WO2022143647A1 - 光学镜头及成像设备 - Google Patents

光学镜头及成像设备 Download PDF

Info

Publication number
WO2022143647A1
WO2022143647A1 PCT/CN2021/142020 CN2021142020W WO2022143647A1 WO 2022143647 A1 WO2022143647 A1 WO 2022143647A1 CN 2021142020 W CN2021142020 W CN 2021142020W WO 2022143647 A1 WO2022143647 A1 WO 2022143647A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical lens
concave
image side
Prior art date
Application number
PCT/CN2021/142020
Other languages
English (en)
French (fr)
Inventor
于笑枝
曾昊杰
刘绪明
曾吉勇
Original Assignee
江西联益光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联益光学有限公司 filed Critical 江西联益光学有限公司
Publication of WO2022143647A1 publication Critical patent/WO2022143647A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to the technical field of imaging lenses, in particular to an optical lens and an imaging device.
  • the purpose of the present invention is to provide an optical lens and an imaging device for solving the above problems.
  • the present invention provides an optical lens, comprising in sequence from the object side to the imaging surface along the optical axis: a diaphragm, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens a lens and a seventh lens;
  • the first lens has positive refractive power, the object side of the first lens is convex, and the image side of the first lens is concave;
  • the second lens has negative refractive power, so The object side of the second lens is convex, the image side of the second lens is concave;
  • the third lens has positive refractive power, the object side of the third lens is convex at the near optical axis, and the third lens has a positive refractive power.
  • the image side of the three lenses is concave at the near optical axis; the fourth lens has negative refractive power, the object side of the fourth lens is concave, and the image side of the fourth lens is convex; the fifth lens has a negative refractive power.
  • the lens has positive refractive power, the object side of the fifth lens is concave, the image side of the fifth lens is convex; the object side of the sixth lens is concave, and the image side of the sixth lens is convex;
  • the seventh lens has negative refractive power, the object side of the seventh lens is concave at the near optical axis, the image side of the seventh lens is concave at the near optical axis, and the seventh lens has a concave surface.
  • Both the object side and the image side have at least one inflection point; wherein, the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens and the seventh lens are plastic aspherical lenses; wherein, the optical lens satisfies the conditional formula: 3 ⁇ f/DM1 ⁇ 4; f represents the focal length of the optical lens, and DM1 represents the effective half of the first lens. caliber.
  • the present invention provides an imaging device, comprising an imaging element and the optical lens provided in the first aspect, where the imaging element is used to convert an optical image formed by the optical lens into an electrical signal.
  • the optical lens and imaging device provided by the present invention can meet the requirements of high pixels and at the same time have a better structure by reasonably matching the shape of the lens and the reasonable combination of refractive power among the seven lenses with specific refractive power. It is compact and has the characteristics of large aperture, which can meet the imaging requirements of dark environment, thus better realizing the balance of lens miniaturization and high pixel, which can effectively improve the user's camera experience.
  • FIG. 1 is a schematic structural diagram of an optical lens in a first embodiment of the present invention
  • Fig. 2 is the astigmatism curve diagram of the optical lens in the first embodiment of the present invention.
  • Fig. 3 is the distortion curve diagram of the optical lens in the first embodiment of the present invention.
  • Fig. 4 is the vertical axis chromatic aberration curve diagram of the optical lens in the first embodiment of the present invention.
  • Fig. 5 is the axial chromatic aberration curve diagram of the optical lens in the first embodiment of the present invention.
  • Fig. 6 is the astigmatism curve diagram of the optical lens in the second embodiment of the present invention.
  • Fig. 7 is the distortion curve diagram of the optical lens in the second embodiment of the present invention.
  • FIG. 8 is a vertical-axis chromatic aberration curve diagram of an optical lens in a second embodiment of the present invention.
  • FIG. 9 is an axial chromatic aberration curve diagram of an optical lens in a second embodiment of the present invention.
  • FIG. 11 is a distortion curve diagram of an optical lens in a third embodiment of the present invention.
  • FIG. 12 is a vertical-axis chromatic aberration curve diagram of an optical lens in a third embodiment of the present invention.
  • FIG. 13 is an axial chromatic aberration curve diagram of the optical lens in the third embodiment of the present invention.
  • FIG. 14 is a graph of astigmatism of the optical lens in the fourth embodiment of the present invention.
  • 15 is a distortion curve diagram of an optical lens in a fourth embodiment of the present invention.
  • 16 is a vertical-axis chromatic aberration curve diagram of the optical lens in the fourth embodiment of the present invention.
  • FIG. 17 is an axial chromatic aberration curve diagram of the optical lens in the fourth embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of an imaging device according to a fifth embodiment of the present invention.
  • the present invention provides an optical lens, which sequentially includes: a diaphragm, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens and a seventh lens along the optical axis from the object side to the imaging plane.
  • the first lens has positive refractive power, the object side of the first lens is convex, and the image side of the first lens is concave;
  • the second lens has negative refractive power, the object side of the second lens is convex, and the second lens
  • the image side of the lens is concave;
  • the third lens has positive refractive power, the object side of the third lens is convex at the near optical axis, and the image side of the third lens is concave at the near optical axis;
  • the fourth lens has negative refractive power , the object side of the fourth lens is concave, the image side of the fourth lens is convex;
  • the fifth lens has positive refractive power, the object side of the fifth lens is concave, and the image side of the fifth lens is convex;
  • the side is concave, the image side is convex;
  • the seventh lens has negative refractive power, the object side of the seventh lens is concave at the near optical axis, the image side of the
  • the optical lens satisfies the following conditional formula:
  • f represents the focal length of the optical lens
  • DM1 represents the effective semi-diameter of the first lens
  • the effective aperture of the first lens can be reasonably controlled, so that the lens has a larger aperture, and at the same time, the head size of the optical lens can be reduced, thereby realizing the miniaturization of the lens.
  • the optical lens can also satisfy the following conditional formula:
  • V5 represents the Abbe number of the fifth lens
  • V6 represents the Abbe number of the sixth lens
  • V7 represents the Abbe number of the seventh lens.
  • the optical lens can also satisfy the following conditional formula:
  • f represents the focal length of the optical lens
  • f1 represents the focal length of the first lens
  • f2 represents the focal length of the second lens
  • the focal lengths of the first lens and the second lens can be reasonably balanced, so that the first lens and the second lens have positive and negative focal lengths, and the angle of incident light can be adjusted reasonably, which is conducive to reducing the The diameter of the subsequent lens and the total length of the optical lens.
  • the optical lens can also satisfy the following conditional formula:
  • R4 represents the curvature radius of the image side surface of the second lens
  • f represents the focal length of the optical lens
  • the surface shape of the image side surface of the second lens can be reasonably controlled, the condensing intensity of the off-axis field of view can be alleviated, and the aberration between the off-axis field of view and the central field of view can be reduced, which is conducive to the correction of spherical aberration and
  • the incident angle of the light entering the object side of the third lens can be reasonably controlled, and the sensitivity of the optical lens can be reduced.
  • the optical lens can also satisfy the following conditional formula:
  • f represents the focal length of the optical lens
