 심초형 스펀본드 부직포의 제조 방법이 제공될 수 있다.On the other hand, according to another embodiment of the invention, using a polyester having a melting point of 255 ° C. or higher as a core portion, and composite melt spinning a copolymer having a melting point of 160 to 230 ° C. as a sheath to obtain a core-sheath composite filament; forming a web of fibers by stacking the core-sheath composite filaments on a continuous conveyor belt; and thermally bonding the fiber web.
상기 심초형 복합 필라멘트를 얻는 단계에서, 시스부의 두께는 코어부 및 시스부의 폴리에스테르 용융물의 토출량 및 구금의 모세공수를 조절하여 조절될 수 있다. 또한, 상기 공정을 통해, 전체 평균 섬도도 조절될 수 있다. 이때, 상기 시스부의 두께 및 전체 평균 섬도 범위를 만족하면, 상기 토출량과 구금의 모세공수가 특별히 한정되지는 않고, 방사 공정의 설비 크기에 따라 적절히 조절될 수 있다.In the step of obtaining the core-sheath composite filament, the thickness of the sheath may be adjusted by adjusting the discharge amount of the polyester melt of the core and the sheath and the number of capillaries in the nozzle. In addition, through the above process, the overall average fineness can also be adjusted. At this time, if the thickness of the sheath part and the overall average fineness range are satisfied, the discharge amount and the number of capillaries of the nozzle are not particularly limited, and may be appropriately adjusted according to the size of the equipment of the spinning process.
상기 공정을 통해, 상기 시스부는 단위면적당 중량이 65±5 g/㎡일 때, 코어부 및 시스부를 포함하는 부직포 두께 0.24mm 내지 0.29mm를 기준으로 0.8 내지 1.9㎛의 두께를 가질 수 있다. 상술한 바대로, 선택적으로, 상기 시스부는 단위면적당 중량이 65±5 g/㎡일 때, 상기 부직포 두께 0.24mm 내지 0.28mm를 기준으로 0.8 내지 1.9㎛ 혹은 0.8 내지 1.8㎛의 두께를 가질 수 있다.Through the above process, when the weight per unit area of the sheath portion is 65±5 g/m 2 , the thickness of the nonwoven fabric including the core portion and the sheath portion may be 0.8 to 1.9 μm based on 0.24 mm to 0.29 mm. As described above, optionally, the sheath portion may have a thickness of 0.8 to 1.9 μm or 0.8 to 1.8 μm based on the thickness of the nonwoven fabric 0.24 mm to 0.28 mm when the weight per unit area is 65 ± 5 g/m 2 .
상술한 바와 같이 복합 방사 형태로 방사된 필라멘트는 고압의 공기 연신장치를 이용하여 방사속도가 4,500 내지 5,500m/min이 되도록 충분히 연신시켜 상술한 시스부의 두께 범위와 함께 코어부(제1 성분)가 5 내지 10 데니어의 섬도가 되는 심초헝 복합 필라멘트를 제공할 수 있다. 상기 방사속도 범위 내에서 방사하는 것이 원하는 섬도 및 시스부의 두께가 유지되도록 할 수 있다. 일례로, 상기 방법으로 제조된 필라멘트 섬유는 컨베이어 네트 위에 웹 형태로 자리 잡은 후, 가열된 스무스(smooth)롤의 캘린더 공정을 거쳐 부직포의 두께를 조정한 다음, 열풍을 이용하여 접착하여 부직포를 제조한다.As described above, the filament spun in the composite spinning form is sufficiently stretched so that the spinning speed is 4,500 to 5,500 m/min using a high-pressure air stretching device, so that the core part (the first component) is formed with the thickness range of the sheath part described above. It is possible to provide a core sheathing composite filament having a fineness of 5 to 10 denier. It is possible to maintain the desired fineness and thickness of the sheath by spinning within the spinning speed range. As an example, the filament fiber prepared by the above method is positioned in the form of a web on a conveyor net, then goes through a calendering process of a heated smooth roll to adjust the thickness of the nonwoven fabric, and then adheres using hot air to produce a nonwoven fabric do.
따라서, 상기 열접착시키는 단계는 스무스 롤(smooth roll)을 이용한 캘린더링 단계, 및 열풍 공정을 이용한 열접착 단계를 포함할 수 있다.Accordingly, the thermal bonding may include a calendering step using a smooth roll, and a thermal bonding step using a hot air process.
상기 캘린더링 단계는 120 내지 150℃에서 수행될 수 있다. 상기 캘린더링 공정으로 부직포의 두께가 조절될 수 있다. 일례로, 본 발명에서는 단위면적당 중량이 65±5 g/㎡일 때, 스펀본드의 두께가 0.24mm 내지 0.29mm 혹은 0.24mm 내지 0.28mm가 되도록 캘린더 공정을 수행할 수 있다.The calendering step may be performed at 120 to 150 ℃. The thickness of the nonwoven fabric may be controlled by the calendering process. For example, in the present invention, when the weight per unit area is 65±5 g/m 2 , the calendering process may be performed so that the thickness of the spunbond is 0.24 mm to 0.29 mm or 0.24 mm to 0.28 mm.
