WO2022105926A1 - 光学镜头及成像设备 - Google Patents

光学镜头及成像设备 Download PDF

Info

Publication number
WO2022105926A1
WO2022105926A1 PCT/CN2021/132267 CN2021132267W WO2022105926A1 WO 2022105926 A1 WO2022105926 A1 WO 2022105926A1 CN 2021132267 W CN2021132267 W CN 2021132267W WO 2022105926 A1 WO2022105926 A1 WO 2022105926A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical lens
object side
image side
Prior art date
Application number
PCT/CN2021/132267
Other languages
English (en)
French (fr)
Inventor
王义龙
刘绪明
曾昊杰
曾吉勇
Original Assignee
江西联益光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联益光学有限公司 filed Critical 江西联益光学有限公司
Publication of WO2022105926A1 publication Critical patent/WO2022105926A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • the present invention relates to the technical field of lens imaging, in particular to an optical lens and an imaging device.
  • the purpose of the present invention is to provide an optical lens and an imaging device for solving the above problems.
  • the present invention provides an optical lens, comprising in sequence from the object side to the imaging surface along the optical axis: a first lens with negative refractive power, the object side of the first lens is a convex surface, the first lens The image side of the lens is concave; the second lens with negative refractive power, the object side of the second lens is convex, and the image side of the second lens is concave; the third lens with positive refractive power, the The object side and the image side of the third lens are convex; diaphragm; the fourth lens with positive refractive power, the object side of the fourth lens is concave or convex, and the image side of the fourth lens is convex; The fifth lens with negative refractive power, the object side of the fifth lens is concave, and the image side of the fifth lens is convex at the near optical axis; the sixth lens with negative refractive power, the sixth lens The object side of the lens is convex at the near optical axis, and the
  • the present invention provides an imaging device, comprising an imaging element and the optical lens provided in the first aspect, where the imaging element is used to convert an optical image formed by the optical lens into an electrical signal.
  • the optical lens and imaging device provided by the present invention can make the field of view of the optical lens reach more than 150° and the total optical length less than 6mm, the structure is more compact while satisfying high pixels, so as to better achieve the balance of large wide angle, small volume and high pixels, which can meet the needs of portable electronic devices and effectively improve the user's camera experience.
  • FIG. 1 is a schematic structural diagram of an optical lens in a first embodiment of the present invention
  • Fig. 2 is the field curvature curve diagram of the optical lens in the first embodiment of the present invention
  • FIG. 3 is a graph of on-axis point spherical aberration chromatic aberration of the optical lens in the first embodiment of the present invention
  • Fig. 4 is the vertical axis chromatic aberration curve diagram of the optical lens in the first embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an optical lens in a second embodiment of the present invention.
  • FIG. 6 is a field curvature diagram of an optical lens in a second embodiment of the present invention.
  • FIG. 7 is a graph of on-axis spherical aberration and chromatic aberration of an optical lens in a second embodiment of the present invention.
  • FIG. 8 is a vertical-axis chromatic aberration curve diagram of an optical lens in a second embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an optical lens in a third embodiment of the present invention.
  • FIG. 10 is a field curvature diagram of an optical lens in a third embodiment of the present invention.
  • FIG. 11 is a graph of on-axis spherical aberration and chromatic aberration of the optical lens in the third embodiment of the present invention.
  • FIG. 12 is a vertical-axis chromatic aberration curve diagram of an optical lens in a third embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an optical lens in a fourth embodiment of the present invention.
  • FIG. 14 is a field curvature diagram of an optical lens in a fourth embodiment of the present invention.
  • 15 is a graph of on-axis spherical aberration and chromatic aberration of the optical lens in the fourth embodiment of the present invention.
  • 16 is a vertical-axis chromatic aberration curve diagram of the optical lens in the fourth embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of an imaging device provided by a fifth embodiment of the present invention.
  • the invention provides an optical lens, which sequentially includes from the object side to the imaging surface along the optical axis: a first lens with negative refractive power, whose object side is convex, and whose image side is concave; a second lens with negative refractive power lens, the object side is convex, and its image side is concave; the third lens with positive refractive power, its object side and image side are convex; diaphragm; the fourth lens with positive refractive power, its object side is concave Or convex, its image side is convex; the fifth lens with negative power, its object side is concave, its image side is convex at the near optical axis; and the sixth lens with negative power, its object side It is a convex surface at the near optical axis, and its image side surface is a concave surface at the near optical axis; wherein, the total optical length of the optical lens is TTL ⁇ 6.0mm, and the maximum field of view of the optical lens FOV ⁇ 150°.
  • the optical lens satisfies the following conditional formula:
  • TC1 represents the center thickness of the first lens
  • ET1 represents the edge thickness of the first lens. Satisfying the conditional formula (1) can make the light entering the optical system with a large field of view diverge, reduce the incident angle of the diaphragm surface, the light trend tends to be gentle, and the difficulty of aberration correction is reduced.
  • the optical lens satisfies the following conditional formula:
  • SGA11 represents the edge sag of the object side of the first lens
  • SAG12 represents the edge sag of the image side of the first lens.
  • the optical lens satisfies the following conditional formula:
  • f3 represents the focal length of the third lens
  • f represents the focal length of the optical lens. Satisfying the conditional formula (3) can make the third lens have a larger positive refractive power, and make a major contribution to the correction of spherical aberration, which is beneficial to shorten the length of the lens and realize a small volume of the lens.
  • the optical lens satisfies the following conditional formula:
  • f 123 represents the combined focal length of the first lens, the second lens and the third lens
