WO2022138504A1 - 光学フィルム、視角制御システム及び画像表示装置 - Google Patents

光学フィルム、視角制御システム及び画像表示装置 Download PDF

Info

Publication number
WO2022138504A1
WO2022138504A1 PCT/JP2021/046823 JP2021046823W WO2022138504A1 WO 2022138504 A1 WO2022138504 A1 WO 2022138504A1 JP 2021046823 W JP2021046823 W JP 2021046823W WO 2022138504 A1 WO2022138504 A1 WO 2022138504A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
light absorption
anisotropic layer
mass
Prior art date
Application number
PCT/JP2021/046823
Other languages
English (en)
French (fr)
Inventor
渉 星野
伸一 吉成
拓史 松山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022571409A priority Critical patent/JPWO2022138504A1/ja
Priority to CN202180085076.7A priority patent/CN116615970A/zh
Publication of WO2022138504A1 publication Critical patent/WO2022138504A1/ja
Priority to US18/331,807 priority patent/US20230418094A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/123Optical louvre elements, e.g. for directional light blocking
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to an optical film, a viewing angle control system, and an image display device.
  • the absorption axis of the organic dichroic dye is 0 ° to 45 ° with respect to the normal direction and the first polarizing element having an absorption axis in the plane.
  • a method of using a second polarizing element (light absorption anisotropic layer) oriented in combination with the above has been proposed.
  • the first polarizing element the polarizing element on the visual recognition side in the liquid crystal display device can be used.
  • the image can be observed by an observer in a desired direction by transmitting only the light from the image in a specific direction and blocking the transmission of the light in other angles.
  • the image can be prevented from being projected from a certain direction of the window glass.
  • the light transmittance is insufficient when the image is observed from the desired direction, and sufficient visibility cannot be obtained.
  • the image is observed from the other direction, that is, the screen. Since the light transmittance in the direction in which the image is desired to be invisible is not sufficiently reduced, there is still a problem that the screen cannot be sufficiently shielded.
  • the present invention provides a bright and easy-to-see image from a desired direction, blocks the light of the image from other directions, and can sufficiently limit the reflection on a window glass or the like, a viewing angle control system, a display device, and a display device.
  • An object of the present invention is to provide an optical film for that purpose.
  • An optical film including a light absorption anisotropic layer formed from a liquid crystal composition containing a thermotropic liquid crystal compound, a dichroic substance, and an interface improving agent.
  • the content of the dichroic substance is 10.0% by mass or more with respect to the total solid content mass of the liquid crystal composition.
  • the optical film according to [1], wherein the content of the dichroic substance is 15.0% by mass or more with respect to the total solid content mass of the liquid crystal composition.
  • a viewing angle control system comprising the optical film according to any one of [1] to [4] and a polarizing element.
  • the polarizing element has an absorption axis in the plane and has an absorption axis.
  • the angle ⁇ formed by the direction in which the central axis of the transmittance of the light absorption anisotropic layer of the optical film is normally projected onto the surface of the optical film and the absorption axis of the polarizing element is 0 ° or more and less than 85 °, more than 95 °.
  • a viewing angle control system that is less than 265 ° or greater than 275 ° and less than 360 °.
  • a viewing angle control system a display device, and a display device that can provide a bright and easy-to-see image from a desired direction and sufficiently limit the reflection of the image on a window glass by blocking the light of the image from other directions.
  • An optical film for that purpose can be provided. More specifically, the optical film of the present invention can precisely control the viewing angle, and when used for an in-vehicle display or the like, it is bright to the driver or the like while sufficiently suppressing the reflection of an image on a window glass or the like. It is possible to provide an image that is easy to see.
  • FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of the liquid crystal display device of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of an embodiment of a viewing angle control system using the optical film of the present invention.
  • FIG. 3 is a diagram showing the positional relationship between the direction of the transmittance central axis of the light absorption anisotropic layer and the absorption axis of the polarizing element in the image display device of the present invention.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • parallel and orthogonal do not mean parallel and orthogonal in a strict sense, but mean a range of ⁇ 5 ° from parallel or orthogonal.
  • the liquid crystal composition and the liquid crystal compound include those which no longer exhibit liquid crystal property due to curing or the like as a concept.
  • the term "visible light” means an electromagnetic wave having a wavelength of 380 to 800 nm, unless otherwise specified.
  • (meth) acrylate is a notation representing “acrylate” or “methacrylate”
  • (meth) acrylic is a notation representing "acrylic” or “methacrylic”
  • (meth) acrylic” is used.
  • Acryloyl is a notation representing" acryloyl "or” methacryloyl ".
  • the solid content of the liquid crystal composition means a component capable of forming a light absorption anisotropic layer from which the solvent in the liquid crystal composition has been removed, and the solid content even if the property is liquid. And.
  • the substituent W used in the present specification represents the following group.
  • the substituent W include a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, a cycloalkyl group having 1 to 20 carbon atoms, and an alkylcarbonyl group having 1 to 10 carbon atoms.
  • LW represents a single bond or a divalent linking group
  • SPW represents a divalent spacer group
  • Q represents Q1 or Q2 in the formula (LC) described later
  • * represents a binding position. ..
  • the divalent linking groups represented by LW are -O-,-(CH 2 ) g -,-(CF 2 ) g- , -Si (CH 3 ) 2 -,-(Si (CH 3 ) 2 O).
  • the LW may be a group in which two or more of these groups are combined (hereinafter, also abbreviated as "LC").
  • Examples of the divalent spacer group represented by SPW include a linear, branched or cyclic alkylene group having 1 to 50 carbon atoms, or a heterocyclic group having 1 to 20 carbon atoms.
  • the hydrogen atom of the alkylene group and the hydrogen atom of the heterocyclic group are halogen atom, cyano group, -Z H , -OH, -OZ H , -COOH, -C (O) Z H , -C (O).
  • ZH and ZH' represent an alkyl group having 1 to 10 carbon atoms, an alkyl halide group, and -L-CL (L represents a single bond or a divalent linking group.
  • L represents a single bond or a divalent linking group.
  • Specific examples of the divalent linking group. Is the same as LW and SPW described above.
  • CL represents a crosslinkable group, and examples thereof include a group represented by Q1 or Q2 in the formula (LC) described later, which are represented by the formulas (P1) to (P30) described later.
  • the crosslinkable group represented is preferable.).
  • the optical film of the present invention is an optical film including a light absorption anisotropic layer formed from a liquid crystal composition containing a thermotropic liquid crystal compound, a dichroic substance, and a surface improving agent, and is dichroic.
  • the substance is 10.0% by mass or more with respect to the total solid content mass of the liquid crystal composition.
  • the angle ⁇ formed by the central axis of transmittance of the light absorption anisotropic layer and the normal direction of the optical film surface is 5 ° or more and less than 45 °.
  • the viewing angle control system and the display device using the optical film of the present invention a bright and easy-to-see image is provided from a desired direction, and the light of the image is blocked from other directions to sufficiently reflect the image on the window glass.
  • the present inventors speculate as follows.
  • the light absorption anisotropic layer contained in the optical film contains a thermotropic liquid crystal compound, a dichroic substance, and a surface improver to control the orientation direction of the dichroic substance.
  • the viewing angle control system and display device using the optical film of the present invention provide a bright and easy-to-see image from a desired direction, and block the light of the image from other directions to sufficiently reflect the image on the window glass.
  • the ability to be limited to is also referred to as "effect of the present invention”.
  • effect of the present invention the layers that the optical film may contain will be described.
  • the light absorption anisotropic layer is formed from a liquid crystal composition containing a thermotropic liquid crystal compound, a dichroic substance, and a surface improving agent, and the content of the dichroic substance is the liquid crystal composition. It is 10.0% by mass or more with respect to the total solid content mass. Further, in the present invention, the light absorption anisotropic layer has an angle ⁇ formed by the transmittance central axis of the light absorption anisotropic layer and the normal direction of the optical film surface of 5 ° or more and less than 45 °.
  • the angle formed by the central axis of the transmittance of the light absorption anisotropic layer and the normal direction of the optical film surface is also referred to as a “tilt angle”.
  • is preferably 5 ° or more and less than 35 °.
  • the dichroic substance having absorption in the visible light region in a desired direction it is preferable to orient the dichroic substance having absorption in the visible light region in a desired direction, and the dichroism is obtained by utilizing the orientation of the liquid crystal compound.
  • a mode in which the substance is oriented is more preferable.
  • One example is a light absorption anisotropic layer in which at least one kind of dichroic substance is inclined or oriented with respect to the film normal direction.
  • the fact that the dichroic material of the light absorption anisotropic layer is inclined or oriented from the normal direction of the film (the normal direction of the surface of the optical film) is the axis at which the transmittance is maximized (hereinafter referred to as the "central axis of transmittance").
  • tilt angle ⁇ the wavelength in the absorption region of the dichroic substance (for example, the visible wavelength region; specifically, the wavelength of 650 nm is preferable) is used, and the central axis of the transmittance of the light absorption anisotropic layer is set on the film surface.
  • the transmittance is measured by tilting at a pitch of 0.5 °.
  • the transmittance of the optical film on which the light absorption anisotropic layer is not formed is measured (referred to as T4).
  • T3 / T4 is calculated, and ⁇ z at which this value is maximum is obtained. If ⁇ z at which T3 / T4 is maximized does not match 0 ° (normal line), it can be determined that the dichroic substance is inclined or oriented from the optical film normal direction.
  • the central axis of the transmittance of the light absorption anisotropic layer is inclined with respect to the normal direction of the optical film surface, and ⁇ z at which T3 / T4 is maximized is the transmission of the light absorption anisotropic layer. It corresponds to the angle between the central axis of the transmittance and the normal direction of the optical film surface.
  • the central axis of transmission is the most when the transmission is measured by changing the inclination angle (extreme angle) and the inclination direction (azimuth angle) with respect to the normal direction of the main surface of the light absorption anisotropic film. It means the direction of high permeability.
  • the central axis of transmittance is the surface of the light absorption anisotropic film.
  • the absorbance of the sample at a wavelength of 650 nm was monitored while rotating the sample table clockwise by 1 °, and the absorbance was increased. Check the maximum direction. The angle ⁇ is determined based on the direction in which the absorbance in the plane of the sample is maximized.
  • the technique of orienting the dichroic substance in a desired direction it is possible to refer to the technique of manufacturing a polarizing element using the dichroic substance, the technique of manufacturing a guest-host liquid crystal cell, and the like.
  • the method for producing a dichroic polarizing element described in JP-A-11-3005036 and JP-A-2002-90526, and the guest-hosted liquid crystal described in JP-A-2002-99388 and JP-A-2016-27387 can also be used for manufacturing a light absorption anisotropic layer used in the present invention.
  • the technique of a guest-hosted liquid crystal cell can be used to accompany the orientation of the host liquid crystal to cause the dichroic material to have the desired orientation as described above.
  • the dichroic substance that serves as a guest and the rod-shaped liquid crystal compound that serves as the host liquid crystal are mixed to orient the host liquid crystal, and the molecules of the dichroic substance are oriented along the orientation of the liquid crystal molecules.
  • the light absorption anisotropic layer used in the present invention can be produced.
  • the orientation of the dichroic substance In order to prevent the light absorption characteristics of the light absorption anisotropic layer used in the present invention from fluctuating depending on the usage environment, it is preferable to fix the orientation of the dichroic substance by forming a chemical bond.
  • the orientation can be fixed by advancing the polymerization of the host liquid crystal, the dichroic substance, or the polymerizable component added if desired. Further, by infiltrating the dichroic substance into the polymer film and orienting the dichroic substance along the orientation of the polymer molecules in the polymer film, the light absorption anisotropic layer used in the present invention is required. It is possible to produce a polymer film that satisfies the light absorption characteristics.
  • the bichromatic substance can be adjusted by the orientation of the polymer chain in the polymer film, its properties (chemical and physical properties such as the polymer chain or the functional group thereof), the coating method, and the like. Details of this method are described in Japanese Patent Application Laid-Open No. 2002-90526.
  • the light absorption anisotropic layer used in the present invention preferably has a transmittance (transmittance at a wavelength of 650 nm) tilted by 30 ° from the central axis of the transmission axis of 60% or less, and more preferably 50% or less. , 45% or less, more preferably.
  • a transmittance transmittance at a wavelength of 650 nm tilted by 30 ° from the central axis of the transmission axis of 60% or less, and more preferably 50% or less. , 45% or less, more preferably.
  • the light absorption anisotropic layer used in the present invention preferably has a transmittance (transmittance at a wavelength of 650 nm) of the center axis of the transmission axis of 65% or more, more preferably 75% or more, and more preferably 85% or more. Is more preferable. As a result, the illuminance at the center of the viewing angle of the image display device can be increased to improve visibility.
  • the degree of orientation of the light absorption anisotropic layer at 420 nm is 0.93 or more in that the color tint in the front direction can be neutralized.
  • the tint of an optical film containing a dichroic substance is usually controlled by adjusting the amount of the dichroic substance added to the film.
  • One of the factors that makes it impossible to make the front and diagonal colors neutral is that the degree of orientation at 420 nm is low, and by increasing the degree of orientation at 420 nm, the front and diagonal colors can be made neutral. ..
  • the degree of orientation at a wavelength of ⁇ nm is defined as follows in the present specification.
  • AxoScan OPMF-1 manufactured by Optoscience
  • the polar angle which is the angle with respect to the normal direction of the light absorption anisotropic layer, is changed every 5 ° from 0 to 90 ° at the time of measurement.
  • the Muller matrix at the wavelength ⁇ nm at the polar angle is actually measured, and the minimum transmittance (Tmin) is derived.
  • Tmin at the polar angle where Tmin is the highest is Tm (0), and Tmin in the direction in which the polar angle is further increased by 40 ° from the highest polar angle of Tmin is Tm (40).
  • Tm (0) and Tm (40) the absorbance is calculated by the following formula, and A (0) and A (40) are calculated.
  • A -log (Tm)
  • Tm represents the transmittance
  • A represents the absorbance.
  • S (4.6 x A (40) -A (0)) / (4.6 x A (40) + 2 x A (0))
  • degree of orientation of the light absorption anisotropic layer simply refers to the degree of orientation of the compounds and the like contained in the light absorption anisotropic layer, and is not limited to the above measurement method. ..
  • the light anisotropic absorption layer of the present invention has a plurality of light differences having different transmission axis central axes so as to satisfy the transmittance tilted by 30 ° from the transmission axis central axis and the transmittance of the transmission axis central axis.
  • the direction absorption layer may be laminated or the retardation layer may be laminated.
  • the width of the region having high transmittance can be adjusted.
  • the transmission / light shielding performance can be controlled by controlling the retardation value and the optical axis direction.
  • the thickness of the retardation layer is preferably thin as long as it does not impair the optical characteristics, mechanical characteristics, and manufacturing aptitude, and specifically, 1 to 150 ⁇ m is preferable. 70 ⁇ m is more preferable, and 1 to 30 ⁇ m is even more preferable.
  • the liquid crystal composition used for forming the photoanisotropic absorption layer of the present invention contains a interface improver, a thermotropic liquid crystal compound, and a dichroic substance. Further, the liquid crystal composition of the present invention may contain a polymerization initiator, a polymerizable compound, and an additive.
  • the components contained in the liquid crystal composition of the present invention and the components that may be contained in the liquid crystal composition will be described.
  • the surface improver is preferably a compound that is easily concentrated on at least one surface of the light absorption anisotropic layer when the light anisotropic absorption layer is formed by using the liquid crystal composition, and a so-called surfactant is preferable.
  • a surfactant preferably a surfactant
  • a compound having a hydrophobic group in the molecule is more preferable, and a compound having a hydrophilic group and a hydrophobic group in the molecule is preferable.
  • the surface improver may be a low molecular weight compound or a high molecular weight compound, but a high molecular weight compound is preferable, a high molecular weight compound having a repeating unit having a hydrophobic group is more preferable, and a repeating unit having a hydrophobic group is preferable.
  • Polymer compounds having units and repeating units with hydrophilic groups are more preferred.
  • As the hydrophobic group a group having a fluorine atom or a silicon atom is preferable, and a perfluoroalkyl group (-(CF 2 ) n -CF 3 ) or a perfluoroalkylene group (-(CF 2 ) n- ) is preferable.
  • the number of carbon atoms in the perfluoroalkyl group or the perfluoroalkylene group is not particularly limited, and is preferably 1 to 10, more preferably 3 to 8. It is also preferable that one of the bonding portions of the perfluoroalkylene group is bonded to a hydrogen atom. That is, as the hydrophobic group, a group represented by ⁇ (CF 2 ) n —Z (Z represents a hydrogen atom or a fluorine atom) is also preferable.
  • the hydrophilic group include a carboxylic acid group and a hydroxyl group.
  • the interface improver preferably has a repeating unit represented by the formula (A).
  • the repeating unit represented by the formula (A) corresponds to a repeating unit having a hydrophobic group.
  • R 1 represents a hydrogen atom or an alkyl group.
  • the alkyl group preferably has 1 to 3 carbon atoms, and more preferably 1.
  • L 1 represents a single bond or a divalent linking group. Examples of the divalent linking group include the groups exemplified in the above-mentioned divalent linking group represented by LW.
  • X represents a hydrophobic group. The definition of hydrophobic group is as described above.
  • the content of the repeating unit represented by the formula (A) is not particularly limited, but is preferably 5.0 to 95.0% by mass, preferably 10.0 to 90.0% by mass, based on all the repeating units of the interface improver. % Is more preferable.
  • the interface improver preferably has a repeating unit represented by the formula (B).
  • the repeating unit represented by the formula (B) corresponds to a repeating unit having a hydrophilic group.
  • R 2 represents a hydrogen atom or an alkyl group.
  • the alkyl group preferably has 1 to 3 carbon atoms, and more preferably 1.
  • L 2 represents a single bond or a divalent linking group. Examples of the divalent linking group include the groups exemplified in the above-mentioned divalent linking group represented by LW.
  • Y represents a hydrophilic group. The definition of a hydrophilic group is as described above.
  • the content of the repeating unit represented by the formula (B) is not particularly limited, but is preferably 5.0 to 95.0% by mass, preferably 10.0 to 90.0% by mass, based on all the repeating units of the interface improver. % Is more preferable.
  • the interface improver may have a repeating unit other than the repeating unit represented by the above-mentioned formula (A) and the repeating unit represented by the formula (B).
  • Other repeating units include, for example, repeating units having an aromatic ring.
  • the repeating unit having an aromatic ring preferably has a mesogen group. The mesogen group will be described in detail later.
  • the interface improver is not particularly limited, but a polymer-based interface improver and a low-molecular-weight interface improver can be used, and the compounds described in paragraphs [0253] to [0293] of JP-A-2011-237513 are used. be able to.
  • the interface improving agent the fluorine (meth) acrylate-based polymer described in paragraphs [0018] to [0043] of JP-A-2007-272185 can also be used.
  • Representable polymerizable liquid crystal compound (particularly the compound described in paragraphs [0020] to [0032]), and the polymerizable liquid crystal compound represented by the formula (4) described in JP-A-2012-211306 (particularly [] Compounds described in paragraphs 0022 to 0029), liquid crystal alignment promoters represented by the formula (4) described in JP-A-2002-129162 (particularly paragraphs [0076] to [0078] and [0082]. ]-[0083] paragraphs), and the compounds represented by the formulas (4), (II) and (III) described in JP-A-2005-09248 (particularly [0092]-[ The compound described in paragraph 0090), the compound described in paragraphs [0013] to [0059] of Japanese Patent No.
  • the interface improver is preferably a interface improver having a mixed liquid crystal lowering temperature ⁇ TL defined by the following formula (T) of 0.1 to 10.0 ° C., preferably 0.1 to 7.0.
  • T mixed liquid crystal lowering temperature
  • An interface improver having a temperature of 0.1 to 3.5 ° C. is more preferable, and an interface improver having a temperature of 0.1 to 3.5 ° C. is further preferable.
  • T1 represents the liquid-liquid phase transition temperature of the liquid crystal composition containing no interface improver
  • T2 represents the interface improver with respect to 100 parts by mass of the liquid crystal composition containing no interface improver. 10.0 parts by mass Represents the liquid-liquid crystal phase transition temperature of the mixed mixture. More specifically, T1 corresponds to the liquid-liquid crystal phase transition temperature measured by using a composition obtained by removing the interface improving agent from the liquid crystal composition used for forming the light absorption anisotropic layer. do. The liquid-liquid crystal phase transition temperature of the liquid crystal composition is measured using the solid content obtained by removing the solvent in the liquid crystal composition.
  • the solvent is removed from the liquid crystal composition, the obtained solid content is heated to a liquid state, and then a temperature lowering treatment is performed, and the temperature at which the liquid changes to the liquid crystal phase is measured as the liquid-liquid crystal phase transition temperature.
  • T2 a mixture obtained by mixing 10.0 parts by mass of a predetermined interface improver with 100 parts by mass of the composition excluding the interface improver used for the measurement of T1 was used. It corresponds to the liquid-liquid crystal phase transition temperature to be measured according to the same procedure as T1 above.
  • the specific procedure of the method for measuring the mixed liquid crystal lowering temperature ⁇ TL is shown in the Example column described later.
  • the liquid crystal composition of the present invention (particularly, the liquid crystal composition in which the mixed liquid crystal lowering temperature ⁇ TL is in the above range), the tilt angle fluctuation due to the aging temperature is small and the in-plane uniformity is excellent, and the liquid crystal composition is used for an in-vehicle display or the like. At that time, it is possible to provide a bright and easy-to-see image to the driver or the like while sufficiently suppressing the reflection of the image on the window glass or the like. The details of this reason have not been clarified yet, but the present inventors speculate that it is due to the following reasons.
  • the dichroic substance is inclined or oriented with respect to the film normal direction.
  • the light absorption anisotropic layer is provided with sufficient absorption.
  • the content of the dichroic substance described later is 10.0% by mass or more with respect to the total solid content mass of the liquid crystal composition.
  • the tilt angle near the air interface may fluctuate due to the influence of the interface improver, temperature, etc. ..
  • the fluctuation of the tilt angle in the vicinity of the air interface is small because it greatly affects the direction of the central axis. It is considered that the interface improver is unevenly distributed near the air interface of the light absorption anisotropic layer.
  • the liquid crystal composition may change the state of compatibility / incompatibility between the interface improver and the liquid crystal compound and the dichroic substance depending on the temperature and the liquid crystal phase transition, and this change causes the tilt near the air interface. It is considered that the angle ⁇ fluctuates. Therefore, when the ⁇ TL is small, the affinity between the liquid crystal compound and the dichroic substance and the interface improver is low, and the compatibility / incompatibility change with temperature is small, so that the tilt angle fluctuates with respect to the temperature. It is estimated that it is difficult and the tilt angle can be easily controlled.
  • the content of the interface improver is preferably 0.005 to 15% by mass, preferably 0.01 to 5% by mass, from the viewpoint that the effect of the present invention is more excellent with respect to the total solid content (100% by mass) of the liquid crystal composition. % Is more preferable, and 0.015 to 3% by mass is further preferable. When a plurality of interface improvers are used in combination, it is preferable that the total amount of the plurality of interface improvers is within the above range.
  • the liquid crystal composition used for forming the photoanisotropic absorption layer of the present invention contains a thermotropic liquid crystal compound.
  • the thermotropic liquid crystal compound is a liquid crystal compound that exhibits a transition to the liquid crystal phase due to a temperature change.
  • the thermotropic liquid crystal compound may exhibit either a nematic phase or a smectic phase, but the degree of orientation of the light absorption anisotropic layer is higher and the haze is less likely to be observed (haze is better). For that reason, it is preferable to show at least a nematic phase.
  • the temperature range showing the nematic phase is preferably room temperature (23 ° C.) to 450 ° C.
  • Thermotropic liquid crystal compounds can generally be classified into rod-shaped type and disk-shaped type according to their shape.
  • the liquid crystal composition of the present invention preferably contains a rod-shaped liquid crystal compound having a rod-like shape. Further, the rod-shaped liquid crystal compound is preferably a liquid crystal compound that does not exhibit dichroism in the visible light region.
  • the rod-shaped liquid crystal compound either a low molecular weight liquid crystal compound or a high molecular weight liquid crystal compound can be used.
  • the "small molecule liquid crystal compound” means a liquid crystal compound having no repeating unit in the chemical structure.
  • the "polymer liquid crystal compound” means a liquid crystal compound having a repeating unit in the chemical structure.
  • the thermotropic low molecular weight liquid crystal compound include the liquid crystal compound described in JP-A-2013-228706.
  • the polymer liquid crystal compound include the thermotropic liquid crystal polymer compound described in JP-A-2011-237513.
  • the polymer liquid crystal compound may have a crosslinkable group (for example, an acryloyl group and a methacryloyl group) at the terminal.
  • the rod-shaped liquid crystal compound may be used alone or in combination of two or more.
  • the rod-shaped liquid crystal compound preferably contains a polymer liquid crystal compound, and particularly preferably contains both a polymer liquid crystal compound and a low molecular weight liquid crystal compound, from the viewpoint that the effect of the present invention is more excellent.
  • the rod-shaped liquid crystal compound preferably contains a liquid crystal compound represented by the formula (LC) or a polymer thereof.
  • the liquid crystalline compound represented by the formula (LC) or a polymer thereof is a compound exhibiting liquid crystallinity.
  • the liquid crystal phase represented by the rod-shaped liquid crystal compound may be a nematic phase or a smectic phase, and the rod-shaped liquid crystal compound may exhibit both a nematic phase and a smectic phase, preferably at least a nematic phase. ..
  • the smectic phase may be a higher order smectic phase.
  • the high-order smectic phase referred to here is the smectic B phase, the smectic D phase, the smectic E phase, the smectic F phase, the smectic G phase, the smectic H phase, the smectic I phase, the smectic J phase, the smectic K phase, and the smectic L. It is a phase, and among them, a smectic B phase, a smectic F phase, or a smectic I phase is preferable.
  • the temperature range showing the nematic phase is preferably room temperature (23 ° C) to 450 ° C because the degree of orientation of the light absorption anisotropic layer is higher and haze is less likely to be observed, and is suitable for handling and manufacturing. From the viewpoint, 40 ° C to 400 ° C is more preferable.
  • the smectic liquid crystal phase exhibited by the liquid crystal compound is these higher-order smectic liquid crystal phases, a light absorption anisotropic layer having a higher degree of orientation order can be produced.
  • the light absorption anisotropic layer prepared from the high-order smectic liquid crystal phase having a high degree of orientation order can obtain a Bragg peak derived from a high-order structure such as a hexatic phase or a crystal phase in X-ray diffraction measurement.
  • the Bragg peak is a peak derived from the plane periodic structure of molecular orientation, and according to the liquid crystal composition of the present invention, a light absorption anisotropic layer having a periodic interval of 3.0 to 5.0 ⁇ is obtained. Can be done.
  • Q1 and Q2 are independently hydrogen atom, halogen atom, linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms.
  • RP is a hydrogen atom, a halogen atom, a linear, branched or cyclic alkylene group having 1 to 10 carbon atoms, or an alkyl halide group having 1 to 20 carbon atoms.
  • An alkoxy group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an alkynyl group having 1 to 20 carbon atoms, an aryl group having 1 to 20 carbon atoms, and a heterocyclic group may be called a heterocyclic group).
  • Cyano group hydroxy group, nitro group, carboxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, amino group (including anilino group) ), Ammonio group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alkyl or arylsulfonylamino group, mercapto group, alkylthio group, arylthio group, heterocyclic thio group.
  • Preferred embodiments of the crosslinkable group include a radically polymerizable group or a cationically polymerizable group.
  • the radically polymerizable group include a vinyl group represented by the above formula (P-1), a butadiene group represented by the above formula (P-2), and a (meth) acrylic represented by the above formula (P-4).
  • the maleimide group represented by -12) is preferable.
  • the cationically polymerizable group includes a vinyl ether group represented by the above formula (P-18), an epoxy group represented by the above formula (P-19), or an oxetanyl group represented by the above formula (P-20). , Are preferred.
  • S1 and S2 each independently represent a divalent spacer group, and the preferred embodiment of S1 and S2 has the same structure as SPW in the above formula (W1), and thus the description thereof is omitted. do.
  • MG represents a mesogen group described later.
  • the mesogen group represented by MG is a group showing the main skeleton of a liquid crystal molecule that contributes to the formation of a liquid crystal.
  • the liquid crystal molecule exhibits liquid crystallinity, which is an intermediate state (mesophase) between the crystalline state and the isotropic liquid state.
  • the mesogen group represented by MG preferably contains 2 to 10 cyclic structures, and more preferably 3 to 7 cyclic structures. Specific examples of the cyclic structure include aromatic hydrocarbon groups, heterocyclic groups, alicyclic groups and the like.
  • the mesogen group represented by MG the following formula (MG-A) or the following formula is used because the expression of liquid crystallinity, adjustment of liquid crystal phase transition temperature, raw material availability and synthetic suitability, and the effect of the present invention are more excellent.