  • f4 represents the focal length of the fourth lens
  • R7 represents the radius of curvature of the object side of the fourth lens
  • R12 represents the radius of curvature of the image side of the sixth lens.
  • the focal length of the fourth lens can be reasonably controlled, and the difficulty of aberration correction in the off-axis field of view can be reduced.
  • the collocation between lenses improves the resolution quality of optical lenses.
  • the optical lens can also satisfy the following conditional formula:
  • CT5 represents the central thickness of the fifth lens
  • TTL represents the total optical length of the optical lens
  • R9 represents the curvature radius of the object side of the fifth lens
  • R10 represents the curvature radius of the image side of the fifth lens.
  • the refractive power and surface shape of the fifth lens can be reasonably controlled, so that the image side surface of the fifth lens has sufficient curvature, which is beneficial to reduce the sensitivity and Reduces the difficulty of correcting field curvature.
  • the optical lens can also satisfy the following conditional formula:
  • CT5 represents the center thickness of the fifth lens
  • CT56 represents the air space between the fifth lens and the sixth lens on the optical axis
  • CT6 represents the center thickness of the sixth lens
  • TTL represents the total optical length of the optical lens
  • Satisfying the conditional expressions (11) and (12) is conducive to the reasonable distribution of the central thickness of the fifth lens and the sixth lens, as well as their separation distance on the optical axis, and can reasonably adjust the distribution of light, which is beneficial to the spherical aberration of the optical lens and correction of optical distortion, and is conducive to realizing the compactness of the optical lens structure.
  • the optical lens can also satisfy the following conditional formula:
  • CT6 represents the center thickness of the sixth lens
  • SAG11 i represents the sag height of any point on the object side of the sixth lens
  • SAG12 i represents the sag height of any point on the image side of the sixth lens
  • CT6 represents the center thickness of the sixth lens
  • f represents the focal length of the optical lens
  • f6 represents the focal length of the sixth lens.
  • the surface shape and focal length of the sixth lens can be reasonably controlled, so that the sixth lens can meet the thin lens design, which is conducive to correcting aberration and optical distortion, while maintaining the amount of light, which is conducive to Increase in relative illuminance.
  • the optical lens can also satisfy the following conditional formula:
  • f2 represents the focal length of the second lens
  • f6 represents the focal length of the sixth lens
  • f7 represents the focal length of the seventh lens.
  • Satisfying the conditional expressions (15) and (16) can make the second lens and the seventh lens have the same refractive power, reduce the sensitivity of the lens and the difficulty of correcting advanced aberrations, and help improve the resolution quality of the optical lens , and at the same time, the optical power of the sixth lens and the seventh lens can be reasonably distributed, which is beneficial to shorten the total optical length.
  • the optical lens can also satisfy the following conditional formula:
  • CT7 represents the central thickness of the seventh lens
  • T7 max represents the maximum thickness of the seventh lens parallel to the optical axis
  • R14 represents the curvature radius of the image side of the seventh lens
  • ⁇ 14 represents the largest surface of the image side of the seventh lens inclination.
  • the surface shape and thickness ratio of the seventh lens can be reasonably controlled, which is beneficial to the processing and molding of the seventh lens.
  • the matching degree of the lens and the chip sensor improves the resolution quality of the optical lens.
  • the aperture number of the optical lens provided by the embodiment of the present invention is less than 1.8, which can meet the imaging requirements in a dark environment.
  • the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens may be aspherical lenses.
  • the above lenses are all made of plastic aspherical lenses. .
  • the use of aspherical lenses can effectively reduce the number of lenses, correct aberrations, and provide better optical performance.
  • the present invention can reasonably match the lens shape and the optical power combination between the lenses, so that the structure of the lens can be more compact under the premise of high pixels, and the miniaturization of the lens can be better achieved.
  • the high-pixel balance can effectively improve the user's camera experience.
  • the present invention will be further described below with a plurality of embodiments.
  • the thickness and radius of curvature of each lens in the optical lens are different, and the specific difference can be found in the parameter table in each embodiment.
  • z is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis
  • c is the paraxial curvature of the surface
  • k is the quadratic surface coefficient conic
  • a 2i is the 2i-order non Spherical coefficient.
  • FIG. 1 is a schematic structural diagram of an optical lens 100 provided by a first embodiment of the present invention.
  • the optical lens 100 sequentially includes from the object side to the imaging plane along the optical axis: a diaphragm ST, a first lens L1, a second lens Lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7 and filter G.
  • the first lens L1 has positive refractive power, the object side S1 of the first lens is convex, and the image side S2 of the first lens is concave.
  • the second lens L2 has negative refractive power, the object side S3 of the second lens is convex, and the image side S4 of the second lens is concave.
  • the third lens L3 has positive refractive power, the object side S5 of the third lens is convex at the near optical axis, and the image side S6 of the third lens is concave at the near optical axis.
  • the fourth lens L4 has negative refractive power, the object side S7 of the fourth lens is concave, and the image side S8 of the fourth lens is convex.
  • the fifth lens L5 has positive refractive power, the object side S9 of the fifth lens is concave, and the image side S10 of the fifth lens is convex.
  • the sixth lens L6 has positive refractive power, the object side S11 of the sixth lens is concave, and the image side S12 of the sixth lens is convex.
  • the seventh lens L7 has negative refractive power, the object side S13 of the seventh lens is concave at the near optical axis, the image side S14 of the seventh lens is concave at the near optical axis, and the object side S13 of the seventh lens and the image are concave.
  • the side surfaces S14 each have at least one inflection point.
  • Table 1 shows the relevant parameters of each lens of the optical lens 100 in this embodiment.
  • Table 2 shows the surface shape coefficients of each aspherical surface of the optical lens 100 of the present embodiment.
  • FIG. 2 , FIG. 3 , FIG. 4 , and FIG. 5 are an astigmatism curve graph, a distortion graph, a vertical chromatic aberration graph, and an axial chromatic aberration graph of the optical lens 100 , respectively.
  • the astigmatism curve of FIG. 2 represents the degree of curvature of the meridional image plane and the sagittal image plane.
  • the horizontal axis represents the offset (unit: millimeter)
  • the vertical axis represents the field angle (unit: degree). It can be seen from FIG. 2 that the astigmatism of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.05 mm, indicating that the astigmatism of the optical lens 100 is well corrected.
  • the distortion curve in Fig. 3 shows the distortion at different image heights on the imaging plane.
  • the horizontal axis represents the f- ⁇ distortion percentage
  • the vertical axis represents the field angle (unit: degree). It can be seen from FIG. 3 that the optical distortion at different image heights on the imaging surface is controlled within 2%, indicating that the distortion of the optical lens 100 is well corrected.
  • the vertical-axis chromatic aberration curve in FIG. 4 represents the chromatic aberration of each wavelength relative to the central wavelength (0.55 ⁇ m) at different image heights on the imaging plane.
  • the horizontal axis represents the vertical axis color difference value (unit: micrometer) of each wavelength relative to the central wavelength
  • the vertical axis represents the normalized field angle. It can be seen from FIG. 4 that the vertical chromatic aberration between the longest wavelength and the shortest wavelength is controlled within ⁇ 1 micron, indicating that the vertical chromatic aberration of the optical lens 100 is well corrected.