상기 열풍 공정은 상기 열풍 공정은 170 내지 230℃에서 수행될 수 있다.The hot air process may be performed at 170 to 230°C.
바람직한 일 구현예에 따라, 용융점 255℃ 이상인 폴리에틸렌 테레프탈레이트를 제1 성분으로 하고, 용융점이 160 내지 230℃ 이하인 코폴리머 수지를 제2 성분으로 하여 각각 코어와 시스로 구성되는 복합방사로 이루어진 부직포 웹을 제조하고, 이를 스무스(smooth)롤을 이용한 카랜더 공정과 열풍을 이용한 Flat bonding을 통해 필라멘트 간 접착시킨 부직포를 제공할 수 있다. 이에 따라, 제1 성분은 코어(Core) 역할을 하고 제2 성분은 시스(Sheath)층에서 접착제(Binder) 역할을 할 수 있다.According to a preferred embodiment, polyethylene terephthalate having a melting point of 255° C. or higher as a first component, and a copolymer resin having a melting point of 160 to 230° C. or lower as a second component, a nonwoven web composed of a composite yarn composed of a core and a sheath, respectively It is possible to provide a nonwoven fabric in which filaments are bonded through the calender process using a smooth roll and flat bonding using hot air. Accordingly, the first component may serve as a core and the second component may function as an adhesive in the sheath layer.
이러한 방법으로 최종 심초형 스펀본드 부직포는 7 내지 12 데니어의 평균 섬도를 가질 수 있고, 또한 KS K 0521의 표준 시험법에 따른 인장강도 19kgf/5㎝ 이상, MS 343-11의 표준 시험법에 따른 주름방지율 50% 이하, 및 ASTM D737의 표준 시험법에 따른 통기도 350ccs 이상의 물성을 가질 수 있다.In this way, the final core-sheath type spunbond nonwoven fabric may have an average fineness of 7 to 12 denier, and a tensile strength of 19 kgf/5 cm or more according to the standard test method of KS K 0521, according to the standard test method of MS 343-11 Anti-wrinkle rate of 50% or less, and air permeability according to the standard test method of ASTM D737 may have physical properties of 350ccs or more.
따라서, 상기 부직포는 다양한 분야의 필터지지체로 사용되어, 여과 성능을 향상시킬 수 있다. 구체적으로, 상기 공기청정기용 필터지지체, 자동차캐빈용 필터지지체 또는 HVAC의 공조기용 필터지지체로 사용될 수 있다.Accordingly, the nonwoven fabric may be used as a filter support in various fields to improve filtration performance. Specifically, it may be used as a filter support for the air purifier, a filter support for an automobile cabin, or a filter support for an HVAC air conditioner.
본 명세서에 따르면, 시스(Sheath)-코어(Core)형 복합방사법을 사용하여 일정 범위의 태섬도(평균섬도)를 나타내도록 하고 시스를 구성하는 저융점 수지의 두께를 조절함에 따라, 기계적 물성이 우수하고 통기도 및 주름방지성이 모두 우수한 필터지지체용 심초형 스펀본드 부직포 및 그 제조방법을 제공할 수 있다. According to the present specification, by using a sheath-core-type composite spinning method to exhibit coarse fineness (average fineness) in a certain range and controlling the thickness of the low-melting-point resin constituting the sheath, mechanical properties are It is possible to provide a core-sheath-type spunbond nonwoven fabric for a filter support excellent in both air permeability and anti-wrinkle properties and a method for manufacturing the same.
도 1은 본 발명의 일 구현예에 따른 심초형 스펀본드 부직포의 필라멘트의 단면도이다(a:시스부의 두께).1 is a cross-sectional view of a filament of a core-sheath-type spunbond nonwoven fabric according to an embodiment of the present invention (a: thickness of the sheath).
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.Hereinafter, through specific examples of the invention, the operation and effect of the invention will be described in more detail. However, these embodiments are merely presented as an example of the invention, and the scope of the invention is not defined thereby.
[실시예 1][Example 1]
코어부(제1 성분)로 고유점도(IV)가 0.65dl/g이고 255℃의 융점을 갖는 폴리에틸렌 테레프탈레이트를 사용하고, 시스부(제2 성분)으로 아디프산과 이소프탈산이 공중합되어 214℃의 융점을 갖는 폴리에틸렌 테레프탈레이트를 준비하였다.Polyethylene terephthalate having an intrinsic viscosity (IV) of 0.65 dl/g and a melting point of 255 ° C is used as the core part (first component), and adipic acid and isophthalic acid are copolymerized as the sheath part (second component) to 214 ° C. Polyethylene terephthalate having a melting point of was prepared.