  • the group represented by (MG-B) is preferable, and the group represented by the formula (MG-B) is more preferable.
  • A1 is a divalent group selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups and alicyclic groups. These groups may be substituted with a substituent such as the substituent W.
  • the divalent group represented by A1 is preferably a 4- to 15-membered ring. Further, the divalent group represented by A1 may be a monocyclic ring or a condensed ring. * Represents the bonding position with S1 or S2.
  • Examples of the divalent aromatic hydrocarbon group represented by A1 include a phenylene group, a naphthylene group, a fluorene-diyl group, an anthracene-diyl group, a tetracene-diyl group, and the like. From the viewpoint of properties and the like, a phenylene group and a naphthylene group are preferable.
  • the divalent heterocyclic group represented by A1 may be either aromatic or non-aromatic, but a divalent aromatic heterocyclic group is preferable from the viewpoint of further improving the degree of orientation.
  • Examples of the atom other than carbon constituting the divalent aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom.
  • the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, they may be the same or different.
  • divalent aromatic heterocyclic group examples include pyridylene group (pyridine-diyl group), pyridazine-diyl group, imidazole-diyl group, thienylene (thiophene-diyl group), and quinolylene group (quinolin-diyl group).
  • Isoquinolylene group isoquinolin-diyl group
  • oxazole-diyl group thiazole-diyl group
  • oxadiazol-diyl group benzothiazole-diyl group
  • benzothiazol-diyl group benzothiazol-diyl group
  • phthalimide-diyl group thienothiazole-diyl group
  • Thiazolothiazole-diyl group, thienothiophene-diyl group, thienooxazol-diyl group the following structures (II-1) to (II-4) and the like.
  • D 1 represents -S-, -O-, or -NR 11-
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Y 1 represents an aromatic hydrocarbon group having 6 to 12 carbon atoms or an aromatic heterocyclic group having 3 to 12 carbon atoms
  • Z 1 , Z 2 and Z 3 are independent hydrogen atoms or carbons, respectively.
  • An aliphatic hydrocarbon group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, an aromatic hydrocarbon group having a monovalent 6 to 20 carbon atoms, a halogen atom, a cyano group, a nitro group, and -NR. 12 Represents R 13 or -SR 12 , where Z 1 and Z 2 may be combined with each other to form an aromatic ring or aromatic heterocyclic ring, where R 12 and R 13 are independent hydrogen atoms or carbon atoms, respectively.
  • Jx represents an aromatic hydrocarbon ring and an aromatic complex.
  • Jy is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, and the like.
  • Jx and Jy may be bonded to form a ring
  • D 2 may have a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent. show.
  • Y 1 when Y 1 is an aromatic hydrocarbon group having 6 to 12 carbon atoms, it may be monocyclic or polycyclic. When Y 1 is an aromatic heterocyclic group having 3 to 12 carbon atoms, it may be monocyclic or polycyclic.
  • J 1 and J 2 when J 1 and J 2 represent ⁇ NR 21 ⁇ , the substituent of R 21 is described in paragraphs [0035] to [0045] of, for example, Japanese Patent Application Laid-Open No. 2008-107767. This can be incorporated into this specification.
  • R' is preferable.
  • R' represents a substituent, and as the substituent, for example, the description in paragraphs [0035] to [0045] of JP-A-2008-107767 can be referred to, and -NZ A1 Z A2 (Z A1 and Z A2 are independent of each other).
  • a hydrogen atom, an alkyl group or an aryl group.) Is preferable.
  • divalent alicyclic group represented by A1 include a cyclopentylene group and a cyclohexylene group, and the carbon atoms are -O-, -Si (CH 3 ) 2- , and -N (. Z)-(Z represents hydrogen, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group, an aryl group, a cyano group, or a halogen atom), -C (O)-, -S-, -C. (S)-, -S (O)-, and -SO 2- , may be substituted with a group in which two or more of these groups are combined.
  • a1 represents an integer of 2 to 10.
  • the plurality of A1s may be the same or different.
  • A2 and A3 are each independently a divalent group selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group and an alicyclic group. Since the specific examples and preferred embodiments of A2 and A3 are the same as those of A1 of the formula (MG-A), the description thereof will be omitted.
  • a2 represents an integer of 1 to 10, and a plurality of A2s may be the same or different, and a plurality of LA1s may be the same or different. A2 is more preferably 2 or more because the effect of the present invention is more excellent.
  • LA1 is a single bond or divalent linking group.
  • LA1 is a divalent linking group
  • a2 is 2 or more
  • at least one of the plurality of LA1s is a divalent linking group.
  • the divalent linking group represented by LA1 is the same as LW, and thus the description thereof will be omitted.
  • MG include the following structures, and in the following structures, hydrogen atoms on an aromatic hydrocarbon group, a heterocyclic group and an alicyclic group are substituted with the above-mentioned substituent W. May be good.
  • ⁇ Small molecule liquid crystal compound When the liquid crystal compound represented by the formula (LC) is a low molecular weight liquid crystal compound, preferred embodiments of the cyclic structure of the mesogen group MG include a cyclohexylene group, a cyclopentylene group, a phenylene group, a naphthylene group and a fluorene-.
  • Examples thereof include a diyl group, a pyridine-diyl group, a pyridazine-diyl group, a thiophene-diyl group, an oxazole-diyl group, a thiazole-diyl group, and a thienothiophene-diyl group, and the number of cyclic structures is 2 to 10. Preferably, 3 to 7 are more preferable.
  • Preferred embodiments of the substituent W having a mesogen structure include a halogen atom, an alkyl halide group, a cyano group, a hydroxy group, a nitro group, a carboxy group, an alkoxy group having 1 to 10 carbon atoms, and an alkylcarbonyl group having 1 to 10 carbon atoms.
  • Examples thereof include a group having a single bond, SPW being a divalent spacer group, and Q being a crosslinkable group represented by the above formulas (P1) to (P30), and examples of the crosslinkable group are vinyl groups. , Butadiene group, (meth) acrylic group, (meth) acrylamide group, vinyl acetate group, fumaric acid ester group, styryl group, vinylpyrrolidone group, maleic anhydride, maleimide group, vinyl ether group, epoxy group, or oxetanyl group. preferable.
  • the divalent spacer groups S1 and S2 are the same as those of the SPW, the description thereof will be omitted.
  • the number of carbon atoms of the spacer group is preferably 6 or more, and further 8 or more. preferable.
  • liquid crystal compound represented by the formula (LC) is a small molecule liquid crystal compound
  • a plurality of small molecule liquid crystal compounds may be used in combination, preferably 2 to 6 kinds in combination, and 2 to 4 kinds in combination. It is more preferable to use them together.
  • the solubility can be improved and the phase transition temperature of the liquid crystal composition can be adjusted.
  • the small molecule liquid crystal compound examples include compounds represented by the following formulas (LC-1) to (LC-77), but the small molecule liquid crystal compound is not limited thereto.
  • the polymer liquid crystal compound is preferably a homopolymer or a copolymer containing a repeating unit described later, and may be any polymer such as a random polymer, a block polymer, a graft polymer, and a star polymer.
  • the polymer liquid crystal compound preferably contains a repeating unit represented by the formula (1) (hereinafter, also referred to as “repeating unit (1)”).
  • PC1 represents the main chain of the repeating unit
  • L1 represents a single bond or a divalent linking group
  • SP1 represents a spacer group
  • MG1 represents the mesogen group MG in the above formula (LC).
  • T1 represent a terminal group.
  • Examples of the main chain of the repeating unit represented by PC1 include groups represented by the formulas (P1-A) to (P1-D), and among them, the variety and handling of the raw material monomers are easy. From this viewpoint, the group represented by the following formula (P1-A) is preferable.
  • R 11 , R 12 , R 13 , and R 14 are independently hydrogen atoms, halogen atoms, cyano groups, or alkyl groups having 1 to 10 carbon atoms, or Represents an alkoxy group having 1 to 10 carbon atoms.
  • the alkyl group may be a linear or branched alkyl group, or may be an alkyl group having a cyclic structure (cycloalkyl group). Further, the number of carbon atoms of the above alkyl group is preferably 1 to 5.
  • the group represented by the formula (P1-A) is preferably one unit of the partial structure of the poly (meth) acrylic acid ester obtained by the polymerization of the (meth) acrylic acid ester.
  • the group represented by the formula (P1-B) is preferably an ethylene glycol unit formed by ring-opening polymerization of an epoxy group of a compound having an epoxy group.
  • the group represented by the formula (P1-C) is preferably a propylene glycol unit formed by ring-opening polymerization of the oxetane group of the compound having an oxetane group.
  • the group represented by the formula (P1-D) is preferably a siloxane unit of polysiloxane obtained by polycondensation of a compound having at least one of an alkoxysilyl group and a silanol group.
  • examples of the compound having at least one of the alkoxysilyl group and the silanol group include compounds having a group represented by the formula SiR 14 (OR 15 ) 2- .
  • R 14 is synonymous with R 14 in the formula (P1-D), and each of the plurality of R 15 independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the divalent linking group represented by L1 is a divalent linking group similar to LW in the above formula (W1), and preferred embodiments are ⁇ C (O) O ⁇ , —OC (O) ⁇ , ⁇ . Examples thereof include O-, -S-, -C (O) NR 16- , -NR 16 C (O)-, -S (O) 2- , and -NR 16 R 17- .
  • R 16 and R 17 each independently represent a hydrogen atom and an alkyl group having 1 to 6 carbon atoms which may have a substituent (for example, the above-mentioned substituent W).
  • the bond on the left side binds to PC1 and the bond on the right side binds to SP1.
  • L1 is preferably a group represented by -C (O) O- or -C (O) NR 16- .
  • PC1 is a group represented by the formulas (P1-B) to (P1-D)
  • L1 is preferably a single bond.
  • the spacer group represented by SP1 represents the same group as S1 and S2 in the above formula (LC), and is selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure and a fluorinated alkylene structure from the viewpoint of the degree of orientation.
  • a group containing at least one structure thereof, or a linear or branched alkylene group having 2 to 20 carbon atoms is preferable.
  • the alkylene group is -O-, -S-, -O-CO-, -CO-O-, -O-CO-O-, -O-CNR- (R has 1 to 10 carbon atoms). It represents an alkyl group) or may contain —S (O) 2- .
  • the spacer group represented by SP1 is at least one selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure and a fluorinated alkylene structure because of its tendency to exhibit liquid crystallinity and the availability of raw materials. More preferably, it is a group containing the structure of the species.
  • the oxyethylene structure represented by SP1 is preferably a group represented by *-( CH2 - CH2O ) n1- *. In the formula, n1 represents an integer of 1 to 20, and * represents the coupling position with L1 or MG1.
  • n1 an integer of 2 to 10 is preferable, an integer of 2 to 6 is more preferable, and an integer of 2 to 4 is further preferable, for the reason that the effect of the present invention is more excellent.
  • the oxypropylene structure represented by SP1 is preferably a group represented by *-(CH (CH 3 ) -CH 2 O) n2- *.
  • n2 represents an integer of 1 to 3
  • * represents the coupling position with L1 or MG1.
  • the polysiloxane structure represented by SP1 is preferably a group represented by *-(Si (CH 3 ) 2 -O) n3- *.
  • n3 represents an integer of 6 to 10, and * represents the binding position with L1 or MG1.
  • the fluorinated alkylene structure represented by SP1 is preferably a group represented by *-(CF 2 -CF 2 ) n4- *.
  • n4 represents an integer of 6 to 10
  • * represents the binding position with L1 or MG1.
  • the terminal groups represented by T1 include hydrogen atom, halogen atom, cyano group, nitro group, hydroxy group, -SH, carboxyl group, boronic acid group, -SO 3 H, -PO 3 H 2 , -NR 11 R 12 ( R 11 and R 12 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a cycloalkyl group, or an aryl group), an alkyl group having 1 to 10 carbon atoms, and a carbon number of carbon atoms.
  • Examples thereof include a sulfinyl group, a ureido group having 1 to 10 carbon atoms, and a group containing a crosslinkable group.
  • Examples of the crosslinkable group-containing group include the above-mentioned —L-CL.
  • L represents a single bond or linking group. Specific examples of the linking group are the same as those of LW and SPW described above.
  • CL represents a crosslinkable group, and examples thereof include a group represented by the above-mentioned Q1 or Q2, and a group represented by the above-mentioned formulas (P1) to (P30) is preferable.
  • T1 may be a group in which two or more of these groups are combined. As T1, an alkoxy group having 1 to 10 carbon atoms is preferable, an alkoxy group having 1 to 5 carbon atoms is more preferable, and a methoxy group is further preferable, because the effect of the present invention is more excellent.
  • the number of atoms in the main chain of T1 is preferably 1 to 20, more preferably 1 to 15, further preferably 1 to 10, and particularly preferably 1 to 7 because the effect of the present invention is more excellent.
  • the number of atoms in the main chain of T1 is 20 or less, the degree of orientation of the light absorption anisotropic layer is further improved.
  • the "main chain" in T1 means the longest molecular chain bonded to M1, and the hydrogen atom is not counted in the number of atoms in the main chain of T1. For example, when T1 is an n-butyl group, the number of atoms in the main chain is 4, and when T1 is a sec-butyl group, the number of atoms in the main chain is 3.
  • the content of the repeating unit (1) is preferably 40 to 100% by mass, more preferably 50 to 95% by mass, based on all the repeating units (100% by mass) contained in the polymer liquid crystal compound.
  • the repeating unit (1) may be contained alone or in combination of two or more in the polymer liquid crystal compound.
  • the content of the repeating unit (1) means the total content of the repeating unit (1).
  • ) is preferably 4 or more, more preferably 4.25 or more, still more preferably 4.5 or more, from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer.
  • the upper limit of the difference is preferably 15 or less, more preferably 12 or less, still more preferably 10 or less, from the viewpoint of adjusting the liquid crystal phase transition temperature and suitability for synthesis.
  • the logP value is an index expressing the hydrophilic and hydrophobic properties of the chemical structure, and is sometimes called a prohydrophobic parameter.
  • the logP value can be calculated using software such as ChemBioDrow Ultra or HSPiP (Ver. 4.1.07).
  • OECD Guidelines for the Testing of Chemicals, Sections 1, Test No. It can also be obtained experimentally by the method of 117 or the like.
  • a value calculated by inputting the structural formula of the compound into HSPiP (Ver. 4.1.07) is adopted as the logP value.
  • logP 1 means the logP values of PC1, L1 and SP1.
  • the "logP value of PC1, L1 and SP1" means the logP value of the structure in which PC1, L1 and SP1 are integrated, and is not the sum of the logP values of PC1, L1 and SP1.
  • logP 1 is calculated by inputting a series of structural formulas from PC1 to SP1 in the formula (1) into the software.
  • the structure of the group represented by PC1 is the structure of the group itself represented by PC1 (for example, the above-mentioned formula (P1-A).
  • silanol a compound represented by the formula Si (R 2 ) 3 (OH).
  • a plurality of R 2 independently represent a hydrogen atom or an alkyl group, respectively.
  • At least one of the plurality of R 2s represents an alkyl group).
  • logP 1 may be lower than logP 2 or higher than logP 2 when the difference from logP 2 described above is 4 or more.
  • the logP value of a general mesogen group tends to be in the range of 4 to 6.
  • the value of logP 1 is preferably 1 or less, more preferably 0 or less.
  • the value of logP 1 is preferably 8 or more, and more preferably 9 or more.
  • the logP value of SP1 in the above formula (1) is 3. 7 or more is preferable, and 4.2 or more is more preferable.
  • the structure having a logP value of 1 or less include an oxyethylene structure and an oxypropylene structure.
  • Examples of the structure having a logP value of 6 or more include a polysiloxane structure and a fluorinated alkylene structure.
  • the polymer liquid crystal compound preferably contains a repeating unit having an electron donating property and / or an electron withdrawing property at the terminal. More specifically, a repeating unit (21) having a mesogen group and an electron-withdrawing group having a ⁇ p value greater than 0 at the end thereof, and a mesogen group having a ⁇ p value present at the end thereof of 0 or less. It is more preferable to include a repeating unit (22) having a group.
  • the polymer liquid crystal compound contains a repeating unit (21) and a repeating unit (22), this is compared with the case where only one of the repeating unit (21) or the repeating unit (22) is contained.
  • the degree of orientation of the light absorption anisotropic layer formed by using the above is improved. The details of this reason are not clear, but it is estimated as follows. That is, the opposite bipolar moments generated in the repeating unit (21) and the repeating unit (22) interact between the molecules, so that the interaction of the mesogen groups in the minor axis direction becomes stronger, and the liquid crystal display. It is presumed that the orientation direction becomes more uniform, and as a result, the order of the liquid crystal is considered to be high.
  • the repeating unit (21) and (22) may be a repeating unit represented by the above formula (1).
  • the repeating unit (21) has a mesogen group and an electron-withdrawing group having a ⁇ p value greater than 0 at the end of the mesogen group.
  • the electron-withdrawing group is located at the end of the mesogen group and has a ⁇ p value larger than 0.
  • Examples of the electron-withdrawing group (group having a ⁇ p value larger than 0) include a group represented by EWG in the formula (LCP-21) described later, and the same applies to specific examples thereof.
  • the ⁇ p value of the electron-withdrawing group is larger than 0, and the degree of orientation of the light absorption anisotropic layer is higher, so that it is preferably 0.3 or more, and more preferably 0.4 or more.
  • the upper limit of the ⁇ p value of the electron-withdrawing group is preferably 1.2 or less, more preferably 1.0 or less, from the viewpoint of excellent orientation uniformity.
  • the ⁇ p value is Hammett's substituent constant ⁇ p value (also abbreviated as “ ⁇ p value”), which numerically expresses the effect of the substituent on the acid dissociation equilibrium constant of substituted benzoic acid. It is a parameter indicating the strength of electron-withdrawing property and electron-donating property.
  • the Hammett substituent constant ⁇ p value in the present specification means the substituent constant ⁇ when the substituent is located at the para position of benzoic acid.
  • substitution group constant ⁇ p value of Hammett of each group in the present specification the value described in the document “Hansch et al., Chemical Reviews, 1991, Vol, 91, No. 2, 165-195” is adopted.
  • pKa of benzoic acid is used using the software “ACD / ChemSketch (ACD / Labs 8.00 Release Product Version: 8.08)”.
  • the Hammett substituent constant ⁇ p value can be calculated based on the difference between the above and the pKa of the benzoic acid derivative having a substituent at the para position.
  • the repeating unit (21) is not particularly limited as long as it has a mesogen group in the side chain and an electron-withdrawing group having a ⁇ p value greater than 0 at the end of the mesogen group, but is not particularly limited.
  • the repeating unit represented by the following formula (LCP-21) is preferable because the degree of orientation of the above is higher.
  • PC21 represents the main chain of the repeating unit, more specifically, represents the same structure as PC1 in the above formula (1), and L21 represents a single bond or a divalent linking group. More specifically, it represents the same structure as L1 in the above formula (1), SP21A and SP21B each independently represent a single bond or a spacer group, and a specific example of the spacer group is SP1 in the above formula (1).
  • MG21 represents a mesogen structure, more specifically, a mesogen group MG in the above formula (LC), and EWG represents an electron-withdrawing group having a ⁇ p value greater than 0.
  • the spacer group represented by SP21A and SP21B represents a group similar to the above formulas S1 and S2, and has at least one structure selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure and a fluorinated alkylene structure.
  • a group containing the group or a linear or branched alkylene group having 2 to 20 carbon atoms is preferable.
  • the alkylene group may contain —O—, —O—CO—, —CO—O—, or —CO—O—.
  • the spacer group represented by SP1 is at least one selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure and a fluorinated alkylene structure because of its tendency to exhibit liquid crystallinity and the availability of raw materials. It preferably contains the structure of the species.
  • SP21B is preferably a single bond or a linear or branched alkylene group having 2 to 20 carbon atoms.
  • the alkylene group may contain —O—, —O—CO—, —CO—O—, or —CO—O—.
  • the spacer group represented by SP21B is preferably a single bond because the degree of orientation of the light absorption anisotropic layer is higher.
  • the repeating unit 21 preferably has a structure in which the EWG, which is an electron-withdrawing group in the formula (LCP-21), is directly linked to the MG21, which is a mesogen group in the formula (LCP-21).
  • EWG represents an electron-withdrawing group having a ⁇ p value greater than 0.
  • Examples of the electron-withdrawing group having a ⁇ p value greater than 0 include an ester group (specifically, a group represented by * -C (O) O-RE), a (meth) acryloyl group, and a (meth) acryloyloxy group.
  • RE represents an alkyl group having 1 to 20 carbon atoms (preferably 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms).
  • RF independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms (preferably 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms).
  • EWG is a group represented by * -C (O) O-RE, a (meth) acryloyloxy group, a cyano group, or a nitro group from the viewpoint that the effect of the present invention is more exhibited. , Are preferred.
  • the content of the repeating unit (21) is possessed by the polymer liquid crystal compound in that the polymer liquid crystal compound and the bicolor substance can be uniformly oriented while maintaining a high degree of orientation of the light absorption anisotropic layer.
  • the lower limit of the content of the repeating unit (21) is preferably 1% by mass or more with respect to all the repeating units (100% by mass) of the polymer liquid crystal compound from the viewpoint that the effect of the present invention is more exhibited. 3, 3% by mass or more is more preferable.
  • each repeating unit contained in the polymer liquid crystal compound is calculated based on the charged amount (mass) of each monomer used to obtain each repeating unit.
  • the repeating unit (21) may be contained alone or in combination of two or more in the polymer liquid crystal compound.
  • the polymer liquid crystal compound contains two or more kinds of repeating units (21)
  • there are advantages such as improvement in solubility of the polymer liquid crystal compound in a solvent and easy adjustment of the liquid crystal phase transition temperature. be.
  • the total amount thereof is preferably within the above range.
  • a repeating unit (21) containing no crosslinkable group in EWG and a repeating unit (21) containing a polymerizable group in EWG may be used in combination. This further improves the curability of the light absorption anisotropic layer.
  • the crosslinkable groups include vinyl group, butadiene group, (meth) acrylic group, (meth) acrylamide group, vinyl acetate group, fumaric acid ester group, styryl group, vinylpyrrolidone group, maleic anhydride, maleimide group and vinyl ether.
  • a group, an epoxy group, or an oxetanyl group is preferable.
  • the content of the repeating unit (21) containing the polymerizable group in EWG is the total repeating unit (100) possessed by the polymer liquid crystal compound. It is preferably 1 to 30% by mass with respect to (% by mass).
  • repeating unit (21) is not limited to the following repeating unit.
  • the composition (content ratio) of the repeating unit (21) and the repeating unit (22), and the electron donating property and the electron attracting property of the terminal group when the electron attracting property of the repeating unit (21) is strong. (That is, when the ⁇ p value is large), if the content ratio of the repeating unit (21) is lowered, the degree of orientation of the light absorption anisotropic layer becomes higher, and the electron of the electron-withdrawing group of the repeating unit (21) becomes higher.
  • the attractiveness is weak (that is, when the ⁇ p value is close to 0)
  • the degree of orientation of the anisotropic layer becomes higher.
  • the product is preferably 0.020 to 0.150, more preferably 0.050 to 0.130, and even more preferably 0.055 to 0.125.
  • the repeating unit (22) has a mesogen group and a group having a ⁇ p value of 0 or less existing at the end of the mesogen group. Since the polymer liquid crystal compound has the repeating unit (22), the polymer liquid crystal compound and the bicolor substance can be uniformly oriented.
  • the mesogen group is a group showing the main skeleton of the liquid crystal molecule that contributes to the formation of the liquid crystal, and the details are as described by MG in the formula (LCP-22) described later, and specific examples thereof are also the same.
  • the above group is located at the end of the mesogen group and has a ⁇ p value of 0 or less.
  • the group (group having a ⁇ p value of 0 or less) includes a hydrogen atom having a ⁇ p value of 0 and a group (electrons) represented by T22 in the following formula (LCP-22) having a ⁇ p value smaller than 0. Donating group).
  • a specific example of a group having a ⁇ p value smaller than 0 (electron donating group) is the same as T22 in the formula (LCP-22) described later.
  • the ⁇ p value of the group is 0 or less, and is preferably smaller than 0, more preferably ⁇ 0.1 or less, still more preferably ⁇ 0.2 or less, from the viewpoint of better orientation uniformity.
  • the lower limit of the ⁇ p value of the above group is preferably ⁇ 0.9 or higher, more preferably ⁇ 0.7 or higher.
  • the repeating unit (22) is not particularly limited as long as it has a mesogen group in the side chain and a group having a ⁇ p value at the end of the mesogen group of 0 or less, but the uniformity of the orientation of the liquid crystal is more uniform.
  • the repeating unit represented by the following formula (PCP-22) is preferable, and does not correspond to the repeating unit represented by the above formula (LCP-21).
  • PC22 represents the main chain of the repeating unit, more specifically, represents the same structure as PC1 in the above formula (1), and L22 represents a single bond or a divalent linking group.
  • SP22 represents the spacer group, more specifically, it represents the same structure as SP1 in the above formula (1)
  • MG22 represents.
  • It represents a mesogen structure, more specifically a structure similar to the mesogen group MG in the above formula (LC), and T22 represents an electron donating group in which the substituent constant ⁇ p value of Hammet is smaller than 0.
  • T22 represents an electron donating group having a ⁇ p value smaller than 0.
  • the electron donating group having a ⁇ p value smaller than 0 include a hydroxy group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an alkylamino group having 1 to 10 carbon atoms.
  • the "main chain" in T22 means the longest molecular chain bonded to MG22, and hydrogen atoms are not counted in the number of atoms in the main chain of T22. For example, when T22 is an n-butyl group, the number of atoms in the main chain is 4, and when T22 is a sec-butyl group, the number of atoms in the main chain is 3.
  • repeating unit (22) In the following, an example of the repeating unit (22) will be shown, but the repeating unit (22) is not simply limited to the following repeating units.
  • the repeating unit (21) and the repeating unit (22) have a part in common in structure. It is inferred that the more similar the structures of the repeating units are, the more uniformly the liquid crystals are aligned. As a result, the degree of orientation of the light absorption anisotropic layer becomes higher.
  • SP21A of the formula (LCP-21) and SP22 of the formula (LCP-22) have the same structure from the viewpoint that the degree of orientation of the light absorption anisotropic layer becomes higher, and the formula (LCP-).
  • 21) MG21 and formula (LCP-22) MG22 have the same structure
  • formula (LCP-21) L21 and formula (LCP-22) L22 have the same structure.
  • At least one is preferable, two or more are more preferable, and all are particularly preferable.
  • the content of the repeating unit (22) is preferably 50% by mass or more, and 55% by mass or more, based on all the repeating units (100% by mass) of the polymer liquid crystal compound, from the viewpoint of excellent orientation uniformity. More preferably, 60% by mass or more is further preferable.
  • the upper limit of the content of the repeating unit (22) is preferably 99% by mass or less, preferably 97% by mass, based on the total repeating unit (100% by mass) of the polymer liquid crystal compound from the viewpoint of improving the degree of orientation. The following are more preferable.
  • the repeating unit (22) may be contained alone or in combination of two or more in the polymer liquid crystal compound.
  • the polymer liquid crystal compound contains two or more kinds of repeating units (22), there are advantages such as improvement in solubility of the polymer liquid crystal compound in a solvent and easy adjustment of the liquid crystal phase transition temperature. be.
  • the total amount thereof is preferably within the above range.
  • the polymer liquid crystal compound can contain a repeating unit (3) containing no mesogen from the viewpoint of improving the solubility in a general-purpose solvent.
  • the repeating unit (3) containing no mesogen is preferably a repeating unit having a molecular weight of 280 or less.
  • the reason why the solubility can be improved while suppressing the decrease in the degree of orientation by containing the repeating unit having a molecular weight of 280 or less containing no mesogen is presumed as follows.
  • the solvent can easily enter into the polymer liquid crystal compound, so that the solubility is improved, but the non-mesogen. It is considered that the repeating unit (3) of sex reduces the degree of orientation.
  • the small molecular weight of the repeating unit makes it difficult for the orientation of the repeating unit (1), the repeating unit (21) or the repeating unit (22) containing the mesogen group to be disturbed, and the decrease in the degree of orientation can be suppressed. Will be done.
  • the repeating unit (3) is preferably a repeating unit having a molecular weight of 280 or less.
  • the molecular weight of the repeating unit (3) does not mean the molecular weight of the monomer used to obtain the repeating unit (3), but the repeating unit (3) in a state of being incorporated into the polymer liquid crystal compound by the polymerization of the monomer.
  • the molecular weight of the repeating unit (3) is preferably 280 or less, more preferably 180 or less, and even more preferably 100 or less.
  • the lower limit of the molecular weight of the repeating unit (3) is usually 40 or more, preferably 50 or more.
  • the molecular weight of the repeating unit (3) is 280 or less, a light absorption anisotropic layer having excellent solubility of the polymer liquid crystal compound and having a high degree of orientation can be obtained.
  • the molecular weight of the repeating unit (3) exceeds 280, the liquid crystal orientation of the repeating unit (1), the repeating unit (21) or the repeating unit (22) is disturbed, and the degree of orientation becomes low. In some cases.
  • the solubility of the polymer liquid crystal compound may decrease.
  • repeating unit (3) examples include a repeating unit containing no crosslinkable group (for example, an ethylenically unsaturated group) (hereinafter, also referred to as “repeating unit (3-1)”) and a crosslinkable group.
  • a repeating unit including hereinafter, also referred to as “repeating unit (3-2)”.
  • -Repeating unit (3-1) Specific examples of the monomer used for the polymerization of the repeating unit (3-1) include acrylic acid [72.1], ⁇ -alkylacrylic acids (for example, methacrylic acid [86.1], and itaconic acid [130.1]. ]), Esters and amides derived from them (eg, Ni-propylacrylamide [113.2], Nn-butylacrylamide [127.2], Nt-butylacrylamide [127.2].
  • N-vinylpyrrolidone [111.1], N-vinyloxazolidone [113.1], N-vinylsuccinimide [125.1], N-vinylformamide [71. 1], N-vinyl-N-methylformamide [85.1], N-vinylacetamide [85.1], N-vinyl-N-methylacetamide [99.1], 1-vinylimidazole [94.1].
  • acrylic acid, ⁇ -alkylacrylic acid, esters or amides derived from them, acrylonitrile, methacrylonitrile, or aromatic vinyl compound are preferable.
  • monomers other than the above include Research Disclosure No. The compounds described in 1955 (July 1980) can be used.
  • the repeating unit (3-2) is preferably a repeating unit represented by the following formula (3) from the viewpoint of easy polymerization.
  • PC32 represents the main chain of the repeating unit, more specifically, represents the same structure as PC1 in the above formula (1), and L32 represents a single bond or a divalent linking group. More specifically, it represents the same structure as L1 in the above formula (1), and P32 represents a crosslinkable group represented by the above formulas (P1) to (P30).
  • repeating unit (3-2) and its molecular weight (Mw) will be shown, but the present invention is not limited to these specific examples.
  • the content of the repeating unit (3) is preferably less than 14% by mass, more preferably 7% by mass or less, and further preferably 5% by mass or less, based on the total repeating units (100% by mass) of the polymer liquid crystal compound.
  • the lower limit of the content of the repeating unit (3) is preferably 2% by mass or more, more preferably 3% by mass or more, based on the total repeating unit (100% by mass) of the polymer liquid crystal compound.
