WO2022143275A1 - 一种金属催化剂的处理或再生方法及应用 - Google Patents

一种金属催化剂的处理或再生方法及应用 Download PDF

Info

Publication number
WO2022143275A1
WO2022143275A1 PCT/CN2021/139865 CN2021139865W WO2022143275A1 WO 2022143275 A1 WO2022143275 A1 WO 2022143275A1 CN 2021139865 W CN2021139865 W CN 2021139865W WO 2022143275 A1 WO2022143275 A1 WO 2022143275A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
catalyst
nitrogen
supported
carrier
Prior art date
Application number
PCT/CN2021/139865
Other languages
English (en)
French (fr)
Inventor
连超
李杨
施建兴
王梦云
杨洪衬
邓明亮
王敏朵
Original Assignee
北京单原子催化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110354097.6A external-priority patent/CN115178256B/zh
Application filed by 北京单原子催化科技有限公司 filed Critical 北京单原子催化科技有限公司
Priority to US18/259,970 priority Critical patent/US20240091760A1/en
Publication of WO2022143275A1 publication Critical patent/WO2022143275A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/08Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using ammonia or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8953Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • B01J35/45Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/10Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using elemental hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/321Catalytic processes
    • C07C5/324Catalytic processes with metals
    • C07C5/325Catalytic processes with metals of the platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/30Scanning electron microscopy; Transmission electron microscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/60Platinum group metals with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with zinc, cadmium or mercury

