WO2022138555A1 - 光吸収異方性フィルム、視角制御システムおよび画像表示装置 - Google Patents

光吸収異方性フィルム、視角制御システムおよび画像表示装置 Download PDF

Info

Publication number
WO2022138555A1
WO2022138555A1 PCT/JP2021/046999 JP2021046999W WO2022138555A1 WO 2022138555 A1 WO2022138555 A1 WO 2022138555A1 JP 2021046999 W JP2021046999 W JP 2021046999W WO 2022138555 A1 WO2022138555 A1 WO 2022138555A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light absorption
liquid crystal
absorption anisotropic
layer
Prior art date
Application number
PCT/JP2021/046999
Other languages
English (en)
French (fr)
Inventor
伸一 吉成
晋也 渡邉
直也 柴田
渉 星野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202180085068.2A priority Critical patent/CN116635778A/zh
Priority to JP2022571443A priority patent/JPWO2022138555A1/ja
Publication of WO2022138555A1 publication Critical patent/WO2022138555A1/ja
Priority to US18/331,818 priority patent/US20230314854A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/281Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133365Cells in which the active layer comprises a liquid crystalline polymer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133703Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by introducing organic surfactant additives into the liquid crystal material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a light absorption anisotropic film for controlling a viewing angle, a viewing angle control system using this light absorption anisotropic film, and an image display device using this viewing angle control system.
  • Patent Document 1 When an in-vehicle display such as a car navigation system is used, there is a problem that the light emitted upward from the display screen is reflected on the windshield or the like, which hinders driving.
  • a first polarizing element having an absorption axis in the plane and an absorption axis of an organic dichroic substance with respect to the normal direction are 0 ° to 45 ° to 45.
  • a method has been proposed in which a second polarizing element (light absorption anisotropic layer) oriented at ° is used in combination.
  • the first polarizing element the polarizing element on the visual recognition side in the liquid crystal display device can be used.
  • the image can be observed by an observer in a desired direction by transmitting only the light from the image in a specific direction and blocking the transmission of the light in other angles.
  • the image can be prevented from being projected from a certain direction of the window glass.
  • the light alignment film using an azobenzene dye or the like is exposed to ultraviolet rays from diagonally above, and the inclination angle is applied to the surface of the light alignment film.
  • a coating liquid for forming a light absorption anisotropic layer containing an organic dichroic substance and a liquid crystal compound is applied and dried on the anisotropy with a liquid crystal compound and an organic two.
  • the chromatic substance was used in an inclined orientation.
  • the ultraviolet exposure device is a device capable of irradiating high output and precise parallel light rays. Is.
  • large-scale reflection such as sufficiently suppressing stray light in the exposure environment in order to eliminate the irradiation of light from other than the desired angle is achieved. Light measures were needed. As a result, in this method, the cost burden related to the exposure apparatus for forming the light absorption anisotropic layer becomes very large.
  • the cost burden related to the exposure apparatus used for controlling the orientation of the light absorption anisotropic layer is small, and the orientation direction of the organic dichroic substance in the light absorption anisotropic layer is uniform. It is an object of the present invention to provide a sex film, a viewing angle control system using this light absorption anisotropic film, and an image display device using this viewing angle control system.
  • a light absorption anisotropic film having a light absorption anisotropic layer and a first alignment layer adjacent to the light absorption anisotropic layer.
  • the light absorption anisotropic layer contains a liquid crystal compound and an organic dichroic substance, and contains.
  • the angle formed by the central axis of transmittance of the light absorption anisotropic layer and the normal of the light absorption anisotropic layer is 5 ° or more and less than 45 °.
  • the first alignment layer is a layer formed by immobilizing a hybrid-oriented polymerizable liquid crystal compound in which the orientation direction in the thickness direction continuously changes from one surface side to the other surface side. Anisotropic film.
  • the angle formed by the orientation axis of the polymerizable liquid crystal compound at the interface of the first alignment layer on the light absorption anisotropic layer side and the normal of the first alignment layer is 2 ° to 50 °.
  • the liquid crystal compound of the light absorption anisotropic layer contains a polymerizable liquid crystal compound, and the polymerizable liquid crystal compound contains a liquid crystal compound exhibiting a smectic phase.
  • Light absorption anisotropic film (6) The method according to any one of (1) to (5), wherein the first alignment layer has a second alignment layer made of polyvinyl alcohol or polyimide adjacent to the side opposite to the light absorption anisotropic layer side.
  • Light absorption anisotropic film (7)
  • a viewing angle control system having a polarizing element and the light absorption anisotropic film according to any one of (1) to (6).
  • An image display device in which the viewing angle control system according to (7) is arranged on at least one main surface of a display panel.
  • FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of the liquid crystal display device of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of an embodiment of the light absorption anisotropic film of the present invention.
  • FIG. 3 is a conceptual cross-sectional view showing the orientation direction of the liquid crystal molecule and the dichroic substance inside the light absorption anisotropic film of the present invention.
  • FIG. 4 is a diagram showing the positional relationship between the direction of the transmittance central axis of the light absorption anisotropic layer and the absorption axis of the polarizing element in the embodiment.
  • FIG. 5 is a diagram conceptually showing a method of cutting out a section for measuring the orientation angle of the first alignment layer.
  • FIG. 6 is a diagram conceptually showing a method of measuring the orientation angle of the first alignment layer. It is a conceptual diagram for explanation.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • parallel and orthogonal do not mean parallel and orthogonal in a strict sense, but mean a range of ⁇ 5 ° from parallel or orthogonal.
  • (meth) acrylate is used to mean “either or both of acrylate and methacrylate”.
  • liquid crystal composition and the liquid crystal compound include those which no longer show liquid crystal property due to curing or the like as a concept.
  • the liquid crystal display device 100 of the present invention includes, from the viewing side, at least a light absorption anisotropic film 101, a viewing side polarizing element 102, a liquid crystal cell 103, and a backlight side polarizing element 104.
  • the light absorption anisotropic film 101 is the light absorption anisotropic film of the present invention and has a light absorption anisotropic layer and a first alignment layer.
  • the light absorption anisotropic film 101 various configurations can be used as long as it has a light absorption anisotropic layer and a first alignment layer, which will be described later.
  • the light absorption anisotropic film 101 of the present invention includes, as an example, the barrier layer 1 and the light absorption anisotropic layer 2 as conceptually shown in FIG.
  • the first alignment layer 3, the second alignment layer 4, and the TAC film 5 are provided in this order.
  • the TAC film 5 is a support that supports the light absorption anisotropic layer 101.
  • the TAC film is an abbreviation for Triacetylcellulose film.
  • the direction of the absorption axis of the polarizing element may be the vertical direction or the horizontal direction, but in a state where the liquid crystal display device is normally used, the direction of the side of the liquid crystal display device close to the vertical direction is the vertical direction or the horizontal direction.
  • the direction of the side of the liquid crystal display device that is close to the direction is called the horizontal direction.
  • the light absorption anisotropic layer contains an organic dichroic substance and a liquid crystal compound as main components, and may contain a polymerization initiator, a leveling agent, an orientation control agent and the like as other components.
  • a polymerization initiator such as a low-molecular-weight liquid crystal compound and a high-molecular-weight liquid crystal compound
  • the organic dichroic substance has a good orientation state in the light-absorbing anisotropic layer. In order to obtain it, it is preferable that it contains at least a part of a polymer liquid crystal compound.
  • the polymer liquid crystal compound it is possible to suppress the difference in the tilt angle of the liquid crystal compound between the air-side interface and the support-side interface of the light absorption anisotropic layer to be relatively small, and obtain good viewing angle characteristics. Also preferred above.
  • the organic dichroic substance having absorption in the visible region in a desired direction it is preferable to orient the organic dichroic substance having absorption in the visible region in a desired direction, and as an example, at least one kind of organic dichroic substance is used. Examples thereof include a light absorption anisotropic layer inclined with respect to the normal direction of the film.
  • the organic as a guest is used by utilizing the orientation of the liquid crystal compound as the host by using the technique of producing a guest-host liquid crystal cell or the like.
  • a mode in which the dichroic substance is oriented is more preferable.
  • the normal is a direction orthogonal to the main surface of the sheet-like material (film, layer, film, plate-like material), and for example, each layer in the light absorption anisotropic film shown in FIG.
  • the main surface is the maximum surface of the sheet-like material, and is usually both sides in the thickness direction.
  • the first alignment layer adjacent to the light absorption anisotropic layer is formed.
  • the first alignment layer is a hybrid-oriented polymerizable liquid crystal compound in which the orientation direction in the thickness direction continuously changes from one surface side to the other surface side. It is a layer of
  • the orientation direction of an organic dichroic dye (liquid crystal compound) in a light absorption anisotropic layer has been controlled by using a photo-alignment layer containing a photo-alignment material typified by an azobenzene dye and polyvinyl cinnamate.
  • a photo-alignment layer containing a photo-alignment material typified by an azobenzene dye and polyvinyl cinnamate.
  • the light alignment layer containing the photoalignment material is irradiated with ultraviolet rays from an oblique direction at an angle with respect to the normal direction of the photoalignment layer, and is inclined with respect to the normal direction of the photoalignment layer. It causes anisotropy.
  • a light absorption anisotropic layer By forming a light absorption anisotropic layer using a composition containing a liquid crystal compound and an organic dichroic substance in the optically oriented layer having the gradient and anisotropy, it becomes a host.
  • the liquid crystal compound is inclined and oriented by the anisotropy of the light alignment layer, and the organic dichroic substance in the light absorption anisotropic layer is also oriented by following the orientation of the liquid crystal compound.
  • an attempt is made to sufficiently control the orientation of the organic dichroic dye in the light absorption anisotropic layer by a method using such a light alignment layer it is caused by a decrease in illuminance due to ultraviolet irradiation from an inclined direction.
  • the orientation direction is determined by the incident angle of ultraviolet rays. Therefore, in order to obtain a uniform orientation direction, a light source capable of irradiating a high output and a high degree of parallel light is required. Further, in order to obtain a uniform orientation direction, it is necessary to take measures to prevent diffused reflection in order to suppress stray light inside the optical system and the exposure apparatus. Therefore, the method of aligning the dichroic dye using the photo-alignment layer has a heavy burden on the treatment and the apparatus.
  • the angle formed by the central axis of transmission of the light absorption anisotropic layer and the normal of the light absorption anisotropic layer is 5 ° or more and less than 45 °, that is, the light absorption anisotropic of the present invention.
  • the orientation direction of the organic dichroic dye (organic compound) in the layer the size of the tilt angle of the orientation is insufficient. Further, in these methods, the orientation direction (tilt direction) could not be freely changed as needed.
  • the above problem is solved by using a liquid crystal layer in which a liquid crystal compound is hybrid-oriented as a first alignment layer in order to control the orientation direction of the light absorption anisotropic layer instead of the light alignment layer or the like.
  • the method for determining the orientation angle of the orientation of the first alignment layer is not particularly limited, but the orientation of the first alignment layer is restricted in the in-plane direction adjacent to the side opposite to the light absorption anisotropic layer.
  • a method of providing a second alignment layer having a force is exemplified.
  • the second alignment layer is preferably a rubbing-treated polyvinyl alcohol layer or a rubbing-treated polyimide layer.
  • the technique of orienting the organic dichroic substance in a desired direction it is possible to refer to the technique of manufacturing a polarizing element using the organic dichroic substance, the technique of manufacturing a guest-host liquid crystal cell, and the like.
  • the light absorption anisotropic layer has a liquid crystal compound and an organic dichroic substance.
  • the liquid crystal compound 11 is inclined or oriented in a desired direction, and the liquid crystal compound 11 is used as a host and is shown by reference numeral 13.
  • the dichroic substance D-1, the dichroic substance D-2 indicated by reference numeral 14, and the dichroic substance D-3 indicated by reference numeral 15 are oriented along the liquid crystal compound.
  • the dichroic substance D-1, the dichroic substance D-2, and the dichroic substance D-3 are, for example, organic dichroic substances having different absorption beak wavelengths from each other.
  • orientation of the dichroic substance for example, the method for producing a dichroic polarizing element described in JP-A-11-3005036 and JP-A-2002-90526, and JP-A-2002-99388 and JP-A-2002-99388.
  • the technique used in the method for producing a guest-hosted liquid crystal display device described in JP-A-2016-237387 is also used for producing a light absorption anisotropic layer in the light absorption anisotropic film of the present invention. Can be done.
  • the molecule of the organic dichroic substance can be made to have the desired orientation as described above in association with the orientation of the host liquid crystal.
  • the organic dichroic substance that serves as a guest and the rod-shaped liquid crystal compound that serves as the host liquid crystal are mixed to orient the host liquid crystal, and the molecules of the organic dichroic substance are aligned along the orientation of the liquid crystal molecules.
  • the orientation of the organic dichroic substance by forming a chemical bond.
  • the orientation can be fixed by advancing the polymerization of the host liquid crystal, the organic dichroic substance, and the polymerizable component added as desired.
  • the guest-hosted liquid crystal cell itself having a liquid crystal layer containing at least an organic dichroic substance and a host liquid crystal on a pair of substrates may be used as the light absorption anisotropic layer used in the present invention.
  • the orientation of the host liquid crystal (and the orientation of the accompanying organic dichroic substance molecules) can be controlled by the alignment film formed on the inner surface of the substrate, and the orientation state is maintained unless an external stimulus such as an electric field is applied. Therefore, the light absorption characteristics of the light absorption anisotropic layer used in the present invention can be made constant.
  • a polymer film that can be used as an anisotropic layer can be produced. Specifically, it can be produced by applying a solution of an organic dichroic substance to the surface of a polymer film and allowing it to permeate into the film.
  • the orientation of the organic bicolor substance can be adjusted by the orientation of the polymer chain in the polymer film, its properties (chemical and physical properties such as the polymer chain or the functional group thereof), the coating method, and the like. Details of this method are described in Japanese Patent Application Laid-Open No. 2002-90526.
  • the detection of the central axis of transmittance may be performed in the same manner as the method described later.
  • the angle formed by the central axis of transmittance and the normal of the light absorption anisotropic layer of the light absorption anisotropic layer is 5 ° or more and less than 45 °. If the angle formed by the central axis of the transmittance and the normal of the light absorption anisotropic layer is less than 5 °, there are inconveniences such as a narrow degree of freedom in designing the layout in the vehicle including the image display device. Even if the angle formed by the central axis of transmission and the normal of the light absorption anisotropic layer is set to 45 ° or more, the screen is difficult to see from such a shallow angle, and the emitted light from the image display device is used.
  • the light blocking effect is also insufficient. That is, when the angle formed by the central axis of transmission and the normal of the light absorption anisotropic layer is 45 ° or more, it is not preferable from the viewpoint of the viewing angle control direction of the viewing angle control system, and the viewing from the set viewing direction is not preferable. There are inconveniences such as poor performance, insufficient light blocking property in directions other than the set viewing direction, and increased reflection on the window glass in in-vehicle applications and the like.
  • the angle formed by the central axis of transmittance and the normal of the light absorption anisotropic layer is preferably 5 ° to 30 °, more preferably 5 ° to 15 °.
  • the central axis of transmission is the most when the transmission is measured by changing the inclination angle (extreme angle) and the inclination direction (azimuth angle) with respect to the normal direction of the main surface of the light absorption anisotropic layer. It means the direction of high permeability.
  • the central axis of transmittance of the light absorption anisotropic layer for example, using AxoScan OPMF-1 (manufactured by Optoscience), first, the direction of the azimuth angle at which the central axis of transmittance is tilted is set.
  • the transmittance is derived by measuring the Muller matrix while changing the polar angle in various directions in the direction of the azimuth angle, and the direction with the highest transmittance (polar angle) is the light absorption anisotropic layer.
  • the direction of the central axis of transmittance is the angle formed by the central axis of transmittance in the light absorption anisotropic layer and the normal direction of the light absorption anisotropic layer.
  • the central axis (extreme angle) of the transmittance of the light absorption anisotropic layer is measured at 15 locations arbitrarily selected in the light absorption anisotropic layer, and the average of the polar angles is calculated as this light absorption anisotropic. It is the central axis of transmittance in the sex layer. Further, in the present invention, these optical measurements are carried out using light having a wavelength of 550 nm unless otherwise specified.
  • the light absorption anisotropic layer used in the present invention preferably has a transmittance (hereinafter, 550 nm) tilted by 30 ° from the central axis of transmittance of 60% or less, more preferably 50% or less, and 45%. The following is more preferable.
  • the light absorption anisotropic layer used in the present invention preferably has a transmittance of 65% or more, more preferably 75% or more, and further preferably 85% or more in the transmittance central axis direction. .. As a result, the illuminance at the center of the viewing angle of the image display device can be increased to improve visibility.
  • the degree of orientation of the light absorption anisotropic layer at 420 nm is 0.93 or more in that the color tint in the front direction can be neutralized.
  • the tint of a light absorption anisotropic film containing a dichroic substance is usually controlled by adjusting the amount of the dichroic substance added to the film.
  • the light absorption anisotropic layer is centered on the transmittance axis so as to satisfy the transmittance tilted by 30 ° from the center axis of transmittance and the transmittance of the center axis of transmittance.
  • a plurality of different light anisotropic absorption layers may be laminated or a retardation layer may be laminated.
  • the width of a region having high transmittance can be adjusted.
  • the transmission / light shielding performance can be controlled by controlling the retardation value and the optical axis direction.
  • the thickness of the retardation layer is preferably thin as long as it does not impair the optical characteristics, mechanical characteristics, and manufacturing aptitude, and specifically, 1 to 150 ⁇ m is preferable. -70 ⁇ m is more preferable, and 1 to 30 ⁇ m is even more preferable.
  • a first alignment layer having a hybrid-oriented liquid crystal compound is provided adjacent to the light absorption anisotropic layer.
  • the first alignment layer is formed by immobilizing a hybrid-oriented polymerizable liquid crystal compound in which the orientation direction in the thickness direction continuously changes from one surface side to the other surface side. It is a layer.
  • the first alignment layer 3 is a hybrid in which the orientation direction of the liquid crystal molecules 11 continuously changes from the TAC film 3 (support) side toward the barrier layer 1 (air side).
  • An oriented liquid crystal layer is provided in which the orientation direction of the liquid crystal molecules 11 continuously changes from the TAC film 3 (support) side toward the barrier layer 1 (air side).
  • the orientation direction of the liquid crystal compound in the first alignment layer is basically a plane from the side opposite to the light absorption anisotropic layer toward the light absorption anisotropic layer side, as shown in FIG.
  • the orientation direction of the liquid crystal molecule 11 continuously changes from the inward direction (horizontal orientation) to the normal direction (thickness direction, vertical orientation).
  • the orientation direction of the liquid crystal compound basically follows the orientation direction of the liquid crystal compound existing in the lower layer (forming surface).
  • the function of the first alignment layer is to utilize the orientation angle (tilt angle) of the liquid crystal compound at the interface (air side interface) on the light absorption anisotropic layer side of the first alignment layer, and to provide light on it.
  • the orientation angle (tilt angle) of the liquid crystal compound at the interface between the absorption anisotropic layer and other liquid crystal layers and the first alignment layer, and the orientation direction, that is, the orientation in the orientation angle direction are controlled.
  • the liquid crystal compound used for the first alignment layer is not limited, and various known liquid crystal compounds can be used. Further, a rod-shaped liquid crystal compound or a disk-shaped liquid crystal compound may be used.
  • the first alignment layer, the light absorption anisotropic layer and the other liquid crystal layer provided on the first alignment layer are formed by using a liquid crystal compound of the same type or a liquid crystal compound having a similar chemical structure. It is more preferable to form using the same liquid crystal compound. With such a configuration, the interaction between the first alignment layer and the light absorption anisotropic layer and other liquid crystal layers on the first alignment layer is strengthened, and the orientation angle of the liquid crystal compound in the light absorption anisotropic layer or the like is enhanced. And the orientation direction can be controlled more accurately.
  • the liquid crystal compound of the first alignment layer can be formed by using various liquid crystal compounds of low molecular weight liquid crystal compound and high molecular weight liquid crystal compound, but in order to obtain a uniform alignment state, the high molecular weight liquid crystal compound is used. It is preferable to form the first alignment layer. Further, the liquid crystal compound of the first alignment layer is preferably a polymerizable liquid crystal compound regardless of whether it is a high molecular weight liquid crystal or a low molecular weight liquid crystal. By applying a coating liquid containing a polymerizable liquid crystal compound that forms the first alignment layer and performing a curing treatment before applying the coating liquid that forms the light absorption anisotropic layer, the first alignment layer is cured.
  • the first alignment layer is most preferably a layer formed from a composition having a polymerizable polymer liquid crystal.
  • the thickness of the first alignment layer is not limited, and a thickness capable of exhibiting sufficient orientation may be appropriately set according to the material for forming the first alignment layer.
  • the thickness of the first alignment layer is preferably 0.1 to 5.0 ⁇ m in that a good alignment state can be obtained in the light absorption anisotropic layer.
  • the thickness of the first alignment layer is more preferably 0.1 to 3.5 ⁇ m, further preferably 0.1 to 2.0 ⁇ m.
  • the angle formed by the alignment axis (optical axis) of the liquid crystal compound at the interface on the light absorption anisotropic layer side and the normal line of the first alignment layer is preferably 2 ° to 50 °. .. That is, in the first alignment layer, the orientation angle of the liquid crystal compound with respect to the normal is preferably 2 ° to 50 ° at the interface on the light absorption anisotropic layer side.
  • the orientation angle of the liquid crystal compound with respect to the normal is set to more than 50 °, the screen is difficult to see from such a shallow angle, the brightness of the emitted light by the image display device is high, and the optically anisotropic layer is formed. In the front direction where the optical path length of the crossing optical path is shortened, the light blocking effect is also insufficient. That is, by setting the orientation angle of the liquid crystal compound with respect to the normal in the first alignment layer to 50 ° or less, the visibility from the set viewing direction can be preferably made from the viewpoint of the viewing angle control direction of the viewing angle control system.
  • the orientation angle of the liquid crystal compound with respect to the normal on the interface side on the light absorption anisotropic layer side is more preferably 3 ° to 45 °, further preferably 5 ° to 35 °.
  • the orientation angle of the liquid crystal compound with respect to the normal of the interface on the light absorption anisotropic layer side in the first alignment layer is measured as follows. First, as conceptually shown in FIG. 5, a first alignment layer is formed on the support, and then the laminate is cut into 2 ⁇ m in parallel with the thickness direction (normal direction) to obtain a sample section 43. Cut out. Cutting may be performed using, for example, a microtome. Then, using a polarizing microscope, as conceptually shown in FIG. 6, the modulator and the analyzer are placed on the cross Nicol, and while moving the azimuth angle of the section 43, the air interface side of the first alignment layer, that is, light absorption is absorbed.
  • the azimuth to be extinguished is examined, and then a sharp color plate ( ⁇ plate) is inserted. Then, by observing the color change while moving the azimuth, the direction of the slow axis in the section can be determined, and it can be confirmed that the entire first alignment layer is in the hybrid orientation.
  • the light absorption anisotropic film of the present invention preferably has a second alignment layer on the opposite side of the light absorption anisotropic layer of the first alignment layer.
  • the light absorption anisotropic film shown in FIGS. 2 and 3 preferably has a second alignment layer 4 on the surface of the TAC film 5 as a support and a first orientation on the surface of the second alignment layer 4. It has a layer 3 and has a light absorption anisotropic layer on the surface of the first alignment layer 3.
  • the second alignment layer is an alignment layer having an orientation regulating force in the in-plane direction (direction of the azimuth), and is oriented in the in-plane direction of the liquid crystal compound in the first alignment layer.
  • the orientation direction of the liquid crystal compound in the in-plane direction in the first alignment layer is controlled more accurately, and as a result, the liquid crystal compound in the in-plane direction is controlled in the light absorption anisotropic layer.
  • the orientation direction can be controlled more accurately.
  • the second alignment layer various known alignment layers (alignment films) can be used as long as the liquid crystal compound can be oriented in the in-plane direction.
  • a resin film made of a rubbing-treated polyvinyl alcohol, polyimide, a polyfunctional (meth) acrylate compound, or the like is exemplified.
  • the rubbing-treated polyvinyl alcohol film and the rubbing-treated polyimide film are preferably exemplified as the second alignment layer.
  • a photo-alignment layer made of a photo-alignment material such as polyvinyl cinnamate and an azobenzene-based compound, which is irradiated with ultraviolet rays of linear polarization from the normal direction of the alignment layer, can also be used.
  • the light absorption anisotropic layer contains a liquid crystal compound and an organic dichroic substance.
  • the first alignment layer is a hybrid oriented layer of a polymerizable liquid crystal compound.
  • the liquid crystal compound may be either a rod-shaped type (rod-shaped liquid crystal compound) or a disk-shaped type (disk-shaped liquid crystal compound), but it is easy to control the orientation direction of the dichroic substance.
  • a rod-shaped liquid crystal compound is preferable.
  • the rod-shaped liquid crystal compound is preferably a liquid crystal compound that does not exhibit dichroism in the visible region.
  • the rod-shaped liquid crystal compound either a low-molecular-weight liquid crystal compound or a high-molecular-weight liquid crystal compound can be used.
  • the "small molecule liquid crystal compound” refers to a liquid crystal compound having no repeating unit in its chemical structure.
  • the “polymer liquid crystal compound” refers to a liquid crystal compound having a repeating unit in the chemical structure.
  • the small molecule liquid crystal compound include liquid crystal compounds described in JP-A-2013-228706.
  • the polymer liquid crystal compound include thermotropic liquid crystal polymers described in JP-A-2011-237513.
  • the polymer liquid crystal compound may have a crosslinkable group (for example, an acryloyl group and a methacryloyl group) at the terminal.
  • the rod-shaped liquid crystal compound may be used alone or in combination of two or more.
  • the rod-shaped liquid crystal compound preferably contains a high-molecular-weight liquid crystal compound from the viewpoint of further excellent effects of the present invention, and particularly preferably contains both a high-molecular-weight liquid crystal compound and a low-molecular-weight liquid crystal compound.
  • the rod-shaped liquid crystal compound preferably contains a liquid crystal compound represented by the formula (LC) or a polymer thereof.
  • the liquid crystal compound represented by the formula (LC) or a polymer thereof is a compound exhibiting liquid crystallinity.
  • the liquid crystallinity may be a nematic phase or a smectic phase, and may exhibit both a nematic phase and a smectic phase.
  • the liquid crystal property exhibited by the liquid crystal compound is a smectic liquid crystal phase, a light absorption anisotropic layer having a higher degree of orientation order can be produced, which is preferable.
  • the smectic phase may be a higher-order smectic phase.
  • the high-order smectic phase referred to here is the smectic B phase, the smectic D phase, the smectic E phase, the smectic F phase, the smectic G phase, the smectic H phase, the smectic I phase, the smectic J phase, the smectic K phase, and the smectic L. It is a phase, and more preferably, it is a smectic B phase, a smectic F phase, and a smectic I phase.
  • the smectic liquid crystal phase represented by the liquid crystal compound is these higher-order smectic liquid crystal phases because a light absorption anisotropic layer having a higher degree of orientation order can be produced.
  • the light absorption anisotropic layer prepared from the high-order smectic liquid crystal phase having a high degree of orientation order can obtain the Bragg peak derived from the high-order structure such as the hexatic phase and the crystal phase in the X-ray diffraction measurement. ..
  • the Bragg peak is a peak derived from the plane periodic structure of molecular orientation, and according to the liquid crystal composition of the present invention, a light absorption anisotropic layer having a periodic interval of 3.0 to 5.0 ⁇ is obtained. Can be done.
  • Q1 and Q2 are independently hydrogen atom, halogen atom, linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms, respectively.
  • RP is a hydrogen atom, a halogen atom, a linear, branched or cyclic alkylene group having 1 to 10 carbon atoms, or an alkyl halide group having 1 to 20 carbon atoms.
  • An alkoxy group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an alkynyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, and a heterocyclic group may be called a heterocyclic group).
  • Cyano group hydroxy group, nitro group, carboxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, amino group (including anirino group) ), Ammonio group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alkyl or arylsulfonylamino group, mercapto group, alkylthio group, arylthio group, heterocyclic thio group.
  • Preferred embodiments of the crosslinkable group include a radically polymerizable group or a cationically polymerizable group.
  • the radically polymerizable group include a vinyl group represented by the above formula (P-1), a butadiene group represented by the above formula (P-2), and a (meth) acrylic represented by the above formula (P-4).
  • the maleimide group represented by -12) is preferable.
  • the cationically polymerizable group includes a vinyl ether group represented by the above formula (P-18), an epoxy group represented by the above formula (P-19), or an oxetanyl group represented by the above formula (P-20). , Are preferred.
  • S1 and S2 each independently represent a divalent spacer group, and the preferred embodiment of S1 and S2 has the same structure as SPW in the above formula (W1), and thus the description thereof is omitted. do.
  • MG represents a mesogen group described later.
  • the mesogen group represented by MG is a group showing the main skeleton of a liquid crystal molecule that contributes to the formation of a liquid crystal.
  • the liquid crystal molecule exhibits liquid crystallinity, which is an intermediate state (mesophase) between the crystalline state and the isotropic liquid state.
  • the mesogen group represented by MG preferably contains 2 to 10 cyclic structures, and more preferably 3 to 7 cyclic structures. Specific examples of the cyclic structure include aromatic hydrocarbon groups, heterocyclic groups, and alicyclic groups.
  • the mesogen group represented by MG the following formula (MG-A) or the following formula is used because the expression of liquid crystallinity, adjustment of liquid crystal phase transition temperature, raw material availability and synthetic suitability, and the effect of the present invention are more excellent.
  • the group represented by (MG-B) is preferable, and the group represented by the formula (MG-B) is more preferable.
  • A1 is a divalent group selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups and alicyclic groups. These groups may be substituted with a substituent such as the substituent W.
  • the divalent group represented by A1 is preferably a 4- to 15-membered ring. Further, the divalent group represented by A1 may be a monocyclic ring or a condensed ring. * Represents the bonding position with S1 or S2.
  • Examples of the divalent aromatic hydrocarbon group represented by A1 include a phenylene group, a naphthylene group, a fluorene-diyl group, an anthracene-diyl group, a tetracene-diyl group, and the like. From the viewpoint of properties and the like, a phenylene group and a naphthylene group are preferable.
  • the divalent heterocyclic group represented by A1 may be either aromatic or non-aromatic, but a divalent aromatic heterocyclic group is preferable from the viewpoint of further improving the degree of orientation. ..
  • Examples of the atom other than carbon constituting the divalent aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom.
  • the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, they may be the same or different.
  • divalent aromatic heterocyclic group examples include pyridylene group (pyridine-diyl group), pyridazine-diyl group, imidazole-diyl group, thienylene (thiophene-diyl group), and quinolylene group (quinolin-diyl group).
  • Isoquinolylene group isoquinolin-diyl group
  • oxazole-diyl group thiazole-diyl group
  • oxadiazol-diyl group benzothiazole-diyl group
  • benzothiazol-diyl group benzothiazol-diyl group
  • phthalimide-diyl group thienothiazole-diyl group
  • Thiazolothiazole-diyl group, thienothiophene-diyl group, thienooxazol-diyl group the following structures (II-1) to (II-4) and the like.
  • D 1 represents —S—, —O—, or NR 11 ⁇
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • Y 1 represents an aromatic hydrocarbon group having 6 to 12 carbon atoms or an aromatic heterocyclic group having 3 to 12 carbon atoms
  • Z 1 , Z 2 and Z 3 are independent hydrogen atoms or carbon atoms, respectively.
  • R 13 or SR 12 , Z 1 and Z 2 may be combined with each other to form an aromatic ring or aromatic heterocyclic ring, where R 12 and R 13 are independently hydrogen atoms or 1 to 1 to carbon atoms, respectively.
  • Jy is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, or an aromatic group.
  • Jx and Jy may be bonded to form a ring
  • D 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • Y 1 when Y 1 is an aromatic hydrocarbon group having 6 to 12 carbon atoms, it may be monocyclic or polycyclic. When Y 1 is an aromatic heterocyclic group having 3 to 12 carbon atoms, it may be monocyclic or polycyclic.
  • J 1 and J 2 when J 1 and J 2 represent ⁇ NR 21 ⁇ , the substituent of R 21 is described in paragraphs [0035] to [0045] of, for example, Japanese Patent Application Laid-Open No. 2008-107767. This can be incorporated into the specification of the present application.
  • divalent alicyclic group represented by A1 include a cyclopentylene group and a cyclohexylene group, and the carbon atoms are -O-, -Si (CH 3 ) 2- , and -N (. Z)-(Z represents hydrogen, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group, an aryl group, a cyano group, or a halogen atom), -C (O)-, -S-, -C. (S)-, -S (O)-, and -SO 2- , may be substituted with a group in which two or more of these groups are combined.
  • a1 represents an integer of 2 to 10.
  • the plurality of A1s may be the same or different.
  • A2 and A3 are each independently a divalent group selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group and an alicyclic group. Since the specific examples and preferred embodiments of A2 and A3 are the same as those of A1 of the formula (MG-A), the description thereof will be omitted.
  • a2 represents an integer of 1 to 10, and a plurality of A2s may be the same or different, and a plurality of LA1s may be the same or different. It is more preferable that a2 is 2 or more because the effect of the present invention is more excellent.
  • LA1 is a single bond or divalent linking group.
  • LA1 is a divalent linking group
  • a2 is 2 or more
  • at least one of the plurality of LA1s is a divalent linking group.
  • the divalent linking group represented by LA1 is the same as LW, and thus the description thereof will be omitted.
  • MG include the following structures, in which the hydrogen atoms on the aromatic hydrocarbon group, the heterocyclic group and the alicyclic group are substituted with the above-mentioned substituent W. May be good.
  • ⁇ Small molecule liquid crystal compound When the liquid crystal compound represented by the formula (LC) is a low molecular weight liquid crystal compound, preferred embodiments of the cyclic structure of the mesogen group MG include a cyclohexylene group, a cyclopentylene group, a phenylene group, a naphthylene group and a fluorene-diyl group.
  • Preferred embodiments of the substituent W having a mesogen structure include a halogen atom, an alkyl halide group, a cyano group, a hydroxy group, a nitro group, a carboxy group, an alkoxy group having 1 to 10 carbon atoms, and an alkylcarbonyl group having 1 to 10 carbon atoms.
  • Examples thereof include a group having a single bond, SPW being a divalent spacer group, and Q being a crosslinkable group represented by (P1) to (P30) described above, and examples of the crosslinkable group are vinyl groups. , Butadiene group, (meth) acrylic group, (meth) acrylamide group, vinyl acetate group, fumaric acid ester group, styryl group, vinylpyrrolidone group, maleic anhydride, maleimide group, vinyl ether group, epoxy group, oxetanyl group. ..
  • the divalent spacer groups S1 and S2 are the same as those of the SPW, the description thereof will be omitted.
  • the number of carbon atoms of the spacer group (the number of atoms of this carbon when replaced with "SP-C") is preferably 6 or more, and more preferably 8 or more. ..
  • liquid crystal compound represented by the formula (LC) is a small molecule liquid crystal compound
  • a plurality of small molecule liquid crystal compounds may be used in combination, preferably 2 to 6 types in combination, and 2 to 4 types in combination. Is even more preferable.
  • the solubility can be improved and the phase transition temperature of the liquid crystal composition can be adjusted.
  • the small molecule liquid crystal compound examples include compounds represented by the following formulas (LC-1) to (LC-77), but the small molecule liquid crystal compound is not limited thereto.
  • the polymer liquid crystal compound is preferably a homopolymer or a copolymer containing a repeating unit described later, and may be any polymer such as a random polymer, a block polymer, a graft polymer, and a star polymer.
  • the polymer liquid crystal compound preferably contains a repeating unit represented by the formula (1) (hereinafter, also referred to as “repeating unit (1)”).
  • PC1 represents the main chain of the repeating unit
  • L1 represents a single bond or a divalent linking group
  • SP1 represents a spacer group
  • MG1 represents the mesogen group MG in the above formula (LC).
  • T1 represent a terminal group.
  • Examples of the main chain of the repeating unit represented by PC1 include groups represented by the formulas (P1-A) to (P1-D), and among them, the variety and handling of the raw material monomers are easy. From this viewpoint, the group represented by the following formula (P1-A) is preferable.
  • R 11 , R 12 , R 13 , and R 14 are independently hydrogen atoms, halogen atoms, cyano groups, alkyl groups having 1 to 10 carbon atoms, and carbon atoms. Represents 1 to 10 alkoxy groups.
  • the alkyl group may be a linear or branched alkyl group, or may be an alkyl group having a cyclic structure (cycloalkyl group). Further, the number of carbon atoms of the above alkyl group is preferably 1 to 5.
  • the group represented by the formula (P1-A) is preferably one unit of the partial structure of the poly (meth) acrylic acid ester obtained by the polymerization of the (meth) acrylic acid ester.
  • the group represented by the formula (P1-B) is preferably an ethylene glycol unit formed by ring-opening polymerization of an epoxy group of a compound having an epoxy group.
  • the group represented by the formula (P1-C) is preferably a propylene glycol unit formed by ring-opening polymerization of the oxetane group of the compound having an oxetane group.
  • the group represented by the formula (P1-D) is preferably a siloxane unit of polysiloxane obtained by polycondensation of a compound having at least one of an alkoxysilyl group and a silanol group.
  • examples of the compound having at least one of the alkoxysilyl group and the silanol group include compounds having a group represented by the formula SiR 14 (OR 15 ) 2- .
  • R 14 is synonymous with R 14 in the formula (P1-D), and each of the plurality of R 15 independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the divalent linking group represented by L1 is a divalent linking group similar to LW in the above formula (W1), and preferred embodiments are ⁇ C (O) O ⁇ , —OC (O) ⁇ , ⁇ . Examples thereof include O-, -S-, -C (O) NR 16- , -NR 16 C (O)-, -S (O) 2- , and -NR 16 R 17- .
  • R 16 and R 17 each independently represent a hydrogen atom and an alkyl group having 1 to 6 carbon atoms which may have a substituent (for example, the above-mentioned substituent W).
  • the bond on the left side binds to PC1 and the bond on the right side binds to SP1.
  • L1 is preferably a group represented by —C (O) O— or C (O) NR 16 ⁇ .
  • PC1 is a group represented by the formulas (P1-B) to (P1-D)
  • L1 is preferably a single bond.
  • the spacer group represented by SP1 represents the same group as S1 and S2 in the above formula (LC), and is selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure and a fluorinated alkylene structure from the viewpoint of the degree of orientation.
  • a group containing at least one structure thereof, or a linear or branched alkylene group having 2 to 20 carbon atoms is preferable.
  • the alkylene group is -O-, -S-, -O-CO-, -CO-O-, -O-CO-O-, -O-CNR- (R has 1 to 10 carbon atoms). It represents an alkyl group) or —S (O) 2- .
  • the spacer group represented by SP1 is at least selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure and a fluorinated alkylene structure because of its tendency to exhibit liquid crystallinity and the availability of raw materials. More preferably, it is a group containing one type of structure.
  • the oxyethylene structure represented by SP1 is preferably a group represented by *-( CH2 - CH2O ) n1- *. In the formula, n1 represents an integer of 1 to 20, and * represents the coupling position with L1 or MG1.
  • n1 is preferably an integer of 2 to 10, more preferably an integer of 2 to 6, and most preferably 2 to 4, for the reason that the effect of the present invention is more excellent.
  • the oxypropylene structure represented by SP1 is preferably a group represented by *-(CH (CH 3 ) -CH 2 O) n2- *.
  • n2 represents an integer of 1 to 3
  • * represents the coupling position with L1 or MG1.
  • the polysiloxane structure represented by SP1 is preferably a group represented by *-(Si (CH 3 ) 2 -O) n3- *.
  • n3 represents an integer of 6 to 10, and * represents the coupling position with L1 or MG1.
  • the fluorinated alkylene structure represented by SP1 is preferably a group represented by *-(CF 2 -CF 2 ) n4- *.
  • n4 represents an integer of 6 to 10
  • * represents the coupling position with L1 or MG1.
  • the terminal groups represented by T1 include hydrogen atom, halogen atom, cyano group, nitro group, hydroxy group, -SH, carboxyl group, boronic acid group, -SO 3 H, -PO 3 H 2 , -NR 11 R 12 ( R 11 and R 12 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a cycloalkyl group, or an aryl group), an alkyl group having 1 to 10 carbon atoms, and 1 to 10 carbon atoms.
  • alkoxy groups alkylthio groups with 1 to 10 carbon atoms, alkoxycarbonyloxy groups with 1 to 10 carbon atoms, acyloxy groups with 1 to 10 carbon atoms, acylamino groups with 1 to 10 carbon atoms, alkoxys with 1 to 10 carbon atoms.
  • ureido group having 1 to 10 carbon atoms a crosslinkable group-containing group, and the like.
  • the crosslinkable group-containing group include the above-mentioned —L-CL.
  • L represents a single bond or linking group.
  • Specific examples of the linking group are the same as those of LW and SPW described above.
  • CL represents a crosslinkable group, and examples thereof include a group represented by the above-mentioned Q1 or Q2, and a group represented by the above-mentioned formulas (P1) to (P30) is preferable.
  • T1 may be a group in which two or more of these groups are combined.
  • an alkoxy group having 1 to 10 carbon atoms is preferable, an alkoxy group having 1 to 5 carbon atoms is more preferable, and a methoxy group is further preferable, because the effect of the present invention is more excellent.
  • These terminal groups may be further substituted with these groups or the polymerizable group described in JP-A-2010-244038.
  • the number of atoms in the main chain of T1 is preferably 1 to 20, more preferably 1 to 15, further preferably 1 to 10, and particularly preferably 1 to 7 because the effect of the present invention is more excellent. When the number of atoms in the main chain of T1 is 20 or less, the degree of orientation of the light absorption anisotropic layer is further improved.
  • the "main chain” in T1 means the longest molecular chain bonded to M1, and the hydrogen atom is not counted in the number of atoms in the main chain of T1.
  • the number of atoms in the main chain is 4, and when T1 is a sec-butyl group, the number of atoms in the main chain is 3.
  • the content of the repeating unit (1) is preferably 40 to 100% by mass, more preferably 50 to 95% by mass, based on all the repeating units (100% by mass) contained in the polymer liquid crystal compound.
  • the repeating unit (1) may be contained alone or in combination of two or more in the polymer liquid crystal compound.
  • the content of the repeating unit (1) means the total content of the repeating unit (1).
  • logP value In the formula (1), the difference between the logP value of PC1, L1 and SP1 (hereinafter, also referred to as “logP 1 ”) and the logP value of MG1 (hereinafter, also referred to as “logP 2 ”) (
  • the upper limit of the difference is preferably 15 or less, more preferably 12 or less, still more preferably 10 or less, from the viewpoint of adjusting the liquid crystal phase transition temperature and suitability for synthesis.
  • the logP value is an index expressing the hydrophilic and hydrophobic properties of the chemical structure, and is sometimes called a prohydrophobic parameter.
  • the logP value can be calculated using software such as ChemBioDrow Ultra or HSPiP (Ver. 4.1.07).
  • OECD Guidelines for the Testing of Chemicals, Sections 1, Test No. It can also be obtained experimentally by the method of 117 or the like.
  • a value calculated by inputting the structural formula of the compound into HSPiP (Ver. 4.1.07) is adopted as the logP value.
  • logP 1 means the logP values of PC1, L1 and SP1.
  • the "logP value of PC1, L1 and SP1" means the logP value of the structure in which PC1, L1 and SP1 are integrated, and is not the sum of the logP values of PC1, L1 and SP1.
  • logP 1 is calculated by inputting a series of structural formulas from PC1 to SP1 in the formula (1) into the software.
  • the structure of the group represented by PC1 is the structure of the group itself represented by PC1 (for example, the above-mentioned formula (P1-A).
  • silanol a compound represented by the formula Si (R 2 ) 3 (OH).
  • a plurality of R 2 independently represent a hydrogen atom or an alkyl group, respectively.
  • At least one of the plurality of R 2s represents an alkyl group).
  • logP 1 may be lower than logP 2 or higher than logP 2 when the difference from logP 2 described above is 4 or more.
  • the logP value of a general mesogen group tends to be in the range of 4 to 6.
  • the value of logP 1 is preferably 1 or less, more preferably 0 or less.
  • the value of logP 1 is preferably 8 or more, and more preferably 9 or more.
  • the logP value of SP1 in the above formula (1) is 3. 7 or more is preferable, and 4.2 or more is more preferable.
  • the structure having a logP value of 1 or less include an oxyethylene structure and an oxypropylene structure.
  • Examples of the structure having a logP value of 6 or more include a polysiloxane structure and a fluorinated alkylene structure.
  • the polymer liquid crystal compound preferably contains a repeating unit having an electron donating property and / or an electron withdrawing property at the terminal. More specifically, a repeating unit (21) having a mesogen group and an electron-withdrawing group having a ⁇ p value greater than 0 at the end thereof, and a mesogen group having a ⁇ p value present at the end thereof of 0 or less. It is more preferable to include a repeating unit (22) having a group.
  • the polymer liquid crystal compound contains a repeating unit (21) and a repeating unit (22), this is compared with the case where only one of the repeating unit (21) or the repeating unit (22) is contained.
  • the degree of orientation of the light absorption anisotropic layer formed by the use is improved. The details of this reason are not clear, but it is estimated as follows. That is, the opposite bipolar moments generated in the repeating unit (21) and the repeating unit (22) interact between molecules, so that the interaction of the mesogen groups in the minor axis direction becomes stronger, and the liquid crystal display. It is presumed that the orientation direction becomes more uniform, and as a result, the order of the liquid crystal is considered to be high.
  • the repeating unit (21) and (22) may be a repeating unit represented by the above formula (1).
  • the repeating unit (21) has a mesogen group and an electron-withdrawing group having a ⁇ p value greater than 0 at the end of the mesogen group.
  • the electron-withdrawing group is located at the end of the mesogen group and has a ⁇ p value larger than 0.
  • Examples of the electron-withdrawing group (group having a ⁇ p value larger than 0) include a group represented by EWG in the formula (LCP-21) described later, and the same applies to specific examples thereof.
  • the ⁇ p value of the electron-withdrawing group is larger than 0, and the degree of orientation of the light absorption anisotropic layer is higher, so that it is preferably 0.3 or more, and more preferably 0.4 or more.
  • the upper limit of the ⁇ p value of the electron-withdrawing group is preferably 1.2 or less, more preferably 1.0 or less, from the viewpoint of excellent orientation uniformity.
  • the ⁇ p value is Hammett's substituent constant ⁇ p value (also abbreviated as “ ⁇ p value”), which numerically expresses the effect of the substituent on the acid dissociation equilibrium constant of substituted benzoic acid. It is a parameter indicating the strength of electron-withdrawing property and electron-donating property.
  • the Hammett substituent constant ⁇ p value in the present specification means the substituent constant ⁇ when the substituent is located at the para position of benzoic acid.
  • substitution group constant ⁇ p value of Hammett of each group in the present specification the value described in the document “Hansch et al., Chemical Reviews, 1991, Vol, 91, No. 2, 165-195” is adopted.
  • pKa of benzoic acid is used using the software “ACD / ChemSketch (ACD / Labs 8.00 Release Product Version: 8.08)”.
  • the Hammett substituent constant ⁇ p value can be calculated based on the difference between the above and the pKa of the benzoic acid derivative having a substituent at the para position.
  • the repeating unit (21) is not particularly limited as long as it has a mesogen group in the side chain and an electron-withdrawing group having a ⁇ p value greater than 0 at the end of the mesogen group, but is not particularly limited. It is preferable that the unit is a repeating unit represented by the following formula (LCP-21) from the viewpoint that the degree of orientation of the above is higher.
  • PC21 represents the main chain of the repeating unit, more specifically, represents the same structure as PC1 in the above formula (1), and L21 represents a single bond or a divalent linking group. More specifically, it represents the same structure as L1 in the above formula (1), SP21A and SP21B each independently represent a single bond or a spacer group, and a specific example of the spacer group is SP1 in the above formula (1).
  • MG21 represents a mesogen structure, more specifically, a mesogen group MG in the above formula (LC), and EWG represents an electron-withdrawing group having a ⁇ p value greater than 0.
  • the spacer group represented by SP21A and SP21B represents a group similar to the above formulas S1 and S2, and has at least one structure selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure and a fluorinated alkylene structure.
  • a group containing the group or a linear or branched alkylene group having 2 to 20 carbon atoms is preferable.
  • the alkylene group may contain —O—, —O—CO—, —CO—O—, or O—CO—O—.