  • the content of the repeating unit (3) is less than 14% by mass, the degree of orientation of the light absorption anisotropic layer is further improved.
  • the solubility of the polymer liquid crystal compound is further improved.
  • the repeating unit (3) may be contained alone or in combination of two or more in the polymer liquid crystal compound. When two or more types of repeating units (3) are included, the total amount thereof is preferably within the above range.
  • the polymer liquid crystal compound can include a repeating unit (4) having a flexible structure with a long molecular chain (SP4 of the formula (4) described later) from the viewpoint of improving adhesion and planar uniformity.
  • SP4 of the formula (4) described later
  • the reason for this is estimated as follows. That is, by including such a flexible structure having a long molecular chain, the molecular chains constituting the polymer liquid crystal compound are likely to be entangled with each other, and the light absorption anisotropic layer is aggregated and broken (specifically, The destruction of the light absorption anisotropic layer itself) is suppressed.
  • the adhesion between the light absorption anisotropic layer and the underlying layer is improved.
  • the decrease in the planar uniformity is caused by the low compatibility between the dichroic substance and the polymer liquid crystal compound. That is, if the dichroic substance and the polymer liquid crystal compound have insufficient compatibility, it is considered that a surface defect (orientation defect) having the precipitated dichroic substance as a nucleus occurs.
  • the polymer liquid crystal compound contains a flexible structure having a long molecular chain, precipitation of a dichroic substance is suppressed, and a light absorption anisotropic layer having excellent planar uniformity can be obtained. It is presumed that it was.
  • excellent in planar uniformity means that the liquid crystal composition containing the polymer liquid crystal compound has few orientation defects caused by being repelled on the base layer (for example, the substrate or the alignment layer).
  • PC4 represents the main chain of the repeating unit, more specifically, represents the same structure as PC1 in the above formula (1)
  • L4 represents a single bond or a divalent linking group. More specifically, it represents the same structure as L1 in the above formula (1) (preferably a single bond)
  • SP4 represents an alkylene group having 10 or more atoms in the main chain
  • T4 represents a terminal group, and more. Specifically, it represents the same structure as T1 in the above formula (1).
  • SP4 represents an alkylene group having 10 or more atoms in the main chain.
  • one or more -CH 2- constituting the alkylene group represented by SP4 may be replaced with the above-mentioned "SP-C", and in particular, -O-, -S-, and -N (R 21 ).
  • R 21 to R 28 independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, or a linear or branched alkyl group having 1 to 10 carbon atoms.
  • the hydrogen atom contained in one or more -CH 2- constituting the alkylene group represented by SP4 may be replaced by the above-mentioned "SP-H".
  • the number of atoms in the main chain of SP4 is 10 or more, and 15 or more is preferable, and 19 or more is more preferable, because a light absorption anisotropic layer having more excellent adhesion and planar uniformity can be obtained. .. Further, the upper limit of the number of atoms in the main chain of SP2 is preferably 70 or less, more preferably 60 or less, still more preferably 50 or less, from the viewpoint of obtaining a light absorption anisotropic layer having a higher degree of orientation.
  • the "main chain” in SP4 means a partial structure necessary for directly connecting L4 and T4, and the "number of atoms in the main chain” means the number of atoms constituting the partial structure. means.
  • the "main chain" in SP4 is a partial structure in which the number of atoms connecting L4 and T4 is the shortest.
  • the number of atoms in the main chain is 10
  • SP4 is a 4,6-dimethyldodecanyl group
  • the number of atoms in the main chain is 12.
  • the inside of the frame represented by the dotted quadrangle corresponds to SP4
  • the number of atoms in the main chain of SP4 (corresponding to the total number of atoms circled by the dotted line) is 11. ..
  • the alkylene group represented by SP4 may be linear or branched.
  • the carbon number of the alkylene group represented by SP4 is preferably 8 to 80, more preferably 15 to 80, still more preferably 25 to 70, and even more preferably 25 to 60, from the viewpoint of obtaining a light absorption anisotropic layer having an excellent degree of orientation. Is particularly preferable.
  • One or more -CH 2- constituting the alkylene group represented by SP4 is replaced by the above-mentioned "SP-C" in that an excellent light absorption anisotropic layer can be obtained due to adhesion and planar uniformity. Is preferable. Further, when there are a plurality of —CH 2 ⁇ constituting the alkylene group represented by SP4, a part of the plurality of —CH 2 ⁇ can be obtained because an excellent light absorption anisotropic layer can be obtained due to the adhesion and the planar uniformity. It is more preferred that only be replaced by the "SP-C" described above.
  • R 21 to R 28 independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, or a linear or branched alkyl group having 1 to 10 carbon atoms.
  • the hydrogen atom contained in one or more -CH 2- constituting the alkylene group represented by SP4 may be replaced by the above-mentioned "SP-H".
  • SP-H the hydrogen atom contained in one or more -CH 2- constituting the alkylene group represented by SP4
  • SP-H is a halogen atom, a cyano group, a nitro group, a hydroxy group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 1 to 10 carbon atoms, and 1 to 10 carbon atoms. At least one group selected from the group consisting of a 10-halogenated alkyl group is preferable, and a group consisting of a hydroxy group, a linear alkyl group having 1 to 10 carbon atoms and a branched alkyl group having 1 to 10 carbon atoms. More preferred are at least one group more selected.
  • T4 represents a terminal group similar to T1 and represents a hydrogen atom, a methyl group, a hydroxy group, a carboxy group, a sulfonic acid group, a phosphoric acid group, a boronic acid group, an amino group, a cyano group, a nitro group, and the like.
  • CL represents a crosslinkable group, and examples thereof include a group represented by Q1 or Q2, preferably a crosslinkable group represented by the formulas (P1) to (P30)), and the CL is vinyl.
  • the epoxy group may be an epoxycycloalkyl group, and the carbon number of the cycloalkyl group portion of the epoxycycloalkyl group is preferably 3 to 15 and more preferably 5 to 12 from the viewpoint that the effect of the present invention is more excellent. , 6 (ie, when the epoxycycloalkyl group is an epoxycyclohexyl group) is even more preferred.
  • the substituent of the oxetanyl group include an alkyl group having 1 to 10 carbon atoms, and an alkyl group having 1 to 5 carbon atoms is preferable because the effect of the present invention is more excellent.
  • the alkyl group as a substituent of the oxetanyl group may be linear or branched, but the linear group is preferable from the viewpoint of further improving the effect of the present invention.
  • the substituent of the phenyl group include a boronic acid group, a sulfonic acid group, a vinyl group and an amino group, and the boronic acid group is preferable from the viewpoint of further excellent effect of the present invention.
  • repeating unit (4) include, for example, the following structures, but the present invention is not limited thereto.
  • n1 represents an integer of 2 or more
  • n2 represents an integer of 1 or more.
  • the content of the repeating unit (4) is preferably 2 to 20% by mass, more preferably 3 to 18% by mass, based on all the repeating units (100% by mass) contained in the polymer liquid crystal compound.
  • the repeating unit (4) may be contained alone or in combination of two or more in the polymer liquid crystal compound.
  • the content of the repeating unit (4) means the total content of the repeating units (4).
  • the polymer liquid crystal compound can include a repeating unit (5) introduced by polymerizing a polyfunctional monomer from the viewpoint of planar uniformity.
  • a repeating unit (5) introduced by polymerizing a polyfunctional monomer from the viewpoint of planar uniformity.
  • the repeating unit (5) is a unit introduced into a polymer liquid crystal compound by polymerizing a polyfunctional monomer.
  • the polymer liquid crystal compound contains a high molecular weight body having a three-dimensional crosslinked structure formed by the repeating unit (5).
  • the content of the repeating unit (5) is small, it is considered that the content of the high molecular weight body containing the repeating unit (5) is small. It is presumed that the presence of a small amount of high molecular weight bodies having a three-dimensional crosslinked structure in this way suppressed the repelling of the liquid crystal composition and obtained a light absorption anisotropic layer having excellent planar uniformity. To. Further, since the content of the high molecular weight body is small, it is presumed that the effect of suppressing the decrease in the degree of orientation can be maintained.
  • the repeating unit (5) introduced by polymerizing the polyfunctional monomer is preferably a repeating unit represented by the following formula (5).
  • PC5A and PC5B represent the main chain of the repeating unit, more specifically, they represent the same structure as PC1 in the above formula (1), and L5A and L5B are single-bonded or divalent linking groups. More specifically, it represents the same structure as L1 in the above formula (1), SP5A and SP5B represent the spacer group, and more specifically, it represents the same structure as SP1 in the above formula (1).
  • MG5A and MG5B represent a mesogen structure, more specifically, a structure similar to the mesogen group MG in the above formula (LC), and a and b represent an integer of 0 or 1.
  • PC5A and PC5B may be the same group or different groups from each other, but are preferably the same group from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer.
  • Both L5A and L5B may have a single bond, the same group, or different groups from each other, but the degree of orientation of the light absorption anisotropic layer is further improved. Therefore, it is preferable that all of them have a single bond or the same group, and more preferably the same group.
  • Both SP5A and SP5B may have a single bond, the same group, or different groups from each other, but the degree of orientation of the light absorption anisotropic layer is further improved.
  • the same group in the formula (5) means that the chemical structure is the same regardless of the direction in which each group is bonded.
  • SP5A is * -CH2 - CH2 -O- *. * (* Represents the bond position with L5A, ** represents the bond position with MG5A), and SP5B indicates the bond position with * -O-CH 2 -CH 2 -** (* represents the bond position with MG5B.) Representing, ** represents the bonding position with L5B.), It is the same group.
  • a and b are independently integers of 0 or 1, and are preferably 1 from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer. Although a and b may be the same or different, they are preferably 1 from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer.
  • the total of a and b is preferably 1 or 2 from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer (that is, the repeating unit represented by the formula (5) has a mesogen group. ), 2 is more preferable.
  • the partial structure represented by (MG5A) a- (MG5B) b - preferably has a cyclic structure from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer.
  • the number of annular structures in the partial structure represented by-(MG5A2) a- (MG5B) b- is preferably two or more, from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer. -8 is more preferred, 2-6 is even more preferred, and 2-4 is particularly preferred.
  • the mesogen groups represented by MG5A and MG5B each independently contain one or more cyclic structures, preferably 2 to 4 from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer.
  • MG5A and MG5B may be the same group or different groups from each other, but are preferably the same group from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer.
  • the mesogen groups represented by MG5A and MG5B are the mesogens in the above formula (LC) because they are more excellent in terms of expression of liquid crystallinity, adjustment of liquid crystal phase transition temperature, availability of raw materials and synthetic suitability, and the effect of the present invention.
  • the base MG is preferred.
  • PC5A and PC5B are the same group
  • L5A and L5B are both single-bonded or the same group
  • SP5A and SP5B are both single-bonded or the same group
  • MG5B are preferably the same group.
  • the content of the repeating unit (5) is preferably 10% by mass or less, more preferably 0.001 to 5% by mass, based on the content (100% by mass) of all the repeating units of the polymer liquid crystal compound. More preferably, 0.05 to 3% by mass.
  • the repeating unit (5) may be contained alone or in combination of two or more in the polymer liquid crystal compound. When two or more types of repeating units (5) are included, the total amount thereof is preferably within the above range.
  • the polymer liquid crystal compound may be a star-shaped polymer.
  • the star-shaped polymer in the present invention means a polymer having three or more polymer chains extending from the nucleus, and is specifically represented by the following formula (6).
  • the star-shaped polymer represented by the formula (6) as a polymer liquid crystal compound can form a light absorption anisotropic layer having a high degree of orientation while having high solubility (excellent solubility in a solvent).
  • nA represents an integer of 3 or more, and an integer of 4 or more is preferable.
  • the upper limit of n A is not limited to this, but is usually 12 or less, preferably 6 or less.
  • Each of the plurality of PIs independently represents a polymer chain containing any of the repeating units represented by the above formulas (1), (21), (22), (3), (4) and (5). However, at least one of the plurality of PIs represents a polymer chain containing a repeating unit represented by the above formula (1).
  • A represents an atomic group that is the core of a star-shaped polymer.
  • A include paragraphs [0052] to [0058] of JP-A-2011-074280, paragraphs [0017] to [0021] of JP-A-2012-189847, and paragraphs [0017] to [0021] of JP-A-2013-031986.
  • Examples thereof include a structure in which a hydrogen atom is removed from a thiol group of a polyfunctional thiol compound described in paragraphs [014] to [0024], paragraphs [0118] to [0142] of JP-A-2014-104631. In this case, A and PI are bound by a sulfide bond.
  • the number of thiol groups of the polyfunctional thiol compound from which A is derived is preferably 3 or more, more preferably 4 or more.
  • the upper limit of the number of thiol groups in the polyfunctional thiol compound is usually 12 or less, preferably 6 or less. Specific examples of the polyfunctional thiol compound are shown below.
  • the polymer liquid crystal compound may be a thermotropic liquid crystal and a crystalline polymer from the viewpoint of improving the degree of orientation.
  • the polymer liquid crystal compound may be a crystalline polymer.
  • a crystalline polymer is a polymer that exhibits a transition to a crystalline layer due to a temperature change.
  • the crystalline polymer may exhibit a glass transition in addition to the transition to the crystal layer.
  • the crystalline polymer has a transition from the crystalline phase to the liquid crystal phase when heated because the degree of orientation of the light absorption anisotropic layer is higher and the haze is less likely to be observed (glass in the middle).
  • a polymer liquid crystal compound, or a polymer liquid crystal that has a transition to the crystalline phase may have a glass transition in the middle) when the temperature is lowered after being in a liquid crystal state by heating. Sex compounds are preferred.
  • the presence or absence of crystallinity of the polymer liquid crystal compound is evaluated as follows. Two light absorption anisotropic layers of an optical microscope (ECLIPSE E600 POL manufactured by Nikon Corporation) are arranged so as to be orthogonal to each other, and a sample table is set between the two light absorption anisotropic layers. Then, a small amount of the polymer liquid crystal compound is placed on the slide glass, and the slide glass is set on the hot stage placed on the sample table. While observing the state of the sample, the temperature of the hot stage is raised to the temperature at which the polymer liquid crystal compound exhibits liquid crystallinity, and the polymer liquid crystal compound is brought into a liquid crystal state.
  • ECLIPSE E600 POL manufactured by Nikon Corporation
  • the behavior of the liquid crystal phase transition is observed while gradually lowering the temperature of the hot stage, and the temperature of the liquid crystal phase transition is recorded.
  • the polymer liquid crystal compound exhibits a plurality of liquid crystal phases (for example, a nematic phase and a smectic phase)
  • all the transition temperatures thereof are also recorded.
  • DSC differential scanning calorimeter
  • the calorific value is measured while lowering the temperature at a rate of 10 ° C./min. Confirm the exothermic peak from the obtained heat spectrum.
  • the exothermic peak is a peak due to crystallization, and it can be said that the high molecular weight liquid crystal compound has crystallization.
  • the polymer liquid crystal compound has no crystallinity.
  • the method for obtaining a crystalline polymer is not particularly limited, but as a specific example, a method using a polymer liquid crystal compound containing the repeating unit (1) is preferable, and among them, a polymer containing the repeating unit (1) is preferable. A method using a preferred embodiment of the liquid crystal compound is more preferable.
  • the crystallization temperature of the polymer liquid crystal compound is preferably ⁇ 50 ° C. or higher and lower than 150 ° C., because the degree of orientation of the light absorption anisotropic layer becomes higher and haze is less likely to be observed.
  • the temperature is more preferably -20 ° C or higher, further preferably -20 ° C or higher and lower than 120 ° C, and particularly preferably 95 ° C or lower.
  • the crystallization temperature of the polymer liquid crystal compound is preferably less than 150 ° C. from the viewpoint of reducing haze.
  • the crystallization temperature is the temperature of the exothermic peak due to crystallization in the DSC described above.
  • the weight average molecular weight (Mw) of the polymer liquid crystal compound is preferably 1000 to 500,000, more preferably 2000 to 300,000 because the effect of the present invention is more excellent. When the Mw of the polymer liquid crystal compound is within the above range, the handling of the polymer liquid crystal compound becomes easy.
  • the weight average molecular weight (Mw) of the polymer liquid crystal compound is preferably 10,000 or more, and more preferably 10,000 to 300,000. Further, from the viewpoint of the temperature latitude of the degree of orientation, the weight average molecular weight (Mw) of the polymer liquid crystal compound is preferably less than 10,000, and preferably 2000 or more and less than 10,000.
  • the weight average molecular weight and the number average molecular weight in the present invention are values measured by a gel permeation chromatograph (GPC) method.
  • the polymer liquid crystal compound may exhibit either a nematic phase or a smectic phase, but it is preferable to exhibit at least a nematic phase.
  • the temperature range showing the nematic phase is preferably 0 to 450 ° C., and preferably 30 to 400 ° C. from the viewpoint of handling and manufacturing aptitude.
  • the content of the thermotropic liquid crystal compound is 10 to 97% by mass from the viewpoint that the effect of the present invention is more excellent with respect to the total solid content (100% by mass) of the liquid crystal composition. Is preferable, 40 to 95% by mass is more preferable, and 50 to 95% by mass is further preferable.
  • the thermotropic liquid crystal compound preferably a rod-shaped liquid crystal compound
  • the content of the polymer liquid crystal compound is the total of the thermotropic liquid crystal compound (preferably a rod-shaped liquid crystal compound). It is preferably 10 to 99% by mass, more preferably 30 to 95% by mass, still more preferably 50 to 90% by mass, based on the mass (100 parts by mass).
  • the content of the low-molecular-weight liquid crystal compound is the total content of the thermotropic liquid crystal compound (preferably a rod-shaped liquid crystal compound). It is preferably 1 to 90% by mass, more preferably 5 to 70% by mass, still more preferably 10 to 60% by mass, based on the mass (100 parts by mass).
  • the thermotropic liquid crystal compound preferably a rod-shaped liquid liquid compound
  • the content of the low molecular weight liquid liquid compound relative to the content of the high molecular weight liquid liquid compound.
  • the mass ratio (low molecular weight liquid crystal compound / high molecular weight liquid crystal compound) is preferably 5/95 to 70/30, more preferably 10/90 to 50/50, because the effect of the present invention is more excellent.
  • the "solid content in the liquid crystal composition” refers to a component excluding the solvent, and specific examples of the solid content include the above-mentioned rod-shaped liquid crystal compound, a dichroic substance described later, a polymerization initiator, and an interface improver. And so on.
  • the liquid crystal composition of the present invention contains a dichroic substance.
  • the dichroic substance means a dye having different absorbance depending on the direction.
  • the dichroic substance may or may not exhibit liquid crystallinity.
  • the bichromatic substance is not particularly limited, and is a visible light absorbing substance (bicolor dye), a light emitting substance (fluorescent substance, a phosphorescent substance), an ultraviolet absorbing substance, an infrared absorbing substance, a nonlinear optical substance, a carbon nanotube, and an inorganic substance.
  • a visible light absorbing substance (bicolor dye), a light emitting substance (fluorescent substance, a phosphorescent substance), an ultraviolet absorbing substance, an infrared absorbing substance, a nonlinear optical substance, a carbon nanotube, and an inorganic substance.
  • a substance for example, a quantum rod
  • a conventionally known bicolor substance (bicolor dye) can be used.
  • two or more kinds of dichroic substances may be used in combination.
  • it has a maximum absorption wavelength in the wavelength range of 370 to 550 nm. It is preferable to use at least one dichroic substance in combination with at least one dichroic substance having a maximum absorption wavelength in the wavelength range of 500 to 700 nm.
  • the content of the dichroic substance is 10.0% by mass or more, preferably 15.0% by mass or more, based on the total solid content (100.0% by mass) of the liquid crystal composition.
  • the content of the bicolor substance is preferably 10 to 70% by mass, preferably 13.0 to 60.0% by mass, from the viewpoint that the effect of the present invention is more excellent with respect to the total solid content of the liquid crystal composition. More preferably, 15.0 to 50.0% by mass is further preferable, 15.0 to 30.0% by mass is particularly preferable, and 15.0 to 20.0% by mass is most preferable.
  • the total amount of the plurality of dichroic substances is within the above range.
  • the liquid crystal composition of the present invention preferably contains a solvent from the viewpoint of workability and the like.
  • Solvents include, for example, ketones (eg, acetone, 2-butanone, methylisobutylketone, cyclopentanone, and cyclohexanone), ethers (eg, dioxane, tetrahydrofuran, tetrahydropyran, dioxolane, tetrahydrofurfuryl alcohol, etc.).
  • cyclopentylmethyl ethers aliphatic hydrocarbons (eg, hexane), alicyclic hydrocarbons (eg, cyclohexane, etc.), aromatic hydrocarbons (eg, benzene, toluene, xylene, and trimethyl).
  • hydrocarbons eg, dichloromethane, trichloromethane (chloroform), dichloroethane, dichlorobenzene, and chlorotoluene, etc.
  • esters eg, methyl acetate, ethyl acetate, and butyl acetate, diethyl carbonate, etc.
  • Alcohols eg, ethanol, isopropanol, butanol, and cyclohexanol, etc.
  • cellosolves eg, methyl cellosolve, ethyl cellosolve, and 1,2-dimethoxyethane, etc.
  • cellosolve acetates sulfoxides (eg, etc.) , Dimethylsulfoxide, etc.), amides (eg, dimethylformamide, and dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone, 1,3-dimethyl-2
  • an organic solvent because the degree of orientation of the formed light absorption anisotropic layer becomes higher and the heat resistance is further improved, and carbon halides, ethers or ketones are preferable. Is more preferable to use.
  • the content of the solvent is the total mass (100) of the liquid crystal composition because the degree of orientation of the formed light absorption anisotropic layer is higher and the heat resistance is further improved.
  • (% by mass) 60 to 99.5% by mass is preferable, 70 to 99% by mass is more preferable, and 75 to 98% by mass is particularly preferable.
  • the liquid crystal composition of the present invention may contain a polymerization initiator.
  • the polymerization initiator is not particularly limited, but is preferably a photosensitive compound, that is, a photopolymerization initiator.
  • a photopolymerization initiator various compounds can be used without particular limitation. Examples of photopolymerization initiators include ⁇ -carbonyl compounds (US Pat. Nos. 2,376,661 and 236,670), acidoin ethers (US Pat. No. 2,448,828), and ⁇ -hydrocarbon-substituted aromatic acidoines. Compounds (US Pat. No. 2722512), polynuclear quinone compounds (US Pat. Nos.
  • the content of the polymerization initiator is such that the degree of orientation of the light absorption anisotropic layer to be formed becomes higher and the heat resistance is further improved. It is preferably 0.01 to 30% by mass, more preferably 0.1 to 15% by mass, based on the total solid content (100% by mass).
  • the liquid crystal composition of the present invention may contain a polymerizable compound.
  • the polymerizable compound include compounds containing acrylates (for example, (meth) acrylate monomers).
  • the content of the polymerizable compound is 0 because the effect of the present invention is more excellent with respect to the total solid content (100% by mass) of the liquid crystal composition. .5 to 50% by mass is preferable, and 1.0 to 40% by mass is more preferable.
  • the liquid crystal composition of the present invention may contain other additives.
  • the additive include an alignment agent that assists the orientation of the liquid crystal composition, and specific examples thereof include a boronic acid compound and an onium salt.
  • the compound represented by the formula (30) is preferable.
  • R 1 and R 2 each independently contain a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group.
  • R 3 represents a substituent containing a (meth) acrylic group.
  • Specific examples of the boronic acid compound include a boronic acid compound represented by the general formula (I) described in paragraphs [0023] to [0032] of JP-A-2008-225281. As the boronic acid compound, the compounds exemplified below are also preferable.
  • the compound represented by the formula (31) is preferable.
  • ring A represents a quaternary ammonium ion composed of a nitrogen-containing heterocycle.
  • X represents an anion.
  • L 1 represents a divalent linking group.
  • L 2 represents a single bond or a divalent linking group.
  • Y 1 represents a divalent linking group having a 5- or 6-membered ring as a partial structure.
  • Z represents a divalent linking group having 2 to 20 alkylene groups as a partial structure.
  • P 1 and P 2 each independently represent a monovalent substituent having a polymerizable ethylenically unsaturated bond.
  • onium salt examples include the onium salt described in paragraphs [0052] to [0058] of JP2012-208397, and the onium described in paragraphs [0024] to [0055] of JP2008-026730. Examples thereof include salts and onium salts described in JP-A-2002-0377777.
  • the content of the alignment agent in the liquid crystal composition is preferably 0.1 to 40% by mass with respect to the total solid content (100% by mass) of the liquid crystal composition, and the content of the liquid dichroic substance is 0. More preferably, it is 3 to 20% by mass.
  • the orienting agent may be used alone or in combination of two or more. When two or more kinds of orienting agents are used, the total amount thereof is preferably in the above range.
  • the optical film of the present invention may have a transparent base film.
  • the transparent base film is preferably arranged on the surface of the light absorption anisotropic layer opposite to the surface on which the protective layer is provided.
  • a known transparent resin film, transparent resin plate, transparent resin sheet, or the like can be used, and there is no particular limitation.
  • the transparent resin film include cellulose acylate film (for example, cellulose triacetate film (refractive rate 1.48), cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film), polyethylene terephthalate film, and polyether sulfone.
  • Polyacrylic resin films polyurethane resin films, polyester films, polycarbonate films, polysulfone films, polyether films, polymethylpentene films, polyether ketone films, (meth) acrylic nitrile films and the like can be used.
  • a cellulose acylate film which is highly transparent, has little optical birefringence, is easy to manufacture, and is generally used as a protective film for a polarizing plate is preferable, and a cellulose triacetate film is particularly preferable.
  • the thickness of the transparent base film is usually 20 to 100 ⁇ m. In the present invention, it is particularly preferable that the transparent base film is a cellulose ester film and the film thickness thereof is 20 to 70 ⁇ m.
  • the optical film of the present invention may have an alignment layer.
  • the alignment layer it is preferable to arrange the light absorption anisotropic layer adjacent to each other. It is also preferable that the alignment layer is provided between the transparent base film and the light absorption anisotropic layer.
  • the oriented layer is such that the thermotropic liquid crystal compound (preferably a rod-shaped liquid crystal compound) and the dichroic substance contained in the liquid crystal composition of the present invention can be placed in a desired oriented state on the oriented layer. Any layer is acceptable.
  • Means for providing the oriented layer include rubbing treatment of an organic compound (preferably a polymer such as polyvinyl alcohol and polyimide) on the film surface, oblique deposition of an inorganic compound, formation of a layer having microgrooves, and Langmuir-Blo.
  • Means such as the accumulation of organic compounds (eg, ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride, methyl stearyllate) by the jet method (LB membrane) can be mentioned.
  • an alignment layer in which an orientation function is generated by applying an electric field, applying a magnetic field, or irradiating light is also known.
  • the alignment layer formed by the rubbing treatment is preferable from the viewpoint of easy control of the pretilt angle of the alignment layer, and the photoalignment layer formed by light irradiation is also preferable from the viewpoint of the uniformity of orientation.
  • the orientation axis is tilted, it can be realized by irradiating the photoalignment layer such as an azo compound or a cinnamoyl compound with UV from an oblique direction, and as a result, the center of the transmission axis is tilted with respect to the normal direction of the film.
  • the oriented layer may function as a barrier layer described later.
  • the alignment layer may be composed of two or more layers, or the alignment layer composed of two or more layers may be an alignment liquid crystal layer containing a liquid crystal compound.
  • the thickness of the light absorption anisotropic layer is not particularly limited, but is preferably 100 to 8000 nm, and more preferably 300 to 5000 nm from the viewpoint of compactness and weight reduction.
  • the method for forming the light absorption anisotropic layer is not particularly limited, and a step of applying the above-mentioned composition for forming a light absorption anisotropic layer to form a coating film (hereinafter, also referred to as “coating film forming step”).
  • a method including a step of orienting a liquid crystal component or a bipolar substance contained in the coating film (hereinafter, also referred to as an "orientation step”) in this order can be mentioned.
  • the liquid crystal component is a component that includes not only the above-mentioned thermotropic liquid crystal compound but also the above-mentioned dichroic substance, if the above-mentioned dichroic substance has liquid crystallinity.
  • the coating film forming step is a step of applying a composition for forming a light absorption anisotropic layer to form a coating film.
  • a composition for forming a light absorption anisotropic layer containing the above-mentioned solvent, or by using a liquid material such as a melt by heating or the like, the composition for forming a light absorption anisotropic layer is used. It becomes easy to apply the composition for forming a light absorption anisotropic layer.
  • the method for applying the composition for forming a light absorption anisotropic layer include a roll coating method, a gravure printing method, a spin coating method, a wire bar coating method, an extrusion coating method, a direct gravure coating method, and a reverse method.
  • Known methods such as a gravure coating method, a die coating method, a spray method, and an inkjet method can be mentioned.
  • the alignment step is a step of aligning the liquid crystal component contained in the coating film. As a result, a light absorption anisotropic layer is obtained.
  • the alignment step may have a drying process. By the drying treatment, components such as a solvent can be removed from the coating film. The drying treatment may be carried out by a method of leaving the coating film at room temperature for a predetermined time (for example, natural drying), or by a method of heating and / or blowing air.
  • the liquid crystal component contained in the composition for forming a light absorption anisotropic layer may be oriented by the above-mentioned coating film forming step or drying treatment.
  • the coating film is dried and the solvent is removed from the coating film to obtain light absorption anisotropic.
  • a coating film (that is, a light absorption anisotropic layer) is obtained.
