WO2022135235A1 - 固体颗粒床、固定床和油品加氢方法 - Google Patents

固体颗粒床、固定床和油品加氢方法 Download PDF

Info

Publication number
WO2022135235A1
WO2022135235A1 PCT/CN2021/138368 CN2021138368W WO2022135235A1 WO 2022135235 A1 WO2022135235 A1 WO 2022135235A1 CN 2021138368 W CN2021138368 W CN 2021138368W WO 2022135235 A1 WO2022135235 A1 WO 2022135235A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrogenation
bed
solid particle
particle bed
Prior art date
Application number
PCT/CN2021/138368
Other languages
English (en)
French (fr)
Inventor
杨成敏
刘丽
李扬
段为宇
郭蓉
周勇
姚运海
郑步梅
孙进
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司大连石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011526433.2A external-priority patent/CN114713239B/zh
Priority claimed from CN202011526437.0A external-priority patent/CN114713145B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司大连石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to US18/247,773 priority Critical patent/US20230348797A1/en
Priority to EP21909231.9A priority patent/EP4268948A1/en
Priority to CA3201684A priority patent/CA3201684A1/en
Priority to CN202180072421.3A priority patent/CN116601271A/zh
Priority to KR1020237022232A priority patent/KR20230124939A/ko
Publication of WO2022135235A1 publication Critical patent/WO2022135235A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/002Apparatus for fixed bed hydrotreatment processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/54Bars or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/001Controlling catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/0271Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a spiral shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0465Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being concentric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0476Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds
    • B01J8/0484Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds the beds being placed next to each other
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/703Activation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology

Definitions

  • the present invention relates to the technical field of oil product hydrogenation, in particular to a solid particle bed, a fixed bed containing the solid particle bed, and the application of these beds in oil product hydrogenation.
  • oils need to be hydrogenated to improve their quality before they can be used.
  • the pressure drop caused by factors such as coking or mechanical impurities often occurs in the processing of inferior oils.
  • the pressure drop is closely related to the porosity of the catalyst bed. At present, in order to slow down the increase of pressure drop in the hydrogenation of oil products, the inlet section of the reactor is mostly filled with particles with larger porosity. operation cycle.
  • Chinese patent CN101928592A discloses a gradation combination of hydrogenation catalysts; the reactor is filled with hydrodemetallization and hydrodesulfurization catalysts from top to bottom; the raw material flow is from top to bottom, keeping along the flow direction, the catalyst activity gradually increases, The pore size gradually decreases, the particle size gradually decreases, and the porosity gradually decreases.
  • Chinese patent CN1104558A discloses a method and catalyst system for hydrotreating a hydrocarbon feedstock, wherein the feedstock is passed through a fixed bed catalyst system of a hydrotreating catalyst containing high porosity catalyst particles and low porosity catalyst particles. It is a physical mixture of high-porosity catalyst particles, and the particles are mixed in different amounts in different layers of the catalyst bed to form a layered structure in a fixed-bed catalyst system. The mixing ratio of high-porosity and low-porosity particles in different layers is different.
  • the inventors of the present invention have found through painstaking research that catalytic gasoline hydrogenation is prone to coking at the top of the hydrorefining reactor, coke powder deposition and coke coking at the top of the reactor are prone to occur in the hydrogenation of coking diesel, and the reactor is prone to coal tar hydrogenation.
  • Top coking, and the direct consequence of these top coking is an increase in the pressure drop across the catalyst bed in the reactor inlet section. As a result, the adsorption and deposition capacity of the catalyst for the easy-to-deposit is small, and the pressure drop of the bed rises too fast, resulting in a shortened operation period.
  • the inventors of the present invention have found through further research that, through a special catalyst grading method, the dispersion and deposition of easy-to-sediment in oil products can be realized, and the adsorption and deposition capacity of the catalyst for easy-to-sediment can be increased, which can effectively delay the pressure drop of the bed. rise, and extend the operating cycle.
  • the present invention has been completed based on this finding.
  • the present invention relates to the following aspects.
  • a kind of catalyst grading method for oil product hydrogenation it is characterized in that, be to set grading loading section at the inlet end of reactor, the space of grading loading section is divided into some columnar reaction units parallel with the direction of flow , hydrogenation catalyst I and hydrogenation catalyst II are respectively loaded in each adjacent two columnar reaction units in a manner that the columnar edges are in contact with each other, wherein hydrogenation catalyst I has a larger porosity than hydrogenation catalyst II.
  • the catalyst bed height of the grading packing section accounts for 1%-95% of the whole reactor bed height, preferably 3%-60%. %, more preferably 4%-50%.
  • the catalyst grading method according to any one of the foregoing or the following, characterized in that, the rest of the reactor is filled with conventional hydrogenation catalysts, and its porosity is not greater than that of the hydrogenation catalyst II in the above-mentioned gradation loading section. void ratio.
  • the catalyst grading method according to any one of the foregoing or later, characterized in that, the alternately adjacent packing is to pack the same catalyst into a columnar reaction unit in the direction of flow, as viewed from the radial direction.
  • the above-mentioned two different catalysts are respectively filled in each of the two adjacent columnar reaction units; the cross-section of each columnar reaction unit is an arbitrary figure.
  • the catalyst grading method according to any one of the aforementioned or the following aspects, characterized in that, on the same radial section, from any point on the cross section of the columnar reaction unit of the hydrogenation catalyst II to the adjacent hydrogenation catalyst I
  • the shortest distance of the edge of the cross-section of the columnar reaction unit is no more than 500 mm, preferably no more than 300 mm, more preferably no more than 200 mm, and most preferably no more than 100 mm.
  • the hydrogenation catalyst I comprises a support material and a hydrogenation active metal
  • the hydrogenation active metal accounts for the weight of the catalyst in terms of oxides
  • the ratio is 5%-30%
  • the carrier material is selected from at least one of activated carbon, alumina, silica, magnesia, zirconia, titania and molecular sieves.
  • the supported catalyst comprises a carrier and a hydrogenation active component
  • a catalyst modified on the basis of the catalyst has a Based on the total weight, the mass content of the hydrogenation active components in terms of metal oxides is 15%-40%.
  • the unsupported catalyst comprises at least necessary binder and hydrogenation active components, based on the total weight of the catalyst, so The mass content of the hydrogenation active component in terms of metal oxide is 30%-80%.
  • a method for hydrogenation of oil products characterized in that the hydrogenation catalyst I and the hydrogenation catalyst II are loaded in gradation with the method described in any one of the foregoing or later, and the remaining part of the reactor is filled with desulfurization catalysts.
  • the active conventional hydrogenation catalyst is sulfided after filling, and then fed into the oil for hydrogenation.
  • the oil product is selected from the group consisting of ethylene pyrolysis gasoline, coker naphtha, catalytic gasoline, Fischer-Tropsch synthetic oil, coker diesel, catalytic diesel, high dry At least one of straight-run diesel oil, wax oil, residual oil, coal tar and coal hydrogenation oil.
  • the present invention relates to the following aspects.