이후, 상기 코어부 및 시스부 재료를 각각 방사온도 280 ℃에서 연속 압출기를 이용하여 녹인 다음, 전체 평균 섬도가 7 데니어이고 코어부를 제외한 시스부의 두께가 0.8㎛가 되도록 방사노즐로부터의 코어부 및 시스부의 토출량과 구금의 모세공 수를 조절하였다. Thereafter, the core and sheath materials were melted using a continuous extruder at a spinning temperature of 280° C., and then the core and sheath from the spinning nozzle were so that the overall average fineness was 7 denier and the thickness of the sheath excluding the core was 0.8 μm. The negative discharge amount and the number of pores in the nozzle were controlled.
이어서, 모세공에서 방출된 연속 필라멘트를 냉각풍으로 고화시킨 후, 고압의 공기 연신장치를 이용하여 방사속도가 5,000 m/min이 되도록 연신시켜 필라멘트 섬유를 제조하였다.Subsequently, the continuous filaments released from the capillaries were solidified with cooling air, and then stretched using a high-pressure air stretching device at a spinning speed of 5,000 m/min to prepare filament fibers.
다음에 상기 제조된 필라멘트 섬유를 통상의 개섬법에 의해 컨베이어 네트(net)상에 웹의 형태로 적층시킨다. 적층된 웹은 가열된 스무스(smooth)롤에 의한 캘린더 공정을 거쳐 평활성과 적정한 두께를 부여하였다.Next, the prepared filament fibers are laminated in the form of a web on a conveyor net by a conventional opening method. The laminated web was subjected to a calendering process using a heated smooth roll to impart smoothness and an appropriate thickness.
상기 적층된 필라멘트는 208℃ 열풍온도로 열접착하여 제조된 단위면적당 중량이 65 g/㎡이고 겉보기밀도가 0.25g/㎤인 필터지지체용 스펀본드 부직포를 제조하였다.The laminated filaments were thermally bonded at a hot air temperature of 208° C. to prepare a spunbond nonwoven fabric for a filter support having a weight per unit area of 65 g/m 2 and an apparent density of 0.25 g/cm 3 .
[실시예 2][Example 2]
평균 섬도가 9 데니어이고 시스의 두께가 1.8㎛가 되도록 토출량과 구금의 모세공 수를 조절한 것 외에는, 실시예 1과 동일하게 부직포를 제조하였다 A nonwoven fabric was prepared in the same manner as in Example 1, except that the discharge amount and the number of pores in the nozzle were adjusted so that the average fineness was 9 denier and the thickness of the sheath was 1.8 μm.
[실시예 3][Example 3]
겉보기밀도를 0.23g/㎤이 되도록 적용한 것 외에는, 실시예 2와 동일하게 부직포를 제조하였다.A nonwoven fabric was prepared in the same manner as in Example 2, except that the apparent density was applied to be 0.23 g/cm 3 .
[실시예 4][Example 4]
겉보기밀도를 0.27g/㎤이 되도록 적용한 것 외에는, 실시예 2와 동일하게 부직포를 제조하였다.A nonwoven fabric was prepared in the same manner as in Example 2, except that the apparent density was applied to be 0.27 g/cm 3 .
[실시예 5][Example 5]
평균 섬도가 12 데니어이고 시스의 두께가 1.8㎛가 되도록 토출량과 구금의 모세공 수를 조절한 것 외에는, 실시예 1과 동일하게 부직포를 제조하였다.A nonwoven fabric was prepared in the same manner as in Example 1, except that the discharge amount and the number of pores in the nozzle were adjusted so that the average fineness was 12 denier and the thickness of the sheath was 1.8 μm.
[비교예 1][Comparative Example 1]
평균 섬도가 5 데니어이고 시스의 두께가 0.8㎛가 되도록 토출량과 구금의 모세공 수를 조절한 것 외에는, 실시예 1과 동일하게 부직포를 제조하였다.A nonwoven fabric was prepared in the same manner as in Example 1, except that the discharge amount and the number of pores in the nozzle were adjusted so that the average fineness was 5 denier and the thickness of the sheath was 0.8 μm.
[비교예 2][Comparative Example 2]
평균 섬도가 5 데니어이고 시스의 두께가 2.0㎛가 되도록 토출량과 구금의 모세공 수를 조절한 것 외에는, 실시예 1과 동일하게 부직포를 제조하였다.A nonwoven fabric was prepared in the same manner as in Example 1, except that the discharge amount and the number of pores in the nozzle were adjusted so that the average fineness was 5 denier and the thickness of the sheath was 2.0 μm.