Definitions

  • the invention belongs to the technical field of petrochemical industry, and particularly relates to an alkane dehydrogenation catalyst.
  • Low-carbon olefins are the basic raw materials of petrochemical industry, and are widely used in the production of organic chemical raw materials, resin rubber plastics, synthetic gasoline, etc.
  • light olefins were mainly sourced by by-products of catalytic cracking (FCC) units in the petroleum industry.
  • FCC catalytic cracking
  • the global demand for light olefins has been increasingly disparity between the production capacity of traditional sources and traditional sources. Taking China as an example, the domestic consumption of propylene in 2015 was 30.4 million tons, of which 2.76 million tons were imported.
  • the Catofin process uses a chromium-based catalyst, with alumina as the carrier and chromium oxide as the active component, and the catalytic dehydrogenation is produced in a fixed bed.
  • the advantages are that the catalyst is low in cost and high in conversion rate.
  • the rapid carbon deposition on the catalyst surface requires frequent switching of regeneration and catalysis processes, and chromium compounds are highly toxic and easily cause environmental pollution.
  • the Oleflex process uses a platinum-based catalyst, with alumina as the carrier, precious metal platinum as the active component, tin and alkali metals as auxiliary agents, and the catalytic dehydrogenation is produced using a moving bed.
  • the catalyst cost is high.
  • the present invention first provides a method I for treating a metal catalyst, comprising: treating a metal-supported catalyst with ammonia or a nitrogen-containing organic compound, wherein the metal-supported catalyst is a Ma-Mb-Mc metal-supported catalyst, wherein Ma is an active metal, One or more selected from noble metal atoms or transition metals, wherein noble metal atoms are selected from one or more mixtures of Pt, Au, Ru, Rh, Pd, Ir or Ag, and the transition metal is selected from La, Fe, Co, Mn, Cr, Ni or Cu, the content of Ma is 0.01-5wt% based on the weight of the catalyst; the Mb metal is selected from one or more combinations of Zn, Sn, Co or Al, and the content of Mb is 0.1% based on the weight of the catalyst -20 wt%; Mc is selected from K, Na or a mixture of the two, and the content of Mc is 0-2.0 wt% based on the weight of the catalyst; the support includes alumina, silica-a
  • the metal-supported catalyst does not contain Mc, that is, in the form of Ma-Mb, and the method includes: treating the metal-supported catalyst with ammonia or nitrogen-containing organic matter at a temperature of 10°C to 700°C.
  • Ma metal is an active metal, selected from one or more of noble metal atoms or transition metals, wherein noble metal atoms are selected from one or more mixtures of Pt, Au, Ru, Rh, Pd, Ir or Ag, the transition metal Selected from La, Fe, Co, Mn, Cr, Ni or Cu.
  • the active metal is Pt, Ru, Pd, Ir, Cr, Ni, PtPd, IrPt, IrPd, or IrPtPd.
  • the Mb metal is selected from one or more combinations of Zn, Co or Al, preferably Zn, Co or a Zn-Co mixed metal.
  • the carrier is a catalyst carrier commonly used in industry, including alumina, silica-alumina, zirconia, cerium oxide, titanium oxide, or molecular sieve or a mixture of any two or more thereof; the catalyst carrier supports loading effect.
  • the form of the carrier is selected from non-shaped powder, or has a shaped structure. Forming structures include spheres, strips, cylinders, hollow channels, honeycombs, and the like.
  • the present invention implements ⁇ -alumina carrier, titanium oxide, silicon oxide, and NaY molecular sieve carrier.
  • the Ma metal is supported on the carrier in a single-atom site state, or a single-atom site and cluster state and/or a nanoparticle state. Specifically, it is supported in a single-atom site state, or in a single-atom site and a cluster state, or in three states including a single-atom site, a cluster and a nanoparticle.
  • the content of Ma is 0.01-5wt% based on the weight of the catalyst, preferably 0.05-2wt%; the content of Mb is 0.1-20wt% based on the weight of the catalyst, preferably 0.1-10wt%, particularly preferably 0.5-4wt%; the content of Mc is 0%.
  • the Ma-Mb metal supported catalyst can be obtained by loading the Ma metal precursor and the Mb precursor on the carrier according to the designed loading amount to form a catalyst precursor;
  • the loading method includes impregnation, rotary evaporation, adsorption, Ion exchange, incipient wetness impregnation method, precipitation, spray drying and other common methods in the field, in the embodiment of the present invention, impregnation method and rotary evaporation method are used for loading.
  • the loading of Ma metal and Mb metal can be carried out simultaneously or sequentially;
  • the Ma metal precursor is an inorganic salt, organic salt or metal complex of Ma metal soluble in a solvent, preferably a metal nitrate, chloride, Sulfate, acetate, acetylacetonate, complex.
  • Mb metal precursors are organic or inorganic salts of Mb soluble in solvents, preferably nitrates, chlorides, sulfates, acetates, oxalates, acetylacetonates, etc. of Mb metals, such as zinc nitrate, nitric acid Cobalt, zinc chloride, cobalt chloride, zinc acetate, cobalt acetate, etc.
  • the solvent refers to water or alcohol, wherein the alcohol is methanol or ethanol.
  • Ammonia includes ammonia gas or substances that can release ammonia; wherein the substances that release ammonia include urea, ammonium nitrate, hexamethylenetetramine or ammonium nitrate, which can be placed in the same space as the catalyst and can be released by heating or adding alkali NH 3 , allowing NH 3 to interact with the catalyst.
  • the nitrogen-containing organics include C 1-6 alkane amines, C 2-6 alkene amines, C 6-20 aromatic amines, C 4-20 cycloalkane amines, C 4-20 nitrogen-containing heterocycles, C 4- 20 nitrogen-containing heteroaromatic ring, (RCO) xNR 3- x, wherein, R is H or C 1-6 alkyl, X is 1 or 2, the amine is a monoamine or polyamine, the alkane, alkene Nitrogen, aryl, nitrogen-containing heterocycles, nitrogen-containing heteroaromatic rings can be further substituted by oxygen, carbonyl, carboxyl, ester, and amine groups, and the aromatics are monocyclic aromatics or polycyclic fused aromatics; nitrogen-containing Heterocycles are monocyclic or fused non-aromatic rings containing ring nitrogen atoms, and ring carbon atoms can be replaced by oxygen atoms; nitrogen-containing heteroaromatic rings are monocyclic or fused heteroaromatic rings
  • the nitrogen-containing organic compounds are preferably C 1-6 alkylamines, C 1-6 alkyl diamines, C 6-20 aromatic amines, and dimethylformamide; the nitrogen-containing organic compounds specifically implemented in the present invention are ethylenediamine, Triethylamine, butylamine, aniline and dimethylformamide; ethylenediamine is preferred.
  • the treatment of ammonia or nitrogen-containing organic matter in the present invention refers to the use of ammonia or gaseous nitrogen-containing organic matter treatment catalyst, and the treatment gas can be diluted with an inert gas to achieve a volume concentration ratio of less than 100%; that is, the gaseous compound is 1-100% volume concentration ratio. Dilution with an inert gas allows for more precise control of the amount of carbon and/or nitrogen added to the process.
  • the inert gas in the present invention includes, but is not limited to, nitrogen, helium, argon, hydrogen and other gases that are inert to the catalyst or the alkane dehydrogenation reaction.
  • the present invention specifically implements NH 3 gas, NH 3 diluted with nitrogen, and nitrogen-containing organic compound gas diluted with nitrogen. , preferably 5-150min.
  • the present invention protects a regeneration method I of a metal-supported catalyst, wherein the metal-supported catalyst is a Ma-Mb-Mc metal-supported catalyst, wherein the content of Mc is 0%, including:
  • Step A removing substances that cause poisoning or deactivation of the metal-supported catalyst, and regenerating the catalyst;
  • Step B under the condition of 10°C-700°C, treating the catalyst with ammonia or nitrogen-containing organics to obtain an activated catalyst.
  • the deactivated substances can be removed by conventional methods, and the deactivated substances include carbon, sulfur and other substances, and the removal methods include, using O 2 , air oxidation removal, or using H 2 , CO 2 , water vapor Reacting with the deactivating species to remove the species, the present invention implements air oxidative removal.
  • Ma metal is an active metal, selected from one or more combinations of noble metal atoms or transition metals, wherein noble metal atoms are selected from one or more mixtures of Pt, Au, Ru, Rh, Pd, Ir or Ag, so
  • the transition metal is selected from La, Fe, Co, Mn, Cr, Ni or Cu.
  • the active metal is Pt, Ru, Pd, Ir, Cr, Ni, PtPd, IrPt, IrPd, or IrPtPd.
  • the Mb metal is selected from one or more combinations of Zn, Co or Al, preferably Zn, Co or a Zn-Co mixed metal.
  • the carrier is a catalyst carrier commonly used in the field, and any catalyst carrier that plays a supporting role can be used. Further, the support is selected from alumina, silica-alumina, zirconia, ceria, titania, or molecular sieves or a mixture of any two or more thereof.
  • the present invention implements ⁇ -alumina carrier, titanium oxide, silicon dioxide, and NaY molecular sieve.
  • the Ma metal is supported on the carrier in a single-atom site state, or a single-atom site and cluster state and/or a nanoparticle state. Specifically, it is supported in a single-atom site state, or mixed in a single-atom site state and a cluster state, or in a mixture of three states including a single atom, a cluster, and a nanoparticle.
  • the content of Ma metal is 0.01-5wt%, preferably 0.05-2wt%, based on the weight of the catalyst; the content of Mb is 0.1-20wt% based on the weight of the catalyst; the preferred content is 0.1-10wt%, particularly preferably 0.5-4wt%.
  • the ammonia includes ammonia gas or a substance capable of releasing ammonia; wherein the substance releasing ammonia includes urea, ammonium nitrate, hexamethylenetetramine or ammonium nitrate, and the substance and the catalyst can be placed in the same space, through Heating or adding a base can release NH 3 , allowing NH 3 to interact with the catalyst.
  • the nitrogen-containing organics include C 1-6 alkane amines, C 2-6 alkene amines, C 6-20 aromatic amines, C 4-20 cycloalkane amines, C 4-20 nitrogen-containing heterocycles, C 4- 20 nitrogen-containing heteroaromatic ring, (RCO) xNR 3- x, wherein, R is H or C 1-6 alkyl, X is 1 or 2, the amine is a monoamine or polyamine, the alkane, alkene Nitrogen, aryl, nitrogen-containing heterocycles, nitrogen-containing heteroaromatic rings can be further substituted by oxygen, carbonyl, carboxyl, ester, and amine groups, and the aromatics are monocyclic aromatics or polycyclic fused aromatics; nitrogen-containing Heterocycles are monocyclic or fused non-aromatic rings containing ring nitrogen atoms, and ring carbon atoms can be replaced by oxygen atoms; nitrogen-containing heteroaromatic rings are monocyclic or fused heteroaromatic rings
  • the nitrogen-containing organic compounds are preferably C 1-6 alkylamines, C 1-6 alkyl diamines, C 6-20 aromatic amines, and dimethylformamide; the nitrogen-containing organic compounds specifically implemented in the present invention are ethylenediamine, Triethylamine, butylamine, aniline and dimethylformamide; ethylenediamine is preferred.
  • the ammonia or nitrogen-containing organic matter treatment refers to using ammonia gas or gaseous nitrogen-containing organic matter to treat the catalyst, and the treatment gas can be diluted with an inert gas to achieve a volume concentration ratio of less than 100%; that is, the gaseous compound is 1- 100% volume concentration ratio. Dilution with an inert gas allows for more precise control of the amount of carbon and/or nitrogen added to the process.
  • the inert gas in the present invention includes, but is not limited to, nitrogen, helium, argon, hydrogen and other gases that are inert to the catalyst or the alkane dehydrogenation reaction.
  • the present invention specifically implements NH 3 gas, NH 3 diluted with nitrogen, and nitrogen-containing organic compound gas diluted with nitrogen. , preferably 5-150min.
  • the present invention also provides a processing method II of a Ma-Mb-Mc metal supported catalyst, which comprises treating the Ma-Mb-Mc supported catalyst precursor with ammonia or nitrogen-containing organic matter at room temperature -700° C.
  • Ma metal is Ir metal
  • the first auxiliary agent Mb is selected from Zn, Sn or a mixture of the two
  • the second auxiliary agent Mc is selected from K, Na or a mixture of the two
  • the content of Ma is 0.1-2wt% based on the total weight of the catalyst
  • the first The content of the first auxiliary agent Mb is 0.1-3.0wt%
  • the percentage content of the second auxiliary agent Mc is 0.1-2.0wt%
  • the support is selected from alumina supports, preferably shaped alumina supports
  • the Ma metal is a single Atomic state, or cluster state, or nanoparticle state is dispersed and supported on the carrier; preferably, the Ma metal is in a single-atom site state, or a state in which a single-atom site co
  • ammonia includes ammonia gas or substances that can release ammonia
  • nitrogen-containing organic substances include C 1-6 alkane amines, C 2-6 alkene amines, C 6-20 aromatic amines, C 4-20 naphthenic amines, C 4- 20 nitrogen-containing heterocyclic ring, C 4-20 nitrogen-containing heteroaromatic ring, (RCO) x NR 3- x, wherein, R is H or C 1-6 alkyl, X is 1 or 2, and the amine is a monoamine Or polyamine, the alkane group, alkene group, aryl group, nitrogen-containing heterocyclic ring, nitrogen-containing heteroaromatic ring can be further substituted by oxygen, carbonyl, carboxyl, ester group, amine group, and the aromatic is a monocyclic aromatic Or polycyclic fused aromatics; nitrogen-containing heterocycles are monocyclic or fused non-aromatic rings containing ring nitrogen atoms, and ring carbon atoms can be replaced by oxygen
  • the catalyst precursor preparation method is formed by loading Ma metal precursor, Mb precursor and Mc precursor onto a carrier, and the Ma metal precursor is a solvent-soluble Ma metal precursor.
  • Inorganic salts, organic salts or metal complexes, preferably metal nitrates, chlorides, sulfates, acetates, acetylacetonates, complexes; Mb or Mc metal precursors are soluble Mb or Mc in a solvent.
  • Organic salt or inorganic salt preferably nitrate, chloride, sulfate, acetate, oxalate, acetylacetonate of Mb or Mc metal
  • the solvent refers to water or alcohol, wherein alcohol is methanol or ethanol .
  • the preparation step of the catalyst precursor includes, optionally, ageing at room temperature-80° C., and the ageing time is 0.5-40 hours, preferably 2-8 hours; optionally , drying after aging, drying is carried out at 60-150 °C, preferably 80 °C-120 °C, the drying time is 2-20 hours, preferably 6-10 hours; after drying, the catalyst is calcined at 400 °C-600 °C, and the calcination time is long 3-6 hours to obtain the catalyst precursor.
  • the ammonia is ammonia gas
  • the nitrogen-containing organic substance is preferably ethylenediamine, triethylamine, butylamine, aniline or dimethylformamide.
  • the treatment time is 0.05-4 hours, preferably 0.5-1.5 hours.
  • the catalyst is Ir/Zn/K@Al2O3, Ir/Sn/K@Al2O3, Ir/Zn/Na@Al2O3, Ir/Sn/Na@Al2O3, wherein the content of Ir is based on The total weight of the catalyst is 0.1-2 wt %, the content of Zn or Sn is 0.1-3.0 wt %, and the percentage content of K or Na is 0.1-2.0 wt %.
  • the present invention also provides a regeneration method II of the Ma-Mb-Mc supported catalyst, comprising:
  • Step A removing substances that cause poisoning or deactivation of the Ma-Mb-Mc metal-supported catalyst, and regenerating the catalyst;
  • Step B at room temperature-700°C, treating the catalyst with ammonia or nitrogen-containing organics to obtain an activated catalyst
  • Ma metal is Ir metal
  • the first auxiliary agent Mb is selected from Zn, Sn or a mixture of the two
  • the second auxiliary agent Mc is selected from K, Na or a mixture of the two
  • the content of Ma is 0.1-2wt% based on the total weight of the catalyst
  • the content of the first auxiliary agent Mb is 0.1-3.0wt%
  • the percentage content of the second auxiliary agent Mc is 0.1-2.0wt%
  • the carrier is selected from alumina carriers, preferably formed alumina carriers
  • the Ma metal In a single-atom state, or a cluster state, or a nanoparticle state, it is dispersed and supported on a carrier; preferably, the Ma metal is in a single-atom site state, or a single-atom site and a cluster state and/or a nanoparticle state.
  • the state of coexistence is loaded on the carrier;
  • the deactivated substances include carbon and sulfur
  • the removal method includes, using O 2 , air oxidation removal, or using H 2 reduction removal;
  • step B ammonia or nitrogen-containing organics are used for treatment, and the nitrogen-containing organics are preferably ethylenediamine, triethylamine, butylamine, aniline and dimethylformamide, and the treatment temperature is further preferably 300-700°C.
  • step B gaseous ethylenediamine is used for treatment, preferably a mixture of ethylenediamine and nitrogen, using a volume ratio of 1-5:20 -24 ethylenediamine/nitrogen mixed gas treatment catalyst.
  • the present invention also provides the application of a catalyst in the preparation of C 2-6 olefin by dehydrogenation of C 2-6 alkane, the catalyst is the catalyst obtained by the aforementioned treatment method, activation method and regeneration method.
  • the present invention also provides a method for producing lower olefins by dehydrogenation of lower alkanes, comprising using the catalyst obtained by the aforementioned treatment method, the aforementioned activation method, and the aforementioned regeneration method.
  • the dehydrogenation of C 2-6 alkanes is catalyzed to obtain C 2-6 alkenes.
  • Another aspect of the present invention is to protect a method for producing lower olefins by dehydrogenation of lower alkanes, comprising: using a catalyst treated with carbon and nitrogen to catalyze the dehydrogenation of lower alkanes to obtain lower olefins.
  • the lower alkanes refer to C 2-6 alkanes, including ethane, propane, butane, isobutane, or a mixture of two or more lower alkanes.
  • the present invention implements the reaction of dehydrogenation of propane to produce propylene.
  • the state of dispersion in single-atom site state, single-atom state, single-atom distribution, single-atom form, or single-atom-level dispersion state refers to the isolated state of active metal elements that exhibit independent separation of metal atoms (ions) from each other.
  • the active metal atoms do not form metal-metal bonds directly connected to each other, and are dispersed at the atomic level or dispersed at a single atomic site.
  • Metals dispersed in a single-atom site state may exist in an atomic state, or in an ionic state, and more likely in between atomic and ionic states.
  • metal nanoparticles the metal atoms in the same nanoparticle are bonded to each other, and do not belong to the single-atom state or single-atom dispersed state defined in the present invention; Compound or mixture nanoparticles, although the metals are separated by other elements, and especially these compounds or mixture nanoparticles are often easily converted into metallic nanoparticles (such as oxide nanoparticles are converted after reduction), the same is not It belongs to the single-atom site state or the single-atom separation state as defined in the present invention.
  • the metals in the single-atom site state protected by the present invention are theoretically completely independent from each other.
  • agglomerated metal species such as clusters formed by a small number of atoms or ions
  • some metals are in the state of nanoparticles.
  • the active metals exist in a dispersed state at a single atomic site, and at the same time, some of the metals exist in a cluster state containing aggregation of metal atoms, and/or some of the metals are in a nanoparticle state.
  • the single-atom state protected by this application requires a certain proportion of single-atom noble metals in different forms such as noble metal single atoms, noble metal clusters, and noble metal nanoparticles in the catalyst, for example, higher than 10%, preferably higher than 20%, particularly preferably high at 50%.
  • a certain proportion of single-atom noble metals in different forms such as noble metal single atoms, noble metal clusters, and noble metal nanoparticles in the catalyst, for example, higher than 10%, preferably higher than 20%, particularly preferably high at 50%.
  • only relatively rough statistical methods can be used, and high-resolution spherical aberration electron microscopy can be used to randomly select a large number of different local areas in the catalyst test sample for analysis and characterization, and randomly select various forms of precious metals for statistical analysis.
  • EXAFS X-ray absorption fine structure spectroscopy