  • the axial chromatic aberration curve of FIG. 5 represents the aberration on the optical axis at the imaging plane.
  • the horizontal axis in FIG. 5 represents the axial chromatic aberration value (unit: mm), and the vertical axis represents the normalized pupil radius. It can be seen from FIG. 5 that the offset of the axial chromatic aberration is controlled within ⁇ 0.03 mm, indicating that the optical lens 100 can effectively correct the aberration of the fringe field of view and the secondary spectrum of the entire image plane.
  • the optical lens provided by the second embodiment of the present invention has substantially the same structure as the optical lens 100 in the first embodiment, except that the sixth lens L6 has a negative refractive power, and the parameters such as the radius of curvature of each lens are different.
  • Table 4 shows the surface shape coefficients of each aspherical surface of the optical lens of this embodiment.
  • FIG. 6 , FIG. 7 , FIG. 8 , and FIG. 9 show astigmatism curve graph, distortion curve graph, vertical chromatic aberration graph and axial chromatic aberration graph of the optical lens of the present embodiment, respectively.
  • FIG. 6 shows the degree of curvature of the meridional image plane and the sagittal image plane. It can be seen from the figure that the astigmatism of the meridional image plane and sagittal image plane is controlled within ⁇ 0.1 mm, indicating that the astigmatism of the optical lens is well corrected.
  • Figure 7 shows the distortion at different image heights on the imaging plane. It can be seen from the figure that the optical distortion at different image heights on the imaging surface is controlled within 2%, indicating that the distortion of the optical lens is well corrected.
  • Fig. 8 shows the chromatic aberration of the longest wavelength and the shortest wavelength at different image heights on the imaging plane. It can be seen from the figure that the vertical chromatic aberration of the longest wavelength and the shortest wavelength is controlled within ⁇ 0.8 microns, which indicates that the vertical chromatic aberration of the optical lens is well corrected.
  • FIG. 9 shows aberrations on the optical axis at the imaging plane. It can be seen from the figure that the offset of the axial chromatic aberration is controlled within ⁇ 0.04 mm, indicating that the optical lens can effectively correct the aberration of the fringe field of view and the secondary spectrum of the entire image plane.
  • the optical lens provided by the third embodiment of the present invention has substantially the same structure as the optical lens 100 in the first embodiment, and the difference lies in that the parameters such as the radius of curvature of each lens are different.
  • Table 6 shows the surface shape coefficients of each aspherical surface of the optical lens of this embodiment.
  • FIGS. 10 , 11 , 12 , and 13 show astigmatism curves, distortion curves, vertical chromatic aberration curves, and axial chromatic aberration curves of the optical lens of the present embodiment, respectively.
  • FIG. 10 shows the degree of curvature of the meridional image plane and the sagittal image plane. It can be seen from the figure that the astigmatism of the meridional image plane and sagittal image plane is controlled within ⁇ 0.1 mm, indicating that the astigmatism of the optical lens is well corrected.
  • Figure 11 shows the distortion at different image heights on the imaging plane. It can be seen from the figure that the optical distortion at different image heights on the imaging surface is controlled within 2%, indicating that the distortion of the optical lens is well corrected.
  • FIG. 12 shows the chromatic aberration at different image heights on the imaging plane between the longest wavelength and the shortest wavelength. It can be seen from Figure 14 that the vertical chromatic aberration between the longest wavelength and the shortest wavelength is controlled within ⁇ 1.5 microns, indicating that the vertical chromatic aberration of the optical lens is well corrected.
  • FIG. 13 shows aberrations on the optical axis at the imaging plane. It can be seen from the figure that the offset of the axial chromatic aberration at the imaging plane is controlled within ⁇ 0.03 mm, indicating that the optical lens can effectively correct the aberration of the fringe field of view and the secondary spectrum of the entire image plane.
  • the optical lens provided by the fourth embodiment of the present invention has substantially the same structure as the optical lens 100 in the first embodiment, except that the sixth lens L6 has a negative refractive power and the parameters such as the radius of curvature of each lens are different.
  • Table 8 shows the surface shape coefficients of each aspherical surface of the optical lens of this embodiment.
  • FIG. 14 , FIG. 15 , FIG. 16 and FIG. 17 show the astigmatism curve, distortion curve, vertical chromatic aberration curve and axial chromatic aberration curve of the optical lens of the present embodiment, respectively.
  • FIG. 14 shows the degree of curvature of the meridional image plane and the sagittal image plane. It can be seen from the figure that the astigmatism of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.05 mm, indicating that the astigmatism of the optical lens is well corrected.
  • Figure 15 shows the distortion at different image heights on the imaging plane. It can be seen from the figure that the optical distortion at different image heights on the imaging surface is controlled within 2%, indicating that the distortion of the optical lens is well corrected.
  • Fig. 16 shows the chromatic aberration at different image heights on the imaging plane between the longest wavelength and the shortest wavelength. It can be seen from the figure that the vertical chromatic aberration of the longest wavelength and the shortest wavelength is controlled within ⁇ 1.0 microns, which indicates that the vertical chromatic aberration of the optical lens is well corrected.
  • FIG. 17 shows aberrations on the optical axis at the imaging plane. It can be seen from the figure that the offset of the axial chromatic aberration at the imaging plane is controlled within ⁇ 0.03 mm, indicating that the optical lens can effectively correct the aberration of the fringe field of view and the secondary spectrum of the entire image plane.
  • the optical characteristics mainly include the focal length f of the optical lens, the aperture number F#, the total optical length TTL, and the angle of view 2 ⁇ , as well as the values corresponding to each of the aforementioned conditional expressions.
  • the optical lens provided by the present invention has the following advantages:
  • the aperture value of the lens is less than 1.8, which has the characteristics of large aperture and meets the imaging requirements in dark environments; on the other hand, the overall length of the seven-piece optical lens is shorter (TTL ⁇ 5.45 mm), the volume is reduced, and it can better meet the development trend of light and thin portable electronic devices.
  • the field of view of the optical lens can reach 79.4°, which can effectively correct optical distortion, control the optical distortion to be less than 2%, and meet the needs of large field of view and high-definition imaging.
  • a fifth embodiment of the present invention provides an imaging device 200 .
  • the imaging device 200 may include an imaging element 210 and an optical lens (eg, the optical lens 100 ) in any of the foregoing embodiments.
  • the imaging element 210 may be a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor) image sensor, or may be a CCD (Charge Coupled Device, charge coupled device) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
  • CCD Charge Coupled Device, charge coupled device
  • the imaging device 200 may be a smart phone, a Pad, or any other portable electronic device loaded with the above-mentioned optical lens.
  • the imaging device 200 provided by the embodiment of the present application includes the optical lens 100. Since the optical lens 100 has the advantages of small size, large aperture, and high pixels, the imaging device 200 provided with the optical lens 100 also has the advantages of small size, large aperture, and high pixels. advantage.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学镜头(100)及成像设备(200),光学镜头(100)沿光轴从物侧到成像面(S17)依次包括:光阑(ST);具有正光焦度的第一透镜(L1),其物侧面(S1)为凸面、像侧面(S2)为凹面;具有负光焦度的第二透镜(L2),其物侧面(S3)为凸面、像侧面(S4)为凹面;具有正光焦度的第三透镜(L3),其物侧面(S5)在近光轴处为凸面、像侧面(S6)在近光轴处为凹面;具有负光焦度的第四透镜(L4),其物侧面(S7)为凸面、像侧面(S8)为凹面;具有正光焦度的第五透镜(L5),其物侧面(S9)为凹面、像侧面(S10)为凸面;具有光焦度的第六透镜(L6),其物侧面(S11)为凹面、像侧面(S12)为凸面;具有负光焦度的第七透镜(L7),其物侧面(S13)在近光轴处为凹面、像侧面(S14)在近光轴处为凹面。光学镜头(100)通过合理搭配各透镜的面型及光焦度,能够较好地实现镜头小型化和高像素的均衡。