  • f represents the focal length of the optical lens. Satisfying the conditional formula (4), it is possible to reasonably allocate the focal power of the first lens, the second lens and the third lens, slow down the trend of light turning, reduce the correction of advanced aberrations, and reduce the difficulty of the overall aberration correction of the lens .
  • the optical lens satisfies the following conditional formula:
  • SAG41 represents the edge sag of the object side of the fourth lens
  • SAG42 represents the edge sag of the image side of the fourth lens. Satisfy the conditional formula (5), increase the optical path difference of the positive and negative light beams, balance the coma aberration of the system, and improve the resolution.
  • the optical lens satisfies the following conditional formula:
  • Nd3 represents the refractive index of the material of the third lens
  • Vd3 represents the Abbe number of the third lens. Satisfying the conditional expressions (6) and (7) is favorable for chromatic aberration correction at short wavelengths.
  • the optical lens satisfies the following conditional formula:
  • R62 represents the curvature radius of the image side surface of the sixth lens
  • SAG62 represents the edge sag of the image side surface of the sixth lens. Satisfying the conditional formula (8) can improve the image quality of the off-axis field of view, reduce the off-axis spherical aberration, reduce the total length of the lens, and realize a small volume of the lens.
  • the optical lens satisfies the following conditional formula:
  • SGA11 represents the edge sag of the object side surface of the first lens. Satisfying the conditional formula (9) ensures that the object side of the first lens does not protrude from the lens barrel, which can effectively prevent the lens from being scratched during use.
  • the first lens, the second lens, the third lens, the fourth lens, the fifth lens and the sixth lens are all plastic aspherical lenses.
  • Each lens adopts aspherical lens, which can not only make the lens have better imaging quality, but also make the structure of the lens more compact, so that it has a smaller volume.
  • the present invention will be further described below with a plurality of embodiments.
  • the thickness, radius of curvature, and material selection of each lens in the optical lens are different.
  • the following examples are only preferred embodiments of the present invention, but the embodiments of the present invention are not only limited by the following examples, and any other changes, substitutions, combinations or simplifications that do not deviate from the innovations of the present invention, All should be regarded as equivalent replacement modes, and all are included in the protection scope of the present invention.
  • z is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis
  • c is the paraxial curvature radius of the surface
  • k is the quadratic surface coefficient
  • a 2i is the 2i-order a Spherical coefficient.
  • FIG. 1 is a schematic structural diagram of an optical lens 100 provided by a first embodiment of the present invention.
  • the optical lens 100 sequentially includes a first lens L1 , a second lens L2 , a first lens L1 , a second lens L2 , a first lens L1 , a second lens L2 Three lenses L3, diaphragm ST, fourth lens L4, fifth lens L5, sixth lens L6 and infrared filter G1.
  • the first lens L1 has negative refractive power, the object side S1 of the first lens is convex, and the image side S2 of the first lens is concave;
  • the second lens L2 has negative refractive power, the object side S3 of the second lens is convex, and the image side S4 of the second lens is concave;
  • the third lens L3 has positive refractive power, the object side S5 of the third lens is convex, and the image side S6 of the third lens is convex;
  • the fourth lens L4 has positive refractive power, the object side S7 of the fourth lens is concave, and the image side S8 of the fourth lens is convex;
  • the fifth lens L5 has negative refractive power, the object side S9 of the fifth lens is a concave surface, and the image side S10 of the fifth lens is a convex surface at the near optical axis;
  • the sixth lens L6 is an M-type lens with negative refractive power, the object side S11 of the sixth lens is convex at the near optical axis, and the image side S12 of the sixth lens is concave at the near optical axis.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5 and the sixth lens L6 are all plastic aspherical lenses. It should be noted that, in other embodiments, the first lens L1 to the sixth lens L6 may all be glass lenses, or may be a combination of plastic lenses and glass lenses.
  • Table 2 shows the surface shape coefficients of each aspherical surface of the optical lens 100 in this embodiment.
  • FIG. 2 , FIG. 3 , and FIG. 4 are respectively a field curvature curve diagram, an on-axis point spherical aberration and a vertical axis chromatic aberration curve diagram of the optical lens 100 .
  • the field curvature curve of FIG. 2 represents the degree of curvature of the meridional image plane and the sagittal image plane.
  • the horizontal axis represents the offset (unit: mm), and the vertical axis represents the field angle (unit: degree). It can be seen from Figure 2 that the curvature of field of the meridional image plane and sagittal image plane is controlled within ⁇ 0.3mm.
  • the on-axis spherical aberration curve of FIG. 3 represents the aberration on the optical axis at the imaging plane.
  • the horizontal axis represents the spherical value (unit: mm)
  • the vertical axis represents the normalized field of view. It can be seen from FIG. 3 that the offset of the on-axis point spherical aberration is controlled within ⁇ 0.05mm, indicating that the optical lens 100 can effectively correct the aberration of the fringe field of view and the secondary spectrum of the entire image plane.
  • the vertical-axis chromatic aberration curve in FIG. 4 represents the chromatic aberration at different image heights on the imaging plane between the longest wavelength and the shortest wavelength.
  • the horizontal axis in FIG. 4 represents the vertical axis chromatic aberration value (unit: um) of each wavelength relative to the central wavelength, and the vertical axis represents the normalized viewing angle. It can be seen from FIG. 4 that the vertical axis chromatic aberration between the longest wavelength and the shortest wavelength is controlled within ⁇ 16.0um, indicating that the vertical axis chromatic aberration of the optical lens 100 is well corrected.
  • FIG. 5 is a schematic diagram of the structure of the optical lens 200 provided in this embodiment.
  • the optical lens 200 in this embodiment is roughly the same in structure as the optical lens 100 in the first embodiment, and the difference is: sixth
  • the lens is a meniscus lens, and the curvature radius and material selection of each lens are different.