  • Alkaneamine means that the alkane carries one or more amine functional groups, which can be replaced by one or more C 1-6 alkane groups, C 4-20 cycloalkanes or C 6-20 aromatic groups, or The C–C bond in the above alkane can be replaced by an unsaturated alkene or alkyne to form an unsaturated carbon chain; the aforementioned C 6-20 aromatic cyclic amine represents an aromatic cyclic amine compound with 6-20 carbon atoms, C 4 The -20 nitrogen-containing heteroaromatic ring has the characteristics of aromatic 2n+4, while part of the ring carbon atoms are replaced by heteroatoms, and the heteroatoms are O or N atoms.
  • C 4-20 nitrogen-containing heterocycle represents a nitrogen-containing heterocycle containing 4-20 ring carbon atoms
  • C 4-20 cycloalkaneamine represents a cycloalkane containing 4-20 ring carbon atoms, the cycloalkane contains one or Multiple amine functional groups.
  • the above-mentioned cycloalkanes, nitrogen-containing heterocyclic rings, and aromatic rings are one-membered rings or condensed polycyclic rings, and the rings can be continuously substituted by C 1-6 alkanes.
  • the content of the metals including noble metals and transition metals is measured by metal elements, that is, only the mass percentage of metals is calculated.
  • the substances capable of releasing ammonia refer to inorganic or organic substances capable of releasing NH 3 , such as urea, ammonia water, hexamethylenetetramine, and ammonium nitrate.
  • the room temperature means that no additional heating is required, but since the room temperature varies according to regions, seasons or indoor environments, the room temperature usually refers to a temperature above 10°C.
  • the activation also known as catalyst pretreatment, is usually carried out after the catalyst is loaded into the reaction apparatus. Activated catalysts exhibit higher conversion and/or selectivity.
  • the regeneration also called regeneration, generally refers to the process of restoring the catalytic activity of a deactivated catalyst.
  • Complexes are also called complexes, including complexes formed by noble metals or transition metals and ligands.
  • Common ligands include halogens (fluorine, chlorine, bromine, iodine), nitro, nitroso, cyanide Root, ammonia, water molecules or organic groups, the common complexes are chlorine complexes, ammonia complexes, cyanide complexes, etc., including chloroplatinic acid, chloroplatinate, and chloroplatinic acid hydrate.
  • the Ma-Mb metal-supported catalyst processed by the method of the present invention can significantly improve the direct dehydrogenation conversion rate and selectivity of its catalyzed low-carbon alkanes, and realize the preactivation of the catalyst.
  • the catalyst preparation method has a simple process, can be prepared efficiently, and can be industrialized on a large scale.
  • the catalyst obtained by the preparation method is stable, and after repeated regeneration, the activity is still maintained. It provides a solid foundation for the industrial production and application of catalysts.
  • Figure 1 is a spherical aberration electron microscope photo of the newly prepared catalyst, in which picture a shows the metal in the single-atom site state (parts are circled with dots); picture b shows that there are also metal clusters or nanoparticles in the catalyst.
  • Figure 2 is a spherical aberration electron microscope photo of the catalyst that has been repeatedly regenerated for 50 times, in which the metal in the single-atom site state appears in the field of view of picture a (part of it is circled with dots); picture b shows that metal clusters and nanometers also exist in the catalyst. particles.
  • Concentration of metal precursor Calculated based on the mass of the metal element, for example, in an aqueous solution of Pd with a concentration of 0.02g/g, it means that the content of Pd element per gram of solution is 0.02g
  • Micro-reaction device fixed bed micro-reactor or micro-reaction device
  • Micro-reaction tail gas tail gas produced after reaction in a microreactor or microreaction device
  • alumina pellets 8.25g Zn(NO 3 ) 2 ⁇ 6H 2 O were dissolved in water and made up to the saturated impregnation volume of the pellets, impregnated with equal volume, aged at room temperature for 6h, dried at 120°C overnight, calcined at 600°C for 4h, and taken 10g sample.
  • 2.2 g of the aforementioned IrCl 3 solution was adjusted to a saturated immersion volume, immersed in an equal volume, and dried at 120°C overnight. 400 °C calcined for 1h.
  • An iridium-zinc catalyst (Ir 0.3wt%; Zn 3wt%) was obtained, denoted Ir (0.3wt%) Zn (3wt%) / Al2O3 .
  • chromium and zinc supported Al 2 O 3 catalysts 100 g were prepared, 3.85 g of chromium nitrate nonahydrate and 6.82 g of zinc nitrate hexahydrate were taken and dissolved with ethanol, diluted to 83.3 g, and then 98 g of Al was added 2 O 3 , rotary-evaporated at 40°C, and the chromium-zinc supported Al 2 O 3 catalyst can be prepared after the ethanol is completely evaporated and the chromium and zinc species are fully supported on the surface of Al 2 O 3 , which is marked as Cr (0.5wt %). %) Zn (1.5wt%) /Al 2 O 3 .
  • Ni and Zn supported Al 2 O 3 catalysts 100 g were prepared, 2.48 g of nickel nitrate hexahydrate and 6.82 g of zinc nitrate hexahydrate were taken and dissolved with ethanol, diluted to 83.3 g, and then 98 g of Al was added 2 O 3 , rotary-evaporated at 40°C, and the Ni-Zn supported Al 2 O 3 catalyst can be prepared after the ethanol is completely evaporated and the nickel and zinc species are fully supported on the surface of Al 2 O 3 , which is marked as Ni (0.5wt %). %) Zn (1.5wt%) /Al 2 O 3 .
  • iridium chloride trihydrate and 0.36g of sodium chloride were heated to dissolve and diluted to 40.0g with water, and an aqueous solution with an iridium concentration of 0.005g/g was prepared, 1.0g was taken, and 0.11g of cobalt nitrate hexahydrate and 0.23 g of cobalt nitrate hexahydrate were added.
  • the iridium-cobalt-zinc supported Al 2 O 3 catalyst can be prepared, which is marked as Ir (0.1 wt %) Co (0.5 wt %) Zn (1 wt %) /Al 2 O 3 .
  • iridium chloride trihydrate and 0.36g of sodium chloride were heated to dissolve and diluted to 40.0g with water, and an aqueous solution with an iridium concentration of 0.005g/g was prepared, 1.0g was taken, and 0.17g of cobalt nitrate hexahydrate and 0.17g were added.
  • g zinc nitrate hexahydrate dissolved and diluted to 2.2 g with ultrapure water, followed by adding 4.9 g of small spherical Al 2 O 3 for equal volume impregnation, followed by drying at 120 °C overnight.
  • the iridium-cobalt-zinc supported Al 2 O 3 catalyst can be prepared, which is marked as Ir (0.1wt%) Co (0.75wt%) Zn (0.75wt%) /Al 2 O 3 .
  • iridium chloride trihydrate and 0.36g of sodium chloride in advance to dissolve and dilute to 40.0g with water, prepare an aqueous solution with an iridium concentration of 0.005g/g, take 1.0g, add 0.33g of cobalt nitrate hexahydrate, and use Ultrapure water was dissolved and diluted to 2.2 g, followed by the addition of 4.9 g of small spherical Al 2 O 3 for equal volume impregnation, followed by drying at 120 °C overnight.
  • the iridium-cobalt-zinc supported Al 2 O 3 catalyst can be prepared, which is marked as Ir (0.1wt%) Co (1.5wt%) /Al 2 O 3 .
  • the catalyst was prepared and marked as Ir (0.1wt%) Zn (1.5wt%) Al (1.24wt%) /Al 2 O 3
  • the catalyst was regenerated, and the catalyst to be treated was calcined at 400-450 °C and 49.8 mL/min of air for 3 hours to form a regenerated catalyst.
  • the catalytic performance of the catalyst was evaluated by a fixed-bed continuous flow reaction device, and 1.0 g of the catalyst was loaded into a 10 mm inner diameter straight quartz reaction tube.
  • the reaction temperature was controlled at 600°C with a tubular resistance furnace, the flow rate of the reaction gas was controlled with a mass flow meter, and nitrogen or other inert gas was used to purge before and after the reaction.
  • reaction products were analyzed using a Shimadzu gas chromatograph equipped with an HP-PLOT Al 2 O 3 S capillary column.
  • Example 1 Referring to the experimental operation of Example 1, using N2 as the diluent gas to adjust the concentration of ammonia gas, the treatment temperature, and the treatment time, the rest of the operations are the same as those in Example 1. Specifically:
  • Example 2 the ammonia content was 80% (N 2 2.6 mL/min, NH 3 10.5 mL/min), the treatment temperature was 500° C., and the treatment time was 30 min.
  • Example 3 the ammonia content was 50% (N 2 6.55 mL/min, NH 3 6.55 mL/min), the treatment temperature was 500° C., and the treatment time was 30 min.
  • Example 4 the ammonia content was 20% (N 2 10.5 mL/min, NH 3 2.6 mL/min), the treatment temperature was 500° C., and the treatment time was 30 min.
  • Example 5 the ammonia content was 3% (N 2 12.7 mL/min, NH 3 0.4 mL/min), the treatment temperature was 500° C., and the treatment time was 30 min.
  • Example 6 the ammonia content was 3% (N 2 12.7 mL/min, NH 3 0.4 mL/min), the treatment temperature was 500° C., and the treatment time was 15 min.
  • Example 7 the ammonia content was 3% (N 12.7mL/min, NH 0.4mL/min), the treatment temperature was 500°C, and the treatment duration was 30min.
  • Example 8 the ammonia content was 3% (N 2 12.7 mL/min, NH 3 0.4 mL/min), the treatment temperature was 500° C., and the treatment time was 45 min.
  • Example 9 the ammonia content was 3% (N 2 12.7 mL/min, NH 3 0.4 mL/min), the treatment temperature was 500° C., and the treatment time was 75 min.
  • Example 10 the ammonia content was 3% (N 2 12.7 mL/min, NH 3 0.4 mL/min), the treatment temperature was 500° C., and the treatment time was 120 min.
  • Example 11 the ammonia content was 3% (N 2 12.7 mL/min, NH 3 0.4 mL/min), the treatment temperature was 500° C., and the treatment time was 150 min.
  • the metal-supported catalysts 1.3-1.16 prepared in Preparation Example 1 were respectively weighed and treated at 500° C. for 30 min under a 4% ethylenediamine/nitrogen atmosphere. At 600°C, pure propane gas (volume space velocity: 1000 h -1 ) was introduced to react, and the conversion rate and selectivity of the direct catalytic dehydrogenation reaction of propane were tested.
  • the catalyst was calcined at 400°C for 3 hours in an air atmosphere, and the carbonization operation was performed to obtain a regenerated sample, which was treated at 500°C for 30 minutes under a 4% ethylenediamine/nitrogen atmosphere.
  • the direct catalytic dehydrogenation reaction of propane was tested at 600°C with a hydrogen-hydrocarbon ratio of 0.25 (propane volume space velocity: 1000 h -1 ), and the measured propane conversion rate was 39%, and the propylene selectivity was 93%.
  • the obtained catalyst has a good catalytic activity for alkane dehydrogenation, regardless of whether the active metal is a noble metal or a transition metal.
  • the catalytic activity of noble metals is higher than that of transition metals.
  • Example 36 proves that the regeneration method of the catalyst of the present invention is simple and efficient, and the catalytic performance of the regenerated catalyst does not decrease significantly.
  • the newly prepared catalyst and the regenerated catalyst were tested under the same test conditions (0.25 hydrogen-hydrocarbon ratio), and the catalyst conversion and selectivity obtained by the test were equivalent.
  • the inventors regenerated the catalyst 50 times, and the formed catalyst still maintained a high conversion rate and selectivity.
  • Example 36 the test conditions used in Example 36 are slightly different from other examples, and a certain proportion of hydrogen is mixed into the propane gas to simulate the actual working conditions of industrial production.
  • Fig. 1 is a spherical aberration electron microscope photo of the newly prepared catalyst, in which picture a shows the metal in the single-atom site state (part of it is circled with dots); picture b also has metal clusters or nanoparticles in the catalyst. It can be seen from the figure that there are a large number of metals dispersed in single atomic sites in the catalyst, and there are also metals in clusters or even nanoparticles. However, the method for improving the conversion rate and the selectivity of the catalyst of the present invention is effective.
  • Figure 2 is a spherical aberration electron microscope photo of the catalyst that has been repeatedly regenerated for 50 times after being treated with calcined carbon.
  • the catalyst components are the same as those in Figure 1, and the metal in the single-atom site state appears in the field of view of Figure a (part of it is circled with dots); Metal clusters and nanoparticles are also present in the catalyst in b. It also shows that the catalyst after repeated regeneration, the active metal also exists in three states of single-atom site, cluster and nano-particle, and the method of the present invention is also effective.
  • a single-atom catalyst for propane dehydrogenation uses spherical alumina with a diameter of 1 mm to 2 mm as a carrier, Ir as an active component, Sn as a first auxiliary agent, and K as a first auxiliary agent.
  • Ir an active component
  • Sn a first auxiliary agent
  • K a first auxiliary agent.
  • the mass percentage content of Ir in the catalyst is 0.3%
  • the mass percentage content of the first auxiliary agent is 1.0%
  • the mass percentage content of the second auxiliary agent is 1.0%
  • the catalyst is impregnated by the equal volume method , which is prepared by treating with ethylenediamine gas to make Ir element single atom load.
  • the specific process is: weigh 5g alumina balls (diameter 1mm-2mm, specific surface agent 220m 2 /g, water absorption rate 0.442), according to the active group
  • the content of Ir is 0.3%
  • the content of Sn is 1.0%
  • the content of K is 1.0%.
  • a single-atom catalyst for propane dehydrogenation uses spherical alumina with a diameter of 1 mm to 2 mm as a carrier, Ir as an active component, Zn as a first auxiliary agent, and K as a first auxiliary agent.
  • Ir an active component
  • Zn a first auxiliary agent
  • K a first auxiliary agent.
  • the mass percentage content of Ir in the catalyst is 0.3%
  • the mass percentage content of the first auxiliary agent is 1.0%
  • the mass percentage content of the second auxiliary agent is 1.0%
  • the catalyst is impregnated by the equal volume method , which is prepared by treating with ethylenediamine gas to make Ir element single atom load.
  • the specific process is: weigh 5g alumina balls (diameter 1mm-2mm, specific surface agent 220m 2 /g, water absorption rate 0.442), according to the active group
  • the content of Ir is 0.3%
  • the content of Zn is 1.0%
  • the content of K is 1.0%.
  • a single-atom catalyst for propane dehydrogenation uses spherical alumina with a diameter of 1 mm to 2 mm as a carrier, Ir as an active component, Sn as a first auxiliary agent, and Na as a first auxiliary agent.
  • Ir an active component
  • Sn a first auxiliary agent
  • Na a first auxiliary agent
  • the mass percentage content of Ir in the catalyst is 0.3%
  • the mass percentage content of the first auxiliary agent is 1.0%
  • the mass percentage content of the second auxiliary agent is 1.0%
  • the catalyst is impregnated by the equal volume method , which is prepared by treating with ethylenediamine gas to make Ir element single atom load.
  • the specific process is: weigh 5g alumina balls (diameter 1mm-2mm, specific surface agent 220m 2 /g, water absorption rate 0.442), according to the active group
  • the content of Ir is 0.3%
  • the content of Sn is 1.0%
  • the content of Na is 1.0%.
  • a single-atom catalyst for propane dehydrogenation uses spherical alumina with a diameter of 1 mm to 2 mm as a carrier, Ir as an active component, Zn as a first auxiliary agent, and Na as a first auxiliary agent.
  • Ir an active component
  • Zn as a first auxiliary agent
  • Na a first auxiliary agent
  • the mass percentage content of Ir in the catalyst is 0.3%
  • the mass percentage content of the first auxiliary agent is 1.0%
  • the mass percentage content of the second auxiliary agent is 1.0%
  • the catalyst is impregnated by the equal volume method , which is prepared by treating with ethylenediamine gas to make Ir element single atom load.
  • the specific process is: weigh 5g alumina balls (diameter 1mm-2mm, specific surface agent 220m 2 /g, water absorption rate 0.442), according to the active group
  • the content of Ir is 0.3%
  • the content of auxiliary Zn is 1.0%
  • the content of Na is 1.0%.
  • catalyst C-4 After drying at 80°C for 8 hours, and calcining at 600°C for 4 hours, the mixture was activated with a mixed gas of ethylenediamine and nitrogen in a volume ratio of 1:24 for 0.5 hours, and then naturally cooled to room temperature to obtain catalyst C-4.
  • a catalyst for propane dehydrogenation provided by this comparative example uses spherical alumina with a diameter of 1mm-2mm as a carrier, Ir is an active component, and does not contain other additives.
  • the mass of Ir in the catalyst is 100%.
  • the content of the catalyst is 0.3%, and the catalyst is prepared by immersion in the equal volume method.
  • the specific process is as follows: Weigh 5g of alumina pellets (diameter 1mm-2mm, specific surface agent 220m 2 /g, water absorption rate 0.442), according to the active group Divide the content of Ir to 0.3%, prepare 2.21 ml of an impregnation solution of H 2 IrCl 6 and HCl, add the prepared impregnation solution dropwise to the alumina pellets, and age for 4 hours. After drying at 80°C for 8 hours, and calcining at 600°C for 4 hours, the mixture was activated with a mixed gas of ethylenediamine and nitrogen with a volume ratio of 1:24 for 0.5 hours, and the catalyst D-1 was obtained after naturally cooling to room temperature.
  • a catalyst for propane dehydrogenation provided by this comparative example uses spherical alumina with a diameter of 1 mm to 2 mm as a carrier, Ir is used as an active component, and Sn is used as an auxiliary agent. The fractional content is 0.3%, and the mass percentage of Sn is 1.0%.
  • the catalyst is prepared by impregnation of the equal volume method.
  • the specific process is as follows: Weigh 5g of alumina pellets (diameter 1mm-2mm, specific surface agent 220m2/g, water absorption rate 0.442), according to the active component Ir content of 0.3%, help The content of Sn is 1%, and 2.21 ml of immersion solution of H 2 IrCl 6 , SnCl 4 and HCl is prepared, and the prepared immersion solution is added dropwise to alumina pellets and aged for 4 hours. After drying at 80°C for 8 hours, calcining at 600°C for 4 hours, activated with a mixed gas of ethylenediamine and nitrogen in a volume ratio of 1:24 for 0.5 hours, and naturally cooled to room temperature to obtain catalyst D-2.
  • a catalyst for propane dehydrogenation provided by this comparative example uses spherical alumina with a diameter of 1mm-2mm as a carrier, Ir as an active component, and Zn as an auxiliary agent.
  • the mass of Ir in the catalyst is 100%.
  • the fractional content is 0.3%, and the mass percentage of Zn is 1.0%.
  • the catalyst is prepared by impregnation of the equal volume method.
  • the specific process is as follows: Weigh 5g of alumina pellets (diameter 1mm-2mm, specific surface agent 220m2/g, water absorption rate 0.442), according to the active component Ir content of 0.3%, help The content of Zn is 1%, and 2.21 ml of impregnation solution of H 2 IrCl 6 , Zn(NO 3 ) 2 and HCl is prepared, and the prepared impregnation solution is added dropwise to alumina pellets and aged for 4 hours. After drying at 80°C for 8 hours, calcining at 600°C for 4 hours, activated by a mixed gas of ethylenediamine and nitrogen in a volume ratio of 1:24 for 0.5 hours, and naturally cooled to room temperature to obtain catalyst D-3.
  • the deactivated catalyst of Example 37-4 was calcined at 400°C for 3h in an air atmosphere, and the carbonization operation was performed to obtain a regenerated sample that was treated at 500°C for 30min in a volume ratio of 1:24 ethylenediamine/nitrogen atmosphere.
  • the regenerated catalyst was tested for the dehydrogenation of propane to propylene, and the catalytic activity of the catalyst was comparable to that of the fresh catalyst in selectivity and conversion.
  • the catalysts of Examples 37-40 of the present invention and Comparative Examples 2-4 were used to catalyze the production of propylene from propane dehydrogenation. Nitrogen, the control flow is 13.1mL/min, the temperature is raised from room temperature to 600°C at a rate of 3°C/min, and then switched to a mixed gas of hydrogen and propane with a volume ratio of 1:2, the total flow of the mixed gas is 39.3mL/ min, carry out the reaction of propane dehydrogenation to propylene under normal pressure.
  • Table 3 shows the catalytic performance of the catalysts of Examples 37-40 of the present invention and Comparative Examples 2-4 for catalyzing propane dehydrogenation to propylene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种金属负载型催化剂的制备、活化和再生方法,包括:在10℃-700℃的条件下,用氨或含氮有机物处理Ma-Mb-Mc金属负载型催化剂,其中Ma金属为活性金属,选自贵金属原子或过渡金属的一种或多种,所述载体为工业常用多孔催化剂,其中Ma金属以单原子位点状态分散在载体上。本发明方法处理后的Ma-Mb-Mc金属负载型贵金属/锌催化剂,其催化低碳烷烃的直接脱氢转化率及选择性显著提升,本催化剂的制备方法工艺简单,再生后催化活性依旧保持,可大规模应用工业化生产。