Description

光学镜头及成像设备
相关申请的交叉引用
本申请要求于2020年12月30日提交的申请号为202011607301.2的中国申请的优先权,其在此出于所有目的通过引用将其全部内容并入本文。
技术领域
本发明涉及成像镜头技术领域,特别是涉及一种光学镜头及成像设备。
背景技术
目前,随着便携式电子设备(如智能手机、相机)的普及,加上社交、视频、直播类软件的流行,人们对于摄影的喜爱程度越来越高,光学镜头已经成为了便携式电子设备的标配,光学镜头甚至已经成为消费者购买便携式电子设备时首要考虑的指标。
随着移动信息技术的不断发展,智能手机等便携式电子设备也在朝着轻薄化、全面屏、超高清成像等方向发展,这就对搭载在便携式电子设备上的光学镜头提出了更高的要求。近几年,随着消费者对手机拍照技术的热衷,对所搭配的光学镜头除了高像素的需求外,更加追求视觉上的简约。现有的光学镜头由于整体体积较大,所以大多都是凸出来的,而且越高端的手机摄像头凸出的越厉害,究其原因,主要是追求高品质成像与镜头厚度相冲突。
发明内容
为此,本发明的目的在于提出一种光学镜头及成像设备,用于解决上述问题。
本发明实施例通过以下技术方案实施上述的目的。
第一方面,本发明提供了一种光学镜头,沿光轴从物侧到成像面依次包括:光阑、第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜及第七透镜;所述第一透镜具有正光焦度,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;所述第二透镜具有负光焦度,所述第二透镜的物侧面为凸面,所述第二透镜的像侧面为凹面;所述第三透镜具有正光焦度,所述第三透镜的物侧面在近光轴处为凸面,所述第三透镜的像侧面在近光轴处为凹面;所述第四透镜具有负光焦度,所述第四透镜的物侧面为凹面,所述第四透镜的像侧面为凸面;所述第五透镜具有正光焦度,所述第五透镜的物侧面为凹面,所述第五透镜的像侧面为凸面;所述第六透镜的物侧面为凹面,所述第六透镜的像侧面为凸面;所述第七透镜具有负光焦度,所述第七透镜的物侧面在近光轴处为凹面,所述第七透镜的像侧面在近光轴处为凹面,且所述第七透镜的物侧面和像侧面均具有至少一个反曲点;其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜和所述第七透镜均为塑胶非球面镜片;其中,所述光学镜头满足条件式:3<f/DM1<4;f表示所述光学镜头的焦距,DM1表示所述第一透镜的有效半口径。
第二方面,本发明提供一种成像设备,包括成像元件及第一方面提供的光学镜头,成像元件用于将光学镜头形成的光学图像转换为电信号。
相比于现有技术,本发明提供的光学镜头及成像设备,通过合理的搭配七个具有特定屈折力的透镜之间的镜片形状和合理的光焦度组合,在满足高像素的同时结构更加紧凑,且具有大光圈特性,满足较暗环境的成像需求,从而较好地实现了镜头小型化和高像素的均衡,能够有效提升用户的摄像体验。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明第一实施例中的光学镜头的结构示意图;
图2为本发明第一实施例中的光学镜头的象散曲线图;
图3为本发明第一实施例中的光学镜头的畸变曲线图;
图4为本发明第一实施例中的光学镜头的垂轴色差曲线图;
图5为本发明第一实施例中的光学镜头的轴向色差曲线图;
图6为本发明第二实施例中的光学镜头的象散曲线图;
图7为本发明第二实施例中的光学镜头的畸变曲线图;
图8为本发明第二实施例中的光学镜头的垂轴色差曲线图;
图9为本发明第二实施例中的光学镜头的轴向色差曲线图;
图10为本发明第三实施例中的光学镜头的象散曲线图;
图11为本发明第三实施例中的光学镜头的畸变曲线图;
图12为本发明第三实施例中的光学镜头的垂轴色差曲线图;
图13为本发明第三实施例中的光学镜头的轴向色差曲线图;
图14为本发明第四实施例中的光学镜头的象散曲线图;
图15为本发明第四实施例中的光学镜头的畸变曲线图;
图16为本发明第四实施例中的光学镜头的垂轴色差曲线图;
图17为本发明第四实施例中的光学镜头的轴向色差曲线图;
图18为本发明第五实施例提供的成像设备的结构示意图。
具体实施方式
为使本发明的目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明提出一种光学镜头,沿光轴从物侧到成像面依次包括:光阑、第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜及第七透镜;其中,第一透镜具有正光焦度,第一透镜的物侧面为凸面,第一透镜的像侧面为凹面;第二透镜具有负光焦度,第二透镜的物侧面为凸面,第二透镜的像侧面为凹面;第三透镜具有正光焦度,第三透镜的物侧面在近光轴处为凸面,第三透镜的像侧面在近光轴处为凹面;第四透镜具有负光焦度,第四透镜的物侧面为凹面,第四透镜的像侧面为凸面;第五透镜具有正光焦度,第五透镜的物侧面为凹面,第五透镜的像侧面为凸面;第六透镜的物侧面为凹面,像侧面为凸面;第七透镜具有负光焦度,第七透镜的物侧面在近光轴处为凹面,第七透镜的像侧面在近光轴处为凹面,且第七透镜的物侧面和像侧面均具有至少一个反曲点。
在一些实施方式中,光学镜头满足以下条件式:
3<f/DM1<4;(1)
其中,f表示光学镜头的焦距,DM1表示第一透镜的有效半口径。
满足条件式(1),能够合理控制第一透镜的有效口径,使镜头具有较大的光圈,同时,实现光学镜头的头部尺寸做小,进而实现镜头的小型化。
在一些实施方式中,光学镜头还可以满足以下条件式:
28<V5-V6<37;(2)
28<V7-V6<37;(3)
其中,V5表示第五透镜的阿贝数,V6表示第六透镜的阿贝数,V7表示第七透镜的阿贝数。
满足条件式(2)和(3),通过合理搭配第五、六、七透镜的选材,有利于光学镜头的色差矫正和解像力的提升。
在一些实施方式中,光学镜头还可以满足以下条件式:
-0.4<f/(f1+f2)<-0.8;(4)
0.5<f/f1<1.5;(5)
其中,f表示光学镜头的焦距,f1表示第一透镜的焦距,f2表示第二透镜的焦距。
满足条件式(4)和(5)时,能够合理均衡第一透镜和第二透镜的焦距,使第一透镜和第二透镜具有正负搭配的焦距,合理调整入射光线角度,有利于减小后续透镜的口径和光学镜头的总长。
在一些实施方式中,光学镜头还可以满足以下条件式:
0.8<R4/f<1;(6)
其中,R4表示第二透镜的像侧面的曲率半径,f表示光学镜头的焦距。
满足条件式(6)时,能够合理控制第二透镜像侧面的面型,缓和轴外视场的聚光强度,减小轴外视场与中心视场的像差,有利于校正球差和光学畸变,同时能够合理控制光线进入第三透镜物侧面的入射角,降低光学镜头的敏感度。
在一些实施方式中,光学镜头还可以满足以下条件式:
-0.2<f/f4<0.02;(7)
-20<R7/R12<-1;(8)
其中,f表示光学镜头的焦距,f4表示第四透镜的焦距,R7表示第四透镜的物侧面的曲率半径,R12表示第六透镜的像侧面的曲率半径。
满足条件式(7)和(8)时,能够合理控制第四透镜的焦距,降低轴外视场的像差矫正难度,同时,能够合理控制光阑后的各透镜的面型,有利于各透镜之间的搭配,提高光学镜头的解像品质。
在一些实施方式中,光学镜头还可以满足以下条件式:
0.07<CT5/TTL<0.11;(9)
1.1<(R9+R10)/(R9-R10)<1.8(10)
其中,CT5表示第五透镜的中心厚度,TTL表示光学镜头的光学总长,R9表示第五透镜的物侧面的曲率半径,R10表示第五透镜的像侧面的曲率半径。
满足条件式(9)和(10)时,能够合理控制第五透镜的光焦度和面型,使第五透镜的像侧面具有足够的曲度,有利于减小第五透镜的敏感度及降低校正场曲的难度。
在一些实施方式中,光学镜头还可以满足以下条件式:
0.4<CT6/CT5<0.8;(11)
0.01<CT56/TTL<0.06;(12)
其中,CT5表示第五透镜的中心厚度,CT56表示第五透镜和第六透镜在光轴上的空气间隔,CT6表示第六透镜的中心厚度,TTL表示光学镜头的光学总长。
满足条件式(11)和(12),有利于合理分配第五透镜和第六透镜的中心厚度,以及其在光轴上的间隔距离,能够合理调节光线的分布,有利于光学镜头的球差和光学畸变的矫正,并且有利于实现光学镜头结构的紧凑性。
在一些实施方式中,光学镜头还可以满足以下条件式:
1<(SAG11 i-SAG12 i)/CT6<1.7;(13)
-0.1<f/f6<0.2;(14)
其中,CT6表示第六透镜的中心厚度,SAG11 i表示第六透镜的物侧面上任意一点的矢高,SAG12 i表示第六透镜的像侧面上任意一点的矢高,CT6表示第六透镜的中心厚度,f表示光学镜头的焦距,f6表示第六透镜的焦距。
满足条件式(13)和(14),能够合理控制第六透镜的面型和焦距,使第六透镜满足薄型化透镜设计,有利于校正像差和光学畸变,同时能够维持通光量,有利于相对照度的提升。
在一些实施方式中,光学镜头还可以满足以下条件式:
0<f7/f2<0.4;(15)
-0.1<f7/f6<0.1;(16)
其中,f2表示第二透镜的焦距,f6表示第六透镜的焦距,f7表示第七透镜的焦距。