[비교예 3][Comparative Example 3]
평균 섬도가 15 데니어이고 시스의 두께가 1.8㎛가 되도록 토출량과 구금의 모세공 수를 조절한 것 외에는, 실시예 1과 동일하게 부직포를 제조하였다.A nonwoven fabric was prepared in the same manner as in Example 1, except that the discharge amount and the number of pores in the nozzle were adjusted so that the average fineness was 15 denier and the thickness of the sheath was 1.8 μm.
[비교예 4][Comparative Example 4]
평균 섬도가 15 데니어이고 시스의 두께가 0.7㎛가 되도록 토출량과 구금의 모세공 수를 조절한 것 외에는, 실시예 1과 동일하게 부직포를 제조하였다.A nonwoven fabric was prepared in the same manner as in Example 1, except that the discharge amount and the number of pores in the nozzle were adjusted so that the average fineness was 15 denier and the thickness of the sheath was 0.7 μm.
[참고예 1][Reference Example 1]
겉보기밀도를 0.20g/㎤이 되도록 적용한 것 외에는, 실시예 2와 동일하게 부직포를 제조하였다.A nonwoven fabric was prepared in the same manner as in Example 2, except that the apparent density was applied to be 0.20 g/cm 3 .
[참고예 2][Reference Example 2]
겉보기밀도를 0.30g/㎤이 되도록 적용한 것 외에는, 실시예 2와 동일하게 부직포를 제조하였다.A nonwoven fabric was prepared in the same manner as in Example 2, except that the apparent density was applied to be 0.30 g/cm 3 .
구 분division 필라멘트filament 부직포 시트non-woven sheet
Fila.
De'
Fila.
De'
Sheath층
두께(㎛)
Sheath layer
Thickness (㎛)
부직포
두께
(mm)
Non-woven
thickness
(mm)
부직포중량
(g/㎡)
Non-woven fabric weight
(g/m2)
겉보기밀도
(g/㎤)
Apparent density
(g/㎤)
실시예 1Example 1 77 0.80.8 0.260.26 6565 0.250.25
실시예 2Example 2 99 1.81.8 0.260.26 6565 0.250.25
실시예 3Example 3 99 1.81.8 0.2830.283 6565 0.230.23
실시예 4Example 4 99 1.81.8 0.240.24 6565 0.270.27
실시예 5Example 5 1212 1.81.8 0.260.26 6565 0.250.25
비교예 1Comparative Example 1 55 0.80.8 0.260.26 6565 0.250.25
비교예 2Comparative Example 2 55 2.02.0 0.260.26 6565 0.250.25
비교예 3Comparative Example 3 1515 1.81.8 0.260.26 6565 0.250.25
비교예 4Comparative Example 4 1515 0.70.7 0.260.26 6565 0.250.25
참고예 1Reference Example 1 99 1.81.8 0.3250.325 6565 0.200.20
참고예 2Reference Example 2 99 1.81.8 0.2170.217 6565 0.300.30
[시험예][Test Example]
상기 실시예, 비교예 및 참고예에 대하여, 아래 평가 항목별 측정 방법에 따라 물성을 측정하여, 그 결과를 표 2에 나타내었다.For the Examples, Comparative Examples and Reference Examples, physical properties were measured according to the measurement methods for each evaluation item below, and the results are shown in Table 2.
1. Filament 강도(gf/De')1. Filament strength (gf/De')
KS K 0412에 따른 표준 시험법을 이용하였다. 구체적으로, 필라멘트를 Instron사 측정장비를 이용하여 초하중 500mg을 적용 후 인장속도 200㎜/min.으로 측정하였다.A standard test method according to KS K 0412 was used. Specifically, the filament was measured at a tensile speed of 200 mm/min. after applying an extra load of 500 mg using Instron's measuring equipment.
2. 인장강도(kgf/5㎝)2. Tensile strength (kgf/5cm)
KS K 0521에 따른 표준 시험법을 이용하였다. 구체적으로, 부직포를 MD와 CD방향으로 가로 5㎝ x 세로 20㎝ 크기의 시편을 제조하여 Instron사의 측정장비를 이용하여 인장속도 200㎜/min.으로 측정하였다.A standard test method according to KS K 0521 was used. Specifically, a specimen having a size of 5 cm x 20 cm in the MD and CD directions of the nonwoven fabric was prepared and measured at a tensile rate of 200 mm/min. using an Instron measuring instrument.
3. 공기투과도(ccs)3. Air permeability (ccs)
ASTM D737에 따른 표준 시험법을 이용하였다. 구체적으로, 부직포 파지면적 100㎠에 대해 FX3300기기를 이용하여 125pa 압력 적용 하에 공기투과도를 측정하였다.A standard test method according to ASTM D737 was used. Specifically, the air permeability was measured under the application of a 125pa pressure using an FX3300 device with respect to a nonwoven gripping area of 100 cm2.