  • Table 4 shows the surface shape coefficients of each aspherical surface of the optical lens 200 in this embodiment.
  • FIG. 6 , FIG. 7 , and FIG. 8 are respectively a field curvature graph, an on-axis spherical aberration graph, and a vertical-axis chromatic aberration graph of the optical lens 200 .
  • the field curvature curve of FIG. 6 represents the degree of curvature of the meridional image plane and the sagittal image plane. It can be seen from Fig. 6 that the field curvature of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.05mm, which indicates that the field curvature of the optical lens 200 is well corrected.
  • the on-axis spherical aberration curve of FIG. 7 represents the aberration on the optical axis at the imaging plane. It can be seen from FIG. 7 that the offset of the on-axis point spherical aberration is controlled within ⁇ 0.05mm, indicating that the optical lens 200 can effectively correct the aberration of the fringe field of view and the secondary spectrum of the entire image plane.
  • the vertical-axis chromatic aberration curve in FIG. 8 represents the chromatic aberration of the longest wavelength and the shortest wavelength at different image heights on the imaging plane. It can be seen from FIG. 8 that the vertical axis chromatic aberration between the longest wavelength and the shortest wavelength is controlled within ⁇ 2.0um, indicating that the vertical axis chromatic aberration of the optical lens 200 is well corrected.
  • FIG. 9 is a schematic structural diagram of the optical lens 300 provided in this embodiment.
  • the structure of the optical lens 300 in this embodiment is roughly the same as that of the optical lens 100 in the first embodiment, and the differences are:
  • the object side surface S7 of the fourth lens L4 of the optical mirror 300 is a convex surface, and the curvature radius and material selection of each lens are different.
  • Table 6 shows the surface shape coefficients of each aspherical surface of the optical lens 300 in this embodiment.
  • FIG. 10 , FIG. 11 , and FIG. 12 are respectively a field curvature graph, an on-axis spherical aberration graph, and a vertical-axis chromatic aberration graph of the optical lens 300 .
  • the field curvature curve of FIG. 10 represents the degree of curvature of the meridional image plane and the sagittal image plane. It can be seen from FIG. 10 that the curvature of field of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.05mm, indicating that the field curvature of the optical lens 300 is well corrected.
  • the on-axis spherical aberration curve of FIG. 11 represents the aberration on the optical axis at the imaging plane. It can be seen from Fig. 11 that the offset of the on-axis point spherical aberration is controlled within ⁇ 0.01mm, indicating that the optical lens 300 can effectively correct the aberration of the fringe field of view and the secondary spectrum of the entire image plane.
  • the vertical-axis chromatic aberration curve in FIG. 12 represents the chromatic aberration at different image heights on the imaging plane between the longest wavelength and the shortest wavelength. It can be seen from FIG. 12 that the vertical axis chromatic aberration of the longest wavelength and the shortest wavelength is controlled within ⁇ 2.0um, indicating that the vertical axis chromatic aberration of the optical lens 300 is well corrected.
  • FIG. 13 is a schematic structural diagram of the optical lens 400 provided in this embodiment.
  • the optical lens 400 in this embodiment is roughly the same in structure as the optical lens 100 in the first embodiment, and the difference is: this
  • the sixth lens L6 of the optical lens 400 in the embodiment is a meniscus lens with a concave surface facing the imaging surface, and the curvature radius and material selection of each lens are different.
  • Table 8 shows the surface shape coefficients of each aspherical surface of the optical lens 400 in this embodiment.
  • FIG. 14 , FIG. 15 , and FIG. 16 are respectively a field curvature graph, an on-axis spherical aberration graph, and a vertical-axis chromatic aberration graph of the optical lens 400 .
  • the field curvature curve of FIG. 14 represents the degree of curvature of the meridional image plane and the sagittal image plane. It can be seen from FIG. 14 that the curvature of field of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.05mm, indicating that the field curvature of the optical lens 400 is well corrected.
  • the on-axis spherical aberration curve of FIG. 15 represents the aberration on the optical axis at the imaging plane. It can be seen from FIG. 15 that the offset of the on-axis point spherical aberration is controlled within ⁇ 0.01mm, indicating that the optical lens 400 can effectively correct the aberration of the fringe field of view and the secondary spectrum of the entire image plane.
  • the vertical-axis chromatic aberration curve in FIG. 16 represents the chromatic aberration at different image heights on the imaging plane between the longest wavelength and the shortest wavelength. It can be seen from FIG. 16 that the vertical axis chromatic aberration of the longest wavelength and the shortest wavelength is controlled within ⁇ 6.0um, indicating that the vertical axis chromatic aberration of the optical lens 400 is well corrected.
  • Table 9 is the optical characteristics corresponding to the above four embodiments, mainly including the focal length f, the aperture number F#, the total optical length TTL and the field angle 2 ⁇ , as well as the numerical values corresponding to each of the above conditional expressions.
  • the optical lens provided by the present invention has the following advantages:
  • the structure is more compact while meeting the wide viewing angle, thereby better achieving a balance between the miniaturization of the lens and the wide viewing angle.
  • a fifth embodiment of the present invention provides a schematic structural diagram of an imaging device 500 .
  • the imaging device 500 includes an imaging element 510 and an optical lens (eg, the optical lens 100 ) in any of the foregoing embodiments.
  • the imaging element 510 may be a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor) image sensor, or may be a CCD (Charge Coupled Device, charge coupled device) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
  • CCD Charge Coupled Device, charge coupled device
  • the imaging device 500 may be a terminal device loaded with the above-mentioned optical lens, and the terminal device is, for example, a terminal device such as a smart phone, a smart tablet, and a smart reader.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学镜头(100、200、300、400)及成像设备(500),该光学镜头(100、200、300、400)从物侧到成像面依次包括:具有负光焦度的第一透镜(L1),其物侧面为凸面,其像侧面为凹面;具有负光焦度的第二透镜(L2),其物侧面为凸面,其像侧面为凹面;具有正光焦度的第三透镜(L3),其物侧面和像侧面均为凸面;光阑;具有正光焦度的第四透镜(L4),其像侧面为凸面;具有负光焦度的第五透镜(L5),其物侧面为凹面,其像侧面在近光轴处为凸面;具有负光焦度的第六透镜(L6),其物侧面在近光轴处为凸面,其像侧面在近光轴处为凹面。通过合理搭配六片具有特定光焦度和形状的镜片,使光学镜头(100、200、300、400)的视场角达到150°以上,光学总长小于6mm,较好地实现了大广角、小体积和高像素的均衡,有效提升用户的摄像体验。