  • a section of a bed of solid particles (especially an axial bed of solid particles), characterized in that it comprises a sea area and at least one island area distributed in the sea area, and has an upper surface, a lower surface, an axial direction (that is, a The length direction or the flow direction of the material in the solid particle bed from the upper surface to the lower surface) and radial direction (that is, the cross-sectional direction or the direction perpendicular to the axial direction), wherein the island region ( preferably from the upper surface) along the axial direction of the bed of solid particles but not to the lower surface, and the porosity of the island region is 110-300% of the porosity of the sea region (preferably 130-240%, more preferably 140-200%).
  • a solid particle bed according to any preceding or following aspect wherein the sea region extends from the upper surface to the lower surface along the axial direction of the solid particle bed
  • the distribution mode of the at least one island area in the sea area is selected from:
  • said at least one island region is distributed in said sea region in a discrete manner
  • the at least one island area is arranged in a ring shape surrounding a portion of the sea area;
  • the axial extension length of the solid particle bed (that is, the axial length of the solid particle bed) is L0, then Li/L0 ⁇ 1 (preferably Li/L0 ⁇ 0.95, more preferably 0.03 ⁇ Li/L0 ⁇ 0.80, most Preferably, 0.04 ⁇ Li/L0 ⁇ 0.50), and/or, the extension length of all the island regions along the axial direction of the solid particle bed is substantially the same, and/or, in all the island regions, set along the
  • n is an integer of 1-2000 (preferably an integer of 1-200, more preferably 3-50 Integer), and/or, in any cross section of the solid particle bed, each of the island regions is the same or different from each other, and the cross section is independently any figure (such as selected from rectangular, circular, elliptical , at least one of triangular, parallelogram, annular and irregular shapes), and/or, based on the total volume of the solid particle bed, the proportion of all the island regions is 0.3-57% (preferably 1 -40%, more preferably 3-25%), the proportion of the sea area is 43-99.7% (preferably 60-99%, more preferably 75-97%).
  • each of the island regions is the same or different from each other, each independently having 0.20-0.90 (preferably 0.30-0.80, more preferably 0.33-0.70, more preferably 0.37-0.60), and/or, the sea area has a porosity of 0.10-0.80 (preferably 0.15-0.65, more preferably 0.16-0.55).
  • any cross section of the solid particle bed wherein on any cross section of the solid particle bed, the linear distance between the edges of two adjacent island regions is greater than 20mm (preferably greater than 100mm) , and/or, on any cross section of the solid particle bed, if there is the island region, the shortest distance from any point on the cross section of the sea region to the edge of the cross section of the adjacent island region not more than 500mm (preferably not more than 300mm, more preferably not more than 200mm, most preferably not more than 100mm), and/or, in any cross-section of the bed of solid particles, each of said island regions is the same or different from each other, each independently has a cross-sectional area of not more than 300,000 mm 2 (preferably not more than 100,000 mm 2 ), and/or, the bed of solid particles has a cross-sectional area of not more than 3,000,000 mm 2 (preferably, not more than 2,000,000 mm 2 ), and/or, in On any cross section of the solid particle bed, if the island region exists
  • the island region comprises one or more hydrogenation catalysts (referred to as hydrogenation catalyst I) and the sea region comprises one or more The hydrogenation catalyst (referred to as hydrogenation catalyst II), and/or the hydrogenation catalyst I is a hollow and/or toothed particle, the hydrogenation catalyst II is a porous particle, and/or the hydrogenation catalyst I
  • the particle size of the hydrogen catalyst I is 2.0-55.0mm (preferably 3.0-30.0mm)
  • the particle size of the hydrogenation catalyst II is 0.5-4.0mm (preferably 0.8-3.0mm)
  • the hydrogenation catalyst I includes a support and a hydrogenation active metal
  • the hydrogenation catalyst II is selected from at least one of a supported catalyst and an unsupported catalyst
  • the supported catalyst includes a support and a hydrogenation active component
  • the unsupported catalyst The type catalyst comprises a binder and a hydrogenation active component, and/or, the mass content of the hydrogenation active metal in the hydrogenation catalyst I in terms of metal oxides (based on the total
  • the hydrogenation active metal is calculated as a metal oxide based on the total weight of the hydrogenation catalyst.
  • the mass content is 5-30% (preferably 8-20%)
  • the carrier is selected from activated carbon, inorganic refractory oxides (especially selected from alumina, silica, magnesia, zirconia and titania) at least one of) and at least one of molecular sieves (especially selected from at least one of alumina and silica), and/or, the hydrogenation active metal is selected from Fe, Co, Ni, Cu, At least one of Zn, Cr, Mo and W (preferably at least one selected from Fe, Zn, Ni, Co and Cu, more preferably at least one selected from Fe and Ni).
  • the hydrogenation active components are calculated as metal oxides, based on the total weight of the supported catalyst
  • the mass content of the hydrogenation active component is 15-40% (preferably 20-35%), and/or, based on the total weight of the unsupported catalyst, the mass content of the hydrogenation active component in terms of metal oxide is 30- 80% (preferably 40-65%)
  • the support is an inorganic refractory oxide (preferably selected from oxides of elements of Group II, Group III, Group IV and Group IVB of the Periodic Table of the Elements) at least one, more preferably selected from at least one of alumina and silicon oxide)
  • the binder is an inorganic refractory oxide (preferably selected from Group II and Group III of the Periodic Table of Elements) , at least one of oxides of Group IV and Group IVB elements, more preferably selected from at least one of aluminum oxide and silicon oxide), and/or, the hydrogenation active component is selected from the
  • a fixed bed comprising a plurality of stages of a bed of solid particles, wherein at least one stage of the bed of solid particles is a bed of solid particles according to any one of the preceding or following aspects (referred to as solid particle bed A).
  • the fixed bed according to any of the preceding or following aspects, further comprising a solid particle bed B upstream of the solid particle bed A and/or a solid particle bed C downstream of the solid particle bed A, wherein the The porosity of the solid particle bed B is not less than the porosity of the island region in the solid particle bed A, and the porosity of the solid particle bed C is not greater than that of the sea region in the solid particle bed A. Rate.
  • a fixed bed according to any preceding or following aspect, wherein the bed of solid particles B comprises one or more hydrogenation catalysts B and the bed of solid particles C comprises one or more hydrogenation catalysts C , wherein the hydrogenation catalyst B and the hydrogenation catalyst C are the same or different from each other, each independently selected from at least one of a supported catalyst and an unsupported catalyst, and the supported catalyst includes a carrier and a hydrogenation catalyst Active components, the unsupported catalyst includes a binder and a hydrogenation active component (preferably the hydrogenation catalyst B and the hydrogenation catalyst C are the same or different from each other, each independently selected from the hydrogenation catalyst II).
  • a method for hydrogenation of oil comprising making oil flow through the solid particle bed according to any one of the preceding or following aspects or the fixed bed according to any one of the preceding or following aspects under hydrogenation reaction conditions. step (called the hydrogenation step).
  • the oil product is selected from the group consisting of ethylene pyrolysis gasoline, coker naphtha, catalytic gasoline, Fischer-Tropsch synthetic oil, coker diesel, catalytic diesel, high dry point straight run
  • the hydrogenation reaction conditions include: reaction temperature 40-500°C (preferably 40-450°C), reaction pressure 0.3-20MPaG (preferably 0.5-15MPaG), volume space velocity is 1-10h -1 (preferably 2-10h -1 ), hydrogen oil ratio is 10:1-2000:1 (preferably 15:1-1000:1).