  • the spacer group represented by SP1 is at least selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure and a fluorinated alkylene structure because of its tendency to exhibit liquid crystallinity and the availability of raw materials. It preferably contains one type of structure.
  • SP21B is preferably a single bond or a linear or branched alkylene group having 2 to 20 carbon atoms.
  • the alkylene group may contain —O—, —O—CO—, —CO—O—, or O—CO—O—.
  • the spacer group represented by SP21B is preferably a single bond because the degree of orientation of the light absorption anisotropic layer is higher.
  • the repeating unit 21 preferably has a structure in which the EWG, which is an electron-withdrawing group in the formula (LCP-21), is directly linked to the MG21, which is a mesogen group in the formula (LCP-21).
  • EWG represents an electron-withdrawing group having a ⁇ p value greater than 0.
  • Examples of the electron-withdrawing group having a ⁇ p value greater than 0 include an ester group (specifically, a group represented by * -C (O) O-RE), a (meth) acryloyl group, and a (meth) acryloyloxy group.
  • RE represents an alkyl group having 1 to 20 carbon atoms (preferably 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms).
  • RF independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms (preferably 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms).
  • EWG is a group represented by * -C (O) O-RE, a (meth) acryloyloxy group, a cyano group, or a nitro group from the viewpoint that the effect of the present invention is more exhibited. , Are preferred.
  • the content of the repeating unit (21) is such that the polymer liquid crystal compound and the bicolor substance can be uniformly oriented while maintaining a high degree of orientation of the light absorption anisotropic layer, and thus the polymer liquid crystal compound has all the repetitions.
  • the unit (100% by mass) 60% by mass or less is preferable, 50% by mass or less is more preferable, and 45% by mass or less is further preferable.
  • the lower limit of the content of the repeating unit (21) is preferably 1% by mass or more with respect to all the repeating units (100% by mass) contained in the polymer liquid crystal compound, from the viewpoint that the effect of the present invention is more exhibited. 3% by mass or more is more preferable.
  • each repeating unit contained in the polymer liquid crystal compound is calculated based on the charged amount (mass) of each monomer used to obtain each repeating unit.
  • the repeating unit (21) may be contained alone or in combination of two or more in the polymer liquid crystal compound.
  • the polymer liquid crystal compound contains two or more kinds of repeating units (21)
  • the total amount thereof is preferably within the above range.
  • a repeating unit (21) containing no crosslinkable group in EWG and a repeating unit (21) containing a polymerizable group in EWG may be used in combination. This further improves the curability of the light absorption anisotropic layer.
  • the crosslinkable groups include vinyl group, butadiene group, (meth) acrylic group, (meth) acrylamide group, vinyl acetate group, fumaric acid ester group, styryl group, vinylpyrrolidone group, maleic anhydride, maleimide group and vinyl ether. Groups, epoxy groups and oxetanyl groups are preferred.
  • the content of the repeating unit (21) containing the polymerizable group in the EWG is the total repeating unit (100 mass) of the polymer liquid crystal compound. %), It is preferably 1 to 30% by mass.
  • repeating unit (21) is not limited to the following repeating unit.
  • the present inventors have conducted an electron attraction property of the repeating unit (21).
  • the electron attraction of the group is strong (that is, when the ⁇ p value is large)
  • the degree of orientation of the light absorption anisotropic layer becomes higher, and the repeating unit (21) becomes higher.
  • the electron attraction of the electron attraction group is weak (that is, when the ⁇ p value is close to 0)
  • the degree of orientation of the light absorption anisotropic layer becomes higher by increasing the content ratio of the repeating unit (21). I found it to be higher.
  • the degree of orientation of the anisotropic layer is higher.
  • the ⁇ p value of the electron-withdrawing group (EWG in the formula (LCP-21)) in the repeating unit (21) and the content ratio (mass basis) of the repeating unit (21) in the polymer liquid crystal compound is preferably 0.020 to 0.150, more preferably 0.050 to 0.130, and even more preferably 0.055 to 0.125. When the product is within the above range, the degree of orientation of the light absorption anisotropic layer becomes higher.
  • the repeating unit (22) has a mesogen group and a group having a ⁇ p value of 0 or less existing at the end of the mesogen group. Since the polymer liquid crystal compound has the repeating unit (22), the polymer liquid crystal compound and the bicolor substance can be uniformly oriented.
  • the mesogen group is a group showing the main skeleton of the liquid crystal molecule that contributes to the formation of the liquid crystal, and the details are as described by MG in the formula (LCP-22) described later, and specific examples thereof are also the same.
  • the above group is located at the end of the mesogen group and has a ⁇ p value of 0 or less.
  • the group (group having a ⁇ p value of 0 or less) includes a hydrogen atom having a ⁇ p value of 0 and a group (electrons) represented by T22 in the following formula (LCP-22) having a ⁇ p value smaller than 0. Donating group).
  • a specific example of a group having a ⁇ p value smaller than 0 (electron donating group) is the same as T22 in the formula (LCP-22) described later.
  • the ⁇ p value of the group is 0 or less, and is preferably smaller than 0, more preferably ⁇ 0.1 or less, still more preferably ⁇ 0.2 or less, from the viewpoint of better orientation uniformity.
  • the lower limit of the ⁇ p value of the above group is preferably ⁇ 0.9 or higher, more preferably ⁇ 0.7 or higher.
  • the repeating unit (22) is not particularly limited as long as it has a mesogen group in the side chain and a group having a ⁇ p value at the end of the mesogen group of 0 or less, but the uniformity of the orientation of the liquid crystal is more uniform. It does not correspond to the repeating unit represented by the above formula (LCP-21), but is preferably the repeating unit represented by the following formula (PCP-22).
  • PC22 represents the backbone of the repeating unit, more specifically represents the same structure as PC1 in the above formula (1), and L22 represents a single bond or a divalent linking group.
  • SP22 represents the spacer group, more specifically, it represents the same structure as SP1 in the above formula (1)
  • MG22 represents.
  • It represents a mesogen structure, more specifically a structure similar to the mesogen group MG in the above formula (LC), and T22 represents an electron donating group in which the substituent constant ⁇ p value of Hammet is smaller than 0.
  • T22 represents an electron donating group having a ⁇ p value smaller than 0.
  • the electron donating group having a ⁇ p value smaller than 0 include a hydroxy group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an alkylamino group having 1 to 10 carbon atoms.
  • the "main chain" in T22 means the longest molecular chain bonded to MG22, and hydrogen atoms are not counted in the number of atoms in the main chain of T22. For example, when T22 is an n-butyl group, the number of atoms in the main chain is 4, and when T22 is a sec-butyl group, the number of atoms in the main chain is 3.
  • repeating unit (22) In the following, an example of the repeating unit (22) will be shown, but the repeating unit (22) is not simply limited to the following repeating units.
  • the repeating unit (21) and the repeating unit (22) have a part in common in structure. It is inferred that the more similar the structures of the repeating units are, the more uniformly the liquid crystals are aligned. As a result, the degree of orientation of the light absorption anisotropic layer becomes higher.
  • SP21A of the formula (LCP-21) and SP22 of the formula (LCP-22) have the same structure from the viewpoint that the degree of orientation of the light absorption anisotropic layer becomes higher, and the formula (LCP-).
  • 21) MG21 and the formula (LCP-22) MG22 have the same structure, and the formula (LCP-21) L21 and the formula (LCP-22) L22 have the same structure. , At least one is preferable, two or more are more preferable, and all are particularly preferable.
  • the content of the repeating unit (22) is preferably 50% by mass or more, more preferably 55% by mass or more, based on the total repeating unit (100% by mass) of the polymer liquid crystal compound, from the viewpoint of excellent orientation uniformity. It is preferable, and 60% by mass or more is particularly preferable.
  • the upper limit of the content of the repeating unit (22) is preferably 99% by mass or less, preferably 97% by mass or less, based on the total repeating unit (100% by mass) of the polymer liquid crystal compound from the viewpoint of improving the degree of orientation. Is more preferable.
  • the repeating unit (22) may be contained alone or in combination of two or more in the polymer liquid crystal compound.
  • the polymer liquid crystal compound contains two or more kinds of repeating units (22), there are advantages that the solubility of the polymer liquid crystal compound in a solvent is improved and the liquid crystal phase transition temperature can be easily adjusted.
  • the total amount thereof is preferably within the above range.
  • the polymer liquid crystal compound can contain a repeating unit (3) containing no mesogen from the viewpoint of improving the solubility in a general-purpose solvent.
  • the repeating unit (3) containing no mesogen is preferably a repeating unit having a molecular weight of 280 or less.
  • the reason why the solubility can be improved while suppressing the decrease in the degree of orientation by containing the repeating unit having a molecular weight of 280 or less containing no mesogen is presumed as follows.
  • the polymer liquid crystal compound contains a repeating unit (3) having no mesogen in its molecular chain
  • the solvent easily enters the polymer liquid crystal compound, so that the solubility is improved, but the solubility is improved, but it is non-mesogenic.
  • the repeating unit (3) is considered to reduce the degree of orientation.
  • the orientation of the repeating unit (1), the repeating unit (21) or the repeating unit (22) containing the mesogen group is less likely to be disturbed, and the decrease in the degree of orientation can be suppressed. Presumed.
  • the repeating unit (3) is preferably a repeating unit having a molecular weight of 280 or less.
  • the molecular weight of the repeating unit (3) does not mean the molecular weight of the monomer used to obtain the repeating unit (3), but the repeating unit (3) in a state of being incorporated into the polymer liquid crystal compound by the polymerization of the monomer. Means the molecular weight of.
  • the molecular weight of the repeating unit (3) is preferably 280 or less, more preferably 180 or less, and even more preferably 100 or less.
  • the lower limit of the molecular weight of the repeating unit (3) is usually 40 or more, more preferably 50 or more.
  • the molecular weight of the repeating unit (3) is 280 or less, a light absorption anisotropic layer having excellent solubility of the polymer liquid crystal compound and a high degree of orientation can be obtained.
  • the molecular weight of the repeating unit (3) exceeds 280, the liquid crystal orientation of the repeating unit (1), the repeating unit (21) or the repeating unit (22) is disturbed, and the degree of orientation becomes low. In some cases.
  • the solubility of the polymer liquid crystal compound may decrease.
  • repeating unit (3) examples include a repeating unit containing no crosslinkable group (for example, an ethylenically unsaturated group) (hereinafter, also referred to as “repeating unit (3-1)”) and a crosslinkable group.
  • a repeating unit including hereinafter, also referred to as “repeating unit (3-2)”.
  • ⁇ Repeat unit (3-1) Specific examples of the monomer used for the polymerization of the repeating unit (3-1) include acrylic acid [72.1], ⁇ -alkylacrylic acids (for example, methacrylic acid [86.1], and itaconic acid [130.1]. ]), Esters and amides derived from them (eg, Ni-propylacrylamide [113.2], Nn-butylacrylamide [127.2], Nt-butylacrylamide [127.2].
  • esters derived from fumaric acid eg, dimethyl maleate [144.1], diethyl fmarate [172.2]
  • maleimides eg, N-phenylmaleimide [173.2]
  • maleic acid 116.1]
  • fumaric acid e.g., dimethyl maleate [144.1]
  • maleimides e.g, N-phenylmaleimide [173.2]
  • maleic acid [ 116.1] fumaric acid [116.1]
  • p-styrene sulfonic acid acrylonitrile [53.1] methacrylonitrile [67.1]
  • dienes eg, butad
  • acrylic acid acrylic acid, ⁇ -alkylacrylic acid, esters and amides derived from them, acrylonitrile, methacrylonitrile, and aromatic vinyl compounds are preferable.
  • monomers other than the above include Research Disclosure No. The compounds described in 1955 (July 1980) can be used.
  • repeating unit (3-2) Specific examples of the crosslinkable group in the repeating unit (3-2) include groups represented by the above formulas (P-1) to (-P30), such as a vinyl group, a butadiene group, and a (meth) acrylic group. , (Meta) acrylamide group, vinyl acetate group, fumaric acid ester group, styryl group, vinylpyrrolidone group, maleic anhydride, maleimide group, vinyl ether group, epoxy group, oxetanyl group are more preferable.
  • the repeating unit (3-2) is preferably a repeating unit represented by the following formula (3) from the viewpoint of easy polymerization.
  • PC32 represents the main chain of the repeating unit, more specifically, represents the same structure as PC1 in the above formula (1), and L32 represents a single bond or a divalent linking group. More specifically, it represents the same structure as L1 in the above formula (1), and P32 represents a crosslinkable group represented by the above formulas (P1) to (P30).
  • repeating unit (3-2) and its molecular weight (Mw) will be shown, but the present invention is not limited to these specific examples.
  • the content of the repeating unit (3) is preferably less than 14% by mass, more preferably 7% by mass or less, still more preferably 5% by mass or less, based on the total repeating unit (100% by mass) of the polymer liquid crystal compound. ..
  • the lower limit of the content of the repeating unit (3) is preferably 2% by mass or more, more preferably 3% by mass or more, based on the total repeating unit (100% by mass) of the polymer liquid crystal compound.
  • the content of the repeating unit (3) is less than 14% by mass, the degree of orientation of the light absorption anisotropic layer is further improved.
  • the solubility of the polymer liquid crystal compound is further improved.
  • the repeating unit (3) may be contained alone or in combination of two or more in the polymer liquid crystal compound. When two or more types of repeating units (3) are included, the total amount thereof is preferably within the above range.
  • the polymer liquid crystal compound can include a repeating unit (4) having a flexible structure with a long molecular chain (SP4 of the formula (4) described later) from the viewpoint of improving adhesion, planar uniformity and the like.
  • SP4 of the formula (4) described later
  • the reason for this is estimated as follows. That is, by including such a flexible structure having a long molecular chain, the molecular chains constituting the polymer liquid crystal compound are likely to be entangled with each other, and the light absorption anisotropic layer is aggregated and broken (specifically, light). (Destruction of the absorption anisotropic layer itself) is suppressed.
  • the adhesion between the light absorption anisotropic layer and the underlying layer is improved.
  • the decrease in the planar uniformity is caused by the low compatibility between the dichroic substance and the polymer liquid crystal compound. That is, if the dichroic substance and the polymer liquid crystal compound are inadequately compatible with each other, it is considered that surface defects (orientation defects) centered on the precipitated dichroic substance occur.
  • the polymer liquid crystal compound contains a flexible structure having a long molecular chain, so that precipitation of a dichroic substance is suppressed, and a light absorption anisotropic layer having excellent planar uniformity is obtained. Guessed.
  • excellent in planar uniformity means that the liquid crystal composition containing the polymer liquid crystal compound has few alignment defects caused by being repelled on the base layer (for example, the base material or the alignment film).
  • the repeating unit (4) is a repeating unit represented by the following formula (4).
  • PC4 represents the main chain of the repeating unit, more specifically, represents the same structure as PC1 in the above formula (1)
  • L4 represents a single bond or a divalent linking group. More specifically, it represents the same structure as L1 in the above formula (1) (preferably a single bond)
  • SP4 represents an alkylene group having 10 or more atoms in the main chain
  • T4 represents a terminal group, and more. Specifically, it represents the same structure as T1 in the above formula (1).
  • SP4 represents an alkylene group having 10 or more atoms in the main chain.
  • one or more -CH 2- constituting the alkylene group represented by SP4 may be replaced with the above-mentioned "SP-C", and in particular, -O-, -S-, and -N (R 21 ).
  • R 21 to R 28 independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, or a linear or branched alkyl group having 1 to 10 carbon atoms.
  • the hydrogen atom contained in one or more -CH 2- constituting the alkylene group represented by SP4 may be replaced by the above-mentioned "SP-H".
  • the number of atoms in the main chain of SP4 is 10 or more, and 15 or more is preferable, and 19 or more is more preferable, because a light absorption anisotropic layer having more excellent adhesion and planar uniformity can be obtained. .. Further, the upper limit of the number of atoms in the main chain of SP2 is preferably 70 or less, more preferably 60 or less, still more preferably 50 or less, from the viewpoint of obtaining a light absorption anisotropic layer having a higher degree of orientation.
  • the "main chain” in SP4 means a partial structure necessary for directly connecting L4 and T4, and the "number of atoms in the main chain” means the number of atoms constituting the partial structure. means.
  • the "main chain" in SP4 is a partial structure in which the number of atoms connecting L4 and T4 is the shortest.
  • the number of atoms in the main chain is 10
  • SP4 is a 4,6-dimethyldodecanyl group
  • the number of atoms in the main chain is 12.
  • the inside of the frame represented by the dotted quadrangle corresponds to SP4
  • the number of atoms in the main chain of SP4 (corresponding to the total number of atoms circled by the dotted line) is 11. ..
  • the alkylene group represented by SP4 may be linear or branched.
  • the carbon number of the alkylene group represented by SP4 is preferably 8 to 80, more preferably 15 to 80, still more preferably 25 to 70, and even more preferably 25 to 60, from the viewpoint of obtaining a light absorption anisotropic layer having an excellent degree of orientation. Is particularly preferable.
  • One or more -CH 2- constituting the alkylene group represented by SP4 is replaced by the above-mentioned "SP-C" in that an excellent light absorption anisotropic layer can be obtained due to adhesion and planar uniformity. Is preferable. Further, when there are a plurality of —CH 2 ⁇ constituting the alkylene group represented by SP4, a part of the plurality of —CH 2 ⁇ can be obtained because an excellent light absorption anisotropic layer can be obtained due to the adhesion and the planar uniformity. It is more preferred that only be replaced by the "SP-C" described above.
  • SP4 has an oxyalkylene structure in which one or more -CH 2- constituting the alkylene group is replaced by -O-, and one or more -CH 2 -CH 2- constituting the alkylene group is -O-.
  • the hydrogen atom contained in one or more -CH 2- constituting the alkylene group represented by SP4 may be replaced by the above-mentioned "SP-H".
  • SP-H the hydrogen atom contained in one or more -CH 2- constituting the alkylene group represented by SP4
  • T4 represents a terminal group similar to T1 and represents a hydrogen atom, a methyl group, a hydroxy group, a carboxy group, a sulfonic acid group, a phosphoric acid group, a boronic acid group, an amino group, a cyano group, a nitro group, and the like.
  • Vinyl group, butadiene group, (meth) acrylic group, (meth) acrylamide group, vinyl acetate group, fumaric acid ester group, styryl group, vinylpyrrolidone group, maleic anhydride, maleimide group, vinyl ether group, epoxy group, or oxetanyl Group is preferred.
  • the epoxy group may be an epoxycycloalkyl group, and the carbon number of the cycloalkyl group portion of the epoxycycloalkyl group is preferably 3 to 15 and more preferably 5 to 12 from the viewpoint that the effect of the present invention is more excellent. , 6 (ie, when the epoxycycloalkyl group is an epoxycyclohexyl group) is even more preferred.
  • the substituent of the oxetanyl group include an alkyl group having 1 to 10 carbon atoms, and an alkyl group having 1 to 5 carbon atoms is preferable because the effect of the present invention is more excellent.
  • the alkyl group as a substituent of the oxetanyl group may be linear or branched, but is preferably linear because the effect of the present invention is more excellent.
  • the substituent of the phenyl group include a boronic acid group, a sulfonic acid group, a vinyl group and an amino group, and a boronic acid group is preferable from the viewpoint of further excellent effects of the present invention.
  • repeating unit (4) include, for example, the following structures, but the present invention is not limited thereto.
  • n1 represents an integer of 2 or more
  • n2 represents an integer of 1 or more.
  • the content of the repeating unit (4) is preferably 2 to 20% by mass, more preferably 3 to 18% by mass, based on all the repeating units (100% by mass) contained in the polymer liquid crystal compound.
  • the repeating unit (4) may be contained alone or in combination of two or more in the polymer liquid crystal compound.
  • the content of the repeating unit (4) means the total content of the repeating units (4).
  • the polymer liquid crystal compound can include a repeating unit (5) introduced by polymerizing a polyfunctional monomer from the viewpoint of planar uniformity.
  • a repeating unit (5) introduced by polymerizing a polyfunctional monomer from the viewpoint of planar uniformity.
  • the repeating unit (5) is a unit introduced into a polymer liquid crystal compound by polymerizing a polyfunctional monomer.
  • the polymer liquid crystal compound contains a polymer body having a three-dimensional crosslinked structure formed by the repeating unit (5).
  • the content of the repeating unit (5) is small, it is considered that the content of the high molecular weight body containing the repeating unit (5) is small. It is presumed that the presence of a small amount of high molecular weight bodies having a three-dimensional crosslinked structure in this way suppressed the repelling of the liquid crystal composition and obtained a light absorption anisotropic layer having excellent planar uniformity. To. Further, since the content of the high molecular weight body is small, it is presumed that the effect of suppressing the decrease in the degree of orientation can be maintained.
  • the repeating unit (5) introduced by polymerizing the polyfunctional monomer is preferably a repeating unit represented by the following formula (5).
  • PC5A and PC5B represent the main chain of the repeating unit, more specifically, they represent the same structure as PC1 in the above formula (1), and L5A and L5B are single-bonded or divalent linking groups. More specifically, it represents the same structure as L1 in the above formula (1), SP5A and SP5B represent the spacer group, and more specifically, it represents the same structure as SP1 in the above formula (1).
  • MG5A and MG5B represent a mesogen structure, more specifically, a structure similar to the mesogen group MG in the above formula (LC), and a and b represent an integer of 0 or 1.
  • PC5A and PC5B may be the same group or different groups from each other, but are preferably the same group from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer.
  • Both L5A and L5B may have a single bond, the same group, or different groups from each other, but the degree of orientation of the light absorption anisotropic layer is further improved. Therefore, it is preferable that all of them have a single bond or the same group, and more preferably the same group.
  • Both SP5A and SP5B may have a single bond, the same group, or different groups from each other, but the degree of orientation of the light absorption anisotropic layer is further improved.
  • the same group in the formula (5) means that the chemical structure is the same regardless of the direction in which each group is bonded.
  • SP5A is * -CH2 - CH2 -O- *. * (* Represents the bond position with L5A, ** represents the bond position with MG5A), and SP5B indicates the bond position with * -O-CH 2 -CH 2 -** (* represents the bond position with MG5B.) Representing, ** represents the bonding position with L5B.), It is the same group.
  • a and b are independently integers of 0 or 1, and are preferably 1 from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer. Although a and b may be the same or different, they are preferably 1 from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer.
  • the total of a and b is preferably 1 or 2 from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer (that is, the repeating unit represented by the formula (5) has a mesogen group. ), 2 is more preferable.
  • the partial structure represented by (MG5A) a- (MG5B) b - preferably has a cyclic structure from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer.
  • the number of annular structures in the partial structure represented by-(MG5A2) a- (MG5B) b- is preferably two or more, from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer. -8 is more preferred, 2-6 is even more preferred, and 2-4 is particularly preferred.
  • the mesogen groups represented by MG5A and MG5B each independently contain one or more cyclic structures, preferably 2 to 4 from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer.
  • MG5A and MG5B may be the same group or different groups from each other, but are preferably the same group from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer.
  • the mesogen in the above formula (LC) is more excellent in terms of expression of liquid crystallinity, adjustment of liquid crystal phase transition temperature, availability of raw materials and synthetic suitability, and the effect of the present invention. It is preferably a base MG.
  • PC5A and PC5B are the same group
  • L5A and L5B are both single-bonded or the same group
  • SP5A and SP5B are both single-bonded or the same group
  • MG5B are preferably the same group.
  • the content of the repeating unit (5) is preferably 10% by mass or less, more preferably 0.001 to 5% by mass, and 0, based on the content (100% by mass) of all the repeating units of the polymer liquid crystal compound. It is more preferably 0.05 to 3% by mass.
  • the repeating unit (5) may be contained alone or in combination of two or more in the polymer liquid crystal compound. When two or more types of repeating units (5) are included, the total amount thereof is preferably within the above range.
  • the polymer liquid crystal compound may be a star-shaped polymer.
  • the star-shaped polymer in the present invention means a polymer having three or more polymer chains extending from the nucleus, and is specifically represented by the following formula (6).
  • the star-shaped polymer represented by the formula (6) as a polymer liquid crystal compound can form a light absorption anisotropic layer having a high degree of orientation while having high solubility (excellent solubility in a solvent).
  • nA represents an integer of 3 or more, and an integer of 4 or more is preferable.
  • the upper limit of n A is not limited to this, but is usually 12 or less, preferably 6 or less.
  • Each of the plurality of PIs independently represents a polymer chain containing any of the repeating units represented by the above formulas (1), (21), (22), (3), (4) and (5). However, at least one of the plurality of PIs represents a polymer chain containing a repeating unit represented by the above formula (1).
  • A represents an atomic group that is the core of a star-shaped polymer.
  • A include paragraphs [0052] to [0058] of JP-A-2011-074280, paragraphs [0017] to [0021] of JP-A-2012-189847, and paragraphs [0017] to [0021] of JP-A-2013-031986.
  • Examples thereof include a structure in which a hydrogen atom is removed from a thiol group of a polyfunctional thiol compound described in paragraphs [014] to [0024], paragraphs [0118] to [0142] of JP-A-2014-104631. In this case, A and PI are bound by a sulfide bond.
  • the number of thiol groups of the polyfunctional thiol compound from which A is derived is preferably 3 or more, and more preferably 4 or more.
  • the upper limit of the number of thiol groups in the polyfunctional thiol compound is usually 12 or less, preferably 6 or less. Specific examples of the polyfunctional thiol compound are shown below.
  • the polymer liquid crystal compound may be a thermotropic liquid crystal and a crystalline polymer from the viewpoint of improving the degree of orientation.
  • thermotropic liquid crystal is a liquid crystal showing a transition to the liquid crystal phase due to a temperature change.
  • the polymer liquid crystal compound is a thermotropic liquid crystal and may exhibit either a nematic phase or a smectic phase, but at least the nematic phase is due to the reason that haze is less likely to be observed (haze becomes better) and the like. It is preferable to show.
  • the temperature range showing the nematic phase is preferably room temperature (23 ° C) to 450 ° C, because the degree of orientation of the light absorption anisotropic layer is higher and haze is less likely to be observed. Therefore, handling and manufacturing are preferable. From the viewpoint of suitability, 40 ° C to 400 ° C is more preferable.
  • a crystalline polymer is a polymer that exhibits a transition to a crystalline layer due to a temperature change.
  • the crystalline polymer may exhibit a glass transition in addition to the transition to the crystal layer. Since the crystalline polymer has a higher degree of orientation of the light absorption anisotropic layer and haze is less likely to be observed, it has a transition from the crystalline phase to the liquid crystal phase when heated (glass transition in the middle). (May be), or a polymer liquid crystal compound having a transition to the crystalline phase (may have a glass transition in the middle) when the temperature is lowered after being in a liquid crystal state by heating. Is preferable.
  • the presence or absence of crystallinity of the polymer liquid crystal compound is evaluated as follows. Two light absorption anisotropic layers of an optical microscope (ECLIPSE E600 POL manufactured by Nikon Corporation) are arranged so as to be orthogonal to each other, and a sample table is set between the two light absorption anisotropic layers. Then, a small amount of the polymer liquid crystal compound is placed on the slide glass, and the slide glass is set on the hot stage placed on the sample table. While observing the state of the sample, the temperature of the hot stage is raised to a temperature at which the polymer liquid crystal compound exhibits liquid crystallinity, and the polymer liquid crystal compound is brought into a liquid crystal state.
  • ECLIPSE E600 POL manufactured by Nikon Corporation
  • the behavior of the liquid crystal phase transition is observed while gradually lowering the temperature of the hot stage, and the temperature of the liquid crystal phase transition is recorded.
  • the polymer liquid crystal compound exhibits a plurality of liquid crystal phases (for example, a nematic phase and a smectic phase)
  • all the transition temperatures thereof are also recorded.
  • DSC differential scanning calorimeter
  • the calorific value is measured while lowering the temperature at a rate of 10 ° C./min. Confirm the exothermic peak from the obtained heat spectrum.
  • the exothermic peak is a peak due to crystallization, and it can be said that the high molecular weight liquid crystal compound has crystallization.
  • the polymer liquid crystal compound has no crystallinity.
  • the method for obtaining the crystalline polymer is not particularly limited, but as a specific example, a method using a polymer liquid crystal compound containing the repeating unit (1) is preferable, and among them, a polymer liquid crystal containing the repeating unit (1) is preferable. A method using a preferred embodiment of the compound is more preferred.
  • the crystallization temperature of the polymer liquid crystal compound should be -50 ° C or higher and lower than 150 ° C because the degree of orientation of the light absorption anisotropic layer is higher and haze is more difficult to observe.
  • the temperature is more preferably 120 ° C. or lower, further preferably ⁇ 20 ° C. or higher and lower than 120 ° C., and particularly preferably 95 ° C. or lower.
  • the crystallization temperature of the polymer liquid crystal compound is preferably less than 150 ° C. from the viewpoint of reducing haze.
  • the crystallization temperature is the temperature of the exothermic peak due to crystallization in the DSC described above.
  • the weight average molecular weight (Mw) of the polymer liquid crystal compound is preferably 1000 to 500,000, more preferably 2000 to 300,000 from the viewpoint that the effect of the present invention is more excellent. When the Mw of the polymer liquid crystal compound is within the above range, the handling of the polymer liquid crystal compound becomes easy.
  • the weight average molecular weight (Mw) of the polymer liquid crystal compound is preferably 10,000 or more, and more preferably 10,000 to 300,000. Further, from the viewpoint of the temperature latitude of the degree of orientation, the weight average molecular weight (Mw) of the polymer liquid crystal compound is preferably less than 10,000, and preferably 2000 or more and less than 10,000.
  • the weight average molecular weight and the number average molecular weight in the present invention are values measured by a gel permeation chromatograph (GPC) method.
  • the liquid crystal property of the polymer liquid crystal compound may be either nematic or smectic, but it is preferable that the polymer liquid crystal compound exhibits at least nematic property.
  • the temperature range showing the nematic phase is preferably 0 ° C to 450 ° C, and preferably 30 ° C to 400 ° C from the viewpoint of handling and manufacturing aptitude.
  • the content of the liquid crystal compound is preferably 25 to 2000 parts by mass, more preferably 100 to 1300 parts by mass, and further preferably 200 to 900 parts by mass with respect to 100 parts by mass of the content of the dichroic substance in the liquid crystal composition. preferable.
  • the liquid crystal compound may be contained alone or in combination of two or more. When two or more kinds of liquid crystal compounds are contained, the content of the liquid crystal compound means the total content of the liquid crystal compounds.
  • the light absorption anisotropic layer used in the present invention contains a dichroic substance.
  • the bicolor substance is not particularly limited, and is a visible light absorbing substance (bicolor substance, bicolor azo compound), a light emitting substance (fluorescent substance, phosphorescent substance), an ultraviolet absorbing substance, an infrared absorbing substance, a nonlinear optical substance, and the like. Examples thereof include carbon nanotubes and inorganic substances (for example, quantum rods), and conventionally known bicolor substances (bicolor dyes, bicolor dyes) can be used.
  • the dichroic substance preferably used is an organic dichroic substance compound, and a dichroic azo dye compound is more preferable.
  • the dichroic azo dye compound is not particularly limited, and conventionally known dichroic azo dyes can be used, but the compounds described below are preferably used.
  • the dichroic azo dye compound means a dye having different absorbance depending on the direction.
  • the dichroic azo dye compound may or may not exhibit liquid crystallinity.
  • the dichroic azo dye compound may exhibit either nematic property or smectic property.
  • the temperature range indicating the liquid crystal phase is preferably room temperature (about 20 ° C. to 28 ° C.) to 300 ° C., and more preferably 50 ° C. to 200 ° C. from the viewpoint of handleability and manufacturing aptitude.
  • the light absorption anisotropic layer has at least one dye compound having a maximum absorption wavelength in the wavelength range of 560 to 700 nm (hereinafter, “first dichroic azo dye”). Also abbreviated as “compound”) and at least one dye compound having a maximum absorption wavelength in the wavelength range of 455 nm or more and less than 560 nm (hereinafter, also abbreviated as "second dichroic azo dye compound”). Specifically, it has at least a dichroic azo dye compound represented by the formula (1) described later and a dichroic azo dye compound represented by the formula (2) described later. Is more preferable.
  • three or more kinds of dichroic azo dye compounds may be used in combination.
  • the first dichroic azo dye compound and the second dichroic azo dye compound In combination with the dichroic azo dye compound of No. 1 and at least one dye compound having a maximum absorption wavelength in the wavelength range of 380 nm or more and less than 455 nm (hereinafter, also abbreviated as “third dichroic azo dye compound”). Is preferable.
  • the light absorption anisotropic layer preferably contains two or more kinds of organic dichroic dyes having different absorption peak wavelengths, and contains three or more kinds of organic dichroic dyes having different absorption peak wavelengths. Is more preferable.
  • the dichroic azo dye compound preferably has a crosslinkable group from the viewpoint of improving the pressing resistance.
  • the crosslinkable group include (meth) acryloyl group, epoxy group, oxetanyl group, styryl group and the like, and among them, (meth) acryloyl group is preferable.
  • the first dichroic azo dye compound is preferably a compound having a chromophore as a nucleus and a side chain attached to the end of the chromophore.
  • the color-developing group include an aromatic ring group (for example, an aromatic hydrocarbon group and an aromatic heterocyclic group), an azo group and the like, and a structure having both an aromatic ring group and an azo group is preferable.
  • a bisazo structure having an aromatic heterocyclic group (preferably a thienothiazole group) and two azo groups is more preferable.
  • the side chain is not particularly limited, and examples thereof include groups represented by L3, R2, or L4 of the formula (1) described later.
  • the first dichroic azo dye compound is a dichroic azo dye compound having a maximum absorption wavelength in the wavelength range of 560 nm or more and 700 nm or less, and has a wavelength in the range of 560 to 650 nm from the viewpoint of adjusting the tint of the substituent.
  • a dichroic azo dye compound having a maximum absorption wavelength is preferable, and a dichroic azo dye compound having a maximum absorption wavelength in the wavelength range of 560 to 640 nm is more preferable.
  • the maximum absorption wavelength (nm) of the dichroic azo dye compound in the present specification is a wavelength of 380 to 800 nm measured by a spectrophotometer using a solution in which the dichroic azo dye compound is dissolved in a good solvent. Obtained from the ultraviolet visible light spectrum in the range.
  • the first dichroic azo dye compound is preferably a compound represented by the following formula (1) for the reason that the degree of orientation of the formed light absorption anisotropic layer is further improved. ..
  • Ar1 and Ar2 each independently represent a phenylene group which may have a substituent or a naphthylene group which may have a substituent, and a phenylene group is preferable.
  • R1 is a hydrogen atom, a linear or branched alkyl group which may have a substituent having 1 to 20 carbon atoms, an alkoxy group, an alkylthio group, an alkylsulfonyl group, an alkylcarbonyl group, and the like.
  • R1 is a group other than a hydrogen atom
  • R1' represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. When a plurality of R1'are present in each group, they may be the same or different from each other.
  • R2 and R3 independently have a hydrogen atom and a linear or branched alkyl group which may have a substituent having 1 to 20 carbon atoms, an alkoxy group, an acyl group and an alkyloxy.
  • -CH 2- constituting the above alkyl group is -O-, -S-, -C (O)-, -C (O) -O-, -OC (O)-, -C (O).
  • R2 and R3 are groups other than hydrogen atoms
  • the hydrogen atoms of each group are halogen atom, nitro group, cyano group, -OH group, -N (R2') 2 , amino group, -C (R2').
  • ) C (R2')-NO 2
  • -C (R2') C (R2')-CN
  • -C (R2') C (CN) 2 .
  • R2' represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms.
  • R2 and R3 may be bonded to each other to form a ring, and R2 or R3 may be bonded to Ar2 to form a ring.
  • R1 is preferably an electron-withdrawing group
  • R2 and R3 are preferably groups with low electron-donating properties.
  • R1 includes an alkylsulfonyl group, an alkylcarbonyl group, an alkyloxycarbonyl group, an acyloxy group, an alkylsulfonylamino group, an alkylsulfamoyl group, an alkylsulfinyl group, an alkylureido group and the like.
  • R2 and R3 include groups having the following structures. The group having the following structure is shown in the above formula (1) in a form containing a nitrogen atom to which R2 and R3 are bonded.
  • the second dichroic azo dye compound is a compound different from the first dichroic azo dye compound, and specifically, the chemical structure thereof is different.
  • the second dichroic azo dye compound is preferably a compound having a chromophore, which is the core of the dichroic azo dye compound, and a side chain attached to the end of the chromophore.
  • Specific examples of the color-developing group include an aromatic ring group (for example, an aromatic hydrocarbon group and an aromatic heterocyclic group), an azo group, and the like, and a structure having both an aromatic hydrocarbon group and an azo group is preferable.
  • a bisazo or trisazo structure having an aromatic hydrocarbon group and 2 or 3 azo groups is more preferred.
  • the side chain is not particularly limited, and examples thereof include a group represented by R4, R5 or R6 of the formula (2) described later.
  • the second dichroic azo dye compound is a dichroic azo dye compound having a maximum absorption wavelength in the wavelength range of 455 nm or more and less than 560 nm, and has a wavelength in the range of 455 to 555 nm from the viewpoint of adjusting the tint of the substituent.
  • a dichroic azo dye compound having a maximum absorption wavelength is preferable, and a dichroic azo dye compound having a maximum absorption wavelength in the wavelength range of 455 to 550 nm is more preferable.
  • the second dichroic azo dye compound is preferably a compound represented by the formula (2) from the viewpoint of further improving the degree of orientation of the polarizing element.
  • n 1 or 2.
  • Ar3, Ar4 and Ar5 independently have a phenylene group which may have a substituent, a naphthylene group which may have a substituent or a heterocycle which may have a substituent.
  • the heterocyclic group may be either aromatic or non-aromatic. Examples of the atom other than carbon constituting the aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom.
  • the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, they may be the same or different.
  • aromatic heterocyclic group examples include pyridylene group (pyridine-diyl group), pyridazine-diyl group, imidazole-diyl group, thienylene (thiophene-diyl group), quinolylene group (quinolin-diyl group), and isoquinolylene.
  • R4 in the formula (2) is the same as that of R1 in the formula (1).
  • R5 and R6 in the formula (2) are the same as those of R2 and R3 in the formula (1), respectively.
  • R4 is preferably an electron-withdrawing group
  • R5 and R6 are preferably groups with low electron-donating properties.
  • a specific example when R4 is an electron-withdrawing group is the same as a specific example when R1 is an electron-withdrawing group
  • R5 and R6 are groups having low electron-donating properties.
  • the specific example of the case is the same as the specific example when R2 and R3 are groups having a low electron donating property.
  • the logP value is an index expressing the hydrophilic and hydrophobic properties of the chemical structure.
  • the absolute value of the difference between the logP value of the side chain of the first dichroic azo dye compound and the logP value of the side chain of the second dichroic azo dye compound (hereinafter, also referred to as "logP difference"). Is preferably 2.30 or less, more preferably 2.0 or less, further preferably 1.5 or less, and particularly preferably 1.0 or less.
  • the logP difference is 2.30 or less, the affinity between the first dichroic azo dye compound and the second dichroic azo dye compound is increased, and it becomes easier to form an array structure, so that light absorption occurs.
  • the degree of orientation of the anisotropic layer is further improved.
  • the side chain of the first dichroic azo dye compound and the second dichroic azo dye compound means a group bonded to the end of the above-mentioned chromophore.
  • the first dichroic azo dye compound is a compound represented by the formula (1)
  • R1, R2 and R3 in the formula (1) are side chains and the second dichroic azo dye.
  • R4, R5 and R6 in the formula (2) are side chains.
  • the first dichroic azo dye compound is a compound represented by the formula (1) and the second dichroic azo dye compound is a compound represented by the formula (2)
  • R1 and R4 Of the difference in logP value between R1 and R5, the difference in logP value between R2 and R4, and the difference in logP value between R2 and R5, at least one logP difference has the above value. It is preferable to meet.
  • the logP value is an index expressing the hydrophilic and hydrophobic properties of the chemical structure, and is sometimes called a prohydrophobic parameter.
  • the logP value can be calculated using software such as ChemBioDraw Ultra or HSPiP (Ver. 4.1.07).
  • OECD Guidelines for the Testing of Chemicals, Sections 1, Test No. It can also be obtained experimentally by the method of 117 or the like.
  • a value calculated by inputting the structural formula of the compound into HSPiP (Ver. 4.1.07) is adopted as the logP value.
  • the third dichroic azo dye compound is a dichroic azo dye compound other than the first dichroic azo dye compound and the second dichroic azo dye compound, and specifically, the first two.
  • the chemical structure is different from that of the chromatic azo dye compound and the second dichroic azo dye compound. If the composition for forming a light absorption anisotropic layer contains a third dichroic azo dye compound, there is an advantage that the tint of the light absorption anisotropic layer can be easily adjusted.
  • the maximum absorption wavelength of the third dichroic azo dye compound is 380 nm or more and less than 455 nm, preferably 385 to 454 nm.
  • the third dichroic azo dye compound preferably contains a dichroic azo dye represented by the following formula (6).
  • a and B each independently represent a crosslinkable group.
  • a and b independently represent 0 or 1, respectively. It is preferable that both a and b are 0 in terms of excellent orientation at 420 nm.
  • L 1 represents a monovalent substituent
  • L 2 represents a monovalent substituent
  • L 2 represents a single bond or a divalent linking group.
  • Ar 1 represents a (n1 + 2) -valent aromatic hydrocarbon group or heterocyclic group
  • Ar 2 represents a (n2 + 2) -valent aromatic hydrocarbon group or heterocyclic group
  • Ar 3 represents (n1 + 2) -valent aromatic hydrocarbon group or heterocyclic group. Represents an n3 + 2) -valent aromatic hydrocarbon group or heterocyclic group.
  • R 1 , R 2 and R 3 each independently represent a monovalent substituent. When n1 ⁇ 2, the plurality of R1s may be the same or different from each other, and when n2 ⁇ 2 , the plurality of R2s may be the same or different from each other, and when n3 ⁇ 2.
  • the plurality of R3s may be the same or different from each other.
  • k represents an integer of 1 to 4.
  • the plurality of Ar 2s may be the same or different from each other, and the plurality of R 2s may be the same or different from each other.
  • examples of the crosslinkable group represented by A and B include the polymerizable group described in paragraphs [0040] to [0050] of JP2010-244038A.
  • acryloyl group, methacryloyl group, epoxy group, oxetanyl group, and styryl group are preferable from the viewpoint of improving reactivity and synthetic aptitude, and acryloyl group and methacryloyl group are preferable from the viewpoint of further improving solubility. More preferred.
  • the monovalent substituent represented by L 1 and L 2 is a group introduced to enhance the solubility of a dichroic substance, or an electron donating property or an electron introduced to adjust the color tone as a dye.
  • a group having a suction property is preferable.
  • An alkyl group preferably an alkyl group having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, for example, a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, etc.
  • alkenyl group preferably an alkenyl group having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, for example, a vinyl group, an allyl group, a 2-butenyl group, or a 3-pentenyl group.
  • An alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, and examples thereof include a propargyl group and a 3-pentynyl group).
  • An aryl group (preferably an aryl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, for example, a phenyl group, a 2,6-diethylphenyl group, 3,5 -Ditrifluoromethylphenyl group, naphthyl group, biphenyl group, etc.),
  • Substituted or unsubstituted amino groups preferably 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms, particularly preferably 0 to 6 carbon atoms, and for example, unsubstituted amino groups, methylamino groups, etc.
  • Acyloxy groups (preferably 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, particularly preferably 2 to 6 carbon atoms, and examples thereof include acetoxy groups and benzoyloxy groups).
  • An acylamino group (preferably 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, particularly preferably 2 to 6 carbon atoms, and examples thereof include an acetylamino group and a benzoylamino group).
  • Alkoxycarbonylamino group (preferably 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, particularly preferably 2 to 6 carbon atoms, and examples thereof include a methoxycarbonylamino group).
  • Aryloxycarbonylamino group (preferably 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include a phenyloxycarbonylamino group).
  • a sulfonylamino group (preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, and examples thereof include a methanesulfonylamino group and a benzenesulfonylamino group).
  • Sulfamoyl group (preferably 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms, particularly preferably 0 to 6 carbon atoms, for example, sulfamoyl group, methylsulfamoyl group, dimethylsulfamoyl group, phenylsul. Famoyl group etc.),
  • a carbamoyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, for example, an unsubstituted carbamoyl group, a methylcarbamoyl group, a diethylcarbamoyl group, a phenylcarbamoyl group).
  • An alkylthio group (preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, and examples thereof include a methylthio group and an ethylthio group).
  • Arylthio groups (preferably 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenylthio groups).
  • a sulfonyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, and examples thereof include a mesyl group and a tosyl group).
  • Sulfinyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, and examples thereof include methanesulfinyl group and benzenesulfinyl group).
  • the ureido group (preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, and examples thereof include an unsubstituted ureido group, a methyl ureido group, a phenyl ureido group and the like.
  • Phosphoric acid amide group preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, and examples thereof include diethyl phosphate amide group and phenyl phosphate amide group.
  • Heterocyclic group preferably a heterocyclic group having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, for example, a heterocyclic group having a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, and the like, for example, imidazolyl.
  • Cyril group preferably a silyl group having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, and examples thereof include a trimethylsilyl group and a triphenylsilyl group).
  • Halogen atom eg fluorine atom, chlorine atom, bromine atom, iodine atom
  • These substituents may be further substituted with these substituents.
  • it may be the same or different. Further, if possible, they may be combined with each other to form a ring.
  • Examples of the group in which the substituent is further substituted by the above substituent include an RB- (O-RA) na- group in which an alkoxy group is substituted with an alkyl group.
  • RA represents an alkylene group having 1 to 5 carbon atoms
  • RB represents an alkyl group having 1 to 5 carbon atoms
  • na represents 1 to 10 (preferably 1 to 5, more preferably 1).
  • the monovalent substituents represented by L 1 and L 2 include an alkyl group, an alkenyl group, an alkoxy group, and a group in which these groups are further substituted with these groups (for example, the above - mentioned RB).
  • -(O- RA ) na -group) is preferred, an alkyl group, an alkoxy group, and a group in which these groups are further substituted with these groups (eg, RB- (O - RA ) na described above).
  • -Group is more preferable.
  • Examples of the divalent linking group represented by L 1 and L 2 include -O-, -S-, -CO-, -COO-, -OCO-, -O-CO-O-, and -CO-NR N. -, -O-CO-NR N- , -NR N -CO-NR N- , -SO 2- , -SO-, alkylene group, cycloalkylene group, and alkaneylene group, and two of these groups. Examples include the groups combined as described above. Among these, a group in which an alkylene group and one or more groups selected from the group consisting of -O-, -COO-, -OCO- and -O-CO-O- are combined is preferable.
  • RN represents a hydrogen atom or an alkyl group. When there are a plurality of RNs , the plurality of RNs may be the same or different from each other.
  • the number of atoms in at least one of L 1 and L 2 is preferably 3 or more, and more preferably 5 or more. It is preferable that the number is 7 or more, and particularly preferably 10 or more.
  • the upper limit of the number of atoms in the main chain is preferably 20 or less, and more preferably 12 or less.
  • the number of atoms in at least one of L 1 and L 2 is preferably 1 to 5.
  • the "main chain" in L 1 is necessary for directly connecting the "O" atom connected to L 1 and the "A".
  • the part is referred to, and the "number of atoms in the main chain” refers to the number of atoms constituting the above part.
  • the "main chain” in L 2 is necessary to directly connect the "O" atom and "B" to be linked to L 2 .
  • the part is referred to, and the “number of atoms in the main chain” refers to the number of atoms constituting the above part.
  • the “number of atoms in the main chain” does not include the number of atoms in the branched chain, which will be described later.
  • the "number of atoms in the main chain” in L 1 means the number of atoms in L 1 not including the branched chain.
  • the "number of atoms in the main chain" in L 2 means the number of atoms in L 2 that does not include the branched chain. Specifically, in the following formula (D1), the number of atoms in the main chain of L1 is 5 (the number of atoms in the dotted line frame on the left side of the following formula (D1)), and the main chain of L2. The number of atoms in is 5 (the number of atoms in the dotted frame on the right side of the following formula (D1)).
  • the number of atoms in the main chain of L 1 is 7 (the number of atoms in the dotted line frame on the left side of the following formula (D10)), and the number of atoms in the main chain of L 2 is The number is 5 (the number of atoms in the dotted frame on the right side of the following formula (D10)).
  • L 1 and L 2 may have a branched chain.
  • the “branched chain” in the formula (6) directly connects the “O” atom connected to the L 1 in the formula (6) and the " A ". It means the part other than the part necessary for doing.
  • the “branched chain” in L 2 directly connects the "O” atom connected to L 2 in equation (6) and "B". It means the part other than the part necessary for doing.
  • the “branched chain” in the formula (6) is the longest atomic chain extending from the “O” atom connected to the L 1 in the formula ( 6 ) (that is, the main chain).
  • the "branched chain" in L 2 is the longest atomic chain extending from the "O" atom connected to L 2 in equation (6) (ie,).
  • the number of atoms in the branched chain is preferably 3 or less. When the number of atoms in the branched chain is 3 or less, there is an advantage that the degree of orientation of the light absorption anisotropic layer is further improved.
  • the number of branches chain atoms does not include the number of hydrogen atoms.
  • Ar 1 is a (n1 + 2) valence (for example, trivalent when n1 is 1)
  • Ar 2 is a (n2 + 2) valence (for example, trivalent when n2 is 1)
  • Ar 3 Represents an aromatic hydrocarbon group or a heterocyclic group having a (n3 + 2) valence (eg, trivalent when n3 is 1).