4. 주름방지율(%)4. Anti-wrinkle rate (%)
MS343-11에 따른 표준 시험법을 이용하였다. 구체적으로, 부직포를 5분간 1kg 하중조건으로 기계적 굽힘 상태를 유지시키고, 하중 제거 후 5분간 회복되는 개각도를 통해 정량화하였다. 즉, 식 1에 따라 주름 방지율을 측정하였다.A standard test method according to MS343-11 was used. Specifically, the nonwoven fabric was maintained in a mechanical bending state under a load condition of 1 kg for 5 minutes, and quantified through the opening angle recovered for 5 minutes after the load was removed. That is, the anti-wrinkle rate was measured according to Equation 1.
[식 1][Equation 1]
주름방지율(%) = (개각도/180°) X 100Anti-wrinkle rate (%) = (open angle/180°) X 100
5. 품위지수(SD/OD)5. Quality Index (SD/OD)
품위지수는 품위평가장치(Formation Tester, FMT-²를 이용하며, 단위면적당 광원의 투과율과 투과율 분포를 통해 광학밀도(OD)과 광학편차(SD)를 측정함. 여기서, 품위지수는 광학편차를 광학밀도로 표준화하여 평균 값으로 나타내었다.The quality index uses the Formation Tester (FMT-²) and measures the optical density (OD) and optical deviation (SD) through the transmittance and transmittance distribution of the light source per unit area. It was normalized to the optical density and expressed as an average value.
구 분division 필라멘트filament 부직포 시트non-woven sheet 종합결과final result
Fila. 강도
(gf/De')
Fila. burglar
(gf/De')
인장강도
(kgf/5㎝)
(MD/CD)
The tensile strength
(kgf/5cm)
(MD/CD)
공기투과도
(ccs)
air permeability
(ccs)
주름방지율
(%)
(가로/세로)
Anti-wrinkle rate
(%)
(width and length)
품위지수
(SD/OD)
quality index
(SD/OD)
실시예 1Example 1 3.523.52 21.4/ 22.121.4/ 22.1 354354 49 / 4949 of 49 281281 양호Good
실시예 2Example 2 3.483.48 21.8/ 21.121.8/ 21.1 366366 44 / 4844 of 48 285285 양호Good
실시예 3Example 3 3.483.48 20.1/ 19.820.1/ 19.8 374374 47 / 4847 of 48 274274 양호Good
실시예 4Example 4 3.483.48 22.6/ 21.422.6/ 21.4 359359 46 / 4746 / 47 278278 양호Good
실시예 5Example 5 3.413.41 21.9/ 22.021.9/ 22.0 361361 47 / 4647 / 46 362362 양호Good
비교예 1Comparative Example 1 3.473.47 22.8/ 20.722.8/ 20.7 271271 55 / 5255 / 52 299299 층박리,
공기투과도 불량
delamination,
poor air permeability
비교예 2Comparative Example 2 -- -- -- -- -- 방사 불량poor radiation
비교예 3Comparative Example 3 -- -- -- -- -- 방사 불량poor radiation
비교예 4Comparative Example 4 3.333.33 18.6/ 16.918.6/ 16.9 421421 59 / 5859 of 58 344344 강력, 절곡 불량strong, bad bending
참고예 1Reference Example 1 3.483.48 17.5/ 18.317.5/ 18.3 394394 61 / 5461 of 54 294294 층박리, 절곡 불량Delamination, poor bending
참고예 2Reference Example 2 3.483.48 23.3/ 24.223.3/ 24.2 326326 44 / 4644 / 46 302302 공기투과도 불량poor air permeability
상기 표 2의 결과에서 보면, 본 발명의 실시예들은 비교예들에 비하여, 시스(Sheath)-코어(Core)형 복합방사법을 사용하여 일정 범위의 태섬도(평균섬도)를 나타내도록 하고 시스를 구성하는 저융점 수지의 두께를 조절함에 따라, 통기도 350ccs 이상, 인장강도 19kgf/5㎝ 이상, 주름방지율 50% 이하의 우수한 물성을 동시에 만족할 수 있음이 확인되었다.반면, 비교예들은 본원범위를 벗어나는 태섬도(평균섬도)나 시스부의 두께를 나타내어, 실시예들보다 강도, 통기도 및 주름방지율이 불량하였고, 이에 따라 층박리가 발생되거나 방사성 불량을 초래하였다.또한, 참고예 1 및 2는 겉보기 밀도가 0.23 내지 0.27 g/㎤인 본원의 범위를 만족하지 못하여, 강도가 저하되거나 공기투과도가 불량하였다. 특히, 참고예 1은 층박리로 인해 절곡 불량이 발생되었다.As seen in the results of Table 2, the Examples of the present invention, compared to the comparative examples, using a sheath-core type composite spinning method to exhibit a certain range of fineness (average fineness), and By adjusting the thickness of the constituting low-melting resin, it was confirmed that excellent physical properties such as air permeability of 350 ccs or more, tensile strength of 19 kgf/5 cm or more, and anti-wrinkle rate of 50% or less could be simultaneously satisfied. Indicating the deviated coarseness (average fineness) or the thickness of the sheath, the strength, air permeability, and anti-wrinkle rate were inferior to those of the Examples, which resulted in delamination or poor radiation. In addition, Reference Examples 1 and 2 The apparent density did not satisfy the range of the present application of 0.23 to 0.27 g/cm 3 , and the strength was lowered or the air permeability was poor. In particular, in Reference Example 1, bending defects occurred due to delamination.