满足条件式(15)和(16),可使第二透镜和第七透镜具有同方向的光焦度,降低镜头的敏感度和高级像差的矫正难度,有利于提高光学镜头的解像品质,同时,能够合理分配第六透镜和第七透镜的光焦度,有利于缩短光学总长。
在一些实施方式中,光学镜头还可以满足以下条件式:
2.2<T7 max/CT7<2.4;(17)
-18<R14/tan(θ14)<-12;(18)
其中,CT7表示第七透镜的中心厚度,T7 max表示第七透镜平行于光轴方向上的最大厚度,R14表示第七透镜的像侧面的曲率半径,θ14表示第七透镜的像侧面的最大面倾角。
满足条件式(17)和(18)时,能够合理控制第七透镜的面型和厚薄比,有利于第七透镜的加工成型,同时,能够合理控制第七透镜像侧面的曲度,提高光学镜头与芯片传感器的匹配度,提高光学镜头的解像质量。
本发明实施例提供的光学镜头的光圈数小于1.8,能够满足较暗环境的成像需求。
作为一种实施方式,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜以及第七透镜 可以是非球面镜片,可选的,上述透镜均采用塑胶非球面镜片。采用非球面镜片,可以有效减少镜片的数量,修正像差,提供更好的光学性能。
本发明通过采用七个具有特定屈折力的透镜,合理搭配各透镜之间的镜片形状与光焦度组合,可以使镜头具有高像素的前提下结构更加紧凑,较好地实现了镜头小型化和高像素的均衡,能够有效提升用户的摄像体验。
下面分多个实施例对本发明进行进一步的说明。在以下每个实施例中,光学镜头中的各个透镜的厚度、曲率半径有所不同,具体不同可参见各实施例中的参数表。
本发明各实施例中的光学镜头的非球面的表面形状均满足下列方程:
Figure PCTCN2021142020-appb-000001
其中,z为非球面沿光轴方向在高度为h的位置时,距离非球面顶点的距离矢高,c为表面的近轴曲率,k为二次曲面系数conic,A 2i为第2i阶的非球面面型系数。
第一实施例
请参阅图1,所示为本发明第一实施例提供的光学镜头100的结构示意图,该光学镜头100沿光轴从物侧到成像面依次包括:光阑ST,第一透镜L1,第二透镜L2,第三透镜L3,第四透镜L4,第五透镜L5,第六透镜L6、第七透镜L7及滤光片G。
其中,第一透镜L1具有正光焦度,第一透镜的物侧面S1为凸面,第一透镜的像侧面S2为凹面。
第二透镜L2具有负光焦度,第二透镜的物侧面S3为凸面,第二透镜的像侧面S4为凹面。
第三透镜L3具有正光焦度,第三透镜的物侧面S5在近光轴处为凸面,第三透镜的像侧面S6在近光轴处为凹面。
第四透镜L4具有负光焦度,第四透镜的物侧面S7为凹面,第四透镜的像侧面S8为凸面。
第五透镜L5具有正光焦度,第五透镜的物侧面S9为凹面,第五透镜的像侧面S10为凸面。
第六透镜L6具有正光焦度,第六透镜的物侧面S11为凹面,第六透镜的像侧面S12为凸面。
第七透镜L7具有负光焦度,第七透镜的物侧面S13在近光轴处为凹面,第七透镜的像侧面S14在近光轴处为凹面,且第七透镜的物侧面S13和像侧面S14均具有至少一个反曲点。
本实施例中的光学镜头100的各透镜的相关参数如表1所示。
表1
Figure PCTCN2021142020-appb-000002
Figure PCTCN2021142020-appb-000003
本实施例的光学镜头100的各非球面的面型系数如表2所示。
表2
面号 k A 4 A 6 A 8 A 10 A 12 A 14 A 16
S1 0.056314 -0.00285 0.004371 -0.00603 0.00601 -0.00669 0.004333 -0.00142
S2 -7.45703 -0.07418 0.066814 -0.02912 -0.00262 0.004097 0.000161 -0.00051
S3 2.177685 -0.12866 0.161213 -0.07112 -0.00206 0.009921 0.001672 -0.00118
S4 -37.3815 -0.01575 0.088039 -0.01829 -0.01523 0.000335 0.01106 -0.00196
S5 -90.8248 -0.04721 0.03399 -0.05116 0.007789 0.012957 -0.00661 -0.00466
S6 19.41479 -0.0855 0.041776 -0.05704 0.019936 0.011022 -0.01927 0.004192
S7 85.00599 -0.16476 0.036759 -0.03503 0.010665 0.004626 -0.00052 -0.00216
S8 46.09362 -0.13803 0.016826 -0.01599 0.001939 0.002649 0.000251 -9.7E-05
S9 -59.2176 -0.07242 0.00953 -0.03646 0.01628 -0.00139 -0.00237 0.001031
S10 -0.21723 0.011579 -0.00356 0.001508 0.000693 0.000198 2.04E-05 -4.8E-06
S11 0.449885 -0.01251 -0.00254 -0.00075 -5.1E-05 5.75E-05 1.06E-05 1.96E-06
S12 -6.87243 -0.03126 0.005608 -0.00404 0.000781 0.00018 -5.3E-05 2.28E-06
S13 -1.69075 -0.0034 0.006504 -0.00064 -1.1E-05 1.86E-06 2.62E-07 -2E-08
S14 9.661539 -0.02959 0.006141 -0.00097 5.71E-05 9.99E-07 -1.9E-07 3.94E-09
请参照图2、图3、图4及图5,所示分别为光学镜头100的象散曲线图、畸变曲线图、垂轴色差曲线 图以及轴向色差曲线图。
图2的象散曲线表示子午像面和弧矢像面的弯曲程度。其中,图2中横轴表示偏移量(单位:毫米),纵轴表示视场角(单位:度)。从图2中可以看出,子午像面和弧矢像面的象散控制在±0.05毫米以内,说明光学镜头100的象散矫正良好。
图3畸变曲线表示成像面上不同像高处的畸变。其中,图3中横轴表示f-θ畸变百分比,纵轴表示视场角(单位:度)。从图3中可以看出,成像面上不同像高处的光学畸变控制在2%以内,说明光学镜头100的畸变得到良好的矫正。
图4的垂轴色差曲线表示各波长相对于中心波长(0.55μm)在成像面上不同像高处的色差。其中,图4中横轴表示各波长相对中心波长的垂轴色差值(单位:微米),纵轴表示归一化视场角。从图4中可以看出,最长波长与最短波长的垂轴色差控制在±1微米以内,说明光学镜头100的垂轴色差得到良好的矫正。
图5的轴向色差曲线表示成像面处光轴上的像差。其中,图5中横轴表示轴向色差值(单位:毫米),纵轴表示归一化光瞳半径。从图5中可以看出,轴向色差的偏移量控制在±0.03毫米以内,说明该光学镜头100能够有效地矫正边缘视场的像差以及整个像面的二级光谱。
第二实施例
本发明第二实施例提供的光学镜头与第一实施例中的光学镜头100的结构大抵相同,不同之处在于:第六透镜L6具有负光焦度,以及各透镜的曲率半径等参数不同。
本发明第二实施例的光学镜头中各透镜的相关参数如表3所示。
表3
Figure PCTCN2021142020-appb-000004
Figure PCTCN2021142020-appb-000005
本实施例的光学镜头的各非球面的面型系数如表4所示。
表4
面号 k A 4 A 6 A 8 A 10 A 12 A 14 A 16
S1 0.075503 -0.00514 0.005929 -0.00678 0.005966 -0.00691 0.004576 -0.00138
S2 -10.4834 -0.08642 0.071231 -0.02642 -0.00409 0.003719 0.000331 -0.00045
S3 -69.8573 -0.125 0.157122 -0.06831 -0.00236 0.009861 0.000718 -0.00093
S4 -37.7495 -0.0172 0.08579 -0.02373 -0.0158 0.003204 0.013174 -0.00561
S5 -23.1423 -0.04273 0.025156 -0.04839 0.009197 0.008335 -0.00829 -0.0018
S6 30.25056 -0.08656 0.049996 -0.07736 0.021468 0.011265 -0.01815 0.004118
S7 77.90037 -0.14448 0.042373 -0.03033 0.008259 0.000215 -0.00161 -0.0008
S8 34.65152 -0.13395 0.028249 -0.01478 0.001097 0.002521 4.59E-05 -0.00033