  • Ar 1 to Ar 3 can be rephrased as a divalent aromatic hydrocarbon group or a divalent heterocyclic group substituted with n1 to n3 substituents (R 1 to R 3 described later), respectively.
  • the divalent aromatic hydrocarbon group represented by Ar 1 to Ar 3 may be a single ring or may have a condensed ring structure of two or more rings.
  • the number of rings of the divalent aromatic hydrocarbon group is preferably 1 to 4, more preferably 1 to 2, and even more preferably 1 (that is, a phenylene group) from the viewpoint of further improving the solubility.
  • the divalent aromatic hydrocarbon group include a phenylene group, an azulene-diyl group, a naphthylene group, a fluorene-diyl group, an anthracene-diyl group and a tetracene-diyl group, and the solubility is further improved. From this viewpoint, a phenylene group and a naphthylene group are preferable, and a phenylene group is more preferable.
  • Specific examples of the third dichroic substance compound are shown below, but the present invention is not limited thereto. In the following specific example, n represents an integer of 1 to 10.
  • a structure in which the third dye does not have a radically polymerizable group is preferable.
  • the following structure can be mentioned.
  • the third dichroic azo dye compound is more preferably a dichroic substance having a structure represented by the following formula (1-1) in that it is particularly excellent in the degree of orientation at 420 nm.
  • R 1 , R 3 , R 4 , R 5 , n1, n3, L 1 and L 2 , respectively, are defined as R 1 , R 3 , R 4 , R 5 in equation (1), respectively. , N1 , n3 , L1 and L2.
  • R 21 and R 22 are independently synonymous with R 2 in equation (1).
  • n21 and n22 are independently synonymous with n2 in equation (1).
  • n1 + n21 + n22 + n3 are preferably 1 to 9, more preferably 1 to 5.
  • the content of the dichroic substance is preferably 5 to 30% by mass, more preferably 15 to 28% by mass, still more preferably 20 to 30% by mass, based on the total solid content mass of the light absorption anisotropic layer.
  • the content of the dichroic substance is within the above range, a light absorption anisotropic layer having a high degree of orientation can be obtained even when the light absorption anisotropic layer is made into a thin film. Therefore, it is easy to obtain a light absorption anisotropic layer having excellent flexibility.
  • it exceeds 30% by mass it becomes difficult to suppress internal reflection due to an increase in the refractive index.
  • the content of the bicolor substance per unit area is preferably 0.2 g / m 2 or more, preferably 0.3 g / m / 2. It is more preferably m 2 or more, and more preferably 0.5 g / m 2 or more. There is no particular upper limit, but it is usually used at 1.0 g / m 2 or less.
  • the content of the first dichroic azo dye compound is preferably 40 to 90 parts by mass, preferably 45 to 90 parts by mass, based on 100 parts by mass of the total content of the dichroic substance in the composition for forming a light absorption anisotropic layer. Up to 75 parts by mass is more preferable.
  • the content of the second dichroic azo dye compound is preferably 6 to 50 parts by mass, preferably 8 to 50 parts by mass, based on 100 mass by mass of the total content of the dichroic substance in the composition for forming a light absorption anisotropic layer. 35 parts by mass is more preferable.
  • the content of the third dichroic azo dye compound is preferably 3 to 35 parts by mass with respect to 100 mass by mass of the dichroic azo dye compound in the composition for forming a light absorption anisotropic layer. ⁇ 30 parts by mass is more preferable.
  • the content ratio of the first dichroic azo dye compound, the second dichroic azo dye compound, and the third dichroic azo dye compound used as needed is the light absorption anisotropy. It can be set arbitrarily to adjust the color of the layer.
  • the content ratio of the second dichroic azo dye compound to the first dichroic azo dye compound is in terms of molars. , 0.1 to 10, more preferably 0.2 to 5, and particularly preferably 0.3 to 0.8.
  • the degree of orientation is enhanced.
  • the light absorption anisotropic layer in the present invention can be formed, for example, by using the composition for forming a light absorption anisotropic layer containing the above-mentioned organic dichroic substance.
  • the composition for forming a light absorption anisotropic layer may contain components other than the organic bicolor substance, and may include, for example, a liquid crystal compound, a solvent, a vertical alignment agent, a polymerizable component, and a polymerization initiator (for example, radical polymerization). Initiator), leveling agent, etc. may be mentioned.
  • the light absorption anisotropic layer in the present invention contains a solid component other than a liquid component (solvent or the like).
  • the first alignment layer in the present invention can be formed in the same manner as the light absorption anisotropic layer by using a composition obtained by removing the dichroic substance from the composition for forming the light absorption anisotropic layer.
  • the polymerizable component examples include compounds containing acrylates (for example, acrylate monomers).
  • the light absorption anisotropic layer in the present invention contains a polyacrylate obtained by polymerizing the compound containing the above acrylate.
  • the polymerizable component examples include the compounds described in paragraph 0058 of JP-A-2017-122776.
  • the content of the polymerizable component is the content of the organic dichroic substance and the liquid crystal compound in the composition for forming a light absorption anisotropic layer. 3 to 20 parts by mass is preferable with respect to 100 parts by mass in total.
  • a vertical alignment agent may be contained if necessary.
  • the vertical alignment agent include a boronic acid compound and an onium salt.
  • the compound represented by the formula (30) is preferable.
  • R 1 and R 2 each independently contain a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group.
  • R3 represents a substituent containing a (meth) acrylic group.
  • Specific examples of the boronic acid compound include the boronic acid compound represented by the general formula (I) described in paragraphs 0023 to 0032 of JP-A-2008-225281. As the boronic acid compound, the compounds exemplified below are also preferable.
  • the compound represented by the formula (31) is preferable.
  • ring A represents a quaternary ammonium ion composed of a nitrogen-containing heterocycle.
  • X represents an anion.
  • L 1 represents a divalent linking group.
  • L 2 represents a single bond or a divalent linking group.
  • Y 1 represents a divalent linking group having a 5- or 6-membered ring as a partial structure.
  • Z represents a divalent linking group having 2 to 20 alkylene groups as a partial structure.
  • P 1 and P 2 each independently represent a monovalent substituent having a polymerizable ethylenically unsaturated bond.
  • the onium salt examples include the onium salt described in paragraphs 0052 to 0058 of JP2012-208397A, the onium salt described in paragraphs 0024 to 0055 of JP2008-026730, and the Japanese Patent Application Laid-Open No. 2012-026730. Examples thereof include the onium salt described in Japanese Patent Application Laid-Open No. 2002-37777.
  • the content of the vertical alignment agent in the composition is preferably 0.1 to 400% by mass, more preferably 0.5 to 350% by mass, based on the total mass of the liquid crystal compound.
  • the vertical alignment agent may be used alone or in combination of two or more. When two or more kinds of vertical alignment agents are used, the total amount thereof is preferably in the above range.
  • Leveling agent It is preferable to include the following leveling agents.
  • the leveling agent can also be used as a so-called surfactant.
  • the leveling agent is not particularly limited, and a leveling agent containing a fluorine atom (fluorine-based leveling agent) or a leveling agent containing a silicon atom (silicon-based leveling agent) is preferable, and a fluorine-based leveling agent is more preferable.
  • the fluorine-based leveling agent examples include fatty acid esters of polyvalent carboxylic acids in which a part of fatty acid is substituted with a fluoroalkyl group, and polyacrylates having a fluoro substituent.
  • a leveling agent containing a repeating unit derived from the compound represented by the formula (40) is used from the viewpoint of promoting the vertical orientation of the dichroic substance and the liquid crystal compound. preferable.
  • R0 represents a hydrogen atom, a halogen atom, or a methyl group.
  • L represents a divalent linking group.
  • an alkylene group having 2 to 16 carbon atoms is preferable, and any -CH 2- not adjacent to the alkylene group is substituted with -O-, -COO-, -CO-, or -CONH-. May be.
  • n represents an integer from 1 to 18.
  • the leveling agent having a repeating unit derived from the compound represented by the formula (40) may further contain another repeating unit.
  • Examples of the other repeating unit include a repeating unit derived from the compound represented by the formula (41).
  • R 11 represents a hydrogen atom, a halogen atom, or a methyl group.
  • X represents an oxygen atom, a sulfur atom, or -N (R 13 )-.
  • R 13 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • R 12 represents a hydrogen atom, an alkyl group which may have a substituent, or an aromatic group which may have a substituent.
  • the alkyl group preferably has 1 to 20 carbon atoms.
  • the alkyl group may be linear, branched, or cyclic. Further, examples of the substituent that the alkyl group may have include a poly (alkyleneoxy) group and a polymerizable group. The definition of the polymerizable group is as described above.
  • the leveling agent contains a repeating unit derived from the compound represented by the formula (40) and a repeating unit derived from the compound represented by the formula (41), the repeating unit derived from the compound represented by the formula (40).
  • the content of is preferably 10 to 90 mol%, more preferably 15 to 95 mol%, based on all the repeating units contained in the leveling agent.
  • the leveling agent contains a repeating unit derived from the compound represented by the formula (40) and a repeating unit derived from the compound represented by the formula (41), the repeating unit derived from the compound represented by the formula (41).
  • the content of is preferably 10 to 90 mol%, more preferably 5 to 85 mol%, based on all the repeating units contained in the leveling agent.
  • leveling agent a leveling agent containing a repeating unit derived from a compound represented by the formula (42) instead of the repeating unit derived from the compound represented by the above-mentioned formula (40) can also be mentioned.
  • R 2 represents a hydrogen atom, a halogen atom, or a methyl group.
  • L 2 represents a divalent linking group.
  • n represents an integer from 1 to 18.
  • leveling agent examples include the compounds exemplified in paragraphs 0046 to 0052 of JP-A-2004-331812 and the compounds described in paragraphs 0038-0052 of JP-A-2008-257205.
  • the content of the leveling agent in the composition is preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass, based on the total mass of the liquid crystal compound.
  • the leveling agent may be used alone or in combination of two or more. When two or more leveling agents are used, the total amount thereof is preferably in the above range.
  • the composition for forming a light absorption anisotropic layer preferably contains a polymerization initiator.
  • the polymerization initiator is not particularly limited, but is preferably a photosensitive compound, that is, a photopolymerization initiator.
  • a photopolymerization initiator various compounds can be used without particular limitation. Examples of photopolymerization initiators include ⁇ -carbonyl compounds (US Pat. Nos. 2,376,661 and 236,670), acidoin ethers (US Pat. No. 2,448,828), and ⁇ -hydrocarbon-substituted aromatic acidoines. Compounds (US Pat. No. 2722512), polynuclear quinone compounds (US Pat. Nos.
  • the content of the polymerization initiator is the above dichroic substance and the above polymer liquid crystal compound in the composition for forming the light absorption anisotropic layer. 0.01 to 30 parts by mass is preferable, and 0.1 to 15 parts by mass is more preferable, with respect to 100 parts by mass in total.
  • the content of the polymerization initiator is 0.01 parts by mass or more, the durability of the light absorption anisotropic film is good, and when it is 30 parts by mass or less, the degree of orientation of the light absorption anisotropic film is high. It will be better.
  • the polymerization initiator may be used alone or in combination of two or more. When two or more kinds of polymerization initiators are contained, the total amount thereof is preferably within the above range.
  • the composition for forming a light absorption anisotropic layer used in the present invention preferably contains a solvent from the viewpoint of workability and the like.
  • the solvent include ketones (eg, acetone, 2-butanone, methylisobutylketone, cyclopetantanone, cyclohexanone, etc.), ethers (eg, dioxane, tetrahydrofuran, 2-methyltetrahexyl, cyclopentylmethyl ether, tetrahydropyran, etc.).
  • Dioxolanes, etc. Dioxolanes, etc.), aliphatic hydrocarbons (eg, hexane, etc.), alicyclic hydrocarbons (eg, cyclohexane, etc.), aromatic hydrocarbons (eg, benzene, toluene, xylene, trimethylbenzene, etc.), halogenated Carbons (eg, dichloromethane, trichloromethane, dichloroethane, dichlorobenzene, chlorotoluene, etc.), esters (eg, methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, etc.), alcohols (eg, ethanol, isopropanol, butanol, etc.) Cyclohexanols, isopentyl alcohols, neopentyl alcohols, diacetone alcohols, benzyl alcohols, etc.), cellosolves
  • amides eg, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, etc.
  • heterocyclic compounds eg, pyridine, N.
  • -Organic solvents such as (methylimidazole, etc.), as well as water. The solvent for this may be used alone or in combination of two or more.
  • ketones particularly cyclopentanone and cyclohexanone
  • ethers particularly tetrahydrofuran, cyclopentylmethyl ether, tetrahydropyran, dioxolan
  • amides particularly are used from the viewpoint of taking advantage of their excellent solubility.
  • Dimethylformamide, dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone are preferred.
  • the content of the solvent is preferably 80 to 99% by mass with respect to the total mass of the composition for forming the light absorption anisotropic layer. , 83-97% by mass, more preferably 85-95% by mass.
  • the solvent may be used alone or in combination of two or more. When two or more kinds of solvents are contained, the total amount thereof is preferably within the above range.
  • the light absorption anisotropic film of the present invention may have only a light absorption anisotropic layer and a first alignment layer, but may be a laminate having other layers, if necessary.
  • the light absorption anisotropic film of the present invention has, as shown in FIG. 2, a second alignment layer as a preferred embodiment in addition to the light absorption anisotropic layer 2 and the first alignment layer 3. , Barrier layer 1 and TAC film 5.
  • the light absorption anisotropic film of the present invention may have a support for supporting the absorption anisotropic film.
  • the TAC film 5 is a support.
  • the support is preferably arranged so as to be on the surface opposite to the air layer.
  • the absorption anisotropic film has a protective layer for protecting the light absorption anisotropic layer
  • the support is arranged on the surface opposite to the surface on which the protective layer is provided.
  • a known transparent resin film, transparent resin plate, transparent resin sheet, or the like can be used, and there is no particular limitation.
  • the transparent resin film examples include cellulose acylate film (for example, cellulose triacetate film (refractive rate 1.48), cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film), polyethylene terephthalate film, and polyether sulfone. Films, polyacrylic resin films, polyurethane resin films, polyester films, polycarbonate films, polysulfone films, polyether films, polymethylpentene films, polyether ketone films, (meth) acrylic nitrile films and the like can be used.
  • a cellulose acylate film which is highly transparent, has little optical birefringence, is easy to manufacture, and is generally used as a protective film for a polarizing plate is preferable, and a cellulose triacetate film is particularly preferable.
  • the thickness of the support is usually 20 ⁇ m to 100 ⁇ m. In the present invention, it is particularly preferable that the support is a cellulose ester film and the film thickness is 20 to 70 ⁇ m.
  • the light absorption anisotropic film of the present invention preferably has a protective layer for protecting the light absorption anisotropic layer.
  • a protective layer various known layers (films) can be used as long as the light absorption anisotropic layer can be protected, and a barrier layer is preferably exemplified.
  • the light absorption anisotropic film shown in FIG. 2 has a barrier layer 1 on the surface (opposite to the support) of the light absorption anisotropic layer 2.
  • the barrier layer is also called a gas blocking layer (oxygen blocking layer), and has a function of protecting the polarizing element of the present invention from gas such as oxygen in the atmosphere, moisture, or a compound contained in an adjacent layer.
  • paragraphs [0045] to [0054] paragraphs, paragraphs [0010] to [0061] of JP2012-213938A, and paragraphs [0021] to [0031] of JP2005-169994A can be referred to.
  • the above-mentioned light absorption anisotropic layer has a dichroic substance, and internal reflection due to the high refractive index of the light absorption anisotropic layer may be a problem.
  • the refractive index adjusting layer is present.
  • the refractive index adjusting layer is a layer arranged so as to be in contact with the light absorption anisotropic layer, and has an in-plane average refractive index of 1.55 or more and 1.70 or less at a wavelength of 550 nm. It is preferable that it is a refractive index adjusting layer for performing so-called index matching.
  • the light absorption anisotropic film of the present invention has various functions such as a retardation layer, an antireflection layer, and various filters, if necessary. It may have a film).
  • the light absorption anisotropic film of the present invention is not limited to the configuration shown in FIG. 2, for example, and various layer configurations can be used as long as it has a light absorption anisotropic layer.
  • the light absorption anisotropic film of the present invention may have only a light absorption anisotropic layer and a first oriented layer, and the light absorption anisotropic layer, the first oriented layer, and the second oriented layer may be provided. It may be composed of a light absorption anisotropic layer, a first alignment layer, and a barrier layer.
  • the method for forming the light absorption anisotropic layer is not particularly limited, and the step of applying the above-mentioned light absorption anisotropic layer forming composition to form a coating film (hereinafter, also referred to as “coating film forming step”).
  • coating film forming step A step of orienting the liquid crystal compound and the dichroic substance contained in the coating film (hereinafter, also referred to as “alignment step”), and a method including the step of orienting the liquid crystal compound and the dichroic substance in this order can be mentioned.
  • the liquid crystal component is a component that includes not only the above-mentioned liquid crystal compound but also the above-mentioned organic dichroic substance having a liquid crystal property when the above-mentioned organic dichroic substance has a liquid crystal property.
  • the first alignment layer is formed in the same manner as the light absorption anisotropic layer by using a composition obtained by removing the organic dichroic substance from the composition for forming the light absorption anisotropic layer. Can be done.
  • the coating film forming step is a step of applying a composition for forming a light absorption anisotropic layer to form a coating film.
  • a composition for forming a light absorption anisotropic layer containing the above-mentioned solvent, or by using a liquid material such as a melt by heating or the like, the composition for forming a light absorption anisotropic layer is used. It becomes easy to apply the composition for forming a light absorption anisotropic layer.
  • the method for applying the composition for forming a light absorption anisotropic layer include a roll coating method, a gravure printing method, a spin coating method, a wire bar coating method, an extrusion coating method, a direct gravure coating method, and a reverse method.
  • Known methods such as a gravure coating method, a die coating method, a spray method, and an inkjet method can be mentioned.
  • the alignment step is a step of aligning the liquid crystal component contained in the coating film. As a result, a light absorption anisotropic layer is obtained.
  • the alignment step may have a drying process. By the drying treatment, components such as a solvent can be removed from the coating film. The drying treatment may be carried out by a method of leaving the coating film at room temperature for a predetermined time (for example, natural drying), or by a method of heating and / or blowing air.
  • the liquid crystal component contained in the composition for forming a light absorption anisotropic layer may be oriented by the above-mentioned coating film forming step or drying treatment.
  • the coating film is dried and the solvent is removed from the coating film to obtain light absorption anisotropic.
  • a coating film having a coating film (that is, a light absorption anisotropic film) can be obtained.
  • the drying treatment is performed at a temperature equal to or higher than the transition temperature of the liquid crystal component contained in the coating film to the liquid crystal phase, the heat treatment described later may not be performed.
  • the transition temperature of the liquid crystal component contained in the coating film to the liquid crystal phase is preferably 10 to 250 ° C, more preferably 25 to 190 ° C from the viewpoint of manufacturing suitability and the like.
  • a cooling treatment or the like for lowering the temperature to a temperature range exhibiting a liquid crystal phase is not required, which is preferable.
  • the transition temperature is 250 ° C. or lower, a high temperature is not required even when the temperature is once higher than the temperature range in which the liquid crystal phase is exhibited, and the temperature is not required. It is preferable because it can reduce deformation and alteration.
  • the orientation step preferably has a heat treatment.
  • the liquid crystal component contained in the coating film can be oriented, so that the coating film after the heat treatment can be suitably used as the light absorption anisotropic film.
  • the heat treatment is preferably 10 to 250 ° C., more preferably 25 to 190 ° C. from the viewpoint of manufacturing aptitude and the like.
  • the heating time is preferably 1 to 300 seconds, more preferably 1 to 60 seconds.
  • the alignment step may have a cooling treatment performed after the heat treatment.
  • the cooling treatment is a treatment for cooling the coated film after heating to about room temperature (20 to 25 ° C.).
  • the cooling means is not particularly limited, and can be carried out by a known method.
  • a light absorption anisotropic film can be obtained.
  • the alignment step that is, the method of orienting the liquid crystal component contained in the coating film includes a drying treatment and a heat treatment, but the alignment step is not limited to this and is known. Orientation treatment is available.
  • the method for forming the light absorption anisotropic layer may include a step of curing the light absorption anisotropic layer (hereinafter, also referred to as “curing step”) after the alignment step.
  • the curing step is carried out, for example, by heating and / or light irradiation (exposure) when the light absorption anisotropic layer has a crosslinkable group (polymerizable group).
  • the curing step is carried out by light irradiation.
  • various types of light such as infrared rays, visible light, and ultraviolet rays can be used, but ultraviolet rays are preferable.
  • These lights may be carried out using a light source that emits light of a specific wavelength (wavelength range), or the transmitted light is irradiated through a filter that transmits light only of a specific wavelength (wavelength range). You may. Further, at the time of curing, ultraviolet rays or the like may be irradiated while heating. When the light irradiation is performed while heating, the heating temperature at the time of light irradiation is preferably 25 to 140 ° C., although it depends on the transition temperature of the liquid crystal component contained in the liquid crystal film to the liquid crystal phase. Further, the light irradiation may be performed in a nitrogen atmosphere. When the curing of the liquid crystal film is progressed by radical polymerization, the inhibition of polymerization by oxygen is reduced, so that it is preferable to perform light irradiation in a nitrogen atmosphere.
  • the thickness of the light absorption anisotropic layer is not particularly limited, but is preferably 100 to 8000 nm, and more preferably 300 to 5000 nm from the viewpoint of compactness and weight reduction.
  • the light absorption anisotropic layer is a light absorption anisotropic layer having regions A and B in the plane and having different transmittance central axes in each region. It is possible. If the light emitting pixels are controlled by patterning each pixel of the liquid crystal, it is possible to switch the center of the field of view in a narrow field of view. Further, the light absorption anisotropic layer used in the present invention has a region C and a region D in the plane, and in the region C and the region D, in a plane including the central axis of transmittance and the normal of the film surface.
  • the transmittance tilted 30 ° in the normal direction from the transmittance center axis of the region C is 50% or less
  • the transmittance tilted 30 ° in the normal direction from the transmittance center axis of the region D is 80% or more. It is preferably a light absorption anisotropic layer.
  • the viewing angle dependence as a display device for each display position, it is possible to design with excellent design. Further, if the light emitting pixels are controlled by patterning each pixel of the liquid crystal, it is possible to switch between a narrow viewing angle and a wide viewing angle.
  • the light absorption anisotropic layer having two or more different regions in the plane is also referred to as a “patterned light absorption anisotropic layer” for convenience.
  • Pattern formation method There is no limitation on the method for forming the patterned light absorption anisotropic layer having two or more different regions in the plane as described above, and various known methods as described in, for example, International Publication No. 2019/176918. Methods are available. As an example, a method of forming a pattern by changing the irradiation angle of ultraviolet rays irradiating the optical alignment film, a method of controlling the thickness of the patterned light absorption anisotropic layer in the plane, and a method in the patterned light absorption anisotropic layer. Examples thereof include a method of unevenly distributing a dichroic substance compound and a method of post-processing an optically uniform patterned light absorption anisotropic layer.
  • a method of controlling the thickness of the patterned light absorption anisotropic layer in the plane a method using lithography, a method using imprint, and a pattern light absorption anisotropic layer on a substrate having an uneven structure are provided.
  • the method of forming and the like can be mentioned.
  • a method of unevenly distributing the dichroic substance compound in the pattern light absorption anisotropic layer a method of extracting the dichroic substance by solvent immersion (bleaching) can be mentioned.
  • a method of post-processing an optically uniform patterned light absorption anisotropic layer a method of cutting a part of a flat light absorption anisotropic layer by laser processing or the like can be mentioned.
  • the viewing angle control system of the present invention has the above-mentioned light absorption anisotropic film of the present invention and a polarizing element.
  • the polarizing element used in the viewing angle control system of the present invention is not particularly limited as long as it is a member having a function of converting light into specific linear polarization, and a known polarizing element can be used.
  • an iodine-based splitter As the splitter, an iodine-based splitter, a dye-based splitter using a dichroic dye, a polyene-based splitter, and the like are used. Iodine-based splitters and dye-based splitters include coated and stretched splitters, both of which can be applied.
  • the coating type polarizing element a polarizing element in which a dichroic organic dye is oriented by utilizing the orientation of the liquid crystal compound is preferable, and as a stretchable type polarizing element, iodine or a dichroic dye is adsorbed on polyvinyl alcohol and stretched. The polarizing element produced in the above process is preferable.
  • Japanese Patent No. 5048120 Japanese Patent No. 5143918, Japanese Patent No. 5048120, and Patent No. 5048120 are used.
  • Japanese Patent No. 4691205, Japanese Patent No. 4751481, and Japanese Patent No. 4751486 can be mentioned, and known techniques relating to these substituents can also be preferably used.
  • a polymer containing polyvinyl alcohol-based resin ( -CH2 -CHOH- as a repeating unit.
  • it is selected from the group consisting of polyvinyl alcohol and ethylene-vinyl alcohol copolymers) because it is easily available and has excellent degree of polarization. It is preferable that the polymer contains at least one).
  • the thickness of the polarizing element is not particularly limited, but is preferably 3 to 60 ⁇ m, more preferably 5 to 20 ⁇ m, still more preferably 5 to 10 ⁇ m.
  • the light absorption anisotropic film and the polarizing element may be laminated via a sticking agent such as an adhesive layer and an adhesive layer, or the above-mentioned first
  • a sticking agent such as an adhesive layer and an adhesive layer, or the above-mentioned first
  • the alignment layer and the light absorption anisotropy layer may be directly coated with the light absorption anisotropy and laminated.
  • the pressure-sensitive adhesive layer in the present invention is preferably a transparent and optically isotropic adhesive similar to that used in a normal image display device, and a pressure-sensitive pressure-sensitive adhesive is usually used.
  • the pressure-sensitive adhesive layer in the present invention includes a cross-linking agent (for example, an isocyanate-based cross-linking agent and an epoxy-based cross-linking agent) and a tackifier (for example, a rosin derivative resin, a polyterpene resin, and a petroleum resin).
  • a cross-linking agent for example, an isocyanate-based cross-linking agent and an epoxy-based cross-linking agent
  • a tackifier for example, a rosin derivative resin, a polyterpene resin, and a petroleum resin.
  • plasticizers, fillers, anti-aging agents, surfactants, UV absorbers, light stabilizers, and additives such as antioxidants may be added as appropriate.
  • the thickness of the adhesive layer is usually 20 to 500 ⁇ m, preferably 20 to 250 ⁇ m. If it is less than 20 ⁇ m, the required adhesive strength and rework suitability may not be obtained, and if it exceeds 500 ⁇ m, the adhesive may squeeze out or ooze out from the peripheral end of the image display device.
  • the adhesive develops adhesiveness by drying and / or reacting after bonding.
  • the polyvinyl alcohol-based adhesive (PVA-based adhesive) develops adhesiveness when dried, and makes it possible to bond the materials together.
  • Specific examples of the curable adhesive that develops adhesiveness by reaction include active energy ray-curable adhesives such as (meth) acrylate-based adhesives and cationic polymerization curable adhesives.
  • Examples of the curable component in the (meth) acrylate-based adhesive include a compound having a (meth) acryloyl group and a compound having a vinyl group.
  • the cationic polymerization curable adhesive a compound having an epoxy group or an oxetanyl group can also be used.
  • the compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various generally known curable epoxy compounds can be used.
  • Preferred epoxy compounds include compounds having at least two epoxy groups and at least one aromatic ring in the molecule (aromatic epoxy compounds) and at least one of them having at least two epoxy groups in the molecule.
  • Examples of the individual include a compound (alicyclic epoxy compound) formed between two adjacent carbon atoms constituting an alicyclic ring.
  • an ultraviolet curable adhesive that cures by ultraviolet irradiation is preferably used.
  • Each layer of the adhesive layer and the adhesive layer has an ultraviolet absorbing ability by a method such as a method of treating with an ultraviolet absorber such as a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, and a nickel complex salt compound. It may be an ester or the like.
  • an ultraviolet absorber such as a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, and a nickel complex salt compound. It may be an ester or the like.
  • the adhesive layer and the adhesive layer may be attached to the light absorption anisotropic film and / or the polarizing element by an appropriate method.
  • a pressure-sensitive adhesive solution of about 10 to 40% by weight is prepared by dissolving or dispersing the base polymer or its composition in a solvent consisting of an appropriate solvent such as toluene and ethyl acetate alone or in a mixture thereof.
  • An appropriate development method such as a casting method or a coating method may be used to directly attach the light absorption anisotropic film and / or the polarizing element, or as described above, an adhesive layer may be formed on the support and the adhesive layer may be formed. Examples include a method of transfer.
  • a base material for forming the adhesive layer As a method of attaching the adhesive layer and the adhesive layer to the light absorption anisotropic film and / or the polarizing element, a base material for forming the adhesive layer, and heat-expandable particles and additives added as needed.
  • the above-mentioned coating liquid is applied on an appropriate release liner (release paper or the like) to apply the above-mentioned coating liquid to the heat-expandable adhesive layer.
  • an appropriate release liner release paper or the like
  • a method of forming a heat-expandable adhesive layer and pressure-transferring the heat-expandable adhesive layer from a release liner is also available.
  • the adhesive layer and the adhesive layer can also be provided on one or both sides of a light absorption anisotropic film and / or a polarizing element as an overlapping layer of objects having different compositions or types. Further, when provided on both sides, an adhesive layer having a different composition, type and thickness may be used on the front and back of the light absorption anisotropic film and / or the polarizing element.
  • the light absorption anisotropic film and / or the polarizing element may be subjected to a surface modification treatment for the purpose of improving the adhesiveness before attaching the adhesive and the pressure-sensitive adhesive.
  • Specific treatments include corona treatment, plasma treatment, primer treatment, saponification treatment and the like.
  • the image display device of the present invention is provided with the viewing angle control system of the present invention on at least one main surface of the display panel.
  • the angle ⁇ between the plane including the central axis of the transmittance of the light absorption anisotropic layer and the normal of the light absorption anisotropic film and the absorption axis of the polarizing element is 45 ° to 90.
  • the temperature is preferably °, more preferably 80 ° to 90 °, and even more preferably 88 ° to 90 °. The closer this angle ⁇ is to 90 °, the more it is possible to add an illuminance contrast between the direction in which the image displayed by the image display device is easy to see and the direction in which it is difficult to see.
  • the display panel used in the image display device of the present invention is not limited, and examples thereof include a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as “EL”) display panel, and a plasma display panel. Of these, a liquid crystal cell or an organic EL display panel is preferable. That is, the image display device of the present invention is preferably a liquid crystal display device using a liquid crystal cell as a display panel and an organic EL display device using an organic EL display panel as a display panel.
  • EL organic electroluminescence
  • the liquid crystal display device which is an example of the image display device of the present invention
  • an embodiment having the above-mentioned viewing angle control system (light absorption anisotropic film and polarizing element) of the present invention and a liquid crystal cell is preferably mentioned.
  • the polarizing element of the viewing angle control system of the present invention among the polarizing elements provided on both sides of the liquid crystal cell, it is preferable to use the polarizing element of the viewing angle control system of the present invention as the front side or rear side polarizing element.
  • the splitter of the viewing angle control system of the present invention can be used as the front and rear splitters.
  • Some display panels are thin and can be molded into curved surfaces. Since the light absorption anisotropic film of the present invention is thin and easy to bend, it can be suitably applied to an image display device having a curved display surface. In addition, some display panels have a pixel density of more than 250 ppi and are capable of high-definition display. The light absorption anisotropic film of the present invention can be suitably applied to such a high-definition display panel without causing moire.
  • liquid crystal cells constituting the liquid crystal display device will be described in detail below.
  • the liquid crystal cell used in the liquid crystal display device is preferably a VA (Vertical Alignment) mode, an OCB (Optically Compensated Bend) mode, an IPS (In-Plane-Switching) mode, or a TN (Twisted Nematic) mode. It is not limited to these.
  • the rod-shaped liquid crystal molecules are substantially horizontally oriented when no voltage is applied, and are further twisted to 60 to 120 °.
  • the TN mode liquid crystal cell is most often used as a color TFT (Thin Film Transistor) liquid crystal display device, and has been described in many documents.
  • the rod-shaped liquid crystal molecules are substantially vertically oriented when no voltage is applied.
  • VA mode liquid crystal cell (1) a VA mode liquid crystal cell in a narrow sense (1) in which rod-shaped liquid crystal molecules are oriented substantially vertically when no voltage is applied and substantially horizontally when a voltage is applied (Japanese Patent Laid-Open No. 2-). 176625 (described in Japanese Patent Publication No. 176625), and (2) a liquid crystal cell (SID97, Voltage of technique. Papers (Proceedings) 28 (1997) 845 in which the VA mode is multi-domainized to expand the viewing angle. ), (3) Liquid crystal cells in a mode (n-ASM mode) in which rod-shaped liquid crystal molecules are substantially vertically oriented when no voltage is applied and twisted and multi-domain oriented when a voltage is applied.
  • n-ASM mode Liquid crystal cells in a mode in which rod-shaped liquid crystal molecules are substantially vertically oriented when no voltage is applied and twisted and multi-domain oriented when a voltage is applied.
  • the liquid crystal cell may be any of PVA (Patterned Vertical Alignment) type, optical alignment type (Optical Alignment), and PSA (Polymer-Stained Alignment). Details of these modes are described in Japanese Patent Application Laid-Open No. 2006-215326 and Japanese Patent Application Laid-Open No. 2008-538819.
  • PVA Plasma Vertical Alignment
  • Optical Alignment optical alignment type
  • PSA Polymer-Stained Alignment
  • the display is black when no electric field is applied, and the absorption axes of the pair of upper and lower polarizing plates are orthogonal to each other.
  • the IPS mode methods for reducing leakage light when displaying black in an oblique direction and improving the viewing angle by using an optical compensation sheet are described in JP-A No. 10-54982, JP-A-11-202323, and JP-A No. 10-52982. It is disclosed in JP-A-9-292522, JP-A-11-133408, JP-A-11-305217, JP-A-10-307291, and the like.
  • the light absorption anisotropic film and the polarizing element in the viewing angle control system described above are attached.
  • the coating may be performed in a known direction, such as a method using an exemplified patch.
  • Example 1 A light absorption anisotropic film having a light absorption anisotropic layer in which an organic dichroic substance was inclined or oriented was prepared as follows.
  • ⁇ Preparation of transparent support 1 with second alignment layer> The surface of the cellulose acylate film 1 (TAC substrate having a thickness of 40 ⁇ m; manufactured by TG40 Fujifilm Co., Ltd.) was saponified with an alkaline solution, and the following coating solution 1 for forming a second alignment layer was applied onto the surface with a wire bar.
  • the support on which the coating film was formed was dried with warm air at 60 ° C. for 60 seconds and then with warm air at 100 ° C. for 120 seconds to form the second alignment layer 1 and obtain a TAC film with a second alignment layer. rice field.
  • the film thickness of the second alignment layer was 0.5 ⁇ m.
  • the prepared TAC film with a second alignment layer was used by rubbing the surface of the second alignment layer.
  • the composition T1 for forming the first alignment layer having the following composition was applied onto the second alignment layer of the prepared TAC film with the second alignment layer using a wire bar to form the first alignment layer coating layer T1.
  • the first alignment layer coating layer T1 was heated at 120 ° C. for 30 seconds, and the first alignment layer coating layer T1 was cooled to room temperature (23 ° C.). It was further heated at 80 ° C. for 60 seconds and cooled again to room temperature.
  • the first alignment layer T1 was formed on the second alignment layer 1 by irradiating with an LED lamp (center wavelength 365 nm) for 1 second under an irradiation condition of an illuminance of 200 mW / cm 2 .
  • the produced support with the first alignment layer T1 will be referred to as the support with the first alignment layer Z1.
  • the film thickness of the first alignment layer T1 was 0.60 ⁇ m.
  • composition of composition T1 for forming first alignment layer ⁇ The following low molecular weight liquid crystal compound M-1 95.69 parts by mass ⁇ Polymerization initiator IRGACUREOXE-02 (manufactured by BASF) 4.049 parts by mass ⁇ The following surfactant F-1 (leveling agent) 0.2620 parts by mass ⁇ Cyclo Pentanone 660.6 parts by mass, tetrahydrofuran 660.6 parts by mass ⁇
  • the produced support Z1 with a first alignment layer is cut in parallel with the thickness direction (normal direction) using a microtome (Rotating microtome: RM2265 manufactured by Leica).
  • a section 43 having a thickness of 2 ⁇ m was prepared.
  • the orientation angle of the liquid crystal compound on the air interface side of the first alignment layer T1 was measured from the cut surface side using a polarizing microscope. That is, for this section 43, the angle formed by the alignment axis (optical axis) of the liquid crystal compound on the air interface side of the first alignment layer T1 and the normal line of the first alignment layer T1 was measured from the cut surface side.
  • the interface on the air side of the first alignment layer T1 is, that is, the interface on the light absorption anisotropic layer side to be formed later.
  • the polarizing element and the analyzer are arranged in a cross Nicol manner, and the light is extinguished at the air interface side of the first alignment layer T1 while moving the azimuth angle of the section 43. Observe the azimuth angle, then insert a sensitive color plate ( ⁇ plate), observe the color near the interface, check the direction of the slow axis in section 43, and determine the orientation angle of the liquid crystal compound at the air side interface. It was determined.
  • the orientation angle of the liquid crystal compound on the air interface side of the first alignment layer T1 was 22 ° with respect to the normal direction of the first alignment layer.
  • the orientation angle of the liquid crystal compound at the interface on the air interface side (light absorption anisotropic layer side) of the first alignment layer T1 was measured in the same manner.
  • the orientation angles of the liquid crystal compounds are shown in Table 1 below.
  • ⁇ Formation of light absorption anisotropic layer P1> The following composition for forming a light absorption anisotropic layer P1 was applied onto the obtained first alignment layer T1 with a wire bar to form a coating layer P1. Then, the coating layer P1 was heated at 120 ° C. for 30 seconds, and the coating layer P1 was cooled to room temperature (23 ° C.). It was then heated at 80 ° C. for 60 seconds and cooled again to room temperature. Then, the light absorption anisotropic layer P1 was formed on the alignment layer 1 by irradiating with an LED lamp (center wavelength 365 nm) for 1 second under an irradiation condition of an illuminance of 200 mW / cm 2 . The formed light absorption anisotropic layer P1 had a film thickness of 1.4 ⁇ m and a surface energy of 26.5 mN / m.
  • the contact angle of pure water and diiodomethane with respect to the measured surface was measured in an indoor environment of 25 ° C 50% RH using an automatic contact angle meter CA-V type (manufactured by Kyowa Interface Science Co., Ltd.), and OWENS and It was determined by Wendt's method.
  • barrier layer B1 The following composition for forming a barrier layer B1 was applied on the prepared light absorption anisotropic layer P1 with a wire bar and dried at 80 ° C. for 5 minutes to form a barrier coating layer B1. Next, the barrier coating layer B1 is irradiated for 2 seconds under irradiation conditions of an illuminance of 150 mW / cm 2 using an LED lamp (center wavelength 365 nm) in an environment with an oxygen concentration of 100 ppm and a temperature of 60 ° C. to obtain a light absorption anisotropic layer P1. A barrier layer B1 was formed on the surface. The thickness of the barrier layer B1 was 1.0 ⁇ m. This was designated as a light absorption anisotropic film P1.
  • composition B1 for forming a barrier layer ⁇ ⁇
  • the following modified polyvinyl alcohol 3.80 parts by mass ⁇ Initiator Irg2959 0.20 parts by mass ⁇ 70 parts by mass of water ⁇ 30 parts by mass of methanol ⁇ ⁇
  • ⁇ Measurement of angle ⁇ of the central axis of transmittance of the light absorption anisotropic layer With respect to the produced light absorption anisotropic film P1, the Mueller matrix of the light absorption anisotropic layer at a wavelength of 550 nm was measured using AxoScan OPMF-1 (manufactured by Optoscience) to obtain the light absorption anisotropic layer. The angle ⁇ of the central axis of transmittance was measured. The Mueller matrix was measured with a sample size of 20 cm ⁇ 30 cm, and 15 points were arbitrarily selected in the sample plane.
  • the central axis of transmission is when the transmission is measured by changing the inclination angle (extreme angle) and the inclination direction (azimuth angle) with respect to the normal direction of the main surface of the light absorption anisotropic layer. In addition, it is the direction with the highest permeability.
  • the normal direction of the light absorption anisotropic film in the plane including the normal direction of the light absorption anisotropic layer along the azimuth angle (the plane including the central axis of transmission and orthogonal to the layer surface).
  • the Mueller matrix was measured while changing the polar angle ⁇ , which is an angle with respect to, by 1 ° from ⁇ 70 to 70 °. From the measurement results of this Mueller matrix, the angle ⁇ at which the transmittance is maximized was derived.
  • the angle ⁇ at which this transmittance is maximized is the direction of the transmittance central axis of the light absorption anisotropic layer, that is, the method of the transmittance central axis of the light absorption anisotropic layer and the light absorption anisotropic layer. It is the angle formed by the line.
  • the average value of the measured angles ⁇ at 15 points was obtained, and this average value was used as the central axis of the transmittance of the light absorption anisotropic layer and the normal of the light absorption anisotropic layer in the light absorption anisotropic film.
  • the angle formed by Hereinafter, this angle is referred to as the average angle ⁇ of the transmittance central axis.
  • the average angle ⁇ of the transmittance center axis is shown in Table 1 below.
  • the average angle ⁇ of the central axis of transmittance was measured. Similarly, the results are shown in Table 1.
  • a polarizing plate 1 having a thickness of 8 ⁇ m and an exposed one side of the polarizing element was prepared.
  • the exposed surface of the polarizing plate 1 and the surface of the produced light absorption anisotropic film P1 were corona-treated.
  • the polarizing plate 1 and the light absorption anisotropic film P1 were bonded together using the following PVA adhesive 1 with the corona-treated surfaces facing each other to prepare a laminated body A1.
  • the transmittance central axis 22 of the light absorption anisotropic layer 2 and the normal line 23 of the light absorption anisotropic layer 2 (light absorption anisotropic film) are included.
  • the angle formed by the plane and the absorption axis 24 of the polarizing element 21 was set to 90 °.
  • PVA Adhesive 1 20 parts of methylol melamine at 30 ° C. with respect to 100 parts of a polyvinyl alcohol-based resin containing an acetoacetyl group (average degree of polymerization: 1200, degree of saponification: 98.5 mol%, degree of acetoacetylation: 5 mol%).
  • An aqueous solution was prepared by dissolving it in pure water under temperature conditions and adjusting the solid content concentration to 3.7%.
  • An acrylate-based polymer was prepared according to the following procedure. 95 parts by weight of butyl acrylate and 5 parts by weight of acrylic acid are polymerized by a solution polymerization method in a reaction vessel equipped with a cooling tube, a nitrogen introduction tube, a thermometer and a stirrer, and the average molecular weight is 2 million and the molecular weight distribution (Mw /). An acrylate-based polymer A1 having Mn) 3.0 was obtained.
  • This composition was applied to a separate film surface-treated with a silicone-based release agent using a die coater and dried in an environment of 90 ° C. for 1 minute to obtain an acrylate-based pressure-sensitive adhesive sheet.
  • the film thickness was 25 ⁇ m and the storage elastic modulus was 0.1 MPa.
  • Example 2 The light absorption anisotropic film P2, the laminate A2, and the image display are the same as in Example 1 except that the composition of the first alignment layer is changed to the composition of the first alignment layer forming composition T2 described below.
  • the device B2 was manufactured.
  • the film thickness of the first alignment layer was 0.64 ⁇ m, and the surface energy was 41.3 mN / m.
  • the film thickness of the light absorption anisotropic layer was 1.4 ⁇ m, and the surface energy was 26.5 mN / m.
  • composition of composition T2 for forming first alignment layer ⁇ ⁇ High molecular weight liquid crystal compound P-1 55.20 parts by mass ⁇ Low molecular weight liquid crystal compound M-1 40.49 parts by mass ⁇ Polymerization initiator IRGACUREOXE-02 (manufactured by BASF) 4.049 parts by mass ⁇ Surface active agent F-1 (Leveling agent) 0.2620 parts by mass, cyclopentanone 660.6 parts by mass, tetrahydrofuran 660.6 parts by mass ⁇ ⁇
  • the light absorption anisotropic layer 3 was formed using the following composition for forming a light absorption anisotropic layer P2, and the thickness of the light absorption anisotropic layer was 4.0 ⁇ m.
  • the light absorption anisotropic film P3, the laminated body A3, and the image display device B3 were manufactured.
  • the fact that the low-molecular-weight liquid crystal compounds M-2 and M-3 show a smectic phase was observed by observing the liquid crystal phase while changing the temperature using a hot stage for a microscope (manufactured by Metratorredo) and a polarizing microscope. Confirmed in advance.
  • the film thickness of the first alignment layer was 0.64 ⁇ m.
  • Polymerization initiator IRGACUREOXE-02 manufactured by BASF
  • Surface active agent F-2 leveling agent 0.1000 parts by mass ⁇ Cyclopentanone 1846.2 parts by mass ⁇ benzyl alcohol 102.6 parts by mass ⁇
  • the light-absorbing anisotropic layer 4 was formed using the following composition for forming a light-absorbing anisotropic layer P3, and the thickness of the light-absorbing anisotropic layer was 4.0 ⁇ m.
  • the light absorption anisotropic film P4, the laminated body A4, and the image display device B4 were manufactured.
  • the fact that the low-molecular-weight liquid crystal compounds M-4 and M-5 show a smectic phase is observed in advance by observing the liquid crystal phase while changing the temperature using a hot stage for a microscope (manufactured by Metratoredo Co., Ltd.) and a polarizing microscope. Confirmed to.
  • the film thickness of the first alignment layer was 0.64 ⁇ m.
  • Polymerization initiator IRGACUREOXE-02 manufactured by BASF
  • Surface active agent F-2 leveling agent 0.1000 parts by mass ⁇ Cyclopentanone 1846.2 parts by mass ⁇ benzyl alcohol 102.6 parts by mass ⁇
  • the light absorption anisotropic layer 5 was formed using the following composition for forming a light absorption anisotropic layer P4, and the thickness of the light absorption anisotropic layer was 1.4 ⁇ m. Similarly, the light absorption anisotropic film P5, the laminated body A5, and the image display device B5 were manufactured. The film thickness of the first alignment layer was 0.64 ⁇ m.
  • the light absorption anisotropic layer 6 was formed using the following composition for forming a light absorption anisotropic layer P5, and the thickness of the light absorption anisotropic layer was set to 1.4 ⁇ m. Similarly, the light absorption anisotropic film P6, the laminated body A6, and the image display device B6 were manufactured. The film thickness of the first alignment layer was 0.64 ⁇ m.
  • composition for forming a photo-alignment layer is applied onto a PVA-aligned layer that is not provided with a second alignment layer and has not been subjected to rubbing treatment, and then dried at 90 ° C. for 1 minute to form a composition for forming a photo-alignment layer.
  • the photo-alignment layer E1 was formed by performing inclined ultraviolet exposure from diagonally above the photo-alignment film at an angle of 30 ° with respect to the normal line of the coating film E1.
  • the light absorption anisotropic film P7, the laminated body A7, and the image display device B7 were produced in the same manner as in Example 1 except that the photoalignment layer 1 was used as the forming surface of the light absorption anisotropic layer.
  • the thickness of the photoalignment film was 0.1 ⁇ m.
  • composition of composition for forming a photo-alignment layer ⁇ ⁇ The following photo-alignment material E-1 0.3 parts by mass ⁇ 2-butoxyethanol 41.6 parts by mass ⁇ Dipropylene glycol monomethyl ether 41.6 parts by mass ⁇ Pure water 16.5 parts by mass ⁇ ⁇
  • AAA Very little uneven brightness AA: Little uneven brightness. A: Luminance unevenness is not noticeable. B: Luminance unevenness is a little noticeable. C: Luminance unevenness is conspicuous. D: Luminance unevenness is very noticeable.
  • Table 1 shows a list of evaluation results.
  • the coefficient of variation (relative value of variation) of the direction ⁇ of the transmittance central axis and the displayed image are displayed.
  • the luminance unevenness is a small value as compared with the comparative example, indicating that a high-quality image display device can be obtained.
  • the light absorption anisotropic film using a polymer liquid crystal for the first alignment layer and the light absorption anisotropic film having a large content of organic dichroic substances in the light absorption anisotropic layer have a particularly angle ⁇ .
  • the fluctuation coefficient (variation) of the light crystal and the unevenness of the brightness of the displayed image are small and the quality is excellent.
  • the light absorption anisotropic film and the image display device using the liquid crystal compound showing the smectic phase in the light absorption anisotropic layer are also of high quality with a small coefficient of variation of the angle ⁇ and brightness unevenness.
  • the coefficient of variation of the angle ⁇ becomes smaller, the luminance variation of the image of the image display device also becomes smaller, and the correspondence between them is shown.
  • the present invention achieves uniform control of viewing angle characteristics while avoiding loads such as exposure equipment costs.
  • Liquid crystal display 101 Light absorption anisotropic film 102 Visually visible side polarizing element 103 Liquid crystal cell 104 Backlight side polarizing element 105 Backlight 1 Barrier layer 2 Light absorption anisotropic layer 3 First oriented layer 4 Second oriented layer 5 TAC Film 11 Liquid crystal molecule 13 Dichroic dye D-1 14 Dichroic dye D-2 15 Dichroic dye D-3 21 Polarizer 22 Transmittance center axis direction (extreme angle ⁇ ) 23 Normal of the light absorption anisotropic layer 24 Absorption axis direction of the stator