Description

光学镜头及成像设备
交叉引用
本申请要求2020年11月23日递交的发明名称为:“光学镜头及成像设备”的申请号202011316802.5的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及透镜成像技术领域,特别是涉及一种光学镜头及成像设备。
背景技术
目前,随着便携式电子设备(如智能手机、平板、相机)的普及,加上社交、视频、直播类软件的流行,人们对于摄影的喜爱程度越来越高,摄像镜头已经成为了电子设备的标配,摄像镜头甚至已经成为消费者购买电子设备时首要考虑的指标。
随着移动信息技术的不断发展,手机等便携式电子设备也在朝着超广角、超高清成像等方向发展,这就对搭载在便携式电子设备上的摄像镜头提出了更高的要求。然而近几年,随着消费者对手机拍照的热衷,后置摄像头的高像素已经走到峰顶,在往更高像素方向发展时就会遇到手机轻薄化与摄像头总长限制的相互制约,因此,手机后置搭载超广角甚至鱼眼镜头就可能成为一个浪潮;那么如何实现摄像镜头的大广角、高像素与小体积的均衡就成了亟待解决的问题。
发明内容
为此,本发明的目的在于提出一种光学镜头及成像设备,用于解决上述问题。
本发明实施例通过以下技术方案实施上述的目的。
第一方面,本发明提供了一种光学镜头,沿光轴从物侧到成像面依次包括:具有负光焦度的第一透镜,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;具有负光焦度的第二透镜,所述第二透镜的物侧面为凸面,所述第二透镜的像侧面为凹面;具有正光焦度的第三透镜,所述第三透镜的物侧面和像侧面均为凸面;光阑;具有正光焦度的第四透镜,所述第四透镜的物侧面为凹面或者凸面,所述第四透镜的像侧面为凸面;具有负光焦度的第五透镜,所述第五透镜的物侧面为凹面,所述第五透镜的像侧面在近光轴处为凸面;具有负光焦度的第六透镜,所述第六透镜的物侧面在近光轴处为凸面,所述第六透镜的像侧面在近光轴处为凹面;其中,所述光学镜头的光学总长TTL<6.0mm,所述光学镜头的最大视场角FOV≥150°。
第二方面,本发明提供一种成像设备,包括成像元件及第一方面提供的光学镜头,成像元件用于将光学镜头形成的光学图像转换为电信号。
相比于现有技术,本发明提供的光学镜头及成像设备,通过合理的搭配六片具有特定屈折力的镜片形状及光焦度,使光学镜头的视场角达到150°以上,光学总长小于6mm,在满足高像素的同时结构更加紧凑,从而较好地实现了大广角、小体积和高像素的均衡,能够满足便携式电子设备的使用需求,有效提升用户 的摄像体验。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明第一实施例中的光学镜头的结构示意图;
图2为本发明第一实施例中的光学镜头的场曲曲线图;
图3为本发明第一实施例中的光学镜头的轴上点球差色差曲线图;
图4为本发明第一实施例中的光学镜头的垂轴色差曲线图;
图5为本发明第二实施例中的光学镜头的结构示意图;
图6为本发明第二实施例中的光学镜头的场曲曲线图;
图7为本发明第二实施例中的光学镜头的轴上点球差色差曲线图;
图8为本发明第二实施例中的光学镜头的垂轴色差曲线图;
图9为本发明第三实施例中的光学镜头的结构示意图;
图10为本发明第三实施例中的光学镜头的场曲曲线图;
图11为本发明第三实施例中的光学镜头的轴上点球差色差曲线图;
图12为本发明第三实施例中的光学镜头的垂轴色差曲线图;
图13为本发明第四实施例中的光学镜头的结构示意图;
图14为本发明第四实施例中的光学镜头的场曲曲线图;
图15为本发明第四实施例中的光学镜头的轴上点球差色差曲线图;
图16为本发明第四实施例中的光学镜头的垂轴色差曲线图;
图17为本发明第五实施例提供的成像设备的结构示意图。
具体实施方式
为使本发明的目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明提供一种光学镜头,沿光轴从物侧到成像面依次包括:具有负光焦度的第一透镜,其物侧面为凸面,其像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凸面,其像侧面为凹面;具有正光焦度的第三透镜,其物侧面和像侧面均为凸面;光阑;具有正光焦度的第四透镜,其物侧面为凹面或者凸面,其像侧面为凸面;具有负光焦度的第五透镜,其物侧面为凹面,其像侧面在近光轴处为凸面;以及具有负光焦度的第六透镜,其物侧面在近光轴处为凸面,其像侧面在近光轴处为凹面;其中,所述光学镜头的光学总长TTL<6.0mm,所述光学镜头的最大视场角FOV≥150°。本发明的光学镜头采用六片具有特定屈折力的 镜片,并且采用特定的表面形状及其搭配,使镜头跨入鱼眼镜头的行列中。
在一些实施方式中,光学镜头满足以下条件式:
0.994≤ET1/TC1≤4.135;       (1)
其中,TC1表示第一透镜的中心厚度,ET1表示第一透镜的边缘厚度。满足条件式(1),可使得进入光学***大视场角的光线发散,减小光阑面的入射角,光线走势趋于平缓,减小像差校正的难度。
在一些实施方式中,光学镜头满足以下条件式:
0mm≤SAG12-SAG11≤0.843mm;      (2)
其中,SGA11表示第一透镜的物侧面的边缘矢高,SAG12表示第一透镜的像侧面的边缘矢高。满足条件式(2),可以减小***的慧差,增大***的视场角度。
在一些实施方式中,光学镜头满足以下条件式:
0.89<f3/f<2.88;         (3)
其中,f3表示第三透镜的焦距,f表示光学镜头的焦距。满足条件式(3),可使第三透镜具有较大的正光焦度,对球差的校正承担主要贡献,有利于缩短镜头的长度,实现镜头的小体积。
在一些实施方式中,光学镜头满足以下条件式:
1.1<f 123/f≤1.977;        (4)
其中,f 123表示第一透镜、第二透镜和第三透镜的组合焦距,f表示光学镜头的焦距。满足条件式(4),能够实现合理的分配第一透镜、第二透镜以及第三透镜的光焦度,减缓光线转折的走势,降低高级像差的校正,减小镜头整体像差校正的难度。
在一些实施方式中,光学镜头满足以下条件式:
-0.531mm≤SAG42-SAG41<-0.12mm;      (5)
其中,SAG41表示第四透镜的物侧面的边缘矢高,SAG42表示第四透镜的像侧面的边缘矢高。满足条件式(5),增大正负光曈的光程差,平衡***的慧差,提高解像力。
在一些实施方式中,光学镜头满足以下条件式:
Nd3≥1.54;        (6)
Vd3≥55.9;        (7)
其中,Nd3表示第三透镜的材料折射率,Vd3表示第三透镜的阿贝数。满足条件式(6)和(7),有利于短波波长的色差校正。
在一些实施方式中,所述光学镜头满足以下条件式:
0≤R62/SAG62≤9.285;        (8)
其中,R62表示第六透镜的像侧面的曲率半径,SAG62表示第六透镜的像侧面的边缘矢高。满足条件式(8),可提高轴外视场的像质,减小轴外球差,减小镜头的总长,实现镜头的小体积。
在一些实施方式中,光学镜头满足以下条件式:
0mm<SAG11≤0.477mm;      (9)
其中,SGA11表示第一透镜的物侧面的边缘矢高。满足条件式(9),保证第一透镜的物侧面不会凸出镜筒,可以有效避免镜片在使用的过程中被刮伤。
在一些实施方式中,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜均为塑胶非球面镜片。各透镜均采用非球面镜片,不仅能够使镜头具有更好的成像质量,而且使镜头的结构更为紧凑,从而具有更小的体积。
下面分多个实施例对本发明进行进一步的说明。在各个实施例中,光学镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。下述实施例仅为本发明的较佳实施方式,但本发明的实施方式并不仅仅受下述实施例的限制,其他的任何未背离本发明创新点所作的改变、替代、组合或简化,都应视为等效的置换方式,都包含在本发明的保护范围之内。
本发明各个实施例中非球面镜头的表面形状均满足下列方程:
Figure PCTCN2021132267-appb-000001
其中,z为非球面沿光轴方向在高度为h的位置时,距离非球面顶点的距离矢高,c为表面的近轴曲率半径,k为二次曲面系数,A 2i为第2i阶的非球面面型系数。
第一实施例
请参阅图1,所示为本发明第一实施例提供的光学镜头100的结构示意图,该光学镜头100沿光轴从物侧到成像面依次包括:第一透镜L1、第二透镜L2、第三透镜L3、光阑ST、第四透镜L4、第五透镜L5、第六透镜L6以及红外滤光片G1。
第一透镜L1具有负光焦度,第一透镜的物侧面S1为凸面,第一透镜的像侧面S2为凹面;
第二透镜L2具有负光焦度,第二透镜的物侧面S3为凸面,第二透镜的像侧面S4为凹面;
第三透镜L3具有正光焦度,第三透镜的物侧面S5为凸面,第三透镜的像侧面S6为凸面;
第四透镜L4具有正光焦度,第四透镜的物侧面S7为凹面,第四透镜的像侧面S8为凸面;
第五透镜L5具有负光焦度,第五透镜的物侧面S9为凹面,第五透镜的像侧面S10在近光轴处为凸面;
第六透镜L6为具有负光焦度的M型镜片,第六透镜的物侧面S11在近光轴处为凸面,第六透镜的像侧面S12在近光轴处为凹面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6均为塑胶非球面镜片。需要指出的是,在其它实施方式中,第一透镜L1至第六透镜L6也可以是均为玻璃镜片,或者也可以是塑胶镜片和玻璃镜片的组合。
本申请第一实施例提供的光学镜头100中各个镜片的相关参数如表1所示。
表1
Figure PCTCN2021132267-appb-000002
Figure PCTCN2021132267-appb-000003
本实施例中的光学镜头100的各非球面的面型系数如表2所示。
表2
Figure PCTCN2021132267-appb-000004
Figure PCTCN2021132267-appb-000005
请参照图2、图3及图4,所示分别为光学镜头100的场曲曲线图、轴上点球差以及垂轴色差曲线图。
图2的场曲曲线表示子午像面和弧矢像面的弯曲程度。其中,图2中横轴表示偏移量(单位:mm),纵轴表示视场角(单位:度)。从图2中可以看出,子午像面和弧矢像面的场曲控制在±0.3mm以内。