Claims (15)

  1. 255 ℃ 이상의 융점을 갖는 폴리에스테르를 포함한 코어부; 및a core portion comprising polyester having a melting point of 255° C. or higher; and
    160 내지 230℃의 융점을 갖는 코폴리머를 포함한 시스부;가 복합 방사되어 이루어진 심초형 복합섬유의 부직포 웹을 포함하고,A sheath comprising a copolymer having a melting point of 160 to 230°C; includes a nonwoven web of core-sheath type composite fibers formed by composite spinning,
    7 내지 12 데니어의 전체 평균 섬도를 갖는 부직포이며,It is a nonwoven fabric having an overall average fineness of 7 to 12 denier,
    상기 시스부는 단위면적당 중량이 65±5 g/㎡일 때, 부직포 두께 0.24mm 내지 0.29mm를 기준으로 0.8 내지 1.9㎛의 두께를 가지는,The sheath has a thickness of 0.8 to 1.9 μm based on the thickness of the nonwoven fabric 0.24 mm to 0.29 mm when the weight per unit area is 65 ± 5 g / m 2 ,
    스펀본드 부직포.Spunbond nonwoven.
  2. 제1항에 있어서,According to claim 1,
    상기 시스부는 단위면적당 중량이 65±5 g/㎡일 때, 상기 부직포 두께 0.24mm 내지 0.29mm를 기준으로 0.8 내지 1.8㎛의 두께를 가지는, 스펀본드 부직포.The sheath portion has a thickness of 0.8 to 1.8 μm based on the thickness of the nonwoven fabric 0.24 mm to 0.29 mm when the weight per unit area is 65±5 g/m 2 , the spunbond nonwoven fabric.
  3. 제1항에 있어서, According to claim 1,
    KS K 0521의 표준 시험법에 따른 인장강도 19kgf/5㎝ 이상, MS 343-11의 표준 시험법에 따른 주름방지율 50% 이하, 및 ASTM D737의 표준 시험법에 따른 통기도 350ccs 이상을 가지는, 스펀본드 부직포.A spun having a tensile strength of 19 kgf/5 cm or more according to the standard test method of KS K 0521, an anti-wrinkle rate of 50% or less according to the standard test method of MS 343-11, and a breathability of 350 ccs or more according to the standard test method of ASTM D737 Bond non-woven fabric.
  4. 제1항에 있어서,According to claim 1,
    상기 폴리에스테르는 폴리에틸렌테레프탈레이트, 폴리부틸렌 테레프탈레이트, 폴리나프탈렌테레프탈레이트 및 이들의 재생 원료로 이루어진 군에서 선택된 1종 이상의 고유점도(IV)가 0.60 내지 0.90dl/g이고 255 ℃이상의 융점을 갖는 폴리에스테르 중합체를 포함하는, 스펀본드 부직포.The polyester has at least one intrinsic viscosity (IV) selected from the group consisting of polyethylene terephthalate, polybutylene terephthalate, polynaphthalene terephthalate and recycled raw materials thereof from 0.60 to 0.90 dl/g and has a melting point of 255 ° C A spunbond nonwoven comprising a polyester polymer.
  5. 제1항에 있어서,According to claim 1,
    상기 코폴리머는 160 내지 230℃의 융점을 갖는 코폴리에스테르 및 폴리아마이드계 수지로 이루어진 군에서 선택된 1종 이상인 스펀본드 부직포.The copolymer is at least one spunbond nonwoven fabric selected from the group consisting of a copolyester and a polyamide-based resin having a melting point of 160 to 230°C.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 코폴리에스테르는 아디프산(AA), 이소프탈산(IPA), 및 NPG로 공중합된 160 내지 230℃의 융점을 갖는 코폴리에틸렌 테레프탈레이트를 포함하는 스펀본드 부직포.The copolyester is a spunbond nonwoven fabric comprising adipic acid (AA), isophthalic acid (IPA), and copolyethylene terephthalate having a melting point of 160 to 230 ℃ copolymerized with NPG.
  7. 제5항에 있어서,6. The method of claim 5,
    상기 폴리아마이드계 수지는 나일론 6, 나일론 66, 나일론 46, 나일론 11, 나일론 12, 나일론 610, 나일론 612, 및 나일론 6/66의 공중합체로 이루어진 군에서 선택된 1종 이상인 스펀본드 부직포.The polyamide-based resin is at least one selected from the group consisting of a copolymer of nylon 6, nylon 66, nylon 46, nylon 11, nylon 12, nylon 610, nylon 612, and nylon 6/66.