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

画像表示装置において、所望の方向からは明るく鮮明な画像を表示でき、それ以外の方向からは画像を見えなくできる光吸収異方性フィルム、これを用いる視角制御システム、および、これを用いる画像表示装置の提供を課題とする。光吸収異方性層とこれに隣接する第1配向層からなる光吸収異方性フィルムであり、光吸収異方性層は液晶化合物と有機二色性物質を含み、光吸収異方性層の透過率中心軸と光吸収異方性層の法線がなす角度が5°以上45°未満であり、第1配向層は重合性液晶化合物がハイブリッド配向している光吸収異方性フィルムにより、課題を解決する。

Description

光吸収異方性フィルム、視角制御システムおよび画像表示装置
 本発明は、視角制御用の光吸収異方性フィルム、この光吸収異方性フィルムを用いる視角制御システム、および、この視角制御システムを用いる画像表示装置に関する。
 カーナビゲ―ションシステム等の車載用ディスプレイを用いる場合、表示画面から上方向に出射される光がフロントガラスなどに映り込み、運転時に妨げになるという問題がある。
 このような問題を解決する目的で、例えば、特許文献1には、面内に吸収軸を有する第1偏光子と、法線方向に対して有機二色性物質の吸収軸を0°~45°に配向させた第2偏光子(光吸収異方性層)とを併用する方法が提案されている。ここで、第1偏光子は、液晶表示装置における視認側の偏光子を使用できる。
 この方法では、特定方向への画像からの光のみを透過させ、それ以外の角度への光の透過を遮断することにより、所望の方向の観察者からは画像を観察することはできるが、それ以外の、例えば窓ガラスのある方向からは画像が映らないようにすることができる。
特許第4902516号公報
 上記の先行技術においては、視角制御装置で使用される光吸収異方性層を製造する際に、アゾベンゼン色素などを用いる光配向膜に、斜め上方から紫外線露光し、光配向膜表面に傾斜角度のついた異方性を発生させ、その上に、有機二色性物質と液晶化合物を含む光吸収異方性層を形成するための塗布液を塗布、乾燥することで、液晶化合物および有機二色性物質を傾斜配向させて使用していた。
 しかし、このような紫外線露光によって光配向膜表面に傾斜角度のついた異方性を発生させる方法は、紫外線露光装置が、高出力で、かつ精密な平行光線を照射できる装置であることが必要である。また、それと同時に、有機二色性物質の傾斜角を均一にするためには、希望する角度以外からの光の照射を無くすために、露光環境内での迷光を十分に抑えるなど、大掛かりな反射光対策が必要であった。
 その結果、この方法では、光吸収異方性層を形成するための露光装置に関するコスト負担が非常に大きなものとなっていた。加えて、そのような事情とも関連し、光配向膜に傾斜角度をつけて紫外線露光する従来方法では、作製した光吸収異方性フィルムの光吸収異方性層の配向方向のバラツキは大きなものになり、光吸収異方性フィルムの品質を低下させることにつながっていた。
 そこで本発明では、光吸収異方性層の配向制御に使用する露光装置に関連したコストの負担が少なく、光吸収異方性層における有機二色性物質の配向方向が均一な光吸収異方性フィルム、この光吸収異方性フィルムを用いる視角制御システム、および、この視角制御システムを用いる画像表示装置を提供することを課題とする。
 本発明者らは、以下の構成により上記課題を達成することができることを見出した。
 (1) 光吸収異方性層と、光吸収異方性層に隣接する第1配向層とを有する光吸収異方性フィルムであり、
 光吸収異方性層は液晶化合物と有機二色性物質とを含み、
 光吸収異方性層の透過率中心軸と光吸収異方性層の法線とが成す角度が5°以上45°未満であり、
 第1配向層は、一方の表面側から他方の表面側に向かって、厚さ方向の配向方向が連続的に変化する、ハイブリッド配向した重合性液晶化合物を固定してなる層である、光吸収異方性フィルム。
 (2) 第1配向層が、重合性高分子液晶を有する組成物から形成された層である、(1)に記載の光吸収異方性フィルム。
 (3) 第1配向層の、光吸収異方性層側の界面における重合性液晶化合物の配向軸と、第1配向層の法線とが成す角度が、2°~50°である、(1)または(2)に記載の光吸収異方性フィルム。
 (4) 有機二色性物質の光吸収異方性層の全固形分質量に対する比率が5質量%以上である、(1)~(3)のいずれかに記載の光吸収異方性フィルム。
 (5) 光吸収異方性層の液晶化合物が、重合性液晶化合物を含み、かつ、この重合性液晶化合物がスメクチック相を示す液晶化合物を含む、(1)~(4)のいずれかに記載の光吸収異方性フィルム。
 (6) 第1配向層の、光吸収異方性層側とは反対側に隣接して、ポリビニルアルコールまたはポリイミドからなる第2配向層を有する、(1)~(5)のいずれかに記載の光吸収異方性フィルム。
 (7) 偏光子と、(1)~(6)のいずれかに記載の光吸収異方性フィルムとを有する、視角制御システム。
 (8) 表示パネルの少なくとも一方の主面に、(7)に記載の視角制御システムが配置されている画像表示装置。
 本発明によれば、低コストで光吸収異方性層の配向方向が均一な光吸収異方性フィルム提供することができる。
図1は、本発明の液晶表示装置の実施形態の例を示す模式的な断面図である。 図2は、本発明の光吸収異方性フィルムの実施形態の例を示す模式的な断面図である。 図3は、本発明の光吸収異方性フィルムの内部における、液晶分子と二色性物質の配向方向を示す、概念的な断面図である。 図4は、実施例における、光吸収異方性層の透過率中心軸の方向と、偏光子の吸収軸の位置関係を示す図である。 図5は、第1配向層の配向角度を測定するための切片の切り出し方法を概念的に示す図である。 図6は、第1配向層の配向角度の測定方法を概念的に示す図である。説明するための概念図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、平行、直交とは厳密な意味での平行、直交を意味するのではなく、平行または直交から±5°の範囲を意味する。
 さらに、本明細書において、「(メタ)アクリレート」は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味で使用される。
 また、本明細書において、液晶性組成物、液晶化合物とは、硬化等により、もはや液晶性を示さなくなったものも概念として含まれる。
 <画像表示装置>
 本発明における画像表示装置は、液晶表示装置のほか、有機エレクトロルミネッセンス表示装置、および、その他の表示装置を使用することができるが、ここではその一例として液晶表示装置を例にとって説明を行う。
 図1に示すように、本発明の液晶表示装置100は、視認側から、少なくとも、光吸収異方性フィルム101と、視認側偏光子102と、液晶セル103と、バックライト側偏光子104と、バックライト105とを、この順に備える液晶表示装置である。
 光吸収異方性フィルム101は、本発明の光吸収異方性フィルムであって、光吸収異方性層および第1配向層を有する。
 光吸収異方性フィルム101は、後述する光吸収異方性層および第1配向層を有するものであれば、各種の構成が利用可能である。
 この構成に制限されるものではないが、本発明の光吸収異方性フィルム101は、一例として、図2に概念的に示すように、バリア層1と、光吸収異方性層2と、第1配向層3と、第2配向層4と、TACフィルム5とを、この順番で有する。
 TACフィルム5は、光吸収異方性層101を支持する支持体である。なお、TACフィルムとは、トリアセチルセルロース(Triacetylcellulose)フィルムの略である。
 本発明において、偏光子の吸収軸の方向を、縦方向、横方向という場合があるが、通常液晶表示装置を使用する状態において、鉛直方向に近い液晶表示装置の辺の方向を縦方向、水平方向に近い液晶表示装置の辺の方向を横方向と言う。
[光吸収異方性層]
 光吸収異方性層は、有機二色性物質および液晶化合物を主成分とし、その他の成分としては重合開始剤、レベリング剤、配向制御剤などを含有することができる。
 この中で液晶化合物は、低分子液晶化合物および高分子液晶化合物の種々の化合物を使うことが可能であるが、有機二色性物質を光吸収性異方性層の中で良好な配向状態を得るには高分子液晶化合物を少なくとも一部含有していることが好ましい。また、高分子液晶化合物を用いることにより、光吸収異方性層の空気側界面と支持体側界面における液晶化合物のチルト角の差を比較的小さく抑えることが可能であり、良好な視角特性を得る上でも好ましい。
 光吸収異方性層の光透過方向を制御するには、可視域に吸収を有する有機二色性物質を所望の方向に配向させる態様が好ましく、一例として、少なくとも一種の有機二色性物質をフィルムの法線方向に対して傾斜配向させた光吸収異方性層が挙げられる。
 このように有機二色性物質を傾斜配向した光吸収異方性層としては、ゲスト-ホスト液晶セルの作製技術等を用いて、ホストとなる液晶化合物の配向を利用して、ゲストとしての有機二色性物質を配向させる態様がさらに好ましい。
 なお、法線とは、周知のように、シート状物(フィルム、層、膜、板状物)の主面と直交する方向であり、例えば、図2に示す光吸収異方性フィルムにおける各層の積層方向である。また、主面とは、周知のように、シート状物の最大面であり、通常、厚さ方向の両面である。
 本発明の光吸収異方性フィルムにおいては、光吸収異方性層における有機二色性物質すなわち液晶化合物の配向方向を制御する際に、光吸収異方性層に隣接する第1配向層を利用する。
 後に詳述するが、第1配向層とは、一方の表面側から他方の表面側に向かって、厚さ方向の配向方向が連続的に変化する、ハイブリッド配向した重合性液晶化合物を固定してなる層である。
 従来より、光吸収異方性層における有機二色性色素(液晶化合物)の配向方向の制御は、アゾベンゼン色素およびポリビニルシンナメートなどを代表例とする光配向性材料を含む光配向層を用いて行っていた。すなわち、光配向性材料を含む光配向層に対し、紫外線を光配向層の法線方向に対して角度をつけた斜め方向から照射し、光配向層の法線方向に対して、傾斜が付いた異方性を発生さる。
 このように傾斜が付いた異方性を発生させた光配向層に、液晶化合物と有機二色性物質とを含む組成物を用いて光吸収異方性層を形成することにより、ホストとなる液晶化合物を光配向層の異方性によって傾斜配向させ、この液晶化合物の配向に追従させて、光吸収異方性層中の有機二色性物質も配向させてきた。
 しかし、このような光配向層をつかった方法で、光吸収異方性層における有機二色性色素を十分に配向制御しようとすると、傾斜方向からの紫外線照射による照度の低下等に起因して、通常行われている光硬化のため紫外線露光などと較べると、数十~数百倍も大きな、数千mJ/cm2もの露光量が必要になる。
 また、この配向方法では、紫外線の入射角度により配向方向が決まる。その為、均一な配向方向を得るためには、高出力で高度な平行光を照射できる光源が必要になる。さらに、均一な配向方向を得るためには、光学系および露光装置の内部での迷光を抑えるための、乱反射防止対策が必要になる。
 そのため、光配向層を用いる二色性色素の配向方法は、処理および装置等に掛かる負担が大きかった。
 また、光配向層の代りに、比較的大きな配向の傾斜角が付きやすい、特殊な官能基を有するポリイミド系配向層などをラビング処理して使用するなどの方法も考えられる。
 しかしながら、これらの方法では、光吸収異方性層の透過率中心軸と、光吸収異方性層の法線とが成す角度が5°以上45°未満という、本発明の光吸収異方性層における有機二色性色素(有機化合物)の配向方向を制御するには、配向の傾斜角の大きさが不足している。また、これらの方法では、配向方向(チルト方向)を必要に応じて、自在に変化させることはできなかった。
 そこで本発明では、光配向層などの代わりに、光吸収異方性層の配向方向を制御するために、液晶化合物をハイブリッド配向した液晶層を第1配向層として用いることにより上記の問題を解決した。
 また、第1配向層の配向の方位角を決定する方法には特に限定がないが、第1配向層の、光吸収異方性層とは反対側に隣接して、面内方向の配向規制力を有する第2配向層を設ける方法が例示される。第2配向層は、ラビング処理したポリビニルアルコール層、またはラビング処理したポリイミド層であることが好ましい。
 有機二色性物質を所望の方向に配向する技術は、有機二色性物質を利用した偏光子の作製技術、および、ゲスト-ホスト液晶セルの作製技術などを参考にすることができる。上述のように、本発明の光吸収異方性フィルムにおいて、光吸収異方性層は、液晶化合物と有機二色性物質とを有するものである。
 一例として、図3に概念的に示す光吸収異方性層2のように、液晶化合物11を所望の方向に傾斜配向することで、液晶化合物11をホストとして、ゲストである、符号13で示す二色性物質D-1、符号14で示す二色性物質D-2、および、符号15で示す二色性物質D-3を、液晶化合物に沿って配向させる。なお、二色性物質D-1、二色性物質D-2、および、二色性物質D-3、一例として、互いに吸収ビーク波長が異なる有機二色性物質である。
 このような二色性物質の配向は、例えば、特開平11-305036公報および特開2002-90526号公報等に記載の二色性偏光素子の作製方法、ならびに、特開2002-99388号公報および特開2016-27387公報等に記載のゲストホスト型液晶表示装置の作製方法で利用されている技術が、本発明の光吸収異方性フィルムにおける光吸収異方性層の作製にも利用することができる。
 例えば、ゲストホスト型液晶セルの技術を利用して、ホスト液晶の配向に付随させて有機二色性物質の分子を、上記のような所望の配向にすることができる。
 具体的には、ゲストとなる有機二色性物質と、ホスト液晶となる棒状液晶化合物とを混合し、ホスト液晶を配向させるとともに、その液晶分子の配向に沿って有機二色性物質の分子を配向させて、その配向状態を固定することで、本発明に用いられる光吸収異方性層を作製することができる。
 本発明に用いられる光吸収異方性層の光吸収特性の使用環境による変動を防止するために、有機二色性物質の配向を、化学結合の形成によって固定するのが好ましい。例えば、ホスト液晶、有機二色性物質、および、所望により添加される重合性成分の重合を進行させることで、配向を固定することができる。
 また、一対の基板に、有機二色性物質とホスト液晶とを少なくとも含む液晶層を有するゲストホスト型液晶セルそのものを、本発明に用いられる光吸収異方性層として利用してもよい。ホスト液晶の配向(およびそれに付随する有機二色性物質分子の配向)は、基板内面に形成された配向膜によって制御することができ、電界等の外部刺激を与えない限り、その配向状態は維持され、本発明に用いられる光吸収異方性層の光吸収特性を一定にすることができる。
 また、ポリマーフィルム中に有機二色性物質を浸透させて、ポリマーフィルム中のポリマー分子の配向に沿って有機二色性物質を配向させることで、本発明の光吸収異方性フィルムの光吸収異方性層として用いることができるポリマーフィルムを作製できる。
 具体的には、有機二色性物質の溶液をポリマーフィルムの表面に塗布して、フィルム中に浸透させて、作製することができる。有機二色性物質の配向は、ポリマーフィルム中のポリマー鎖の配向、その性質(ポリマー鎖またはそれが有する官能基等の化学的および物理的性質)、塗布方法、などによって調整することができる。この方法の詳細については、特開2002-90526号公報に記載されている。
 光吸収異方性層として、このポリマーフィルムを用いる場合における透過率中心軸の検出は、後述する方法と同様に行えばよい。
 本発明の光吸収異方性フィルムにおいて、光吸収異方性層は、透過率中心軸と、光吸収異方性層の法線とが成す角度が、5°以上45°未満である。
 透過率中心軸と、光吸収異方性層の法線とが成す角度が5°未満では、画像表示装置を含む車内配置の設計自由度が狭くなる等の不都合を生じる。
 また、透過率中心軸と、光吸収異方性層の法線とが成す角度を45°以上に設定しても、このような浅い角度からでは画面が見にくく、しかも、画像表示装置による出射光の輝度が高く、かつ、光学異方性層を横切る光路の光路長が短くなる正面方向では、遮光性も不十分になる。すなわち、透過率中心軸と、光吸収異方性層の法線とが成す角度が45°以上になると、視角制御システムの視角制御方向の観点、から好ましくなく、設定される視認方向からの視認性が悪くなる、設定される視認方向以外における光の遮断性が不十分で、車載用途等において窓ガラスへの映り込みが多くなる等の不都合が生じる。
 透過率中心軸と、光吸収異方性層の法線とが成す角度は、5°~30°が好ましく、5°~15°がより好ましい。
 なお、透過率中心軸とは、光吸収異方性層の主面の法線方向に対する傾き角度(極角)と傾き方向(方位角)とを変化させて透過率を測定した際に、最も透過率の高い方向を意味する。
 後に実施例でも示すが、光吸収異方性層の透過率中心軸は、例えばAxoScan OPMF-1(オプトサイエンス社製)を用いて、まず、透過率中心軸が傾いている方位角の方向を検出し、その方位角の方向において、極角を、種々、変化させながらミューラーマトリックスを測定して透過率を導出し、最も透過率が高い方向(極角)を、光吸収異方性層の透過率中心軸の方向とする。この極角の方向が、光吸収異方性層における透過率中心軸と、光吸収異方性層の法線方向とが成す角度である。
 なお、光吸収異方性層の透過率中心軸(極角)の測定は、光吸収異方性層において任意に選択した15か所で行い、その極角の平均を、この光吸収異方性層における透過率中心軸とする。
 また、本発明において、これらの光学的な測定は、特に断りが無い場合には、波長550nmの光を用いて行う。
 本発明に用いられる光吸収異方性層は、透過率中心軸から30°傾けた透過率(以下550nm)が60%以下であることが好ましく、50%以下であることがより好ましく、45%以下であることがさらに好ましい。
 本発明に用いられる光吸収異方性層は、透過率中心軸方向の透過率が65%以上であることが好ましく、75%以上であることがより好ましく、85%以上であることがさらに好ましい。これにより、画像表示装置の視角中心の照度を上げて、視認性を良好とすることができる。
 また、正面方向の色味をニュートラルにできる点で、光吸収異方性層の420nmにおける配向度が0.93以上を満たすことが好ましい。
 二色性物質を含む光吸収異方性フィルムの色味制御については、通常、フィルムに含まれる二色性物質の添加量を調整することで行う。しかし、正面と斜め方向の色味を共にニュートラルの状態にすることは、二色性物質の添加量調整だけではできないことが分かった。正面と斜め方向の色味をニュートラルの状態にできない原因が、420nmの配向度が低いことであることが分かり、420nmの配向度を高配向度にすることで、正面と斜め方向の色味がニュートラルにすることができる。
 また、本発明の光吸収異方性フィルムにおいて、光吸収異方性層は、透過率中心軸から30°傾けた透過率および、透過率中心軸の透過率を満たすように、透過軸中心の異なる複数の光異方性吸収層を積層もしくは位相差層を積層してもよい。
 透過軸中心の異なる複数の光異方性吸収層を積層することにより、透過率が高い領域の幅を調整することが出来る。また、位相差層を積層する場合は、位相差値および光軸方向を制御することで、透過・遮光性能を制御することが出来る。位相差層としては、正のAプレート、負のAプレート、正のCプレート、負のCプレート、Bプレート、および、Oプレートなどを用いることが出来る。
 位相差層の厚さは、視角制御システムを薄型化する観点で、光学特性、機械物性、および、製造適性を損ねない限りは薄いことが好ましく、具体的には、1~150μmが好ましく、1~70μmがより好ましく、1~30μmがさらに好ましい。
[第1配向層]
 本発明の光吸収異方性フィルムでは、光吸収異方性層に隣接して、ハイブリッド配向した液晶化合物を有する第1配向層を設けている。
 第1配向層とは、具体的には、一方の表面側から他方の表面側に向かって、厚さ方向の配向方向が連続的に変化する、ハイブリッド配向した重合性液晶化合物を固定してなる層である。図2および図3に示す例では、第1配向層3は、TACフィルム3(支持体)側から、バリア層1(空気側)に向かい、液晶分子11の配向方向が連続的に変化するハイブリッド配向した液晶層である。
 本発明において、第1配向層における液晶化合物の配向方向は、基本的に、図3に示すように、光吸収異方性層とは逆側から光吸収異方性層側に向かって、面内方向(水平配向)から、法線方向(厚さ方向、垂直配向)となるように、液晶分子11の配向方向が連続的に変化する。
 液晶化合物の配向方向は、基本的に、下層(形成面)に存在する液晶化物の配向方向に追従する。
 第1配向層の機能としては、第1配向層の光吸収異方性層側となる界面(空気側界面)における液晶化合物の配向角(チルト角)を利用して、その上に設けた光吸収異方性層および他の液晶層と、第1配向層との界面における液晶化合物の配向角(チルト角)、および、配向方向すなわち方位角方向の向きを制御する。
 第1配向層に用いる液晶化合物には、制限はなく、公知の各種の液晶化合物が利用可能である。また、棒状液晶化合物でも円盤状液晶化合物でもよい。
 ここで、第1配向層と、その上に設ける光吸収異方性層およびその他の液晶層とは、同じ種類の液晶化合物または類似の化学構造を持つ液晶化合物を用いて形成するのが好ましく、同じ液晶化合物を用いて形成するのが、より好ましい。このような構成とすることにより、第1配向層と、その上の光吸収異方性層およびその他の液晶層との相互作用が強化され、光吸収異方性層等における液晶化合物の配向角および配向方向の制御を、より精度よく行うことができる。
 第1配向層の液晶化合物は、低分子液晶化合物および高分子液晶化合物の種々の液晶化合物を使用して形成することができるが、均一な配向状態を得るためには高分子液晶化合物を使用して第1配向層を形成することが好ましい。
 また、第1配向層の液晶化合物は、高分子液晶であっても低分子液晶であっても、重合性液晶化合物であるのが好ましい。第1配向層を形成する重合性液晶化合物を含む塗布液を塗布し、光吸収異方性層を形成する塗布液を塗布する前に硬化処理を行い、第1配向層を硬化させることにより、第1配向層上に光吸収異方性層を形成する塗布液を塗布した際に、光吸収異方性層を形成する塗布液中の有機溶剤等による第1配向層中の液晶化合物の配向の乱れを、最小限に抑えることができる。その結果、より高品質な光吸収異方性フィルムを作製することができる。
 すなわち、第1配向層は重合性高分子液晶を有する組成物から形成された層であるのが、最も好ましい。
 第1配向層の厚さには、制限はなく、第1配向層の形成材料に応じて、十分な配向性を発現できる厚さを、適宜、設定すればよい。
 光吸収異方性層において、良好な配向状態を得られる点で、第1配向層の厚さは0.1~5.0μmが好ましい。第1配向層の厚さは、0.1~3.5μmがより好ましく、0.1~2.0μmがさらに好ましい。
 第1配向層は、光吸収異方性層側の界面における液晶化合物の配向軸(光学軸)と、第1配向層の法線とが成す角度が、2°~50°であるのが好ましい。すなわち、第1配向層は、光吸収異方性層側の界面において、法線に対する液晶化合物の配向角度が、2°~50°であるのが好ましい。
 第1配向層において、法線に対する液晶化合物の配向角度を2°以上とすることにより、左右方向または上下方向に、非対称な視野角制御を行えるようになる等の点で好ましい。
 法線に対する液晶化合物の配向角度を50°超に設定しても、このような浅い角度からでは画面が見にくく、しかも、画像表示装置による出射光の輝度が高く、かつ、光学異方性層を横切る光路の光路長が短くなる正面方向では、遮光性も不十分になる。すなわち、第1配向層において、法線に対する液晶化合物の配向角度を50°以下とすることにより、視角制御システムの視角制御方向の観点から、設定される視認方向からの視認性を好適にできる、設定される視認方向以外における光の遮断性を十分に得て、車載用途等において窓ガラスへの映り込みを低減できる等の点で好ましい。
 第1配向層において、光吸収異方性層側の界面側における、法線に対する液晶化合物の配向角度は、3°~45°がより好ましく、5°~35°がさらに好ましい。
 第1配向層における光吸収異方性層側の界面の法線に対する液晶化合物の配向角度は、一例として、以下のように測定する。
 まず、図5に概念的に示すように、支持体に第1配向層を形成した後、この積層体を厚さ方向(法線方向)と平行に2μmに切断して、サンプルとなる切片43を切り出す。切断は、例えば、ミクロトームを用いて行えばよい。
 次いで、偏光顕微鏡を用い、図6に概念的に示すように、偏光子と検光子をクロスニコルに配置して、切片43の方位角を動かしながら、第1配向層の空気界面側すなわち光吸収異方性層側の界面において消光する方位角を観察し、その後、鋭敏色板(λ板)を挿入して、方位角を動かしながら空気界面近傍における色の変化を観察して、切片内における遅相軸の方向を調べ、空気側界面の液晶化合物の配向角度を決定する。
 また、同様にして、第1配向層の支持体側すなわち第2配向層側、および、第1配向層の中間部分についても、消光する方位角を調べ、その後、鋭敏色板(λ板)を挿入して、方位角を動かしながら色の変化を観察することにより、切片内における遅相軸の方向を決定し、第1配向層全体がハイブリッド配向になっていることを確認することができる。
[第2配向層]
 本発明の光吸収異方性フィルムは、好ましい態様として、第1配向層の光吸収異方性層とは逆側に、第2配向層を有するのが好ましい。図2および図3に示される光吸収異方性フィルムは、好ましい態様として、支持体となるTACフィルム5の表面に第2配向層4を有し、第2配向層4の表面に第1配向層3を有し、第1配向層3の表面に光吸収異方性層を有する。
 第2配向層は、面内方向(方位角の方向)の配向規制力を有する配向層であり、第1配向層における液晶化合物の面内方向に配向するものである。第2配向層を有することにより、第1配向層において液晶化合物の面内方向の配向方向を、より正確に制御して、その結果、光吸収異方性層において、面内方向の液晶化合物の配向方向を、より正確に制御できる。
 第2配向層としては、液晶化合物を面内方向に配向可能なものであれば、公知の配向層(配向膜)が各種、利用可能である。一例として、ラビング処理したポリビニルアルコール、ポリイミドおよび多官能(メタ)アクリレート化合物等からなる樹脂フィルム等が例示される。中でも、ラビング処理したポリビニルアルコールフィルム、および、ラビング処理したポリイミドフィルムは、第2配向層として好適に例示される。
 また、第2配向層としては、配向層の法線方向から直線偏光の紫外線等を照射した、ポリビニルシンナメートおよびアゾベンゼン系化合物等の光配向性材料からなる光配向層も、利用可能である。
[液晶化合物]
 上述のように、本発明の光吸収異方性フィルムにおいて、光吸収異方性層は、液晶化合物および有機二色性物質を含む。また、第1配向層は、重合性液晶化合物をハイブリッド配向したものである。
 本発明において、液晶化合物は、棒状タイプ(棒状液晶化合物)、円盤状タイプ(円盤状液晶化合物)のいずれであっても構わないが、二色性物質の配向方向を制御しやすいという点より、棒状液晶化合物が好ましい。
 棒状液晶化合物は、可視領域で二色性を示さない液晶化合物が好ましい。
 棒状液晶化合物としては、低分子液晶化合物および高分子液晶化合物のいずれも用いることができる。ここで、「低分子液晶化合物」とは、化学構造中に繰り返し単位を有さない液晶化合物のことをいう。また、「高分子液晶化合物」とは、化学構造中に繰り返し単位を有する液晶化合物のことをいう。
 低分子液晶化合物としては、例えば、特開2013-228706号公報に記載されている液晶化合物が挙げられる。
 高分子液晶化合物としては、例えば、特開2011-237513号公報に記載されているサーモトロピック液晶性高分子が挙げられる。また、高分子液晶化合物は、末端に架橋性基(例えば、アクリロイル基およびメタクリロイル基)を有していてもよい。
 棒状液晶化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
 棒状液晶化合物は、本発明の効果がより優れる点から高分子液晶化合物を含むことが好ましく、高分子液晶化合物および低分子液晶化合物の両方を含むことが特に好ましい。
 棒状液晶化合物は、式(LC)で表される液晶化合物またはその重合体を含むことが好ましい。式(LC)で表される液晶化合物またはその重合体は、液晶性を示す化合物である。液晶性は、ネマチック相であってもスメクチック相であってもよく、ネマチック相とスメクチック相の両方を示してもよい。液晶化合物が示す液晶性がスメクチック液晶相であると、配向秩序度のより高い光吸収異方性層を作製でき好ましい。
 スメクチック相としては、高次スメクチック相であってもよい。ここでいう高次スメクチック相とは、スメクチックB相、スメクチックD相、スメクチックE相、スメクチックF相、スメクチックG相、スメクチックH相、スメクチックI相、スメクチックJ相、スメクチックK相、および、スメクチックL相であり、中でもスメクチックB相、スメクチックF相、および、スメクチックI相、であることが好ましい。
 液晶化合物が示すスメクチック液晶相がこれらの高次スメクチック液晶相であると、配向秩序度のより高い光吸収異方性層を作製でき好ましい。また、このように配向秩序度の高い高次スメクチック液晶相から作製した光吸収異方性層はX線回折測定においてヘキサチック相およびクリスタル相といった高次構造由来のブラッグピークが得られるものである。上記ブラッグピークとは、分子配向の面周期構造に由来するピークであり、本発明の液晶組成物によれば、周期間隔が3.0~5.0Åである光吸収異方性層を得ることができる。
Figure JPOXMLDOC01-appb-C000001
 式(LC)中、Q1およびQ2はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の直鎖、分岐または環状のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルケニル基、炭素数1~20のアルキニル基、炭素数1~20のアリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルまたはアリールスルホニルアミノ基、メルカプト基アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルまたはアリールスルフィニル基、アルキルまたはアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリールまたはヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH))、ホスファト基(-OPO(OH))、スルファト基(-OSOH)、または、下記式(P-1)~(P-30)で表される架橋性基を表し、Q1およびQ2の少なくとも一方は、下記式で表される架橋性基であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(P-1)~(P-30)中、Rは水素原子、ハロゲン原子、炭素数1~10の直鎖、分岐、または環状のアルキレン基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルケニル基、炭素数1~20のアルキニル基、炭素数1~20のアリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル若しくはアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル若しくはアリールスルフィニル基、アルキル若しくはアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール若しくはヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH))、ホスファト基(-OPO(OH))、または、スルファト基(-OSOH)、を表し、複数のRはそれぞれ同一であっても異なっていてもよい。
 架橋性基の好ましい態様としては、ラジカル重合性基、またはカチオン重合性基が挙げられる。ラジカル重合性基としては、上記式(P-1)で表されるビニル基、上記式(P-2)で表されるブタジエン基、上記式(P-4)で表される(メタ)アクリル基、上記式(P-5)で表される(メタ)アクリルアミド基、上記式(P-6)で表される酢酸ビニル基、上記式(P-7)で表されるフマル酸エステル基、上記式(P-8)で表されるスチリル基、上記式(P-9)で表されるビニルピロリドン基、上記式(P-11)で表される無水マレイン酸、または、上記式(P-12)で表されるマレイミド基、が好ましい。カチオン重合性基としては、上記式(P-18)で表されるビニルエーテル基、上記式(P-19)で表されるエポキシ基、または、上記式(P-20)で表されるオキセタニル基、が好ましい。
 式(LC)において、S1およびS2はそれぞれ独立に、2価のスペーサー基を表し、S1およびS2の好適態様は、上記式(W1)中のSPWと同じ構造が挙げられるため、その説明を省略する。
 式(LC)中、MGは後述するメソゲン基を表す。MGが表すメソゲン基とは、液晶形成に寄与する液晶分子の主要骨格を示す基である。液晶分子は、結晶状態と等方性液体状態の中間の状態(メソフェーズ)である液晶性を示す。メソゲン基については特に制限はなく、例えば、「Flussige Kristalle in Tabellen II」(VEB Deutsche Verlag fur Grundstoff Industrie,Leipzig、1984年刊)、特に第7頁~第16頁の記載、および、液晶便覧編集委員会編、液晶便覧(丸善、2000年刊)、特に第3章の記載、を参照することができる。
 MGが表すメソゲン基は、環状構造を2~10個含むのが好ましく、3~7個含むのがより好ましい。
 環状構造の具体例としては、芳香族炭化水素基、複素環基、および脂環式基などが挙げられる。
 MGが表すメソゲン基としては、液晶性の発現、液晶相転移温度の調整、原料入手性および合成適性という観点、ならびに、本発明の効果がより優れるから、下記式(MG-A)または下記式(MG-B)で表される基が好ましく、式(MG-B)で表される基がより好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(MG-A)中、A1は、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。これらの基は、置換基Wなどの置換基で置換されていてもよい。
 A1で表される2価の基は、4~15員環であることが好ましい。また、A1で表される2価の基は、単環でも、縮環であってもよい。
 *は、S1またはS2との結合位置を表す。
 A1が表す2価の芳香族炭化水素基としては、フェニレン基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基およびテトラセン-ジイル基などが挙げられ、メソゲン骨格の設計の多様性および原材料の入手性などの観点から、フェニレン基、ナフチレン基が好ましい。
 A1が表す2価の複素環基としては、芳香族または非芳香族のいずれであってもよいが、配向度がより向上するという観点から、2価の芳香族複素環基であることが好ましい。
 2価の芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
 2価の芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チアゾロチアゾール-ジイル基、チエノチオフェン-ジイル基、および、チエノオキサゾール-ジイル基、下記の構造(II-1)~(II-4)などが挙げられる。
Figure JPOXMLDOC01-appb-C000004
 式(II-1)~(II-4)中、Dは、-S-、-O-、またはNR11-を表し、R11は水素原子または炭素数1~6のアルキル基を表し、Yは炭素数6~12の芳香族炭化水素基、または、炭素数3~12の芳香族複素環基を表し、Z、Z、およびZはそれぞれ独立に、水素原子または炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環式炭化水素基、1価の炭素数6~20の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、-NR1213またはSR12を表し、ZおよびZは、互いに結合して芳香環または芳香族複素環を形成してもよく、R12およびR13は、それぞれ独立に水素原子または炭素数1~6のアルキル基を表し、JおよびJはそれぞれ独立に、-O-、-NR21-(R21は水素原子または置換基を表す。)、-S-およびC(O)-からなる群から選択される基を表し、Eは水素原子または置換基が結合していてもよい第14~16族の非金属原子を表し、Jxは芳香族炭化水素環および芳香族複素環からなる群から選択される少なくとも1つの芳香環を有する、炭素数2~30の有機基を表し、Jyは水素原子、置換基を有していてもよい炭素数1~6のアルキル基、または、芳香族炭化水素環および芳香族複素環からなる群から選択される少なくとも1つの芳香環を有する、炭素数2~30の有機基を表し、JxおよびJyが有する芳香環は置換基を有していてもよく、JxとJyは結合して、環を形成していてもよく、Dは、水素原子、または、置換基を有していてもよい炭素数1~6のアルキル基を表す。
 式(II-2)中、Yが炭素数6~12の芳香族炭化水素基である場合、単環でも多環でもよい。Yが炭素数3~12の芳香族複素環基である場合、単環でも多環でもよい。
 式(II-2)中、JおよびJが、-NR21-を表す場合、R21の置換基としては、例えば特開2008-107767号公報の[0035]~[0045]段落の記載を参酌でき、この内容は本願明細書に組み込まれる。
 式(II-2)中、Eが、置換基が結合していてもよい第14~16族の非金属原子である場合、=O、=S、=NR’、=C(R’)R’が好ましい。R’は置換基を表し、置換基としては例えば特開2008-107767号公報の[0035]~[0045]段落の記載を参酌でき、-NZA1A2(ZA1およびZA2はそれぞれ独立に、水素原子、アルキル基またはアリール基を表す。)が好ましい。
 A1が表す2価の脂環式基の具体例としては、シクロペンチレン基およびシクロへキシレン基などが挙げられ、炭素原子は、-O-、-Si(CH-、-N(Z)-(Zは、水素、炭素数1~4のアルキル基、シクロアルキル基、アリール基、シアノ基、または、ハロゲン原子を表す。)、-C(O)-、-S-、-C(S)-、-S(O)-、および-SO-、これらの基を2つ以上組み合わせた基によって置換されていてもよい。
 式(MG-A)中、a1は2~10の整数を表す。複数のA1は同一でも異なっていてもよい。
 式(MG-B)中、A2およびA3はそれぞれ独立に、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。A2およびA3の具体例および好適態様は、式(MG-A)のA1と同様であるので、その説明を省略する。
 式(MG-B)中、a2は1~10の整数を表し、複数のA2は同一でも異なっていてもよく、複数のLA1は同一でも異なっていてもよい。a2は、本発明の効果がより優れる理由から、2以上であることがより好ましい。
 式(MG-B)中、LA1は、単結合または2価の連結基である。ただし、a2が1である場合、LA1は2価の連結基であり、a2が2以上である場合、複数のLA1のうち少なくとも1つが2価の連結基である。
 式(MG-B)中、LA1が表す2価の連結基としては、LWと同様のため、その説明を省略する。
 MGの具体例としては、例えば以下の構造が挙げられ、以下の構造中、芳香族炭化水素基、複素環基および脂環式基上の水素原子は、上述の置換基Wで置換されていてもよい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 <低分子液晶化合物>
 式(LC)で表される液晶化合物が低分子液晶化合物の場合、メソゲン基MGの環状構造の好ましい態様としては、シクロへキシレン基、シクロペンチレン基、フェニレン基、ナフチレン基、フルオレン-ジイル基、ピリジン-ジイル基、ピリダジン-ジイル基、チオフェン-ジイル基、オキサゾール-ジイル基、チアゾール-ジイル基、チエノチオフェン-ジイル基、等が挙げられ、環状構造の個数は、2~10個が好ましく、3~7個がさらに好ましい。
 メソゲン構造の置換基Wの好ましい態様としては、ハロゲン原子、ハロゲン化アルキル基、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルカルボニル基、炭素数1~10のアルキルオキシカルボニル基、炭素数1~10のアルキルカルボニルオキシ基、アミノ基、炭素数1~10のアルキルアミノ基、アルキルアミノカルボニル基、上述の式(W1)においてLWが単結合であり、SPWが2価のスペーサー基であり、Qが上述の(P1)~(P30)で表される架橋性基である基、などが挙げられ、架橋性基としては、ビニル基、ブタジエン基、(メタ)アクリル基、(メタ)アクリルアミド基、酢酸ビニル基、フマル酸エステル基、スチリル基、ビニルピロリドン基、無水マレイン酸、マレイミド基、ビニルエーテル基、エポキシ基、オキセタニル基、が好ましい。
 2価のスペーサー基S1およびS2の好ましい態様としては、上記SPWと同様のため、その説明を省略する。
 スメクチック性を示す低分子液晶化合物を用いる場合、スペーサー基の炭素数(この炭素を「SP-C」で置き変えた場合はその原子数)は、炭素数6以上が好ましく、8以上がさらに好ましい。
 式(LC)で表される液晶化合物が低分子液晶化合物の場合、複数の低分子液晶化合物を併用してもよく、2~6種を併用するのが好ましく、2~4種を併用することがさらに好ましい。低分子液晶化合物を併用することで、溶解性の向上および液晶組成物の相転移温度を調整することができる。
 低分子液晶化合物の具体例としては、以下の式(LC-1)~(LC-77)で表される化合物が挙げられるが、低分子液晶化合物はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 <高分子液晶化合物>
 高分子液晶化合物は、後述する繰り返し単位を含むホモポリマーまたはコポリマーであることが好ましく、ランダムポリマー、ブロックポリマー、グラフトポリマー、スターポリマーなど、いずれのポリマーであってもよい。
(繰り返し単位(1))
 高分子液晶化合物は、式(1)で表される繰り返し単位(以下、「繰り返し単位(1)」ともいう)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000010
 式(1)中、PC1は繰り返し単位の主鎖を表し、L1は単結合または2価の連結基を表し、SP1はスペーサー基を表し、MG1は上述の式(LC)におけるメソゲン基MGを表し、T1は末端基を表す。
 PC1が表す繰り返し単位の主鎖としては、例えば、式(P1-A)~(P1-D)で表される基が挙げられ、なかでも、原料となる単量体の多様性および取り扱いが容易である観点から、下記式(P1-A)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000011
 式(P1-A)~(P1-D)において、「*」は、式(1)におけるL1との結合位置を表す。式(P1-A)~(P1-D)において、R11、R12、R13、R14はそれぞれ独立に、水素原子、ハロゲン原子、シアノ基または炭素数1~10のアルキル基、炭素数1~10のアルコキシ基を表す。上記アルキル基は、直鎖または分岐のアルキル基であってもよいし、環状構造を有するアルキル基(シクロアルキル基)であってもよい。また、上記アルキル基の炭素数は、1~5が好ましい。
 式(P1-A)で表される基は、(メタ)アクリル酸エステルの重合によって得られるポリ(メタ)アクリル酸エステルの部分構造の一単位であることが好ましい。
 式(P1-B)で表される基は、エポキシ基を有する化合物のエポキシ基を開環重合して形成されるエチレングリコール単位であることが好ましい。
 式(P1-C)で表される基は、オキセタン基を有する化合物のオキセタン基を開環重合して形成されるプロピレングリコール単位であることが好ましい。
 式(P1-D)で表される基は、アルコキシシリル基およびシラノール基の少なくとも一方の基を有する化合物の縮重合によって得られるポリシロキサンのシロキサン単位であることが好ましい。ここで、アルコキシシリル基およびシラノール基の少なくとも一方の基を有する化合物としては、式SiR14(OR15-で表される基を有する化合物が挙げられる。式中、R14は、式(P1-D)におけるR14と同義であり、複数のR15はそれぞれ独立に、水素原子または炭素数1~10のアルキル基を表す。
 L1が表す2価の連結基は、上述の式(W1)におけるLWと同様の2価の連結基であり、好ましい態様としては、-C(O)O-、-OC(O)-、-O-、-S-、-C(O)NR16-、-NR16C(O)-、-S(O)-、および、-NR1617-などが挙げられる。式中、R16およびR17はそれぞれ独立に、水素原子、置換基(例えば、上述の置換基W)を有していてもよい炭素数1~6のアルキル基を表す。2価の連結基の具体例において、左側の結合手がPC1と結合し、右側の結合手がSP1と結合する。
 PC1が式(P1-A)で表される基である場合には、L1は-C(O)O-またはC(O)NR16-で表される基が好ましい。
 PC1が式(P1-B)~(P1-D)で表される基である場合には、L1は単結合が好ましい。
 SP1が表すスペーサー基は、上述の式(LC)におけるS1およびS2と同じ基を表し、配向度の観点から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造およびフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含む基、または、炭素数2~20の直鎖または分岐のアルキレン基が好ましい。ただし、上記アルキレン基は、-O-、-S-、-O-CO-、-CO-O-、-O-CO-O-、-O-CNR-(Rは、炭素数1~10のアルキル基を表す。)、または、-S(O)-、を含んでいてもよい。
 SP1が表すスペーサー基は、液晶性を発現しやすいこと、および、原材料の入手性などの理由から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造およびフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含む基であることがより好ましい。
 ここで、SP1が表すオキシエチレン構造は、*-(CH-CHO)n1-*で表される基が好ましい。式中、n1は1~20の整数を表し、*はL1またはMG1との結合位置を表す。n1は、本発明の効果がより優れる理由から、2~10の整数であることが好ましく、2~6の整数がより好ましく、2~4であることが最も好ましい。
 また、SP1が表すオキシプロピレン構造は、*-(CH(CH)-CHO)n2-*で表される基が好ましい。式中、n2は1~3の整数を表し、*はL1またはMG1との結合位置を表す。
 また、SP1が表すポリシロキサン構造は、*-(Si(CH-O)n3-*で表される基が好ましい。式中、n3は6~10の整数を表し、*はL1またはMG1との結合位置を表す。
 また、SP1が表すフッ化アルキレン構造は、*-(CF-CFn4-*で表される基が好ましい。式中、n4は6~10の整数を表し、*はL1またはMG1との結合位置を表す。
 T1が表す末端基としては、水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、-SH、カルボキシル基、ボロン酸基、-SOH、-PO、-NR1112(R11およびR12はそれぞれ独立に水素原子、置換もしくは非置換の炭素数1~10のアルキル基、シクロアルキル基、またはアリール基を表す)、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルチオ基、炭素数1~10のアルコキシカルボニルオキシ基、炭素数1~10のアシルオキシ基、炭素数1~10のアシルアミノ基、炭素数1~10のアルコキシカルボニル基、炭素数1~10のアルコキシカルボニルアミノ基、炭素数1~10のスルホニルアミノ基、炭素数1~10のスルファモイル基、炭素数1~10のカルバモイル基、炭素数1~10のスルフィニル基、および、炭素数1~10のウレイド基、架橋性基含有基などが挙げられる。
 上記架橋性基含有基としては、例えば、上述の-L-CLが挙げられる。Lは単結合または連結基を表す。連結基の具体例は上述したLWおよびSPWと同じである。CLは架橋性基を表し、上述のQ1またはQ2で表される基が挙げられ、上述の式(P1)~(P30)で表される基が好ましい。また、T1は、これらの基を2つ以上組み合わせた基であってもよい。
 T1は、本発明の効果がより優れる理由から、炭素数1~10のアルコキシ基が好ましく、炭素数1~5のアルコキシ基がより好ましく、メトキシ基がさらに好ましい。これらの末端基は、これらの基、または、特開2010-244038号公報に記載の重合性基によって、さらに置換されていてもよい。
 T1の主鎖の原子数は、本発明の効果がより優れる理由から、1~20が好ましく、1~15がより好ましく、1~10がさらに好ましく、1~7が特に好ましい。T1の主鎖の原子数が20以下であることで、光吸収異方性層の配向度がより向上する。ここで、T1おける「主鎖」とは、M1と結合する最も長い分子鎖を意味し、水素原子はT1の主鎖の原子数にカウントしない。例えば、T1がn-ブチル基である場合には主鎖の原子数は4であり、T1がsec-ブチル基である場合の主鎖の原子数は3である。
 繰り返し単位(1)の含有量は、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、40~100質量%が好ましく、50~95質量%がより好ましい。繰り返し単位(1)の含有量が40質量%以上であれば、良好な配向性により優れた光吸収異方性層が得られる。また、繰り返し単位(1)の含有量が100質量%以下であれば、良好な配向性により優れた光吸収異方性層が得られる。
 繰り返し単位(1)は、高分子液晶化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。繰り返し単位(1)が2種以上含まれる場合、上記繰り返し単位(1)の含有量は、繰り返し単位(1)の含有量の合計を意味する。
 (logP値)
 式(1)において、PC1、L1およびSP1のlogP値(以下、「logP」ともいう。)と、MG1のlogP値(以下、「logP」ともいう。)との差(|logP-logP|)が4以上であるのが好ましく、光吸収異方性層の配向度がより向上する観点から、4.25以上が好ましく、4.5以上がより好ましい。
 また、上記差の上限値は、液晶相転移温度の調整および合成適性という観点から、15以下が好ましく、12以下がより好ましく、10以下がさらに好ましい。
 ここで、logP値は、化学構造の親水性および疎水性の性質を表現する指標であり、親疎水パラメータと呼ばれることがある。logP値は、ChemBioDraw UltraまたはHSPiP(Ver.4.1.07)などのソフトウェアを用いて計算できる。また、OECD Guidelines for the Testing of Chemicals,Sections 1,Test No.117の方法などにより、実験的に求めることもできる。本発明では特に断りのない限り、HSPiP(Ver.4.1.07)に化合物の構造式を入力して算出される値をlogP値として採用する。
 上記logPは、上述したように、PC1、L1およびSP1のlogP値を意味する。「PC1、L1およびSP1のlogP値」とは、PC1、L1およびSP1を一体とした構造のlogP値を意味しており、PC1、L1およびSP1のそれぞれのlogP値を合計したものではない、具体的には、logPは、式(1)におけるPC1~SP1までの一連の構造式を上記ソフトウェアに入力することで算出される。
 ただし、logPの算出にあたって、PC1~SP1までの一連の構造式のうち、PC1で表される基の部分に関しては、PC1で表される基そのものの構造(例えば、上述した式(P1-A)~式(P1-D)など)を用いてもよいし、式(1)で表される繰り返し単位を得るために使用する単量体を重合した後にPC1になりうる基の構造を用いてもよい。
 ここで、後者(PC1になりうる基)の具体例は、次の通りである。PC1が(メタ)アクリル酸エステルの重合によって得られる場合には、CH=C(R)-で表される基(Rは、水素原子またはメチル基を表す。)である。また、PC1がエチレングリコールの重合によって得られる場合にはエチレングリコールであり、PC1がプロピレングリコールの重合により得られる場合にはプロピレングリコールである。また、PC1がシラノールの重縮合により得られる場合にはシラノール(式Si(R(OH)で表される化合物。複数のRはそれぞれ独立に、水素原子またはアルキル基を表す。ただし、複数のRの少なくとも1つはアルキル基を表す。)である。
 logPは、上述したlogPとの差が4以上である場合、logPよりも低くてもよいし、logPよりも高くてもよい。
 ここで、一般的なメソゲン基のlogP値(上述したlogP)は、4~6の範囲内になる傾向がある。このとき、logPがlogPよりも低い場合には、logPの値は、1以下が好ましく、0以下がより好ましい。一方で、logPがlogPよりも高い場合には、logPの値は、8以上が好ましく、9以上がより好ましい。
 上記式(1)におけるPC1が(メタ)アクリル酸エステルの重合によって得られ、かつ、logPがlogPよりも低い場合には、上記式(1)におけるSP1のlogP値は、0.7以下が好ましく、0.5以下がより好ましい。一方、上記式(1)におけるPC1が(メタ)アクリル酸エステルの重合によって得られ、かつ、logPがlogPよりも高い場合には、上記式(1)におけるSP1のlogP値は、3.7以上が好ましく、4.2以上がより好ましい。
 なお、logP値が1以下の構造としては、例えば、オキシエチレン構造およびオキシプロピレン構造などが挙げられる。logP値が6以上の構造としては、ポリシロキサン構造およびフッ化アルキレン構造などが挙げられる。
 (繰り返し単位(21)および(22))
 配向度を向上させる観点から、高分子液晶化合物は、末端に電子供与性および/または電子吸引性を有する繰り返し単位を含むことが好ましい。より具体的には、メソゲン基とこれの末端に存在するσp値が0より大きい電子吸引性基とを有する繰り返し単位(21)と、メソゲン基とこれの末端に存在するσp値が0以下の基とを有する繰り返し単位(22)と、を含むことがより好ましい。このように、高分子液晶化合物が繰り返し単位(21)と繰り返し単位(22)を含む場合、上記繰り返し単位(21)または上記繰り返し単位(22)のいずれかのみを含む場合と比べて、これを用いて形成される光吸収異方性層の配向度が向上する。この理由の詳細は明らかではないが、概ね以下のように推定している。