图3的轴上点球差曲线表示成像面处光轴上的像差。其中,图3中横轴表示球值(单位:mm),纵轴表示归一化视场角。从图3中可以看出,轴上点球差色差的偏移量控制在±0.05mm以内,说明该光学镜头100能够有效地校正边缘视场的像差以及整个像面的二级光谱。
图4的垂轴色差曲线表示最长波长与最短波长在成像面上不同像高处的色差。其中,图4中横轴表示各波长相对中心波长的垂轴色差值(单位:um),纵轴表示归一化视场角。从图4中可以看出,最长波长与最短波长的垂轴色差控制在±16.0um以内,说明光学镜头100的垂轴色差得到良好的校正。
第二实施例
请参阅图5,所示为本实施例提供的光学镜头200的结构示意图,本实施例中的光学镜头200与第一实施例中的光学镜头100的结构大抵相同,不同之处在于:第六透镜为弯月型镜片,以及各透镜的曲率半径及材料选择不同。
本实施例提供光学镜头200中各个镜片的相关参数如表3所示。
表3
Figure PCTCN2021132267-appb-000006
Figure PCTCN2021132267-appb-000007
本实施例中的光学镜头200的各非球面的面型系数如表4所示。
表4
Figure PCTCN2021132267-appb-000008
请参照图6、图7及图8,所示分别为光学镜头200的场曲曲线图、轴上点球差以及垂轴色差曲线图。
图6的场曲曲线表示子午像面和弧矢像面的弯曲程度。从图6中可以看出,子午像面和弧矢像面的场 曲控制在±0.05mm以内,说明光学镜头200的场曲校正良好。
图7的轴上点球差曲线表示成像面处光轴上的像差。从图7中可以看出,轴上点球差色差的偏移量控制在±0.05mm以内,说明该光学镜头200能够有效地校正边缘视场的像差以及整个像面的二级光谱。
图8的垂轴色差曲线表示最长波长与最短波长在成像面上不同像高处的色差。从图8中可以看出,最长波长与最短波长的垂轴色差控制在±2.0um以内,说明光学镜头200的垂轴色差得到良好的校正。
第三实施例
请参阅图9,所示为本实施例提供的光学镜头300的结构示意图,本实施例中的光学镜头300的结构与第一实施例中的光学镜头100的结构大抵相同,不同之处在于:在本实施例中的光学镜300的第四透镜L4的物侧面S7为凸面,以及各透镜的曲率半径及材料选择不同。
本实施例提供的光学镜头300中各个镜片的相关参数如表5所示。
表5
Figure PCTCN2021132267-appb-000009
本实施例中的光学镜头300的各非球面的面型系数如表6所示。
表6
Figure PCTCN2021132267-appb-000010
请参照图10、图11及图12,所示分别为光学镜头300的场曲曲线图、轴上点球差以及垂轴色差曲线图。
图10的场曲曲线表示子午像面和弧矢像面的弯曲程度。从图10中可以看出,子午像面和弧矢像面的场曲控制在±0.05mm以内,说明光学镜头300的场曲校正良好。
图11的轴上点球差曲线表示成像面处光轴上的像差。从图11中可以看出,轴上点球差色差的偏移量控制在±0.01mm以内,说明该光学镜头300能够有效地校正边缘视场的像差以及整个像面的二级光谱。
图12的垂轴色差曲线表示最长波长与最短波长在成像面上不同像高处的色差。从图12中可以看出,最长波长与最短波长的垂轴色差控制在±2.0um以内,说明光学镜头300的垂轴色差得到良好的校正。
第四实施例
请参阅图13,所示为本实施例提供的的光学镜头400的结构示意图,本实施例中的光学镜头400与第一实施例中的光学镜头100的结构大抵相同,不同之处在于:本实施例中的光学镜头400的第六透镜L6为凹面朝向成像面的弯月型镜片,以及各透镜的曲率半径及材料选择不同。
本实施例中的光学镜头400中各个镜片的相关参数如表7所示。
表7
Figure PCTCN2021132267-appb-000011
本实施例中的光学镜头400的各非球面的面型系数如表8所示。
表8
Figure PCTCN2021132267-appb-000012
Figure PCTCN2021132267-appb-000013
请参照图14、图15及图16,所示分别为光学镜头400的场曲曲线图、轴上点球差以及垂轴色差曲线图。
图14的场曲曲线表示子午像面和弧矢像面的弯曲程度。从图14中可以看出,子午像面和弧矢像面的场曲控制在±0.05mm以内,说明光学镜头400的场曲校正良好。
图15的轴上点球差曲线表示成像面处光轴上的像差。从图15中可以看出,轴上点球差色差的偏移量控制在±0.01mm以内,说明该光学镜头400能够有效地校正边缘视场的像差以及整个像面的二级光谱。
图16的垂轴色差曲线表示最长波长与最短波长在成像面上不同像高处的色差。从图16中可以看出,最长波长与最短波长的垂轴色差控制在±6.0um以内,说明光学镜头400的垂轴色差得到良好的校正。
请参照表9,表9是上述四个实施例对应的光学特性,主要包括焦距f、光圈数F#、光学总长TTL及视场角2θ,以及与上述每个条件式对应的数值。
表9
Figure PCTCN2021132267-appb-000014
Figure PCTCN2021132267-appb-000015