  • the transition temperature of the liquid crystal component contained in the coating film to the liquid crystal phase is preferably 10 to 250 ° C, more preferably 25 to 190 ° C from the viewpoint of manufacturing suitability and the like.
  • a cooling treatment or the like for lowering the temperature to a temperature range exhibiting a liquid crystal phase is not required, which is preferable.
  • the transition temperature is 250 ° C. or lower, a high temperature is not required even when the temperature is once higher than the temperature range in which the liquid crystal phase is exhibited, and the temperature is not required. It is preferable because it can reduce deformation and alteration.
  • the orientation step preferably has a heat treatment.
  • the liquid crystal component contained in the coating film can be oriented, so that the coating film after the heat treatment can be suitably used as the light absorption anisotropic film.
  • the heat treatment is preferably 10 to 250 ° C., more preferably 25 to 190 ° C. from the viewpoint of manufacturing aptitude and the like.
  • the heating time is preferably 1 to 300 seconds, more preferably 1 to 60 seconds.
  • the alignment step may have a cooling treatment performed after the heat treatment.
  • the cooling treatment is a treatment for cooling the coated film after heating to about room temperature (20 to 25 ° C.).
  • the cooling means is not particularly limited, and can be carried out by a known method.
  • a light absorption anisotropic layer can be obtained.
  • dry treatment, heat treatment, and the like are mentioned as methods for orienting the liquid crystal component contained in the coating film, but the method is not limited to this, and can be carried out by a known orientation treatment.
  • the method for forming the light absorption anisotropic layer may include a step of curing the light absorption anisotropic layer (hereinafter, also referred to as “curing step”) after the alignment step.
  • the curing step is carried out, for example, by heating and / or light irradiation (exposure) when the light absorption anisotropic layer has a crosslinkable group (polymerizable group).
  • the curing step is carried out by light irradiation.
  • various light sources such as infrared rays, visible light, and ultraviolet rays can be used, but ultraviolet rays are preferable.
  • the ultraviolet rays may be irradiated while being heated at the time of curing, or the ultraviolet rays may be irradiated through a filter that transmits only a specific wavelength.
  • the heating temperature at the time of exposure is preferably 25 to 140 ° C., although it depends on the transition temperature of the liquid crystal component contained in the light absorption anisotropic layer to the liquid crystal phase.
  • the exposure may be performed in a nitrogen atmosphere.
  • the curing of the light absorption anisotropic layer proceeds by radical polymerization, the inhibition of polymerization by oxygen is reduced, so that exposure in a nitrogen atmosphere is preferable.
  • the light absorption anisotropic layer used in the present invention can be a light absorption anisotropic layer having a region A and a region B in the plane and having different transmittance central axes in each region. If the light emitting pixels are controlled by patterning each pixel of the liquid crystal, it is possible to switch the center of the field of view in a narrow field of view. Further, the light absorption anisotropic layer used in the present invention has a region C and a region D in the plane, and in the region C and the region D, in a plane including the central axis of transmittance and the normal of the film surface.
  • the transmittance tilted 30 ° in the normal direction from the transmittance center axis of the region C is 50% or less
  • the transmittance tilted 30 ° in the normal direction from the transmittance center axis of the region D is 80% or more. It is preferably a light absorption anisotropic layer.
  • the viewing angle dependence as a display device for each display position, it is possible to design with excellent design. Further, if the light emitting pixels are controlled by patterning each pixel of the liquid crystal display, it is possible to switch between a narrow viewing angle and a wide viewing angle.
  • the method for forming the patterned light absorption anisotropic layer having two or more different regions in the plane there is no limitation on the method for forming the patterned light absorption anisotropic layer having two or more different regions in the plane, and various known methods as described in, for example, WO2019 / 176918 can be used. It is available. As an example, a method of forming a pattern by changing the irradiation angle of ultraviolet light to be applied to the optical alignment layer, a method of controlling the thickness of the patterned light absorption anisotropic layer in the plane, and a method of controlling the thickness of the patterned light absorption anisotropic layer in the pattern light absorption anisotropic layer.
  • Examples thereof include a method of unevenly distributing the dichroic dye compound and a method of post-processing an optically uniform patterned light absorption anisotropic layer.
  • a method of controlling the thickness of the patterned light absorption anisotropic layer in the plane a method using lithography, a method using imprint, and a pattern light absorption anisotropic layer on a substrate having an uneven structure are provided. The method of forming and the like can be mentioned.
  • a method of unevenly distributing the dichroic dye compound in the pattern light absorption anisotropic layer a method of extracting the dichroic dye by solvent immersion (bleaching) can be mentioned.
  • a method of post-processing an optically uniform patterned light absorption anisotropic layer a method of cutting a part of a flat light absorption anisotropic layer by laser processing or the like can be mentioned.
  • the viewing angle control system of the present invention preferably has the above optical film and a polarizing element.
  • the viewing angle control system 9 shown in FIG. 2 has a barrier layer 1, a light absorption anisotropic layer 2, an alignment liquid crystal layer 3, an alignment layer 4, and a TAC film 5 in this order from the viewing side.
  • a polarizing element (not shown) is arranged on the opposite side of the TAC film 5 from the alignment layer 4.
  • the barrier layer 1, the light absorption anisotropic layer 2, the alignment liquid crystal layer 3, the alignment layer 4, and the TAC film 5 constitute an optical film.
  • the above embodiment is configured to include the alignment liquid crystal layer 3, but may not include the alignment liquid crystal layer 3. Further, the embodiment that does not include the alignment liquid crystal layer 3 may have the barrier layer 1, the alignment layer 4, the light absorption anisotropic layer 2, and the TAC film 5 in this order from the viewing side. Further, although the TAC film 5 is included in the above aspect, the TAC film 5 may be a layer shown in other layers described later. Further, as described above, the barrier layer 1 may have the function of the alignment layer 4, and in that case, the barrier layer 1, the light absorption anisotropic layer 2, and the TAC film 5 may be attached from the visual recognition side. It may be an embodiment having the order.
  • the layers that can be included in the viewing angle control system of the present invention will be described.
  • the viewing angle control system of the present invention has a barrier layer together with a light absorption anisotropic layer.
  • the barrier layer is also referred to as a gas blocking layer (oxygen blocking layer), and is a layer contained in the optical film of the present invention from a gas such as oxygen in the atmosphere, moisture, or a compound contained in an adjacent layer. It has a function to protect.
  • the barrier layer for example, paragraphs [0014] to [0054] of JP-A-2014-159124, paragraphs [0042]-[0075] of JP-A-2017-121721, and paragraphs [0042]-[0075] of JP-A-2017-121576.
  • paragraphs [0010] to [0061] of JP2012-213938A, and paragraphs [0021] to [0031] of JP2005-169994 can be referred to.
  • the above-mentioned light absorption anisotropic layer has a dichroic substance, and internal reflection due to the high refractive index of the light absorption anisotropic layer may become a problem.
  • the refractive index adjusting layer is present.
  • the refractive index adjusting layer is a layer arranged so as to be in contact with the light absorption anisotropic layer, and the in-plane average refractive index at a wavelength of 550 nm is preferably 1.55 or more and 1.70 or less.
  • the refractive index adjusting layer is preferably a layer for performing so-called index matching.
  • the polarizing element used in the viewing angle control system of the present invention is not particularly limited as long as it is a member having a function of converting light into specific linear polarization, and conventionally known polarizing elements can be used.
  • an iodine-based splitter As the splitter, an iodine-based splitter, a dye-based splitter using a dichroic dye, a polyene-based splitter, and the like are used.
  • the iodine-based polarizing element and the dye-based polarizing element include a coating type polarizing element and a stretching type polarizing element, and both of them can be applied.
  • the coating type splitter a splitter in which a dichroic dye is oriented by utilizing the orientation of a liquid crystal compound is preferable, and as a stretchable splitter, iodine or a dichroic dye is adsorbed on polyvinyl alcohol and stretched. Is preferred.
  • Japanese Patent No. 5048120 Japanese Patent No. 5143918, Japanese Patent No. 5048120, and Patent No. 5048120 are used.
  • Japanese Patent No. 4691205, Japanese Patent No. 4751481, and Japanese Patent No. 4751486 can be mentioned, and known techniques relating to these substituents can also be preferably used.
  • polyvinyl alcohol-based resins polymers containing- CH2 -CHOH- as a repeating unit, particularly polyvinyl alcohol and ethylene-vinyl alcohol copolymers, because they are easily available and have excellent degree of polarization.
  • a polymerase containing at least one is preferred.
  • the thickness of the polarizing element is not particularly limited, but is preferably 3 to 60 ⁇ m, more preferably 5 to 20 ⁇ m, and even more preferably 5 to 10 ⁇ m.
  • the light-absorbing anisotropic layer and the polarizing element layer of the present invention may be laminated via an adhesive or an adhesive, or the alignment layer and the light-absorbing anisotropic layer may be directly coated on the polarizing element. It may be laminated.
  • a plane containing the light absorption anisotropic layer 20 in the central axial direction 22 and the normal of the film surface (normal of the light absorption anisotropic layer 23). (That is, a plane including the direction (direction indicated by ⁇ 1) in which the central axial direction 22 of the transmittance of the light absorption anisotropic layer 20 of the optical film is normally projected onto the optical film surface and the normal of the film surface).
  • the angle ⁇ formed by the absorption axis direction 24 (direction indicated by ⁇ 2) of the polarizing element 21 is preferably 0 ° or more and less than 85 °, more than 95 ° and less than 265 °, or more than 275 ° and 360 ° or less, preferably 45 °. More preferably, it is less than 85 °, more than 95 ° and 135 ° or less, 225 ° or more and less than 265 °, or more than 275 ° and 315 ° or less.
  • the viewing angle control system of the present invention may have an adhesive layer, and the adhesive layer is preferably a transparent and optically isotropic adhesive similar to that used in a normal image display device. , Usually pressure sensitive adhesives are used.
  • the pressure-sensitive adhesive layer in the present invention includes a base material (adhesive), conductive particles, and heat-expandable particles used as necessary, as well as a cross-linking agent (for example, an isocyanate-based cross-linking agent, an epoxy-based cross-linking agent, etc.).
  • a cross-linking agent for example, an isocyanate-based cross-linking agent, an epoxy-based cross-linking agent, etc.
  • Adhesives eg, rosin derivative resins, polyterpene resins, petroleum resins, oil-soluble phenolic resins, etc.
  • plasticizers eg, rosin derivative resins, polyterpene resins, petroleum resins, oil-soluble phenolic resins, etc.
  • fillers eg, anti-aging agents, surfactants, UV absorbers, light stabilizers, and antioxidants.
  • surfactants e.g., UV absorbers, light stabilizers, and antioxidants.
  • UV absorbers e.
  • the thickness of the adhesive layer is usually 20 to 500 ⁇ m, preferably 20 to 250 ⁇ m. If it is less than 20 ⁇ m, the required adhesive strength and rework suitability may not be obtained, and if it exceeds 500 ⁇ m, the adhesive may squeeze out or ooze out from the peripheral end of the image display device.
  • a coating liquid containing a base material, conductive particles, and, if necessary, heat-expandable particles, additives, a solvent, etc. is directly applied onto the support for the protective member.
  • a method of crimping via a release liner, and a coating liquid is applied on an appropriate release liner (release paper, etc.) to form a heat-expandable adhesive layer, which is then pressure-bonded and transferred (transferred) onto a support for a protective member. It can be done by a method such as wearing).
  • the protective member for example, a structure in which conductive particles are added to the structure of the heat-releaseable pressure-sensitive adhesive sheet described in JP-A-2003-292916 can be applied. Further, as the protective member, a member in which conductive particles are sprayed on the surface of an adhesive layer in a commercially available product such as "Riva Alpha” manufactured by Nitto Denko Corporation may be used.
  • the visual angle control system of the present invention may have an adhesive layer, and the adhesive used for the adhesive layer develops adhesiveness by drying or reaction after bonding.
  • the polyvinyl alcohol-based adhesive (PVA-based adhesive) develops adhesiveness when dried, and makes it possible to bond the materials together.
  • Specific examples of the curable adhesive that develops adhesiveness by reaction include active energy ray-curable adhesives such as (meth) acrylate-based adhesives and cationic polymerization curable adhesives.
  • the (meth) acrylate means acrylate and / or methacrylate.
  • Examples of the curable component in the (meth) acrylate-based adhesive include a compound having a (meth) acryloyl group and a compound having a vinyl group.
  • a compound having an epoxy group or an oxetanyl group can also be used as the cationic polymerization curable adhesive.
  • the compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various generally known curable epoxy compounds can be used.
  • Preferred epoxy compounds include compounds having at least two epoxy groups and at least one aromatic ring in the molecule (aromatic epoxy compounds) and at least one of them having at least two epoxy groups in the molecule.
  • Examples of the individual include a compound (alicyclic epoxy compound) formed between two adjacent carbon atoms constituting the alicyclic ring.
  • an ultraviolet curable adhesive that cures by ultraviolet irradiation is preferably used.
  • Each layer of the adhesive layer and the adhesive layer has an ultraviolet absorbing ability by a method such as a method of treating with an ultraviolet absorber such as a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, and a nickel complex salt compound. It may be an ester or the like.
  • an ultraviolet absorber such as a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, and a nickel complex salt compound. It may be an ester or the like.
  • the adhesive layer and the adhesive layer can be attached to the film by an appropriate method.
  • a pressure-sensitive adhesive solution of about 10 to 40% by weight is prepared by dissolving or dispersing the base polymer or its composition in a solvent consisting of an appropriate solvent such as toluene or ethyl acetate alone or in a mixture thereof.
  • a method of directly attaching it on a film by an appropriate developing method such as a casting method or a coating method, and a method of forming an adhesive layer on a separator and transferring it according to the above.
  • the adhesive layer and the adhesive layer can be provided on one side or both sides of the film as an overlapping layer of layers having different compositions or types. Further, when provided on both sides, adhesive layers having different compositions, types, thicknesses, etc. can be formed on the front and back surfaces of the film.
  • the protective film may be surface-modified for the purpose of improving the adhesiveness before applying the adhesive or the adhesive.
  • Specific treatments include corona treatment, plasma treatment, primer treatment, saponification treatment and the like.
  • the light absorption anisotropic layer used in the present invention can be further used in combination with an optically anisotropic film or an optical rotation.
  • the transparent base film it is also preferable to use a resin film having optical anisotropy composed of a polymer containing carbonate, cycloolefin, cellulose acylate, methyl methacrylate, styrene, maleic anhydride and the like.
  • the liquid crystal display device 100 of the present invention has the optical film 101 of the present invention, the view-viewing side polarizing element 102, the liquid crystal cell 103, the backlight-side polarizing element 104, and the backlight from the viewing side.
  • the liquid crystal display device includes 105 in this order, and the optical film contains a light absorption anisotropic layer.
  • the viewing angle control system is configured from the optical film 101 and the viewing side polarizing element 102.
  • the direction of the absorption axis of the polarizing element may be the vertical direction or the horizontal direction, but in a state where the liquid crystal display device is normally used, the direction of the side of the liquid crystal display device close to the vertical direction is the vertical direction or the horizontal direction.
  • the direction of the side of the liquid crystal display device that is close to the direction is called the horizontal direction.
  • the display element used in the image display device including the optical film of the present invention is not particularly limited, and examples thereof include a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as “EL”) display panel, and a plasma display panel. Be done. Of these, a liquid crystal cell or an organic EL display panel is preferable. That is, the image display device of the present invention is preferably a liquid crystal display device using a liquid crystal cell as a display element and an organic EL display device using an organic EL display panel as a display element.
  • EL organic electroluminescence
  • the liquid crystal display device which is an example of the image display device of the present invention
  • an embodiment having the above-mentioned light absorption anisotropic layer, a polarizing element, and a liquid crystal cell of the present invention is preferably mentioned. More preferably, it is a liquid crystal display device having the above-mentioned viewing angle control system of the present invention and a liquid crystal cell.
  • the viewing angle control system of the present invention among the polarizing elements provided on both sides of the liquid crystal cell, it is preferable to use the viewing angle control system of the present invention as the polarizing element on the front side or the barrier side, and the present invention is used as the polarizing element on the front side and the rear side.
  • the viewing angle control system of the present invention can also be used.
  • the liquid crystal cells constituting the liquid crystal display device will be described in detail below.
  • Some image display devices are thin and can be molded into a curved surface. Since the light absorption anisotropic layer used in the present invention is thin and easy to bend, it can be suitably applied to an image display device having a curved display surface. Further, some image display devices have a pixel density of more than 250 ppi and are capable of high-definition display. The light absorption anisotropic layer used in the present invention can be suitably applied to such a high-definition image display device without causing moire.
  • liquid crystal cell and the organic EL display device constituting the liquid crystal display device will be described in detail below.
  • the liquid crystal cell used in the liquid crystal display device is preferably VA (Vertical Element) mode, OCB (Optically Compensated Bend) mode, IPS (In-Plane-Switching) mode, or TN (Twisted Nematic) mode, but is limited thereto. It is not something that will be done.
  • VA Vertical Element
  • OCB Optically Compensated Bend
  • IPS In-Plane-Switching
  • TN Transmission Nematic
  • the rod-shaped liquid crystal molecules are substantially horizontally oriented when no voltage is applied, and are further twisted to 60 to 120 °.
  • the TN mode liquid crystal cell is most often used as a color TFT (Thin Film Transistor) liquid crystal display device, and has been described in many documents.
  • the rod-shaped liquid crystal molecules are substantially vertically oriented when no voltage is applied.
  • a VA mode liquid crystal cell in a narrow sense (1) in which rod-shaped liquid crystal molecules are oriented substantially vertically when no voltage is applied and substantially horizontally when a voltage is applied
  • a liquid crystal cell SID97, Voltage of technique. Papers (Proceedings) 28 (1997) 845 in which the VA mode is multi-domainized for the purpose of expanding the viewing angle.
  • Liquid crystal cells in a mode in which rod-shaped liquid crystal molecules are substantially vertically oriented when no voltage is applied and twisted and multi-domain oriented when a voltage is applied. (1998)) and (4) SURVIVAL mode liquid crystal cell (announced at LCD International 98). Further, it may be any of PVA (Patternized Vertical Alignment) type, optical alignment type (Optical Alignment), and PSA (Polymer-Stained Alignment). Details of these modes are described in Japanese Patent Application Laid-Open No. 2006-215326 and Japanese Patent Application Laid-Open No. 2008-538819.
  • the rod-shaped liquid crystal molecules are oriented substantially parallel to the substrate, and the liquid crystal molecules respond in a plane by applying an electric field parallel to the substrate surface.
  • the display is black when no electric field is applied, and the absorption axes of the pair of upper and lower polarizing plates are orthogonal to each other.
  • Methods for reducing leakage light when displaying black in an oblique direction and improving the viewing angle by using an optical compensation sheet are described in JP-A-10-54982, JP-A-11-202323, and JP-A-9-292522. It is disclosed in JP-A-11-133408, JP-A-11-305217, JP-A-10-307291, and the like.
  • Organic EL display device As the organic EL display device which is an example of the image display device of the present invention, for example, it is preferable to have a light absorption anisotropic layer, a ⁇ / 4 plate, and an organic EL display panel in this order from the visual recognition side.
  • the organic EL display device is a base material, an alignment layer provided as needed, a light absorption anisotropic layer, a barrier layer provided as needed, a ⁇ / 4 plate, and the organic EL display device from the visual recognition side. It is preferable that the organic EL display panels are arranged in this order.
  • the ⁇ / 4 plate is a retardation plate capable of mutually converting linearly polarized light and circularly polarized light or elliptically polarized light, and known ones can be used.
  • the organic EL display panel is a display panel configured by using an organic EL element formed by sandwiching an organic light emitting layer (organic electroluminescence layer) between electrodes (between a cathode and an anode).
  • the configuration of the organic EL display panel is not particularly limited, and a known configuration is adopted.
  • optical film having a light absorption anisotropic layer in which a dichroic substance was inclined or oriented was prepared so as to have the structure shown in the table shown in the subsequent stage. Typically, a method for producing the optical film used in Example 1 will be described.
  • the surface of the cellulose acylate film 1 (TAC substrate having a thickness of 40 ⁇ m; TG40 Fujifilm Co., Ltd.) was saponified with an alkaline solution, and the following coating solution 1 for forming an alignment layer was applied thereto with a wire bar.
  • the support on which the coating film was formed was dried with warm air at 60 ° C. for 60 seconds and further dried with warm air at 100 ° C. for 120 seconds to obtain an alignment layer coating film. Further, the alignment layer coating film was subjected to a rubbing treatment to form an alignment layer E, and a transparent support 1 with an alignment layer was obtained.
  • the film thickness was 0.5 ⁇ m.
  • composition liquid F1 for forming a photo-alignment layer ⁇ Preparation of composition liquid F1 for forming a photo-alignment layer> Each component was mixed so as to have the following composition, dissolved for 1 hour with stirring, and then filtered through a 0.45 ⁇ m filter to obtain a composition liquid F1 for forming a photoalignment layer.
  • Composition liquid F1 for forming a photo-alignment layer
  • the following photo-alignment material F1 0.3 parts by mass ⁇ 2-butoxyethanol 41.6 parts by mass ⁇ Dipropylene glycol monomethyl ether 41.6 parts by mass ⁇ Pure water 16.5 parts by mass ⁇ ⁇
  • composition liquid F1 for forming a photo-alignment layer was applied onto the alignment layer E of the transparent support 1 with an alignment layer and dried at 60 ° C. for 2 minutes to obtain a transparent support 1 with a photo-alignment layer coating film.
  • the obtained photo-alignment layer coating film is irradiated with ultraviolet rays (irradiation amount 2000 mJ / cm 2 ) from a polar angle of 15 ° using an ultraviolet exposure device to form a photo-alignment layer F, which is provided with a photo-alignment layer having a thickness of 0.03 ⁇ m.
  • a transparent support 1 was obtained.
  • the azimuth in the irradiation direction of the ultraviolet rays was set to coincide with the rubbing direction of the alignment layer E.
  • the photoalignment material F1 corresponds to an azo compound.
  • the following composition for forming a light absorption anisotropic layer P1 was applied with a wire bar on the light alignment layer F of the produced transparent support 1 with a light alignment layer to form a coating layer P1.
  • the light absorption anisotropic layer forming composition P1 corresponds to the above liquid crystal composition. Then, the coating layer P1 was heated at 120 ° C. for 30 seconds, and the coating layer P1 was cooled to 100 ° C.
  • the light absorption anisotropic layer P1- A was produced to obtain an optical film.
  • a coating layer P1 was prepared in the same manner as above on the light alignment layer F of the transparent support 1 with a photoalignment layer prepared in the same manner, and the prepared coating layer P1 was heated at 120 ° C. for 30 seconds to be coated. The layer P1 is cooled to 70 ° C.
  • a light absorption anisotropic layer P1-B was prepared in the above, and an optical film was obtained.
  • This slide glass was heated for 5 seconds at a temperature 5 ° C. higher than the liquid-liquid crystal phase transition temperature using a hot plate.
  • the incident direction was changed in the plane including the normal line of the optical film and the central axis of the transmittance.
  • the transmittance T3-B of the optical film having the light absorption anisotropic layer P1-B was measured.
  • the transmittance T4 of the transparent support 1 with the photoalignment layer was measured.
  • T3-A / T4 and T3-B / T4 were calculated, the angles at which these values were maximized were set to ⁇ A and ⁇ B, respectively, and the absolute value ⁇ of the difference between ⁇ A and ⁇ B was calculated.
  • was evaluated based on the following criteria. Note that ⁇ is considered to be a parameter related to the temperature stability of the tilt angle, and it is preferable that ⁇ is small in order to control the tilt angle.
  • Examples 1 to 9 and Comparative Examples 1 to 2 Each of Examples 2 to 9 and Comparative Examples 1 and 2 is the same as in Example 1 except that the composition of the alignment layer and the composition for forming the light absorption anisotropic layer P1 is changed to the composition shown in Table 1 below.
  • An optical film was obtained. Using the obtained optical film and composition, the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 1.
  • the alignment layer column is "E” in Table 1, it means that the photoalignment layer F was not formed and the light absorption anisotropic layer was formed on the alignment layer E of the transparent support 1 with the alignment layer. ..
  • the alignment layer column is "G” in Table 1, it means that a light absorption anisotropic layer is formed on the alignment layer G of the transparent support 2 with the orientation layer below.
  • the glass substrate manufactured by Central Glass Co., Ltd., blue plate glass, size 300 mm ⁇ 300 mm, thickness 1.1 mm
  • the following alignment film forming composition G is applied onto a glass substrate after drying using a # 4 bar, and the applied alignment film forming composition 1 is dried at 80 ° C. for 15 minutes and then 1 at 250 ° C. After heating for hours, a coating film was formed on the glass substrate.
  • the coating film was subjected to a rubbing treatment to form an alignment layer G, and a transparent support 2 with an alignment layer was obtained.
  • the following SE-130 corresponds to polyimide.
  • composition of composition G for forming an alignment film ⁇ ⁇ SE-130 (Product name, manufactured by Nissan Chemical Industries, Ltd.) 2.0 parts by mass ⁇ N-methylpyrrolidone 98.0 parts by mass ⁇ ⁇
  • each repeating unit indicates the content (mass%) of each repeating unit with respect to all the repeating units of each polymer.
  • the "tilt angle” (the angle formed by the central axis of transmittance of the light absorption anisotropic layer and the normal direction of the optical film surface) is shown as measured by the above method.
  • the column “total content of dichroic substances” shows the total content of dichroic substances with respect to the solid content of the composition for forming a light absorption anisotropic layer.
  • barrier layer B1 The following composition for forming a barrier layer B1 was applied on the light absorption anisotropic layer P1 produced in Example 3 with a wire bar, and dried at 80 ° C. for 5 minutes to form a barrier coating layer B1. Next, the barrier coating layer B1 is irradiated with an LED lamp (center wavelength 365 nm) in an environment of an oxygen concentration of 100 ppm and a temperature of 60 ° C. under irradiation conditions of an illuminance of 150 mW / cm 2 for 2 seconds to obtain light absorption anisotropy. A barrier layer B1 was formed on the layer P1. The thickness of the barrier layer B1 was 1.0 ⁇ m.
  • composition of composition B1 for forming a barrier layer ⁇ -The above-mentioned modified polyvinyl alcohol PVA-1 3.80 parts by mass-IRGACURE2959 0.20 parts by mass-Water 70.00 parts by mass-Methanol 30.00 parts by mass ⁇ ⁇
  • a polarizing plate 1 having a thickness of 8 ⁇ m and an exposed one side of the polarizing element was prepared.
  • the exposed surface of the polarizing plate 1 and the surface of the light absorption anisotropic layer of the light absorption anisotropic film of Example 3 produced above are corona-treated and bonded using the following PVA adhesive 1.
  • the laminated body A1 was produced.
  • the light absorption anisotropic layer was bonded so that the angle formed by the direction in which the central axis of the transmittance was orthographically projected onto the film surface and the absorption axis of the polarizing element was 80 °.
  • PVA Adhesive 1 20 parts of methylol melamine at 30 ° C. with respect to 100 parts of a polyvinyl alcohol-based resin containing an acetoacetyl group (average degree of polymerization: 1200, degree of saponification: 98.5 mol%, degree of acetoacetylation: 5 mol%). An aqueous solution prepared by dissolving in pure water under temperature conditions and adjusting the solid content concentration to 3.7% was prepared to obtain PVA adhesive 1.
  • An acrylate-based polymer was prepared according to the following procedure. 95 parts by weight of butyl acrylate and 5 parts by weight of acrylic acid are polymerized by a solution polymerization method in a reaction vessel equipped with a cooling tube, a nitrogen introduction tube, a thermometer and a stirrer to achieve an average molecular weight of 2 million and a molecular weight distribution (Mw /). An acrylate-based polymer A1 of Mn) 3.0 was obtained.
  • acrylate-based polymer A1 100 parts by mass
  • Coronate L 75% by mass ethyl acetate solution of trimethylol propane adduct of tolylene diisocyanate, number of isocyanate groups in one molecule: 3, Nippon Polyurethane Industry Co., Ltd.
  • silane coupling agent KBM-403 silane coupling agent KBM-403 (Shinetsu Chemical Industry Co., Ltd.) (0.2 part by mass) are mixed, and finally the total solid content concentration is 10.
  • Ethyl acetate was added so as to be in mass%, and a pressure-sensitive adhesive forming composition was prepared.
  • This composition was applied to a separate film surface-treated with a silicone-based release agent using a die coater and dried in an environment of 90 ° C. for 1 minute to obtain an acrylate-based adhesive sheet (adhesive sheet 1). ..
  • the film thickness was 25 ⁇ m and the storage elastic modulus was 0.1 MPa.
  • the image display device B1 produced by the above procedure was fixed in an upright state so that the screen of the display was perpendicular to the ground. Further, a glass plate having a thickness of 2 mm was installed at an angle perpendicular to the screen of the display and the ground, opposite to the direction in which the central axis of the transmittance of the light absorption anisotropic layer faces. Furthermore, when the room was set to a dark room, the reflection of the image on the glass with the sample image displayed on the display and the brightness of the image when viewed from the central axis direction of the transmittance were visually evaluated in the dark room. , The reflection on the glass was not visually recognized, and a bright image was visually recognized when viewed from the direction of the central axis of the transmittance.
  • Liquid crystal display 101
  • Optical film 102
  • Visual-viewing side polarizing element 103
  • Liquid crystal cell 104
  • Backlight-side polarizing element 105
  • Backlight 1 Barrier layer
  • Light absorption anisotropic layer 3
  • Orientation liquid crystal layer 4
  • Orientation layer 5 TAC film 9
  • Viewing angle control system 20
  • Light absorption anisotropic layer 21
  • Polarizer 22
  • Transmission center axis direction (polar angle ⁇ ) 23 Normal of the light absorption anisotropic layer 24
  • Absorption axis direction of the stator Absorption axis direction of the stator