 すなわち、繰り返し単位(21)と繰り返し単位(22)に発生する逆向きの双極子モーメントが、分子間相互作用をすることによって、メソゲン基の短軸方向への相互作用が強くなって、液晶の配向する向きがより均一となると推察され、その結果、液晶の秩序度が高くなると考えられる。これにより、二色性物質の配向性も良好になるので、形成される光吸収異方性層の配向度が高くなると推測される。
 なお上記繰り返し単位(21)および(22)は、上記式(1)で表される繰り返し単位であってもよい。
 繰り返し単位(21)は、メソゲン基と、上記メソゲン基の末端に存在するσp値が0より大きい電子吸引性基と、を有する。
 上記電子吸引性基は、メソゲン基の末端に位置しており、σp値が0より大きい基である。電子吸引性基(σp値が0よりも大きい基)としては、後述の式(LCP-21)におけるEWGで表される基が挙げられ、その具体例も同様である。
 上記電子吸引性基のσp値は、0よりも大きく、光吸収異方性層の配向度がより高くなる点から、0.3以上が好ましく、0.4以上がより好ましい。上記電子吸引性基のσp値の上限値は、配向の均一性が優れる点から、1.2以下が好ましく、1.0以下がより好ましい。
 σp値とは、ハメットの置換基定数σp値(単に「σp値」とも略記する)であり、置換安息香酸の酸解離平衡定数における置換基の効果を数値で表したものであり、置換基の電子吸引性および電子供与性の強度を示すパラメータである。本明細書におけるハメットの置換基定数σp値は、置換基が安息香酸のパラ位に位置する場合の置換基定数σを意味する。
 本明細書における各基のハメットの置換基定数σp値は、文献「Hansch et al., Chemical Reviews, 1991, Vol, 91, No. 2, 165-195」に記載された値を採用する。なお、上記文献にハメットの置換基定数σp値が示されていない基については、ソフトウェア「ACD/ChemSketch(ACD/Labs 8.00 Release Product Version:8.08)」を用いて、安息香酸のpKaと、パラ位に置換基を有する安息香酸誘導体のpKaとの差に基づいて、ハメットの置換基定数σp値を算出できる。
 繰り返し単位(21)は、側鎖にメソゲン基と上記メソゲン基の末端に存在するσp値が0より大きい電子吸引性基とを有していれば、特に限定されないが、光吸収異方性層の配向度がより高くなる点から、下記式(LCP-21)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(LCP-21)中、PC21は繰り返し単位の主鎖を表し、より具体的には上記式(1)中のPC1と同様の構造を表し、L21は単結合または2価の連結基を表し、より具体的には上記式(1)中のL1と同様の構造を表し、SP21AおよびSP21Bはそれぞれ独立に単結合またはスペーサー基を表し、スペーサー基の具体例は上記式(1)中のSP1と同様の構造を表し、MG21はメソゲン構造、より具体的には上記式(LC)中のメソゲン基MGを表し、EWGはσp値が0より大きい電子吸引性基を表す。
 SP21AおよびSP21Bが表すスペーサー基は、上記式S1およびS2と同様の基を表し、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造およびフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含む基、または、炭素数2~20の直鎖または分岐のアルキレン基が好ましい。ただし、上記アルキレン基は、-O-、-O-CO-、-CO-O-、またはO-CO-O-を含んでいてもよい。
 SP1が表すスペーサー基は、液晶性を発現しやすいこと、および、原材料の入手性などの理由から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造およびフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含むことが好ましい。
 SP21Bは、単結合、または、炭素数2~20の直鎖若しくは分岐のアルキレン基が好ましい。ただし、上記アルキレン基は、-O-、-O-CO-、-CO-O-、またはO-CO-O-を含んでいてもよい。
 これらの中でも、SP21Bが表すスペーサー基は、光吸収異方性層の配向度がより高くなる点から、単結合が好ましい。換言すれば、繰り返し単位21は、式(LCP-21)における電子吸引性基であるEWGが、式(LCP-21)におけるメソゲン基であるMG21に直結する構造を有するのが好ましい。このように、電子吸引性基がメソゲン基に直結していると、高分子液晶化合物中に適度な双極子モーメントによる分子間相互作用がより効果的に働くことで、液晶の配向する向きがより均一となると推察され、その結果、液晶の秩序度が高くなり、配向度がより高くなると考えられる。
 EWGは、σp値が0より大きい電子吸引性基を表す。σp値が0より大きい電子吸引性基としては、エステル基(具体的には、*-C(O)O-Rで表される基)、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、カルボキシ基、シアノ基、ニトロ基、スルホ基、-S(O)(O)-OR、-S(O)(O)-R、-O-S(O)(O)-R、アシル基(具体的には、*-C(O)Rで表される基)、アシルオキシ基(具体的には、*-OC(O)Rで表される基)、イソシアネート基(-N=C(O))、*-C(O)N(R、ハロゲン原子、ならびに、これらの基で置換されたアルキル基(炭素数1~20が好ましい。)が挙げられる。上記各基において、*はSP21Bとの結合位置を表す。Rは、炭素数1~20(好ましくは炭素数1~4、より好ましくは炭素数1~2)のアルキル基を表す。Rはそれぞれ独立に、水素原子または炭素数1~20(好ましくは炭素数1~4、より好ましくは炭素数1~2)のアルキル基を表す。
 上記基の中でも、EWGは、本発明の効果がより発揮される点から、*-C(O)O-Rで表される基、(メタ)アクリロイルオキシ基、または、シアノ基、ニトロ基、が好ましい。
 繰り返し単位(21)の含有量は、光吸収異方性層の高い配向度を維持しつつ、高分子液晶化合物および二色性物質を均一に配向できる点から、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、60質量%以下が好ましく、50質量%以下がより好ましく、45質量%以下がさらに好ましい。
 繰り返し単位(21)の含有量の下限値は、本発明の効果がより発揮される点から、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、1質量%以上が好ましく、3質量%以上がより好ましい。
 本発明において、高分子液晶化合物に含まれる各繰り返し単位の含有量は、各繰り返し単位を得るために使用される各単量体の仕込み量(質量)に基づいて算出される。
 繰り返し単位(21)は、高分子液晶化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。高分子液晶化合物が繰り返し単位(21)を2種以上含むと、高分子液晶化合物の溶媒に対する溶解性が向上すること、および、液晶相転移温度の調整が容易になることなどの利点がある。繰り返し単位(21)を2種以上含む場合には、その合計量が上記範囲内であることが好ましい。
 繰り返し単位(21)を2種以上含む場合には、EWGに架橋性基を含まない繰り返し単位(21)と、EWGに重合性基を含む繰り返し単位(21)と、を併用してもよい。これにより、光吸収異方性層の硬化性がより向上する。なお、架橋性基としては、ビニル基、ブタジエン基、(メタ)アクリル基、(メタ)アクリルアミド基、酢酸ビニル基、フマル酸エステル基、スチリル基、ビニルピロリドン基、無水マレイン酸、マレイミド基、ビニルエーテル基、エポキシ基、オキセタニル基、が好ましい。
 この場合、光吸収異方性層の硬化性と配向度のバランスの点から、EWGに重合性基を含む繰り返し単位(21)の含有量が、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、1~30質量%であることが好ましい。
 以下において、繰り返し単位(21)の一例を示すが、繰り返し単位(21)は、以下の繰り返し単位に限定されるものではない。
Figure JPOXMLDOC01-appb-C000013
 本発明者らは、繰り返し単位(21)および繰り返し単位(22)について、組成(含有割合)ならびに末端基の電子供与性および電子吸引性について鋭意検討した結果、繰り返し単位(21)の電子吸引性基の電子吸引性が強い場合(すなわち、σp値が大きい場合)には、繰り返し単位(21)の含有割合を低くすれば光吸収異方性層の配向度がより高くなり、繰り返し単位(21)の電子吸引性基の電子吸引性が弱い場合(すなわち、σp値が0に近い場合)には、繰り返し単位(21)の含有割合を高くすれば光吸収異方性層の配向度がより高くなることを見出した。
 この理由の詳細は明らかではないが、概ね以下のように推定している。すなわち、高分子液晶化合物中に適度な双極子モーメントによる分子間相互作用が働くことで、液晶の配向する向きがより均一となると推察され、その結果、液晶の秩序度が高くなり、光吸収異方性層の配向度がより高くなると考えられる。
 具体的には、繰り返し単位(21)における上記電子吸引性基(式(LCP-21)においてはEWG)のσp値と、高分子液晶化合物中の繰り返し単位(21)の含有割合(質量基準)と、の積は、0.020~0.150が好ましく、0.050~0.130がより好ましく、0.055~0.125がさらに好ましい。上記積が上記範囲内であれば、光吸収異方性層の配向度がより高くなる。
 繰り返し単位(22)は、メソゲン基と上記メソゲン基の末端に存在するσp値が0以下の基とを有する。高分子液晶化合物が繰り返し単位(22)を有することで、高分子液晶化合物および二色性物質を均一に配向できる。
 メソゲン基は、液晶形成に寄与する液晶分子の主要骨格を示す基であり、詳細は後述の式(LCP-22)におけるMGで説明する通りであり、その具体例も同様である。
 上記基は、メソゲン基の末端に位置しており、σp値が0以下の基である。上記基(σp値が0以下である基)としては、σp値が0である水素原子、および、σp値が0よりも小さい後述の式(LCP-22)におけるT22で表される基(電子供与性基)が挙げられる。上記基のうち、σp値が0よりも小さい基(電子供与性基)の具体例は、後述の式(LCP-22)におけるT22と同様である。
 上記基のσp値は、0以下であり、配向の均一性がより優れる点から、0よりも小さいことが好ましく、-0.1以下がより好ましく、-0.2以下がさらに好ましい。上記基のσp値の下限値は、-0.9以上が好ましく、-0.7以上がより好ましい。
 繰り返し単位(22)は、側鎖にメソゲン基と上記メソゲン基の末端に存在するσp値が0以下である基とを有していれば、特に限定されないが、液晶の配向の均一性がより高くなる点から、上記式(LCP-21)で表される繰り返し単位に該当せず、下記式(PCP-22)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
 式(LCP-22)中、PC22は繰り返し単位の主鎖を表し、より具体的には上記式(1)中のPC1と同様の構造を表し、L22は単結合または2価の連結基を表し、より具体的には上記式(1)中のL1と同様の構造を表し、SP22はスペーサー基を表し、より具体的には上記式(1)中のSP1と同様の構造を表し、MG22はメソゲン構造、より具体的には上記式(LC)中のメソゲン基MGと同様の構造を表し、T22はハメットの置換基定数σp値が0より小さい電子供与性基を表す。
 T22は、σp値が0より小さい電子供与性基を表す。σp値が0より小さい電子供与性基としては、ヒドロキシ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、および、炭素数1~10のアルキルアミノ基などが挙げられる。
 T22の主鎖の原子数が20以下であることで、光吸収異方性層の配向度がより向上する。ここで、T22おける「主鎖」とは、MG22と結合する最も長い分子鎖を意味し、水素原子はT22の主鎖の原子数にカウントしない。例えば、T22がn-ブチル基である場合には主鎖の原子数は4であり、T22がsec-ブチル基である場合の主鎖の原子数は3である。
 以下において、繰り返し単位(22)の一例を示すが、繰り返し単位(22)は、以下の繰り返し単に限定されるものではない。
Figure JPOXMLDOC01-appb-C000015
 繰り返し単位(21)と繰り返し単位(22)は、構造の一部が共通しているのが好ましい。繰り返し単位同士の構造が類似しているほど、液晶が均一に整列すると推察される。これにより、光吸収異方性層の配向度がより高くなる。
 具体的には、光吸収異方性層の配向度がより高くなる点から、式(LCP-21)のSP21Aと式(LCP-22)のSP22とが同一構造であること、式(LCP-21)のMG21と式(LCP-22)のMG22とが同一構造であること、および、式(LCP-21)のL21と式(LCP-22)のL22とが同一構造であること、のうち、少なくとも1つを満たすことが好ましく、2つ以上を満たすことがより好ましく、全てを満たすことが特に好ましい。
 繰り返し単位(22)の含有量は、配向の均一性が優れる点から、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、50質量%以上が好ましく、55質量%以上がより好ましく、60質量%以上が特に好ましい。
 繰り返し単位(22)の含有量の上限値は、配向度が向上する点から、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、99質量%以下が好ましく、97質量%以下がより好ましい。
 繰り返し単位(22)は、高分子液晶化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。高分子液晶化合物が繰り返し単位(22)を2種以上含むと、高分子液晶化合物の溶媒に対する溶解性が向上すること、および、液晶相転移温度の調整が容易になることなどの利点がある。繰り返し単位(22)を2種以上含む場合には、その合計量が上記範囲内であることが好ましい。
 (繰り返し単位(3))
 高分子液晶化合物は、汎用溶媒に対する溶解性を向上させる観点から、メソゲンを含有しない繰り返し単位(3)を含むことができる。特に配向度の低下を抑えながら溶解性を向上させるためには、このメソゲンを含有しない繰り返し単位(3)として、分子量280以下の繰り返し単位であることが好ましい。このように、メソゲンを含有しない分子量280以下の繰り返し単位を含むことで配向度の低下を抑えながら溶解性を向上させられる理由としては以下のように推定している。
 すなわち、高分子液晶化合物がその分子鎖中にメソゲンを持たない繰り返し単位(3)を含むことで、高分子液晶化合物中に溶媒が入り込みやすくなるために溶解性は向上するが、非メソゲン性の繰り返し単位(3)は配向度を低下させると考えられる。しかしながら、上記繰り返し単位の分子量が小さいことで、上記メソゲン基を含む繰り返し単位(1)、繰り返し単位(21)または繰り返し単位(22)の配向が乱されにくく、配向度の低下を抑えられる、と推定される。
 上記繰り返し単位(3)は、分子量280以下の繰り返し単位であることが好ましい。
 繰り返し単位(3)の分子量とは、繰り返し単位(3)を得るために使用するモノマーの分子量を意味するのではなく、モノマーの重合によって高分子液晶化合物に組み込まれた状態における繰り返し単位(3)の分子量を意味する。
 繰り返し単位(3)の分子量は、280以下が好ましく、180以下がより好ましく、100以下がさらに好ましい。繰り返し単位(3)の分子量の下限値は、通常、40以上であり、50以上がより好ましい。繰り返し単位(3)の分子量が280以下であれば、高分子液晶化合物の溶解性に優れ、かつ、高い配向度の光吸収異方性層が得られる。
 一方で、繰り返し単位(3)の分子量が280を超えると、上記繰り返し単位(1)、繰り返し単位(21)または繰り返し単位(22)の部分の液晶配向を乱してしまい、配向度が低くなる場合がある。また、高分子液晶化合物中に溶媒が入り込みにくくなるので、高分子液晶化合物の溶解性が低下する場合がある。
 繰り返し単位(3)の具体例としては、架橋性基(例えば、エチレン性不飽和基)を含まない繰り返し単位(以下、「繰り返し単位(3-1)」ともいう。)、および、架橋性基を含む繰り返し単位(以下、「繰り返し単位(3-2)」ともいう。)が挙げられる。
・繰り返し単位(3-1)
 繰り返し単位(3-1)の重合に使用されるモノマーの具体例としては、アクリル酸[72.1]、α-アルキルアクリル酸類(例えば、メタクリル酸[86.1]、イタコン酸[130.1])、それらから誘導されるエステル類およびアミド類(例えば、N-i-プロピルアクリルアミド[113.2]、N-n-ブチルアクリルアミド[127.2]、N-t-ブチルアクリルアミド[127.2]、N,N-ジメチルアクリルアミド[99.1]、N-メチルメタクリルアミド[99.1]、アクリルアミド[71.1]、メタクリルアミド[85.1]、ジアセトンアクリルアミド[169.2]、アクリロイルモルホリン[141.2]、N-メチロールアクリルアミド[101.1]、N-メチロールメタクリルアミド[115.1]、メチルアクリレート[86.0]、エチルアクリレート[100.1]、ヒドロキシエチルアクリレート[116.1]、n-プロピルアクリレート[114.1]、i-プロピルアクリレート[114.2]、2-ヒドロキシプロピルアクリレート[130.1]、2-メチル-2-ニトロプロピルアクリレート[173.2]、n-ブチルアクリレート[128.2]、i-ブチルアクリレート[128.2]、t-ブチルアクリレート[128.2]、t-ペンチルアクリレート[142.2]、2-メトキシエチルアクリレート[130.1]、2-エトキシエチルアクリレート[144.2]、2-エトキシエトキシエチルアクリレート[188.2]、2,2,2-トリフルオロエチルアクリレート[154.1]、2,2-ジメチルブチルアクリレート[156.2]、3-メトキシブチルアクリレート[158.2]、エチルカルビトールアクリレート[188.2]、フェノキシエチルアクリレート[192.2]、n-ペンチルアクリレート[142.2]、n-ヘキシルアクリレート[156.2]、シクロヘキシルアクリレート[154.2]、シクロペンチルアクリレート[140.2]、ベンジルアクリレート[162.2]、n-オクチルアクリレート[184.3]、2-エチルヘキシルアクリレート[184.3]、4-メチル-2-プロピルペンチルアクリレート[198.3]、メチルメタクリレート[100.1]、2,2,2-トリフルオロエチルメタクリレート[168.1]、ヒドロキシエチルメタクリレート[130.1]、2-ヒドロキシプロピルメタクリレート[144.2]、n-ブチルメタクリレート[142.2]、i-ブチルメタクリレート[142.2]、sec-ブチルメタクリレート[142.2]、n-オクチルメタクリレート[198.3]、2-エチルヘキシルメタクリレート[198.3]、2-メトキシエチルメタクリレート[144.2]、2-エトキシエチルメタクリレート[158.2]、ベンジルメタクリレート[176.2]、2-ノルボルニルメチルメタクリレート[194.3]、5-ノルボルネン-2-イルメチルメタクリレート[194.3]、ジメチルアミノエチルメタクリレート[157.2])、ビニルエステル類(例えば、酢酸ビニル[86.1])、マレイン酸またはフマル酸から誘導されるエステル類(例えば、マレイン酸ジメチル[144.1]、フマル酸ジエチル[172.2])、マレイミド類(例えば、N-フェニルマレイミド[173.2])、マレイン酸[116.1]、フマル酸[116.1]、p-スチレンスルホン酸[184.1]、アクリロニトリル[53.1]、メタクリロニトリル[67.1]、ジエン類(例えば、ブタジエン[54.1]、シクロペンタジエン[66.1]、イソプレン[68.1])、芳香族ビニル化合物(例えば、スチレン[104.2]、p-クロルスチレン[138.6]、t-ブチルスチレン[160.3]、α-メチルスチレン[118.2])、N-ビニルピロリドン[111.1]、N-ビニルオキサゾリドン[113.1]、N-ビニルサクシンイミド[125.1]、N-ビニルホルムアミド[71.1]、N-ビニル-N-メチルホルムアミド[85.1]、N-ビニルアセトアミド[85.1]、N-ビニル-N-メチルアセトアミド[99.1]、1-ビニルイミダゾール[94.1]、4-ビニルピリジン[105.2]、ビニルスルホン酸[108.1]、ビニルスルホン酸ナトリウム[130.2]、アリルスルホン酸ナトリウム[144.1]、メタリルスルホン酸ナトリウム[158.2]、ビニリデンクロライド[96.9]、ビニルアルキルエーテル類(例えば、メチルビニルエーテル[58.1])、エチレン[28.0]、プロピレン[42.1]、1-ブテン[56.1]、ならびに、イソブテン[56.1]が挙げられる。なお、[ ]内の数値は、モノマーの分子量を意味する。
 上記モノマーは、1種単独で使用してもよいし、2種以上を併用してもよい。
 上記モノマーの中でも、アクリル酸、α-アルキルアクリル酸類、それらから誘導されるエステル類およびアミド類、アクリロニトリル、メタクリロニトリル、ならびに、芳香族ビニル化合物が好ましい。
 上記以外のモノマーとしては、例えば、リサーチディスクロージャーNo.1955(1980年、7月)に記載の化合物を使用できる。
 以下において、繰り返し単位(3-1)の具体例およびその分子量を示すが、本発明はこれらの具体例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000016
・繰り返し単位(3-2)
 繰り返し単位(3-2)において、架橋性基の具体例としては、上記式(P-1)~(-P30)で表される基が挙げられ、ビニル基、ブタジエン基、(メタ)アクリル基、(メタ)アクリルアミド基、酢酸ビニル基、フマル酸エステル基、スチリル基、ビニルピロリドン基、無水マレイン酸、マレイミド基、ビニルエーテル基、エポキシ基、オキセタニル基、がより好ましい。
 繰り返し単位(3-2)は、重合が容易である点から、下記式(3)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 上記式(3)中、PC32は繰り返し単位の主鎖を表し、より具体的には上記式(1)中のPC1と同様の構造を表し、L32は単結合または2価の連結基を表し、より具体的には上記式(1)中のL1と同様の構造を表し、P32は上記式(P1)~(P30)で表される架橋性基、を表す。
 以下において、繰り返し単位(3-2)の具体例およびその分子量(Mw)を示すが、本発明はこれらの具体例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000018
 繰り返し単位(3)の含有量は、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、14質量%未満が好ましく、7質量%以下がより好ましく、5質量%以下がさらに好ましい。繰り返し単位(3)の含有量の下限値は、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、2質量%以上が好ましく、3質量%以上がより好ましい。繰り返し単位(3)の含有量が14質量%未満であれば、光吸収異方性層の配向度がより向上する。繰り返し単位(3)の含有量が2質量%以上であれば、高分子液晶化合物の溶解性がより向上する。
 繰り返し単位(3)は、高分子液晶化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。繰り返し単位(3)を2種以上含む場合には、その合計量が上記範囲内であることが好ましい。
 (繰り返し単位(4))
 高分子液晶化合物は、密着性および面状均一性等を向上させる点から、分子鎖の長い柔軟な構造(後述の式(4)のSP4)をもつ繰り返し単位(4)を含むことができる。この理由については以下のように推定している。
 すなわち、このような分子鎖の長い柔軟な構造を含むことで、高分子液晶化合物を構成する分子鎖同士の絡まりが生じやすくなり、光吸収異方性層の凝集破壊(具体的には、光吸収異方性層自体が破壊すること)が抑制される。その結果、光吸収異方性層と、下地層(例えば、基材または配向膜)との密着性が向上すると推測される。また、面状均一性の低下は、二色性物質と高分子液晶化合物との相溶性が低いために生じると考えられる。すなわち、二色性物質と高分子液晶化合物は相溶性が不十分であると、析出する二色性物質を核とする面状不良(配向欠陥)が発生すると考えられる。これに対して、高分子液晶化合物が分子鎖の長い柔軟な構造を含むことで、二色性物質の析出が抑制されて、面状均一性に優れた光吸収異方性層が得られたと推測される。ここで、面状均一性に優れるとは、高分子液晶化合物を含む液晶組成物が下地層(例えば、基材または配向膜)上ではじかれて生じる配向欠陥が少ないことを意味する。
 上記繰り返し単位(4)は、下記式(4)で表される繰り返し単位である。
Figure JPOXMLDOC01-appb-C000019
 上記式(4)中、PC4は繰り返し単位の主鎖を表し、より具体的には上記式(1)中のPC1と同様の構造を表し、L4は単結合または2価の連結基を表し、より具体的には上記式(1)中のL1と同様の構造を表し(単結合が好ましい)、SP4は主鎖の原子数が10以上のアルキレン基を表し、T4は末端基を表し、より具体的には上記式(1)中のT1と同様の構造を表す。
 PC4の具体例および好適態様は、式(1)のPC1と同様であるので、その説明を省略する。
 L4としては、本発明の効果がより発揮される点から、単結合が好ましい。
 式(4)中、SP4は、主鎖の原子数が10以上のアルキレン基を表す。ただし、SP4が表すアルキレン基を構成する1個以上の-CH-は、上述の「SP-C」より置き換えられていてもよく、特に、-O-、-S-、-N(R21)-、-C(=O)-、-C(=S)-、-C(R22)=C(R23)-、アルキニレン基、-Si(R24)(R25)-、-N=N-、-C(R26)=N-N=C(R27)-、-C(R28)=N-およびS(=O)-からなる群より選択される少なくとも1種の基で置き換えられていることが好ましい。ただし、R21~R28はそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基または炭素数1~10の直鎖若しくは分岐のアルキル基を表す。また、SP4が表すアルキレン基を構成する1個以上の-CH-に含まれる水素原子は、上述の「SP-H」により置き換えられていてもよい。
 SP4の主鎖の原子数は、10以上であり、密着性および面状均一性の少なくとも一方がより優れた光吸収異方性層が得られる点から、15以上が好ましく、19以上がより好ましい。また、SP2の主鎖の原子数の上限は、配向度により優れた光吸収異方性層が得られる点から、70以下が好ましく、60以下がより好ましく、50以下がさらに好ましい。
 ここで、SP4における「主鎖」とは、L4とT4とを直接連結するために必要な部分構造を意味し、「主鎖の原子数」とは、上記部分構造を構成する原子の個数を意味する。換言すれば、SP4における「主鎖」は、L4とT4を連結する原子の数が最短になる部分構造である。例えば、SP4が3,7-ジメチルデカニル基である場合の主鎖の原子数は10であり、SP4が4,6-ジメチルドデカニル基の場合の主鎖の原子数は12である。また、下記式(4-1)においては、点線の四角形で表す枠内がSP4に相当し、SP4の主鎖の原子数(点線の丸で囲った原子の合計数に相当)は11である。
Figure JPOXMLDOC01-appb-C000020
 SP4が表すアルキレン基は、直鎖状であっても分岐状であってもよい。
 SP4が表すアルキレン基の炭素数は、配向度により優れた光吸収異方性層が得られる点から、8~80が好ましく、15~80がより好ましく、25~70がさらに好ましく、25~60が特に好ましい。
 SP4が表すアルキレン基を構成する1個以上の-CH-は、密着性および面状均一性により優れた光吸収異方性層が得られる点から、上述の「SP-C」によって置き換えられているのが好ましい。
 また、SP4が表すアルキレン基を構成する-CH-が複数ある場合、密着性および面状均一性により優れた光吸収異方性層が得られる点から、複数の-CH-の一部のみが上述の「SP-C」によって置き換えられていることがより好ましい。
 「SP-C」のうち、-O-、-S-、-N(R21)-、-C(=O)-、-C(=S)-、-C(R22)=C(R23)-、アルキニレン基、-Si(R24)(R25)-、-N=N-、-C(R26)=N-N=C(R27)-、-C(R28)=N-およびS(=O)-からなる群より選択される少なくとも1種の基が好ましく、密着性および面状均一性により優れた光吸収異方性層が得られる点から、-O-、-N(R21)-、-C(=O)-およびS(=O)-からなる群より選択される少なくとも1種の基がさらに好ましく、-O-、-N(R21)-およびC(=O)-からなる群より選択される少なくとも1種の基が特に好ましい。
 特に、SP4は、アルキレン基を構成する1個以上の-CH-が-O-によって置き換えられたオキシアルキレン構造、アルキレン基を構成する1個以上の-CH-CH-が-O-および-C(=O)-によって置き換えられたエステル構造、ならびに、アルキレン基を構成する1個以上の-CH-CH-CH-が-O-、-C(=O)-および-NH-によって置き換えられたウレタン結合からなる群より選択される少なくとも1つを含む基であるのが好ましい。
 SP4が表すアルキレン基を構成する1個以上の-CH-に含まれる水素原子は、前述の「SP-H」によって置き換えられていてもよい。この場合、-CH-に含まれる水素原子の1個以上が「SP-H」に置き換えられていればよい。すなわち、-CH-に含まれる水素原子の1個のみが「SP-H」によって置き換えられていてもよいし、-CH-に含まれる水素原子の全て(2個)が「SP-H」によって置き換えられていてもよい。
 「SP-H」のうち、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、炭素数1~10の直鎖状のアルキル基および炭素数1~10の分岐状のアルキル基、炭素数1~10ハロゲン化アルキル基からなる群より選択される少なくとも1種の基であることが好ましく、ヒドロキシ基、炭素数1~10の直鎖状のアルキル基および炭素数1~10の分岐状のアルキル基からなる群より選択される少なくとも1種の基がさらに好ましい。
 T4は、上述したように、T1と同様の末端基を表し、水素原子、メチル基、ヒドロキシ基、カルボキシ基、スルホン酸基、リン酸基、ボロン酸基、アミノ基、シアノ基、ニトロ基、置換基を有していてもよいフェニル基、-L-CL(Lは単結合または2価の連結基を表す。2価の連結基の具体例は上述したLWおよびSPWと同じである。CLは架橋性基を表し、上記Q1またはQ2で表される基が挙げられ、式(P1)~(P30)で表される架橋性基が好ましい。)であることが好ましく、上記CLとしては、ビニル基、ブタジエン基、(メタ)アクリル基、(メタ)アクリルアミド基、酢酸ビニル基、フマル酸エステル基、スチリル基、ビニルピロリドン基、無水マレイン酸、マレイミド基、ビニルエーテル基、エポキシ基、または、オキセタニル基、が好ましい。
 エポキシ基は、エポキシシクロアルキル基であってもよく、エポキシシクロアルキル基におけるシクロアルキル基部分の炭素数は、本発明の効果がより優れる点から、3~15が好ましく、5~12がより好ましく、6(すなわち、エポキシシクロアルキル基がエポキシシクロヘキシル基である場合)がさらに好ましい。
 オキセタニル基の置換基としては、炭素数1~10のアルキル基が挙げられ、本発明の効果がより優れる点から、炭素1~5のアルキル基が好ましい。オキセタニル基の置換基としてのアルキル基は、直鎖状であっても分岐状であってもよいが、本発明の効果がより優れる点から直鎖状であることが好ましい。
 フェニル基の置換基としては、ボロン酸基、スルホン酸基、ビニル基、および、アミノ基が挙げられ、本発明の効果がより優れる点から、ボロン酸基が好ましい。
 繰り返し単位(4)の具体例としては、例えば以下の構造が挙げられるが、本発明はこれらに限定されるものではない。なお、下記具体例において、n1は2以上の整数を表し、n2は1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000021
 繰り返し単位(4)の含有量は、高分子液晶化合物が有する全繰り返し単位(100質量%)に対して、2~20質量%が好ましく、3~18質量%がより好ましい。繰り返し単位(4)の含有量が2質量%以上であれば、密着性により優れた光吸収異方性層が得られる。また、繰り返し単位(4)の含有量が20質量%以下であれば、面状均一性により優れた光吸収異方性層が得られる。
 繰り返し単位(4)は、高分子液晶化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。繰り返し単位(4)が2種以上含まれる場合、上記繰り返し単位(4)の含有量は、繰り返し単位(4)の含有量の合計を意味する。
 (繰り返し単位(5))
 高分子液晶化合物は、面状均一性の観点から、多官能モノマーを重合して導入される繰り返し単位(5)を含むことができる。特に配向度の低下を抑えながら面状均一性を向上させるためには、この多官能モノマーを重合して導入される繰り返し単位(5)を10質量%以下含むことが好ましい。このように、繰り返し単位(5)を10質量%以下含むことで配向度の低下を抑えながら面状均一性を向上させられる理由としては以下のように推定している。
 繰り返し単位(5)は、多官能モノマーを重合して、高分子液晶化合物に導入される単位である。そのため、高分子液晶化合物には、繰り返し単位(5)によって3次元架橋構造を形成した高分子量体が含まれていると考えられる。ここで、繰り返し単位(5)の含有量は少ないため、繰り返し単位(5)を含む高分子量体の含有率はわずかであると考えられる。
 このように3次元架橋構造を形成した高分子量体が僅かに存在することで、液晶組成物のはじきが抑制されて、面状均一性に優れた光吸収異方性層が得られたと推測される。
 また、高分子量体の含有量が僅かであるため、配向度の低下を抑えられるという効果が維持できたと推測される。
 上記多官能モノマーを重合して導入される繰り返し単位(5)は、下記式(5)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
 式(5)中、PC5AおよびPC5Bは繰り返し単位の主鎖を表し、より具体的には上記式(1)中のPC1と同様の構造を表し、L5AおよびL5Bは単結合または2価の連結基を表し、より具体的には上記式(1)中のL1と同様の構造を表し、SP5AおよびSP5Bはスペーサー基を表し、より具体的には上記式(1)中のSP1と同様の構造を表し、MG5AおよびMG5Bはメソゲン構造、より具体的には上記式(LC)中のメソゲン基MGと同様の構造を表し、aおよびbは0または1の整数を表す。
 PC5AおよびPC5Bは、同一の基であってもよいし、互いに異なる基であってもよいが、光吸収異方性層の配向度がより向上する点から、同一の基であるのが好ましい。
L5AおよびL5Bは、いずれも単結合であってもよいし、同一の基であってもよいし、互いに異なる基であってもよいが、光吸収異方性層の配向度がより向上する点から、いずれも単結合または同一の基であるのが好ましく、同一の基であるのがより好ましい。
 SP5AおよびSP5Bは、いずれも単結合であってもよいし、同一の基であってもよいし、互いに異なる基であってもよいが、光吸収異方性層の配向度がより向上する点から、いずれも単結合または同一の基であるのが好ましく、同一の基であるのがより好ましい。
 ここで、式(5)における同一の基とは、各基が結合する向きを問わずに化学構造が同一であるという意味であり、例えば、SP5Aが*-CH-CH-O-**(*はL5Aとの結合位置を表し、**はMG5Aとの結合位置を表す。)であり、SP5Bが*-O-CH-CH-**(*はMG5Bとの結合位置を表し、**はL5Bとの結合位置を表す。)である場合も、同一の基である。
 aおよびbはそれぞれ独立に、0または1の整数であり、光吸収異方性層の配向度がより向上する点から、1であるのが好ましい。
 aおよびbは、同一であっても、異なっていてもよいが、光吸収異方性層の配向度がより向上する点から、いずれも1であるのが好ましい。
 aおよびbの合計は、光吸収異方性層の配向度がより向上する点から、1または2であるのが好ましく(すなわち、式(5)で表される繰り返し単位がメソゲン基を有すること)、2であるのがより好ましい。
 -(MG5A)-(MG5B)-で表される部分構造は、光吸収異方性層の配向度がより向上する点から、環状構造を有するのが好ましい。この場合、光吸収異方性層の配向度がより向上する点から、-(MG5A2)-(MG5B)-で表される部分構造における環状構造の個数は、2個以上が好ましく、2~8個がより好ましく、2~6個がさらに好ましく、2~4個が特に好ましい。
 MG5AおよびMG5Bが表すメソゲン基はそれぞれ独立に、光吸収異方性層の配向度がより向上する点から、環状構造を1個以上含むのが好ましく、2~4個含むのが好ましく、2~3個含むのがより好ましく、2個含むのが特に好ましい。
 環状構造の具体例としては、芳香族炭化水素基、複素環基、および脂環式基が挙げられ、これらの中でも芳香族炭化水素基および脂環式基が好ましい。
 MG5AおよびMG5Bは、同一の基であってもよいし、互いに異なる基であってもよいが、光吸収異方性層の配向度がより向上する点から、同一の基であるのが好ましい。
 MG5AおよびMG5Bが表すメソゲン基としては、液晶性の発現、液晶相転移温度の調整、原料入手性および合成適性という観点、ならびに、本発明の効果がより優れるから、上記式(LC)中のメソゲン基MGであることが好ましい。
 特に、繰り返し単位(5)は、PC5AとPC5Bが同一の基であり、L5AとL5Bがいずれも単結合または同一の基であり、SP5AとSP5Bがいずれも単結合または同一の基であり、MG5AとMG5Bが同一の基であるのが好ましい。これにより、光吸収異方性層の配向度がより向上する。
 繰り返し単位(5)の含有量は、高分子液晶化合物が有する全繰り返し単位の含有量(100質量%)に対して、10質量%以下が好ましく、0.001~5質量%がより好ましく、0.05~3質量%がさらに好ましい。
 繰り返し単位(5)は、高分子液晶化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。繰り返し単位(5)を2種以上含む場合には、その合計量が上記範囲内であることが好ましい。
 (星型ポリマー)
 高分子液晶化合物は、星型ポリマーであってもよい。本発明における星型ポリマーとは、核を起点として延びるポリマー鎖を3つ以上有するポリマーを意味し、具体的には、下記式(6)で表される。
 高分子液晶化合物として式(6)で表される星型ポリマーは、高溶解性(溶媒に対する溶解性が優れること)でありながら、配向度の高い光吸収異方性層を形成できる。
Figure JPOXMLDOC01-appb-C000023
 式(6)中、nは、3以上の整数を表し、4以上の整数が好ましい。nの上限値は、これに限定されないが、通常12以下であり、6以下が好ましい。
 複数のPIはそれぞれ独立に、上記式(1)、(21)、(22)、(3)、(4)、(5)で表される繰り返し単位のいずれかを含むポリマー鎖を表す。ただし、複数のPIのうちの少なくとも1つは、上記式(1)で表される繰り返し単位を含むポリマー鎖を表す。
 Aは、星型ポリマーの核となる原子団を表す。Aの具体例としては、特開2011-074280号公報の[0052]~[0058]段落、特開2012-189847号公報の[0017]~[0021]段落、特開2013-031986号公報の[0012]~[0024]段落、特開2014-104631号公報の[0118]~[0142]段落等に記載の多官能チオール化合物のチオール基から水素原子を取り除いた構造が挙げられる。この場合、AとPIは、スルフィド結合によって結合される。
 Aの由来となる上記多官能チオール化合物のチオール基の数は、3つ以上が好ましく、4以上がより好ましい。多官能チオール化合物のチオール基の数の上限値は、通常12以下であり、6以下が好ましい。
 多官能チオール化合物の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000024
 高分子液晶化合物は、配向度を向上させる観点から、サーモトロピック性液晶、かつ、結晶性高分子であってもよい。
 (サーモトロピック性液晶)
 サーモトロピック性液晶とは、温度変化によって液晶相への転移を示す液晶である。
 高分子液晶化合物は、サーモトロピック性液晶であり、ネマチック相およびスメクチック相のいずれを示してもよいが、ヘイズがより観察され難くなる(ヘイズがより良好になる)等の理由から、少なくともネマチック相を示すことが好ましい。
 ネマチック相を示す温度範囲は、光吸収異方性層の配向度がより高くなり、かつ、ヘイズがより観察され難くなることから、室温(23℃)~450℃が好ましく、取り扱い、および、製造適性の観点から、40℃~400℃がより好ましい。
 (結晶性高分子)
 結晶性高分子とは、温度変化によって結晶層への転移を示す高分子である。結晶性高分子は結晶層への転移の他にガラス転移を示すものであってもよい。
 結晶性高分子は、光吸収異方性層の配向度がより高くなり、かつ、ヘイズがより観察され難くなることから、加熱した時に結晶相から液晶相への転移を持つ(途中にガラス転移があってもよい)高分子液晶化合物、または、加熱により液晶状態した後で温度を下降させた時に結晶相への転移(途中にガラス転移があってもよい)を持つ高分子液晶化合物であることが好ましい。
 なお、高分子液晶化合物の結晶性の有無は以下のように評価する。
 光学顕微鏡(Nikon社製ECLIPSE E600 POL)の二枚の光吸収異方性層を互いに直交するように配置し、二枚の光吸収異方性層の間にサンプル台をセットする。そして、高分子液晶化合物をスライドガラスに少量乗せ、サンプル台上に置いたホットステージ上にスライドガラスをセットする。サンプルの状態を観察しながら、高分子液晶化合物が液晶性を示す温度までホットステージの温度を上げ、高分子液晶化合物を液晶状態にする。高分子液晶化合物が液晶状態になった後、ホットステージの温度を徐々に降下させながら液晶相転移の挙動を観察し、液晶相転移の温度を記録する。なお、高分子液晶化合物が複数の液晶相(例えばネマチック相とスメクチック相)を示す場合、その転移温度も全て記録する。
 次に、高分子液晶化合物のサンプル約5mgをアルミパンに入れて蓋をし、示差走査熱量計(DSC)にセットする(リファレンスとして空のアルミパンを使用)。上記で測定した高分子液晶化合物が液晶相を示す温度まで加熱し、その後、温度を1分保持する。その後、10℃/分の速度で降温させながら、熱量測定を行う。得られた熱量のスペクトルから発熱ピークを確認する。
 その結果、液晶相転移の温度以外の温度で発熱ピークが観測された場合は、その発熱ピークが結晶化によるピークであり、高分子液晶化合物は結晶性を有すると言える。
 一方、液晶相転移の温度以外の温度で発熱ピークが観測されなかった場合は、高分子液晶化合物は結晶性を有さないと言える。
 結晶性高分子を得る方法は特に制限されないが、具体例としては、上記繰り返し単位(1)を含む高分子液晶化合物を用いる方法が好ましく、なかでも、上記繰り返し単位(1)を含む高分子液晶化合物における好適な態様を用いる方法がより好ましい。
・結晶化温度
 高分子液晶化合物の結晶化温度は、光吸収異方性層の配向度がより高くなり、かつ、ヘイズがより観察され難くなることから、-50℃以上150℃未満であることが好ましく、なかでも120℃以下であることがより好ましく、-20℃以上120℃未満であることがさらに好ましく、なかでも95℃以下であることが特に好ましい。上記高分子液晶化合物の結晶化温度は、ヘイズを減らす観点から、150℃未満であることが好ましい。
 なお、結晶化温度は、上述したDSCにおける結晶化による発熱ピークの温度である。
 (分子量)
 高分子液晶化合物の重量平均分子量(Mw)は、本発明の効果がより優れる点から、1000~500000が好ましく、2000~300000がより好ましい。高分子液晶化合物のMwが上記範囲内にあれば、高分子液晶化合物の取り扱いが容易になる。
 特に、塗布時のクラック抑制の観点から、高分子液晶化合物の重量平均分子量(Mw)は、10000以上が好ましく、10000~300000がより好ましい。
 また、配向度の温度ラチチュードの観点から、高分子液晶化合物の重量平均分子量(Mw)は、10000未満が好ましく、2000以上10000未満が好ましい。
 ここで、本発明における重量平均分子量および数平均分子量は、ゲル浸透クロマトグラフ(GPC)法により測定された値である。
 ・溶媒(溶離液):N-メチルピロリドン
 ・装置名:TOSOH HLC-8220GPC
 ・カラム:TOSOH TSKgelSuperAWM-H(6mm×15cm)を3本接続して使用
 ・カラム温度:25℃
 ・試料濃度:0.1質量%
 ・流速:0.35mL/min
 ・校正曲線:TOSOH製TSK標準ポリスチレン Mw=2800000~1050(Mw/Mn=1.03~1.06)までの7サンプルによる校正曲線を使用
 高分子液晶化合物の液晶性は、ネマチック性およびスメクチック性のいずれを示してもよいが、少なくともネマチック性を示すことが好ましい。
 ネマチック相を示す温度範囲は、0℃~450℃であることが好ましく、取り扱いおよび製造適性の観点から、30℃~400℃であることが好ましい。
 液晶化合物の含有量は、液晶組成物中の二色性物質の含有量100質量部に対して、25~2000質量部が好ましく、100~1300質量部がより好ましく、200~900質量部がさらに好ましい。液晶化合物の含有量が上記範囲内にあることで、偏光子の配向度がより向上する。
 液晶化合物は、1種単独で含まれていてもよいし、2種以上含まれていてもよい。液晶化合物が2種以上含まれる場合、上記液晶化合物の含有量は、液晶化合物の含有量の合計を意味する。
[二色性物質]
 本発明に用いられる光吸収異方性層は、二色性物質を含有する。
 二色性物質は、特に限定されず、可視光吸収物質(二色性物質、二色性アゾ化合物)、発光物質(蛍光物質、燐光物質)、紫外線吸収物質、赤外線吸収物質、非線形光学物質、カーボンナノチューブ、無機物質(例えば量子ロッド)、などが挙げられ、従来公知の二色性物質(二色性色素、二色性染料)を使用することができる。
 好ましく用いられる二色性物質は、有機二色性物質化合物であり、特に二色性アゾ色素化合物がより好ましい。
 二色性アゾ色素化合物は、特に限定されず、従来公知の二色性アゾ色素を使用することができるが、後述の化合物が好ましく用いられる。
 本発明において、二色性アゾ色素化合物とは、方向によって吸光度が異なる色素を意味する。
 二色性アゾ色素化合物は、液晶性を示してもよいし、液晶性を示さなくてもよい。
 二色性アゾ色素化合物が液晶性を示す場合には、ネマチック性またはスメクチック性のいずれを示してもよい。液晶相を示す温度範囲は、室温(約20℃~28℃)~300℃が好ましく、取扱い性および製造適性の観点から、50℃~200℃であることがより好ましい。
 本発明においては、色味調整の観点から、光吸収異方性層が、波長560~700nmの範囲に極大吸収波長を有する少なくとも1種の色素化合物(以下、「第1の二色性アゾ色素化合物」とも略す。)と、波長455nm以上560nm未満の範囲に極大吸収波長を有する少なくとも1種の色素化合物(以下、「第2の二色性アゾ色素化合物」とも略す。)とを少なくとも有していることが好ましく、具体的には、後述する式(1)で表される二色性アゾ色素化合物と、後述する式(2)で表される二色性アゾ色素化合物とを少なくとも有していることがより好ましい。
 本発明においては、3種以上の二色性アゾ色素化合物を併用してもよく、例えば、光吸収異方性層を黒色に近づける観点から、第1の二色性アゾ色素化合物と、第2の二色性アゾ色素化合物と、波長380nm以上455nm未満の範囲に極大吸収波長を有する少なくとも1種の色素化合物(以下、「第3の二色性アゾ色素化合物」とも略す。)を併用することが好ましい。
 すなわち、本発明において、光吸収異方性層は、吸収ピーク波長が異なる2種以上の有機二色性色素を含むのが好ましく、吸収ピーク波長が異なる3種以上の有機二色性色素を含むのがより好ましい。
 本発明においては、耐押圧性がより良好となる観点からは、二色性アゾ色素化合物が架橋性基を有していることが好ましい。
 架橋性基としては、具体的には、例えば、(メタ)アクリロイル基、エポキシ基、オキセタニル基、スチリル基などが挙げられ、中でも、(メタ)アクリロイル基が好ましい。
 (第1の二色性アゾ色素化合物)
 第1の二色性アゾ色素化合物は、核である発色団と、発色団の末端に結合する側鎖と、を有する化合物であることが好ましい。
 発色団の具体例としては、芳香族環基(例えば、芳香族炭化水素基、芳香族複素環基)、アゾ基などが挙げられ、芳香族環基およびアゾ基の両方を有する構造が好ましく、芳香族複素環基(好ましくはチエノチアゾール基)と2つのアゾ基を有するビスアゾ構造がより好ましい。
 側鎖としては、特に限定されず、後述の式(1)のL3、R2またはL4で表される基が挙げられる。
 第1の二色性アゾ色素化合物は、波長560nm以上700nm以下の範囲に最大吸収波長を有する二色性アゾ色素化合物であり、偏光子の色味調整の観点から、波長560~650nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であることが好ましく、波長560~640nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であるのがより好ましい。
 本明細書における二色性アゾ色素化合物の最大吸収波長(nm)は、二色性アゾ色素化合物を良溶媒中に溶解させた溶液を用いて、分光光度計によって測定される波長380~800nmの範囲における紫外可視光スペクトルから求められる。
 本発明においては、形成される光吸収異方性層の配向度がさらに向上する理由から、第1の二色性アゾ色素化合物が、下記式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000025
 式(1)中、Ar1およびAr2はそれぞれ独立に、置換基を有していてもよいフェニレン基、または、置換基を有していてもよいナフチレン基を表し、フェニレン基が好ましい。
 式(1)中、R1は、水素原子、炭素数1~20の置換基を有していてもよい直鎖もしくは分岐状のアルキル基、アルコキシ基、アルキルチオ基、アルキルスルホニル基、アルキルカルボニル基、アルキルオキシカルボニル基、アシルオキシ基、アルキルカーボネート基、アルキルアミノ基、アシルアミノ基、アルキルカルボニルアミノ基、アルコキシカルボニルアミノ基、アルキルスルホニルアミノ基、アルキルスルファモイル基、アルキルカルバモイル基、アルキルスルフィニル基、アルキルウレイド基、アルキルリン酸アミド基、アルキルイミノ基、または、アルキルシリル基を表す。
 上記アルキル基を構成する-CH-は、-O-、-CO-、-C(O)-O-、-O-C(O)-、-Si(CH-O-Si(CH-、-N(R1’)-、-N(R1’)-CO-、-CO-N(R1’)-、-N(R1’)-C(O)-O-、-O-C(O)-N(R1’)-、-N(R1’)-C(O)-N(R1’)-、-CH=CH-、-C≡C-、-N=N-、-C(R1’)=CH-C(O)-、または、-O-C(O)-O-によって置換されていてもよい。
 R1が水素原子以外の基である場合、各基が有する水素原子は、ハロゲン原子、ニトロ基、シアノ基、-N(R1’)、アミノ基、-C(R1’)=C(R1’)-NO、-C(R1’)=C(R1’)-CN、または、-C(R1’)=C(CN)、によって置換されていてもよい。
 R1’は、水素原子または炭素数1~6の直鎖もしくは分岐状のアルキル基を表す。各基において、R1’が複数存在する場合、互いに同一であっても異なっていてもよい。
 式(1)中、R2およびR3は、それぞれ独立に、水素原子、炭素数1~20の置換基を有していてもよい直鎖もしくは分岐状のアルキル基、アルコキシ基、アシル基、アルキルオキシカルボニル基、アルキルアミド基、アルキルスルホニル基、アリール基、アリールカルボニル基、アリールスルホニル基、アリールオキシカルボニル基、または、アリールアミド基を表す。
 上記アルキル基を構成する-CH-は、-O-、-S-、-C(O)-、-C(O)-O-、-O-C(O)-、-C(O)-S-、-S-C(O)-、-Si(CH32-O-Si(CH32-、-NR2’-、-NR2’-CO-、-CO-NR2’-、-NR2’-C(O)-O-、-O-C(O)-NR2’-、-NR2’-C(O)-NR2’-、-CH=CH-、-C≡C-、-N=N-、-C(R2’)=CH-C(O)-、または、-O-C(O)-O-、によって置換されていてもよい。
 R2およびR3が水素原子以外の基である場合、各基が有する水素原子は、ハロゲン原子、ニトロ基、シアノ基、-OH基、-N(R2’)、アミノ基、-C(R2’)=C(R2’)-NO、-C(R2’)=C(R2’)-CN、または、-C(R2’)=C(CN)によって置換されていてもよい。
 R2’は、水素原子または炭素数1~6の直鎖もしくは分岐状のアルキル基を表す。各基において、R2’が複数存在する場合、互いに同一であっても異なっていてもよい。
 R2およびR3は、互いに結合して環を形成してもよいし、R2またはR3は、Ar2と結合して環を形成してもよい。
 耐光性の観点からは、R1は電子吸引性基であることが好ましく、R2およびR3は電子供与性が低い基であることが好ましい。
 このような基の具体例として、R1としては、アルキルスルホニル基、アルキルカルボニル基、アルキルオキシカルボニル基、アシルオキシ基、アルキルスルホニルアミノ基、アルキルスルファモイル基、アルキルスルフィニル基、および、アルキルウレイド基などが挙げられ、R2およびR3としては、下記の構造の基などが挙げられる。なお下記の構造の基は、上記式(1)において、R2およびR3が結合する窒素原子を含む形で示す。
Figure JPOXMLDOC01-appb-C000026
 第1の二色性アゾ色素化合物の具体例を以下に示すが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-I000028