S9 10.5259 -0.04744 0.006924 -0.02936 0.01679 -0.00087 -0.00261 0.000721
S10 -0.37496 0.01394 -0.00546 0.002152 0.00032 0.000114 -2.2E-05 -6E-06
S11 3.296448 -0.02381 -0.0016 -0.00375 0.000232 0.000296 2.37E-05 -1.5E-05
S12 -86.6592 -0.03476 0.004398 -0.00387 0.00068 0.000154 -4.6E-05 2.64E-06
S13 -1.58377 -0.00091 0.005894 -0.00054 -1.2E-05 1.13E-06 1.75E-07 -7E-09
S14 34.72204 -0.02832 0.006477 -0.00098 4.8E-05 1.97E-06 -1.7E-07 -8.1E-10
请参照图6、图7、图8、图9,所示分别为本实施例的光学镜头的象散曲线图、畸变曲线图、垂轴色差曲线图以及轴向色差曲线图。
图6表示子午像面和弧矢像面的弯曲程度。从图中可以看出,子午像面和弧矢像面的象散控制在±0.1毫米以内,说明光学镜头的象散矫正良好。
图7表示成像面上不同像高处的畸变。从图中可以看出,成像面上不同像高处的光学畸变控制在2%以内,说明光学镜头的畸变得到良好的矫正。
图8表示最长波长与最短波长在成像面上不同像高处的色差。从图中可以看出,最长波长与最短波长的垂轴色差控制在±0.8微米以内,说明光学镜头的垂轴色差得到良好的矫正。
图9表示成像面处光轴上的像差。从图中可以看出,轴向色差的偏移量控制在±0.04毫米以内,说明该光学镜头能够有效地矫正边缘视场的像差以及整个像面的二级光谱。
第三实施例
本发明第三实施例提供的光学镜头与第一实施例中的光学镜头100的结构大抵相同,不同之处在于各透镜的曲率半径等参数不同。
本发明第三实施例的光学镜头中各透镜的相关参数如表5所示。
表5
Figure PCTCN2021142020-appb-000006
本实施例的光学镜头的各非球面的面型系数如表6所示。
表6
面号 k A 4 A 6 A 8 A 10 A 12 A 14 A 16
S1 0.057397 -0.00283 0.00393 -0.00607 0.006062 -0.00668 0.004369 -0.00138
S2 -10.2696 -0.07431 0.067841 -0.0291 -0.00289 0.003944 0.000122 -0.00043
S3 12.59443 -0.12603 0.160882 -0.07107 -0.0023 0.009749 0.001618 -0.00111
S4 -38.6953 -0.01051 0.089327 -0.01752 -0.01562 0.000362 0.011296 -0.00157
S5 -97.2431 -0.04659 0.032843 -0.05138 0.008235 0.012443 -0.00705 -0.00485
S6 -25.3951 -0.08678 0.042245 -0.05762 0.018041 0.009754 -0.01902 0.004891
S7 85 -0.1598 0.036978 -0.03277 0.011297 0.001916 -0.00142 -0.001
S8 84.24042 -0.13896 0.018152 -0.01484 0.002479 0.002497 -3E-05 -9.9E-05
S9 -18.0255 -0.08288 0.004459 -0.03639 0.017413 -0.00084 -0.00228 0.000949
S10 -0.21549 0.005051 -0.00281 0.001081 0.000523 0.000178 3.1E-05 9.53E-06
S11 0.509322 -0.01062 -0.00247 -0.00101 -0.00025 1.22E-05 1.34E-05 9.43E-06
S12 -6.1663 -0.03725 0.00407 -0.00383 0.00091 0.000211 -5.4E-05 4.92E-08
S13 -1.55124 -0.00299 0.006568 -0.00064 -1.1E-05 1.85E-06 2.62E-07 -2E-08
S14 -3.21474 -0.02743 0.005991 -0.00097 5.79E-05 1.02E-06 -1.9E-07 3.69E-09
请参照图10、图11、图12、图13,所示分别为本实施例的光学镜头的象散曲线图、畸变曲线图、垂轴色差曲线图以及轴向色差曲线图。
图10表示子午像面和弧矢像面的弯曲程度。从图中可以看出,子午像面和弧矢像面的象散控制在±0.1毫米以内,说明光学镜头的象散矫正良好。
图11表示成像面上不同像高处的畸变。从图中可以看出,成像面上不同像高处的光学畸变控制在2%以内,说明光学镜头的畸变得到良好的矫正。
图12表示最长波长与最短波长在成像面上不同像高处的色差。从图14中可以看出,最长波长与最短波长的垂轴色差控制在±1.5微米以内,说明光学镜头的垂轴色差得到良好的矫正。
图13表示成像面处光轴上的像差。从图中可以看出,成像面处轴向色差的偏移量控制在±0.03毫米以内,说明该光学镜头能够有效地矫正边缘视场的像差以及整个像面的二级光谱。
第四实施例
本发明第四实施例提供的光学镜头与第一实施例中的光学镜头100的结构大抵相同,不同之处在于:第六透镜L6具有负光焦度,以及各透镜的曲率半径等参数不同。
本发明第四实施例的光学镜头中各透镜的相关参数如表7所示。
表7
Figure PCTCN2021142020-appb-000007
Figure PCTCN2021142020-appb-000008
本实施例的光学镜头的各非球面的面型系数如表8所示。
表8
面号 k A 4 A 6 A 8 A 10 A 12 A 14 A 16
S1 0.070944 -0.00201 0.004008 -0.00609 0.005993 -0.00664 0.004413 -0.00134
S2 -8.92725 -0.07415 0.067835 -0.02886 -0.0027 0.004096 0.000173 -0.00051
S3 4.456791 -0.12908 0.159691 -0.07156 -0.00213 0.009727 0.001458 -0.00109
S4 -29.948 -0.01261 0.084755 -0.0218 -0.01576 0.002153 0.012043 -0.00416
S5 -73.9392 -0.05317 0.028258 -0.05383 0.007746 0.012447 -0.00689 -0.00481
S6 -4.77299 -0.08484 0.043477 -0.06216 0.016917 0.011743 -0.01693 0.004455
S7 56.53803 -0.14975 0.041316 -0.0348 0.006533 0.001287 0.000107 -0.0002
S8 59.86501 -0.13477 0.021204 -0.01541 0.001524 0.00196 -9.7E-05 3.09E-05
S9 -30.8254 -0.04954 0.015422 -0.03819 0.018193 -0.00035 -0.00243 0.0006
S10 -0.2931 0.025155 -0.0069 0.000915 0.000386 8.33E-05 -4.3E-06 -3E-06
S11 4.183769 -0.01323 -0.00619 -0.0011 0.000107 0.000105 1.05E-05 -3.6E-06
S12 -76.6993 -0.03001 0.005892 -0.00437 0.00068 0.000171 -5.1E-05 3.49E-06
S13 -1.7788 -0.00383 0.006455 -0.00064 -1.1E-05 1.91E-06 2.6E-07 -2E-08
S14 7.136772 -0.03152 0.006452 -0.00098 5.61E-05 9.98E-07 -1.9E-07 3.57E-09
请参照图14、图15、图16和图17,所示分别为本实施例的光学镜头的象散曲线图、畸变曲线图、垂轴色差曲线图以及轴向色差曲线图。
图14表示子午像面和弧矢像面的弯曲程度。从图中可以看出,子午像面和弧矢像面的象散控制在±0.05毫米以内,说明光学镜头的象散矫正良好。
图15表示成像面上不同像高处的畸变。从图中可以看出,成像面上不同像高处的光学畸变控制在2%以内,说明光学镜头的畸变得到良好的矫正。
图16表示最长波长与最短波长在成像面上不同像高处的色差。从图中可以看出,最长波长与最短波长的垂轴色差控制在±1.0微米以内,说明光学镜头的垂轴色差得到良好的矫正。