  • the vulcanization pressure is 1.2-15MPaG (1.2-9.4MPaG)
  • the vulcanization temperature is 280-400°C
  • the vulcanization time is 4-22h.
  • the impurities therein are preferentially deposited at the end of the island region with larger porosity, and after the deposition is large, the oil product mainly passes through the island The sides of the zone enter the sea zone with a smaller porosity, thereby obtaining a larger deposition interface area and deposition capacity, slowing down the pressure drop rise process, while maintaining a good hydrodesulfurization effect.
  • the oil preferentially enters the small porosity filling area through the end section of the large porosity filling area, and gradually turns to enter the small porosity filling area through its side as the deposition amount increases.
  • the porosity fills the area, thereby increasing the adsorption and deposition capacity of easy-to-deposit, slowing down the pressure drop rise process, while maintaining a good hydrodesulfurization effect.
  • Fig. 1 is the reactor cross-sectional schematic diagram after catalyst D1 and catalyst A1 are assembled and loaded in the embodiment 7;
  • Fig. 2 is the reactor cross-sectional schematic diagram after catalyst D2 and catalyst A2 are assembled and loaded in the embodiment 8;
  • FIG. 3 is a schematic cross-sectional view of the reactor after the catalyst D3 and the catalyst A3 are staged and loaded in Example 9.
  • FIG. 3 is a schematic cross-sectional view of the reactor after the catalyst D3 and the catalyst A3 are staged and loaded in Example 9.
  • Figure 4 graphically illustrates Li and L0 for a bed of solid particles.
  • Figure 5 illustrates, on any cross section of the solid particle bed, the straight-line distance La between the edges of two adjacent island regions, and the shortest distance from any point on the cross section of the sea region to the edge of the cross section of its adjacent island region Distance Lb.
  • the measurement method of void fraction is capacitive imaging.
  • the particle size refers to the volume average particle size unless otherwise specified, and the measurement method thereof can generally be performed by a laser method.
  • any two or more embodiments of the present invention can be combined arbitrarily, and the technical solutions formed thereby belong to a part of the original disclosure content of this specification, and also fall within the protection scope of the present invention.
  • a section of a bed of solid particles is involved, in particular a section of an axial bed of solid particles.
  • the so-called “segment” means that the particle bed constitutes at least one section of the particle bed (generally a fixed bed) packed in the reactor, wherein one or more solid particle bed sections constitute the whole of the Fixed bed.
  • the so-called “axial” means that when the material (such as the reaction material) flows through the solid particle bed, its flow direction is perpendicular to the cross section of the solid particle bed, or the solid particle bed is reacting
  • the reactor is filled along the axial direction of the reactor, so that the axial direction of the solid particle bed is the axial direction of the reactor, and the radial direction of the solid particle bed is the diameter of the reactor.
  • the solid particle bed is generally located at the inlet end of the reactor, and the remainder of the reactor is filled with conventional hydrogenation catalysts with desulfurization activity as appropriate.
  • the inlet end of the reactor is the end where the oil product enters the reactor.
  • the co-flow reactor refers to the top of the reactor
  • the up-flow reactor refers to the bottom of the reactor
  • the middle Feed reactor and gas-liquid counter-flow reactor refer to the inlet end of the oil flow direction, and other reactor forms are analogous.
  • the section of the bed of solid particles comprises a sea area and at least one island area distributed in the sea area.
  • the so-called “sea region” generally refers to the region that constitutes the main part of the solid particle bed as a substantially continuous material phase, but it does not exclude that the sea region is cut into a plurality of pieces by the island region The situation in the area (like the situation in a lagoon, for example).
  • the so-called “island region” generally refers to one or more independent regions that exist as discrete material phases in the sea region, and these independent regions are separated from each other by a certain distance without being connected or connected, and There is a clear demarcation line between each of the independent areas and the sea area.
  • the bed of solid particles has an upper surface, a lower surface, an axial direction and a radial direction.
  • the axial direction is the length direction or the flow direction of the material in the solid particle bed from the upper surface to the lower surface
  • the radial direction is the cross-sectional direction or the direction perpendicular to the axial direction.
  • the upper surface refers to the surface that the material comes into contact with when it is about to enter the bed of solid particles
  • the lower surface refers to the surface that the material is about to leave the bed of solid particles.
  • the island region extends along the axial direction of the solid particle bed but does not extend to the lower surface, preferably the island A zone extends from the upper surface in the axial direction of the bed of solid particles but does not extend to the lower surface.
  • the island region is preferably exposed from the upper surface of the solid particle bed, but not from the lower surface of the solid particle bed, the ends of which are embedded in the sea region.
  • the "island" of the present invention takes the form of a floating island in the "sea" area.
  • the sea region extends from the upper surface to the lower surface along the axial direction of the bed of solid particles.
  • the sea area exposure can be seen on both the upper and lower surfaces of the bed of solid particles.
  • the extension length of any one of the island regions along the axial direction of the solid particle bed be Li, and let the sea region be
  • the extension length along the axial direction of the solid particle bed is L0, then Li/L0 ⁇ 1, preferably Li/L0 ⁇ 0.95, more preferably 0.03 ⁇ Li/L0 ⁇ 0.80, most preferably 0.04 ⁇ Li/L0 ⁇ 0.50.
  • the extension lengths of all the island regions along the axial direction of the solid particle bed are substantially the same.
  • At least a part (preferably all) of the island region extends along the axial direction of the solid particle bed into at least one shape selected from columnar and conical.
  • the shape is not particularly limited, and for example, at least one shape selected from the group consisting of a columnar shape, a prismatic shape, a pyramidal shape, and a conical shape can be used.
  • the porosity of the island region is 110-300% of the porosity of the sea region, preferably 130-240%, and further preferably 140-200%. Based on the difference in porosity, a clear demarcation line is formed between the island region and the sea region.
  • the porosity refers to the ratio of the void volume between the solid particles to the total volume of the solid particle bed after the solid particles (generally catalyst particles) are packed into the reactor.
  • the distribution manner of the island regions in the sea region is not particularly limited, and may be any manner that can be expected by those skilled in the art.
  • the distribution mode of the island area in the sea area can be selected from the following:
  • said at least one island region is distributed in said sea region in a discrete manner
  • the at least one island area is arranged in a ring shape surrounding a portion of the sea area;
  • n is an integer of 1-2000, preferably an integer of 1-200, more preferably an integer of 3-50.
  • each of the island regions is the same or different from each other, and the cross section is independently any shape, such as selected from rectangle, circle, ellipse , at least one of a triangle, a parallelogram, a ring, and an irregular shape.
  • the proportion of all the island regions is 0.3-57%, preferably 1-40%, more preferably 3-25%.
  • the proportion of the sea area is 43-99.7%, preferably 60-99%, more preferably 75-97%.
  • each of the island regions is the same or different from each other, each independently having a void ratio of 0.20-0.90, preferably 0.30-0.80, more preferably 0.33-0.70, more preferably 0.37-0.60.
  • the void ratio of the sea area is 0.10-0.80, preferably 0.15-0.65, more preferably 0.16-0.55.
  • the sea area should match the adjacent island area, so that the island area can sufficiently affect the sea area.