综上所述,本发明提供的光学镜头具有以下优点:
(1)采用六片具有特定屈折力的镜片组合,并且采用特定的表面形状及其搭配,在满足广视角的同时结构更紧凑,从而较好地实现了镜头小型化和广视角的均衡。
(2)可以拍摄到更大面积的景物,对后期的裁切带来了巨大便利,另外,此设计的光学镜头增强了成像画面的纵深感和空间感,具有更好的成像质量。
第五实施例
如图17所示,为本发明第五实施例提供一种成像设备500的结构示意图,该成像设备500包括成像元件510和上述任一实施例中的光学镜头(例如光学镜头100)。成像元件510可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
该成像设备500可以是装载了上述光学镜头的终端设备,终端设备例如具体是智能手机、智能平板、智能阅读器等终端设备。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种光学镜头,其特征在于,沿光轴从物侧到成像面依次包括:第一透镜、第二透镜、第三透镜、光阑、第四透镜、第五透镜以及第六透镜;
    所述第一透镜具有负光焦度,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;
    所述第二透镜具有负光焦度,所述第二透镜的物侧面为凸面,所述第二透镜的像侧面为凹面;
    所述第三透镜具有正光焦度,所述第三透镜的物侧面和像侧面均为凸面;
    所述第四透镜具有正光焦度,所述第四透镜的物侧面为凹面或者凸面,所述第四透镜的像侧面为凸面;
    所述第五透镜具有负光焦度,所述第五透镜的物侧面为凹面,所述第五透镜的像侧面在近光轴处为凸面;
    所述第六透镜具有负光焦度,所述第六透镜的物侧面在近光轴处为凸面,所述第六透镜的像侧面在近光轴处为凹面;
    其中,所述光学镜头的光学总长TTL<6.0mm,所述光学镜头的最大视场角FOV≥150°。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.994≤ET1/TC1≤4.135;
    其中,TC1表示所述第一透镜的中心厚度,ET1表示所述第一透镜的边缘厚度。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0mm≤SAG12-SAG11≤0.843mm;
    其中,SAG11表示所述第一透镜的物侧面的边缘矢高,SAG12表示所述第一透镜的像侧面的边缘矢高。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.89<f3/f<2.88;
    其中,f3表示所述第三透镜的焦距,f表示所述光学镜头的焦距。
  5. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    1.1<f 123/f≤1.977;
    其中,f 123表示所述第一透镜、所述第二透镜和所述第三透镜的组合焦距,f表示所述光学镜头的焦距。
  6. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    -0.531mm≤SAG42-SAG41<-0.12mm;
    其中,SAG41表示所述第四透镜的物侧面的边缘矢高,SAG42表示所述第四透镜的像侧面的边缘矢高。
  7. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    Nd3≥1.54;Vd3≥55.95;
    其中,Vd3表示所述第三透镜的阿贝数,Nd3表示所述第三透镜的材料折射率。
  8. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0≤R62/SAG62≤9.285;
    其中,R62表示所述第六透镜的像侧面的曲率半径,SAG62表示所述第六透镜的像侧面的边缘矢高。
  9. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0mm<SAG11≤0.477mm;
    其中,SGA11表示所述第一透镜的物侧面的边缘矢高。
  10. 根据权利要求1所述的光学镜头,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及所述第六透镜均为塑胶非球面镜片。
  11. 一种成像设备,其特征在于,包括如权利要求1-10任一项所述的光学镜头及成像元件,所述成像元件用于将所述光学镜头形成的光学图像转换为电信号。
PCT/CN2021/132267 2020-11-23 2021-11-23 光学镜头及成像设备 WO2022105926A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011316802.5A CN112099206B (zh) 2020-11-23 2020-11-23 光学镜头及成像设备
CN202011316802.5 2020-11-23