图17表示成像面处光轴上的像差。从图中可以看出,成像面处轴向色差的偏移量控制在±0.03毫米以内,说明该光学镜头能够有效地矫正边缘视场的像差以及整个像面的二级光谱。
请参照表9,所示是上述四个实施例提供的光学镜头分别对应的光学特性。其中,光学特性主要包括光学镜头的焦距f、光圈数F#、光学总长TTL及视场角2θ,以及与前述每个条件式对应的数值。
表9
  第一实施例 第二实施例 第三实施例 第四实施例
f(mm) 4.598 4.676 4.696 4.659
F# 1.79 1.79 1.79 1.79
TTL(mm) 5.388 5.433 5.442 5.443
2θ(°) 79.4 79.4 79.4 79.4
IH(mm) 3.891 3.956 3.971 3.951
V5-V6 35.578 35.578 29.791 35.578
V7-V6 35.338 35.338 29.791 35.338
f/DM1 3.590 3.590 3.580 3.590
f/(f1+f2) -0.571 -0.423 -0.674 -0.757
f/f1 1.076 0.993 1.102 1.068
R4/f 0.924 0.869 0.888 0.829
f/f4 -0.124 -0.083 -0.148 0.008
R7/R12 -6.865 -1.486 -14.200 -1.469
CT5/TTL 0.086 0.094 0.092 0.099
(R9+R10)/(R9-R10) 1.656 1.372 1.633 1.295
CT6/CT5 0.754 0.687 0.500 0.555
CT56/TTL 0.020 0.021 0.024 0.049
(SAG11 i-SAG12 i)/CT6 (1,1.271) (1,1.484) (1,1.574) (1,1.387)
f/f6 0.119 -0.025 0.051 -0.055
f7/f2 0.223 0.182 0.256 0.263
f7/f6 -0.071 0.015 -0.031 0.033
T7 max/CT7 2.303 2.259 2.305 2.305
R14/tan(θ14) -12.134 -5.607 -5.979 -9.560
综上,本发明提供的光学镜头具有以下的优点:
(1)由于光阑及各透镜形状设置合理,使镜头的光圈值小于1.8,具有大光圈特性,满足较暗环境的成像需求;另一方面,使得七片式光学镜头的总长较短(TTL<5.45毫米),体积减小,能够更好的满足便携式电子设备轻薄化的发展趋势。
(2)采用七个具有特定屈折力的塑胶非球面镜片,并且各个透镜通过特定的表面形状搭配,使得光学镜头具有超高像素的成像质量,本发明可匹配4800万像素的芯片。
(3)光学镜头的视场角可达79.4°,可有效修正光学畸变,控制光学畸变小于2%,能够满足大视场角且高清晰成像需要。
第五实施例
请参阅图18,本发明第五实施例提供了一种成像设备200,该成像设备200可以包括成像元件210和上述任一实施例中的光学镜头(例如光学镜头100)。成像元件210可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
该成像设备200可以是智能手机、Pad以及其它任意一种形态的装载了上述光学镜头的便携式电子设备。
本申请实施例提供的成像设备200包括光学镜头100,由于光学镜头100具有体积小、大光圈、像素高的优点,具有该光学镜头100的成像设备200也具有体积小、大光圈、像素高的优点。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种光学镜头,其特征在于,沿光轴从物侧到成像面依次包括:
    光阑;
    具有正光焦度的第一透镜,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;
    具有负光焦度的第二透镜,所述第二透镜的物侧面为凸面,所述第二透镜的像侧面为凹面;
    具有正光焦度的第三透镜,所述第三透镜的物侧面在近光轴处为凸面,所述第三透镜的像侧面在近光轴处为凹面;
    具有负光焦度的第四透镜,所述第四透镜的物侧面为凸面,所述第四透镜的像侧面为凹面;
    具有正光焦度的第五透镜,所述第五透镜的物侧面为凹面,所述第五透镜的像侧面为凸面;
    具有光焦度的第六透镜,所述第六透镜的物侧面为凹面,所述第六透镜的像侧面为凸面;以及
    具有负光焦度的第七透镜,所述第七透镜的物侧面在近光轴处为凹面,所述第七透镜的像侧面在近光轴处为凹面,且所述第七透镜的物侧面和像侧面均具有至少一个反曲点;
    其中,所述光学镜头中透镜的数量为7片,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜和所述第七透镜均为塑胶非球面镜片;
    其中,所述光学镜头满足条件式:3<f/DM1<4;f表示所述光学镜头的焦距,DM1表示所述第一透镜的有效半口径;
    所述光学镜头满足条件式:
    1<(SAG11 i-SAG12 i)/CT6<1.7;
    -0.1<f/f6<0.2;
    其中,SAG11 i表示所述第六透镜的物侧面上任意一点的矢高,SAG12 i表示所述第六透镜的像侧面上任意一点的矢高,CT6表示所述第六透镜的中心厚度,f表示所述光学镜头的焦距,f6表示所述第六透镜的焦距。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足条件式:
    28<V5-V6<37;
    28<V7-V6<37;
    其中,V5表示所述第五透镜的阿贝数,V6表示所述第六透镜的阿贝数,V7表示所述第七透镜的阿贝数。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足条件式:
    -0.4<f/(f1+f2)<-0.8;
    0.5<f/f1<1.5;
    其中,f表示所述光学镜头的焦距,f1表示所述第一透镜的焦距,f2表示所述第二透镜的焦距。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足条件式:
    0.8<R4/f<1;
    其中,R4表示所述第二透镜的像侧面的曲率半径,f表示所述光学镜头的焦距。
  5. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足条件式:
    -0.2<f/f4<0.02;
    -20<R7/R12<-1;
    其中,f表示所述光学镜头的焦距,f4表示所述第四透镜的焦距,R7表示所述第四透镜的物侧面的曲 率半径,R12表示所述第六透镜的像侧面的曲率半径。
  6. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足条件式:
    0.07<CT5/TTL<0.11;
    1.1<(R9+R10)/(R9-R10)<1.8;
    其中,CT5表示所述第五透镜的中心厚度,TTL表示所述光学镜头的光学总长,R9表示所述第五透镜的物侧面的曲率半径,R10表示所述第五透镜的像侧面的曲率半径。
  7. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足条件式:
    0.4<CT6/CT5<0.8;
    0.01<CT56/TTL<0.06;
    其中,CT5表示所述第五透镜的中心厚度,CT56表示所述第五透镜和第六透镜在光轴上的空气间隔,CT6表示所述第六透镜的中心厚度,TTL表示所述光学镜头的光学总长。
  8. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足条件式:
    0<f7/f2<0.4;
    -0.1<f7/f6<0.1;
    其中,f2表示所述第二透镜的焦距,f6表示所述第六透镜的焦距,f7表示所述第七透镜的焦距。
  9. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足条件式:
    2.2<T7 max/CT7<2.4;
    -18mm<R14/tan(θ14)<-2mm;
    其中,CT7表示所述第七透镜的中心厚度,T7 max表示所述第七透镜平行于光轴方向上的最大厚度,R14表示所述第七透镜的像侧面的曲率半径,θ14表示所述第七透镜的像侧面的最大面倾角。
  10. 一种成像设备,其特征在于,包括如权利要求1-9任一项所述的光学镜头及成像元件,所述成像元件用于将所述光学镜头形成的光学图像转换为电信号。
PCT/CN2021/142020 2020-12-30 2021-12-28 光学镜头及成像设备 WO2022143647A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011607301.2A CN112285907B (zh) 2020-12-30 2020-12-30 光学镜头及成像设备
CN202011607301.2 2020-12-30