Description

一种金属催化剂的处理或再生方法及应用 技术领域
本发明属于石油化工技术领域,具体涉及烷烃脱氢催化剂。
背景技术
低碳烯烃是石油化工的基础原料,广泛用于生产有机化工原料、树脂橡胶塑料、合成汽油等。过去,低碳烯烃以石油工业中催化裂解(FCC)装置的副产物为主要来源,近年来,全球范围内对低碳烯烃的需求与传统来源的产能差距日益增大。以中国为例,2015年国内消费的丙烯量为3040万吨,其中276万吨依赖进口。随着美国页岩气脱氢生产低碳烯烃技术的日益成熟,低碳烷烃脱氢生产成本显著降低,由于国内低碳烯烃缺口较大,价格上涨,使得低碳烷烃脱氢生产工艺得到广泛应用。
目前全球范围内应用最多的低碳烷烃脱氢工艺为UOP公司的Oleflex工艺和Lummus公司的Catofin工艺。Catofin工艺使用铬系催化剂,以氧化铝为载体,氧化铬为活性组分,催化脱氢使用固定床生产,其优点是催化剂成本低,转化率高,缺点是催化剂持续反应时间短,反应过程中催化剂表面快速积碳,需要频繁切换再生和催化两种工艺,并且铬的化合物毒性较大,容易造成环境污染。
Oleflex工艺使用铂系催化剂,以氧化铝为载体,贵金属铂为活性组分,锡和碱金属为助剂,催化脱氢使用移动床生产,其优点是催化剂使用再生周期长,环境污染小,缺点是催化剂成本较高。
近几年单原子催化剂受到广泛关注,该类催化剂上活性组分以单原子形式存在,具有最高的原子利用率,可以大幅降低活性组分用量,其中以CN修饰的贵金属单原子催化剂,由于CN材料中N对单原子金属的稳定及修饰作用展现出巨大的实际应用潜力(Adv.Mater.,2019,31,1901024;Nano Res.,2019,12,2584;Nat.Nanotech.,2020,15,390;CN109225306A)。但低碳烷烃脱氢反应往往伴随着严重的结焦问题,需要不断对结焦催化剂进行烧焦再生处理,而CN修饰贵金属单原子催化剂往往具有制备工艺复杂、催化剂结焦后难以实现工业烧焦再生等缺点,限制了其进一步工业推广。
发明内容
本发明首先提供一种金属催化剂的处理方法I,包括:用氨或含氮有机物处理金属负载型催化剂,所述金属负载型催化剂为Ma-Mb-Mc金属负载型催化剂,其中Ma为活性金属,选自贵金属原子或过渡金属的一种或多种,其中贵金属原子选自Pt、Au、Ru、Rh、Pd、Ir或Ag的一种或多种混合,所述过渡金属选自La、Fe、Co、Mn、Cr、Ni或Cu,Ma的含量基于催化剂重量为0.01-5wt%;Mb金属选自Zn、Sn、Co或Al中的一种或多种组合,Mb的含量基于催化剂重量为0.1-20wt%;Mc选自K、Na或两者混合,Mc的含量基于催化剂重量为0-2.0wt%;载体包括氧化铝、二氧化硅-氧化铝、氧化锆、氧化铈、氧化钛、或分子筛或其任意两种或更多种的混合物。
可选的,所述金属负载型催化剂不含Mc,也即为Ma-Mb的形式,所述方法包括:在10℃-700℃的条件下,用氨或含氮有机物处理金属负载型催化剂。
Ma金属为活性金属,选自贵金属原子或过渡金属的一种或多种,其中贵金属原子选自Pt、Au、Ru、Rh、Pd、Ir或Ag的一种或多种混合,所述过渡金属选自La、Fe、Co、Mn、Cr、Ni或Cu。优选该活性金属是Pt、Ru、Pd、Ir、Cr、Ni、PtPd、IrPt、IrPd、或者IrPtPd。Mb金属选自Zn、Co或Al中的一种或多种组合,优选为Zn、Co或Zn-Co混合金属。
所述载体为工业常用催化剂载体,包括的氧化铝、二氧化硅-氧化铝、氧化锆、氧化铈、氧化钛、或分子筛或其任意两种或更多种的混合物;所述催化剂载体起担载的作用。载体的形态选自非成型的粉末状,或具有成型的结构。成型结构包括球形、条状、圆柱状、多空通道、蜂窝体等。本发明实施了γ-氧化铝载体、氧化钛、氧化硅、NaY分子筛载体。
所述Ma金属以单原子位点状态,或单原子位点和团簇的状态和/或纳米颗粒状态,负载在载体上。具体包括,以单原子位点状态负载,或以单原子位点与团簇状态负载,或包括单原子位点、团簇和纳米颗粒三种状态负载在载体上。所述Ma的含量基于催化剂重量为0.01-5wt%,优选0.05-2wt%;Mb的含量基于催化剂重量为0.1-20wt%,优选为0.1-10wt%,特别优选为0.5-4wt%;Mc的含量为0%。
所述Ma-Mb金属负载型催化剂的获取,可根据设计的负载量,将Ma金属前驱体和Mb前驱体负载到载体上,形成催化剂前体;所述负载方法包括浸渍、旋蒸、吸附、离子交换、初湿含浸法、沉淀、喷雾干燥等本领域常用方法,本发明实施例使用浸渍法、旋蒸法进行负载。
Ma金属和Mb金属的负载可同时进行或依次进行;所述Ma金属前驱体为在溶剂中可溶性的Ma金属的无机盐、有机盐或金属配合物,优选为金属的硝酸盐、氯化盐、硫酸盐、乙酸盐、乙酰丙酮盐、配合物。Mb金属前驱体为在溶剂中可溶性Mb的有机盐或无机盐,优选为Mb金属的硝酸盐、氯化盐、硫酸盐、乙酸盐、草酸盐、乙酰丙酮盐等,如硝酸锌,硝酸钴,氯化锌、氯化钴、醋酸锌、醋酸钴等。所述溶剂是指水或醇,其中醇为甲醇或乙醇。
氨包括氨气或能释放氨的物质;其中释放氨的物质包括尿素、硝酸铵、六次甲基四胺或硝酸铵,可将所述物质与催化剂处于相同空间,通过加热或加入碱能释放NH 3,让NH 3与催化剂作用。
所述含氮有机物包括C 1-6烷烃胺,C 2-6烯烃胺,C 6-20芳族胺,C 4-20的环烷烃胺,C 4-20的含氮杂环,C 4-20含氮杂芳环,(RCO)xNR 3-x,其中,R为H或C 1-6烷基,X为1或2,所述胺为一元胺或多元胺,所述烷烃基、烯烃基、芳基、含氮杂环、含氮杂芳环可以进一步被氧、羰基、羧基、酯基、胺基取代,所述芳族为单环芳香族或多环稠合芳香族;含氮杂环为含有环氮原子的单环或稠和的非芳香环,环碳原子可被氧原子取代;含氮杂芳环为含有环氮原子的单环或稠和的杂芳香环,环碳原子可被氧原子取代。所述含氮有机物优选C 1-6烷基胺,C 1-6烷基二胺,C 6-20芳族胺,二甲基甲酰胺;本发明具体实施的含氮有机物为乙二胺,三乙胺,丁胺,苯胺和二甲基甲酰胺;优选乙二胺。
本发明所述氨或含氮有机物处理是指使用氨气或气态含氮有机物处理催化剂,可用惰性气体稀释处理气体实现低于100%的体积浓度占比;即所述气态化合物为1-100%的体积浓度占比。使用惰性气体稀释便于更精确的控制处理过程中碳和/或氮的加入量。本发明所述惰性气体包括但不限于氮气、氦气、氩气、氢气等对催化剂或烷烃脱氢反应惰性的气体。本发明具体实施了NH 3气、氮气稀释的NH 3、氮气稀释的含氮有机化合物气体,处理的温度在10℃至700℃范围之内,优选300-600℃,通气处理时间为1-400min,优选为5-150min。
对于大多数烷烃脱氢催化剂,都在力图避免催化剂表面积碳,以免导致催化剂失活。本发明意外发现,通过含氮有机物处理催化剂,使得催化剂表面覆盖CN层,出人意料的提升催化剂的转化率和选择性。此外,发明人发现仅使用NH 3也能提升催化剂的转化率和选择性。
进一步,本发明保护一种金属负载型催化剂的再生方法I,所述金属负载型催 化剂为Ma-Mb-Mc金属负载型催化剂,其中Mc的含量为0%,包括:
步骤A、去除导致所述金属负载型催化剂中毒或失活的物质,再生催化剂;
步骤B、在10℃-700℃的条件下,用氨或含氮有机物处理催化剂,得到活化的催化剂。
其中,步骤A中,可以通过常规的方法,去除失活物质,所述失活物质包括碳、硫等物质,去除方法包括,使用O 2、空气氧化去除,或使用H 2、CO 2、水汽与失活物质反应去除该物质,本发明实施了空气氧化去除。
其中,Ma金属为活性金属,选自贵金属原子或过渡金属的一种或多种组合,其中贵金属原子选自Pt、Au、Ru、Rh、Pd、Ir或Ag的一种或多种混合,所述过渡金属选自La、Fe、Co、Mn、Cr、Ni或Cu。优选该活性金属是Pt、Ru、Pd、Ir、Cr、Ni、PtPd、IrPt、IrPd、或者IrPtPd。Mb金属选自Zn、Co或Al中的一种或多种组合,优选为Zn、Co或Zn-Co混合金属。
所述载体为本领域常用催化剂载体,起到担载作用的催化剂载体都能使用。进一步,载体选自氧化铝、二氧化硅-氧化铝、氧化锆、氧化铈、氧化钛、或分子筛或其任意两种或更多种的混合物。本发明实施了γ-氧化铝载体、氧化钛、二氧化硅、NaY分子筛。
所述Ma金属以单原子位点状态,或单原子位点和团簇的状态和/或纳米颗粒状态,负载在载体上。具体包括,以单原子位点状态负载,或以单原子位点状态与团簇状态混合负载,或包括单原子、团簇和纳米颗粒三种状态混合负载在载体上。所述Ma金属的含量基于催化剂重量为0.01-5wt%,优选0.05-2wt%;Mb的含量基于催化剂重量为0.1-20wt%;优选含量为0.1-10wt%,特别优选0.5-4wt%。
步骤B中,所述氨包括氨气或能释放氨的物质;其中释放氨的物质包括尿素、硝酸铵、六次甲基四胺或硝酸铵,可将所述物质与催化剂处于相同空间,通过加热或加入碱能释放NH 3,让NH 3与催化剂作用。
所述含氮有机物包括C 1-6烷烃胺,C 2-6烯烃胺,C 6-20芳族胺,C 4-20的环烷烃胺,C 4-20的含氮杂环,C 4-20含氮杂芳环,(RCO)xNR 3-x,其中,R为H或C 1-6烷基,X为1或2,所述胺为一元胺或多元胺,所述烷烃基、烯烃基、芳基、含氮杂环、含氮杂芳环可以进一步被氧、羰基、羧基、酯基、胺基取代,所述芳族为单环芳香族或多环稠合芳香族;含氮杂环为含有环氮原子的单环或稠和的非芳香环,环碳原子可被氧原子取代;含氮杂芳环为含有环氮原子的单环或稠和的杂芳香环,环碳原 子可被氧原子取代。所述含氮有机物优选C 1-6烷基胺,C 1-6烷基二胺,C 6-20芳族胺,二甲基甲酰胺;本发明具体实施的含氮有机物为乙二胺,三乙胺,丁胺,苯胺和二甲基甲酰胺;优选乙二胺。
步骤B中,所述氨或含氮有机物处理是指使用氨气或气态含氮有机物处理催化剂,可用惰性气体稀释处理气体实现低于100%的体积浓度占比;即所述气态化合物为1-100%的体积浓度占比。使用惰性气体稀释便于更精确的控制处理过程中碳和/或氮的加入量。本发明所述惰性气体包括但不限于氮气、氦气、氩气、氢气等对催化剂或烷烃脱氢反应惰性的气体。本发明具体实施了NH 3气、氮气稀释的NH 3、氮气稀释的含氮有机化合物气体,处理的温度在10℃至700℃范围之内,优选300-600℃,通气处理时间为1-400min,优选为5-150min。
本发明还提供一种Ma-Mb-Mc金属负载型催化剂的处理方法II,该方法包括在室温-700℃下,用氨或含氮有机物处理Ma-Mb-Mc负载型催化剂前体,其中,Ma金属为Ir金属,第一助剂Mb选自Zn、Sn或两者混合,第二助剂Mc选自K、Na或两者混合,Ma的含量基于催化剂总重量为0.1-2wt%,第一助剂Mb含量为0.1-3.0wt%,第二助剂Mc的百分含量为0.1-2.0wt%,所述载体选自氧化铝载体,优选成型的氧化铝载体,所述Ma金属以单原子状态、或团簇状态、或纳米颗粒状态分散负载在载体上;优选,所述Ma金属以单原子位点状态,或单原子位点与团簇的状态和/或纳米颗粒状态共存的状态,负载在载体上;
其中氨包括氨气或能释放氨的物质,含氮有机物包括C 1-6烷烃胺,C 2-6烯烃胺,C 6-20芳族胺,C 4-20的环烷烃胺,C 4-20的含氮杂环,C 4-20含氮杂芳环,(RCO)xNR 3-x,其中,R为H或C 1-6烷基,X为1或2,所述胺为一元胺或多元胺,所述烷烃基、烯烃基、芳基、含氮杂环、含氮杂芳环可以进一步被氧、羰基、羧基、酯基、胺基取代,所述芳族为单环芳香族或多环稠合芳香族;含氮杂环为含有环氮原子的单环或稠和的非芳香环,环碳原子可被氧原子取代;含氮杂芳环为含有环氮原子的单环或稠和的杂芳香环,环碳原子可被氧原子取代。
优选的,前述处理方法II中,其中催化剂前体制备方法为将Ma金属前驱体、Mb前驱体和Mc前驱体负载到载体上形成,所述Ma金属前驱体为在溶剂中可溶性的Ma金属的无机盐、有机盐或金属配合物,优选为金属的硝酸盐、氯化盐、硫酸盐、乙酸盐、乙酰丙酮盐、配合物;Mb或Mc金属前驱体为在溶剂中可溶性Mb或Mc的有机盐或无机盐,优选为Mb或Mc金属的硝酸盐、氯化盐、硫酸盐、乙酸盐、草酸盐、乙酰丙酮盐, 所述溶剂是指水或醇,其中醇为甲醇或乙醇。
优选的,前述处理方法II中,所述催化剂前体的制备步骤包括,非必要地,在室温-80℃下陈化,陈化时间为0.5-40小时,优选2-8小时;非必要地,在陈化后干燥,干燥在60-150℃,优选80℃-120℃下进行,干燥时长为2-20小时,优选6-10小时;干燥后催化剂在400℃-600℃焙烧,焙烧时长3-6小时,得到所述催化剂前体。
优选的,前述处理方法II中,其中氨为氨气,所述含氮有机物优选为乙二胺,三乙胺,丁胺,苯胺或二甲基甲酰胺。
优选的,前述处理方法II中,其中所述处理使用气态乙二胺在300℃-600℃下处理,所述使用气态乙二胺处理,可用体积比1-5:20-24的乙二胺/氮气混合气体处理,处理时间为0.05-4小时,优选0.5-1.5小时。
优选的,前述处理方法II中,所述催化剂为Ir/Zn/K@Al2O3、Ir/Sn/K@Al2O3、Ir/Zn/Na@Al2O3、Ir/Sn/Na@Al2O3,其中Ir的含量基于催化剂总重量为0.1-2wt%,Zn或Sn含量为0.1-3.0wt%,K或Na的百分含量为0.1-2.0wt%。
本发明还提供一种Ma-Mb-Mc负载型催化剂的再生方法II,包括:
步骤A、去除导致Ma-Mb-Mc金属负载型催化剂中毒或失活的物质,再生催化剂;
步骤B、在室温-700℃下,用氨或含氮有机物处理催化剂,得到活化的催化剂;
其中,Ma金属为Ir金属,第一助剂Mb选自Zn、Sn或两者混合,第二助剂Mc选自K、Na或两者混合,Ma的含量基于催化剂总重量为0.1-2wt%,第一助剂Mb含量为0.1-3.0wt%,第二助剂Mc的百分含量为0.1-2.0wt%,所述载体选自氧化铝载体,优选成型的氧化铝载体,所述Ma金属以单原子状态、或团簇状态、或纳米颗粒状态存在分散负载在载体上;优选,所述Ma金属以单原子位点状态,或单原子位点与团簇的状态和/或纳米颗粒状态共存的状态,负载在载体上;
步骤A中,所述失活物质包括碳和硫,去除方法包括,使用O 2、空气氧化去除,或使用H 2还原去除;
步骤B中,用氨或含氮有机物处理,所述含氮有机物优选为乙二胺,三乙胺,丁胺,苯胺和二甲基甲酰胺,处理温度进一步优选300-700℃。
优选的,前述再生方法II中,其中,步骤B中、优选在400℃-600℃下,使用气态乙二胺处理,优选乙二胺与氮气的混合气,使用体积比为1-5:20-24的乙二胺/氮气混合气体处理催化剂。
本发明还提供一种催化剂在C 2-6烷烃脱氢制备C 2-6烯烃中的应用,所述催化剂是 前述处理方法、活化方法、再生方法得到的催化剂。
本发明还提供一种低级烷烃脱氢制低级烯烃的方法,包括,使用前述处理方法、前述活化方法、前述再生方法得到的催化剂。优选的,催化C 2-6烷烃脱氢得到C 2-6烯烃。