Publications (1)

Publication Number Publication Date
WO2022105926A1 true WO2022105926A1 (zh) 2022-05-27

Family

ID=73785750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132267 WO2022105926A1 (zh) 2020-11-23 2021-11-23 光学镜头及成像设备

Country Status (2)

Country Link
CN (1) CN112099206B (zh)
WO (1) WO2022105926A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115185071A (zh) * 2022-09-07 2022-10-14 江西联益光学有限公司 光学镜头

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112099206B (zh) * 2020-11-23 2021-02-05 江西联益光学有限公司 光学镜头及成像设备
CN116643377A (zh) * 2023-05-30 2023-08-25 湖北华鑫光电有限公司 一种六片式架构1g5p微小型超广角低温漂镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058387A (ja) * 2006-08-29 2008-03-13 Nidec Copal Corp 超広角レンズ
US20150177493A1 (en) * 2013-12-25 2015-06-25 Fujifilm Corporation Imaging lens and imaging apparatus
CN106168702A (zh) * 2015-05-22 2016-11-30 先进光电科技股份有限公司 光学成像***
CN109725402A (zh) * 2017-10-27 2019-05-07 大立光电股份有限公司 光学成像镜头、取像装置及电子装置
CN110646924A (zh) * 2019-11-12 2020-01-03 江西联益光学有限公司 光学镜头
CN111338060A (zh) * 2020-05-21 2020-06-26 江西联益光学有限公司 光学镜头及成像设备
CN112099206A (zh) * 2020-11-23 2020-12-18 江西联益光学有限公司 光学镜头及成像设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058387A (ja) * 2006-08-29 2008-03-13 Nidec Copal Corp 超広角レンズ
US20150177493A1 (en) * 2013-12-25 2015-06-25 Fujifilm Corporation Imaging lens and imaging apparatus
CN106168702A (zh) * 2015-05-22 2016-11-30 先进光电科技股份有限公司 光学成像***
CN109725402A (zh) * 2017-10-27 2019-05-07 大立光电股份有限公司 光学成像镜头、取像装置及电子装置
CN110646924A (zh) * 2019-11-12 2020-01-03 江西联益光学有限公司 光学镜头
CN111338060A (zh) * 2020-05-21 2020-06-26 江西联益光学有限公司 光学镜头及成像设备
CN112099206A (zh) * 2020-11-23 2020-12-18 江西联益光学有限公司 光学镜头及成像设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115185071A (zh) * 2022-09-07 2022-10-14 江西联益光学有限公司 光学镜头
CN115185071B (zh) * 2022-09-07 2023-01-24 江西联益光学有限公司 光学镜头

Also Published As

Publication number Publication date
CN112099206A (zh) 2020-12-18
CN112099206B (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
WO2021093542A1 (zh) 光学镜头及成像设备
WO2022105926A1 (zh) 光学镜头及成像设备
WO2022089327A1 (zh) 光学镜头及成像设备
WO2022143647A1 (zh) 光学镜头及成像设备
TW200422756A (en) Image pickup lens, image pickup unit and cellphone terminal equipped therewith
WO2022111437A1 (zh) 光学镜头及成像设备
CN112596215B (zh) 光学镜头及成像设备
CN114114650B (zh) 光学镜头及成像设备
WO2022222926A1 (zh) 光学镜头及成像设备
CN112684594B (zh) 光学镜头及成像设备
WO2021026869A1 (zh) 光学***、取像模组及电子装置
CN112014957B (zh) 光学镜头及成像设备
CN112526730B (zh) 光学镜头及成像设备
CN113433674B (zh) 光学镜头及成像设备
CN211826697U (zh) 光学成像***、取像模组和电子装置
WO2021087661A1 (zh) 光学透镜组、取像装置及电子装置
CN112630944B (zh) 光学镜头及成像设备
CN113777762B (zh) 光学镜头及成像设备
CN113433652B (zh) 光学***、镜头模组和电子设备
CN213122416U (zh) 光学***、镜头模组和电子设备
WO2022011550A1 (zh) 光学成像***、取像模组和电子装置
WO2021174408A1 (zh) 广角镜头、取像装置及电子装置
WO2021003714A1 (zh) 光学成像***及电子装置
CN112731631B (zh) 光学镜头及成像设备
CN211554456U (zh) 镜片组、镜头、摄像模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894073

Country of ref document: EP

Kind code of ref document: A1