Publications (1)

Publication Number Publication Date
WO2022143647A1 true WO2022143647A1 (zh) 2022-07-07

Family

ID=74426553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142020 WO2022143647A1 (zh) 2020-12-30 2021-12-28 光学镜头及成像设备

Country Status (2)

Country Link
CN (1) CN112285907B (zh)
WO (1) WO2022143647A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115390225A (zh) * 2022-10-28 2022-11-25 江西联益光学有限公司 光学镜头

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285907B (zh) * 2020-12-30 2021-03-30 江西联益光学有限公司 光学镜头及成像设备
CN112748554B (zh) * 2021-03-05 2022-05-03 浙江舜宇光学有限公司 光学成像***
CN113341545B (zh) * 2021-08-09 2021-10-26 江西联益光学有限公司 光学镜头
CN113721350B (zh) * 2021-11-01 2022-04-01 江西联益光学有限公司 光学镜头及成像设备
CN114839749B (zh) * 2022-07-05 2022-11-01 江西联益光学有限公司 光学镜头
CN115097615B (zh) * 2022-08-24 2023-01-20 江西联创电子有限公司 光学镜头

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204314533U (zh) * 2015-01-06 2015-05-06 浙江舜宇光学有限公司 摄像镜头
CN108535843A (zh) * 2018-05-02 2018-09-14 浙江舜宇光学有限公司 光学成像***
CN110068914A (zh) * 2018-01-24 2019-07-30 三星电机株式会社 光学成像***
CN110596861A (zh) * 2019-08-30 2019-12-20 玉晶光电(厦门)有限公司 光学成像镜头
WO2020202965A1 (ja) * 2019-03-29 2020-10-08 ソニー株式会社 撮像レンズおよび撮像装置
CN111766679A (zh) * 2019-04-02 2020-10-13 信泰光学(深圳)有限公司 成像镜头
CN111983787A (zh) * 2020-09-15 2020-11-24 南昌欧菲精密光学制品有限公司 光学成像镜头、摄像装置及电子设备
CN112285907A (zh) * 2020-12-30 2021-01-29 江西联益光学有限公司 光学镜头及成像设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204314533U (zh) * 2015-01-06 2015-05-06 浙江舜宇光学有限公司 摄像镜头
CN110068914A (zh) * 2018-01-24 2019-07-30 三星电机株式会社 光学成像***
CN108535843A (zh) * 2018-05-02 2018-09-14 浙江舜宇光学有限公司 光学成像***
WO2020202965A1 (ja) * 2019-03-29 2020-10-08 ソニー株式会社 撮像レンズおよび撮像装置
CN111766679A (zh) * 2019-04-02 2020-10-13 信泰光学(深圳)有限公司 成像镜头
CN110596861A (zh) * 2019-08-30 2019-12-20 玉晶光电(厦门)有限公司 光学成像镜头
CN111983787A (zh) * 2020-09-15 2020-11-24 南昌欧菲精密光学制品有限公司 光学成像镜头、摄像装置及电子设备
CN112285907A (zh) * 2020-12-30 2021-01-29 江西联益光学有限公司 光学镜头及成像设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115390225A (zh) * 2022-10-28 2022-11-25 江西联益光学有限公司 光学镜头

Also Published As

Publication number Publication date
CN112285907B (zh) 2021-03-30
CN112285907A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2022143647A1 (zh) 光学镜头及成像设备
CN108594407B (zh) 摄像镜头
WO2022089344A1 (zh) 光学镜头及成像设备
WO2021233052A1 (zh) 光学镜头及成像设备
WO2020119146A1 (zh) 光学成像镜头
WO2020073703A1 (zh) 光学透镜组
WO2022089327A1 (zh) 光学镜头及成像设备
WO2021093542A1 (zh) 光学镜头及成像设备
WO2020164236A1 (zh) 光学成像镜头
WO2020191951A1 (zh) 光学成像镜头
WO2018192126A1 (zh) 摄像镜头
WO2020088024A1 (zh) 光学成像镜头
WO2022042513A1 (zh) 光学镜头及成像设备
WO2020007068A1 (zh) 光学成像***
WO2020042799A1 (zh) 光学成像镜片组
WO2020164247A1 (zh) 光学成像***
WO2022222926A1 (zh) 光学镜头及成像设备
CN114114650B (zh) 光学镜头及成像设备
WO2020029613A1 (zh) 光学成像镜头
WO2022199465A1 (zh) 光学镜头及成像设备
CN114185157B (zh) 光学镜头
WO2018209855A1 (zh) 光学成像***
CN112526730B (zh) 光学镜头及成像设备
WO2019019626A1 (zh) 成像镜头
WO2022105926A1 (zh) 光学镜头及成像设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914381

Country of ref document: EP

Kind code of ref document: A1