本发明的另外一个方面是,保护一种低级烷烃脱氢制低级烯烃的方法,包括,使用加碳氮处理后的催化剂,催化低级烷烃脱氢得到低级烯烃。所述低级烷烃是指C 2-6的烷烃,包括乙烷、丙烷、丁烷、异丁烷,或两种或多种低级烷烃的混合物,本发明实施了丙烷脱氢制丙烯反应。
定义与解释
本发明中所述以单原子位点状态分散、单原子状态、单原子分布、单原子形态或单原子级别的分散状态,是指活性金属元素的呈现金属原子(离子)间彼此独立分离的孤立状态,活性金属原子之间彼此不形成直接连接的金属–金属键,以原子级分散或以单原子位点分散的状态。以单原子位点状态分散的金属可能以原子状态存在,也可能以离子状态存在,更多可能是处于原子和离子状态之间。金属纳米颗粒中,同一纳米颗粒中的金属原子之间是彼此键连的,不属于本发明定义的单原子状态或单原子分散状态;对于金属与其他元素(如O、S乃至其他金属)形成的化合物或混合物纳米颗粒,尽管金属之间都被其他元素分隔,而且特别是这些化合物或混合物纳米颗粒往往很容易转化为金属态纳米颗粒(如氧化物纳米颗粒经过还原即发生转变),同样不属于本发明定义的单原子位点状态或单原子分离状态。本发明保护的单原子位点状态的金属理论上是彼此之间完全独立。但不同批次制备操作条件控制的随机偏差,所得产品中不排除存在少量团聚状态金属物种,例如包含少量原子或离子形成的团簇;也不排除部分金属呈现纳米颗粒的状态。换句话说,本发明的催化剂中可能活性金属以单原子位点分散态存在,同时,部分存在含有金属原子聚集的团簇态,和/或部分金属呈现纳米颗粒状态。本申请保护的单原子状态要求催化剂中贵金属单原子、贵金属团簇及贵金属纳米颗粒等不同存在形式中单原子贵金属有一定的占比,例如高于10%,优选高于20%,特别优选高于50%。但限于当前的技术手段,仅能通过相对粗略的统计手段,可通过高分辨球差电镜对催化剂测试样品中随机大量选取不同局部区域进行分析表征并随机选取各种形式的贵金属存在状态进行统计分析,或通过能够表征样品整体信息的X射线吸收精细结构谱 (EXAFS)分析催化剂样品,获得金属和其它原子键合信号与金属-金属键合信号比例,确定大致的单原子状态的比例。需要指出的是,实质上只要产品中使用了本发明的技术获取了哪怕仅具备部分的单原子状态的催化剂产品,该产品也显示出性能的提升。因此,只要产品依据本发明的方法,制备得到了具备烷烃脱氢活性的催化剂,理应属于本申请保护的范围之内。
烷烃胺表示该烷烃带有1个或多个胺基官能团,上述烷烃可被一个或多个C 1-6烷烃基、C 4-20的环烷烃或C 6-20芳香族基团替代,或上述烷烃中C–C键可以被不饱和的烯烃或炔烃替代,形成不饱和碳链;前述C 6-20芳香环胺表示具有6-20个碳原子的芳香族环胺基化合物,C 4-20含氮杂芳环表示具有芳香的2n+4的特征,同时部分环碳原子被杂原子替换,所述杂原子为O或N原子。C 4-20含氮杂环表示含有4-20个环碳原子的含氮杂环;C 4-20的环烷烃胺表示含有4-20个环碳原子的环烷烃,该环烷烃含有一个或多个胺基官能团。上述的环烷烃、含氮杂环、芳香环为一元环或稠合多元环,所述环可继续被C 1-6烷烃取代。
所述金属包括贵金属、过渡金属的含量是以金属元素计量,即仅计算金属的质量百分比。
所述能释放氨气的物质是指能释放NH 3的无机物或有机物,比如尿素、氨水、六次甲基四胺,硝酸铵。
所述室温是指不需要额外加热,但由于室温根据地域、季节或室内环境的差别发生变化,因此,所述室温通常指10℃以上的温度。
所述活化,也被称为催化剂预处理,通常是催化剂装入反应设备后进行。经过活化后的催化剂表现出更高的转化率和/或选择性。
所述再生,也被称为重生,通常是指将失活后的催化剂重新恢复催化活性的过程。
配合物也被称为络合物,包括贵金属或过渡金属与配位体形成的络合物,常见的配位体包括卤素(氟、氯、溴、碘)、硝基、亚硝基、氰根、氨、水分子或有机基团,常见为络合物为氯络合物,氨络合物,氰络合物等,包括氯铂酸、氯铂酸盐、氯铂酸水合物。可参见《贵金属化合物及配合物合成手册(精)》(余建民,2009年,化学工业出版社)。
有益效果:
1、通过本发明方法处理后的Ma-Mb金属负载型催化剂,其催化低碳烷烃的直 接脱氢转化率及选择性显著提升,实现催化剂的预活化。
2、本催化剂制备方法工艺简单,能高效制备,可大规模工业化生产。
3、本制备方法得到的催化剂稳定,经过多次再生,活性依然保持。为催化剂的工业化生产和应用提供坚实的基础。
附图说明
图1为新制备催化剂的球差电镜照片,其中a图显示单原子位点状态金属(部分用点虚线圈出);b图显示催化剂中也存在金属的团簇或纳米颗粒。
图2为反复再生50次的催化剂的球差电镜照片,其中a图视野中出现单原子位点状态的金属(部分用点虚线圈出);b图显示催化剂中也存在金属的团簇和纳米颗粒。
具体实施方式
实施例中使用的术语与解释:
金属前驱体的浓度:是以金属元素的质量计算,如0.02g/g浓度的Pd的水溶液中,表示每克溶液中,Pd元素的含量为0.02克
微反装置:固定床微型反应器或微型反应装置
微反尾气:在微型反应器或微型反应装置中反应后产生的尾气
min:分钟
wt%:质量百分比
TEM:透射电子显微镜(Transmission Electron Microscope)
HR-TEM:高分辨率的透射电镜(High Resolution Transmission Electron Microscope)
AC-STEM:球差校正透射电镜(Spherical Aberration-Corrected Scanning Transmission Electron Microscopy)
下面通过丙烷脱氢的实施对本发明的技术给予进一步说明。
制备实施例1:活性金属/锌负载型催化剂的制备
1.1 Ir (0.1wt%)Zn (3wt%)/Al 2O 3
称取IrCl 3·3H 2O、NaCl各0.5g,加入19g水,在80℃下完全溶解。取7.4g以上溶液,加入16.4g Zn(NO 3) 2·6H 2O,溶解后定容至小球饱和浸渍体积。将以上浸 渍液等体积浸渍于96.9g氧化铝小球上,120℃干燥过夜。获得铱锌催化剂(Ir0.1wt%;Zn 3wt%),标记为Ir (0.1wt%)Zn (3wt%)/Al 2O 3
Ir (0.3wt%)Zn (3wt%)/Al 2O 3
50g氧化铝小球,8.25g Zn(NO 3) 2·6H 2O溶于水定容至小球饱和浸渍体积,等体积浸渍,室温陈化6h后120℃干燥一夜,600℃煅烧4h,取10g样品。称取IrCl 3·3H 2O、NaCl各0.5g,加入19g水,在80℃下完全溶解。2.2g前述IrCl 3溶液定容至饱和浸渍体积,等体积浸渍,120℃干燥一夜。400℃煅烧1h。获得铱锌催化剂(Ir 0.3wt%;Zn 3wt%),标记为Ir (0.3wt%)Zn (3wt%)/Al 2O 3
1.2 Pt (0.3wt%)Zn (1wt%)/Al 2O 3
称取5g Al 2O 3小球,称取含0.015g Pt的氯铂酸和含0.05gZn的硝酸锌溶解于水中,定容至小球饱和浸渍体积2.21ml,加入上述Al 2O 3小球中浸渍,80℃干燥8h后,600℃煅烧4h。获得铂锌催化剂(Pt 0.3wt%;Zn 1wt%),标记为Pt (0.3wt%)Zn (1wt%)/Al 2O 3
1.3 Cr-Zn/Al 2O 3(200713a)
制备负载量分别为0.5%和1.5%的铬和锌负载Al 2O 3催化剂100g,取用3.85g九水合硝酸铬和6.82g六水合硝酸锌并用乙醇溶解、稀释至83.3g,随后加入98g Al 2O 3,在40℃下进行旋蒸处理,待乙醇完全蒸发、铬和锌物种充分负载在Al 2O 3表面,即可制得铬锌负载Al 2O 3催化剂,标记为Cr (0.5wt%)Zn (1.5wt%)/Al 2O 3
1.4 Mn-Zn/Al 2O 3(d200829a)
制备负载量分别为0.5%和1.5%的锰和锌负载Al 2O 3催化剂100g,取用1.80g四水合硝酸锰和6.82g六水合硝酸锌并用乙醇溶解、稀释至91.9g,随后加入98g Al 2O 3,在40℃下进行旋蒸处理,待乙醇完全蒸发、锰和锌物种充分负载在Al 2O 3表面,即可制得锰锌负载Al 2O 3催化剂,标记为Mn (0.5wt%)Zn (1.5wt%)/Al 2O 3
1.5 Fe-Zn/Al 2O 3(200713b)
制备负载量分别为0.5%和1.5%的铁和锌负载Al 2O 3催化剂100g,取用3.62g九水合硝酸铁和6.82g六水合硝酸锌并用乙醇溶解、稀释至83.3g,随后加入98g Al 2O 3,在40℃下进行旋蒸处理,待乙醇完全蒸发、铁和锌物种充分负载在Al 2O 3表面,即可制得铁锌负载Al 2O 3催化剂,标记为Fe (0.5wt%)Zn (1.5wt%)/Al 2O 3
1.6 Co-Zn/Al 2O 3(200918a)
制备负载量分别为0.5%和1.5%的钴和锌负载Al 2O 3催化剂100g,取用2.47g 六水合硝酸钴和6.82g六水合硝酸锌并用乙醇溶解、稀释至83.3g,随后加入98g Al 2O 3,在40℃下进行旋蒸处理,待乙醇完全蒸发、钴和锌物种充分负载在Al 2O 3表面,即可制得钴锌负载Al 2O 3催化剂,标记为Co (0.5wt%)Zn (1.5wt%)/Al 2O 3
1.7 Ni-Zn/Al 2O 3(200918b)
制备负载量分别为0.5%和1.5%的镍和锌负载Al 2O 3催化剂100g,取用2.48g六水合硝酸镍和6.82g六水合硝酸锌并用乙醇溶解、稀释至83.3g,随后加入98g Al 2O 3,在40℃下进行旋蒸处理,待乙醇完全蒸发、镍和锌物种充分负载在Al 2O 3表面,即可制得镍锌负载Al 2O 3催化剂,标记为Ni (0.5wt%)Zn (1.5wt%)/Al 2O 3
1.8 Cu-Zn/Al 2O 3(d200730)
制备负载量分别为0.5%和1.5%的铜和锌负载Al 2O 3催化剂100g,取用1.90g三水硝酸铜和6.82g六水合硝酸锌并用乙醇溶解、稀释至92.0g,随后加入98g Al 2O 3,在40℃下进行旋蒸处理,待乙醇完全蒸发、铜和锌物种充分负载在Al 2O 3表面,即可制得铜锌负载Al 2O 3催化剂,标记为Cu (0.5wt%)Zn (1.5wt%)/Al 2O 3
1.9 La-Zn/Al 2O 3(d200829b)
制备负载量分别为0.5%和1.5%的镧和锌负载Al 2O 3催化剂100g,取用1.34g七水硝酸镧和6.82g六水合硝酸锌并用乙醇溶解、稀释至91.4g,随后加入98g Al 2O 3,在40℃下进行旋蒸处理,待乙醇完全蒸发、镧和锌物种充分负载在Al 2O 3表面,即可制得镧锌负载Al 2O 3催化剂,标记为La (0.5wt%)Zn (1.5wt%)/Al 2O 3
1.10 Ir (0.1wt%)Co (0.5wt%)Zn (1wt%)/Al 2O 3(200608b)
预先用0.37g三水合氯化铱、0.36g氯化钠用水加热溶解并稀释至40.0g,配置铱浓度为0.005g/g的水溶液,取用1.0g,再加入0.11g六水合硝酸钴和0.23g六水硝酸锌,用超纯水溶解并稀释至2.2g,随后加入4.9g小球状Al 2O 3进行等体积浸渍,随后120℃下干燥过夜。即可制得铱钴锌负载Al 2O 3催化剂,标记为Ir (0.1wt%)Co (0.5wt%)Zn (1wt%)/Al 2O 3
1.11 Ir (0.1wt%)Co (0.75wt%)Zn (0.75wt%)/Al 2O 3(200608c)
预先用0.37g三水合氯化铱、0.36g氯化钠用水加热溶解并稀释至40.0g,配置铱浓度为0.005g/g的水溶液,取用1.0g,再加入0.17g六水合硝酸钴和0.17g六水硝酸锌,用超纯水溶解并稀释至2.2g,随后加入4.9g小球状Al 2O 3进行等体积浸渍,随后120℃下干燥过夜。即可制得铱钴锌负载Al 2O 3催化剂,标记为Ir (0.1wt%)Co (0.75wt%)Zn (0.75wt%)/Al 2O 3
1.12 Ir (0.1wt%)Co (1.5wt%)/Al 2O 3(200611d)
预先用0.37g三水合氯化铱、0.36g氯化钠用水加热溶解并稀释至40.0g,配置铱浓度为0.005g/g的水溶液,取用1.0g,再加入0.33g六水合硝酸钴,用超纯水溶解并稀释至2.2g,随后加入4.9g小球状Al 2O 3进行等体积浸渍,随后120℃下干燥过夜。即可制得铱钴锌负载Al 2O 3催化剂,标记为Ir (0.1wt%)Co (1.5wt%)/Al 2O 3
1.13制备得到催化剂,标记为Ir (0.1wt%)Zn (1.5wt%)Al (1.24wt%)/Al 2O 3
1.14制备得到催化剂,标记为Ir (0.15wt%)Zn (1.5wt%)Al (1.24wt%)/Al 2O 3
1.15 Ir (0.1wt%)Zn (1wt%)/NaY分子筛
称取5g NaY分子筛小球,于含IrCl 3、Zn(NO 3) 2分别为0.26%和7.8%的水溶液中过体积浸渍30min,固液分离后120℃干燥过夜。获得铱锌催化剂(Ir 0.15wt%;Zn 1.5wt%)。
1.16 Ir (0.3wt%)Zn (3wt%)/SiO 2
称取IrCl 3·3H 2O、NaCl各0.5g,加入19g水,在80℃下完全溶解。取1.1g以上溶液,加入0.8g Zn(NO 3) 2·6H 2O,溶解后定容至小球饱和浸渍体积。将以上浸渍液等体积浸渍于5g二氧化硅小球上,120℃干燥过夜。获得铱锌催化剂(Ir0.3wt%;Zn 3wt%)。
制备实施例2:催化剂再生预处理方法
通过本实验将催化剂进行再生,将待处理催化剂在400-450℃下,49.8mL/min的空气烧积炭3小时,形成再生催化剂。
应用测试实施例3:烷烃脱氢实验方法
以丙烷脱氢制备丙烯为例
采用固定床连续流动反应装置评价催化剂的催化性能,将1.0g催化剂装载于10mm内径直型石英反应管内。
处理或活化催化剂。
以管式电阻炉控制反应温度600℃,以质量流量计控制反应气流速,反应前后使用氮气或其它惰性气体进行吹扫。
使用岛津的气相色谱仪装配HP-PLOT Al 2O 3S毛细管色谱柱对反应产物进行分析。
实施例1
称取1g制备例1.1所得铱锌催化剂(Ir 0.1wt%;Zn 3wt%),在100%氨气气 氛下500℃处理30min。在600℃下,通入丙烷纯气体(体积空速:1000h -1)反应,测试丙烷直接催化脱氢反应的转化率和选择性。
实施例2-11
参照实施例1的实验操作,使用N 2作为稀释气体,调节氨气的浓度,处理温度,处理时长,其余操作与实施例1相同。具体为:
实施例2中,氨气含量为80%(N 2 2.6mL/min,NH 3 10.5mL/min),处理温度500℃,处理时长30min。
实施例3中,氨气含量为50%(N 2 6.55mL/min,NH 3 6.55mL/min),处理温度500℃,处理时长30min。
实施例4中,氨气含量为20%(N 2 10.5mL/min,NH 3 2.6mL/min),处理温度500℃,处理时长30min。
实施例5中,氨气含量为3%(N 2 12.7mL/min,NH 3 0.4mL/min),处理温度500℃,处理时长30min。
实施例6中,氨气含量为3%(N 2 12.7mL/min,NH 3 0.4mL/min),处理温度500℃,处理时长15min。
实施例7中,氨气含量为3%(N2 12.7mL/min,NH3 0.4mL/min),处理温度500℃,处理时长30min。
实施例8中,氨气含量为3%(N 2 12.7mL/min,NH 3 0.4mL/min),处理温度500℃,处理时长45min。
实施例9中,氨气含量为3%(N 2 12.7mL/min,NH 3 0.4mL/min),处理温度500℃,处理时长75min。
实施例10中,氨气含量为3%(N 2 12.7mL/min,NH 3 0.4mL/min),处理温度500℃,处理时长120min。
实施例11中,氨气含量为3%(N 2 12.7mL/min,NH 3 0.4mL/min),处理温度500℃,处理时长150min。
实施例12
称取1g制备例1.1所得铱锌催化剂(Ir 0.1wt%;Zn 3wt%),在2%乙二胺/氮气气氛下500℃处理15min。在600℃下,通入丙烷纯气体(体积空速:1000h -1)反应,测试丙烷直接催化脱氢反应的转化率和选择性。
实施例13
称取1g制备例1.1所得铱锌催化剂(Ir 0.1wt%;Zn 3wt%),在2%乙二胺/氮气气氛下500℃处理60min。在600℃下,通入丙烷纯气体(体积空速:1000h -1)反应,测试丙烷直接催化脱氢反应的转化率和选择性。
实施例14
称取1g制备例1.1所得铱锌催化剂(Ir 0.1wt%;Zn 3wt%),在4%乙二胺/氮气气氛下室温(10℃)处理30min。在600℃下,通入丙烷纯气体(体积空速:1000h -1)反应,测试丙烷直接催化脱氢反应的转化率和选择性。
实施例15
称取1g制备例1.1所得铱锌催化剂(Ir 0.1wt%;Zn 3wt%),在4%乙二胺/氮气气氛下700℃处理30min。在600℃下,通入丙烷纯气体(体积空速:1000h -1)反应,测试丙烷直接催化脱氢反应的转化率和选择性。
实施例16
称取1g制备例1.1所得铱锌催化剂(Ir 0.1wt%;Zn 3wt%),在1%乙二胺/氮气气氛下500℃处理30min。在600℃下,通入丙烷纯气体(体积空速:1000h -1)反应,测试丙烷直接催化脱氢反应的转化率和选择性。
实施例17
称取1g制备例1.1所得铱锌催化剂(Ir 0.1wt%;Zn 3wt%),在4%正丁胺/氮气气氛下500℃处理30min。在600℃下,通入丙烷纯气体(体积空速:1000h -1)反应,测试丙烷直接催化脱氢反应的转化率和选择性。
实施例18
称取1g制备例1.1所得铱锌催化剂(Ir 0.1wt%;Zn 3wt%),在4%三乙胺/氮气气氛下500℃处理30min。在600℃下,通入丙烷纯气体(体积空速:1000h -1)反应,测试丙烷直接催化脱氢反应的转化率和选择性。
实施例19
称取1g制备例1.1所得铱锌催化剂(Ir 0.1wt%;Zn 3wt%),在4%苯胺/氮气气氛下500℃处理30min。在600℃下,通入丙烷纯气体(体积空速:1000h -1)反应,测试丙烷直接催化脱氢反应的转化率和选择性。
实施例20
称取1g制备例1.1所得铱锌催化剂(Ir 0.1wt%;Zn 3wt%),在4%DMF/氮气气氛下500℃处理30min。在600℃下,通入丙烷纯气体(体积空速:1000h -1) 反应,测试丙烷直接催化脱氢反应的转化率和选择性。
实施例21
称取1g制备例1.2所得铂锌催化剂(Pt 0.3wt%;Zn 1wt%),在4%乙二胺/氮气气氛下500℃处理30min。在600℃下,通入丙烷纯气体(体积空速:1000h -1)反应,测试丙烷直接催化脱氢反应的转化率和选择性。
实施例22-35
使用实施例1类似方法,分别称取制备例一制备的1.3-1.16金属负载催化剂,在4%乙二胺/氮气气氛下500℃处理30min。在600℃下,通入丙烷纯气体(体积空速:1000h -1)反应,测试丙烷直接催化脱氢反应的转化率和选择性。
实施例36再生实施例
称取1g制备例1.1所得铱锌催化剂(Ir 0.1wt%;Zn 3wt%),在4%乙二胺/氮气气氛下500℃处理30min。在600℃下,0.25氢烃比(氢气与丙烷的比)条件下丙烷直接催化脱氢反应(丙烷体积空速:1000h -1),测得丙烷转化率为40%,丙烯选择性为92%。连续测试6h后,丙烷转化率降至33%,丙烯选择性为93%。
将此催化剂于400℃空气气氛下焙烧3h,进行烧积碳操作,得到再生样品在4%乙二胺/氮气气氛下500℃处理30min。
在600℃0.25氢烃比条件下测试丙烷直接催化脱氢反应(丙烷体积空速:1000h -1),测得丙烷转化率为39%,丙烯选择性为93%。
对比例1
称取1g铱锌催化剂(Ir 0.1wt%;Zn 3wt%,Al 2O 3为载体),不做任何处理后,在600℃下,通入丙烷纯气进行反应,测试丙烷直接催化脱氢反应的转化率和选择性(体积空速:1000h -1)。
应用测试及结果:
表1 实施例1-20以及对比例1的处理条件和性能比较
Figure PCTCN2021139865-appb-000001
Figure PCTCN2021139865-appb-000002
*EX1表示实施例1,以此类推。
从实施例1-20与对比例1的测试结果看,经过本发明的催化剂处理方式,无论是用NH 3还是使用含氮有机物处理,处理后的催化剂转化率和选择性明显提升,充分显示用NH 3和含氮有机物处理的效果。
表2 对于实施例21-35,活性测试条件及测试结果
Figure PCTCN2021139865-appb-000003
从表2测试结果看,使用Zn、Co或Al作为活化金属,得到的催化剂具有较好的催化烷烃脱氢的活性,无论活性金属为贵金属还是过渡金属。贵金属的催化活性高于过渡金属。
3、催化剂再生
实施例36证明本发明的催化剂的再生方法简单高效,经过再生后的催化剂,催化性能并未出现明显下降。将新制备催化剂与再生后的催化剂,在使用相同的测试条件下(0.25氢烃比),测试得到的催化剂转化率和选择性相当。
事实上,发明人将催化剂进行了50次的再生,形成的催化剂依然保持较高的转化率和选择性。
需要指出,实施例36使用的测试条件与其它实施例略有不同,在丙烷气体中掺入一定比例的氢气,以模拟工业生产的实际工况。
4、产品结构表征:
发明人对新制备的未经过碳氮处理后的催化剂进行结构表征,其中催化剂的组成为Ir (0.3%)Zn (2wt%)/Al 2O 3。表征结果参见图1。其中,图1为新制备催化剂的球差电镜照片,其中a图显示单原子位点状态金属(部分用点虚线圈出);b图催化剂中也存在金属的团簇或纳米颗粒。从图可以看到催化剂中存在大量以单原子位点分散的金属,也存在以团簇甚至纳米颗粒存在的金属。但本发明的提升催化剂的转化率和选择性的方法都有效。
图2为反复再生50次的催化剂经烧积碳处理后的球差电镜照片,催化剂组分同图1,其中a图视野中出现单原子位点状态的金属(部分用点虚线圈出);b图催化剂中也存在金属的团簇和纳米颗粒。也同样表明反复再生后的催化剂,活性金属同样以单原子位点、团簇和纳米颗粒三种状态存在,本发明的方法也同样有效。
实施例37
本实施例所提供的一种用于丙烷脱氢的单原子催化剂,是以直径1mm-2mm的球形氧化铝为载体,以Ir为活性组分,以Sn为第一助剂,以K为第二助剂,所述催化剂中Ir的质量百分含量为0.3%,第一助剂的质量百分含量为1.0%,第二助剂的百分含量为1.0%,该催化剂采用等体积法浸渍,用乙二胺气体处理使Ir元素单原子负载制备而成,具体过程为:称取5g氧化铝小球(直径1mm-2mm,比表面剂220m 2/g,吸水率0.442),按活性组分Ir含量0.3%,助剂Sn含量1.0%,K含量1.0%配置H 2IrCl 6、SnCl 4、HCl、KCl混合浸渍溶液2.21ml,将配好的浸渍溶液逐滴加到氧化铝小球中,陈化4小时。80 ℃干燥8小时,600℃焙烧4小时后,用体积比1:24的乙二胺、氮气混合气体活化0.5小时,自然冷却到室温后得到催化剂C-1。
实施例38
本实施例所提供的一种用于丙烷脱氢的单原子催化剂,是以直径1mm-2mm的球形氧化铝为载体,以Ir为活性组分,以Zn为第一助剂,以K为第二助剂,所述催化剂中Ir的质量百分含量为0.3%,第一助剂的质量百分含量为1.0%,第二助剂的百分含量为1.0%,该催化剂采用等体积法浸渍,用乙二胺气体处理使Ir元素单原子负载制备而成,具体过程为:称取5g氧化铝小球(直径1mm-2mm,比表面剂220m 2/g,吸水率0.442),按活性组分Ir含量0.3%,助剂Zn含量1.0%,K含量1.0%配置H 2IrCl 6、Zn(NO 3) 2、HCl、KCl混合浸渍溶液2.21ml,将配好的浸渍溶液逐滴加到氧化铝小球中,陈化4小时。80℃干燥8小时,600℃焙烧4小时后,用体积比1:24的乙二胺、氮气混合气体活化0.5小时,自然冷却到室温后得到催化剂C-2。
实施例39
本实施例所提供的一种用于丙烷脱氢的单原子催化剂,是以直径1mm-2mm的球形氧化铝为载体,以Ir为活性组分,以Sn为第一助剂,以Na为第二助剂,所述催化剂中Ir的质量百分含量为0.3%,第一助剂的质量百分含量为1.0%,第二助剂的百分含量为1.0%,该催化剂采用等体积法浸渍,用乙二胺气体处理使Ir元素单原子负载制备而成,具体过程为:称取5g氧化铝小球(直径1mm-2mm,比表面剂220m 2/g,吸水率0.442),按活性组分Ir含量0.3%,助剂Sn含量1.0%,Na含量1.0%配置H 2IrCl 6、SnCl 4、HCl、NaCl混合浸渍溶液2.21ml,将配好的浸渍溶液逐滴加到氧化铝小球中,陈化4小时。80℃干燥8小时,600℃焙烧4小时后,用体积比1:24的乙二胺、氮气混合气体活化0.5小时,自然冷却到室温后得到催化剂C-3。
实施例40
本实施例所提供的一种用于丙烷脱氢的单原子催化剂,是以直径1mm-2mm的球形氧化铝为载体,以Ir为活性组分,以Zn为第一助剂,以Na为第二助剂,所述催化剂中Ir的质量百分含量为0.3%,第一助剂的质量百分含量为1.0%,第二助剂的百分含量为1.0%,该催化剂采用等体积法浸渍,用乙二胺气体处理使Ir元素单原子负载制备而成,具体过程为:称取5g氧化铝小球(直径1mm-2mm,比表面剂220m 2/g,吸水率0.442),按活性组分Ir含量0.3%,助剂Zn含量1.0%,Na含量1.0%配置H 2IrCl 6、Zn(NO 3) 2、HCl、 NaCl混合浸渍溶液2.21ml,将配好的浸渍溶液逐滴加到氧化铝小球中,陈化4小时。80℃干燥8小时,600℃焙烧4小时后,用体积比1:24的乙二胺、氮气混合气体活化0.5小时,自然冷却到室温后得到催化剂C-4。
对比例2
本对比例所提供的一种用于丙烷脱氢的催化剂,是以直径1mm-2mm的球形氧化铝为载体,以Ir为活性组分,不含其它助剂,所述催化剂中Ir的质量百分含量为0.3%,该催化剂采用等体积法浸渍制备而成,具体过程为:称取5g氧化铝小球(直径1mm-2mm,比表面剂220m 2/g,吸水率0.442),按活性组分Ir含量0.3%,配置H 2IrCl 6、HCl的浸渍溶液2.21ml,将配好的浸渍溶液逐滴加到氧化铝小球中,陈化4小时。80℃干燥8小时,600℃焙烧4小时后,用体积比1:24的乙二胺、氮气混合气体活化0.5小时,自然冷却到室温后得到催化剂D-1。
对比例3
本对比例所提供的一种用于丙烷脱氢的催化剂,是以直径1mm-2mm的球形氧化铝为载体,以Ir为活性组分,以Sn为助剂,所述催化剂中Ir的质量百分含量为0.3%,Sn的质量百分含量为1.0%。该催化剂采用等体积法浸渍制备而成,具体过程为:称取5g氧化铝小球(直径1mm-2mm,比表面剂220m2/g,吸水率0.442),按活性组分Ir含量0.3%,助剂Sn的含量为1%,配置H 2IrCl 6、SnCl 4、HCl的浸渍溶液2.21ml,将配好的浸渍溶液逐滴加到氧化铝小球中,陈化4小时。80℃干燥8小时,600℃焙烧4小时后,用体积比1:24的乙二胺、氮气混合气体活化0.5小时,自然冷却到室温后得到催化剂D-2。
对比例4
本对比例所提供的一种用于丙烷脱氢的催化剂,是以直径1mm-2mm的球形氧化铝为载体,以Ir为活性组分,以Zn为助剂,所述催化剂中Ir的质量百分含量为0.3%,Zn的质量百分含量为1.0%。该催化剂采用等体积法浸渍制备而成,具体过程为:称取5g氧化铝小球(直径1mm-2mm,比表面剂220m2/g,吸水率0.442),按活性组分Ir含量0.3%,助剂Zn的含量为1%,配置H 2IrCl 6、Zn(NO 3) 2、HCl的浸渍溶液2.21ml,将配好的浸渍溶液逐滴加到氧化铝小球中,陈化4小时。80℃干燥8小时,600℃焙烧4小时后,用体积比1:24的乙二胺、氮气混合气体活化0.5小时,自然冷却到室温后得到催化剂D-3。
再生实施例41
将反应失活后的实施例37-4的催化剂于400℃空气气氛下焙烧3h,进行烧积碳操作,得到再生样品在体积比为1:24乙二胺/氮气气氛下500℃处理30min。
将再生后的催化剂测试丙烷脱氢制丙烯的实验,得到催化剂的催化活性与新鲜催化剂相比,选择性和转化率相当。
催化活性测试方法及测试结果
采用本发明实施例37-40及对比例2-4催化剂催化丙烷脱氢制丙烯,具体方法为:取1.0g催化剂置于丙烷脱氢制丙烯用固定床反应器中,常压条件下通入氮气,控制流量为13.1mL/min,以3℃/min的速率将温度由室温升至600℃,然后切换成体积比1:2的氢气和丙烷混合气体,混合气体总流量为39.3mL/min,在常压下进行丙烷脱氢制丙烯的反应。本发明实施例37-40及对比例2-4催化剂催化丙烷脱氢制丙烯的催化性能如表3所示。
表3 实施例37-40及对比例2-4催化剂催化丙烷脱氢制丙烯的催化性能
Figure PCTCN2021139865-appb-000004
从表3的测试活性数据表明加入第一和/或第二助剂后,催化剂的活性转化率和选择性明显提升。而2小时的活性测试数据表明,本发明的催化剂稳定性更好。
本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (18)