Figure JPOXMLDOC01-appb-I000029
 (第2の二色性アゾ色素化合物)
 第2の二色性アゾ色素化合物は、第1の二色性アゾ色素化合物異なる化合物であり、具体的にはその化学構造が異なっている。
 第2の二色性アゾ色素化合物は、二色性アゾ色素化合物の核である発色団と、発色団の末端に結合する側鎖と、を有する化合物であることが好ましい。
 発色団の具体例としては、芳香族環基(例えば、芳香族炭化水素基、芳香族複素環基)、アゾ基などが挙げられ、芳香族炭化水素基およびアゾ基の両方を有する構造が好ましく、芳香族炭化水素基と2または3つのアゾ基とを有するビスアゾまたはトリスアゾ構造がより好ましい。
 側鎖としては、特に限定されず、後述の式(2)のR4、R5またはR6で表される基が挙げられる。
 第2の二色性アゾ色素化合物は、波長455nm以上560nm未満の範囲に最大吸収波長を有する二色性アゾ色素化合物であり、偏光子の色味調整の観点から、波長455~555nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であることが好ましく、波長455~550nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であることがより好ましい。
 特に、最大吸収波長が560~700nmである第1の二色性アゾ色素化合物と、最大吸収波長が455nm以上560nm未満の第2の二色性アゾ色素化合物と、を用いれば、偏光子の色味調整がより容易になる。
 第2の二色性アゾ色素化合物は、偏光子の配向度がより向上する点から、式(2)で表される化合物であるのが好ましい。
Figure JPOXMLDOC01-appb-C000030
 式(2)中、nは1または2を表す。
 式(2)中、Ar3、Ar4およびAr5はそれぞれ独立に、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基または置換基を有していてもよい複素環基を表す。
 複素環基としては、芳香族または非芳香族のいずれであってもよい。
 芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
 芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チアゾロチアゾール-ジイル基、チエノチオフェン-ジイル基、および、チエノオキサゾール-ジイル基などが挙げられる。
 式(2)中、R4の定義は、式(1)中のR1と同様である。
 式(2)中、R5およびR6の定義はそれぞれ、式(1)中のR2およびR3と同様である。
 耐光性の観点からは、R4は電子吸引性基であることが好ましく、R5およびR6は電子供与性が低い基であることが好ましい。
 このような基のうち、R4が電子吸引性基である場合の具体例は、R1が電子吸引性基である場合の具体例と同様であり、R5およびR6が電子供与性の低い基である場合の具体例は、R2およびR3が電子供与性の低い基である場合の具体例と同様である。
 第2の二色性アゾ色素化合物の具体例を以下に示すが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000031