  • the linear distance between the edges of two adjacent island regions is greater than 20mm , preferably greater than 100mm.
  • the shortest distance from any point on the cross section of the sea region to the edge of the cross section of the adjacent island region does not exceed 500mm , preferably no more than 300mm, more preferably no more than 200mm, most preferably no more than 100mm.
  • each of the island regions is the same or different from each other, each independently having a cross-sectional area of not more than 300,000 mm 2 , preferably not more than 100,000 mm 2 .
  • the bed of solid particles has a cross-sectional area of not more than 3,000,000 mm 2 , wherein preferably not more than 2,000,000 mm 2 .
  • the sum of the cross-sectional areas of all the island regions is the sum of the cross-sectional area of the solid particle bed. 10-60%, preferably 15-45% or 18-30%.
  • the island region comprises one or more hydrogenation catalysts (referred to as hydrogenation catalyst I) as solid particles.
  • the island region is filled with the hydrogenation catalyst I.
  • the present invention has no particular limitation on the hydrogenation catalyst I, but preferably, the hydrogenation catalyst I includes a support and a hydrogenation active metal.
  • the hydrogenation catalyst I can be prepared by a supported catalyst preparation method well known to those skilled in the art. More specifically, it is obtained by extruding the carrier material, drying and calcining, impregnating the hydrogenation active metal, and then drying and calcining.
  • the extrusion molding is to use a peptizer, an extrusion aid, etc.
  • the carrier hollow particles including But not limited to five-hole sphere, six-hole sphere, seven-hole sphere, Raschig ring, cylindrical strip with three internal holes, cylindrical strip with five internal holes, pie shape with seven internal holes and round pie shape with nine internal holes etc.; or form toothed particles, including but not limited to three-tooth spherical, five-toothed spherical, six-toothed spherical, four-toothed rack, five-toothed rack, and the like.
  • the impregnation is preferably equal volume impregnation, and the extruded adsorbent porous material is impregnated with equal volume of the stable salt solution of the hydrogenation active metal; the two dryings in the above preparation process are both drying at 70-150 ° C for 1- 24 hours, the two calcinations are calcined at 300-600 °C for 1-10 hours.
  • the sea zone comprises one or more hydrogenation catalysts (referred to as hydrogenation catalyst II) as solid particles.
  • the sea area is filled with the hydrogenation catalyst II.
  • the present invention has no particular limitation on the hydrogenation catalyst II, which is a catalyst known to those skilled in the art that can realize desulfurization and applied to the hydrogenation of oil products, but preferably, the hydrogenation catalyst II is selected from a supported type At least one of a catalyst and an unsupported catalyst.
  • the supported catalyst includes a carrier and a hydrogenation active component
  • the unsupported catalyst includes a binder and a hydrogenation active component.
  • the hydrogenation catalyst II is easy to obtain for those skilled in the art.
  • the supported catalyst is formed by extruding an inorganic refractory oxide, drying After calcination and calcination, the hydrogenation active component is impregnated, and then dried and calcined to obtain the hydrogenation catalyst component with desulfurization activity.
  • the extrusion molding is to use a peptizer, an extrusion aid, etc. to reconcile the adsorbent porous material, mix it uniformly, and extrude it on an extruder.
  • the impregnation is preferably equal volume impregnation, with an equal volume of the stable salt solution of the hydrogenation active component Dip the extruded carrier; both dryings in the above preparation process are at 70-150° C. for 1-24 hours, and both calcinations are at 300-600° C. for 1-10 hours.
  • the unsupported catalyst is a homogeneous catalyst prepared by combining the hydrogenation active component and the binder component by a method including but not limited to co-precipitation.
  • the hydrogenation catalyst I is a hollow and/or toothed particle.
  • the hollow particles include, but are not limited to, five-hole spheres, six-hole spheres, seven-hole spheres, Raschig rings, cylindrical bars with three holes inside, cylindrical bars with five holes inside, pie shapes with seven holes inside, A round pie shape with nine holes inside, etc.
  • toothed particles include, but are not limited to, tridentate spheres, pentadentate spheres, hexadentate spheres, quadrangular racks, pentadentate racks, and the like.
  • the particle size of the hydrogenation catalyst I is generally 2.0-55.0 mm, preferably 3.0-30.0 mm.
  • the particle size of the hydrogenation catalyst II is generally 0.5-4.0 mm, preferably 0.8-3.0 mm.
  • the hydrogenation catalyst II is porous particles.
  • the hydrogenation catalyst I and the hydrogenation catalyst II are respectively packed in a manner that the column edges are in contact with each other, specifically, the two catalysts are packed in an alternately adjacent manner or in an inserted manner.
  • the alternately adjacent packing is to pack the same catalyst into one columnar reaction unit in the direction of flow, and from the radial direction, the two adjacent columnar reaction units are respectively filled with the above two different catalysts. catalyst.
  • the cross-section of each columnar reaction unit is any shape, specifically, a rectangle, a circle, a triangle, a parallelogram, a ring or an approximate shape thereof, or any other irregular shape.
  • the cross-sections of the columnar reaction units in the same reactor may be the same or different.
  • each of the hydrogenation catalysts I is the same or different from each other, and each independently has the same or different porosity
  • each of the hydrogenation catalysts II is the same or different from each other, and each independently has The same or different porosity, provided that the porosity of any one of the hydrogenation catalysts I is greater than the porosity of any one of the hydrogenation catalysts II.
  • the porosity of any one of the hydrogenation catalysts I is 110-300%, preferably 130-240%, and more preferably 140-200% of the porosity of any one of the hydrogenation catalysts II.
  • the mass content of the hydrogenation active metal in the hydrogenation catalyst I in terms of metal oxides is the same as that in the hydrogenation catalyst II
  • the mass content of the hydrogenation active components in terms of metal oxides (based on the total weight of the hydrogenation catalyst II) is 10-90%, preferably 15-60% or 17-40%.
  • the mass content of the hydrogenation active metal in terms of metal oxides is 5-30%, preferably 8% -20%.
  • the carrier is selected from at least one of activated carbon, inorganic refractory oxides and molecular sieves.
  • the inorganic refractory oxides those conventionally used in the art can be cited, especially at least one selected from alumina, silica, magnesia, zirconia and titania, more particularly At least one of aluminum oxide and silicon oxide.
  • the hydrogenation active metal is selected from at least one of Fe, Co, Ni, Cu, Zn, Cr, Mo and W, preferably Fe, Fe, Co, Ni, Cu, Zn, Cr, Mo and W , at least one of Zn, Ni, Co and Cu, more preferably at least one selected from Fe and Ni.
  • the mass content of the hydrogenation active components in terms of metal oxides is 15-40%, preferably 20-35%.
  • the mass content of the hydrogenation active component in terms of metal oxides is 30-80%, Preferably 40-65%.
  • the carrier in the hydrogenation catalyst II, is an inorganic refractory oxide, preferably selected from the elements of Group II, Group III, Group IV and Group IVB of the periodic table of elements At least one of oxides, more preferably at least one selected from aluminum oxide and silicon oxide.
  • the binder in the hydrogenation catalyst II, is an inorganic refractory oxide, preferably selected from Group II, Group III, Group IV and Group IVB of the Periodic Table of Elements At least one of the oxides of the element, more preferably at least one selected from the group consisting of aluminum oxide and silicon oxide.