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、所望の方向からは明るく見やすい画像を提供し、それ以外の方向からは画像の光を遮断し、窓ガラス等への映り込みを十分に制限できる視角制御システム、表示装置、及び、そのための光学フィルムを提供することを課題とする。本発明の光学フィルムは、サーモトロピック液晶性化合物、二色性物質、及び、界面改良剤を含有する液晶組成物から形成される光吸収異方性層を含む光学フィルムであって、上記二色性物質の含有量が、上記液晶組成物の全固形分質量に対して、10.0質量%以上であり、上記光吸収異方性層の透過率中心軸と上記光学フィルム表面の法線方向とのなす角θが、5°以上45°未満である。

Description

光学フィルム、視角制御システム及び画像表示装置
 本発明は、光学フィルム、視角制御システム及び画像表示装置に関する。
 カーナビ等の車載用ディスプレイを用いる場合、表示画面から上方向に出射される光がフロントガラスなどに映り込み、運転時に妨げになるという問題がある。このような問題を解決する目的で、例えば、特許文献1には、面内に吸収軸を有する第1偏光子と法線方向に対して有機二色性色素の吸収軸を0°~45°に配向させた第2偏光子(光吸収異方性層)を併用する方法が提案されている。ここで、第1偏光子は、液晶表示装置における視認側の偏光子を使用できる。この方法では、特定方向への画像からの光のみを透過させ、それ以外の角度への光の透過を遮断することにより、所望の方向の観察者からは画像を観察することはできるが、それ以外の、例えば窓ガラスのある方向からは画像が映らないようにすることができる。
特許第4902516号公報
 ところが、上記の視角制御方法は、画像を見えるようにしたい方向から観察した時の光透過率が不足して十分な視認性が得られない一方で、それ以外の方向から観察した時、すなわち画面が見えなくなるようにしたい方向の光透過率が十分に低下していないため、画面を十分に遮蔽しきれない問題が依然としてある。
 例えば、上記のような従来の視角制御方法では、車載用途(車載用ディスプレイなどへの適用)において、ドライバー又は助手席の人員の方向など、画面を正確に素早く視認して情報を得たい方向からは画面が見えづらく、加えて、窓ガラスへの映り込みを無くしたい方向からは画面がわずかに見えてしまい、映り込み防止効果が不十分になってしまう。上記状態は、車載用ディスプレイシステムとしては、安全上好ましくなかった。
 そこで本発明は、所望の方向からは明るく見やすい画像を提供し、それ以外の方向からは画像の光を遮断し、窓ガラス等への映り込みを十分に制限できる視角制御システム、表示装置、及び、そのための光学フィルムを提供することを課題とする。
 本発明者らは、以下の構成により上記課題を達成することができることを見出した。
 〔1〕 サーモトロピック液晶性化合物、二色性物質、及び、界面改良剤を含有する液晶組成物から形成される光吸収異方性層を含む光学フィルムであって、
 上記二色性物質の含有量が、上記液晶組成物の全固形分質量に対して、10.0質量%以上であり、
 上記光吸収異方性層の透過率中心軸と上記光学フィルム表面の法線方向とのなす角θが、5°以上45°未満である、光学フィルム。
 〔2〕 上記二色性物質の含有量が、上記液晶組成物の全固形分質量に対して、15.0質量%以上である、〔1〕に記載の光学フィルム。
 〔3〕 後述する式(T)で定義される混合液晶低下温度ΔTLが、0.1~10.0℃である、〔1〕又は〔2〕に記載の光学フィルム。
 〔4〕 上記光吸収異方性層上に、アゾ化合物、ポリビニルアルコール又はポリイミドを含有する配向層をさらに有する、〔1〕~〔3〕のいずれか1つに記載の光学フィルム。
 〔5〕 〔1〕~〔4〕のいずれか1つに記載の光学フィルムと、偏光子とを有する視角制御システムであって、
 上記偏光子が、面内に吸収軸を有し、
 上記光学フィルムの光吸収異方性層の透過率中心軸を上記光学フィルム面に正射影した方向と、上記偏光子の吸収軸とのなす角φが、0°以上85°未満、95°超265°未満、又は、275°超360°以下である視角制御システム。
 〔6〕 表示パネルの少なくとも一方の主面に、〔5〕に記載の視角制御システムが配置された画像表示装置。
 〔7〕 上記偏光子に対し、視認側に上記光吸収異方性層が配置される、〔6〕に記載の画像表示装置。
 本発明によれば、所望の方向からは明るく見やすい画像を提供し、それ以外の方向からは画像の光を遮断し窓ガラスへの映り込みを十分に制限できる視角制御システム、表示装置、及び、そのための光学フィルムを提供できる。
 より具体的には、本発明の光学フィルムは視角を精密に制御でき、車載用ディスプレイなどに使用した際に、窓ガラス等への画像の映り込みを十分に抑制しながら、ドライバーなどへは明るく視認しやすい画像を提供することができる。
図1は、本発明の液晶表示装置の実施形態の例を示す模式的な断面図である。 図2は、本発明の光学フィルムを用いた視角制御システムの実施形態の例を示す模式的な断面図である。 図3は、本発明の画像表示装置内における、光吸収異方性層の透過率中心軸の方向と、偏光子の吸収軸の位置関係を示す図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、平行、直交とは厳密な意味での平行、直交を意味するのではなく、平行又は直交から±5°の範囲を意味する。
 本明細書において、液晶組成物、液晶性化合物とは、硬化等により、もはや液晶性を示さなくなったものも概念として含まれる。
 本明細書において、可視光とは、特段の断りがない限り、波長が380~800nmの電磁波を意味する。
 本明細書において、「(メタ)アクリレート」は、「アクリレート」又は「メタクリレート」を表す表記であり、「(メタ)アクリル」は、「アクリル」又は「メタクリル」を表す表記であり、「(メタ)アクリロイル」は、「アクリロイル」又は「メタクリロイル」を表す表記である。
 本明細書において、液晶組成物の固形分とは、液晶組成物中の溶媒を除去した、光吸収異方性層を形成し得る成分を意味し、その性状が液体状であっても固形分とする。
 本明細書で用いられる置換基Wは、以下の基を表す。
 置換基Wとしては、例えば、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のシクロアルキル基、炭素数1~10のアルキルカルボニル基、炭素数1~10のアルキルオキシカルボニル基、炭素数1~10のアルキルカルボニルオキシ基、炭素数1~10のアルキルアミノ基、アルキルアミノカルボニル基、炭素数1~20のアルコキシ基、炭素数1~20のアルケニル基、炭素数1~20のアルキニル基、炭素数1~20のアリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル又はアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル又はアリールスルフィニル基、アルキル又はアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール又はヘテロアリールアゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH))、ホスファト基(-OPO(OH))、スルファト基(-OSOH)、その他の公知の置換基などが挙げられる。
 なお、置換基の詳細については、特開2007-234651号公報の[0023]段落に記載される。
 また、置換基Wは、下記式(W1)で表される基であってもよい。
Figure JPOXMLDOC01-appb-C000001
 式(W1)中、LWは単結合又は2価の連結基を表し、SPWは2価のスペーサー基を表し、Qは後述の式(LC)におけるQ1又はQ2を表し、*は結合位置を表す。
 LWが表す2価の連結基としては、-O-、-(CH-、-(CF-、-Si(CH-、-(Si(CHO)-、-(OSi(CH-(gは1~10の整数を表す。)、-N(Z)-、-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)-C(Z’)-、-C(O)-、-OC(O)-、-C(O)O-、-O-C(O)O-、-N(Z)C(O)-、-C(O)N(Z)-、-C(Z)=C(Z’)-C(O)O-、-O-C(O)-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)=C(Z’)-C(O)N(Z”)-、-N(Z”)-C(O)-C(Z)=C(Z’)-、-C(Z)=C(Z’)-C(O)-S-、-S-C(O)-C(Z)=C(Z’)-、-C(Z)=N-N=C(Z’)-(Z、Z’、Z”は独立に、水素、炭素数1~4のアルキル基、シクロアルキル基、アリール基、シアノ基、又は、ハロゲン原子を表す。)、-C≡C-、-N=N-、-S-、-S(O)-、-S(O)(O)-、-(O)S(O)O-、-O(O)S(O)O-、-SC(O)-、及び、-C(O)S-、などが挙げられる。LWは、これらの基を2つ以上組み合わせた基であってもよい(以下「L-C」とも省略する)。
 SPWが表す2価のスペーサー基としては、炭素数1~50の直鎖、分岐若しくは環状のアルキレン基、又は、炭素数1~20複素環基が挙げられる。
 上記アルキレン基、複素環基の炭素原子は、-O-、-Si(CH-、-(Si(CHO)-、-(OSi(CH-(gは1~10の整数を表す。)、-N(Z)-、-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)-C(Z’)-、-C(O)-、-OC(O)-、-C(O)O-、-O-C(O)O-、-N(Z)C(O)-、-C(O)N(Z)-、-C(Z)=C(Z’)-C(O)O-、-O-C(O)-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)=C(Z’)-C(O)N(Z”)-、-N(Z”)-C(O)-C(Z)=C(Z’)-、-C(Z)=C(Z’)-C(O)-S-、-S-C(O)-C(Z)=C(Z’)-、-C(Z)=N-N=C(Z’)-(Z、Z’、Z”は独立に、水素、炭素数1~4のアルキル基、シクロアルキル基、アリール基、シアノ基、又は、ハロゲン原子を表す。)、-C≡C-、-N=N-、-S-、-C(S)-、-S(O)-、-SO-、-(O)S(O)O-、-O(O)S(O)O-、-SC(O)-、及び、-C(O)S-、これらの基を2つ以上組み合わせた基で置換されていてもよい(以下「SP-C」とも省略する)。
 上記アルキレン基の水素原子、及び、複素環基の水素原子は、ハロゲン原子、シアノ基、-Z、-OH、-OZ、-COOH、-C(O)Z、-C(O)OZ、-OC(O)Z、-OC(O)OZ、-NZ’、-NZC(O)Z’、-NZC(O)OZ’、-C(O)NZ’、-OC(O)NZ’、-NZC(O)NZ’OZ’’、-SH、-SZ、-C(S)Z、-C(O)SZ、-SC(O)Z、で置換されていてもよい(以下、「SP-H」とも省略する)。ここで、Z、Z’は炭素数1~10のアルキル基、ハロゲン化アルキル基、-L-CL(Lは単結合又は2価の連結基を表す。2価の連結基の具体例は、上述したLW及びSPWと同じである。CLは架橋性基を表し、後述の式(LC)におけるQ1又はQ2で表される基が挙げられ、後述の式(P1)~(P30)で表される架橋性基が好ましい。)を表す。
[光学フィルム]
 本発明の光学フィルムは、サーモトロピック液晶性化合物、二色性物質、及び、界面改良剤を含有する液晶組成物から形成される光吸収異方性層を含む光学フィルムであって、二色性物質が、液晶組成物の全固形分質量に対して、10.0質量%以上であり、
 光吸収異方性層の透過率中心軸と光学フィルム表面の法線方向とのなす角θが、5°以上45°未満である。
 本発明の光学フィルムを用いた視角制御システム及び表示装置によれば、所望の方向からは明るく見やすい画像を提供し、それ以外の方向からは画像の光を遮断し窓ガラスへの映り込みを十分に制限できる機序は必ずしも明らかではないが、本発明者らは以下のように推測している。
 本発明の光学フィルムは、光学フィルムが含む光吸収異方性層が、サーモトロピック液晶性化合物、二色性物質、及び、界面改良剤を含有することで、二色性物質の配向方向を制御し、所望の方向から明るく見やすい画像を提供し、それ以外の方向からは画像の光を遮断し、窓ガラスへの映り込みを十分に制限できる。また、二色性物質が、液晶組成物の全固形分質量に対して、10.0質量%以上であると、上記効果をより高めることができると考えられる。
 なお、本発明の光学フィルムを用いた視角制御システム及び表示装置によって、所望の方向からは明るく見やすい画像を提供し、それ以外の方向からは画像の光を遮断し窓ガラスへの映り込みを十分に制限できることを、「本発明の効果」ともいう。
 以下、光学フィルムが含み得る層について説明する。
[光吸収異方性層]
 本発明において光吸収異方性層は、サーモトロピック液晶性化合物、二色性物質、及び、界面改良剤を含有する液晶組成物から形成され、二色性物質の含有量が、液晶組成物の全固形分質量に対して、10.0質量%以上である。
 また、本発明において光吸収異方性層は、光吸収異方性層の透過率中心軸と光学フィルム表面の法線方向とがなす角θが、5°以上45°未満である。なお、以下、光吸収異方性層の透過率中心軸と光学フィルム表面の法線方向とがなす角のことを「チルト角」ともいう。
 θを上記範囲にすることにより、画像の観察者方向への光透過率を高めて画像視認性を向上し、同時にそれ以外の方向への透過率を低くして窓ガラス等への映り込みを抑制できる。θは、5°以上35°未満が好ましい。
 光吸収異方性層の光透過方向を制御するには、可視光領域に吸収を有する二色性物質を所望の方向に配向させる態様が好ましく、液晶性化合物の配向を利用して二色性物質を配向させる態様が更に好ましい。一例として、少なくとも一種の二色性物質をフィルム法線方向に対して傾斜配向させた光吸収異方性層が挙げられる。
 光吸収異方性層の二色性物質がフィルム法線方向(光学フィルム表面の法線方向)から傾斜配向していることは、透過率が最大となる軸(以下、「透過率中心軸」ともいう)の角度θ(以下、「チルト角θ」ともいう)を測定することで確かめられる。具体的には、二色性物質の吸収域における波長(例えば可視波長領域。具体的には、波長650nmが好ましい。)を用いて、光吸収異方性層の透過率中心軸をフィルム面に正射影した方向と平行な偏光を光学フィルムに入射し、サンプルを法線方向(すなわち、θz=0°)から面内(すなわち、θz=90°及び-90°)まで傾けて透過率を測定する(T3とする)。具体的には、0.5°ピッチで傾けて透過率を測定する。同様に、光吸収異方性層を形成していない光学フィルムの透過率を測定する(T4とする)。T3/T4を算出し、この値が最大となるθzを求める。上記T3/T4が最大となるθzが0°(法線)と一致しなければ、二色性物質が光学フィルム法線方向から傾斜配向していると判断できる。つまり、光吸収異方性層の透過率中心軸が光学フィルム表面の法線方向に対して傾斜していると判断でき、上記T3/T4が最大となるθzが光吸収異方性層の透過率中心軸と光学フィルム表面の法線方向とのなす角に該当する。
 なお、上記透過率中心軸とは、光吸収異方性膜の主面の法線方向に対する傾き角度(極角)と傾き方向(方位角)とを変化させて透過率を測定した際に最も透過率の高い方向を意味する。上述したように、光吸収異方性層の透過率中心軸と光学フィルム表面の法線方向とのなす角を測定する際には、まず、透過率中心軸が光吸収異方性膜の表面の法線に対して傾いている方向を最初に探す。より具体的には、光吸収異方性膜のサンプルを例えば4cm四方の正方形に切り出し、得られたサンプルを、光源側に直線偏光子を配置した光学顕微鏡(例えば、株式会社ニコン製、製品名「ECLIPSE E600 POL」)のサンプル台にセットする。次いで、マルチチャンネル分光器(例えば、Ocean Optics社製、製品名「QE65000」)を用いて、サンプル台を時計周りに1°ずつ回転しながら、650nmの波長におけるサンプルの吸光度をモニターし、吸光度が最大となる方向を確認する。サンプルの面内におけるこの吸光度が最大となる方向に基づいて、上記角度θを求める。
 二色性物質を所望の方向に配向する技術は、二色性物質を利用した偏光子の作製技術や、ゲスト-ホスト液晶セルの作製技術などを参考にすることができる。例えば、特開平11-305036公報や特開2002-90526号公報に記載の二色性偏光素子の作製方法、及び特開2002-99388号公報や特開2016-27387公報に記載のゲストホスト型液晶表示装置の作製方法で利用されている技術を、本発明に用いられる光吸収異方性層の作製にも利用することができる。
 例えば、ゲストホスト型液晶セルの技術を利用して、ホスト液晶の配向に付随させて、二色性物質を上記のような所望の配向にすることができる。具体的には、ゲストとなる二色性物質と、ホスト液晶となる棒状液晶性化合物とを混合し、ホスト液晶を配向させるとともに、その液晶分子の配向に沿って二色性物質の分子を配向させて、その配向状態を固定することで、本発明に用いられる光吸収異方性層を作製することができる。
 本発明に用いられる光吸収異方性層の光吸収特性の使用環境による変動を防止するために、二色性物質の配向を、化学結合の形成によって固定するのが好ましい。例えば、ホスト液晶、二色性物質、又は所望により添加される重合性成分の重合を進行させることで、配向を固定することができる。
 また、ポリマーフィルム中に二色性物質を浸透させて、ポリマーフィルム中のポリマー分子の配向に沿って二色性物質を配向させることで、本発明に用いられる光吸収異方性層に要求される光吸収特性を満足するポリマーフィルムを作製することができる。具体的には、二色性物質の溶液をポリマーフィルムの表面に塗布して、フィルム中に浸透させて、作製することができる。二色性物質の配向は、ポリマーフィルム中のポリマー鎖の配向、その性質(ポリマー鎖又はそれが有する官能基等の化学的及び物理的性質)、塗布方法、などによって調整することができる。この方法の詳細については、特開2002-90526号公報に記載されている。
 本発明に用いられる光吸収異方性層は、透過軸中心軸から30°傾けた透過率(波長650nmにおける透過率)が60%以下であることが好ましく、50%以下であることがより好ましく、45%以下であることが更に好ましい。これにより、透過率中心軸と透過率中心軸からずれた方向の照度のコントラストを高めることが可能となり、視角を十分に狭くすることができる。
 本発明に用いられる光吸収異方性層は、透過軸中心軸の透過率(波長650nmにおける透過率)が65%以上であることが好ましく、75%以上であることがより好ましく、85%以上であることが更に好ましい。これにより、画像表示装置の視角中心の照度を上げて、視認性を良好とすることができる。
 また、正面方向の色味をニュートラルにできる点で、光吸収異方性層の420nmにおける配向度が0.93以上を満たすことが好ましい。
 二色性物質を含む光学フィルムの色味制御については、通常、フィルムに含まれる二色性物質の添加量を調整することで行う。しかし、正面と斜め方向の色味を共にニュートラルの状態にすることは、二色性物質の添加量調整だけではできないことがある。正面と斜め方向の色味をニュートラルの状態にできない要因として、420nmの配向度が低いことが挙げられ、420nmの配向度を高めることで、正面及び斜め方向の色味をニュートラルにすることができる。
 なお、ここで、波長λnmの配向度とは、本明細書において以下の定義に従うものとする。
 AxoScan OPMF-1(オプトサイエンス社製)を用いて、測定の際に、光吸収異方性層の法線方向に対する角度である極角を0~90°まで5°毎に変更しつつ、各極角における波長λnmでのミュラーマトリックスを実測し、最小透過率(Tmin)を導出する。次に、表面反射の影響を除去した後、Tminが最も高くなる極角におけるTminをTm(0)、Tminの最も高い極角から更に40°極角を大きくした方向のTminをTm(40)とする。得られたTm(0)及びTm(40)から下記式により吸光度を算出し、A(0)及びA(40)を算出する。
 A=-log(Tm)
 ここで、Tmは透過率、Aは吸光度を表す。
 算出したA(0)及びA(40)より、下記式で定義された波長λnmにおける配向度Sを算出する。
 S=(4.6×A(40)-A(0))/(4.6×A(40)+2×A(0))
 なお、本明細書において、「光吸収異方性層の配向度」という場合は、単に光吸収異方性層に含まれる化合物等の配向の度合いをいい、上記測定方法によるものに限られない。
 また、本発明の光異方性吸収層は、上記透過軸中心軸から30°傾けた透過率、及び、透過軸中心軸の透過率を満たすように、透過軸中心軸の異なる複数の光異方性吸収層を積層若しくは位相差層を積層してもよい。透過軸中心軸の異なる複数の光異方性吸収層を積層することにより、透過率が高い領域の幅を調整することができる。また、位相差層を積層する場合は、位相差値及び光軸方向を制御することで、透過・遮光性能を制御することができる。位相差層としては、正のAプレート、負のAプレート、正のCプレート、負のCプレート、Bプレート、及び、Oプレートなどを用いることができる。位相差層の厚みは、視角制御システムを薄型化する観点で、光学特性、機械物性、及び、製造適性を損ねない限りは薄いことが好ましく、具体的には、1~150μmが好ましく、1~70μmがより好ましく、1~30μmが更に好ましい。
〔液晶組成物〕
 本発明の光異方性吸収層の形成に用いる液晶組成物は、界面改良剤、サーモトロピック液晶性化合物、及び、二色性物質を含有する。また、本発明の液晶組成物は、重合開始剤、重合性化合物、及び、添加剤を含んでいてもよい。
 以下において、本発明の液晶組成物に含まれる成分及び含まれ得る成分について説明する。
<界面改良剤>
 界面改良剤は、液晶組成物を用いて光異方性吸収層を形成する際に、光吸収異方性層の少なくとも一方の表面に濃縮されやすい化合物が好ましく、いわゆる界面活性剤が好ましい。界面改良剤(好ましくは、界面活性剤)としては、分子内に疎水性基を有する化合物がより好ましく、分子内に親水性基及び疎水性基を有する化合物が好ましい。界面改良剤は、低分子化合物であっても高分子化合物であってもよいが、高分子化合物が好ましく、疎水性基を有する繰り返し単位を有する高分子化合物がより好ましく、疎水性基を有する繰り返し単位と親水性基を有する繰り返し単位とを有する高分子化合物が更に好ましい。
 疎水性基としては、フッ素原子又はケイ素原子を有する基が好ましく、パーフルオロアルキル基(-(CF-CF)又はパーフルオロアルキレン基(-(CF-)が好ましい。パーフルオロアルキル基又はパーフルオロアルキレン基中の炭素原子の数は特に制限されず、1~10が好ましく、3~8がより好ましい。なお、パーフルオロアルキレン基の一方の結合部分は、水素原子と結合していることも好ましい。すなわち、疎水性基としては、-(CF-Z(Zは水素原子又はフッ素原子を表す)で表される基も好ましい。
 親水性基としては、カルボン酸基、及び、水酸基等が挙げられる。
 界面改良剤は、式(A)で表される繰り返し単位を有することが好ましい。式(A)で表される繰り返し単位は、疎水性基を有する繰り返し単位に該当する。
Figure JPOXMLDOC01-appb-C000002
 式(A)中、Rは、水素原子又はアルキル基を表す。アルキル基としては、炭素数1~3が好ましく、1がより好ましい。
 Lは、単結合、又は、2価の連結基を表す。2価の連結基としては、上述したLWが表す2価の連結基で例示した基が挙げられる。
 Xは、疎水性基を表す。疎水性基の定義は、上述した通りである。
 式(A)で表される繰り返し単位の含有量は特に制限されないが、界面改良剤の全繰り返し単位に対して、5.0~95.0質量%が好ましく、10.0~90.0質量%がより好ましい。
 界面改良剤は、式(B)で表される繰り返し単位を有することが好ましい。式(B)で表される繰り返し単位は、親水性基を有する繰り返し単位に該当する。
Figure JPOXMLDOC01-appb-C000003
 式(B)中、Rは、水素原子又はアルキル基を表す。アルキル基としては、炭素数1~3が好ましく、1がより好ましい。
 Lは、単結合、又は、2価の連結基を表す。2価の連結基としては、上述したLWが表す2価の連結基で例示した基が挙げられる。
 Yは、親水性基を表す。親水性基の定義は、上述した通りである。
 式(B)で表される繰り返し単位の含有量は特に制限されないが、界面改良剤の全繰り返し単位に対して、5.0~95.0質量%が好ましく、10.0~90.0質量%がより好ましい。
 界面改良剤は、上述した式(A)で表される繰り返し単位及び式(B)で表される繰り返し単位以外の他の繰り返し単位を有していてもよい。
 他の繰り返し単位としては、例えば、芳香環を有する繰り返し単位が挙げられる。芳香環を有する繰り返し単位は、メソゲン基を有することが好ましい。メソゲン基については、後段で詳述する。
 界面改良剤としては、特に制限されないが、高分子系界面改良剤、低分子系界面改良剤を使用でき、特開2011-237513号公報の[0253]~[0293]段落に記載の化合物を用いることができる。
 また、界面改良剤としては、特開2007-272185号公報の[0018]~[0043]段落等に記載のフッ素(メタ)アクリレート系ポリマーも用いることができる。
 また、他の界面改良剤としては、特開2007-069471号公報の[0079]~[0102]段落の記載に記載された化合物、特開2013-047204号公報に記載された式(4)で表される重合性液晶化合物(特に[0020]~[0032]段落に記載された化合物)、特開2012-211306号公報に記載された式(4)で表される重合性液晶化合物(特に[0022]~[0029]段落に記載された化合物)、特開2002-129162号公報に記載された式(4)で表される液晶配向促進剤(特に[0076]~[0078]段落及び[0082]~[0084]段落に記載された化合物)、並びに、特開2005-099248号公報に記載された式(4)、(II)及び(III)で表される化合物(特に[0092]~[0096]段落に記載された化合物)、特許第4385997号公報の[0013]~[0059]段落に記載の化合物、特許第5034200号公報の[0018]~[0044]段落に記載の化合物、及び、特許第4895088号公報の[0019]~[0038]段落に記載の化合物等が挙げられる。上記で列挙した界面改良剤は、複数を組み合わせて併用することもできる。
 界面改良剤としては、下記式(T)で定義される混合液晶低下温度ΔTLが、0.1~10.0℃となるような界面改良剤であることが好ましく、0.1~7.0℃となるような界面改良剤がより好ましく、0.1~3.5℃となるような界面改良剤が更に好ましい。
  ΔTL = T1 - T2  (T)
 式(T)中、T1は、界面改良剤を含まない液晶組成物の液体-液晶相転移温度を表し、T2は、界面改良剤を含まない液晶組成物100質量部に対し、界面改良剤を10.0質量部混合した混合物の液体-液晶相転移温度を表す。
 より具体的には、T1は、光吸収異方性層を形成するために用いる液晶組成物中から界面改良剤を除いてなる組成物を用いて測定される、液体-液晶相転移温度に該当する。なお、上記液晶組成物の液体-液晶相転移温度は、液晶組成物中の溶媒を除去して得られる固形分を用いて測定する。つまり、上記液晶組成物から溶媒を除去して、得られる固形分を加熱して液体状態とし、その後、降温処理を施して、液体から液晶相に転移する温度を液体-液晶相転移温度として測定する。
 また、T2に関しては、上記T1の測定に用いた界面改良剤を除いてなる組成物100質量部に対して、所定の界面改良剤を10.0質量部混合して得られる混合物を用いて、上記T1と同様の手順に従って、測定される液体-液晶相転移温度に該当する。
 上記混合液晶低下温度ΔTLの測定方法の具体的な手順は、後述する実施例欄にて示す。
 本発明の液晶組成物(特に、上記混合液晶低下温度ΔTLが上記範囲である液晶組成物)によれば、熟成温度によるチルト角変動が少なく面内均一性により優れ、車載用ディスプレイなどに使用した際に、窓ガラス等への画像の映り込みを十分に抑制しながら、ドライバーなどへは明るく視認しやすい画像を提供することができる。
 この理由の詳細は未だ明らかになっていないが、本発明者らは以下の理由によるものと推測している。
 本発明の光吸収異方性層は、二色性物質がフィルム法線方向に対して傾斜配向している。上述のように、画像を見えるようにしたい方向からの良好な視認性と、それ以外の方向からの良好な遮光性を両立するためには、光吸収異方性層に十分な吸収を持たせることが好ましく、後述する二色性物質の含有量は、液晶組成物の全固形分質量に対して、10.0質量%以上である。
 このような光吸収異方性層では、面内におけるわずかなチルト角の差がムラとして視認されやすいため、液晶性化合物及び二色性物質の空気界面近傍のチルト角制御が必要である。
 フィルム上に液晶組成物を塗布・配向して光吸収異方性層を形成する場合、空気界面近傍におけるチルト角は、界面改良剤や温度等の影響を受け、チルト角が変動することがある。特に、高濃度の二色性物質を含む液晶組成物を配向させた光吸収異方性層においては、このような空気界面近傍のチルト角の変動は、光異方性吸収層全体の透過率中心軸の方向に大きく影響するため、空気界面近傍におけるチルト角の変動は小さいことが好ましいと考えられる。
 界面改良剤は光吸収異方性層の空気界面近傍に偏在すると考えられる。液晶組成物は、温度や液晶相転移により、界面改良剤と、液晶性化合物及び二色性物質との相溶/非相溶の状態が変化する場合があり、この変化により空気界面近傍のチルト角θが変動すると考えられる。そのため、上記ΔTLが小さいことは、液晶性化合物及び二色性物質と界面改良剤との親和性が低く、温度による相溶/非相溶変化が小さいため、温度に対してチルト角が変動しにくく、チルト角の制御が容易であると推定している。
 界面改良剤の含有量は、液晶組成物の全固形分(100質量%)に対して、本発明の効果がより優れる点から、0.005~15質量%が好ましく、0.01~5質量%がより好ましく、0.015~3質量%が更に好ましい。界面改良剤を複数併用する場合は、複数の界面改良剤の合計量が上述の範囲にあることが好ましい。
<サーモトロピック液晶性化合物>
 本発明の光異方性吸収層の形成に用いる液晶組成物は、サーモトロピック液晶性化合物を含む。サーモトロピック液晶性化合物とは、温度変化によって液晶相への転移を示す液晶性化合物である。サーモトロピック液晶性化合物は、ネマチック相及びスメクチック相のいずれを示してもよいが、光吸収異方性層の配向度がより高くなり、且つ、ヘイズがより観察され難くなる(ヘイズがより良好になる)理由から、少なくともネマチック相を示すことが好ましい。
 ネマチック相を示す温度範囲は、光吸収異方性層の配向度がより高くなり、かつ、ヘイズがより観察され難くなることから、室温(23℃)~450℃であることが好ましく、取り扱いや製造適性の観点から、40℃~400℃であることがより好ましい。
 サーモトロピック液晶性化合物は、一般的に、その形状から棒状タイプと円盤状タイプに分類できる。本発明の液晶組成物は、その形状が棒状である棒状液晶性化合物を含有することが好ましい。
 また、棒状液晶性化合物は、可視光領域で二色性を示さない液晶性化合物が好ましい。
 棒状液晶性化合物としては、低分子液晶性化合物及び高分子液晶性化合物のいずれも用いることができる。ここで、「低分子液晶性化合物」とは、化学構造中に繰り返し単位を有さない液晶性化合物のことをいう。また、「高分子液晶性化合物」とは、化学構造中に繰り返し単位を有する液晶性化合物のことをいう。
 サーモトロピック低分子液晶性化合物としては、例えば、特開2013-228706号公報に記載されている液晶性化合物が挙げられる。
 高分子液晶性化合物としては、例えば、特開2011-237513号公報に記載されているサーモトロピック液晶性高分子化合物が挙げられる。また、高分子液晶性化合物は、末端に架橋性基(例えば、アクリロイル基及びメタクリロイル基)を有していてもよい。
 棒状液晶性化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
 棒状液晶性化合物は、本発明の効果がより優れる点から、高分子液晶性化合物を含むことが好ましく、高分子液晶性化合物及び低分子液晶性化合物の両方を含むことが特に好ましい。
 棒状液晶性化合物は、式(LC)で表される液晶性化合物又はその重合体を含むことが好ましい。式(LC)で表される液晶性化合物又はその重合体は、液晶性を示す化合物である。棒状液晶性化合物が示す液晶相は、ネマチック相であってもスメクチック相であってもよく、棒状液晶性化合物がネマチック相及びスメクチック相の両方を示してもよく、少なくともネマチック相を示すことが好ましい。
 スメクチック相は、高次スメクチック相であってもよい。ここでいう高次スメクチック相とは、スメクチックB相、スメクチックD相、スメクチックE相、スメクチックF相、スメクチックG相、スメクチックH相、スメクチックI相、スメクチックJ相、スメクチックK相、及び、スメクチックL相であり、中でもスメクチックB相、スメクチックF相、又は、スメクチックI相が好ましい。
 ネマチック相を示す温度範囲は、光吸収異方性層の配向度がより高くなり、かつ、ヘイズがより観察され難くなることから、室温(23℃)~450℃が好ましく、取り扱いや製造適性の観点から、40℃~400℃がより好ましい。
 液晶性化合物が示すスメクチック液晶相がこれらの高次スメクチック液晶相であると、配向秩序度のより高い光吸収異方性層を作製できる。また、このように配向秩序度の高い高次スメクチック液晶相から作製した光吸収異方性層は、X線回折測定においてヘキサチック相やクリスタル相といった高次構造由来のブラッグピークが得られるものである。上記ブラッグピークとは、分子配向の面周期構造に由来するピークであり、本発明の液晶組成物によれば、周期間隔が3.0~5.0Åである光吸収異方性層を得ることができる。
Figure JPOXMLDOC01-appb-C000004
 式(LC)中、Q1及びQ2はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の直鎖、分岐又は環状のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルケニル基、炭素数1~20のアルキニル基、炭素数1~20のアリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル又はアリールスルホニルアミノ基、メルカプト基アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル又はアリールスルフィニル基、アルキル又はアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール又はヘテロアリールアゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH))、ホスファト基(-OPO(OH))、スルファト基(-OSOH)、又は、下記式(P1)~(P-30)で表される架橋性基を表し、Q1及びQ2の少なくとも一方は、下記式で表される架橋性基であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(P-1)~(P-30)中、Rは水素原子、ハロゲン原子、炭素数1~10の直鎖、分岐、又は環状のアルキレン基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルケニル基、炭素数1~20のアルキニル基、炭素数1~20のアリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル若しくはアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル若しくはアリールスルフィニル基、アルキル若しくはアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール若しくはヘテロアリールアゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH))、ホスファト基(-OPO(OH))、又は、スルファト基(-OSOH)、を表し、複数のRはそれぞれ同一であっても異なっていてもよい。
 架橋性基の好ましい態様としては、ラジカル重合性基、又はカチオン重合性基が挙げられる。ラジカル重合性基としては、上記式(P-1)で表されるビニル基、上記式(P-2)で表されるブタジエン基、上記式(P-4)で表される(メタ)アクリル基、上記式(P-5)で表される(メタ)アクリルアミド基、上記式(P-6)で表される酢酸ビニル基、上記式(P-7)で表されるフマル酸エステル基、上記式(P-8)で表されるスチリル基、上記式(P-9)で表されるビニルピロリドン基、上記式(P-11)で表される無水マレイン酸、又は、上記式(P-12)で表されるマレイミド基、が好ましい。カチオン重合性基としては、上記式(P-18)で表されるビニルエーテル基、上記式(P-19)で表されるエポキシ基、又は、上記式(P-20)で表されるオキセタニル基、が好ましい。
 式(LC)において、S1及びS2はそれぞれ独立に、2価のスペーサー基を表し、S1及びS2の好適態様は、上記式(W1)中のSPWと同じ構造が挙げられるため、その説明を省略する。
 式(LC)中、MGは後述するメソゲン基を表す。MGが表すメソゲン基とは、液晶形成に寄与する液晶分子の主要骨格を示す基である。液晶分子は、結晶状態と等方性液体状態の中間の状態(メソフェーズ)である液晶性を示す。メソゲン基については特に制限はなく、例えば、「Flussige Kristalle in Tabellen II」(VEB Deutsche Verlag fur Grundstoff Industrie,Leipzig、1984年刊)、特に第7頁~第16頁の記載、及び、液晶便覧編集委員会編、液晶便覧(丸善、2000年刊)、特に第3章の記載、を参照することができる。
 MGが表すメソゲン基は、環状構造を2~10個含むのが好ましく、3~7個含むのがより好ましい。
 環状構造の具体例としては、芳香族炭化水素基、複素環基、及び脂環式基などが挙げられる。
 MGが表すメソゲン基としては、液晶性の発現、液晶相転移温度の調整、原料入手性及び合成適性という観点、並びに、本発明の効果がより優れるから、下記式(MG-A)又は下記式(MG-B)で表される基が好ましく、式(MG-B)で表される基がより好ましい。
Figure JPOXMLDOC01-appb-C000006
 式(MG-A)中、A1は、芳香族炭化水素基、複素環基及び脂環式基からなる群より選択される2価の基である。これらの基は、置換基Wなどの置換基で置換されていてもよい。
 A1で表される2価の基は、4~15員環が好ましい。また、A1で表される2価の基は、単環でも、縮環であってもよい。
 *は、S1又はS2との結合位置を表す。
 A1が表す2価の芳香族炭化水素基としては、フェニレン基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基及びテトラセン-ジイル基などが挙げられ、メソゲン骨格の設計の多様性や原材料の入手性などの観点から、フェニレン基、ナフチレン基が好ましい。
 A1が表す2価の複素環基としては、芳香族又は非芳香族のいずれであってもよいが、配向度がより向上するという観点から、2価の芳香族複素環基が好ましい。
 2価の芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子及び酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
 2価の芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チアゾロチアゾール-ジイル基、チエノチオフェン-ジイル基、及び、チエノオキサゾール-ジイル基、下記の構造(II-1)~(II-4)などが挙げられる。
Figure JPOXMLDOC01-appb-C000007
 式(II-1)~(II-4)中、Dは、-S-、-O-、又は-NR11-を表し、R11は水素原子又は炭素数1~6のアルキル基を表し、Yは炭素数6~12の芳香族炭化水素基、又は、炭素数3~12の芳香族複素環基を表し、Z、Z、及びZはそれぞれ独立に、水素原子又は炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環式炭化水素基、1価の炭素数6~20の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、-NR1213又は-SR12を表し、Z及びZは、互いに結合して芳香環又は芳香族複素環を形成してもよく、R12及びR13は、それぞれ独立に水素原子又は炭素数1~6のアルキル基を表し、J及びJはそれぞれ独立に、-O-、-NR21-(R21は水素原子又は置換基を表す。)、-S-及び-C(O)-からなる群から選択される基を表し、Eは水素原子又は置換基が結合していてもよい、第14~16族の非金属原子を表し、Jxは芳香族炭化水素環及び芳香族複素環からなる群から選択される少なくとも1つの芳香環を有する、炭素数2~30の有機基を表し、Jyは水素原子、置換基を有していてもよい炭素数1~6のアルキル基、又は、芳香族炭化水素環及び芳香族複素環からなる群から選択される少なくとも1つの芳香環を有する、炭素数2~30の有機基を表し、Jx及びJyが有する芳香環は置換基を有していてもよく、JxとJyは結合して、環を形成していてもよく、Dは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を表す。
 式(II-2)中、Yが炭素数6~12の芳香族炭化水素基である場合、単環でも多環でもよい。Yが炭素数3~12の芳香族複素環基である場合、単環でも多環でもよい。
 式(II-2)中、J及びJが、-NR21-を表す場合、R21の置換基としては、例えば特開2008-107767号公報の[0035]~[0045]段落の記載を参酌でき、この内容は本明細書に組み込まれる。
 式(II-2)中、Eが、置換基が結合していてもよい第14~16族の非金属原子である場合、=O、=S、=NR’、又は、=C(R’)R’が好ましい。R’は置換基を表し、置換基としては例えば特開2008-107767号公報の[0035]~[0045]段落の記載を参酌でき、-NZA1A2(ZA1及びZA2はそれぞれ独立に、水素原子、アルキル基又はアリール基を表す。)が好ましい。
 A1が表す2価の脂環式基の具体例としては、シクロペンチレン基及びシクロへキシレン基などが挙げられ、炭素原子は、-O-、-Si(CH-、-N(Z)-(Zは、水素、炭素数1~4のアルキル基、シクロアルキル基、アリール基、シアノ基、又は、ハロゲン原子を表す。)、-C(O)-、-S-、-C(S)-、-S(O)-、及び-SO-、これらの基を2つ以上組み合わせた基によって置換されていてもよい。
 式(MG-A)中、a1は2~10の整数を表す。複数のA1は同一でも異なっていてもよい。
 式(MG-B)中、A2及びA3はそれぞれ独立に、芳香族炭化水素基、複素環基及び脂環式基からなる群より選択される2価の基である。A2及びA3の具体例及び好適態様は、式(MG-A)のA1と同様であるので、その説明を省略する。
 式(MG-B)中、a2は1~10の整数を表し、複数のA2は同一でも異なっていてもよく、複数のLA1は同一でも異なっていてもよい。a2は、本発明の効果がより優れる理由から、2以上がより好ましい。
 式(MG-B)中、LA1は、単結合又は2価の連結基である。ただし、a2が1である場合、LA1は2価の連結基であり、a2が2以上である場合、複数のLA1のうち少なくとも1つが2価の連結基である。
 式(MG-B)中、LA1が表す2価の連結基としては、LWと同様のため、その説明を省略する。
 MGの具体例としては、例えば以下の構造が挙げられ、以下の構造中、芳香族炭化水素基、複素環基及び脂環式基上の水素原子は、上述の置換基Wで置換されていてもよい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009

Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-I000012

Figure JPOXMLDOC01-appb-I000013

Figure JPOXMLDOC01-appb-I000014
<低分子液晶性化合物>
 式(LC)で表される液晶性化合物が低分子液晶性化合物の場合、メソゲン基MGの環状構造の好ましい態様としては、シクロへキシレン基、シクロペンチレン基、フェニレン基、ナフチレン基、フルオレン-ジイル基、ピリジン-ジイル基、ピリダジン-ジイル基、チオフェン-ジイル基、オキサゾール-ジイル基、チアゾール-ジイル基、及び、チエノチオフェン-ジイル基が挙げられ、環状構造の個数は、2~10個が好ましく、3~7個がより好ましい。
 メソゲン構造の置換基Wの好ましい態様としては、ハロゲン原子、ハロゲン化アルキル基、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルカルボニル基、炭素数1~10のアルキルオキシカルボニル基、炭素数1~10のアルキルカルボニルオキシ基、アミノ基、炭素数1~10のアルキルアミノ基、アルキルアミノカルボニル基、上述の式(W1)においてLWが単結合であり、SPWが2価のスペーサー基であり、Qが上述の式(P1)~(P30)で表される架橋性基である基等が挙げられ、架橋性基としては、ビニル基、ブタジエン基、(メタ)アクリル基、(メタ)アクリルアミド基、酢酸ビニル基、フマル酸エステル基、スチリル基、ビニルピロリドン基、無水マレイン酸、マレイミド基、ビニルエーテル基、エポキシ基、又は、オキセタニル基が好ましい。
 2価のスペーサー基S1及びS2の好ましい態様としては、上記SPWと同様のため、その説明を省略する。
 スメクチック相を示す低分子液晶性化合物を用いる場合、スペーサー基の炭素数(この炭素を「SP-C」で置き変えた場合はその原子数)は、炭素数6以上が好ましく、8以上が更に好ましい。
 式(LC)で表される液晶性化合物が低分子液晶性化合物の場合、複数の低分子液晶性化合物を併用してもよく、2~6種を併用するのが好ましく、2~4種を併用することがより好ましい。低分子液晶性化合物を併用することで、溶解性の向上や液晶組成物の相転移温度を調整することができる。
 低分子液晶性化合物の具体例としては、以下の式(LC-1)~(LC-77)で表される化合物が挙げられるが、低分子液晶性化合物はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-I000016

Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-C000019

Figure JPOXMLDOC01-appb-I000020

Figure JPOXMLDOC01-appb-I000021
<高分子液晶性化合物>
 高分子液晶性化合物は、後述する繰り返し単位を含むホモポリマー又はコポリマーが好ましく、ランダムポリマー、ブロックポリマー、グラフトポリマー、及び、スターポリマー等のいずれのポリマーであってもよい。
(繰り返し単位(1))
 高分子液晶性化合物は、式(1)で表される繰り返し単位(以下、「繰り返し単位(1)」ともいう。)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000022
 式(1)中、PC1は繰り返し単位の主鎖を表し、L1は単結合又は2価の連結基を表し、SP1はスペーサー基を表し、MG1は上述の式(LC)におけるメソゲン基MGを表し、T1は末端基を表す。
 PC1が表す繰り返し単位の主鎖としては、例えば、式(P1-A)~(P1-D)で表される基が挙げられ、なかでも、原料となる単量体の多様性及び取り扱いが容易である観点から、下記式(P1-A)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000023
 式(P1-A)~(P1-D)において、「*」は、式(1)におけるL1との結合位置を表す。式(P1-A)~(P1-D)において、R11、R12、R13、R14はそれぞれ独立に、水素原子、ハロゲン原子、シアノ基又は炭素数1~10のアルキル基、又は、炭素数1~10のアルコキシ基を表す。上記アルキル基は、直鎖又は分岐のアルキル基であってもよいし、環状構造を有するアルキル基(シクロアルキル基)であってもよい。また、上記アルキル基の炭素数は、1~5が好ましい。
 式(P1-A)で表される基は、(メタ)アクリル酸エステルの重合によって得られるポリ(メタ)アクリル酸エステルの部分構造の一単位であることが好ましい。
 式(P1-B)で表される基は、エポキシ基を有する化合物のエポキシ基を開環重合して形成されるエチレングリコール単位であることが好ましい。
 式(P1-C)で表される基は、オキセタン基を有する化合物のオキセタン基を開環重合して形成されるプロピレングリコール単位であることが好ましい。
 式(P1-D)で表される基は、アルコキシシリル基及びシラノール基の少なくとも一方の基を有する化合物の縮重合によって得られるポリシロキサンのシロキサン単位であることが好ましい。ここで、アルコキシシリル基及びシラノール基の少なくとも一方の基を有する化合物としては、式SiR14(OR15-で表される基を有する化合物が挙げられる。式中、R14は、式(P1-D)におけるR14と同義であり、複数のR15はそれぞれ独立に、水素原子又は炭素数1~10のアルキル基を表す。
 L1が表す2価の連結基は、上述の式(W1)におけるLWと同様の2価の連結基であり、好ましい態様としては、-C(O)O-、-OC(O)-、-O-、-S-、-C(O)NR16-、-NR16C(O)-、-S(O)-、及び、-NR1617-などが挙げられる。式中、R16及びR17はそれぞれ独立に、水素原子、置換基(例えば、上述の置換基W)を有していてもよい炭素数1~6のアルキル基を表す。2価の連結基の具体例において、左側の結合手がPC1と結合し、右側の結合手がSP1と結合する。
 PC1が式(P1-A)で表される基である場合には、L1は-C(O)O-又は-C(O)NR16-で表される基が好ましい。
 PC1が式(P1-B)~(P1-D)で表される基である場合には、L1は単結合が好ましい。
 SP1が表すスペーサー基は、上述の式(LC)におけるS1及びS2と同じ基を表し、配向度の観点から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造及びフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含む基、又は、炭素数2~20の直鎖又は分岐のアルキレン基が好ましい。ただし、上記アルキレン基は、-O-、-S-、-O-CO-、-CO-O-、-O-CO-O-、-O-CNR-(Rは、炭素数1~10のアルキル基を表す。)、又は、-S(O)-を含んでいてもよい。
 SP1が表すスペーサー基は、液晶性を発現しやすいことや、原材料の入手性などの理由から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造及びフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含む基であることがより好ましい。
 ここで、SP1が表すオキシエチレン構造は、*-(CH-CHO)n1-*で表される基が好ましい。式中、n1は1~20の整数を表し、*はL1又はMG1との結合位置を表す。n1は、本発明の効果がより優れる理由から、2~10の整数が好ましく、2~6の整数がより好ましく、2~4の整数が更に好ましい。
 また、SP1が表すオキシプロピレン構造は、*-(CH(CH)-CHO)n2-*で表される基が好ましい。式中、n2は1~3の整数を表し、*はL1又はMG1との結合位置を表す。
 また、SP1が表すポリシロキサン構造は、*-(Si(CH-O)n3-*で表される基が好ましい。式中、n3は6~10の整数を表し、*はL1又はMG1との結合位置を表す。
 また、SP1が表すフッ化アルキレン構造は、*-(CF-CFn4-*で表される基が好ましい。式中、n4は6~10の整数を表し、*はL1又はMG1との結合位置を表す。
 T1が表す末端基としては、水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、-SH、カルボキシル基、ボロン酸基、-SOH、-PO、-NR1112(R11及びR12は、それぞれ独立に、水素原子、置換若しくは非置換の炭素数1~10のアルキル基、シクロアルキル基、又はアリール基を表す)、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルチオ基、炭素数1~10のアルコキシカルボニルオキシ基、炭素数1~10のアシルオキシ基、炭素数1~10のアシルアミノ基、炭素数1~10のアルコキシカルボニル基、炭素数1~10のアルコキシカルボニルアミノ基、炭素数1~10のスルホニルアミノ基、炭素数1~10のスルファモイル基、炭素数1~10のカルバモイル基、炭素数1~10のスルフィニル基、炭素数1~10のウレイド基、及び、架橋性基含有基などが挙げられる。
 上記架橋性基含有基としては、例えば、上述の-L-CLが挙げられる。Lは単結合又は連結基を表す。連結基の具体例は上述したLW及びSPWと同じである。CLは架橋性基を表し、上述のQ1又はQ2で表される基が挙げられ、上述の式(P1)~(P30)で表される基が好ましい。また、T1は、これらの基を2つ以上組み合わせた基であってもよい。
 T1は、本発明の効果がより優れる理由から、炭素数1~10のアルコキシ基が好ましく、炭素数1~5のアルコキシ基がより好ましく、メトキシ基が更に好ましい。これらの末端基は、これらの基、又は、特開2010-244038号公報に記載の重合性基によって、更に置換されていてもよい。
 T1の主鎖の原子数は、本発明の効果がより優れる理由から、1~20が好ましく、1~15がより好ましく、1~10が更に好ましく、1~7が特に好ましい。T1の主鎖の原子数が20以下であることで、光吸収異方性層の配向度がより向上する。ここで、T1おける「主鎖」とは、M1と結合する最も長い分子鎖を意味し、水素原子はT1の主鎖の原子数にカウントしない。例えば、T1がn-ブチル基である場合には主鎖の原子数は4であり、T1がsec-ブチル基である場合の主鎖の原子数は3である。
 繰り返し単位(1)の含有量は、高分子液晶性化合物が有する全繰り返し単位(100質量%)に対して、40~100質量%が好ましく、50~95質量%がより好ましい。繰り返し単位(1)の含有量が40質量%以上であれば、良好な配向性により優れた光吸収異方性層が得られる。また、繰り返し単位(1)の含有量が100質量%以下であれば、良好な配向性により優れた光吸収異方性層が得られる。
 繰り返し単位(1)は、高分子液晶性化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。繰り返し単位(1)が2種以上含まれる場合、上記繰り返し単位(1)の含有量は、繰り返し単位(1)の含有量の合計を意味する。
-logP値-
 式(1)において、PC1、L1及びSP1のlogP値(以下、「logP」ともいう。)と、MG1のlogP値(以下、「logP」ともいう。)との差(|logP-logP|)が4以上であることが好ましく、光吸収異方性層の配向度がより向上する観点から、4.25以上がより好ましく、4.5以上が更に好ましい。
 また、上記差の上限値は、液晶相転移温度の調整及び合成適性という観点から、15以下が好ましく、12以下がより好ましく、10以下が更に好ましい。
 ここで、logP値は、化学構造の親水性及び疎水性の性質を表現する指標であり、親疎水パラメータと呼ばれることがある。logP値は、ChemBioDraw Ultra又はHSPiP(Ver.4.1.07)などのソフトウェアを用いて計算できる。また、OECD Guidelines for the Testing of Chemicals,Sections 1,Test No.117の方法などにより、実験的に求めることもできる。本発明では特に断りのない限り、HSPiP(Ver.4.1.07)に化合物の構造式を入力して算出される値をlogP値として採用する。
 上記logPは、上述したように、PC1、L1及びSP1のlogP値を意味する。「PC1、L1及びSP1のlogP値」とは、PC1、L1及びSP1を一体とした構造のlogP値を意味しており、PC1、L1及びSP1のそれぞれのlogP値を合計したものではない、具体的には、logPは、式(1)におけるPC1~SP1までの一連の構造式を上記ソフトウェアに入力することで算出される。
 ただし、logPの算出にあたって、PC1~SP1までの一連の構造式のうち、PC1で表される基の部分に関しては、PC1で表される基そのものの構造(例えば、上述した式(P1-A)~式(P1-D)など)を用いてもよいし、式(1)で表される繰り返し単位を得るために使用する単量体を重合した後にPC1になりうる基の構造を用いてもよい。
 ここで、後者(PC1になりうる基)の具体例は、次の通りである。PC1が(メタ)アクリル酸エステルの重合によって得られる場合には、CH=C(R)-で表される基(Rは、水素原子又はメチル基を表す。)である。また、PC1がエチレングリコールの重合によって得られる場合にはエチレングリコールであり、PC1がプロピレングリコールの重合により得られる場合にはプロピレングリコールである。また、PC1がシラノールの重縮合により得られる場合にはシラノール(式Si(R(OH)で表される化合物。複数のRはそれぞれ独立に、水素原子又はアルキル基を表す。ただし、複数のRの少なくとも1つはアルキル基を表す。)である。
 logPは、上述したlogPとの差が4以上である場合、logPよりも低くてもよいし、logPよりも高くてもよい。
 ここで、一般的なメソゲン基のlogP値(上述したlogP)は、4~6の範囲内になる傾向がある。このとき、logPがlogPよりも低い場合には、logPの値は、1以下が好ましく、0以下がより好ましい。一方で、logPがlogPよりも高い場合には、logPの値は、8以上が好ましく、9以上がより好ましい。
 上記式(1)におけるPC1が(メタ)アクリル酸エステルの重合によって得られ、かつ、logPがlogPよりも低い場合には、上記式(1)におけるSP1のlogP値は、0.7以下が好ましく、0.5以下がより好ましい。一方、上記式(1)におけるPC1が(メタ)アクリル酸エステルの重合によって得られ、かつ、logPがlogPよりも高い場合には、上記式(1)におけるSP1のlogP値は、3.7以上が好ましく、4.2以上がより好ましい。
 なお、logP値が1以下の構造としては、例えば、オキシエチレン構造及びオキシプロピレン構造などが挙げられる。logP値が6以上の構造としては、ポリシロキサン構造及びフッ化アルキレン構造などが挙げられる。
(繰り返し単位(21)及び(22))
 配向度を向上させる観点から、高分子液晶性化合物は、末端に電子供与性及び/又は電子吸引性を有する繰り返し単位を含むことが好ましい。より具体的には、メソゲン基とこれの末端に存在するσp値が0より大きい電子吸引性基とを有する繰り返し単位(21)と、メソゲン基とこれの末端に存在するσp値が0以下の基とを有する繰り返し単位(22)と、を含むことがより好ましい。このように、高分子液晶性化合物が繰り返し単位(21)と繰り返し単位(22)を含む場合、上記繰り返し単位(21)又は上記繰り返し単位(22)のいずれかのみを含む場合と比べて、これを用いて形成される光吸収異方性層の配向度が向上する。この理由の詳細は明らかではないが、概ね以下のように推定している。
 すなわち、繰り返し単位(21)と繰り返し単位(22)に発生する逆向きの双極子モーメントが、分子間相互作用をすることによって、メソゲン基の短軸方向への相互作用が強くなって、液晶の配向する向きがより均一となると推察され、その結果、液晶の秩序度が高くなると考えられる。これにより、二色性物質の配向性も良好になるので、形成される光吸収異方性層の配向度が高くなると推測される。
 なお上記繰り返し単位(21)及び(22)は、上記式(1)で表される繰り返し単位であってもよい。
 繰り返し単位(21)は、メソゲン基と、上記メソゲン基の末端に存在するσp値が0より大きい電子吸引性基と、を有する。
 上記電子吸引性基は、メソゲン基の末端に位置しており、σp値が0より大きい基である。電子吸引性基(σp値が0よりも大きい基)としては、後述の式(LCP-21)におけるEWGで表される基が挙げられ、その具体例も同様である。
 上記電子吸引性基のσp値は、0よりも大きく、光吸収異方性層の配向度がより高くなる点から、0.3以上が好ましく、0.4以上がより好ましい。上記電子吸引性基のσp値の上限値は、配向の均一性が優れる点から、1.2以下が好ましく、1.0以下がより好ましい。
 σp値とは、ハメットの置換基定数σp値(単に「σp値」とも略記する)であり、置換安息香酸の酸解離平衡定数における置換基の効果を数値で表したものであり、置換基の電子吸引性及び電子供与性の強度を示すパラメータである。本明細書におけるハメットの置換基定数σp値は、置換基が安息香酸のパラ位に位置する場合の置換基定数σを意味する。
 本明細書における各基のハメットの置換基定数σp値は、文献「Hansch et al., Chemical Reviews, 1991, Vol, 91, No. 2, 165-195」に記載された値を採用する。なお、上記文献にハメットの置換基定数σp値が示されていない基については、ソフトウェア「ACD/ChemSketch(ACD/Labs 8.00 Release Product Version:8.08)」を用いて、安息香酸のpKaと、パラ位に置換基を有する安息香酸誘導体のpKaとの差に基づいて、ハメットの置換基定数σp値を算出できる。
 繰り返し単位(21)は、側鎖にメソゲン基と上記メソゲン基の末端に存在するσp値が0より大きい電子吸引性基とを有していれば、特に限定されないが、光吸収異方性層の配向度がより高くなる点から、下記式(LCP-21)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000024
 式(LCP-21)中、PC21は繰り返し単位の主鎖を表し、より具体的には上記式(1)中のPC1と同様の構造を表し、L21は単結合又は2価の連結基を表し、より具体的には上記式(1)中のL1と同様の構造を表し、SP21A及びSP21Bはそれぞれ独立に単結合又はスペーサー基を表し、スペーサー基の具体例は上記式(1)中のSP1と同様の構造を表し、MG21はメソゲン構造、より具体的には上記式(LC)中のメソゲン基MGを表し、EWGはσp値が0より大きい電子吸引性基を表す。
 SP21A及びSP21Bが表すスペーサー基は、上記式S1及びS2と同様の基を表し、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造及びフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含む基、又は、炭素数2~20の直鎖又は分岐のアルキレン基が好ましい。ただし、上記アルキレン基は、-O-、-O-CO-、-CO-O-、又は-O-CO-O-を含んでいてもよい。
 SP1が表すスペーサー基は、液晶性を発現しやすいことや、原材料の入手性などの理由から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造及びフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含むことが好ましい。
 SP21Bは、単結合、又は、炭素数2~20の直鎖若しくは分岐のアルキレン基が好ましい。ただし、上記アルキレン基は、-O-、-O-CO-、-CO-O-、又は-O-CO-O-を含んでいてもよい。
 これらの中でも、SP21Bが表すスペーサー基は、光吸収異方性層の配向度がより高くなる点から、単結合が好ましい。換言すれば、繰り返し単位21は、式(LCP-21)における電子吸引性基であるEWGが、式(LCP-21)におけるメソゲン基であるMG21に直結する構造を有するのが好ましい。このように、電子吸引性基がメソゲン基に直結していると、高分子液晶性化合物中に適度な双極子モーメントによる分子間相互作用がより効果的に働くことで、液晶の配向する向きがより均一となると推察され、その結果、液晶の秩序度が高くなり、配向度がより高くなると考えられる。
 EWGは、σp値が0より大きい電子吸引性基を表す。σp値が0より大きい電子吸引性基としては、エステル基(具体的には、*-C(O)O-Rで表される基)、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、カルボキシ基、シアノ基、ニトロ基、スルホ基、-S(O)(O)-OR、-S(O)(O)-R、-O-S(O)(O)-R、アシル基(具体的には、*-C(O)Rで表される基)、アシルオキシ基(具体的には、*-OC(O)Rで表される基)、イソシアネート基(-N=C(O))、*-C(O)N(R、ハロゲン原子、並びに、これらの基で置換されたアルキル基(炭素数1~20が好ましい。)が挙げられる。上記各基において、*はSP21Bとの結合位置を表す。Rは、炭素数1~20(好ましくは炭素数1~4、より好ましくは炭素数1~2)のアルキル基を表す。Rはそれぞれ独立に、水素原子又は炭素数1~20(好ましくは炭素数1~4、より好ましくは炭素数1~2)のアルキル基を表す。
 上記基の中でも、EWGは、本発明の効果がより発揮される点から、*-C(O)O-Rで表される基、(メタ)アクリロイルオキシ基、又は、シアノ基、ニトロ基、が好ましい。
 繰り返し単位(21)の含有量は、光吸収異方性層の高い配向度を維持しつつ、高分子液晶性化合物及び二色性物質を均一に配向できる点から、高分子液晶性化合物が有する全繰り返し単位(100質量%)に対して、60質量%以下が好ましく、50質量%以下がより好ましく、45質量%以下が更に好ましい。
 繰り返し単位(21)の含有量の下限値は、本発明の効果がより発揮される点から、高分子液晶性化合物が有する全繰り返し単位(100質量%)に対して、1質量%以上が好ましく、3質量%以上がより好ましい。
 本発明において、高分子液晶性化合物に含まれる各繰り返し単位の含有量は、各繰り返し単位を得るために使用される各単量体の仕込み量(質量)に基づいて算出される。
 繰り返し単位(21)は、高分子液晶性化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。高分子液晶性化合物が繰り返し単位(21)を2種以上含むと、高分子液晶性化合物の溶媒に対する溶解性が向上すること、及び、液晶相転移温度の調整が容易になることなどの利点がある。繰り返し単位(21)を2種以上含む場合には、その合計量が上記範囲内であることが好ましい。
 繰り返し単位(21)を2種以上含む場合には、EWGに架橋性基を含まない繰り返し単位(21)と、EWGに重合性基を含む繰り返し単位(21)と、を併用してもよい。これにより、光吸収異方性層の硬化性がより向上する。なお、架橋性基としては、ビニル基、ブタジエン基、(メタ)アクリル基、(メタ)アクリルアミド基、酢酸ビニル基、フマル酸エステル基、スチリル基、ビニルピロリドン基、無水マレイン酸、マレイミド基、ビニルエーテル基、エポキシ基、又は、オキセタニル基が好ましい。
 この場合、光吸収異方性層の硬化性と配向度のバランスの点から、EWGに重合性基を含む繰り返し単位(21)の含有量が、高分子液晶性化合物が有する全繰り返し単位(100質量%)に対して、1~30質量%であることが好ましい。
 以下において、繰り返し単位(21)の一例を示すが、繰り返し単位(21)は、以下の繰り返し単位に限定されるものではない。
Figure JPOXMLDOC01-appb-C000025

Figure JPOXMLDOC01-appb-I000026
 また、繰り返し単位(21)及び繰り返し単位(22)の組成(含有割合)並びに末端基の電子供与性及び電子吸引性に関しては、繰り返し単位(21)の電子吸引性基の電子吸引性が強い場合(すなわち、σp値が大きい場合)には、繰り返し単位(21)の含有割合を低くすれば光吸収異方性層の配向度がより高くなり、繰り返し単位(21)の電子吸引性基の電子吸引性が弱い場合(すなわち、σp値が0に近い場合)には、繰り返し単位(21)の含有割合を高くすれば光吸収異方性層の配向度がより高くなるため好ましい。
 この理由の詳細は明らかではないが、概ね以下のように推定している。すなわち、高分子液晶性化合物中に適度な双極子モーメントによる分子間相互作用が働くことで、液晶の配向する向きがより均一となると推察され、その結果、液晶の秩序度が高くなり、光吸収異方性層の配向度がより高くなると考えられる。
 具体的には、繰り返し単位(21)における上記電子吸引性基(式(LCP-21)においてはEWG)のσp値と、高分子液晶性化合物中の繰り返し単位(21)の含有割合(質量基準)と、の積は、0.020~0.150が好ましく、0.050~0.130がより好ましく、0.055~0.125が更に好ましい。上記積が上記範囲内であれば、光吸収異方性層の配向度がより高くなる。
 繰り返し単位(22)は、メソゲン基と上記メソゲン基の末端に存在するσp値が0以下の基とを有する。高分子液晶性化合物が繰り返し単位(22)を有することで、高分子液晶性化合物及び二色性物質を均一に配向できる。
 メソゲン基は、液晶形成に寄与する液晶分子の主要骨格を示す基であり、詳細は後述の式(LCP-22)におけるMGで説明する通りであり、その具体例も同様である。
 上記基は、メソゲン基の末端に位置しており、σp値が0以下の基である。上記基(σp値が0以下である基)としては、σp値が0である水素原子、及び、σp値が0よりも小さい後述の式(LCP-22)におけるT22で表される基(電子供与性基)が挙げられる。上記基のうち、σp値が0よりも小さい基(電子供与性基)の具体例は、後述の式(LCP-22)におけるT22と同様である。
 上記基のσp値は、0以下であり、配向の均一性がより優れる点から、0よりも小さいことが好ましく、-0.1以下がより好ましく、-0.2以下が更に好ましい。上記基のσp値の下限値は、-0.9以上が好ましく、-0.7以上がより好ましい。
 繰り返し単位(22)は、側鎖にメソゲン基と上記メソゲン基の末端に存在するσp値が0以下である基とを有していれば、特に限定されないが、液晶の配向の均一性がより高くなる点から、上記式(LCP-21)で表される繰り返し単位に該当せず、下記式(PCP-22)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000027
 式(LCP-22)中、PC22は繰り返し単位の主鎖を表し、より具体的には上記式(1)中のPC1と同様の構造を表し、L22は単結合又は2価の連結基を表し、より具体的には上記式(1)中のL1と同様の構造を表し、SP22はスペーサー基を表し、より具体的には上記式(1)中のSP1と同様の構造を表し、MG22はメソゲン構造、より具体的には上記式(LC)中のメソゲン基MGと同様の構造を表し、T22はハメットの置換基定数σp値が0より小さい電子供与性基を表す。
 T22は、σp値が0より小さい電子供与性基を表す。σp値が0より小さい電子供与性基としては、ヒドロキシ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、及び、炭素数1~10のアルキルアミノ基等が挙げられる。
 T22の主鎖の原子数が20以下であることで、光吸収異方性層の配向度がより向上する。ここで、T22おける「主鎖」とは、MG22と結合する最も長い分子鎖を意味し、水素原子はT22の主鎖の原子数にカウントしない。例えば、T22がn-ブチル基である場合には主鎖の原子数は4であり、T22がsec-ブチル基である場合の主鎖の原子数は3である。
 以下において、繰り返し単位(22)の一例を示すが、繰り返し単位(22)は、以下の繰り返し単に限定されるものではない。
Figure JPOXMLDOC01-appb-C000028

Figure JPOXMLDOC01-appb-I000029
 繰り返し単位(21)と繰り返し単位(22)は、構造の一部が共通しているのが好ましい。繰り返し単位同士の構造が類似しているほど、液晶が均一に整列すると推察される。これにより、光吸収異方性層の配向度がより高くなる。
 具体的には、光吸収異方性層の配向度がより高くなる点から、式(LCP-21)のSP21Aと式(LCP-22)のSP22とが同一構造であること、式(LCP-21)のMG21と式(LCP-22)のMG22とが同一構造であること、及び、式(LCP-21)のL21と式(LCP-22)のL22とが同一構造であること、のうち、少なくとも1つを満たすことが好ましく、2つ以上を満たすことがより好ましく、全てを満たすことが特に好ましい。
 繰り返し単位(22)の含有量は、配向の均一性が優れる点から、高分子液晶性化合物が有する全繰り返し単位(100質量%)に対して、50質量%以上が好ましく、55質量%以上がより好ましく、60質量%以上が更に好ましい。
 繰り返し単位(22)の含有量の上限値は、配向度が向上する点から、高分子液晶性化合物が有する全繰り返し単位(100質量%)に対して、99質量%以下が好ましく、97質量%以下がより好ましい。
 繰り返し単位(22)は、高分子液晶性化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。高分子液晶性化合物が繰り返し単位(22)を2種以上含むと、高分子液晶性化合物の溶媒に対する溶解性が向上すること、及び、液晶相転移温度の調整が容易になることなどの利点がある。繰り返し単位(22)を2種以上含む場合には、その合計量が上記範囲内であることが好ましい。
(繰り返し単位(3))
 高分子液晶性化合物は、汎用溶媒に対する溶解性を向上させる観点から、メソゲンを含有しない繰り返し単位(3)を含むことができる。特に配向度の低下を抑えながら溶解性を向上させるためには、このメソゲンを含有しない繰り返し単位(3)として、分子量280以下の繰り返し単位であることが好ましい。このように、メソゲンを含有しない分子量280以下の繰り返し単位を含むことで配向度の低下を抑えながら溶解性を向上させられる理由としては以下のように推定している。
 すなわち、高分子液晶性化合物がその分子鎖中にメソゲンを持たない繰り返し単位(3)を含むことで、高分子液晶性化合物中に溶媒が入り込みやすくなるために溶解性は向上するが、非メソゲン性の繰り返し単位(3)は配向度を低下させると考えられる。一方、上記繰り返し単位の分子量が小さいことで、上記メソゲン基を含む繰り返し単位(1)、繰り返し単位(21)又は繰り返し単位(22)の配向が乱されにくく、配向度の低下を抑えられると推定される。
 上記繰り返し単位(3)は、分子量280以下の繰り返し単位が好ましい。
 繰り返し単位(3)の分子量とは、繰り返し単位(3)を得るために使用するモノマーの分子量を意味するのではなく、モノマーの重合によって高分子液晶性化合物に組み込まれた状態における繰り返し単位(3)の分子量を意味する。
 繰り返し単位(3)の分子量は、280以下が好ましく、180以下がより好ましく、100以下が更に好ましい。繰り返し単位(3)の分子量の下限値は、通常、40以上であり、50以上が好ましい。繰り返し単位(3)の分子量が280以下であれば、高分子液晶性化合物の溶解性に優れ、かつ、高い配向度の光吸収異方性層が得られる。
 一方で、繰り返し単位(3)の分子量が280を超えると、上記繰り返し単位(1)、繰り返し単位(21)又は繰り返し単位(22)の部分の液晶配向を乱してしまい、配向度が低くなる場合がある。また、高分子液晶性化合物中に溶媒が入り込みにくくなるので、高分子液晶性化合物の溶解性が低下する場合がある。
 繰り返し単位(3)の具体例としては、架橋性基(例えば、エチレン性不飽和基)を含まない繰り返し単位(以下、「繰り返し単位(3-1)」ともいう。)、及び、架橋性基を含む繰り返し単位(以下、「繰り返し単位(3-2)」ともいう。)が挙げられる。
-繰り返し単位(3-1)-
 繰り返し単位(3-1)の重合に使用されるモノマーの具体例としては、アクリル酸[72.1]、α-アルキルアクリル酸類(例えば、メタクリル酸[86.1]、イタコン酸[130.1])、それらから誘導されるエステル類及びアミド類(例えば、N-i-プロピルアクリルアミド[113.2]、N-n-ブチルアクリルアミド[127.2]、N-t-ブチルアクリルアミド[127.2]、N,N-ジメチルアクリルアミド[99.1]、N-メチルメタクリルアミド[99.1]、アクリルアミド[71.1]、メタクリルアミド[85.1]、ジアセトンアクリルアミド[169.2]、アクリロイルモルホリン[141.2]、N-メチロールアクリルアミド[101.1]、N-メチロールメタクリルアミド[115.1]、メチルアクリレート[86.0]、エチルアクリレート[100.1]、ヒドロキシエチルアクリレート[116.1]、n-プロピルアクリレート[114.1]、i-プロピルアクリレート[114.2]、2-ヒドロキシプロピルアクリレート[130.1]、2-メチル-2-ニトロプロピルアクリレート[173.2]、n-ブチルアクリレート[128.2]、i-ブチルアクリレート[128.2]、t-ブチルアクリレート[128.2]、t-ペンチルアクリレート[142.2]、2-メトキシエチルアクリレート[130.1]、2-エトキシエチルアクリレート[144.2]、2-エトキシエトキシエチルアクリレート[188.2]、2,2,2-トリフルオロエチルアクリレート[154.1]、2,2-ジメチルブチルアクリレート[156.2]、3-メトキシブチルアクリレート[158.2]、エチルカルビトールアクリレート[188.2]、フェノキシエチルアクリレート[192.2]、n-ペンチルアクリレート[142.2]、n-ヘキシルアクリレート[156.2]、シクロヘキシルアクリレート[154.2]、シクロペンチルアクリレート[140.2]、ベンジルアクリレート[162.2]、n-オクチルアクリレート[184.3]、2-エチルヘキシルアクリレート[184.3]、4-メチル-2-プロピルペンチルアクリレート[198.3]、メチルメタクリレート[100.1]、2,2,2-トリフルオロエチルメタクリレート[168.1]、ヒドロキシエチルメタクリレート[130.1]、2-ヒドロキシプロピルメタクリレート[144.2]、n-ブチルメタクリレート[142.2]、i-ブチルメタクリレート[142.2]、sec-ブチルメタクリレート[142.2]、n-オクチルメタクリレート[198.3]、2-エチルヘキシルメタクリレート[198.3]、2-メトキシエチルメタクリレート[144.2]、2-エトキシエチルメタクリレート[158.2]、ベンジルメタクリレート[176.2]、2-ノルボルニルメチルメタクリレート[194.3]、5-ノルボルネン-2-イルメチルメタクリレート[194.3]、ジメチルアミノエチルメタクリレート[157.2])、ビニルエステル類(例えば、酢酸ビニル[86.1])、マレイン酸又はフマル酸から誘導されるエステル類(例えば、マレイン酸ジメチル[144.1]、フマル酸ジエチル[172.2])、マレイミド類(例えば、N-フェニルマレイミド[173.2])、マレイン酸[116.1]、フマル酸[116.1]、p-スチレンスルホン酸[184.1]、アクリロニトリル[53.1]、メタクリロニトリル[67.1]、ジエン類(例えば、ブタジエン[54.1]、シクロペンタジエン[66.1]、イソプレン[68.1])、芳香族ビニル化合物(例えば、スチレン[104.2]、p-クロルスチレン[138.6]、t-ブチルスチレン[160.3]、α-メチルスチレン[118.2])、N-ビニルピロリドン[111.1]、N-ビニルオキサゾリドン[113.1]、N-ビニルサクシンイミド[125.1]、N-ビニルホルムアミド[71.1]、N-ビニル-N-メチルホルムアミド[85.1]、N-ビニルアセトアミド[85.1]、N-ビニル-N-メチルアセトアミド[99.1]、1-ビニルイミダゾール[94.1]、4-ビニルピリジン[105.2]、ビニルスルホン酸[108.1]、ビニルスルホン酸ナトリウム[130.2]、アリルスルホン酸ナトリウム[144.1]、メタリルスルホン酸ナトリウム[158.2]、ビニリデンクロライド[96.9]、ビニルアルキルエーテル類(例えば、メチルビニルエーテル[58.1])、エチレン[28.0]、プロピレン[42.1]、1-ブテン[56.1]、並びに、イソブテン[56.1]が挙げられる。なお、[ ]内の数値は、モノマーの分子量を意味する。
 上記モノマーは、1種単独で使用してもよいし、2種以上を併用してもよい。
 上記モノマーの中でも、アクリル酸、α-アルキルアクリル酸類、それらから誘導されるエステル類若しくはアミド類、アクリロニトリル、メタクリロニトリル、又は、芳香族ビニル化合物が好ましい。
 上記以外のモノマーとしては、例えば、リサーチディスクロージャーNo.1955(1980年、7月)に記載の化合物を使用できる。
 以下において、繰り返し単位(3-1)の具体例及びその分子量を示すが、本発明はこれらの具体例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000030
-繰り返し単位(3-2)-
 繰り返し単位(3-2)において、架橋性基の具体例としては、上記式(P1)~(P30)で表される基が挙げられ、ビニル基、ブタジエン基、(メタ)アクリル基、(メタ)アクリルアミド基、酢酸ビニル基、フマル酸エステル基、スチリル基、ビニルピロリドン基、無水マレイン酸、マレイミド基、ビニルエーテル基、エポキシ基、又は、オキセタニル基がより好ましい。
 繰り返し単位(3-2)は、重合が容易である点から、下記式(3)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000031
 上記式(3)中、PC32は繰り返し単位の主鎖を表し、より具体的には上記式(1)中のPC1と同様の構造を表し、L32は単結合又は2価の連結基を表し、より具体的には上記式(1)中のL1と同様の構造を表し、P32は上記式(P1)~(P30)で表される架橋性基を表す。
 以下において、繰り返し単位(3-2)の具体例及びその分子量(Mw)を示すが、本発明はこれらの具体例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-I000033
 繰り返し単位(3)の含有量は、高分子液晶性化合物が有する全繰り返し単位(100質量%)に対して、14質量%未満が好ましく、7質量%以下がより好ましく、5質量%以下が更に好ましい。繰り返し単位(3)の含有量の下限値は、高分子液晶性化合物が有する全繰り返し単位(100質量%)に対して、2質量%以上が好ましく、3質量%以上がより好ましい。繰り返し単位(3)の含有量が14質量%未満であれば、光吸収異方性層の配向度がより向上する。繰り返し単位(3)の含有量が2質量%以上であれば、高分子液晶性化合物の溶解性がより向上する。
 繰り返し単位(3)は、高分子液晶性化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。繰り返し単位(3)を2種以上含む場合には、その合計量が上記範囲内であることが好ましい。
(繰り返し単位(4))
 高分子液晶性化合物は、密着性や面状均一性を向上させる点から、分子鎖の長い柔軟な構造(後述の式(4)のSP4)をもつ繰り返し単位(4)を含むことができる。この理由については以下のように推定している。
 すなわち、このような分子鎖の長い柔軟な構造を含むことで、高分子液晶性化合物を構成する分子鎖同士の絡まりが生じやすくなり、光吸収異方性層の凝集破壊(具体的には、光吸収異方性層自体が破壊すること)が抑制される。その結果、光吸収異方性層と、下地層(例えば、基材又は配向層)との密着性が向上すると推測される。また、面状均一性の低下は、二色性物質と高分子液晶性化合物との相溶性が低いために生じると考えられる。すなわち、二色性物質と高分子液晶性化合物は相溶性が不十分であると、析出する二色性物質を核とする面状不良(配向欠陥)が発生すると考えられる。これに対して、高分子液晶性化合物が分子鎖の長い柔軟な構造を含むことで、二色性物質の析出が抑制されて、面状均一性に優れた光吸収異方性層が得られたと推測される。ここで、面状均一性に優れるとは、高分子液晶性化合物を含む液晶組成物が下地層(例えば、基材又は配向層)上ではじかれて生じる配向欠陥が少ないことを意味する。
 上記繰り返し単位(4)は、下記式(4)で表される繰り返し単位である。
Figure JPOXMLDOC01-appb-C000034
 上記式(4)中、PC4は繰り返し単位の主鎖を表し、より具体的には上記式(1)中のPC1と同様の構造を表し、L4は単結合又は2価の連結基を表し、より具体的には上記式(1)中のL1と同様の構造を表し(単結合が好ましい)、SP4は主鎖の原子数が10以上のアルキレン基を表し、T4は末端基を表し、より具体的には上記式(1)中のT1と同様の構造を表す。
 PC4の具体例及び好適態様は、式(1)のPC1と同様であるので、その説明を省略する。
 L4としては、本発明の効果がより発揮される点から、単結合が好ましい。
 式(4)中、SP4は、主鎖の原子数が10以上のアルキレン基を表す。ただし、SP4が表すアルキレン基を構成する1個以上の-CH-は、上述の「SP-C」より置き換えられていてもよく、特に、-O-、-S-、-N(R21)-、-C(=O)-、-C(=S)-、-C(R22)=C(R23)-、アルキニレン基、-Si(R24)(R25)-、-N=N-、-C(R26)=N-N=C(R27)-、-C(R28)=N-及びS(=O)-からなる群より選択される少なくとも1種の基で置き換えられていることが好ましい。ただし、R21~R28はそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基又は炭素数1~10の直鎖若しくは分岐のアルキル基を表す。また、SP4が表すアルキレン基を構成する1個以上の-CH-に含まれる水素原子は、上述の「SP-H」により置き換えられていてもよい。
 SP4の主鎖の原子数は、10以上であり、密着性及び面状均一性の少なくとも一方がより優れた光吸収異方性層が得られる点から、15以上が好ましく、19以上がより好ましい。また、SP2の主鎖の原子数の上限は、配向度により優れた光吸収異方性層が得られる点から、70以下が好ましく、60以下がより好ましく、50以下が更に好ましい。
 ここで、SP4における「主鎖」とは、L4とT4とを直接連結するために必要な部分構造を意味し、「主鎖の原子数」とは、上記部分構造を構成する原子の個数を意味する。換言すれば、SP4における「主鎖」は、L4とT4を連結する原子の数が最短になる部分構造である。例えば、SP4が3,7-ジメチルデカニル基である場合の主鎖の原子数は10であり、SP4が4,6-ジメチルドデカニル基の場合の主鎖の原子数は12である。また、下記式(4-1)においては、点線の四角形で表す枠内がSP4に相当し、SP4の主鎖の原子数(点線の丸で囲った原子の合計数に相当)は11である。
Figure JPOXMLDOC01-appb-C000035
 SP4が表すアルキレン基は、直鎖状であっても分岐状であってもよい。
 SP4が表すアルキレン基の炭素数は、配向度により優れた光吸収異方性層が得られる点から、8~80が好ましく、15~80がより好ましく、25~70が更に好ましく、25~60が特に好ましい。
 SP4が表すアルキレン基を構成する1個以上の-CH-は、密着性及び面状均一性により優れた光吸収異方性層が得られる点から、上述の「SP-C」によって置き換えられているのが好ましい。
 また、SP4が表すアルキレン基を構成する-CH-が複数ある場合、密着性及び面状均一性により優れた光吸収異方性層が得られる点から、複数の-CH-の一部のみが上述の「SP-C」によって置き換えられていることがより好ましい。
 「SP-C」のうち、-O-、-S-、-N(R21)-、-C(=O)-、-C(=S)-、-C(R22)=C(R23)-、アルキニレン基、-Si(R24)(R25)-、-N=N-、-C(R26)=N-N=C(R27)-、-C(R28)=N-及びS(=O)-からなる群より選択される少なくとも1種の基が好ましく、密着性及び面状均一性により優れた光吸収異方性層が得られる点から、-O-、-N(R21)-、-C(=O)-及びS(=O)-からなる群より選択される少なくとも1種の基が更に好ましく、-O-、-N(R21)-及びC(=O)-からなる群より選択される少なくとも1種の基が特に好ましい。ただし、R21~R28はそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基又は炭素数1~10の直鎖若しくは分岐のアルキル基を表す。
 特に、SP4は、アルキレン基を構成する1個以上の-CH-が-O-によって置き換えられたオキシアルキレン構造、アルキレン基を構成する1個以上の-CH-CH-が-O-及びC(=O)-によって置き換えられたエステル構造、並びに、アルキレン基を構成する1個以上の-CH-CH-CH-が-O-、-C(=O)-及びNH-によって置き換えられたウレタン結合からなる群より選択される少なくとも1つを含む基であるのが好ましい。
 SP4が表すアルキレン基を構成する1個以上の-CH-に含まれる水素原子は、前述の「SP-H」によって置き換えられていてもよい。この場合、-CH-に含まれる水素原子の1個以上が「SP-H」に置き換えられていればよい。すなわち、-CH-に含まれる水素原子の1個のみが「SP-H」によって置き換えられていてもよいし、-CH-に含まれる水素原子の全て(2個)が「SP-H」によって置き換えられていてもよい。
 「SP-H」は、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、炭素数1~10の直鎖状のアルキル基及び炭素数1~10の分岐状のアルキル基、及び、炭素数1~10ハロゲン化アルキル基からなる群より選択される少なくとも1種の基が好ましく、ヒドロキシ基、炭素数1~10の直鎖状のアルキル基及び炭素数1~10の分岐状のアルキル基からなる群より選択される少なくとも1種の基が更に好ましい。
 T4は、上述したように、T1と同様の末端基を表し、水素原子、メチル基、ヒドロキシ基、カルボキシ基、スルホン酸基、リン酸基、ボロン酸基、アミノ基、シアノ基、ニトロ基、置換基を有していてもよいフェニル基、又は、-L-CL(Lは単結合又は2価の連結基を表す。2価の連結基の具体例は上述したLW及びSPWと同じである。CLは架橋性基を表し、上記Q1又はQ2で表される基が挙げられ、式(P1)~(P30)で表される架橋性基が好ましい。)が好ましく、上記CLとしては、ビニル基、ブタジエン基、(メタ)アクリル基、(メタ)アクリルアミド基、酢酸ビニル基、フマル酸エステル基、スチリル基、ビニルピロリドン基、無水マレイン酸、マレイミド基、ビニルエーテル基、エポキシ基、又は、オキセタニル基が好ましい。
 エポキシ基は、エポキシシクロアルキル基であってもよく、エポキシシクロアルキル基におけるシクロアルキル基部分の炭素数は、本発明の効果がより優れる点から、3~15が好ましく、5~12がより好ましく、6(すなわち、エポキシシクロアルキル基がエポキシシクロヘキシル基である場合)が更に好ましい。
 オキセタニル基の置換基としては、炭素数1~10のアルキル基が挙げられ、本発明の効果がより優れる点から、炭素1~5のアルキル基が好ましい。オキセタニル基の置換基としてのアルキル基は、直鎖状であっても分岐状であってもよいが、本発明の効果がより優れる点から直鎖状が好ましい。
 フェニル基の置換基としては、ボロン酸基、スルホン酸基、ビニル基、及び、アミノ基が挙げられ、本発明の効果がより優れる点から、ボロン酸基が好ましい。
 繰り返し単位(4)の具体例としては、例えば以下の構造が挙げられるが、本発明はこれらに限定されるものではない。なお、下記具体例において、n1は2以上の整数を表し、n2は1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000036