  1. 一种金属催化剂的处理方法,包括:在10℃-700℃的条件下,用氨或含氮有机物处理金属负载型催化剂,所述金属负载型催化剂为Ma-Mb-Mc金属负载型催化剂,其中Ma为活性金属,选自贵金属原子或过渡金属的一种或多种,其中贵金属原子选自Pt、Au、Ru、Rh、Pd、Ir或Ag的一种或多种混合,所述过渡金属选自La、Fe、Co、Mn、Cr、Ni或Cu,Ma的含量基于催化剂重量为0.01-5wt%;Mb金属选自Zn、Sn、Co或Al中的一种或多种组合,Mb的含量基于催化剂重量为0.1-20wt%;Mc选自K、Na或两者混合,Mc的含量基于催化剂重量为0-2.0wt%;载体包括氧化铝、二氧化硅-氧化铝、氧化锆、氧化铈、氧化钛、或分子筛或其任意两种或更多种的混合物。
  2. 根据权利要求1所述的处理方法,所述金属负载型催化剂不含Mc金属,其中Ma为Pt、Ru、Pd、Ir、Cr、Ni、PtPd、IrPt、IrPd、或者IrPtPd;Mb金属为Zn、Co或Zn-Co混合金属;
    所述载体为工业常用载体,包括氧化铝、二氧化硅-氧化铝、氧化锆、氧化铈、氧化钛、或分子筛或其任意两种或更多种的混合物;优选使用γ-氧化铝载体、氧化钛、氧化硅、NaY分子筛等载体;载体的形态选自非成型的粉末状,或具有成型的结构;成型结构包括球形、条状、圆柱状、多空通道、蜂窝体等。
  3. 根据权利要求2所述的处理方法,所述Ma金属以单原子位点状态,或单原子位点和团簇的状态和/或纳米颗粒状态,负载在载体上;优选以单原子位点状态负载,或以单原子位点与团簇状态负载,或包括单原子位点、团簇和纳米颗粒三种状态负载在载体上;所述Ma的含量基于催化剂重量为0.01-5wt%,优选0.05-2wt%;Mb的含量基于催化剂重量为0.1-20wt%,优选为0.1-10wt%,特别优选为0.5-4wt%。
  4. 根据权利要求3所述的处理方法,其中,所述金属负载型催化剂,通过将Ma金属前驱体和Mb前驱体负载到载体上制备得到;Ma金属和Mb金属的负载可同时进行或依次进行。
  5. 根据权利要求2-4任一的处理方法,其中,氨包括氨气或能释放氨的物质;所述含氮有机物为C 1-6烷烃胺,C 2-6烯烃胺,C 6-20芳族胺,C 4-20的环烷烃胺,C 4-20的含氮杂环,C 4-20含氮杂芳环,(RCO)xNR 3-x,其中,R为H或C 1-6烷基,X为1或2,所述胺为一元胺或多元胺,所述烷烃基、烯烃基、芳基、含氮杂环、含氮杂芳环可以进一步被氧、羰基、羧基、酯基、胺基取代,所述芳族为单环芳香族或多环稠合芳香族;含氮杂环为含有环氮原子的单环或稠和的非芳香环,环碳原 子可被氧原子取代;含氮杂芳环为含有环氮原子的单环或稠和的杂芳香环,环碳原子可被氧原子取代;所述含氮有机物优选C 1-6烷基胺,C 1-6烷基二胺,C 6-20芳族胺,二甲基甲酰胺;进一步优选乙二胺,三乙胺,丁胺,苯胺或二甲基甲酰胺;特别优选乙二胺。
  6. 根据权利要求2-5任一的处理方法,使用氨气或气态含氮有机物处理处理催化剂。优选使用NH 3气、氮气稀释的NH 3、氮气稀释的含氮有机化合物气体处理,处理的温度在10℃至700℃范围之内,优选300-600℃范围内,通气处理时间为1-400min,优选5-150min。
  7. 根据权利要求1所述的处理方法,其中,Ma金属为Ir金属,第一助剂Mb选自Zn、Sn或两者混合,第二助剂Mc选自K、Na或两者混合,Ma的含量基于催化剂总重量为0.1-2wt%,第一助剂Mb含量为0.1-3.0wt%,第二助剂Mc的百分含量为0.1-2.0wt%,所述载体选自氧化铝载体,优选成型的氧化铝载体,所述Ma金属以单原子状态、或团簇状态、或纳米颗粒状态分散负载在载体上;优选,所述Ma金属以单原子位点状态,或单原子位点与团簇的状态和/或纳米颗粒状态共存的状态,负载在载体上;
    其中氨包括氨气或能释放氨的物质,含氮有机物包括C 1-6烷烃胺,C 2-6烯烃胺,C 6-20芳族胺,C 4-20的环烷烃胺,C 4-20的含氮杂环,C 4-20含氮杂芳环,(RCO)xNR 3-x,其中,R为H或C 1-6烷基,X为1或2,所述胺为一元胺或多元胺,所述烷烃基、烯烃基、芳基、含氮杂环、含氮杂芳环可以进一步被氧、羰基、羧基、酯基、胺基取代,所述芳族为单环芳香族或多环稠合芳香族;含氮杂环为含有环氮原子的单环或稠和的非芳香环,环碳原子可被氧原子取代;含氮杂芳环为含有环氮原子的单环或稠和的杂芳香环,环碳原子可被氧原子取代。
  8. 根据权利要求7所述的处理方法,其中催化剂前体制备方法为将Ma金属前驱体、Mb前驱体和Mc前驱体负载到载体上形成,所述Ma金属前驱体为在溶剂中可溶性的Ma金属的无机盐、有机盐或金属配合物,优选为金属的硝酸盐、氯化盐、硫酸盐、乙酸盐、乙酰丙酮盐、配合物;Mb或Mc金属前驱体为在溶剂中可溶性Mb或Mc的有机盐或无机盐,优选为Mb或Mc金属的硝酸盐、氯化盐、硫酸盐、乙酸盐、草酸盐、乙酰丙酮盐,所述溶剂是指水或醇,其中醇为甲醇或乙醇。
  9. 根据权利要求7或8所述的处理方法,所述催化剂前体的制备步骤包括,非必要地,在室温-80℃下陈化,陈化时间为0.5-40小时,优选2-8小时;非必要地,在陈化后干燥,干燥在60-150℃,优选80℃-120℃下进行,干燥时长为2-20小时,优选6-10小时;干燥后催化剂在400℃-600℃焙烧,焙烧时长3-6小时,得到所述催化剂 前体。
  10. 根据权利要求7-9任一项所述的处理方法,其中氨为氨气,所述含氮有机物优选为乙二胺,三乙胺,丁胺,苯胺或二甲基甲酰胺。
  11. 根据权利要求7-10任一项所述的处理方法,其中所述处理使用气态乙二胺在300℃-600℃下处理,所述使用气态乙二胺处理,可用体积比1-5:20-24的乙二胺/氮气混合气体处理,处理时间为0.05-4小时,优选0.5-1.5小时。
  12. 根据权利要求7-11任一项所述的处理方法,所述催化剂为Ir/Zn/K@Al 2O 3、Ir/Sn/K@Al 2O 3、Ir/Zn/Na@Al 2O 3、Ir/Sn/Na@Al 2O 3,其中Ir的含量基于催化剂总重量为0.1-2wt%,Zn或Sn含量为0.1-3.0wt%,K或Na的百分含量为0.1-2.0wt%。
  13. 一种金属负载型催化剂的再生方法,所述金属负载型催化剂为Ma-Mb-Mc金属负载型催化剂,其中不含Mc金属,包括:
    步骤A、去除导致所述金属负载型催化剂中毒或失活的物质,再生催化剂;
    步骤B、在10℃-700℃的条件下,用氨或含氮有机物处理催化剂,得到活化的催化剂;
    其中,步骤A中,所述失活的物质包括碳和/或硫,去除方法包括,使用O 2氧化去除、空气氧化去除,或使用H 2还原去除;
    其中,Ma金属为活性金属,选自贵金属原子或过渡金属的一种或多种组合,其中贵金属原子选自Pt、Au、Ru、Rh、Pd、Ir或Ag的一种或多种混合,所述过渡金属选自La、Fe、Co、Mn、Cr、Ni或Cu;优选该活性金属是Pt、Ru、Pd、Ir、Cr、Ni、PtPd、IrPt、IrPd、或者IrPtPd。Mb金属选自Zn、Co或Al中的一种或多种组合,优选为Zn、Co或Zn-Co混合金属。
    所述载体选自氧化铝、二氧化硅-氧化铝、氧化锆、氧化铈、氧化钛、或分子筛或其任意两种或更多种的混合物;优选为γ-氧化铝载体、氧化钛、二氧化硅或NaY分子筛;
    所述Ma金属以单原子位点状态,或单原子位点和团簇的状态和/或纳米颗粒状态,负载在载体上,优选,Ma金属以单原子状态负载,或以单原子状态与团簇状态混合负载,或包括单原子、团簇和纳米颗粒三种状态混合负载在载体上;所述Ma金属的含量基于催化剂重量为0.01-5wt%,优选0.05-2wt%;Mb的含量为基于催化剂重量为0.1-20wt%;优选含量为0.1-10wt%,特别优选0.5-4wt%;
    所述含氮有机物为C 1-6烷烃胺,C 2-6烯烃胺,C 6-20芳族胺,C 4-20的环烷烃胺,C 4-20的含氮杂环,C 4-20含氮杂芳环,(RCO)xNR 3-x,其中,R为H或C 1-6烷基,X为1或2,所述胺为一元胺或多元胺,所述烷烃基、烯烃基、芳基、含氮杂环、 含氮杂芳环可以进一步被氧、羰基、羧基、酯基、胺基取代,所述芳族为单环芳香族或多环稠合芳香族;含氮杂环为含有环氮原子的单环或稠和的非芳香环,环碳原子可被氧原子取代;含氮杂芳环为含有环氮原子的单环或稠和的杂芳香环,环碳原子可被氧原子取代;所述含氮有机物优选C 1-6烷基胺,C 1-6烷基二胺,C 6-20芳族胺,二甲基甲酰胺。
  14. 根据权利要求13所述的再生方法,其中,Ma金属为Pt、Ru、Ir或Au的一种或多种混合:Mb为Zn;载体优选氧化铝;含氮有机物为乙二胺,三乙胺,丁胺,苯胺或二甲基甲酰胺。
  15. 一种Ma-Mb-Mc负载型催化剂的再生方法,包括:
    步骤A、去除导致Ma-Mb-Mc金属负载型催化剂中毒或失活的物质,再生催化剂;
    步骤B、在室温-700℃下,用氨或含氮有机物处理催化剂,得到活化的催化剂;
    其中,Ma金属为Ir金属,第一助剂Mb选自Zn、Sn或两者混合,第二助剂Mc选自K、Na或两者混合,Ma的含量基于催化剂总重量为0.1-2wt%,第一助剂Mb含量为0.1-3.0wt%,第二助剂Mc的百分含量为0.1-2.0wt%,所述载体选自氧化铝载体,优选成型的氧化铝载体,所述Ma金属以单原子状态、或团簇状态、或纳米颗粒状态存在分散负载在载体上;优选,所述Ma金属以单原子位点状态,或单原子位点与团簇的状态和/或纳米颗粒状态共存的状态,负载在载体上;
    步骤A中,所述失活物质包括碳和硫,去除方法包括,使用O 2、空气氧化去除,或使用H 2还原去除;
    步骤B中,用氨或含氮有机物处理,所述含氮有机物优选为乙二胺,三乙胺,丁胺,苯胺和二甲基甲酰胺,处理温度进一步优选300-700℃。
  16. 根据权利要求15所述再生方法,其中,步骤B中、优选在400℃-600℃下,使用气态乙二胺处理,优选乙二胺与氮气的混合气,使用体积比为1-5:20-24的乙二胺/氮气混合气体处理催化剂。
  17. 一种催化剂在C 2-6烷烃脱氢制备C 2-6烯烃中的应用,所述催化剂是依据权利要求1-12任一项所述的处理方法、权利要求13-16任一项所述的再生方法得到的催化剂。
  18. 一种低级烷烃脱氢制低级烯烃的方法,包括,使用权利要求1-12任一项的处理方法、权利要求13-16任一项所述的再生方法得到的催化剂,催化C 2-6烷烃脱氢得到C 2-6烯烃。
PCT/CN2021/139865 2020-12-31 2021-12-21 一种金属催化剂的处理或再生方法及应用 WO2022143275A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/259,970 US20240091760A1 (en) 2020-12-31 2021-12-21 Method for treating or regenerating metal catalyst and application