Figure JPOXMLDOC01-appb-I000032

Figure JPOXMLDOC01-appb-I000033

Figure JPOXMLDOC01-appb-I000034
 (logP値の差)
 logP値は、化学構造の親水性および疎水性の性質を表現する指標である。第1の二色性アゾ色素化合物の側鎖のlogP値と、第2の二色性アゾ色素化合物の側鎖のlogP値と、の差の絶対値(以下、「logP差」ともいう。)は、2.30以下が好ましく、2.0以下がより好ましく、1.5以下がさらに好ましく、1.0以下が特に好ましい。logP差が2.30以下であれば、第1の二色性アゾ色素化合物と第2の二色性アゾ色素化合物との親和性が高まって、配列構造をより形成しやすくなるため、光吸収異方性層の配向度がより向上する。
 なお、第1の二色性アゾ色素化合物または第2の二色性アゾ色素化合物の側鎖が複数ある場合、少なくとも1つのlogP差が上記値を満たすことが好ましい。
 ここで、第1の二色性アゾ色素化合物および第2の二色性アゾ色素化合物の側鎖とは、上述した発色団の末端に結合する基を意味する。例えば、第1の二色性アゾ色素化合物が式(1)で表される化合物である場合、式(1)中のR1、R2およびR3が側鎖であり、第2の二色性アゾ色素化合物が式(2)で表される化合物である場合、式(2)中のR4、R5およびR6が側鎖である。特に、第1の二色性アゾ色素化合物が式(1)で表される化合物であり、第2の二色性アゾ色素化合物が式(2)で表される化合物である場合、R1とR4とのlogP値の差、R1とR5とのlogP値の差、R2とR4とのlogP値の差、および、R2とR5とのlogP値の差のうち、少なくとも1つのlogP差が上記値を満たすことが好ましい。
 ここで、logP値は、化学構造の親水性および疎水性の性質を表現する指標であり、親疎水パラメータと呼ばれることがある。logP値は、ChemBioDraw UltraまたはHSPiP(Ver.4.1.07)などのソフトウェアを用いて計算できる。また、OECD Guidelines for the Testing of Chemicals,Sections 1,Test No.117の方法などにより、実験的に求めることもできる。本発明では特に断りのない限り、HSPiP(Ver.4.1.07)に化合物の構造式を入力して算出される値をlogP値として採用する。
 (第3の二色性アゾ色素化合物)
 第3の二色性アゾ色素化合物は、第1の二色性アゾ色素化合物および第2の二色性アゾ色素化合物以外の二色性アゾ色素化合物であり、具体的には、第1の二色性アゾ色素化合物および第2の二色性アゾ色素化合物とは化学構造が異なっている。光吸収異方性層形成用組成物が第3の二色性アゾ色素化合物を含有すれば、光吸収異方性層の色味の調整が容易になるという利点がある。
 第3の二色性アゾ色素化合物の最大吸収波長は、380nm以上455nm未満であり、385~454nmが好ましい。
 第3の二色性アゾ色素化合物は、下記式(6)で表される二色性アゾ色素を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000035
 式(6)中、AおよびBは、それぞれ独立に、架橋性基を表す。
 式(6)中、aおよびbは、それぞれ独立に、0または1を表す。420nmの配向度に優れる点においては、aおよびbは、ともに0であることが好ましい。
 式(6)中、a=0の場合にはLは1価の置換基を表し、a=1の場合にはLは単結合または2価の連結基を表す。また、b=0の場合にはLは1価の置換基を表し、b=1の場合にはLは単結合または2価の連結基を表す。
 式(6)中、Arは(n1+2)価の芳香族炭化水素基または複素環基を表し、Arは(n2+2)価の芳香族炭化水素基または複素環基を表し、Arは(n3+2)価の芳香族炭化水素基または複素環基を表す。
 式(6)中、R、RおよびRは、それぞれ独立に、1価の置換基を表す。n1≧2である場合には複数のRは互いに同一でも異なっていてもよく、n2≧2である場合には複数のRは互いに同一でも異なっていてもよく、n3≧2である場合には複数のRは互いに同一でも異なっていてもよい。
 式(6)中、kは、1~4の整数を表す。k≧2の場合には、複数のArは互いに同一でも異なっていてもよく、複数のRは互いに同一でも異なっていてもよい。
 式(6)中、n1、n2およびn3は、それぞれ独立に、0~4の整数を表す。ただし、k=1の場合にはn1+n2+n3≧0であり、k≧2の場合にはn1+n2+n3≧1である。
 式(6)において、AおよびBが表す架橋性基としては、例えば、特開2010-244038号公報の[0040]~[0050]段落に記載された重合性基が挙げられる。これらの中でも、反応性および合成適性の向上の観点から、アクリロイル基、メタクリロイル基、エポキシ基、オキセタニル基、および、スチリル基が好ましく、溶解性をより向上できるという観点から、アクリロイル基およびメタクリロイル基がより好ましい。
 式(6)において、a=0の場合にはLは1価の置換基を表し、a=1の場合にはLは単結合または2価の連結基を表す。また、b=0の場合にはLは1価の置換基を表し、b=1の場合にはLは単結合または2価の連結基を表す。
 LおよびLが表す1価の置換基としては、二色性物質の溶解性を高めるために導入される基、または、色素としての色調を調節するために導入される電子供与性や電子吸引性を有する基が好ましい。
 例えば、置換基としては、
 アルキル基(好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基、n-オクチル基、n-デシル基、n-ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、
 アルケニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアルケニル基であり、例えば、ビニル基、アリル基、2-ブテニル基、3-ペンテニル基などが挙げられる)、
 アルキニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアルキニル基であり、例えば、プロパルギル基、3-ペンチニル基などが挙げられる)、
 アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリール基であり、例えば、フェニル基、2,6-ジエチルフェニル基、3,5-ジトリフルオロメチルフェニル基、ナフチル基、および、ビフェニル基などが挙げられる)、
 置換もしくは無置換のアミノ基(好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、アニリノ基などが挙げられる)、
 アルコキシ基(好ましくは炭素数1~20、より好ましくは炭素数1~15であり、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる)、
 オキシカルボニル基(好ましくは炭素数2~20、より好ましくは炭素数2~15、特に好ましくは2~10であり、例えば、メトキシカルボニル基、エトキシカルボニル基、フェノキシカルボニル基などが挙げられる)、
 アシルオキシ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは2~6であり、例えば、アセトキシ基およびベンゾイルオキシ基などが挙げられる)、
 アシルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは炭素数2~6であり、例えばアセチルアミノ基およびベンゾイルアミノ基などが挙げられる)、
 アルコキシカルボニルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは炭素数2~6であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、
 アリールオキシカルボニルアミノ基(好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましくは炭素数7~12であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、
 スルホニルアミノ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる)、
 スルファモイル基(好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる)、
 カルバモイル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる)、
 アルキルチオ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メチルチオ基、エチルチオ基などが挙げられる)、
 アリールチオ基(好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えば、フェニルチオ基などが挙げられる)、
 スルホニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メシル基、トシル基などが挙げられる)、
 スルフィニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる)、
 ウレイド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、無置換のウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる)、
 リン酸アミド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる)、
 ヘテロ環基(好ましくは炭素数1~30、より好ましくは1~12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる)、
 シリル基(好ましくは、炭素数3~40、より好ましくは炭素数3~30、特に好ましくは、炭素数3~24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)、
 ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、
 ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、および、アゾ基、などを用いることができる。
 これらの置換基は、さらにこれらの置換基によって置換されていてもよい。また、置換基を2つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
 上記置換基がさらに上記置換基によって置換された基としては、例えば、アルコキシ基がアルキル基で置換された基である、R-(O-Rna-基が挙げられる。ここで、式中、Rは炭素数1~5のアルキレン基を表し、Rは炭素数1~5のアルキル基を表し、naは1~10(好ましくは1~5、より好ましくは1~3)の整数を表す。
 これらの中でも、LおよびLが表す1価の置換基としては、アルキル基、アルケニル基、アルコキシ基、および、これらの基がさらにこれらの基によって置換された基(例えば、上述したR-(O-Rna-基)が好ましく、アルキル基、アルコキシ基、および、これらの基がさらにこれらの基によって置換された基(例えば、上述したR-(O-Rna-基)がより好ましい。
 LおよびLが表す2価の連結基としては、例えば、-O-、-S-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NR-、-O-CO-NR-、-NR-CO-NR-、-SO-、-SO-、アルキレン基、シクロアルキレン基、および、アルケニレン基、ならびに、これらの基を2つ以上組み合わせた基などが挙げられる。
 これらの中でも、アルキレン基と、-O-、-COO-、-OCO-および-O-CO-O-からなる群より選択される1種以上の基と、を組み合わせた基が好ましい。
 ここで、Rは、水素原子またはアルキル基を表す。Rが複数存在する場合には、複数のRは互いに同一でも異なっていてもよい。
 二色性物質の溶解性がより向上するという観点からは、LおよびLの少なくとも一方の主鎖の原子の数は、3個以上であることが好ましく、5個以上であることがより好ましく、7個以上であることがさらに好ましく、10個以上であることが特に好ましい。また、主鎖の原子の数の上限値は、20個以下であることが好ましく、12個以下であることがより好ましい。
 一方で、光吸収異方性層の配向度がより向上するという観点からは、LおよびLの少なくとも一方の主鎖の原子の数は、1~5個であることが好ましい。
 ここで、式(6)におけるAが存在する場合には、Lにおける「主鎖」とは、Lと連結する「O」原子と、「A」と、を直接連結するために必要な部分を指し、「主鎖の原子の数」とは、上記部分を構成する原子の個数のことを指す。同様に、式(6)におけるBが存在する場合には、Lにおける「主鎖」とは、Lと連結する「O」原子と、「B」と、を直接連結するために必要な部分を指し、「主鎖の原子の数」とは、上記部分を構成する原子の数のことを指す。なお、「主鎖の原子の数」には、後述する分岐鎖の原子の数は含まない。
 また、Aが存在しない場合には、Lにおける「主鎖の原子の数」とは、分岐鎖を含まないLの原子の個数のことをいう。Bが存在しない場合には、Lにおける「主鎖の原子の数」とは、分岐鎖を含まないLの原子の個数のことをいう。
 具体的には、下記式(D1)においては、Lの主鎖の原子の数は5個(下記式(D1)の左側の点線枠内の原子の数)であり、Lの主鎖の原子の数は5個(下記式(D1)の右側の点線枠内の原子の数)である。また、下記式(D10)においては、Lの主鎖の原子の数は7個(下記式(D10)の左側の点線枠内の原子の数)であり、Lの主鎖の原子の数は5個(下記式(D10)の右側の点線枠内の原子の数)である。
Figure JPOXMLDOC01-appb-C000036
 LおよびLは、分岐鎖を有していてもよい。
 ここで、式(6)においてAが存在する場合には、Lにおける「分岐鎖」とは、式(6)におけるLと連結する「O」原子と、「A」と、を直接連結するために必要な部分以外の部分をいう。同様に、式(6)においてBが存在する場合には、Lにおける「分岐鎖」とは、式(6)におけるLと連結する「O」原子と、「B」と、を直接連結するために必要な部分以外の部分をいう。
 また、式(6)においてAが存在しない場合には、Lにおける「分岐鎖」とは、式(6)におけるLと連結する「O」原子を起点として延びる最長の原子鎖(すなわち主鎖)以外の部分をいう。同様に、式(6)においてBが存在しない場合には、Lにおける「分岐鎖」とは、式(6)におけるLと連結する「O」原子を起点として延びる最長の原子鎖(すなわち主鎖)以外の部分をいう。
 分岐鎖の原子の数は、3以下であることが好ましい。分岐鎖の原子の数が3以下であることで、光吸収異方性層の配向度がより向上するなどの利点がある。なお、分岐鎖の原子の数には、水素原子の数は含まれない。
 式(6)において、Arは(n1+2)価(例えば、n1が1である時は3価)、Arは(n2+2)価(例えば、n2が1である時は3価)、Arは(n3+2)価(例えば、n3が1である時は3価)、の芳香族炭化水素基または複素環基を表す。ここで、Ar~Arはそれぞれ、n1~n3個の置換基(後述するR~R)で置換された2価の芳香族炭化水素基または2価の複素環基と換言できる。
 Ar~Arが表す2価の芳香族炭化水素基としては、単環であっても、2環以上の縮環構造を有していてもよい。2価の芳香族炭化水素基の環数は、溶解性がより向上するという観点から、1~4が好ましく、1~2がより好ましく、1(すなわちフェニレン基であること)がさらに好ましい。
 2価の芳香族炭化水素基の具体例としては、フェニレン基、アズレン-ジイル基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基およびテトラセン-ジイル基などが挙げられ、溶解性がより向上するという観点から、フェニレン基およびナフチレン基が好ましく、フェニレン基がより好ましい。
 以下に、第3の二色性物質化合物の具体例を示すが、本発明はこれらに限定されるものではない。なお、下記具体例中、nは、1~10の整数を表す。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 420nmの配向度に優れる点では、第3の色素がラジカル重合性基を有さない構造が好ましい。例えば、以下の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000039