  • the hydrogenation active component is selected from at least one of metals from Group VIB and Group VIII of the Periodic Table of the Elements, preferably, the The Group VIB metals are Mo and/or W, and the Group VIII metals are Co and/or Ni.
  • the mass content of the Group VIB metals in terms of metal oxides is 15-30%, preferably 18% by mass. -27%, the mass content of the Group VIII metal calculated as metal oxide is 2-10%, preferably 3-7%.
  • the mass content of the Group VIB metal in terms of metal oxide is 15-30%, preferably 18-27%, and the mass content of the Group VIII metal in terms of metal oxide is 2-10%, preferably 3-7%.
  • the carrier or the binder may be modified, for example, with modification elements such as B, P, F, etc. .
  • modification elements such as B, P, F, etc.
  • the weight percentage of the modified element is generally 0.8-8 wt%.
  • the manufacturing method of the solid particle bed (that is, the packing method of the solid particles) is not particularly limited.
  • those skilled in the art can find a packing method to realize the catalyst gradation of the present invention.
  • those skilled in the art can implement any of the following specific embodiments, and the following specific embodiments are only used to illustrate the practicability of the technical solutions of the present invention, but are not limited to the following methods.
  • One of the specific packing methods according to the pre-designed catalyst gradation scheme, the solid particles are pre-packed into the designed geometric shape outside the reactor and then moved into the reactor; the specific operation method is included in the mold of a certain geometric shape The solid particles are pre-shaped into the designed geometry.
  • the second specific filling method firstly, the interior of the reactor is divided into a designed geometric shape with a mesh before filling, and the used mesh does not affect the contact of adjacent solid particles.
  • the third specific filling method direct filling in the reactor, when filling the sea area or the island area, the baffle can be used locally for a short time, and a certain solid particle can be filled according to the designed geometric shape.
  • a fixed bed which comprises a multi-stage solid particle bed (or a plurality of solid particle bed sections), wherein at least one section of the solid particle bed is the solid particle bed of the present invention ( referred to as solid particle bed A).
  • the height of the solid particle bed A is 1-95% of the height of the fixed bed, preferably 3-60%, further preferably 4-50%.
  • the fixed bed further comprises a solid particle bed B located upstream of the solid particle bed A, wherein the void ratio of the solid particle bed B is not less than the island in the solid particle bed A area of voids.
  • the solid particle bed B contains one or more hydrogenation catalysts B, or is packed with the one or more hydrogenation catalysts B.
  • the fixed bed further comprises a solid particle bed C located downstream of the solid particle bed A, wherein the porosity of the solid particle bed C is not greater than that in the solid particle bed A. area of voids.
  • the solid particle bed C contains one or more hydrogenation catalysts C, or is packed with the one or more hydrogenation catalysts C.
  • the hydrogenation catalyst B and the hydrogenation catalyst C are the same as or different from each other, and each is independently selected from at least one of a supported catalyst and an unsupported catalyst.
  • the supported catalyst includes a carrier and a hydrogenation active component
  • the unsupported catalyst includes a binder and a hydrogenation active component.
  • the hydrogenation catalyst B and the hydrogenation catalyst C are the same as or different from each other, and each is independently selected from the hydrogenation catalyst II.
  • it also relates to a method for hydrogenation of oil products, comprising the step of making oil products flow through the solid particle bed or the fixed bed of the present invention under hydrogenation reaction conditions (referred to as hydrogenation step).
  • the oil product hydrogenation method of the present invention is suitable for treating any oil product feedstock, and is especially suitable for oil products containing easy deposits.
  • the raw materials include but are not limited to ethylene pyrolysis gasoline, coker naphtha, catalytic gasoline, Fischer-Tropsch synthetic oil, coker diesel, catalytic diesel, high dry point straight-run diesel, wax oil, residual oil, coal tar, coal Hydrogenation to produce oil, etc.
  • impurities such as sulfur, nitrogen, oxygen, alkene, and aromatics, which usually require hydrofinishing to remove the impurities before use.
  • the pressure drop of the reactor is often increased and the operation period is shortened.
  • the increase of the pressure drop is due to the accumulation of impurities, such as the deposition of solid substances such as coke powder contained in the raw materials. , the unsaturated components in the raw materials are condensed, dehydrogenated and coked, and the upstream pipelines and vessels are corroded to produce the accumulation of metal ions. These impurities gradually block the pores of the catalyst bed, resulting in a decrease in porosity and an increase in the pressure drop of the reactor, which affects the operating life.
  • impurities such as the deposition of solid substances such as coke powder contained in the raw materials.
  • the inventors of the present invention believe that the easy-to-deposit deposits easily pass through the larger porosity catalyst bed, and when these easy-to-deposit deposits reach the smaller porosity catalyst portion, they are easily adsorbed and deposited, and It is ultimately deposited mainly on catalysts with smaller porosity.
  • the technology of delaying pressure drop mainly uses a single catalyst with larger porosity to be packed in the inlet section of the reactor, which is easy to deposit gradually, and its depositable area is only the cross-sectional area of the reactor.
  • the easy-to-deposit deposits mainly pass through the island region with larger porosity (such as a columnar reaction unit packed with hydrogenation catalyst I), and are first deposited at the bottom of the island region (here the bottom refers to the material end of the flow direction).
  • the bottom refers to the material end of the flow direction.
  • the hydrogenation reaction conditions include: a reaction temperature of 40-500° C., preferably 40-450° C., a reaction pressure of 0.3-20 MPaG, preferably 0.5-15 MPaG, and a volumetric space velocity of 1-10 h ⁇ 1 , Preferably 2-10h -1 , hydrogen oil ratio is 10:1-2000:1, preferably 15:1-1000:1.
  • the oil product hydrogenation method further comprises the step of sulfurizing the solid particle bed or the fixed bed before performing the hydrogenation step.
  • the hydrogenation catalyst can also be subjected to sulfurization treatment outside the vessel in advance.
  • the reaction conditions of the vulcanization treatment include: dry vulcanization or wet vulcanization, and the vulcanizing agent is at least one selected from hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl sulfide and n-butyl sulfide
  • the vulcanization pressure is 1.2-15MPaG (1.2-9.4MPaG)
  • the vulcanization temperature is 280-400°C
  • the vulcanization time is 4-22h.
  • Hydrogenation catalysts IID1-D17 with high desulfurization activity and relatively small porosity were prepared in Examples 1-17:
  • Hydrogenation catalysts IA1-A8 with relatively large porosity were prepared in Examples 18-25:
  • a hollow cylindrical bar with a hollow part diameter of 3 mm was dried at 100°C for 2 hours, and then calcined at 500°C for 5 hours to obtain a carrier.
  • the nickel nitrate was prepared into an aqueous solution, impregnated with an equal volume of the above-mentioned carrier for 30 minutes to obtain a wet bar with a nickel oxide content of 5% (calculated on a dry basis after calcination), dried at 100° C. for 2 hours, and then calcined at 500° C. for 2 hours to obtain catalyst A1.