Figure JPOXMLDOC01-appb-I000037
 繰り返し単位(4)の含有量は、高分子液晶性化合物が有する全繰り返し単位(100質量%)に対して、2~20質量%が好ましく、3~18質量%がより好ましい。繰り返し単位(4)の含有量が2質量%以上であれば、密着性により優れた光吸収異方性層が得られる。また、繰り返し単位(4)の含有量が20質量%以下であれば、面状均一性により優れた光吸収異方性層が得られる。
 繰り返し単位(4)は、高分子液晶性化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。繰り返し単位(4)が2種以上含まれる場合、上記繰り返し単位(4)の含有量は、繰り返し単位(4)の含有量の合計を意味する。
(繰り返し単位(5))
 高分子液晶性化合物は、面状均一性の観点から、多官能モノマーを重合して導入される繰り返し単位(5)を含むことができる。特に配向度の低下を抑えながら面状均一性を向上させるためには、この多官能モノマーを重合して導入される繰り返し単位(5)を10質量%以下含むことが好ましい。このように、繰り返し単位(5)を10質量%以下含むことで、配向度の低下を抑えながら面状均一性を向上させられる理由は、以下のように推定している。
 繰り返し単位(5)は、多官能モノマーを重合して、高分子液晶性化合物に導入される単位である。そのため、高分子液晶性化合物には、繰り返し単位(5)によって3次元架橋構造を形成した高分子量体が含まれていると考えられる。ここで、繰り返し単位(5)の含有量は少ないため、繰り返し単位(5)を含む高分子量体の含有率はわずかであると考えられる。
 このように3次元架橋構造を形成した高分子量体が僅かに存在することで、液晶組成物のはじきが抑制されて、面状均一性に優れた光吸収異方性層が得られたと推測される。
 また、高分子量体の含有量が僅かであるため、配向度の低下を抑えられるという効果が維持できたと推測される。
 上記多官能モノマーを重合して導入される繰り返し単位(5)は、下記式(5)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000038
 式(5)中、PC5A及びPC5Bは繰り返し単位の主鎖を表し、より具体的には上記式(1)中のPC1と同様の構造を表し、L5A及びL5Bは単結合又は2価の連結基を表し、より具体的には上記式(1)中のL1と同様の構造を表し、SP5A及びSP5Bはスペーサー基を表し、より具体的には上記式(1)中のSP1と同様の構造を表し、MG5A及びMG5Bはメソゲン構造、より具体的には上記式(LC)中のメソゲン基MGと同様の構造を表し、a及びbは0又は1の整数を表す。
 PC5A及びPC5Bは、同一の基であってもよいし、互いに異なる基であってもよいが、光吸収異方性層の配向度がより向上する点から、同一の基であるのが好ましい。
 L5A及びL5Bは、いずれも単結合であってもよいし、同一の基であってもよいし、互いに異なる基であってもよいが、光吸収異方性層の配向度がより向上する点から、いずれも単結合又は同一の基であるのが好ましく、同一の基であるのがより好ましい。
 SP5A及びSP5Bは、いずれも単結合であってもよいし、同一の基であってもよいし、互いに異なる基であってもよいが、光吸収異方性層の配向度がより向上する点から、いずれも単結合又は同一の基であるのが好ましく、同一の基であるのがより好ましい。
 ここで、式(5)における同一の基とは、各基が結合する向きを問わずに化学構造が同一であるという意味であり、例えば、SP5Aが*-CH-CH-O-**(*はL5Aとの結合位置を表し、**はMG5Aとの結合位置を表す。)であり、SP5Bが*-O-CH-CH-**(*はMG5Bとの結合位置を表し、**はL5Bとの結合位置を表す。)である場合も、同一の基である。
 a及びbはそれぞれ独立に、0又は1の整数であり、光吸収異方性層の配向度がより向上する点から、1であるのが好ましい。
 a及びbは、同一であっても、異なっていてもよいが、光吸収異方性層の配向度がより向上する点から、いずれも1であるのが好ましい。
 a及びbの合計は、光吸収異方性層の配向度がより向上する点から、1又は2であるのが好ましく(すなわち、式(5)で表される繰り返し単位がメソゲン基を有すること)、2であるのがより好ましい。
 -(MG5A)-(MG5B)-で表される部分構造は、光吸収異方性層の配向度がより向上する点から、環状構造を有するのが好ましい。この場合、光吸収異方性層の配向度がより向上する点から、-(MG5A2)-(MG5B)-で表される部分構造における環状構造の個数は、2個以上が好ましく、2~8個がより好ましく、2~6個が更に好ましく、2~4個が特に好ましい。
 MG5A及びMG5Bが表すメソゲン基はそれぞれ独立に、光吸収異方性層の配向度がより向上する点から、環状構造を1個以上含むのが好ましく、2~4個含むのが好ましく、2~3個含むのがより好ましく、2個含むのが更に好ましい。
 環状構造の具体例としては、芳香族炭化水素基、複素環基、及び脂環式基が挙げられ、これらの中でも芳香族炭化水素基及び脂環式基が好ましい。
 MG5A及びMG5Bは、同一の基であってもよいし、互いに異なる基であってもよいが、光吸収異方性層の配向度がより向上する点から、同一の基であるのが好ましい。
 MG5A及びMG5Bが表すメソゲン基としては、液晶性の発現、液晶相転移温度の調整、原料入手性及び合成適性という観点、並びに、本発明の効果がより優れるから、上記式(LC)中のメソゲン基MGが好ましい。
 特に、繰り返し単位(5)は、PC5AとPC5Bが同一の基であり、L5AとL5Bがいずれも単結合又は同一の基であり、SP5AとSP5Bがいずれも単結合又は同一の基であり、MG5AとMG5Bが同一の基であるのが好ましい。これにより、光吸収異方性層の配向度がより向上する。
 繰り返し単位(5)の含有量は、高分子液晶性化合物が有する全繰り返し単位の含有量(100質量%)に対して、10質量%以下が好ましく、0.001~5質量%がより好ましく、0.05~3質量%が更に好ましい。
 繰り返し単位(5)は、高分子液晶性化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。繰り返し単位(5)を2種以上含む場合には、その合計量が上記範囲内であることが好ましい。
(星型ポリマー)
 高分子液晶性化合物は、星型ポリマーであってもよい。本発明における星型ポリマーとは、核を起点として延びるポリマー鎖を3つ以上有するポリマーを意味し、具体的には、下記式(6)で表される。
 高分子液晶性化合物として式(6)で表される星型ポリマーは、高溶解性(溶媒に対する溶解性が優れること)でありながら、配向度の高い光吸収異方性層を形成できる。
Figure JPOXMLDOC01-appb-C000039
 式(6)中、nは、3以上の整数を表し、4以上の整数が好ましい。nの上限値は、これに限定されないが、通常12以下であり、6以下が好ましい。
 複数のPIはそれぞれ独立に、上記式(1)、(21)、(22)、(3)、(4)、(5)で表される繰り返し単位のいずれかを含むポリマー鎖を表す。ただし、複数のPIのうちの少なくとも1つは、上記式(1)で表される繰り返し単位を含むポリマー鎖を表す。
 Aは、星型ポリマーの核となる原子団を表す。Aの具体例としては、特開2011-074280号公報の[0052]~[0058]段落、特開2012-189847号公報の[0017]~[0021]段落、特開2013-031986号公報の[0012]~[0024]段落、特開2014-104631号公報の[0118]~[0142]段落等に記載の多官能チオール化合物のチオール基から水素原子を取り除いた構造が挙げられる。この場合、AとPIは、スルフィド結合によって結合される。
 Aの由来となる上記多官能チオール化合物のチオール基の数は、3以上が好ましく、4以上がより好ましい。多官能チオール化合物のチオール基の数の上限値は、通常12以下であり、6以下が好ましい。
 多官能チオール化合物の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000040

Figure JPOXMLDOC01-appb-I000041
 高分子液晶性化合物は、配向度を向上させる観点から、サーモトロピック液晶、かつ、結晶性高分子であってもよい。
(結晶性高分子)
 上記高分子液晶性化合物は、結晶性高分子であってもよい。
 結晶性高分子とは、温度変化によって結晶層への転移を示す高分子である。結晶性高分子は結晶層への転移の他にガラス転移を示すものであってもよい。
 結晶性高分子は、光吸収異方性層の配向度がより高くなり、かつ、ヘイズがより観察され難くなることから、加熱した際に結晶相から液晶相への転移を持つ(途中にガラス転移があってもよい)高分子液晶性化合物、又は、加熱により液晶状態した後で温度を下降させた際に結晶相への転移(途中にガラス転移があってもよい)を持つ高分子液晶性化合物が好ましい。
 なお、高分子液晶性化合物の結晶性の有無は以下のように評価する。
 光学顕微鏡(Nikon社製ECLIPSE E600 POL)の二枚の光吸収異方性層を互いに直交するように配置し、二枚の光吸収異方性層の間にサンプル台をセットする。そして、高分子液晶性化合物をスライドガラスに少量乗せ、サンプル台上に置いたホットステージ上にスライドガラスをセットする。サンプルの状態を観察しながら、高分子液晶性化合物が液晶性を示す温度までホットステージの温度を上げ、高分子液晶性化合物を液晶状態にする。高分子液晶性化合物が液晶状態になった後、ホットステージの温度を徐々に降下させながら液晶相転移の挙動を観察し、液晶相転移の温度を記録する。なお、高分子液晶性化合物が複数の液晶相(例えばネマチック相とスメクチック相)を示す場合、その転移温度も全て記録する。
 次に、高分子液晶性化合物のサンプル約5mgをアルミパンに入れて蓋をし、示差走査熱量計(DSC)にセットする(リファレンスとして空のアルミパンを使用)。上記で測定した高分子液晶性化合物が液晶相を示す温度まで加熱し、その後、温度を1分保持する。その後、10℃/分の速度で降温させながら、熱量測定を行う。得られた熱量のスペクトルから発熱ピークを確認する。
 その結果、液晶相転移の温度以外の温度で発熱ピークが観測された場合は、その発熱ピークが結晶化によるピークであり、高分子液晶性化合物は結晶性を有すると言える。
 一方、液晶相転移の温度以外の温度で発熱ピークが観測されなかった場合は、高分子液晶性化合物は結晶性を有さないといえる。
 結晶性高分子を得る方法は特に制限されないが、具体例としては、上記繰り返し単位(1)を含む高分子液晶性化合物を用いる方法が好ましく、なかでも、上記繰り返し単位(1)を含む高分子液晶性化合物における好適な態様を用いる方法がより好ましい。
-結晶化温度-
 高分子液晶性化合物の結晶化温度は、光吸収異方性層の配向度がより高くなり、かつ、ヘイズがより観察され難くなることから、-50℃以上150℃未満が好ましく、なかでも120℃以下がより好ましく、-20℃以上120℃未満が更に好ましく、なかでも95℃以下が特に好ましい。上記高分子液晶性化合物の結晶化温度は、ヘイズを減らす観点から、150℃未満が好ましい。
 なお、結晶化温度は、上述したDSCにおける結晶化による発熱ピークの温度である。
(分子量)
 高分子液晶性化合物の重量平均分子量(Mw)は、本発明の効果がより優れる点から、1000~500000が好ましく、2000~300000がより好ましい。高分子液晶性化合物のMwが上記範囲内にあれば、高分子液晶性化合物の取り扱いが容易になる。
 特に、塗布時のクラック抑制の観点から、高分子液晶性化合物の重量平均分子量(Mw)は、10000以上が好ましく、10000~300000がより好ましい。
 また、配向度の温度ラチチュードの観点から、高分子液晶性化合物の重量平均分子量(Mw)は、10000未満が好ましく、2000以上10000未満が好ましい。
 ここで、本発明における重量平均分子量及び数平均分子量は、ゲル浸透クロマトグラフ(GPC)法により測定された値である。
 ・溶媒(溶離液):N-メチルピロリドン
 ・装置名:TOSOH HLC-8220GPC
 ・カラム:TOSOH TSKgelSuperAWM-H(6mm×15cm)を3本接続して使用
 ・カラム温度:25℃
 ・試料濃度:0.1質量%
 ・流速:0.35mL/min
 ・校正曲線:TOSOH製TSK標準ポリスチレン Mw=2800000~1050(Mw/Mn=1.03~1.06)までの7サンプルによる校正曲線を使用
 高分子液晶性化合物は、ネマチック相及びスメクチック相のいずれを示してもよいが、少なくともネマチック相を示すことが好ましい。
 ネマチック相を示す温度範囲は、0~450℃が好ましく、取り扱いや製造適性の観点から、30~400℃が好ましい。
(含有量)
 サーモトロピック液晶性化合物(好ましくは、棒状液晶性化合物)の含有量は、液晶組成物の全固形分(100質量%)に対して、本発明の効果がより優れる点から、10~97質量%が好ましく、40~95質量%がより好ましく、50~95質量%が更に好ましい。
 サーモトロピック液晶性化合物(好ましくは、棒状液晶性化合物)が高分子液晶性化合物を含む場合、高分子液晶性化合物の含有量は、サーモトロピック液晶性化合物(好ましくは、棒状液晶性化合物)の全質量(100質量部)に対して、10~99質量%が好ましく、30~95質量%がより好ましく、50~90質量%が更に好ましい。
 サーモトロピック液晶性化合物(好ましくは、棒状液晶性化合物)が低分子液晶性化合物を含む場合、低分子液晶性化合物の含有量は、サーモトロピック液晶性化合物(好ましくは、棒状液晶性化合物)の全質量(100質量部)に対して、1~90質量%が好ましく、5~70質量%がより好ましく、10~60質量%が更に好ましい。
 サーモトロピック液晶性化合物(好ましくは、棒状液晶性化合物)が高分子液晶性化合物及び低分子液晶性化合物の両方を含む場合、高分子液晶性化合物の含有量に対する低分子液晶性化合物の含有量の質量比(低分子液晶性化合物/高分子液晶性化合物)は、本発明の効果がより優れる点から、5/95~70/30が好ましく、10/90~50/50がより好ましい。
 ここで、「液晶組成物における固形分」とは、溶媒を除いた成分をいい、固形分の具体例としては、上記棒状液晶性化合物及び後述する二色性物質、重合開始剤、界面改良剤などが挙げられる。
<二色性物質>
 本発明の液晶組成物は、二色性物質を含有する。
 本発明において、二色性物質とは、方向によって吸光度が異なる色素を意味する。二色性物質は、液晶性を示してもよいし、液晶性を示さなくてもよい。
 二色性物質は、特に限定されず、可視光吸収物質(二色性色素)、発光物質(蛍光物質、燐光物質)、紫外線吸収物質、赤外線吸収物質、非線形光学物質、カーボンナノチューブ、及び、無機物質(例えば量子ロッド)などが挙げられ、従来公知の二色性物質(二色性色素)を使用することができる。
 具体的には、例えば、特開2013-228706号公報の[0067]~[0071]段落、特開2013-227532号公報の[0008]~[0026]段落、特開2013-209367号公報の[0008]~[0015]段落、特開2013-14883号公報の[0045]~[0058]段落、特開2013-109090号公報の[0012]~[0029]段落、特開2013-101328号公報の[0009]~[0017]段落、特開2013-37353号公報の[0051]~[0065]段落、特開2012-63387号公報の[0049]~[0073]段落、特開平11-305036号公報の[0016]~[0018]段落、特開2001-133630号公報の[0009]~[0011]段落、特開2011-215337号公報の[0030]~[0169]、特開2010-106242号公報の[0021]~[0075]段落、特開2010-215846号公報の[0011]~[0025]段落、特開2011-048311号公報の[0017]~[0069]段落、特開2011-213610号公報の[0013]~[0133]段落、特開2011-237513号公報の[0074]~[0246]段落、特開2016-006502号公報の[0005]~[0051]段落、特開2018-053167号公報[0014]~[0032]段落、特開2020-11716号公報の[0014]~[0033]段落、国際公開第2016/060173号公報の[0005]~[0041]段落、国際公開2016/136561号公報の[0008]~[0062]段落、国際公開第2017/154835号の[0014]~[0033]段落、国際公開第2017/154695号の[0014]~[0033]段落、国際公開第2017/195833号の[0013]~[0037]段落、国際公開第2018/164252号の[0014]~[0034]段落、国際公開第2018/186503号公報[0021]~[0030]段落、国際公開第2019/189345号公報[0043]~[0063]段落、などに記載されたものが挙げられる。
 本発明においては、2種以上の二色性物質を併用してもよく、例えば、形成される光吸収異方性層を黒色に近づける観点から、波長370~550nmの範囲に極大吸収波長を有する少なくとも1種の二色性物質と、波長500~700nmの範囲に極大吸収波長を有する少なくとも1種の二色性物質とを併用することが好ましい。
 二色性物質の含有量は、液晶組成物の全固形分(100.0質量%)に対して、10.0質量%以上であり、15.0質量%以上が好ましい。また、二色性物質の含有量は、液晶組成物の全固形分に対して、本発明の効果がより優れる点から、10~70質量%が好ましく、13.0~60.0質量%がより好ましく、15.0~50.0質量%が更に好ましく、15.0~30.0質量%が特に好ましく、15.0~20.0質量%が最も好ましい。二色性物質を複数併用する場合は、複数の二色性物質の合計量が上述の範囲にあることが好ましい。
<溶媒>
 本発明の液晶組成物は、作業性等の観点から、溶媒を含有するのが好ましい。
 溶媒としては、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロペンタノン、及び、シクロヘキサノンなど)、エーテル類(例えば、ジオキサン、テトラヒドロフラン、テトラヒドロピラン、ジオキソラン、テトラヒドロフルフリルアルコール、及び、シクロペンチルメチルエーテルなど)、脂肪族炭化水素類(例えば、ヘキサンなど)、脂環式炭化水素類(例えば、シクロヘキサンなど)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン、及び、トリメチルベンゼンなど)、ハロゲン化炭素類(例えば、ジクロロメタン、トリクロロメタン(クロロホルム)、ジクロロエタン、ジクロロベンゼン、及び、クロロトルエンなど)、エステル類(例えば、酢酸メチル、酢酸エチル、及び、酢酸ブチル、炭酸ジエチルなど)、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、及び、シクロヘキサノールなど)、セロソルブ類(例えば、メチルセロソルブ、エチルセロソルブ、及び、1,2-ジメトキシエタンなど)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシドなど)、アミド類(例えば、ジメチルホルムアミド、及び、ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン、1,3-ジメチル-2-イミダゾリジノンなど)、及び、ヘテロ環化合物(例えば、ピリジンなど)等の有機溶媒、並びに、水が挙げられる。
 これらの溶媒は、1種単独で用いてもよく、2種以上を併用してもよい。
 これらの溶媒のうち、形成される光吸収異方性層の配向度がより高くなり、耐熱性がより向上する理由から、有機溶媒を用いることが好ましく、ハロゲン化炭素類、エーテル類又はケトン類を用いることがより好ましい。
 液晶組成物が溶媒を含有する場合、溶媒の含有量は、形成される光吸収異方性層の配向度がより高くなり、耐熱性がより向上する理由から、液晶組成物の全質量(100質量%)に対して、60~99.5質量%が好ましく、70~99質量%がより好ましく、75~98質量%が特に好ましい。
<重合開始剤>
 本発明の液晶組成物は、重合開始剤を含んでいてもよい。重合開始剤としては特に制限はないが、感光性を有する化合物、すなわち光重合開始剤であることが好ましい。
 光重合開始剤としては、各種の化合物を特に制限なく使用できる。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書)、アシロインエーテル(米国特許第2448828号明細書)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書)、多核キノン化合物(米国特許第3046127号及び同2951758号の各明細書)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書)、アクリジン及びフェナジン化合物(特開昭60-105667号公報及び米国特許第4239850号明細書)、オキサジアゾール化合物(米国特許第4212970号明細書)、o-アシルオキシム化合物(特開2016-027384号公報の[0065]段落)、及び、アシルフォスフィンオキシド化合物(特公昭63-040799号公報、特公平5-029234号公報、特開平10-095788号公報及び特開平10-029997号公報)などが挙げられる。
 このような光重合開始剤としては、市販品も用いることができ、BASF社製のイルガキュア-184、イルガキュア-907、イルガキュア-369、イルガキュア-651、イルガキュア-819、イルガキュア-OXE-01及びイルガキュア-OXE-02等が挙げられる。
 液晶組成物が重合開始剤を含有する場合、重合開始剤の含有量は、形成される光吸収異方性層の配向度がより高くなり、耐熱性がより向上する理由から、液晶組成物の全固形分(100質量%)に対して、0.01~30質量%が好ましく、0.1~15質量%がより好ましい。
<重合性化合物>
 本発明の液晶組成物は、重合性化合物を含んでいてもよい。重合性化合物としては、アクリレートを含む化合物(例えば、(メタ)アクリレートモノマー)が挙げられる。本発明の液晶組成物が重合性化合物を含有する場合、重合性化合物の含有量は、液晶組成物の全固形分(100質量%)に対して、本発明の効果がより優れる点から、0.5~50質量%が好ましく、1.0~40質量%がより好ましい。
 本発明の液晶組成物は、その他の添加剤を含んでいてもよい。添加剤としては例えば液晶組成物の配向をアシストする配向剤が挙げられ、具体的にはボロン酸化合物、及び、オニウム塩が挙げられる。
 ボロン酸化合物としては、式(30)で表される化合物が好ましい。
 式(30)
Figure JPOXMLDOC01-appb-C000042
 式(30)中、R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の脂肪族炭化水素基、置換若しくは無置換のアリール基、又は、置換若しくは無置換のヘテロ環基を表す。
 Rは、(メタ)アクリル基を含む置換基を表す。
 ボロン酸化合物の具体例としては、特開2008-225281号公報の[0023]~[0032]段落に記載の一般式(I)で表されるボロン酸化合物が挙げられる。
 ボロン酸化合物としては、以下に例示する化合物も好ましい。
Figure JPOXMLDOC01-appb-C000043
 オニウム塩としては、式(31)で表される化合物が好ましい。
 式(31)
Figure JPOXMLDOC01-appb-C000044
 式(31)中、環Aは、含窒素複素環からなる第4級アンモニウムイオンを表す。Xは、アニオンを表す。Lは、2価の連結基を表す。Lは、単結合、又は、2価の連結基を表す。Yは、5又は6員環を部分構造として有する2価の連結基を表す。Zは、2~20のアルキレン基を部分構造として有する2価の連結基を表す。P及びPは、それぞれ独立に、重合性エチレン性不飽和結合を有する一価の置換基を表す。
 オニウム塩の具体例としては、特開2012-208397号公報の[0052]~[0058]段落に記載のオニウム塩、特開2008-026730号公報の[0024]~[0055]段落に記載のオニウム塩、及び、特開2002-037777号公報に記載のオニウム塩が挙げられる。
 液晶組成物中の配向剤の含有量は、液二色性物質の含有量は、液晶組成物の全固形分(100質量%)に対して、0.1~40質量%が好ましく、0.3~20質量%がより好ましい。配向剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。配向剤が2種以上を用いられる場合、それらの合計量が上記範囲であることが好ましい。
[透明基材フィルム]
 本発明の光学フィルムは、透明基材フィルムを有してもよい。
 透明基材フィルムは、光吸収異方性層における保護層が設けられた面とは反対側の面に配置されるのが好ましい。
 透明基材フィルムとしては、公知の透明樹脂フィルム、透明樹脂板、及び、透明樹脂シート等を用いることができ、特に限定はない。透明樹脂フィルムとしては、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム(屈折率1.48)、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリエチレンテレフタレートフィルム、ポリエーテルスルホンフィルム、ポリアクリル系樹脂フィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、及び、(メタ)アクリルニトリルフィルム等が使用できる。
 その中でも、透明性が高く、光学的に複屈折が少なく、製造が容易であり、偏光板の保護フィルムとして一般に用いられているセルロースアシレートフィルムが好ましく、セルローストリアセテートフィルムが特に好ましい。
 透明基材フィルムの厚さは、通常20~100μmである。
 本発明においては、透明基材フィルムがセルロースエステル系フィルムであり、かつ、その膜厚が20~70μmであるのが特に好ましい。
[配向層]
 本発明の光学フィルムは、配向層を有していてもよい。配向層は、光吸収異方性層を隣接して配置されることが好ましい。配向層は、透明基材フィルムと光吸収異方性層との間に設けられることも好ましい。
 配向層は、配向層上において本発明の液晶組成物に含まれるサーモトロピック液晶性化合物(好ましくは、棒状液晶性化合物)及び二色性物質を所望の配向状態とすることができるのであれば、どのような層でもよい。
 配向層を設ける手段としては、有機化合物(好ましくはポリマー、例えば、ポリビニルアルコール及びポリイミド等)の膜表面へのラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、及び、ラングミュアブロジェット法(LB膜)による有機化合物(例、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段が挙げられる。更に、電場の付与、磁場の付与又は光照射により、配向機能が生じる配向層も知られている。なかでも、本発明では、配向層のプレチルト角の制御し易さの点からはラビング処理により形成する配向層が好ましく、配向の均一性の点からは光照射により形成する光配向層も好ましい。配向軸を傾ける場合には、例えばアゾ化合物やシンナモイル化合物のような光配向層に対して斜め方向からUV照射することで実現でき、その結果、透過軸中心をフィルムの法線方向に対して傾けることが可能となる。
 なお、配向層は、後述するバリア層として機能する場合もある。
 配向層は、2層以上の層からなっていてもよく、2層以上からなる配向層のうち、1つ以上の層が液晶化合物を含む配向用液晶層であってもよい。
 光吸収異方性層の厚さは、特に限定されないが、小型軽量化の観点から、100~8000nmが好ましく、300~5000nmがより好ましい。
[光吸収異方性層の形成方法]
 光吸収異方性層の形成方法は特に限定されず、上述した光吸収異方性層形成用組成物を塗布して塗布膜を形成する工程(以下、「塗布膜形成工程」ともいう。)と、塗布膜に含まれる液晶性成分や二色性物質を配向させる工程(以下、「配向工程」ともいう。)と、をこの順に含む方法が挙げられる。
 なお、液晶性成分とは、上述したサーモトロピック液晶性化合物だけでなく、上述した二色性物質が液晶性を有している場合は、液晶性を有する二色性物質も含む成分である。
〔塗布膜形成工程〕
 塗布膜形成工程は、光吸収異方性層形成用組成物を塗布して塗布膜を形成する工程である。
 上述した溶媒を含有する光吸収異方性層形成用組成物を用いたり、光吸収異方性層形成用組成物を加熱などによって溶融液などの液状物としたものを用いたりすることにより、光吸収異方性層形成用組成物を塗布することが容易になる。
 光吸収異方性層形成用組成物の塗布方法としては、具体的には、例えば、ロールコーティング法、グラビア印刷法、スピンコート法、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スプレー法、及び、インクジェット法等の公知の方法が挙げられる。
〔配向工程〕
 配向工程は、塗布膜に含まれる液晶性成分を配向させる工程である。これにより、光吸収異方性層が得られる。
 配向工程は、乾燥処理を有していてもよい。乾燥処理によって、溶媒などの成分を塗布膜から除去することができる。乾燥処理は、塗布膜を室温下において所定時間放置する方法(例えば、自然乾燥)によって行われてもよいし、加熱及び/又は送風する方法によって行われてもよい。
 ここで、光吸収異方性層形成用組成物に含まれる液晶性成分は、上述した塗布膜形成工程又は乾燥処理によって、配向する場合がある。例えば、光吸収異方性層形成用組成物が溶媒を含む塗布液として調製されている態様では、塗布膜を乾燥して、塗布膜から溶媒を除去することで、光吸収異方性を持つ塗布膜(すなわち、光吸収異方性層)が得られる。
 乾燥処理が塗布膜に含まれる液晶性成分の液晶相への転移温度以上の温度により行われる場合には、後述する加熱処理は実施しなくてもよい。
 塗布膜に含まれる液晶性成分の液晶相への転移温度は、製造適性等の面から10~250℃が好ましく、25~190℃がより好ましい。上記転移温度が10℃以上であると、液晶相を呈する温度範囲にまで温度を下げるための冷却処理等が必要とならず、好ましい。また、上記転移温度が250℃以下であると、一旦液晶相を呈する温度範囲よりも更に高温の等方性液体状態にする場合にも高温を要さず、熱エネルギーの浪費、並びに、基板の変形及び変質等を低減できるため、好ましい。
 配向工程は、加熱処理を有することが好ましい。これにより、塗布膜に含まれる液晶性成分を配向させることができるため、加熱処理後の塗布膜を光吸収異方性膜として好適に使用できる。
 加熱処理は、製造適性等の面から10~250℃が好ましく、25~190℃がより好ましい。また、加熱時間は、1~300秒が好ましく、1~60秒がより好ましい。
 配向工程は、加熱処理後に実施される冷却処理を有していてもよい。冷却処理は、加熱後の塗布膜を室温(20~25℃)程度まで冷却する処理である。これにより、塗布膜に含まれる液晶性成分の配向を固定することができる。冷却手段としては、特に限定されず、公知の方法により実施できる。
 以上の工程によって、光吸収異方性層を得ることができる。
 なお、本態様では、塗布膜に含まれる液晶性成分を配向する方法として、乾燥処理及び加熱処理などを挙げているが、これに限定されず、公知の配向処理によって実施できる。
〔他の工程〕
 光吸収異方性層の形成方法は、上記配向工程後に、光吸収異方性層を硬化させる工程(以下、「硬化工程」ともいう。)を有していてもよい。
 硬化工程は、例えば、光吸収異方性層が架橋性基(重合性基)を有している場合には、加熱及び/又は光照射(露光)によって実施される。このなかでも、硬化工程は光照射によって実施されることが好ましい。
 硬化に用いる光源は、赤外線、可視光又は紫外線など、種々の光源を用いることが可能であるが、紫外線が好ましい。また、硬化時に加熱しながら紫外線を照射してもよいし、特定の波長のみを透過するフィルターを介して紫外線を照射してもよい。
 露光が加熱しながら行われる場合、露光時の加熱温度は、光吸収異方性層に含まれる液晶性成分の液晶相への転移温度にもよるが、25~140℃が好ましい。
 また、露光は、窒素雰囲気下で行われてもよい。ラジカル重合によって光吸収異方性層の硬化が進行する場合において、酸素による重合の阻害が低減されるため、窒素雰囲気下で露光することが好ましい。
[光吸収異方性層のパターニング]
 本発明に用いられる光吸収異方性層は、面内に領域Aと領域Bを有し、それぞれの領域において透過率中心軸が異なる、光吸収異方性層であることが可能である。液晶の画素毎にパターニングすることで発光画素を制御すれば、狭視野の視野中心の切り替えが可能になる。
 また、本発明に用いられる光吸収異方性層は、面内に領域Cと領域Dを有し、領域Cと領域Dで、透過率中心軸とフィルム面の法線とを包含する平面において、透過率中心軸から法線方向に30°傾けた透過率が異なる、光吸収異方性層であることが可能である。この場合、領域Cの透過率中心軸から法線方向に30°傾けた透過率が50%以下であり、領域Dの透過率中心軸から法線方向に30°傾けた透過率が80%以上である、光吸収異方性層であることが好ましい。
 上記パターニングを行うことで、一部の領域で視角依存性を強めたり弱めたりすることが可能となる。これにより、視角依存性を強めた領域にのみ機密度の高い情報を表示したりすることもできる。また、表示装置として視角依存性を表示位置別に制御することにより、意匠性に優れた設計も可能となる。更に、液晶の画素毎にパターニングすることで発光画素を制御すれば、狭視角と広視角との切り替えが可能になる。
〔パターン形成方法〕
 このように面内で異なる2つ以上の領域を有するパターン光吸収異方性層の形成方法には、制限はなく、例えばWO2019/176918号公報に記載されているような公知の各種の方法が利用可能である。一例として、光配向層に照射する紫外光の照射角度を変化させてパターンを形成させる方法、パターン光吸収異方性層の厚さを面内で制御する方法、パターン光吸収異方性層中の二色性色素化合物を偏在させる方法、及び、光学的に均一なパターン光吸収異方性層を後加工する方法などが挙げられる。
 パターン光吸収異方性層の厚さを面内で制御する方法としては、リソグラフィを利用する方法、インプリントを利用する方法、及び、凹凸構造を有する基材にパターン光吸収異方性層を形成する方法等が挙げられる。パターン光吸収異方性層中の二色性色素化合物を偏在させる方法としては、溶剤浸漬により二色性色素を抽出する方法(ブリーチング)が挙げられる。更に、光学的に均一なパターン光吸収異方性層を後加工する方法としては、レーザー加工等によって、平坦な光吸収異方性層の一部を裁断する方法が挙げられる。
[視角制御システム]
 本発明の視角制御システムは、上記光学フィルムと、偏光子とを有することが好ましい。本発明の視角制御システムの一態様について、図2を参照しながら説明する。
 図2に示す視角制御システム9は、視認側から、バリア層1、光吸収異方性層2、配向用液晶層3、配向層4、及び、TACフィルム5をこの順に有する。なお、TACフィルム5の配向層4とは反対側に、図示しない偏光子が配置される。図2においては、バリア層1、光吸収異方性層2、配向用液晶層3、配向層4、及び、TACフィルム5が光学フィルムを構成する。
 上記態様は、配向用液晶層3を含む構成だが、配向用液晶層3を含まない態様であってもよい。更に、上記配向用液晶層3を含まない態様は、視認側から、バリア層1、配向層4、光吸収異方性層2、及び、TACフィルム5をこの順に有する態様であってもよい。
 また、上記態様ではTACフィルム5を含むが、TACフィルム5は、後述するその他の層に示す層であってもよい。
 また、上述したように、バリア層1が配向層4の機能を有していてもよく、その場合、視認側から、バリア層1、光吸収異方性層2、及び、TACフィルム5をこの順に有する態様であってもよい。
 以下、本発明の視角制御システムが含みうる層について説明する。
〔バリア層〕
 本発明の視角制御システムは、光吸収異方性層とともに、バリア層を有していることも好ましい。
 ここで、バリア層は、ガス遮断層(酸素遮断層)とも呼ばれ、大気中の酸素等のガス、水分、又は、隣接する層に含まれる化合物等から本発明の光学フィルムに含まれる層を保護する機能を有する。
 バリア層については、例えば、特開2014-159124号公報の[0014]~[0054]段落、特開2017-121721号公報の[0042]~[0075]段落、特開2017-115076号公報の[0045]~[0054]段落、特開2012-213938号公報の[0010]~[0061]段落、特開2005-169994号公報の[0021]~[0031]段落の記載を参照できる。
〔屈折率調整層〕
 本発明の視角制御システムは、上述した光吸収異方性層が二色性物質を有し、光吸収異方性層の高屈折率に起因する内部反射が問題となる場合がある。その場合に、屈折率調整層が存在することが好ましい。屈折率調整層は、光吸収異方性層に接するように配置される層であり、波長550nmにおける面内平均屈折率が1.55以上1.70以下であることが好ましい。上記屈折率調整層は、いわゆるインデックスマッチングを行うための層であることが好ましい。
〔偏光子〕
 本発明の視角制御システムに用いられる偏光子は、光を特定の直線偏光に変換する機能を有する部材であれば特に限定されず、従来公知の偏光子を利用することができる。
 偏光子としては、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、及びポリエン系偏光子などが用いられる。ヨウ素系偏光子及び染料系偏光子には、塗布型偏光子と延伸型偏光子があり、いずれも適用できる。塗布型偏光子としては、液晶性化合物の配向を利用して二色性色素を配向させた偏光子が好ましく、延伸型偏光子としては、ポリビニルアルコールにヨウ素又は二色性染料を吸着させ、延伸して作製される偏光子が好ましい。
 また、基材上にポリビニルアルコール層を形成した積層フィルムの状態で延伸及び染色を施すことで偏光子を得る方法として、特許第5048120号公報、特許第5143918号公報、特許第5048120号公報、特許第4691205号公報、特許第4751481号公報、及び、特許第4751486号公報を挙げることができ、これらの偏光子に関する公知の技術も好ましく利用することができる。
 なかでも、入手が容易で偏光度に優れる点で、ポリビニルアルコール系樹脂(-CH-CHOH-を繰り返し単位として含むポリマー、特に、ポリビニルアルコール及びエチレン-ビニルアルコール共重合体からなる群から選択される少なくとも1つ)を含む偏光子が好ましい。
 本発明においては、偏光子の厚みは特に限定されないが、3~60μmであるのが好ましく、5~20μmであるのがより好ましく、5~10μmであるのが更に好ましい。
 本発明の光吸収異方性層と偏光子層は、粘着剤又は接着剤を介して積層してもよいし、偏光子上に上記配向層、光異方性吸収層を直接塗工して積層してもよい。
 本発明の視角制御システムにおいては、図3中、光吸収異方性層20の透過率中心軸方向22とフィルム面の法線(光吸収異方性層の法線23)とを含有する平面(すなわち、光学フィルムの光吸収異方性層20の透過率中心軸方向22を光学フィルム面に正射影した方向(φ1で示す方向)と、フィルム面の法線とを含む平面)と、図3中、偏光子21の吸収軸方向24(φ2で示す方向)のなす角φは、0°以上85°未満、95°超265°未満、又は、275°超360°以下が好ましく、45°以上85°未満、95°超135°以下、225°以上265°未満、又は、275°超315°以下がより好ましい。
〔粘着層〕
 本発明の視角制御システムは、粘着層を有していてもよく、粘着層は通常の画像表示装置に使用されるものと同様の透明で光学的に等方性の接着剤であることが好ましく、通常は感圧型接着剤が使用される。
 本発明における粘着層には、母材(粘着剤)、導電性粒子、及び必要に応じて用いられる熱膨張性粒子の他に、架橋剤(例えば、イソシアネート系架橋剤、エポキシ系架橋剤など)、粘着付与剤(例えば、ロジン誘導体樹脂、ポリテルペン樹脂、石油樹脂、油溶性フェノール樹脂など)、可塑剤、充填剤、老化防止剤、界面活性剤、紫外線吸収剤、光安定剤、及び、酸化防止剤等の適宜な添加剤を配合してもよい。
 粘着層の厚みは通常、20~500μmであり、好ましくは20~250μmである。20μm未満では必要な接着力やリワーク適性が得られない場合があり、500μmを越えると画像表示装置の周辺端部から粘着剤がはみ出したり、滲み出したりする場合がある。
 粘着層の形成には、例えば、母材、導電性粒子、及び必要に応じて、熱膨張性粒子、添加剤、及び、溶媒等を含むコーティング液を保護部材用支持体上に直接塗布して剥離ライナーを介して圧着する方法、並びに、適当な剥離ライナー(剥離紙など)上にコーティング液を塗布して熱膨張性粘着層を形成し、これを保護部材用支持体上に圧着転写(移着)する方法等の方法にて行うことができる。
 その他、保護部材としては、例えば特開2003-292916号公報等に記載の熱剥離性粘着シートの構成に、導電性粒子を添加した構成を適用することができる。
 また、保護部材としては、日東電工(株)製「リバアルファ」などの市販品中の粘着層表面に導電性粒子を散布したものを用いてもよい。
〔接着層〕
 本発明の視角制御システムは、接着層を有していてもよく、接着層に用いられる接着剤は、貼り合わせた後の乾燥や反応により接着性を発現する。
 ポリビニルアルコール系接着剤(PVA系接着剤)は、乾燥により接着性が発現し、材料同士を接着することが可能となる。
 反応により接着性を発現する硬化型接着剤の具体例としては、(メタ)アクリレート系接着剤のような活性エネルギー線硬化型接着剤やカチオン重合硬化型接着剤が挙げられる。なお、(メタ)アクリレートとは、アクリレート及び/又はメタクリレートを意味する。(メタ)アクリレート系接着剤における硬化性成分としては、例えば、(メタ)アクリロイル基を有する化合物、ビニル基を有する化合物が挙げられる。また、カチオン重合硬化型接着剤としては、エポキシ基やオキセタニル基を有する化合物も使用することができる。エポキシ基を有する化合物は、分子内に少なくとも2個のエポキシ基を有するものであれば特に限定されず、一般に知られている各種の硬化性エポキシ化合物を用いることができる。好ましいエポキシ化合物として、分子内に少なくとも2個のエポキシ基と少なくとも1個の芳香環を有する化合物(芳香族系エポキシ化合物)や、分子内に少なくとも2個のエポキシ基を有し、そのうちの少なくとも1個は脂環式環を構成する隣り合う2個の炭素原子との間で形成されている化合物(脂環式エポキシ化合物)等が例として挙げられる。
 中でも、加熱変形耐性の観点から、紫外線照射で硬化する紫外線硬化型接着剤が好ましく用いられる。
 接着層、粘着層の各層にはサリチル酸エステル系化合物やベンゾフェノール系化合物、ベンゾトリアゾール系化合物やシアノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式等の方式により紫外線吸収能をもたせたもの等であってもよい。
 フィルムへの粘着層や接着層の付設は、適宜な方式で行いうる。その例としては、例えばトルエンや酢酸エチル等の適宜な溶剤の単独物又は混合物からなる溶媒に、ベースポリマー又はその組成物を溶解又は分散させた10~40重量%程度の粘着剤溶液を調製し、それを流延方式や塗工方式等の適宜な展開方式でフィルム上に直接付設する方式、及び、上記に準じセパレータ上に粘着層を形成してそれを移着する方式等が挙げられる。
 粘着層や接着層は、異なる組成又は種類等の層の重畳層としてフィルムの片面又は両面に設けることもできる。また両面に設ける場合に、フィルムの表裏において異なる組成や種類や厚さ等の粘着層とすることもできる。
 また、保護フィルムは、接着剤や粘着剤を付設する前に、接着性の向上等を目的として、表面改質処理を行ってもよい。具体的な処理としてば、コロナ処理、プラズマ処理、プライマー処理、ケン化処理等が挙げられる。
〔その他の層〕
 視角の角度依存性を制御するために、本発明に用いられる光吸収異方性層を、更に光学異方性フィルムや旋光子と組み合わせて用いることも可能である。例えば、透明基材フィルムとして、カーボネート、シクロオレフィン、セルロースアシレート、メタクリル酸メチル、スチレン、無水マレイン酸などを含むポリマーからなる光学異方性を有する樹脂フィルムを用いることも好ましい。
[画像表示装置]
 本発明における画像表示装置は液晶表示装置のほか有機EL表示装置その他の表示装置を使用することができるが、ここではその一例として液晶表示装置を例にとって説明を行う。図1に示すように、本発明の液晶表示装置100は、視認側から、本発明の光学フィルム101と、視認側偏光子102と、液晶セル103と、バックライト側偏光子104と、バックライト105を、この順に備える液晶表示装置であって、光学フィルム中には光吸収異方性層が含まれている。上記態様においては、光学フィルム101と、視認側偏光子102とから視角制御システムが構成される。
 本発明において、偏光子の吸収軸の方向を、縦方向、横方向という場合があるが、通常液晶表示装置を使用する状態において、鉛直方向に近い液晶表示装置の辺の方向を縦方向、水平方向に近い液晶表示装置の辺の方向を横方向という。
 本発明の光学フィルムを含む画像表示装置に用いられる表示素子は特に限定されず、例えば、液晶セル、有機エレクトロルミネッセンス(以下、「EL」と略す。)表示パネル、及び、プラズマディスプレイパネル等が挙げられる。これらのうち、液晶セル又は有機EL表示パネルであるのが好ましい。すなわち、本発明の画像表示装置としては、表示素子として液晶セルを用いた液晶表示装置、表示素子として有機EL表示パネルを用いた有機EL表示装置であるのが好ましい。
 本発明の画像表示装置の一例である液晶表示装置としては、上述した本発明の光吸収異方性層、偏光子、液晶セルを有する態様が好ましく挙げられる。より好適には、上述した本発明の視角制御システムと液晶セルを有する液晶表示装置である。
 なお、本発明においては、液晶セルの両側に設けられる偏光素子のうち、フロント側又はバリア側の偏光素子として本発明の視角制御システムを用いるのが好ましく、フロント側及びリア側の偏光素子として本発明の視角制御システムを用いることもできる。
 以下に、液晶表示装置を構成する液晶セルについて詳述する。
 画像表示装置の中には、薄型で、曲面に成形することが可能なものがある。本発明で用いる光吸収異方性層は、薄く、折り曲げが容易であるため、表示面が曲面である画像表示装置に対しても好適に適用することができる。
 また、画像表示装置の中には、画素密度が250ppiを超え、高精細な表示が可能なものもある。本発明で用いる光吸収異方性層は、このような高精細な画像表示装置に対しても、モアレを生じることなく、好適に適用することができる。
 以下に、液晶表示装置を構成する液晶セル及び有機EL表示装置について詳述する。
〔液晶セル〕
 液晶表示装置に利用される液晶セルは、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、又はTN(Twisted Nematic)モードが好ましいが、これらに限定されるものではない。
 TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、更に60~120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT(Thin Film Transistor)液晶表示装置として最も多く利用されており、多数の文献に記載がある。
 VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード)の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)及び(4)SURVIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。また、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、及びPSA(Polymer-Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006-215326号公報、及び特表2008-538819号公報に詳細な記載がある。
 IPSモードの液晶セルは、棒状液晶性分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の吸収軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10-54982号公報、特開平11-202323号公報、特開平9-292522号公報、特開平11-133408号公報、特開平11-305217号公報、特開平10-307291号公報などに開示されている。
〔有機EL表示装置〕
 本発明の画像表示装置の一例である有機EL表示装置としては、例えば、視認側から、光吸収異方性層と、λ/4板と、有機EL表示パネルとをこの順で有する態様が好適に挙げられる。
 この場合には、有機EL表示装置は、視認側から、基材、必要に応じて設けられる配向層、光吸収異方性層、必要に応じて設けられるバリア層、λ/4板、及び、有機EL表示パネルの順に配置されることが好ましい。
 λ/4板は、直線偏光と円偏光又は楕円偏光とを相互に変換できる位相差板をいい、公知のものが使用できる。
 また、有機EL表示パネルは、電極間(陰極及び陽極間)に有機発光層(有機エレクトロルミネッセンス層)を挟持してなる有機EL素子を用いて構成された表示パネルである。有機EL表示パネルの構成は特に制限されず、公知の構成が採用される。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容及び処理手順などは、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
[光学フィルムの作製及び評価]
 二色性物質が傾斜配向した光吸収異方性層を有する光学フィルムを後段に示す表の構成となるように作製した。
 代表的に、実施例1に用いた光学フィルムの作製方法について説明する。
〔透明支持体1の作製〕
 セルロースアシレートフィルム1(厚み40μmのTAC基材;TG40 富士フィルム社)の表面をアルカリ液でケン化し、その上にワイヤーバーで下記の配向層形成用塗布液1を塗布した。塗布膜が形成された支持体を60℃の温風で60秒間、更に100℃の温風で120秒間乾燥し、配向層塗布膜を得た。更に、配向層塗布膜をラビング処理して配向層Eを形成し、配向層付き透明支持体1を得た。
 膜厚は0.5μmであった。
――――――――――――――――――――――――――――――――
(配向層形成用塗布液1)
――――――――――――――――――――――――――――――――
・下記の変性ポリビニルアルコールPVA-1    3.80質量部
・開始剤Irg2959              0.20質量部
・水                         70質量部
・メタノール                     30質量部
――――――――――――――――――――――――――――――――
 PVA-1
Figure JPOXMLDOC01-appb-C000045
<光配向層形成用組成液F1の調製>
 下記の組成になるように各成分を混合し、攪拌しながら1時間溶解したあと、0.45μmフィルターでろ過して光配向層形成用組成液F1を得た。
――――――――――――――――――――――――――――――――
 光配向層形成用組成液F1
――――――――――――――――――――――――――――――――
・下記光配向材料F1                0.3質量部
・2-ブトキシエタノール             41.6質量部
・ジプロピレングリコールモノメチルエーテル    41.6質量部
・純水                      16.5質量部
――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000046
 上記配向層付き透明支持体1の配向層E上に、下記光配向層形成用組成液F1を塗布し、60℃で2分間乾燥し、光配向層塗布膜付き透明支持体1得た。得られた光配向層塗布膜に、紫外線露光装置を用いて紫外線(照射量2000mJ/cm)を、極角15°から照射して光配向層Fとし、厚み0.03μmの光配向層付き透明支持体1を得た。なお、紫外線の照射方向の方位角は、配向層Eのラビング方向と一致するようにした。
 なお、上記光配向材料F1は、アゾ化合物に該当する。
〔光吸収異方性層の作製〕
 作製した光配向層付き透明支持体1の光配向層F上に、下記の光吸収異方性層形成用組成物P1をワイヤーバーで塗布し、塗布層P1を形成した。なお、光吸収異方性層形成用組成物P1は、上記液晶組成物に該当する。
 次いで、塗布層P1を120℃で30秒間加熱し、塗布層P1を100℃になるまで冷却した。
 その後、LED灯(中心波長365nm)を用いて室温(25℃)で照度200mW/cmの照射条件で2秒間紫外線を照射することにより、光配向層F上に光吸収異方性層P1-Aを作製し、光学フィルムを得た。
 また、同様にして作製した光配向層付き透明支持体1の光配向層F上に、上記と同様にして塗布層P1を作製し、作製した塗布層P1を120℃で30秒間加熱し、塗布層P1を70℃になるまで冷却し、LED灯(中心波長365nm)を用いて室温(25℃)で照度200mW/cmの照射条件で2秒間紫外線を照射することにより、光配向層F上に光吸収異方性層P1-Bを作製し、光学フィルムを得た。
―――――――――――――――――――――――――――――――――
 光吸収異方性層形成用組成物P1の組成
―――――――――――――――――――――――――――――――――
・液晶性化合物L1                4.405質量部
・液晶性化合物L3                2.304質量部
・二色性物質Y1                 0.407質量部
・二色性物質M1                 0.068質量部
・二色性物質C1                 0.712質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製)  0.102質量部
・界面改良剤B1                 0.003質量部
・シクロペンタノン               82.800質量部
・テトラヒドロフラン               9.200質量部
―――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000047