Figure JPOXMLDOC01-appb-I000040
 第3の二色性アゾ色素化合物は、420nmの配向度に特に優れる点で、下記式(1-1)で表される構造を有する二色性物質であるのがより好ましい。
Figure JPOXMLDOC01-appb-C000041
 式(1-1)中、R、R、R、R、n1、n3、LおよびLの定義はそれぞれ、式(1)のR、R、R、R、n1、n3、LおよびLと同義である。
 式(1-1)中、R21およびR22の定義はそれぞれ独立に、式(1)のRと同義である。
 式(1-1)中、n21およびn22の定義はそれぞれ独立に、式(1)のn2と同義である。
 n1+n21+n22+n3≧1であり、n1+n21+n22+n3は、1~9が好ましく、1~5がより好ましい。
 以下に、特定二色性物質の具体例を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 (二色性物質の含有量)
 二色性物質の含有量は、光吸収異方性層の全固形分質量に対して、5~30質量%が好ましく、15~28質量%がより好ましく、20~30質量%がさらに好ましい。二色性物質の含有量が上記範囲内にあれば、光吸収異方性層を薄膜にした場合であっても、高配向度の光吸収異方性層を得ることができる。そのため、フレキシブル性に優れた光吸収異方性層が得られやすい。また、30質量%を超えると、屈折率上昇による内部反射の抑制が困難となる。
 視角中心の照度と視角中心からずれた方向の照度のコントラストを高める観点からは、二色性物質の単位面積当たりの含量が、0.2g/m2以上であることが好ましく、0.3g/m2以上であることがより好ましく、0.5g/m2以上であることがより好ましい。上限は特にないが、通常1.0g/m2以下で用いられることが多い。
 第1の二色性アゾ色素化合物の含有量は、光吸収異方性層形成用組成物中の二色性物質全体の含有量100質量部に対して、40~90質量部が好ましく、45~75質量部がより好ましい。
 第2の二色性アゾ色素化合物の含有量は、光吸収異方性層形成用組成物中の二色性物質全体の含有量100質量に対して、6~50質量部が好ましく、8~35質量部がより好ましい。
 第3の二色性アゾ色素化合物の含有量は、光吸収異方性層形成用組成物中の二色性アゾ色素化合物の含有量100質量に対して、3~35質量部が好ましく、5~30質量部がより好ましい。
 第1の二色性アゾ色素化合物と、第2の二色性アゾ色素化合物と、および必要に応じて用いられる第3の二色性アゾ色素化合物と、の含有比は、光吸収異方性層の色味調整するために、任意に設定することができる。ただし、第1の二色性アゾ色素化合物に対する第2の二色性アゾ色素化合物の含有比(第2の二色性アゾ色素化合物/第1の二色性アゾ色素化合物)は、モル換算で、0.1~10が好ましく、0.2~5がより好ましく、0.3~0.8が特に好ましい。第1の二色性アゾ色素化合物に対する第2の二色性アゾ色素化合物の含有比が上記範囲内にあれば、配向度が高められる。
 本発明における光吸収異方性層は、例えば、上述の有機二色性物質を含む光吸収異方性層形成用組成物を用いて形成できる。
 光吸収異方性層形成用組成物は、有機二色性物質以外の成分を含んでいてもよく、例えば、液晶化合物、溶媒、垂直配向剤、重合性成分、重合開始剤(例えば、ラジカル重合開始剤)、および、レベリング剤等が挙げられる。この場合、本発明における光吸収異方性層は、液状成分(溶媒等)以外の固形成分を含む。
 また、本発明における第1配向層は、光吸収異方性層形成用組成物から二色性物質を除いた組成物を用いて、光吸収異方性層と同様に形成できる。
(重合性成分)
 重合性成分としては、アクリレートを含む化合物(例えば、アクリレートモノマー)が挙げられる。この場合、本発明における光吸収異方性層は、上記アクリレートを含む化合物を重合させて得られるポリアクリレートを含む。
 重合性成分としては、例えば、特開2017-122776号公報の段落0058に記載の化合物が挙げられる。
 光吸収異方性層形成用組成物が重合性成分を含む場合、重合性成分の含有量は、光吸収異方性層形成用組成物中の上記有機二色性物質と上記液晶化合物との合計100質量部に対し、3~20質量部が好ましい。
 (垂直配向剤)
 本発明では必要に応じて垂直配向剤を含有することもできる。垂直配向剤としては、ボロン酸化合物、および、オニウム塩が挙げられる。
 ボロン酸化合物としては、式(30)で表される化合物が好ましい。
 式(30)
Figure JPOXMLDOC01-appb-C000045
 式(30)中、RおよびRは、それぞれ独立に、水素原子、置換若しくは無置換の脂肪族炭化水素基、置換若しくは無置換のアリール基、または、置換若しくは無置換のヘテロ環基を表す。
 R3は、(メタ)アクリル基を含む置換基を表す。
 ボロン酸化合物の具体例としては、特開2008-225281号公報の段落0023~0032に記載の一般式(I)で表されるボロン酸化合物が挙げられる。
 ボロン酸化合物としては、以下に例示する化合物も好ましい。
Figure JPOXMLDOC01-appb-C000046
 オニウム塩としては、式(31)で表される化合物が好ましい。
 式(31)
Figure JPOXMLDOC01-appb-C000047
 式(31)中、環Aは、含窒素複素環からなる第4級アンモニウムイオンを表す。Xは、アニオンを表す。Lは、2価の連結基を表す。Lは、単結合、または、2価の連結基を表す。Yは、5または6員環を部分構造として有する2価の連結基を表す。Zは、2~20のアルキレン基を部分構造として有する2価の連結基を表す。PおよびPは、それぞれ独立に、重合性エチレン性不飽和結合を有する一価の置換基を表す。
 オニウム塩の具体例としては、特開2012-208397号公報の段落0052~0058号公報に記載のオニウム塩、特開2008-026730号公報の段落0024~0055に記載のオニウム塩、および、特開2002-37777号公報に記載のオニウム塩が挙げられる。
 組成物中の垂直配向剤の含有量は、液晶化合物全質量に対して、0.1~400質量%が好ましく、0.5~350質量%がより好ましい。
 垂直配向剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。垂直配向剤が2種以上を用いられる場合、それらの合計量が上記範囲であることが好ましい。
 (レベリング剤)
 以下のレベリング剤を含むことが好ましい。組成物がレベリング剤を含むと、光吸収異方性層の表面にかかる乾燥風による面状の荒れを抑制し、光吸収異方性層においては二色性物質がより均一に配向する。
 レベリング剤は、いわゆる界面活性剤としても用いることができる。
 レベリング剤は特に制限されず、フッ素原子を含むレベリング剤(フッ素系レベリング剤)、または、ケイ素原子を含むレベリング剤(ケイ素系レベリング剤)が好ましく、フッ素系レベリング剤がより好ましい。
 フッ素系レベリング剤としては、脂肪酸の一部がフルオロアルキル基で置換された多価カルボン酸の脂肪酸エステル類、および、フルオロ置換基を有するポリアクリレート類が挙げられる。特に、二色性物質および液晶化合物として棒状化合物を用いる場合、二色性物質および液晶化合物の垂直配向を促進する点から、式(40)で表される化合物由来の繰り返し単位を含むレベリング剤が好ましい。
 式(40)
Figure JPOXMLDOC01-appb-C000048
 Rは、水素原子、ハロゲン原子、または、メチル基を表す。
 Lは、2価の連結基を表す。Lとしては、炭素数2~16のアルキレン基が好ましく、上記アルキレン基において隣接しない任意の-CH-は、-O-、-COO-、-CO-、または、-CONH-に置換されていてもよい。
 nは、1~18の整数を表す。
 式(40)で表される化合物由来の繰り返し単位を有するレベリング剤は、さらに他の繰り返し単位を含んでいてもよい。
 他の繰り返し単位としては、式(41)で表される化合物由来の繰り返し単位が挙げられる。
 式(41)
Figure JPOXMLDOC01-appb-C000049
 R11は、水素原子、ハロゲン原子、または、メチル基を表す。
 Xは、酸素原子、硫黄原子、または、-N(R13)-を表す。R13は、水素原子、または、炭素数1~8のアルキル基を表す。
 R12は、水素原子、置換基を有してもよいアルキル基、または、置換基を有していてもよい芳香族基を表す。上記アルキル基の炭素数は、1~20が好ましい。上記アルキル基は、直鎖状、分岐鎖状、および、環状のいずれであってもよい。
 また、上記アルキル基の有していてもよい置換基としては、ポリ(アルキレンオキシ)基、および、重合性基が挙げられる。重合性基の定義は、上述した通りである。
 レベリング剤が、式(40)で表される化合物由来の繰り返し単位、および、式(41)で表される化合物由来の繰り返し単位を含む場合、式(40)で表される化合物由来の繰り返し単位の含有量は、レベリング剤が含む全繰り返し単位に対して、10~90モル%が好ましく、15~95モル%がより好ましい。
 レベリング剤が、式(40)で表される化合物由来の繰り返し単位、および、式(41)で表される化合物由来の繰り返し単位を含む場合、式(41)で表される化合物由来の繰り返し単位の含有量は、レベリング剤が含む全繰り返し単位に対して、10~90モル%が好ましく、5~85モル%がより好ましい。
 また、レベリング剤としては、上述した式(40)で表される化合物由来の繰り返し単位に代えて、式(42)で表される化合物由来の繰り返し単位を含むレベリング剤も挙げられる。
 式(42)
Figure JPOXMLDOC01-appb-C000050
 Rは、水素原子、ハロゲン原子、または、メチル基を表す。
 Lは、2価の連結基を表す。
 nは、1~18の整数を表す。
 レベリング剤の具体例としては、特開2004-331812号公報の段落0046~0052に例示される化合物、および、特開2008-257205号公報の段落0038~0052に記載の化合物が挙げられる。
 組成物中のレベリング剤の含有量は、液晶化合物全質量に対して、0.001~10質量%が好ましく、0.01~5質量%がより好ましい。
 レベリング剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。レベリング剤が2種以上を用いられる場合、それらの合計量が上記範囲であることが好ましい。
 (重合開始剤)
 光吸収異方性層形成用組成物は、重合開始剤を含むことが好ましい。
 重合開始剤としては特に制限はないが、感光性を有する化合物、すなわち光重合開始剤であることが好ましい。
 光重合開始剤としては、各種の化合物を特に制限なく使用できる。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書)、アシロインエーテル(米国特許第2448828号明細書)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書)、多核キノン化合物(米国特許第3046127号および同2951758号の各明細書)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報および米国特許第4239850号明細書)、オキサジアゾール化合物(米国特許第4212970号明細書)、o-アシルオキシム化合物(特開2016-27384明細書[0065])、および、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報および特開平10-29997号公報)などが挙げられる。
 このような光重合開始剤としては、市販品も用いることができ、BASF社製のイルガキュア-184、イルガキュア-907、イルガキュア-369、イルガキュア-651、イルガキュア-819、イルガキュア-OXE-01およびイルガキュア-OXE-02等が挙げられる。
 光吸収異方性層形成用組成物が重合開始剤を含有する場合、重合開始剤の含有量は、光吸収異方性層形成用組成物中の上記二色性物質と上記高分子液晶化合物との合計100質量部に対し、0.01~30質量部が好ましく、0.1~15質量部がより好ましい。重合開始剤の含有量が0.01質量部以上であることで、光吸収異方性膜の耐久性が良好となり、30質量部以下であることで、光吸収異方性膜の配向度がより良好となる。
 重合開始剤は、1種単独で用いても2種以上を併用してもよい。重合開始剤を2種以上含む場合、その合計量が上記範囲内であるのが好ましい。
 (溶媒)
 本発明に用いられる光吸収異方性層形成用組成物は、作業性等の観点から、溶媒を含有するのが好ましい。
 溶媒としては、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロペタンタノン、シクロヘキサノンなど)、エーテル類(例えば、ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフラン、シクロペンチルメチルエーテル、テトラヒドロピラン、ジオキソランなど)、脂肪族炭化水素類(例えば、ヘキサンなど)、脂環式炭化水素類(例えば、シクロヘキサンなど)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン、トリメチルベンゼンなど)、ハロゲン化炭素類(例えば、ジクロロメタン、トリクロロメタン、ジクロロエタン、ジクロロベンゼン、クロロトルエンなど)、エステル類(例えば、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチルなど)、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、シクロヘキサノール、イソペンチルアルコール、ネオペンチルアルコール、ジアセトンアルコール、ベンジルアルコールなど)、セロソルブ類(例えば、メチルセロソルブ、エチルセロソルブ、1,2-ジメトキシエタンなど)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシドなど)、アミド類(例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン、1,3-ジメチル-2-イミダゾリジノンなど)、および、ヘテロ環化合物(例えば、ピリジン、N-メチルイミダゾールなど)などの有機溶媒、ならびに、水が挙げられる。これの溶媒は、1種単独で用いてもよく、2種以上を併用してもよい。
 これらの溶媒のうち、溶解性に優れるという効果を活かす観点から、ケトン類(特にシクロペンタノン、シクロヘキサノン)、エーテル類(特にテトラヒドロフラン、シクロペンチルメチルエーテル、テトラヒドロピラン、ジオキソラン)、および、アミド類(特に、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン)が好ましい。
 光吸収異方性層形成用組成物が溶媒を含有する場合、溶媒の含有量は、光吸収異方性層形成用組成物の全質量に対して、80~99質量%であることが好ましく、83~97質量%であることがより好ましく、85~95質量%であることが特に好ましい。
 溶媒は、1種単独で用いても2種以上を併用してもよい。溶媒を2種以上含む場合、その合計量が上記範囲内であるのが好ましい。
 本発明の光吸収異方性フィルムは、光吸収異方性層および第1配向層のみを有するものでもよいが、必要に応じて、それ以外の層を有する積層体であってもよい。
 例えば、発明の光吸収異方性フィルムは、述した図2に示されるように、光吸収異方性層2および第1配向層3に加え、好ましい態様として第2配向層を有し、さらに、バリア層1、および、TACフィルム5を有している。
[支持体]
 本発明の光吸収異方性フィルムは、吸収異方性フィルムを支持するための支持体を有してもよい。図2に示す光吸収異方性フィルム101において、TACフィルム5は、支持体である。
 支持体は、空気層とは逆側の表面となるように配置されるのが好ましい。また、吸収異方性フィルムが光吸収異方性層を保護するための保護層を有する場合には、支持体は、保護層が設けられた面とは反対側の面に配置されるのが好ましい。
 支持体としては、公知の透明樹脂フィルム、透明樹脂板、透明樹脂シートなどを用いることができ、特に限定は無い。透明樹脂フィルムとしては、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム(屈折率1.48)、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリエチレンテレフタレートフィルム、ポリエーテルスルホンフィルム、ポリアクリル系樹脂フィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルム等が使用できる。
 その中でも、透明性が高く、光学的に複屈折が少なく、製造が容易であり、偏光板の保護フィルムとして一般に用いられているセルロースアシレートフィルムが好ましく、セルローストリアセテートフィルムが特に好ましい。
 支持体の厚さは、通常20μm~100μmである。
 本発明においては、支持体がセルロースエステル系フィルムであり、かつ、その膜厚が20~70μmであるのが特に好ましい。
[保護層]
 本発明の光吸収異方性フィルムは、光吸収異方性層を保護するための保護層を有するのも好ましい。保護層としては、光吸収異方性層を保護できれば、公知の各種の層(膜)が利用可能であるが、バリア層が好適に例示される。
 図2に示す光吸収異方性フィルムは、光吸収異方性層2の表面(支持体と逆側)に、バリア層1を有する。
 バリア層は、ガス遮断層(酸素遮断層)とも呼ばれ、大気中の酸素等のガス、水分、または、隣接する層に含まれる化合物等から本発明の偏光素子を保護する機能を有する。
 バリア層については、例えば、特開2014-159124号公報の[0014]~[0054]段落、特開2017-121721号公報の[0042]~[0075]段落、特開2017-115076号公報の[0045]~[0054]段落、特開2012-213938号公報の[0010]~[0061]段落、および、特開2005-169994号公報の[0021]~[0031]段落の記載を参照できる。
[屈折率調整層]
 本発明の積層体は、上述した光吸収異方性層が二色性物質を有し、光吸収異方性層の高屈折率に起因する内部反射が問題となる場合がある。
 その場合に、屈折率調整層が存在することが好ましい。屈折率調整層は、光吸収異方性層に接するように配置される層であり、波長550nmにおける面内平均屈折率が1.55以上1.70以下である。いわゆるインデックスマッチングを行うための屈折率調整層であることが好ましい。
<その他の層>
 本発明の光吸収異方性フィルムは、上述した各層以外にも、必要に応じて、例えば、位相差層、反射防止層、および、各種のフィルタなど、各種の機能を発現する層(フィルム、膜)を有してもよい。
 なお、本発明の光吸収異方性フィルムは、例えば図2に示す構成に制限はされず、光吸収異方性層を有するものであれば、各種の層構成が利用可能である。
 例えば、本発明の光吸収異方性フィルムは、光吸収異方性層および第1配向層のみを有するものであってもよく、光吸収異方性層と第1配向層と第2配向層とで構成されるものであってもよく、光吸収異方性層と第1配向層とバリア層とで構成さ
 <光吸収異方性層の形成方法>
 光吸収異方性層の形成方法は特に限定されず、上述した光吸収異方性層形成用組成物を塗布して塗布膜を形成する工程(以下、「塗布膜形成工程」ともいう)と、塗布膜に含まれる液晶化合物および二色性物質を配向させる工程(以下、「配向工程」ともいう)と、をこの順に含む方法が挙げられる。
 なお、液晶性成分とは、上述した液晶化合物だけでなく、上述した有機二色性物質が液晶性を有している場合は、液晶性を有する有機二色性物質も含む成分である。
 また、上述のように、第1配向層は、光吸収異方性層形成用組成物から有機二色性物質を除いた組成物を用いて、光吸収異方性層と同様に形成することができる。
 (塗布膜形成工程)
 塗布膜形成工程は、光吸収異方性層形成用組成物を塗布して塗布膜を形成する工程である。
 上述した溶媒を含有する光吸収異方性層形成用組成物を用いたり、光吸収異方性層形成用組成物を加熱などによって溶融液などの液状物としたものを用いたりすることにより、光吸収異方性層形成用組成物を塗布することが容易になる。
 光吸収異方性層形成用組成物の塗布方法としては、具体的には、例えば、ロールコーティング法、グラビア印刷法、スピンコート法、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スプレー法、および、インクジェット法などの公知の方法が挙げられる。
 (配向工程)
 配向工程は、塗布膜に含まれる液晶性成分を配向させる工程である。これにより、光吸収異方性層が得られる。
 配向工程は、乾燥処理を有していてもよい。乾燥処理によって、溶媒などの成分を塗布膜から除去することができる。乾燥処理は、塗布膜を室温下において所定時間放置する方法(例えば、自然乾燥)によって行われてもよいし、加熱および/または送風する方法によって行われてもよい。
 ここで、光吸収異方性層形成用組成物に含まれる液晶性成分は、上述した塗布膜形成工程または乾燥処理によって、配向する場合がある。例えば、光吸収異方性層形成用組成物が、溶媒を含む塗布液として調製されている態様では、塗布膜を乾燥して、塗布膜から溶媒を除去することで、光吸収異方性を持つ塗布膜(すなわち、光吸収異方性膜)が得られる。
 乾燥処理が塗布膜に含まれる液晶性成分の液晶相への転移温度以上の温度により行われる場合には、後述する加熱処理は実施しなくてもよい。
 塗布膜に含まれる液晶性成分の液晶相への転移温度は、製造適性等の面から10~250℃が好ましく、25~190℃がより好ましい。上記転移温度が10℃以上であると、液晶相を呈する温度範囲にまで温度を下げるための冷却処理等が必要とならず、好ましい。また、上記転移温度が250℃以下であると、一旦液晶相を呈する温度範囲よりもさらに高温の等方性液体状態にする場合にも高温を要さず、熱エネルギーの浪費、ならびに、基板の変形および変質等を低減できるため、好ましい。
 配向工程は、加熱処理を有することが好ましい。これにより、塗布膜に含まれる液晶性成分を配向させることができるため、加熱処理後の塗布膜を光吸収異方性膜として好適に使用できる。
 加熱処理は、製造適性等の面から10~250℃が好ましく、25~190℃がより好ましい。また、加熱時間は、1~300秒が好ましく、1~60秒がより好ましい。
 配向工程は、加熱処理後に実施される冷却処理を有していてもよい。冷却処理は、加熱後の塗布膜を室温(20~25℃)程度まで冷却する処理である。これにより、塗布膜に含まれる液晶性成分の配向を固定することができる。冷却手段としては、特に限定されず、公知の方法により実施できる。
 以上の工程によって、光吸収異方性膜を得ることができる。
 なお、以上の説明では、配向工程、すなわち、塗布膜に含まれる液晶性成分を配向する方法として、乾燥処理および加熱処理などを挙げているが、配向工程は、これに制限はされず、公知の配向処理が利用可能である。
 (他の工程)
 光吸収異方性層の形成方法は、上記配向工程後に、光吸収異方性層を硬化させる工程(以下、「硬化工程」ともいう)を有していてもよい。
 硬化工程は、例えば、光吸収異方性層が架橋性基(重合性基)を有している場合には、加熱および/または光照射(露光)によって実施される。このなかでも、硬化工程は光照射によって実施されることが好ましい。
 硬化に用いる光は、赤外線、可視光、および、紫外線など、種々の光(電磁波)を用いることが可能であるが、紫外線が好ましい。これらの光は、特定の波長(波長域)の光を出射する光源を用いて行ってもよく、あるいは、特定の波長(波長域)のみ光を透過するフィルタを介して、透過光を照射してもよい。
 また、硬化時には、加熱しながら紫外線等を照射してもよい。
 光照射を加熱しながら行われる場合、光照射時の加熱温度は、液晶膜に含まれる液晶性成分の液晶相への転移温度にもよるが、25~140℃であることが好ましい。
 また、光照射は、窒素雰囲気下で行われてもよい。ラジカル重合によって液晶膜の硬化が進行する場合において、酸素による重合の阻害が低減されるため、窒素雰囲気下で光照射を行うのが好ましい。
 光吸収異方性層の厚さは、特に限定されないが、小型軽量化の観点から、100~8000nmであることが好ましく、300~5000nmであることがより好ましい。
 [光吸収異方性層のパターニング]
 本発明の光吸収異方性フィルムにおいて、光吸収異方性層は、面内に領域Aと領域Bを有し、それぞれの領域において透過率中心軸が異なる、光吸収異方性層であることが可能である。液晶の画素毎にパターニングすることで発光画素を制御すれば、狭視野の視野中心の切り替えが可能になる。
 また、本発明に用いられる光吸収異方性層は、面内に領域Cと領域Dを有し、領域Cと領域Dで、透過率中心軸とフィルム面の法線とを包含する平面において、透過率中心軸から法線方向に30°傾けた透過率が異なる、光吸収異方性層であることが可能である。この場合、領域Cの透過率中心軸から法線方向に30°傾けた透過率が50%以下であり、領域Dの透過率中心軸から法線方向に30°傾けた透過率が80%以上である、光吸収異方性層であることが好ましい。
 このようなパターニングを行うことで、一部の領域で、視角依存性を強めたり弱めたりすることが可能となる。これにより、視角依存性を強めた領域にのみ機密度の高い情報を表示したりすることもできる。また、表示装置として視角依存性を表示位置別に制御することにより、意匠性に優れた設計も可能となる。さらに、液晶の画素毎にパターニングすることで発光画素を制御すれば、狭視野角/広視野角の切り替えが可能になる。
 以下の説明では、このように面内で異なる2つ以上の領域を有する光吸収異方性層を、便宜的に、「パターン光吸収異方性層」ともいう。
 [パターン形成方法]
 このように面内で異なる2つ以上の領域を有するパターン光吸収異方性層の形成方法には、制限はなく、例えば国際公開第2019/176918号に記載されているような公知の各種の方法が利用可能である。一例として、光配向膜に照射する紫外線の照射角度を変化させてパターンを形成させる方法、パターン光吸収異方性層の厚さを面内で制御する方法、パターン光吸収異方性層中の二色性物質化合物を偏在させる方法、光学的に均一なパターン光吸収異方性層を後加工する方法などが挙げられる。
 パターン光吸収異方性層の厚さを面内で制御する方法としては、リソグラフィを利用する方法、インプリントを利用する方法、および、凹凸構造を有する基材にパターン光吸収異方性層を形成する方法等が挙げられる。
 パターン光吸収異方性層中の二色性物質化合物を偏在させる方法としては、溶剤浸漬により二色性物質を抽出する方法(ブリーチング)が挙げられる。
 さらに、光学的に均一なパターン光吸収異方性層を後加工する方法としては、レーザー加工等によって、平坦な光吸収異方性層の一部を裁断する方法が挙げられる。
 本発明の視角制御システムは、上述した本発明の光吸収異方性フィルムと、偏光子とを有するものである。
[偏光子]
 本発明の視角制御システムに用いられる偏光子は、光を特定の直線偏光に変換する機能を有する部材であれば特に制限はなく、公知の偏光子を利用することができる。
 偏光子としては、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、および、ポリエン系偏光子などが用いられる。
 ヨウ素系偏光子および染料系偏光子には、塗布型偏光子と延伸型偏光子があり、いずれも適用できる。塗布型偏光子としては、液晶化合物の配向を利用して二色性有機色素を配向させた偏光子が好ましく、延伸型偏光子としては、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸して作製される偏光子が好ましい。
 また、基材上にポリビニルアルコール層を形成した積層フィルムの状態で延伸および染色を施すことで偏光子を得る方法として、特許第5048120号公報、特許第5143918号公報、特許第5048120号公報、特許第4691205号公報、特許第4751481号公報、および、特許第4751486号公報を挙げることができ、これらの偏光子に関する公知の技術も好ましく利用することができる。
 なかでも、入手が容易で偏光度に優れる点で、ポリビニルアルコール系樹脂(-CH-CHOH-を繰り返し単位として含むポリマー。特に、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体からなる群から選択される少なくとも1つ)を含む偏光子であることが好ましい。
 本発明においては、偏光子の厚さは特に制限はないが、3~60μmが好ましく、5~20μmがより好ましく、5~10μmがさらに好ましい。
 本発明の視角制御システムにおいて、光吸収異方性フィルムと偏光子とは、粘着層および接着層等の貼着剤を介して積層してもよいし、偏光子上に、上述した、第1配向層および光吸収異方性層を光吸収異方性を直接塗工して積層してもよい。
[粘着層]
 本発明における粘着層は通常の画像表示装置に使用されるものと同様の透明で光学的に等方性の接着剤であることが好ましく、通常は感圧型粘着剤が使用される。
 本発明における粘着層には、母材(粘着剤)の他に、架橋剤(例えば、イソシアネート系架橋剤およびエポキシ系架橋剤など)、粘着付与剤(例えば、ロジン誘導体樹脂、ポリテルペン樹脂、石油樹脂および油溶性フェノール樹脂など)、可塑剤、充填剤、老化防止剤、界面活性剤、紫外線吸収剤、光安定剤、ならびに、酸化防止剤等の添加剤を、適宜、配合してもよい。
 粘着層の厚さは通常、20~500μmであり、好ましくは20~250μmである。20μm未満では必要な接着力およびリワーク適性が得られない場合があり、500μmを越えると画像表示装置の周辺端部から粘着剤がはみ出たり、滲み出す場合がある。
[接着層]
 接着剤は、貼り合わせた後の乾燥および/または反応により接着性を発現するものである。
 ポリビニルアルコール系接着剤(PVA系接着剤)は、乾燥により接着性が発現し、材料同士を接着することが可能となる。
 反応により接着性を発現する硬化型接着剤の具体例としては、(メタ)アクリレート系接着剤のような活性エネルギー線硬化型接着剤およびカチオン重合硬化型接着剤が挙げられる。
 (メタ)アクリレート系接着剤における硬化性成分としては、例えば、(メタ)アクリロイル基を有する化合物、ビニル基を有する化合物が挙げられる。また、カチオン重合硬化型接着剤としては、エポキシ基やオキセタニル基を有する化合物も使用することができる。エポキシ基を有する化合物は、分子内に少なくとも2個のエポキシ基を有するものであれば特に限定されず、一般に知られている各種の硬化性エポキシ化合物を用いることができる。好ましいエポキシ化合物として、分子内に少なくとも2個のエポキシ基と少なくとも1個の芳香環を有する化合物(芳香族系エポキシ化合物)や、分子内に少なくとも2個のエポキシ基を有し、そのうちの少なくとも1個は脂環式環を構成する隣り合う2個の炭素原子との間で形成されている化合物(脂環式エポキシ化合物)等が例として挙げられる。
 中でも、加熱変形耐性の観点から、紫外線照射で硬化する紫外線硬化型接着剤が好ましく用いられる。
 接着層および粘着層の各層にはサリチル酸エステル系化合物やベンゾフェノール系化合物、ベンゾトリアゾール系化合物やシアノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式等の方式により紫外線吸収能をもたせたもの等であってもよい。
 光吸収異方性フィルムおよび/または偏光子への粘着層および接着層の付設は、適宜な方式で行いうる。
 一例として、例えばトルエンおよび酢酸エチル等の適宜な溶剤の単独物または混合物からなる溶媒にベースポリマーまたはその組成物を溶解または分散させた10~40重量%程度の粘着剤溶液を調製し、それを流延方式および塗工方式等の適宜な展開方式で、光吸収異方性フィルムおよび/または偏光子に直接付設する方式、あるいは、上記のように支持体に粘着層を形成して、それを移着する方式等が挙げられる。
 また、光吸収異方性フィルムおよび/または偏光子への粘着層および接着層の付設方法としては、粘着層を形成する母材、ならびに、必要に応じて添加される熱膨張性粒子、添加剤および溶媒等を含むコーティング液を調製し、このコーティング液を支持体上に直接塗布して、剥離ライナーを介して圧着して作製した粘着性シートを、支持体から圧着転写(移着)する方法も利用可能である。さらに、光吸収異方性フィルムおよび/または偏光子への粘着層および接着層の付設方法としては、適当な剥離ライナー(剥離紙など)上に上述のコーティング液を塗布して熱膨張性粘着層を形成し、この熱膨張性粘着層を剥離ライナーから圧着転写する方法も、利用可能である。
 粘着層および接着層は、異なる組成または種類等の物の重畳層として光吸収異方性フィルムおよび/または偏光子の片面または両面に設けることもできる。また両面に設ける場合に、光吸収異方性フィルムおよび/または偏光子の表裏において、異なる組成、種類および厚さ等の粘着層とすることもできる。
 また、光吸収異方性フィルムおよび/または偏光子は、接着剤および粘着剤を付設する前に、接着性の向上等を目的として、表面改質処理を行ってもよい。具体的な処理としては、コロナ処理、プラズマ処理、プライマー処理、および、ケン化処理等が挙げられる。
 本発明の画像表示装置は、表示パネルの少なくとも一方の主面に、本発明の視角制御システムを設けたものである。
 本発明の画像表示装置においては、光吸収異方性層の透過率中心軸および光吸収異方性フィルムの法線を包含する平面と、偏光子の吸収軸とが角度φが45°~90°であることが好ましく、80°~90°であることがより好ましく、88°~90°であることがさらに好ましい。
 この角度φが90°に近いほど、画像表示装置による表示画像が見えやすい方向と、見えにくい方向との照度コントラストを付けることが可能となる。
[表示パネル]
 本発明の画像表示装置に用いられる表示パネルには制限はなく、例えば、液晶セル、有機エレクトロルミネッセンス(以下、「EL」と略す。)表示パネル、および、プラズマディスプレイパネルなどが挙げられる。これらのうち、液晶セルまたは有機EL表示パネルであるのが好ましい。すなわち、本発明の画像表示装置は、表示パネルとして液晶セルを用いた液晶表示装置、および、表示パネルとして有機EL表示パネルを用いた有機EL表示装置であるのが好ましい。
 本発明の画像表示装置の一例である液晶表示装置としては、上述した本発明の視角制御システム(光吸収異方性フィルムおよび偏光子)と、液晶セルを有する態様が好ましく挙げられる。
 なお、本発明においては、液晶セルの両側に設けられる偏光子のうち、フロント側またはリア側の偏光子として、本発明の視角制御システムの偏光子を用いるのが好ましい。あるいは、フロント側およびリア側の偏光子として、本発明の視角制御システムの偏光子を用いることもできる。
 表示パネルの中には、薄型で、曲面に成形することが可能なものがある。本発明の光吸収異方性フィルムは、薄く、折り曲げが容易であるため、表示面が曲面である画像表示装置に対しても好適に適用することができる。
 また、表示パネルの中には、画素密度が250ppiを超え、高精細な表示が可能なものもある。本発明の光吸収異方性フィルムは、このような高精細な表示パネルに対しても、モアレを生じることなく、好適に適用することができる。
 以下に、液晶表示装置を構成する液晶セルについて詳述する。
[液晶セル]
 液晶表示装置に利用される液晶セルは、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、またはTN(Twisted Nematic)モードであることが好ましいが、これらに限定されるものではない。
 TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、さらに60~120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT(Thin Film Transistor)液晶表示装置として最も多く利用されており、多数の文献に記載がある。
 VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード)の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)、および、(4)SURVIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
 また、液晶セルは、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、および、PSA(Polymer-Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006-215326号公報、および、特表2008-538819号公報に詳細な記載がある。
 IPSモードの液晶セルは、棒状液晶性分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の吸収軸は直交している。IPSモードに関しては、光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10-54982号公報、特開平11-202323号公報、特開平9-292522号公報、特開平11-133408号公報、特開平11-305217号公報、および、特開平10-307291号公報などに開示されている。
 本発明の画像表示装置において、表示セルと本発明の視角制御システムとを貼着する必要が有る場合には、上述した、視角制御システムにおける光吸収異方性フィルムと偏光子との貼着で例示した貼着剤を用いる方法等、公知の方向で貼着を行えばよい。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の具体例に制限されるものではない。
[実施例1]
 有機二色性物質が傾斜配向した光吸収異方性層を有する光吸収異方性フィルムを下記のように作成した。
 <第2配向層付き透明支持体1の作製>
 セルロースアシレートフィルム1(厚さ40μmのTAC基材;TG40 富士フィルム社製)の表面をアルカリ液で鹸化し、その上にワイヤーバーで下記の第2配向層形成用塗布液1を塗布した。塗膜が形成された支持体を60℃の温風で60秒間、さらに100℃の温風で120秒間乾燥することで、第2配向層1を形成し、第2配向層付きTACフィルムを得た。
 第2配向層の膜厚は0.5μmであった。
 作製した第2配向層付きTACフィルムは、第2配向層の表面をラビング処理して使用した。
――――――――――――――――――――――――――――――――
第2配向層形成用塗布液1
――――――――――――――――――――――――――――――――
・下記の変性ポリビニルアルコール         3.80質量部
・開始剤Irg2959              0.20質量部
・水                         70質量部
・メタノール                     30質量部
――――――――――――――――――――――――――――――――
 変性ポリビニルアルコール
Figure JPOXMLDOC01-appb-C000051
 <第1配向層の作製>
 作製した第2配向層付きTACフィルムの第2配向層上に、ワイヤーバーを用いて下記の組成の第1配向層形成用組成物T1を塗布し、第1配向層塗布層T1を形成した。
 次いで、第1配向層塗布層T1を120℃で30秒間加熱し、第1配向層塗布層T1を室温(23℃)になるまで冷却した。さらに80℃で60秒間加熱し、再び室温になるまで冷却した。
 その後、LED灯(中心波長365nm)を用いて照度200mW/cmの照射条件で1秒間照射することにより、第2配向層1上に第1配向層T1を形成した。以下、作製した第1配向層T1付き支持体を、第1配向層付き支持体Z1とする。
 第1配向層T1の膜厚は0.60μmであった。
――――――――――――――――――――――――――――――――
第1配向層形成用組成物T1の組成
――――――――――――――――――――――――――――――――
・下記低分子液晶化合物M-1          95.69質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製)  4.049質量部
・下記界面活性剤F-1(レベリング剤)    0.2620質量部
・シクロペンタノン               660.6質量部
・テトラヒドロフラン              660.6質量部
――――――――――――――――――――――――――――――――
 低分子液晶化合物M-1
Figure JPOXMLDOC01-appb-C000052
 界面活性剤F-1
Figure JPOXMLDOC01-appb-C000053
(第1配向層の空気界面側の配向角度の測定)
 図5に概念的に示すように、作製した第1配向層付き支持体Z1を、ミクロトーム(ライカ社製、回転ミクロトーム:RM2265)を用いて、厚さ方向(法線方向)に平行に切断して、厚さ2μmの切片43を作製した。
 この切片43について、偏光顕微鏡を用いて、切断面側から、第1配向層T1の空気界面側における液晶化合物の配向角度を測定した。すなわち、この切片43について、切断面側から、第1配向層T1の空気界面側の液晶化合物の配向軸(光学軸)と、第1配向層T1の法線とが成す角度を測定した。第1配向層T1の空気側の界面とは、すなわち、後に形成する光吸収異方性層側の界面である。
 偏光顕微鏡による測定は、図6に概念的に示すように、偏光子と検光子とをクロスニコル配置して、切片43の方位角を動かしながら、第1配向層T1の空気界面側において消光する方位角を観察し、その後で鋭敏色板(λ板)を挿入し、上記界面近傍における色を観察して、切片43内における遅相軸の方向を調べ、空気側界面における液晶化合物の配向角度を決定した。なお、液晶化合物の配向角度の測定は、3つの切片43を切り出して行い(n=3)、その平均値を、この第1配向層T1の空気界面側における液晶化合物の配向角度とした。
 本例において、第1配向層T1の空気界面側における液晶化合物の配向角度は、第1配向層の法線方向に対して22°であった。
 なお、以下の例も、第1配向層T1の空気界面側(光吸収異方性層側)の界面における液晶化合物の配向角度を、同様に測定した。
 液晶化合物の配向角度は、下記の表1に示す。
 <光吸収異方性層P1の形成>
 得られた第1配向層T1上に、下記の光吸収異方性層形成用組成物P1をワイヤーバーで塗布し、塗布層P1を形成した。
 次いで、塗布層P1を120℃で30秒間加熱し、塗布層P1を室温(23℃)になるまで冷却した。
 次いで、80℃で60秒間加熱し、再び室温になるまで冷却した。
 その後、LED灯(中心波長365nm)を用いて照度200mW/cmの照射条件で1秒間照射することにより、配向層1上に光吸収異方性層P1を形成した。
 形成した光吸収異方性層P1の膜厚は1.4μm、表面エネルギーは26.5mN/mであった。
 表面エネルギーは、自動接触角計CA-V型(協和界面科学株式会社製)を用いて、室内環境25°C50%RHにおいて、純水とジヨードメタンの被測定面に対する接触角を測定し、OWENS and Wendtの方法によりもとめた。
――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成物P1の組成
――――――――――――――――――――――――――――――――
・下記二色性物質D-1             7.356質量部
・下記二色性物質D-2             3.308質量部
・下記二色性物質D-3             11.02質量部
・下記高分子液晶化合物P-1          43.29質量部
・低分子液晶化合物M-1            31.75質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製)  3.175質量部
・下記界面活性剤F-2(レベリング剤)    0.1027質量部
・シクロペンタノン               514.4質量部
・テトラヒドロフラン              514.4質量部
――――――――――――――――――――――――――――――――
 二色性物質D-1
Figure JPOXMLDOC01-appb-C000054
 二色性物質D-2
Figure JPOXMLDOC01-appb-C000055
 二色性物質D-3
Figure JPOXMLDOC01-appb-C000056
 高分子液晶化合物P-1
Figure JPOXMLDOC01-appb-C000057
 界面活性剤F-2
Figure JPOXMLDOC01-appb-C000058
<バリア層B1の形成>
 作製した光吸収異方性層P1の上に、下記のバリア層形成用組成物B1をワイヤーバーで塗布し、80℃で5分間乾燥して、バリア塗布層B1を形成した。
 次いで、バリア塗布層B1を酸素濃度100ppm、温度60℃環境にて、LED灯(中心波長365nm)を用いて照度150mW/cmの照射条件で2秒間照射することにより光吸収異方性層P1の上に、バリア層B1を形成した。
 バリア層B1の厚さは、1.0μmであった。
 これを光吸収異方性フィルムP1とした。
――――――――――――――――――――――――――――――――
(バリア層形成用組成物B1)
――――――――――――――――――――――――――――――――
・下記の変性ポリビニルアルコール         3.80質量部
・開始剤Irg2959              0.20質量部
・水                         70質量部
・メタノール                     30質量部
――――――――――――――――――――――――――――――――
 変性ポリビニルアルコール
Figure JPOXMLDOC01-appb-C000059
<光吸収異方性層の透過率中心軸の角度θの測定>
 作製した光吸収異方性フィルムP1に関して、AxoScan OPMF-1(オプトサイエンス社製)を用いて、波長550nmにおける光吸収異方性層のミューラーマトリックスを測定することにより、光吸収異方性層の透過率中心軸の角度θを測定した。
 ミューラーマトリックスの測定は、20cm×30cmのサンプルサイズで、サンプル面内において、任意に15か所を選択して行った。
 上述のように、透過率中心軸とは、光吸収異方性層の主面の法線方向に対する傾き角度(極角)と傾き方向(方位角)とを変化させて透過率を測定した際に、最も透過率の高い方向である。
 測定では、最初に、透過率中心軸が傾いている方位角を探した。
 次に、その方位角に沿った光吸収異方性層の法線方向を含む面(透過率中心軸を含み、層表面に直交する平面)内で、光吸収異方性膜の法線方向に対する角度である極角θを、-70~70°まで、1°ずつ変更しつつ、ミューラーマトリックスの測定を行った。
 このミューラーマトリックスの測定結果より、透過率が極大となる角度θを導出した。この透過率が極大となる角度θが、光吸収異方性層の透過率中心軸の方向であり、すなわち、光吸収異方性層の透過率中心軸と、光吸収異方性層の法線とが成す角度となる。
 測定した15か所の角度θの平均値を求めて、この平均値を、光吸収異方性フィルムにおける、光吸収異方性層の透過率中心軸と、光吸収異方性層の法線とが成す角度とした。以下、この角度を、透過率中心軸の平均角度θとする。
 透過率中心軸の平均角度θを、下記の表1に示す。
 また、以下に示す各光吸収異方性フィルムに関しても、同様に、透過率中心軸の平均角度θを測定した。同じく結果を表1に示す。
 <積層体A1の作製>
 国際公開第2015/166991号に記載される片面保護膜付偏光板02と同様の方法で、偏光子の厚さが8μmで、偏光子の片面がむき出しの偏光板1を作製した。
 上記偏光板1の偏光子がむき出しの面、および、上記作製した光吸収異方性フィルムP1の表面をコロナ処理した。次いで、コロナ処理した面を対面して、下記のPVA接着剤1を用いて、偏光板1と光吸収異方性フィルムP1とを貼合し、積層体A1を作製した。 この時、図4に概念的に示すように、光吸収異方性層2の透過率中心軸22と、光吸収異方性層2(光吸収異方性フィルム)の法線23を包含する平面と、偏光子21の吸収軸24とが成す角度を90°とした。
(PVA接着剤1の調製)
 アセトアセチル基を含有するポリビニルアルコール系樹脂(平均重合度:1200,ケン化度:98.5モル%,アセトアセチル化度:5モル%)100部に対し、メチロールメラミン20部を、30℃の温度条件下に、純水に溶解し、固形分濃度3.7%に調整した水溶液を調製した。
 <画像表示装置B1の作製>
 IPSモードの液晶表示装置であるiPad Air(登録商標、以下同様) Wi-Fiモデル 16GB (APPLE社製)を分解し、液晶セルを取り出した。
 液晶セルから視認側偏光板を剥離した面に、上記作製した積層体A1を、偏光板1側が液晶セル側になるようにして、下記の粘着剤シート1を用いて貼合した。このとき、偏光板1の吸収軸の方向が液晶画面の長手方向になるよう貼合した。
 液晶セルへの貼合後、組み立て直し、画像表示装置B1を作製した。
 (粘着剤シート1の作成)
 以下の手順に従い、アクリレート系ポリマーを調製した。
 冷却管、窒素導入管、温度計および撹拌装置を備えた反応容器に、アクリル酸ブチル95重量部、アクリル酸5重量部を溶液重合法により重合させて、平均分子量200万、分子量分布(Mw/Mn)3.0のアクリレート系重合体A1を得た。
 次に得られたアクリレート系重合体A1(100質量部)に加えて、コロネートL(トリレンジイソシアネ-トのトリメチロールプロパン付加物の75質量%酢酸エチル溶液、1分子中のイソシアネート基数:3個、日本ポリウレタン工業株式会社製)(1.0質量部)、および、シランカップリング剤KBM-403(信越化学工業社製)(0.2質量部)を混合し、最後に全固形分濃度が10質量%となるように酢酸エチルを添加して、粘着剤形成用組成物を調製した。
 この組成物を、シリコーン系剥離剤で表面処理したセパレートフィルムにダイコーターを用いて塗布し90℃の環境下で1分間乾燥させ、アクリレート系粘着剤シートを得た。膜厚は25μm、貯蔵弾性率が0.1MPaであった。
[実施例2]
 第1配向層の組成を下記の第1配向層形成用組成物T2の組成に変更した以外は、実施例1と同様にして、光吸収異方性フィルムP2、積層体A2、および、画像表示装置B2を作製した。
 第1配向層の膜厚は0.64μm、表面エネルギーは41.3mN/mであった。
 また、光吸収異方性層の膜厚は1.4μm、表面エネルギーは26.5mN/mであった。
――――――――――――――――――――――――――――――――
第1配向層形成用組成物T2の組成
――――――――――――――――――――――――――――――――
・高分子液晶化合物P-1            55.20質量部
・低分子液晶化合物M-1            40.49質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製)  4.049質量部
・界面活性剤F-1(レベリング剤)      0.2620質量部
・シクロペンタノン               660.6質量部
・テトラヒドロフラン              660.6質量部
――――――――――――――――――――――――――――――――
[実施例3]
 光吸収異方性層3を下記の光吸収異方性層形成用組成物P2を用いて形成し、光吸収性異方性層の膜厚を4.0μmとした以外は、実施例2と同様にして、光吸収異方性フィルムP3、積層体A3、および、画像表示装置B3を作製した。
 ここで、低分子液晶化合物M-2およびM-3がスメクチック相を示すことを、顕微鏡用ホットステージ(メトラートレド社製)および偏光顕微鏡を用いて、温度を変えながら液晶相の観察を行い、事前に確認した。
 第1配向層の膜厚は0.64μm、であった。
――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成物P2の組成
――――――――――――――――――――――――――――――――
・二色性物質D-1               2.872質量部
・二色性物質D-2               1.026質量部
・二色性物質D-3               4.513質量部
・下記低分子液晶化合物M-2          67.90質量部
・下記低分子液晶化合物M-3          22.56質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製) 0.8205質量部
・界面活性剤F-2(レベリング剤)       0.1000質量部
・シクロペンタノン               1846.2質量部
・ベンジルアルコール               102.6質量部
――――――――――――――――――――――――――――――――
 低分子液晶化合物M-2
Figure JPOXMLDOC01-appb-C000060
 低分子液晶化合物M-3
Figure JPOXMLDOC01-appb-C000061
[実施例4]
 光吸収異方性層4を下記の光吸収異方性層形成用組成物P3を用いて形成し、光吸収性異方性層の膜厚を4.0μmとした以外は、実施例2と同様にして、光吸収異方性フィルムP4、積層体A4、および、画像表示装置B4を作製した。
 ここで、低分子液晶化合物M-4およびM-5がスメクチック相を示すことを、顕微鏡用ホットステージ(メトラートレド社製)および偏光顕微鏡を用いて、温度を変えながら液晶相の観察を行い事前に確認した。
 第1配向層の膜厚は0.64μmであった。
――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成物P3の組成
――――――――――――――――――――――――――――――――
・二色性物質D-1               2.872質量部
・二色性物質D-2               1.026質量部
・二色性物質D-3               4.513質量部
・下記低分子液晶化合物M-4          67.90質量部
・下記低分子液晶化合物M-5          22.56質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製) 0.8205質量部
・界面活性剤F-2(レベリング剤)      0.1000質量部
・シクロペンタノン              1846.2質量部
・ベンジルアルコール              102.6質量部
――――――――――――――――――――――――――――――――
 低分子液晶化合物M-4
Figure JPOXMLDOC01-appb-C000062
 低分子液晶化合物M-5
Figure JPOXMLDOC01-appb-C000063
[実施例5]
 光吸収異方性層5を下記の光吸収異方性層形成用組成物P4を用いて形成し、光吸収性異方性層の膜厚を1.4μmとした以外は、実施例2と同様にして、光吸収異方性フィルムP5、積層体A5、および、画像表示装置B5を作製した。
 第1配向層の膜厚は0.64μmであった。
――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成物P4の組成
――――――――――――――――――――――――――――――――
・二色性物質D-1               1.720質量部
・二色性物質D-2              0.7736質量部
・二色性物質D-3               2.578質量部
・高分子液晶化合物P-1            43.29質量部
・低分子液晶化合物M-1            31.75質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製)  3.175質量部
・下記界面活性剤F-2(レベリング剤)    0.1027質量部
・シクロペンタノン               436.5質量部
・テトラヒドロフラン              436.5質量部
――――――――――――――――――――――――――――――――
[実施例6]
 光吸収異方性層6を下記の光吸収異方性層形成用組成物P5を用いて形成し、光吸収性異方性層の膜厚を1.4μmとした以外は、実施例2と同様にして、光吸収異方性フィルムP6、積層体A6、および、画像表示装置B6を作製した。
 第1配向層の膜厚は0.64μmであった。
――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成物P5の組成
――――――――――――――――――――――――――――――――
・二色性物質D-1               1.094質量部
・二色性物質D-2              0.4917質量部
・二色性物質D-3               1.639質量部
・高分子液晶化合物P-1            43.29質量部
・低分子液晶化合物M-1            31.75質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製)  3.175質量部
・界面活性剤F-2(レベリング剤)      0.1027質量部
・シクロペンタノン               432.2質量部
・テトラヒドロフラン              432.2質量部
――――――――――――――――――――――――――――――――
[比較例1]
 第2配向層を設けず、ラビング処理をしていないPVA配向層の上に、下記の光配向層形成用組成物を塗布したのち90℃で1分間乾燥して、光配向層形成用組成物の塗布膜E1を形成した、この塗布膜E1の法線に対して30°の角度で光配向膜の斜め上方より傾斜紫外線露光を行って、光配向層E1を形成した。
 この光配向層1を光吸収異方性層の形成面とした以外は、実施例1と同様にして、光吸収異方性フィルムP7、積層体A7、および、画像表示装置B7を作製した。
 光配向膜の厚さは0.1μmであった。
――――――――――――――――――――――――――――――――
光配向層形成用組成物の組成
――――――――――――――――――――――――――――――――
・下記光配向材料E-1               0.3質量部
・2-ブトキシエタノール             41.6質量部
・ジプロピレングリコールモノメチルエーテル    41.6質量部
・純水                      16.5質量部
――――――――――――――――――――――――――――――――
 光配向材料E-1
Figure JPOXMLDOC01-appb-C000064
[性能の評価]
(1)透過率中心軸の評価
 作製した光吸収異方性フィルムP1~P7のそれぞれについて、15か所の透過率中心軸の角度θの測定結果と、角度θの平均値(平均角度θ)とから、角度θの変動係数を求めた。変動係数は平均値を標準偏差により除した値であり、大きな数値であるほどバラツキが大きいことを示す。
 角度θの変動係数は、面内の輝度ムラを決める主要因であると考えているが、それを下記のようにランク付けした。
 AAA: 変動係数が9%未満
 AA: 変動係数が10%以上12%未満
 A: 変動係数が12%以上15%未満
 B: 変動係数が15%以上20%未満
 C: 変動係数が20%以上25%未満
 D: 変動係数が25%以上
(2)画像表示装置における輝度ムラの評価
 上記の手順により作製した画像表示装置B1~B7を用い、サンプル画像を画面に表示させた上で、正面より輝度ムラの評価を官能評価により行った。
 AAA: 輝度ムラが非常にすくない
 AA: 輝度ムラが少ない。
 A: 輝度ムラが目立たない。
 B: 輝度ムラがやや目立つ。
 C: 輝度ムラが目立つ。
 D: 輝度ムラが非常に目立つ。
 評価結果の一覧表を表1に示す。
Figure JPOXMLDOC01-appb-T000065
 光吸収異方性層に隣接して第1配向層を設けた本発明の光吸収異方性フィルムによれば、透過率中心軸の方向θの変動係数(バラツキの相対値)および表示画像の輝度ムラが、比較例に較べて小さな値となっており、高品質な画像表示装置を得られていることを示している。
 中でも、第1配向層に高分子液晶を用いた光吸収異方性フィルム、および、光吸収異方性層中の有機二色性物質含有量が多い光吸収異方性フィルムでは、特に角度θの変動係数(バラツキ)および表示画像の輝度ムラが小さく品質が優れている。
 また、光吸収異方性層中にスメクチック相を示す液晶化合物を用いた光吸収異方性フィルムおよび画像表示装置も、角度θの変動係数および輝度ムラが小さく高品質である。
 さらに、角度θの変動係数が小さくなるに従い、画像表示装置の画像の輝度バラツキも小さくなっており、それらの対応関係が示されている。
 これらの結果、本発明により露光設備コストなどの負荷を避けながら、均一な視角特性の制御が達成されていることがわかる。
 100 液晶表示装置
 101 光吸収異方性フィルム
 102 視認側偏光子
 103 液晶セル
 104 バックライト側偏光子
 105 バックライト
 1 バリア層
 2 光吸収異方性層
 3 第1配向層
 4 第2配向層
 5 TACフィルム
 11 液晶分子
 13 二色性染料 D-1
 14 二色性染料 D-2
 15 二色性染料 D-3
 21 偏光子
 22 透過率中心軸方向(極角θ)
 23 光吸収異方性層の法線
 24 偏光子の吸収軸方向

Claims (8)

  1.  光吸収異方性層と、前記光吸収異方性層に隣接する第1配向層とを有する光吸収異方性フィルムであり、
     前記光吸収異方性層は液晶化合物と有機二色性物質とを含み、
     前記光吸収異方性層の透過率中心軸と前記光吸収異方性層の法線とが成す角度が5°以上45°未満であり、
     前記第1配向層は、一方の表面側から他方の表面側に向かって、厚さ方向の配向方向が連続的に変化する、ハイブリッド配向した重合性液晶化合物を固定してなる層である、光吸収異方性フィルム。
  2.  前記第1配向層が、重合性高分子液晶を有する組成物から形成された層である、請求項1に記載の光吸収異方性フィルム。
  3.  前記第1配向層の、前記光吸収異方性層側の界面における前記重合性液晶化合物の配向軸と、前記第1配向層の法線とが成す角度が、2°~50°である、請求項1または2に記載の光吸収異方性フィルム。
  4.  前記有機二色性物質の光吸収異方性層の全固形分質量に対する比率が5質量%以上である、請求項1~3のいずれか1項に記載の光吸収異方性フィルム。
  5.  前記光吸収異方性層の液晶化合物が、重合性液晶化合物を含み、かつ、この重合性液晶化合物がスメクチック相を示す液晶化合物を含む、請求項1~4のいずれか1項に記載の光吸収異方性フィルム。
  6.  前記第1配向層の、前記光吸収異方性層側とは反対側に隣接して、ポリビニルアルコールまたはポリイミドからなる第2配向層を有する、請求項1~5のいずれか1項に記載の光吸収異方性フィルム。
  7.  偏光子と、請求項1~6のいずれか1項に記載の光吸収異方性フィルムとを有する、視角制御システム。
  8.  表示パネルの少なくとも一方の主面に、請求項7に記載の視角制御システムが配置されている画像表示装置。
PCT/JP2021/046999 2020-12-21 2021-12-20 光吸収異方性フィルム、視角制御システムおよび画像表示装置 WO2022138555A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180085068.2A CN116635778A (zh) 2020-12-21 2021-12-20 光吸收各向异性薄膜、视角控制***及图像显示装置
JP2022571443A JPWO2022138555A1 (ja) 2020-12-21 2021-12-20
US18/331,818 US20230314854A1 (en) 2020-12-21 2023-06-08 Light absorption anisotropic film, viewing angle control system, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-211373 2020-12-21
JP2020211373 2020-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/331,818 Continuation US20230314854A1 (en) 2020-12-21 2023-06-08 Light absorption anisotropic film, viewing angle control system, and image display device

Publications (1)

Publication Number Publication Date
WO2022138555A1 true WO2022138555A1 (ja) 2022-06-30

Family

ID=82157944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046999 WO2022138555A1 (ja) 2020-12-21 2021-12-20 光吸収異方性フィルム、視角制御システムおよび画像表示装置

Country Status (4)

Country Link
US (1) US20230314854A1 (ja)
JP (1) JPWO2022138555A1 (ja)
CN (1) CN116635778A (ja)
WO (1) WO2022138555A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043149A1 (ja) * 2022-08-23 2024-02-29 富士フイルム株式会社 光吸収異方性膜、光学フィルム及び表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022138504A1 (ja) * 2020-12-21 2022-06-30

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145776A (ja) * 2007-12-17 2009-07-02 Nitto Denko Corp 視角制御システムならびに画像表示装置
JP2011215337A (ja) * 2010-03-31 2011-10-27 Fujifilm Corp 光吸収異方性膜、偏光フィルム及びその製造方法、並びにそれを用いた表示装置
JP2016027387A (ja) * 2014-06-25 2016-02-18 住友化学株式会社 光吸収異方性膜、3次元光吸収異方性膜及びその製造方法
WO2018079854A1 (ja) * 2016-10-31 2018-05-03 富士フイルム株式会社 光学フィルムおよび液晶表示装置
JP2019120949A (ja) * 2017-12-28 2019-07-22 富士フイルム株式会社 光学積層体および画像表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619352A (en) * 1994-04-04 1997-04-08 Rockwell International Corporation LCD splay/twist compensator having varying tilt and /or azimuthal angles for improved gray scale performance
JP5839211B2 (ja) * 2011-12-06 2016-01-06 エルジー・ケム・リミテッド 液晶セル
KR102383293B1 (ko) * 2018-01-25 2022-04-05 주식회사 엘지화학 다층 액정 필름, 편광판 및 편광판의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145776A (ja) * 2007-12-17 2009-07-02 Nitto Denko Corp 視角制御システムならびに画像表示装置
JP2011215337A (ja) * 2010-03-31 2011-10-27 Fujifilm Corp 光吸収異方性膜、偏光フィルム及びその製造方法、並びにそれを用いた表示装置
JP2016027387A (ja) * 2014-06-25 2016-02-18 住友化学株式会社 光吸収異方性膜、3次元光吸収異方性膜及びその製造方法
WO2018079854A1 (ja) * 2016-10-31 2018-05-03 富士フイルム株式会社 光学フィルムおよび液晶表示装置
JP2019120949A (ja) * 2017-12-28 2019-07-22 富士フイルム株式会社 光学積層体および画像表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043149A1 (ja) * 2022-08-23 2024-02-29 富士フイルム株式会社 光吸収異方性膜、光学フィルム及び表示装置

Also Published As

Publication number Publication date
US20230314854A1 (en) 2023-10-05
JPWO2022138555A1 (ja) 2022-06-30
CN116635778A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2021187379A1 (ja) 液晶表示装置
US20230314854A1 (en) Light absorption anisotropic film, viewing angle control system, and image display device
WO2018186500A1 (ja) 偏光素子、円偏光板および画像表示装置
JP7022151B2 (ja) 積層体、積層体の製造方法および画像表示装置
US20230118336A1 (en) Viewing angle control system and image display device
US20230417971A1 (en) Light absorption anisotropic film, viewing angle control system, and image display device
US20230418094A1 (en) Optical film, viewing angle control system, and image display device
WO2019225468A1 (ja) 偏光子および画像表示装置
WO2021246441A1 (ja) 光学フィルム、光学積層体および画像表示装置
JP2024026152A (ja) 光吸収異方性層、積層体、光学フィルム、画像表示装置、バックライトモジュール
JP2021192095A (ja) 光学要素および表示装置
WO2021060021A1 (ja) 偏光子および画像表示装置
JP7457739B2 (ja) 偏光素子、円偏光板および画像表示装置
WO2022181414A1 (ja) 積層体、映り込み防止システム、および、画像表示装置
WO2022270466A1 (ja) 光学フィルム、光吸収異方性層の製造方法および画像表示装置
WO2023176672A1 (ja) 光学フィルムおよび視角制御システム
JP2023032330A (ja) 長尺フィルム積層体の製造方法、画像表示装置の製造方法、および、長尺フィルム積層体
WO2022202268A1 (ja) 視角制御システム、画像表示装置、光学異方性層、積層体
WO2024070691A1 (ja) 積層体、画像表示装置、光学装置およびヘッドマウントディスプレイ
WO2022215751A1 (ja) 光吸収異方性層、積層体、表示装置、赤外光照射装置及び赤外光センシング装置
WO2023112835A1 (ja) 光学装置およびヘッドマウントディスプレイ
WO2022234789A1 (ja) 偏光板及び有機el表示装置
WO2023085255A1 (ja) 有機el表示装置
CN116917780A (zh) 层叠体、防反射眩光***及图像显示装置
WO2022239685A1 (ja) 光吸収異方性層、光学フィルム、視野角制御システムおよび画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571443

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180085068.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910699

Country of ref document: EP

Kind code of ref document: A1