  • the ferric nitrate was prepared into an aqueous solution, impregnated with the above-mentioned carrier in equal volume for 30 minutes to obtain a wet bar with an iron oxide content of 6% (calculated on a dry basis after calcination), dried at 100° C. for 2 hours, and then calcined at 540° C. for 6 hours to obtain catalyst A3.
  • the cobalt nitrate was prepared into an aqueous solution, impregnated with the above-mentioned carrier in an equal volume for 30 minutes to obtain a wet bar with a cobalt oxide content of 3% (calculated on a dry basis after calcination), dried at 150° C. for 2 hours, and then calcined at 600° C. for 3 hours to obtain catalyst A4.
  • a seven-hole round cake with an inner diameter of 1 mm was dried at 90°C for 5 hours, and then calcined at 560°C for 9 hours to obtain a carrier.
  • the nickel nitrate was prepared into an aqueous solution, impregnated with the above-mentioned carrier in equal volume for 30 minutes to obtain wet bars with a nickel oxide content of 10% (on a dry basis after calcination), dried at 90° C. for 2 hours, and then calcined at 560° C. for 8 hours to obtain catalyst A5.
  • Zinc nitrate was prepared into an aqueous solution, impregnated with the above-mentioned carrier in equal volume for 30 minutes to obtain wet bars with a zinc oxide content of 16% (on a dry basis after calcination), dried at 120° C. for 3 hours, and then calcined at 380° C. for 4 hours to obtain catalyst A7.
  • catalyst A8 Consistent with the preparation method of A6, except that the impregnating metal was changed to nickel nitrate and ammonium heptamolybdate, catalyst A8 with molybdenum oxide content of 16% and nickel oxide content of 4% (on a dry basis after calcination) was finally obtained.
  • the bed void ratio of catalyst A8 was 0.65, and the total metal oxide content was 71.4% of the corresponding catalyst D6.
  • the catalyst D1 and the catalyst A1 are loaded into the cylindrical hydrogenation reactor:
  • the reactor is a co-flow reactor, the oil to be hydrogenated and hydrogen enter from the upper part of the reactor, and the reacted stream flows out from the lower part.
  • the lower part of the reactor is uniformly filled with catalyst D1 with high desulfurization activity, and the catalyst bed accounts for 70% of the height of the reactor; then, the catalyst D1 and catalyst A1 are continuously loaded according to the scheme of the present invention in the upper graded loading section.
  • the reactor is divided into several squares, approximately squares and approximately triangular spaces by intersecting horizontal and vertical lines, in which catalyst D1 and catalyst A1 are cross-packed, as shown in Figure 1.
  • the shortest distance of the edge of the cross section is not more than 120mm
  • the particle size of the hydrogenation catalyst I is 9mm
  • the particle size of the hydrogenation catalyst II is 1.5mm.
  • the catalyst D2 and the catalyst A2 were loaded into the cylindrical hydrogenation reactor:
  • the reactor is an up-flow reactor, the oil to be hydrogenated and hydrogen enter from the lower part of the reactor, and the reacted stream flows out from the upper part.
  • the lower part of the reactor is loaded with the catalyst D2 and the catalyst A2 according to the scheme of the present invention. From the cross-section, the reactor is divided into several concentric rings, and the catalyst D2 and the catalyst A2 are cross-filled in every two adjacent ring spaces. ,as shown in picture 2.
  • the thickness of each concentric ring is 20mm.
  • the height of the catalyst bed in the graded packing section is 40% of the total height of the reactor bed. Catalyst D2 is then uniformly packed over the graded catalyst bed.
  • the shortest distance of the edge of the cross section is not more than 10mm
  • the particle size of the hydrogenation catalyst I is 5mm
  • the particle size of the hydrogenation catalyst II is 2.8mm.
  • Catalyst D3 and Catalyst A3 were loaded into the cylindrical hydrogenation reactor:
  • the reactor is an up-flow reactor, the oil to be hydrogenated and hydrogen enter from the lower part of the reactor, and the reacted stream flows out from the upper part.
  • the lower part of the reactor is loaded with catalyst D3 and catalyst A3 according to the scheme of the present invention. From the cross-section, 18 cylinders are evenly distributed in the reactor, each cylinder diameter is 30mm, and the catalyst A3 is loaded in it, and the rest part is filled with catalyst D3 ,As shown in Figure 3.
  • the height of the catalyst bed in the graded packing section is 60% of the total height of the reactor bed. Catalyst D3 is then uniformly packed over the graded catalyst bed.
  • the shortest distance of the edge of the cross section is not more than 60mm
  • the particle size of the hydrogenation catalyst I is 6mm
  • the particle size of the hydrogenation catalyst II is 1.7mm.
  • Catalyst D4 and Catalyst A4 were loaded into the cylindrical hydrogenation reactor:
  • the reactor is an up-flow reactor, the oil to be hydrogenated and hydrogen enter from the lower part of the reactor, and the reacted stream flows out from the upper part.
  • the catalyst D4 and catalyst A4 are loaded in the lower part of the reactor according to the scheme of the present invention. From the cross-section, 55 cylinders are evenly distributed in the reactor, and each cylinder is 30mm in diameter. A4 catalyst is loaded therein, and the rest is filled with catalyst D4. , similar to Figure 3. The height of the catalyst bed in the graded packing section is 75% of the total height of the reactor bed. Catalyst D4 is then uniformly packed over the graded catalyst bed.
  • the shortest distance of the edge of the cross section is not more than 60mm
  • the particle size of the hydrogenation catalyst I is 2mm
  • the particle size of the hydrogenation catalyst II is 0.6mm.
  • Catalyst D5 and Catalyst A5 were packed into cylindrical hydrogenation reactor:
  • the reactor is an up-flow reactor, the oil to be hydrogenated and hydrogen enter from the lower part of the reactor, and the reacted stream flows out from the upper part.
  • the catalyst D5 and catalyst A5 are loaded in the lower part of the reactor according to the scheme of the present invention. From the cross-section, 45 cylinders are evenly distributed in the reactor, each cylinder diameter is 30mm, wherein the catalyst A5 is loaded, and the rest part is filled with the catalyst D5 , similar to Figure 3.
  • the height of the catalyst bed in the graded packing section is 50% of the total height of the reactor bed. Catalyst D5 is then uniformly packed over the graded catalyst bed.
  • the shortest distance of the edge of the cross section is not more than 95mm
  • the particle size of the hydrogenation catalyst I is 5mm
  • the particle size of the hydrogenation catalyst II is 3mm.
  • the catalyst D1 and the catalyst A6 were loaded into the cylindrical hydrogenation reactor:
  • the reactor is an up-flow reactor, the oil to be hydrogenated and hydrogen enter from the lower part of the reactor, and the reacted stream flows out from the upper part.
  • the catalyst D1 and catalyst A6 are loaded in the lower part of the reactor according to the scheme of the present invention. From the cross-section, there are 145 cylinders evenly distributed in the reactor, each cylinder diameter is 50mm, and the catalyst A6 is loaded in it, and the rest part is filled with the catalyst D1. , similar to Figure 3.
  • the height of the catalyst bed in the graded packing section is 45% of the total height of the reactor bed. Catalyst D1 is then uniformly packed over the graded catalyst bed.
  • the shortest distance of the edge of the cross section is not more than 60mm
  • the particle size of the hydrogenation catalyst I is 20mm
  • the particle size of the hydrogenation catalyst II is 1.5mm.