Figure JPOXMLDOC01-appb-I000048
〔混合液晶低下温度の測定〕
 光学顕微鏡(株式会社ニコン製、製品名「ECLIPSE E600 POL」)の2枚の直線偏光子を吸収軸が直交する状態にセットした。
 実施例1の光吸収異方性層形成用組成物P1から界面改良剤を除いて調整した組成物に、上記界面改良剤を除いた組成物の固形分100.0質量部に対して10.0質量部となるように界面改良剤を添加した組成物を調製した。2枚の直線偏光子の間に配置されたサンプル台に、上記調製した組成物をキャストしたスライドガラスをセットし、70℃30分放置して溶剤を乾燥させた。
 このスライドガラスを、ホットプレートを用いて液体-液晶相転移温度より5℃高い温度で5秒加熱した。5℃/分の速度で降温しながら観察し、液体から液晶相に転移する温度(T2)を測定した。
 また、光吸収異方性層形成用組成物P1から界面改良剤を除いた組成物を用いて、同様の方法で、液体から液晶相に転移する温度(T1)を測定し、ΔTL=T1-T2を算出した。
〔透過率中心軸方向の温度安定性評価〕
 作製した光吸収異方性層P1-Aを有する光学フィルムから4cm×4cmを切り出してサンプルとした。切り出したサンプルをJASCO V-670/ARMN-735(日本分光社製)に、透過率中心軸をフィルム面に正射影した方向が水平になるようにセットした。このフィルムに対して、透過率中心軸をフィルム面に正射影した方向と平行であり、かつ、水平方向に振動する波長650nmの直線偏光を、0.5°ピッチで入射方向を変化させながら、θ=0°を光学フィルムの法線方向として、θ=-70~70°の範囲で透過率T3-Aを測定した。なお、入射方向は、光学フィルムの法線と透過率中心軸とを含む面内で変化させた。
 同様にして、光吸収異方性層P1-Bを有する光学フィルムの透過率T3-Bを測定した。更に、光配向層付き透明支持体1の透過率T4を測定した。
 上記測定結果から、T3-A/T4及びT3-B/T4を算出し、この値が最大となる角度をそれぞれθA、θBとし、θAとθBの差の絶対値Δθを算出した。
 Δθは、下記基準に基づいて評価した。なお、Δθは、チルト角の温度安定性に関連するパラメータと考えられ、チルト角の制御上、Δθは小さい方が好ましい。
 A:Δθが7°未満
 B:Δθが7°以上、12°未満
 C:Δθが12°以上
〔光学フィルムの透過率コントラストの評価〕
 透過率中心軸方向の温度安定性の測定と同様にして、光吸収異方性層P1-Aを有する光学フィルムを用いて、透過率の最大値Tmaxと最小値Tminを測定し、透過率の比Tm=Tmax/Tminを算出した。
 Tmの値に基づいて、透過率コントラストを下記基準で評価した。
 A:Tmが140以上
 B:Tmが140未満、50以上
 C:Tmが50未満
[実施例1~9及び比較例1~2]
 配向層及び光吸収異方性層形成用組成物P1の組成を下記表1に示す組成に変更した以外は、実施例1と同様にして、実施例2~9及び比較例1~2の各光学フィルムを得た。得られた光学フィルム及び組成物を用いて、実施例1と同様の評価を行った。評価結果を表1に示す。
 なお、表1中、配向層欄が「E」の場合、光配向層Fを形成せず、配向層付き透明支持体1の配向層E上に光吸収異方性層を形成したことを表す。表1中、配向層欄が「G」の場合、下記配向層付き透明支持体2の配向層G上に光吸収異方性層を形成したことを表す。
〔透明支持体2の作製〕
 ガラス基材(セントラル硝子社製、青板ガラス、サイズ300mm×300mm、厚み1.1mm)をアルカリ洗剤で洗浄し、次いで純水で洗浄し、ガラス基材を乾燥させた。
 下記の配向膜形成用組成物Gを#4のバーを用いて乾燥後のガラス基材上に塗布し、塗布した配向膜形成用組成物1を80℃で15分間乾燥後、250℃で1時間加熱して、ガラス基材上に塗布膜を形成した。塗布膜をラビング処理して配向層Gとし、配向層付き透明支持体2を得た。
 なお、下記SE-130はポリイミドに該当する。
―――――――――――――――――――――――――――――――――
 配向膜形成用組成物Gの組成
―――――――――――――――――――――――――――――――――
・SE-130(製品名、日産化学社製)        2.0質量部
・N-メチルピロリドン               98.0質量部
―――――――――――――――――――――――――――――――――
 表1中において記号で示した成分のうち、既に示した成分以外の概要を以下に示す。なお、各繰り返し単位の括弧に付した数値は、各重合体が有する全繰り返し単位に対する各繰り返し単位の含有量(質量%)を示す。
Figure JPOXMLDOC01-appb-C000049

Figure JPOXMLDOC01-appb-I000050
Figure JPOXMLDOC01-appb-C000051

Figure JPOXMLDOC01-appb-I000052
 なお、表1中、「チルト角」(光吸収異方性層の透過率中心軸と光学フィルム表面の法線方向とがなす角)は、上記方法で測定したものを示す。
 表1中、「二色性物質合計含有量」欄は、光吸収異方性層形成用組成物の固形分に対する二色性物質の合計含有量を示す。
Figure JPOXMLDOC01-appb-T000053
 表1の結果から、実施例2~9の比較より、ΔTLが0.1~7.0℃(より好ましくは0.1~3.5℃)の場合、Δθの評価がより優れることが確認された。
 実施例3及び4の比較より、光吸収異方性層形成用組成物が高分子液晶性化合物を含む場合、Tmの評価がより優れることが確認された。
 実施例8及び9の比較より、界面改良剤が高分子化合物である場合、Δθの評価がより優れることが確認された。
[視角制御システムの評価]
 下記手順に従って、各実施例及び各比較例の光学フィルムを用いて視角制御システムの評価を行った。以下、代表的に実施例3の光学フィルムを用いた視角制御システムの評価方法について説明する。
〔バリア層B1の形成〕
 実施例3で作製した光吸収異方性層P1の上に、下記のバリア層形成用組成物B1をワイヤーバーで塗布し、80℃5分間乾燥してバリア塗布層B1を形成した。
 次いで、バリア塗布層B1を酸素濃度100ppm、温度60℃の環境にて、LED灯(中心波長365nm)を用いて照度150mW/cmの照射条件で2秒間照射することにより、光吸収異方性層P1上に、バリア層B1を形成した。バリア層B1の厚みは、1.0μmであった。
―――――――――――――――――――――――――――――――――
 バリア層形成用組成物B1の組成
―――――――――――――――――――――――――――――――――
・上記変性ポリビニルアルコールPVA-1   3.80質量部
・IRGACURE2959          0.20質量部
・水                    70.00質量部
・メタノール                30.00質量部
―――――――――――――――――――――――――――――――――
<積層体A1の作製>
 国際公開第2015/166991号記載の片面保護膜付偏光板02と同様の方法で、偏光子の厚さが8μmで、偏光子の片面がむき出しの偏光板1を作製した。
 上記偏光板1の偏光子がむき出しの面と、上記作製した実施例3の光吸収異方性フィルムの光吸収異方性層表面をコロナ処理し、下記のPVA接着剤1を用いて貼合し、積層体A1を作製した。この際、光吸収異方性層の透過率中心軸をフィルム面に正射影した方向と偏光子の吸収軸とのなす角が80°となるように貼合した。
(PVA接着剤1の調製)
 アセトアセチル基を含有するポリビニルアルコール系樹脂(平均重合度:1200,ケン化度:98.5モル%,アセトアセチル化度:5モル%)100部に対し、メチロールメラミン20部を、30℃の温度条件下で純水に溶解し、固形分濃度3.7%に調整した水溶液を調製してPVA接着剤1を得た。
<画像表示装置B1の作製>
 IPSモードの液晶表示装置であるiPad Air(登録商標、以下同様。)Wi-Fiモデル 16GB(APPLE社製)を分解し、液晶セルを取り出した。液晶セルから視認側偏光板を剥離した面に、上記作製した積層体A1を、偏光板1側が液晶セル側になるようにして、下記の粘着剤シート1を用いて貼合した。このとき、偏光板1の吸収軸の方向が液晶画面の長手方向になるよう貼合した。液晶セルへの貼合後、組み立て直し、画像表示装置B1を作製した。
(粘着剤シート1の作製)
 以下の手順に従い、アクリレート系ポリマーを調製した。
 冷却管、窒素導入管、温度計及び撹拌装置を備えた反応容器に、アクリル酸ブチル95重量部、アクリル酸5重量部を溶液重合法により重合させて、平均分子量200万、分子量分布(Mw/Mn)3.0のアクリレート系重合体A1を得た。
 次に、得られたアクリレート系重合体A1(100質量部)、コロネートL(トリレンジイソシアネ-トのトリメチロールプロパン付加物の75質量%酢酸エチル溶液、1分子中のイソシアネート基数:3個、日本ポリウレタン工業株式会社製)(1.0質量部)、及び、シランカップリング剤KBM-403(信越化学工業社製)(0.2質量部)を混合し、最後に全固形分濃度が10質量%となるように酢酸エチルを添加して、粘着剤形成用組成物を調製した。この組成物を、シリコーン系剥離剤で表面処理したセパレートフィルムに、ダイコーターを用いて塗布して90℃の環境下で1分間乾燥させ、アクリレート系粘着剤シート(粘着剤シート1)を得た。膜厚は25μm、貯蔵弾性率が0.1MPaであった。
〔映り込み評価〕
 上記の手順により作製した画像表示装置B1を、ディスプレイの画面が地面に対して垂直になるように立てた状態で固定した。更に、厚み2mmのガラス板をディスプレイの画面及び地面に対して垂直になる角度で、光吸収異方性層の透過率中心軸が向く方向とは逆側に設置した。更に室内を暗室にして、ディスプレイにサンプル画像を表示した状態でガラスへの画像の映り込みと、透過率中心軸方向から見た際の画像の明るさとを暗室中で目視にて官能評価したところ、ガラスへの映り込みが視認されず、透過率中心軸方向から見た際には、明るい画像が視認された。
 実施例3以外の他の実施例に用いた光学フィルムについても、上記手順と同様にして評価を実施したところ、ガラスへの映り込みが視認されず、透過率中心軸方向から見た際には、明るい画像が視認された。なお、上記Δθの評価が優れる光学フィルムを用いた場合、表示される画像全体にわたって、より映り込みが抑制された。また、上記Tmの評価が優れる光学フィルムを用いた場合、より明るい画像が視認された。
 一方、比較例に用いた光学フィルムについて、上記手順と同様にして評価を実施したところ、ガラスへの映り込みが視認された。
 100 液晶表示装置
 101 光学フィルム
 102 視認側偏光子
 103 液晶セル
 104 バックライト側偏光子
 105 バックライト
 1 バリア層
 2 光吸収異方性層
 3 配向用液晶層
 4 配向層
 5 TACフィルム
 9 視角制御システム
 20 光吸収異方性層
 21 偏光子
 22 透過率中心軸方向(極角θ)
 23 光吸収異方性層の法線
 24 偏光子の吸収軸方向

Claims (7)

  1.  サーモトロピック液晶性化合物、二色性物質、及び、界面改良剤を含有する液晶組成物から形成される光吸収異方性層を含む光学フィルムであって、
     前記二色性物質の含有量が、前記液晶組成物の全固形分質量に対して、10.0質量%以上であり、
     前記光吸収異方性層の透過率中心軸と前記光学フィルム表面の法線方向とのなす角θが、5°以上45°未満である、光学フィルム。
  2.  前記二色性物質の含有量が、前記液晶組成物の全固形分質量に対して、15.0質量%以上である、請求項1に記載の光学フィルム。
  3.  下式(T)で定義される混合液晶低下温度ΔTLが、0.1~10.0℃である、請求項1又は2に記載の光学フィルム。
      ΔTL = T1 - T2  (T)
     式(T)中、T1は前記界面改良剤を含まない前記液晶組成物の液体-液晶相転移温度であり、T2は前記界面改良剤を含まない前記液晶組成物100質量部に対し、前記界面改良剤を10.0質量部混合した混合物の液体-液晶相転移温度を表す。
  4.  前記光吸収異方性層上に、アゾ化合物、ポリビニルアルコール又はポリイミドを含有する配向層をさらに有する、請求項1~3のいずれか1項に記載の光学フィルム。
  5.  請求項1~4のいずれか1項に記載の光学フィルムと、偏光子とを有する視角制御システムであって、
     前記偏光子が、面内に吸収軸を有し、
     前記光学フィルムの光吸収異方性層の透過率中心軸を前記光学フィルム面に正射影した方向と、前記偏光子の吸収軸とのなす角φが、0°以上85°未満、95°超265°未満、又は、275°超360°以下である視角制御システム。
  6.  表示パネルの少なくとも一方の主面に、請求項5に記載の視角制御システムが配置された画像表示装置。
  7.  前記偏光子に対し、視認側に前記光吸収異方性層が配置される、請求項6に記載の画像表示装置。
PCT/JP2021/046823 2020-12-21 2021-12-17 光学フィルム、視角制御システム及び画像表示装置 WO2022138504A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022571409A JPWO2022138504A1 (ja) 2020-12-21 2021-12-17
CN202180085076.7A CN116615970A (zh) 2020-12-21 2021-12-17 光学膜、视角控制***及图像显示装置
US18/331,807 US20230418094A1 (en) 2020-12-21 2023-06-08 Optical film, viewing angle control system, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020211397 2020-12-21
JP2020-211397 2020-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/331,807 Continuation US20230418094A1 (en) 2020-12-21 2023-06-08 Optical film, viewing angle control system, and image display device

Publications (1)

Publication Number Publication Date
WO2022138504A1 true WO2022138504A1 (ja) 2022-06-30

Family

ID=82157785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046823 WO2022138504A1 (ja) 2020-12-21 2021-12-17 光学フィルム、視角制御システム及び画像表示装置

Country Status (4)

Country Link
US (1) US20230418094A1 (ja)
JP (1) JPWO2022138504A1 (ja)
CN (1) CN116615970A (ja)
WO (1) WO2022138504A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043149A1 (ja) * 2022-08-23 2024-02-29 富士フイルム株式会社 光吸収異方性膜、光学フィルム及び表示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215337A (ja) * 2010-03-31 2011-10-27 Fujifilm Corp 光吸収異方性膜、偏光フィルム及びその製造方法、並びにそれを用いた表示装置
JP4902516B2 (ja) * 2007-12-17 2012-03-21 日東電工株式会社 視角制御システムならびに画像表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177308A1 (ja) * 2020-03-05 2021-09-10 富士フイルム株式会社 視角制御システムおよび画像表示装置
WO2021187379A1 (ja) * 2020-03-19 2021-09-23 富士フイルム株式会社 液晶表示装置
JPWO2021230019A1 (ja) * 2020-05-12 2021-11-18
JPWO2021246441A1 (ja) * 2020-06-05 2021-12-09
WO2022138555A1 (ja) * 2020-12-21 2022-06-30 富士フイルム株式会社 光吸収異方性フィルム、視角制御システムおよび画像表示装置
WO2022138548A1 (ja) * 2020-12-21 2022-06-30 富士フイルム株式会社 光吸収異方性フィルム、視角制御システムおよび画像表示装置
US20230035147A1 (en) * 2021-06-25 2023-02-02 Fujifilm Corporation Optical laminate, viewing angle control system, image display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4902516B2 (ja) * 2007-12-17 2012-03-21 日東電工株式会社 視角制御システムならびに画像表示装置
JP2011215337A (ja) * 2010-03-31 2011-10-27 Fujifilm Corp 光吸収異方性膜、偏光フィルム及びその製造方法、並びにそれを用いた表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043149A1 (ja) * 2022-08-23 2024-02-29 富士フイルム株式会社 光吸収異方性膜、光学フィルム及び表示装置

Also Published As

Publication number Publication date
CN116615970A (zh) 2023-08-18
JPWO2022138504A1 (ja) 2022-06-30
US20230418094A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
KR102242224B1 (ko) 편광 소자, 원편광판 및 화상 표시 장치
WO2021187379A1 (ja) 液晶表示装置
JP6896890B2 (ja) 光吸収異方性膜、光学積層体および画像表示装置
US20230314854A1 (en) Light absorption anisotropic film, viewing angle control system, and image display device
WO2020179864A1 (ja) 偏光素子および画像表示装置
US20230118336A1 (en) Viewing angle control system and image display device
US20230418094A1 (en) Optical film, viewing angle control system, and image display device
US20230417971A1 (en) Light absorption anisotropic film, viewing angle control system, and image display device
WO2019225468A1 (ja) 偏光子および画像表示装置
WO2021246441A1 (ja) 光学フィルム、光学積層体および画像表示装置
JP7457739B2 (ja) 偏光素子、円偏光板および画像表示装置
WO2021131792A1 (ja) 光吸収異方性層、積層体、光学フィルム、画像表示装置、バックライトモジュール
WO2021045192A1 (ja) 組成物、偏光子層、積層体、および画像表示装置
WO2022181414A1 (ja) 積層体、映り込み防止システム、および、画像表示装置
WO2022270466A1 (ja) 光学フィルム、光吸収異方性層の製造方法および画像表示装置
WO2023176672A1 (ja) 光学フィルムおよび視角制御システム
JP2023032330A (ja) 長尺フィルム積層体の製造方法、画像表示装置の製造方法、および、長尺フィルム積層体
WO2022239685A1 (ja) 光吸収異方性層、光学フィルム、視野角制御システムおよび画像表示装置
WO2022138465A1 (ja) 光吸収異方性膜、光学フィルムおよび液晶表示装置
WO2022071042A1 (ja) 光配向膜用組成物、光配向膜および光学積層体
CN116917780A (zh) 层叠体、防反射眩光***及图像显示装置
WO2022234789A1 (ja) 偏光板及び有機el表示装置
WO2023085255A1 (ja) 有機el表示装置
JP2023004859A (ja) 光学積層体、視野角制御システム及び画像表示装置
CN117581122A (zh) 光吸收各向异性膜、光学膜、图像显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571409

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180085076.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910649

Country of ref document: EP

Kind code of ref document: A1