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011637274 2020-12-31
CN202011637274.3 2020-12-31
CN202110354097.6 2021-04-01
CN202110354097.6A CN115178256B (zh) 2021-04-01 2021-04-01 一种三金属催化剂的制备及在低级烷烃脱氢的应用

Publications (1)

Publication Number Publication Date
WO2022143275A1 true WO2022143275A1 (zh) 2022-07-07

Family

ID=82260240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139865 WO2022143275A1 (zh) 2020-12-31 2021-12-21 一种金属催化剂的处理或再生方法及应用

Country Status (2)

Country Link
US (1) US20240091760A1 (zh)
WO (1) WO2022143275A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115337929A (zh) * 2022-08-09 2022-11-15 宁波杭州湾新材料研究院 负载铝单原子和铁单原子的复合碳材料及其制法与应用
CN115869949A (zh) * 2022-12-22 2023-03-31 中国科学院过程工程研究所 一种负载型单原子铜基催化剂及其制备方法和应用
CN116966914A (zh) * 2023-06-26 2023-10-31 中国科学院大连化学物理研究所 一种γ氧化铁催化剂、制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588007A (zh) * 2013-11-01 2015-05-06 中国石油化工股份有限公司 一种饱和烷烃脱氢催化剂及其制备方法
CN109225306A (zh) * 2018-10-26 2019-01-18 清华大学 用于低碳烃类脱氢制低碳烯烃的单原子催化剂及催化方法
WO2020078980A1 (en) * 2018-10-18 2020-04-23 Shell Internationale Research Maatschappij B.V. Catalyst for alkane oxidative dehydrogenation and/or alkene oxidation
CN111495378A (zh) * 2020-05-28 2020-08-07 中建材蚌埠玻璃工业设计研究院有限公司 一种甲烷化催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588007A (zh) * 2013-11-01 2015-05-06 中国石油化工股份有限公司 一种饱和烷烃脱氢催化剂及其制备方法
WO2020078980A1 (en) * 2018-10-18 2020-04-23 Shell Internationale Research Maatschappij B.V. Catalyst for alkane oxidative dehydrogenation and/or alkene oxidation
CN109225306A (zh) * 2018-10-26 2019-01-18 清华大学 用于低碳烃类脱氢制低碳烯烃的单原子催化剂及催化方法
CN111495378A (zh) * 2020-05-28 2020-08-07 中建材蚌埠玻璃工业设计研究院有限公司 一种甲烷化催化剂及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115337929A (zh) * 2022-08-09 2022-11-15 宁波杭州湾新材料研究院 负载铝单原子和铁单原子的复合碳材料及其制法与应用
CN115337929B (zh) * 2022-08-09 2023-11-10 宁波杭州湾新材料研究院 负载铝单原子和铁单原子的复合碳材料及其制法与应用
CN115869949A (zh) * 2022-12-22 2023-03-31 中国科学院过程工程研究所 一种负载型单原子铜基催化剂及其制备方法和应用
CN116966914A (zh) * 2023-06-26 2023-10-31 中国科学院大连化学物理研究所 一种γ氧化铁催化剂、制备方法及应用
CN116966914B (zh) * 2023-06-26 2024-04-12 中国科学院大连化学物理研究所 一种γ氧化铁催化剂、制备方法及应用

Also Published As

Publication number Publication date
US20240091760A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
WO2022143275A1 (zh) 一种金属催化剂的处理或再生方法及应用
US20090105511A1 (en) Uniformly, Highly Dispersed Metal Catalyst and Process for Producing the Same
AU2012365439B2 (en) Catalyst composite for dehydrogenation of hydrocarbons and method of preparation thereof
JP2004529759A (ja) アルキン類の選択的水素化方法及びそのための触媒
CN1244446A (zh) 有机化合物转化反应中可使用的载体上的催化剂
EA022062B1 (ru) Катализаторы фишера-тропша
JP5543150B2 (ja) 芳香族ニトロ化合物の選択的水素化触媒、その製造方法および再生方法並びにこれを用いた芳香族ニトロ化化合物の選択的水素化方法
US8921631B2 (en) Selective catalytic hydrogenation of alkynes to corresponding alkenes
US6288295B1 (en) Catalyst for use in organic compound transformation reactions
CN101190413A (zh) 一种石脑油重整催化剂及其制备方法
EP1970117A1 (en) Gold-based catalysts for selective hydrogenation of unsaturated compounds
CN114682283B (zh) 碳氮包覆负载型金属单原子催化剂、制备方法及其应用
CN114585439B (zh) 适用于烃类转化反应的催化剂、其制备方法和应用
CN114682245B (zh) 一种Ma-Mb金属负载型催化剂的处理、活化和再生方法
CN115178256B (zh) 一种三金属催化剂的制备及在低级烷烃脱氢的应用
KR20120077637A (ko) 백금계 촉매의 제조 방법
JP2018030093A (ja) アルカリ性担体に担持された金−セリウム酸化物担持複合体触媒およびその製造方法
CN114682282B (zh) 一种CN@Ma-Mb负载型单原子催化剂的制备方法及其应用
CN113272407A (zh) 费-托方法
WO2022249616A1 (ja) 酸化脱水素用触媒
CN111569861B (zh) 一种将异构烷烃转化为正构烷烃的反应用催化剂及其制备方法
JP4421913B2 (ja) 炭化水素類製造用触媒の製造方法およびその触媒を用いた炭化水素類の製造方法
CN111054381B (zh) 用于轻质烷烃脱氢的催化剂
RU2783119C2 (ru) Катализатор изомеризации легких алканов, способ его получения и применение
CN114733521A (zh) 一种双晶型载体的烷烃非氧化脱氢催化剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18259970

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914014

Country of ref document: EP

Kind code of ref document: A1