  • the reactor is an up-flow reactor, the oil to be hydrogenated and hydrogen enter from the lower part of the reactor, and the reacted stream flows out from the upper part.
  • the catalyst D3 and catalyst A7 are loaded in the lower part of the reactor according to the scheme of the present invention. From the cross-section, 65 cylinders are evenly distributed in the reactor, each cylinder diameter is 140mm, and the catalyst A7 is loaded in it, and the rest part is filled with the catalyst D3 , similar to Figure 3.
  • the height of the catalyst bed in the graded packing section is 50% of the total height of the reactor bed. Catalyst D3 is then uniformly packed over the graded catalyst bed.
  • the shortest distance of the edge of the cross section is not more than 100mm
  • the particle size of the hydrogenation catalyst I is 46mm
  • the particle size of the hydrogenation catalyst II is 1.7mm.
  • the reactor is an up-flow reactor, the oil to be hydrogenated and hydrogen enter from the lower part of the reactor, and the reacted stream flows out from the upper part.
  • the lower part of the reactor is loaded with catalyst D7 and catalyst A3 according to the scheme of the present invention. From the cross-section, there are 30 cylinders evenly distributed in the reactor, each cylinder diameter is 30mm, and the catalyst A3 is loaded in it, and the rest part is filled with catalyst D7 , similar to Figure 3.
  • the height of the catalyst bed in the graded packing section is 60% of the total height of the reactor bed. Catalyst D7 was then uniformly packed over the graded catalyst bed.
  • the shortest distance of the edge of the cross section is not more than 85mm
  • the particle size of hydrogenation catalyst I is 6mm
  • the particle size of hydrogenation catalyst II is 2mm.
  • Catalyst D8 and catalyst A3 were packed into cylindrical hydrogenation reactor:
  • the reactor is an up-flow reactor, the oil to be hydrogenated and hydrogen enter from the lower part of the reactor, and the reacted stream flows out from the upper part.
  • the lower part of the reactor is loaded with catalyst D8 and catalyst A3 according to the scheme of the present invention. From the cross-section, 5 cylinders are evenly distributed in the reactor, and each cylinder is 150mm in diameter. A3 catalyst is loaded therein, and the rest is filled with catalyst D8. , similar to Figure 3. The height of the catalyst bed in the graded packing section is 45% of the total height of the reactor bed. Catalyst D8 was then uniformly packed over the graded catalyst bed.
  • the shortest distance of the edge of the cross section is not more than 100mm
  • the particle size of the hydrogenation catalyst I is 6mm
  • the particle size of the hydrogenation catalyst II is 3.5mm.
  • the reactor is an up-flow reactor, the oil to be hydrogenated and hydrogen enter from the lower part of the reactor, and the reacted stream flows out from the upper part.
  • the lower part of the reactor is loaded with catalyst D9 and catalyst A3 according to the scheme of the present invention. From the cross-section, 35 cylinders are evenly distributed in the reactor, and each cylinder has a diameter of 30mm, wherein A3 catalyst is loaded, and the rest is loaded with catalyst D9. , similar to Figure 3.
  • the height of the catalyst bed in the graded packing section is 15% of the total height of the reactor bed. Catalyst D9 was then uniformly packed over the graded catalyst bed.
  • the shortest distance of the edge of the cross section is not more than 70mm
  • the particle size of the hydrogenation catalyst I is 6mm
  • the particle size of the hydrogenation catalyst II is 2mm.
  • the reactor is an up-flow reactor, the oil to be hydrogenated and hydrogen enter from the lower part of the reactor, and the reacted stream flows out from the upper part.
  • the catalyst D10 and catalyst A3 are loaded in the lower part of the reactor according to the scheme of the present invention. From the cross-section, 18 cylinders are evenly distributed in the reactor, each cylinder diameter is 25mm, and the catalyst A3 is loaded in it, and the rest part is filled with the catalyst D10. , similar to Figure 3.
  • the height of the catalyst bed in the graded packing section is 60% of the total height of the reactor bed. Catalyst D10 was then uniformly packed over the graded catalyst bed.
  • the shortest distance of the edge of the cross section is not more than 520mm
  • the particle size of the hydrogenation catalyst I is 6mm
  • the particle size of the hydrogenation catalyst II is 1.6mm.
  • the catalyst D11 and the catalyst A3 were loaded into the cylindrical hydrogenation reactor:
  • the reactor is an up-flow reactor, the oil to be hydrogenated and hydrogen enter from the lower part of the reactor, and the reacted stream flows out from the upper part.
  • the catalyst D11 and catalyst A3 are loaded in the lower part of the reactor according to the scheme of the present invention. From the cross-section, there are 18 cylinders evenly distributed in the reactor, each cylinder diameter is 30mm, and the catalyst A3 is loaded in it, and the rest part is filled with the catalyst D11. , similar to Figure 3.
  • the height of the catalyst bed in the graded packing section is 60% of the total height of the reactor bed.
  • the catalyst D11 was then uniformly packed over the graded catalyst bed.
  • the shortest distance of the edge of the cross section is not more than 310mm, the particle size of the hydrogenation catalyst I is 6mm, and the particle size of the hydrogenation catalyst II is 2.5mm.
  • the catalyst D12 and the catalyst A3 were loaded into the cylindrical hydrogenation reactor:
  • the reactor is an up-flow reactor, the oil to be hydrogenated and hydrogen enter from the lower part of the reactor, and the reacted stream flows out from the upper part.
  • the catalyst D12 and catalyst A3 are loaded in the lower part of the reactor according to the scheme of the present invention. From the cross section, 10 cylinders are evenly distributed in the reactor, each cylinder diameter is 100mm, and the catalyst A3 is loaded in it, and the rest part is filled with the catalyst D12 , similar to Figure 3.
  • the height of the catalyst bed in the graded packing section is 30% of the total height of the reactor bed. Catalyst D12 was then uniformly packed over the graded catalyst bed.
  • the shortest distance of the edge of the cross section is not more than 157mm
  • the particle size of the hydrogenation catalyst I is 6mm
  • the particle size of the hydrogenation catalyst II is 3.2mm.
  • the catalyst D13 and the catalyst A3 were loaded into the cylindrical hydrogenation reactor:
  • the reactor is an up-flow reactor, the oil to be hydrogenated and hydrogen enter from the lower part of the reactor, and the reacted stream flows out from the upper part.
  • the catalyst D13 and catalyst A3 are loaded in the lower part of the reactor according to the scheme of the present invention. From the cross section, there are 15 cylinders evenly distributed in the reactor, each cylinder diameter is 50mm, and the catalyst A3 is loaded in it, and the rest part is filled with the catalyst D13 , similar to Figure 3.
  • the height of the catalyst bed in the graded packing section is 60% of the total height of the reactor bed. Catalyst D13 is then uniformly packed over the graded catalyst bed.
  • the shortest distance of the edge of the cross section is not more than 60mm
  • the particle size of the hydrogenation catalyst I is 6mm
  • the particle size of the hydrogenation catalyst II is 4mm.
  • the catalyst D14 and the catalyst A3 were loaded into the cylindrical hydrogenation reactor:
  • the reactor is an up-flow reactor, the oil to be hydrogenated and hydrogen enter from the lower part of the reactor, and the reacted stream flows out from the upper part.