  8. 제1항에 있어서, 상기 스펀본드 부직포는 단위면적당 중량이 65±5 g/㎡일 때, 겉보기 밀도가 0.23 내지 0.27 g/㎤인, 스펀본드 부직포.According to claim 1, wherein the spunbond nonwoven fabric has an apparent density of 0.23 to 0.27 g/cm 3 when the weight per unit area is 65±5 g/m 2 .
  9. 제1항에 있어서, 상기 부직포는 공기청정기용 필터지지체, 자동차캐빈용 필터지지체 또는 HVAC의 공조기용 필터지지체로 사용되는 스펀본드 부직포.The spunbond nonwoven fabric according to claim 1, wherein the nonwoven fabric is used as a filter support for an air purifier, a filter support for an automobile cabin, or a filter support for an HVAC air conditioner.
  10. 코어부로 255 ℃ 이상의 융점을 갖는 폴리에스테르를 사용하고, 시스부로 160 내지 230℃의 융점을 갖는 코폴리머를 복합 용융 방사하여 심초형 복합 필라멘트를 얻는 단계;Obtaining a core-sheath composite filament by using a polyester having a melting point of 255° C. or higher as a core portion and composite melt spinning a copolymer having a melting point of 160 to 230° C. as a sheath portion;
    상기 심초형 복합 필라멘트들을 연속 컨베이어 벨트상에 적층하여 섬유 웹(Web)을 형성하는 단계; 및forming a web of fibers by stacking the core-sheath composite filaments on a continuous conveyor belt; and
    상기 섬유 웹을 열접착시키는 단계;thermally bonding the fibrous web;
    를 포함하는, 제1항의 심초형 스펀본드 부직포의 제조 방법.A method for manufacturing a core-sheath-type spunbond nonwoven fabric of claim 1, comprising a.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 섬유 웹을 형성하는 단계는, 상기 복합방사에 의해 형성된 심초형 복합 필라멘트들을 연신하는 단계, 상기 연신된 복합 필라멘트들을 개섬하는 단계, 및 상기 개섬된 복합 필라멘트들을 적층하는 단계를 포함하는 심초형 스펀본드 부직포의 제조방법.The step of forming the fiber web includes the steps of drawing the core-sheath composite filaments formed by the composite spinning, opening the drawn composite filaments, and stacking the opened composite filaments Core-sheath spun comprising the steps of: A method for manufacturing a bonded nonwoven fabric.
  12. 제10항에 있어서,11. The method of claim 10,
    상기 열접착시키는 단계는 스무스 롤(smooth roll)을 이용한 캘린더링 단계, 및 열풍 공정을 이용한 열접착 단계를 포함하는, 심초형 스펀본드 부직포의 제조방법.The step of thermal bonding includes a calendering step using a smooth roll, and a thermal bonding step using a hot air process, a method of manufacturing a core-sheath-type spunbond nonwoven fabric.
  13. 제12항에 있어서, 상기 캘린더링 단계는 120 내지 150℃에서 수행되는 심초형 스펀본드 부직포의 제조방법.The method of claim 12, wherein the calendering step is performed at 120 to 150°C.
  14. 제12항에 있어서, 상기 열풍 공정은 170 내지 230℃에서 수행되는 심초형 스펀본드 부직포의 제조방법.The method of claim 12, wherein the hot air process is performed at 170 to 230°C.
  15. 제10항에 있어서,11. The method of claim 10,
    상기 시스부는 단위면적당 중량이 65±5 g/㎡일 때, 부직포 두께 0.24mm 내지 0.29mm를 기준으로 0.8 내지 1.9㎛의 두께를 가지는 심초형 스펀본드 부직포의 제조방법.When the weight per unit area of the sheath is 65±5 g/m 2 , the method of manufacturing a core-sheath-type spunbond nonwoven fabric having a thickness of 0.8 to 1.9 μm based on a thickness of 0.24 mm to 0.29 mm of the nonwoven fabric.
PCT/KR2021/019707 2020-12-29 2021-12-23 Spunbond non-woven fabrics having sheath-core structure and manufacturing method thereof WO2022145874A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200186037 2020-12-29
KR10-2020-0186037 2020-12-29
KR1020210185018A KR102617463B1 (en) 2020-12-29 2021-12-22 Spunbond non-woven fabrics having sheath-core structure and manufacturing method thereof
KR10-2021-0185018 2021-12-22

Publications (1)

Publication Number Publication Date
WO2022145874A1 true WO2022145874A1 (en) 2022-07-07

Family

ID=82259473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019707 WO2022145874A1 (en) 2020-12-29 2021-12-23 Spunbond non-woven fabrics having sheath-core structure and manufacturing method thereof

Country Status (2)

Country Link
TW (1) TWI795143B (en)
WO (1) WO2022145874A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004100108A (en) * 2002-09-11 2004-04-02 Toyobo Co Ltd Filament nonwoven fabric
KR20110105804A (en) * 2008-12-15 2011-09-27 이 아이 듀폰 디 네모아 앤드 캄파니 Non-woven sheet containing fibers with sheath/core construction
KR20110121988A (en) * 2010-05-03 2011-11-09 웅진케미칼 주식회사 Elastic fiber structure and method of fabricating the same
KR101194359B1 (en) * 2009-06-30 2012-10-25 코오롱인더스트리 주식회사 Polyester nonwoven fabrics, its preparation method and carpet primary backing substrate
KR101194358B1 (en) * 2008-12-19 2012-10-25 코오롱인더스트리 주식회사 Polyester nonwoven fabrics, its preparation method and carpet primary backing substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9689097B2 (en) * 2012-05-31 2017-06-27 Wm. T. Burnett Ip, Llc Nonwoven composite fabric and panel made therefrom
CZ2018647A3 (en) * 2018-11-23 2020-06-03 Reifenhäuser GmbH & Co. KG Maschinenfabrik Bulky nonwoven fabric with increased compressibility and improved regenerative ability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004100108A (en) * 2002-09-11 2004-04-02 Toyobo Co Ltd Filament nonwoven fabric
KR20110105804A (en) * 2008-12-15 2011-09-27 이 아이 듀폰 디 네모아 앤드 캄파니 Non-woven sheet containing fibers with sheath/core construction
KR101194358B1 (en) * 2008-12-19 2012-10-25 코오롱인더스트리 주식회사 Polyester nonwoven fabrics, its preparation method and carpet primary backing substrate
KR101194359B1 (en) * 2009-06-30 2012-10-25 코오롱인더스트리 주식회사 Polyester nonwoven fabrics, its preparation method and carpet primary backing substrate
KR20110121988A (en) * 2010-05-03 2011-11-09 웅진케미칼 주식회사 Elastic fiber structure and method of fabricating the same

Also Published As

Publication number Publication date
TWI795143B (en) 2023-03-01
TW202231953A (en) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2012002754A2 (en) Filter media for a liquid filter using an electrospun nanofiber web, method for manufacturing same, and liquid filter using same
WO2019203484A1 (en) Non-woven fabric of crimped composite fiber and laminate thereof, and article including the laminate
WO2017018558A1 (en) Nanofiber based composite false twist yarn and manufacturing method therefor
EP2761070A1 (en) Polyester nonwoven fabric and method for manufacturing the same
WO2012008740A2 (en) Thermoplastic organic fiber, method for preparing the same, fiber composite board using the same and method for preparing the board
WO2019017750A1 (en) Filter medium, manufacturing method therefor, and filter unit comprising same
WO2018110990A1 (en) Filter medium, method for manufacturing same and filter unit comprising same
WO2018110965A1 (en) Filter medium, method for manufacturing same and filter unit comprising same
WO2022145874A1 (en) Spunbond non-woven fabrics having sheath-core structure and manufacturing method thereof
WO2016190694A4 (en) Aramid paper, manufacturing method therefor, and use thereof
WO2022025336A1 (en) Nano membrane, nano membrane assembly, and method for manufacturing nano membrane
WO2021256660A1 (en) Protective clothing material having excellent virus-blocking performance and production method thereof
WO2018226076A2 (en) Filter medium, manufacturing method therefor, and filter unit including same
WO2023128099A1 (en) Method for manufacturing filter edge band non-woven fabric
WO2021251678A1 (en) Non-woven fabric for air filter and manufacturing method therefor, and article
WO2019066331A1 (en) Short-cut fiber for compression molded product, compression molded product using same, and manufacturing method therefor
WO2021201430A1 (en) Spunbonded non-woven fabric and tile carpet using same
KR20220095129A (en) Spunbond non-woven fabrics having sheath-core structure and manufacturing method thereof
WO2021091170A1 (en) Spunbonded non-woven fabric, and tile carpet using same
WO2013066022A1 (en) Laminated nanofiber web and method for producing same, and nanofiber composites using same
WO2019050376A1 (en) Composite fiber for compression-molded body and method for producing composite fiber
WO2022145726A1 (en) Non-woven fabric, carpet, and method for preparing same
WO2023106609A1 (en) Sound absorbing material for reducing noise in audible frequency band of single layer in which melt-blown fibers and nanofibers are randomly mixed, apparatus and method for manufacturing same, and sound absorbing material manufactured thereby
WO2015026068A1 (en) Breathable waterproof fabric and method of manufacturing same
WO2019050375A2 (en) Compression-molded body and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915672

Country of ref document: EP

Kind code of ref document: A1