  • the catalyst D14 and catalyst A3 are loaded in the lower part of the reactor according to the scheme of the present invention. From the cross-section, 75 cylinders are evenly distributed in the reactor, and each cylinder is 40mm in diameter. A3 catalyst is loaded therein, and the rest is filled with catalyst D14. , similar to Figure 3. The height of the catalyst bed in the graded packing section is 60% of the total height of the reactor bed. Catalyst D14 was then uniformly packed over the graded catalyst bed.
  • the shortest distance of the edge of the cross section is not more than 400mm, the particle size of the hydrogenation catalyst I is 6mm, and the particle size of the hydrogenation catalyst II is 2.8mm.
  • the reactor is an up-flow reactor, the oil to be hydrogenated and hydrogen enter from the lower part of the reactor, and the reacted stream flows out from the upper part.
  • the catalyst D15 and catalyst A3 are loaded in the lower part of the reactor according to the scheme of the present invention. From the cross-section, there are 30 cylinders evenly distributed in the reactor, each cylinder diameter is 30mm, and the catalyst A3 is filled in it, and the rest part is filled with the catalyst D15. , similar to Figure 3.
  • the height of the catalyst bed in the graded packing section is 90% of the total height of the reactor bed. Catalyst D15 was then uniformly packed over the graded catalyst bed.
  • the shortest distance of the edge of the cross section is not more than 110mm
  • the particle size of the hydrogenation catalyst I is 6mm
  • the particle size of the hydrogenation catalyst II is 3.6mm.
  • the filling was the same as in Example 31, except that D1 and A6 were replaced by D6 and A8, respectively, keeping other conditions unchanged.
  • catalyst A3 was replaced with 4 stainless steel fouling baskets of the same size, which were welded by Johnson mesh, hollow without catalyst, and open at the top.
  • the rest of the reactor was filled with D3 catalyst, and the filling volume was the same as in Example 28.
  • Example 30 In the same hydrogenation reactor as in Example 30, D16 with an equal volume of catalyst was selected to replace D5 for filling, and other conditions were kept unchanged. In this comparative example, the porosity of the island region was 105.7% of that of the sea region.
  • the porosity of the island region was 143.9% of that of the sea region.
  • Example 28 In the same up-flow reactor as in Example 28, the mixed catalyst in which catalyst A3 and catalyst D3 were uniformly mixed was loaded at 60% of the height of the lower part of the reactor, and then catalyst D3 was loaded at the rest of the upper part. Example 28 is the same.
  • the reaction temperature is 410°C
  • the reaction pressure is 12MPa
  • the liquid hourly space velocity is 0.4h -1
  • the hydrogen-oil ratio is 1200:1
  • the flow pattern of the reactor is shown in each example.
  • the raw material oil is atmospheric residual oil from a refinery of Sinopec, with a sulfur content of 3.1%, a metal (Ni+V) content of 81ppm, and a residual carbon value of 13%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

一种固体颗粒床以及包含该固体颗粒床的固定床,该固体颗粒床包含海区域和分布在海区域中的至少一个岛区域,并且具有上表面、下表面、轴向和径向,其中岛区域沿着固体颗粒床的轴向延伸但不延伸至下表面,并且岛区域的空隙率是海区域的空隙率的110-300%。一种油品加氢方法,包括使油品在加氢反应条件下流过该固体颗粒床或固定床的步骤。

Description

固体颗粒床、固定床和油品加氢方法 技术领域
本发明涉及油品加氢技术领域,具体涉及固体颗粒床、包含该固体颗粒床的固定床、以及这些床在油品加氢中的应用。
背景技术
由于杂质的影响,多种油品需要加氢改善质量后才能使用。例如乙烯裂解汽油、焦化石脑油、催化汽油、费托合成油、焦化柴油、催化柴油、高干点直馏柴油、蜡油、渣油、煤焦油、煤加氢生成油等,大都含有硫、氮、氧、烯、芳等杂质,通常需要加氢精制脱除其中的杂质才能使用。在加氢精制过程中,加工劣质油品经常出现结焦或机械杂质等因素导致的压降增大现象。
压降大小与催化剂床层空隙率密切相关。目前油品加氢为减缓压降的增加,多采用在反应器入口段装填较大空隙率的颗粒物,尤其固定床渣油加氢过程在一反入口段装填多种形状的保护剂以延长其运转周期。
中国专利CN101928592A公开一种加氢催化剂的级配组合;反应器自上而下分别装填加氢脱金属和加氢脱硫催化剂;原料物流自上而下,保持沿物流方向,催化剂活性逐渐增大,孔径逐渐减小,粒度逐渐减小,孔隙率逐渐减小。
中国专利CN1104558A公开了一种用于对烃原料进行加氢处理的方法和催化剂体系,其中将原料通过一个加氢处理催化剂的固定床式催化剂体系,该体系内含有高空隙度催化剂颗粒和低空隙度催化剂颗粒的物理混合物,在催化剂床的不同层内将颗粒按不同的量混合,从而在固定床式催化剂体系内形成层状结构,不同层中高空隙度和低空隙度颗粒的混合比例不同。
发明内容
本发明的发明人经过刻苦的研究发现,催化汽油加氢容易发生加氢精制反应器顶部结焦,焦化柴油加氢容易发生反应器顶部焦粉沉积和积炭结焦,煤焦油加氢容易发生反应器顶部结焦,而这些顶部结焦的直接后果就是反应器入口段催化剂床的压降增大。结果是,催化剂对易沉积物的吸附沉积容量 小,床层压降上升过快,导致运转周期缩短。本发明的发明人经过进一步的研究发现,通过特殊的催化剂级配方法,实现油品中易沉积物的分散沉积,增大催化剂对易沉积物的吸附沉积容量,就可以有效延缓床层压降上升,并且延长运转周期。本发明基于该发现而完成。
具体而言,本发明涉及以下方面的内容。
1.一种用于油品加氢的催化剂级配方法,其特征在于,是在反应器的入口端设置级配装填段,将级配装填段的空间分成若干与物流方向平行的柱状反应单元,在每相邻的两个柱状反应单元中以柱状边缘相互接触的方式分别装填加氢催化剂Ⅰ和加氢催化剂Ⅱ,其中加氢催化剂Ⅰ相比加氢催化剂Ⅱ具有更大的空隙率。
2.根据前述或后述任一方面所述的催化剂级配方法,其特征在于,级配装填段的催化剂床层高度占整个反应器床层高度的1%-95%,优选3%-60%,进一步优选4%-50%。
3.根据前述或后述任一方面所述的催化剂级配方法,其特征在于,在反应器的其余部分装填常规加氢催化剂,其空隙率不大于上述级配装填段中加氢催化剂Ⅱ的空隙率。
4.根据前述或后述任一方面所述的催化剂级配方法,其特征在于,所述加氢催化剂Ⅰ装填后形成的催化剂床层空隙率为0.30-0.80,级配使用的加氢催化剂Ⅰ的空隙率是加氢催化剂Ⅱ的空隙率的110%-300%。
5.根据前述或后述任一方面所述的催化剂级配方法,其特征在于,所述加氢催化剂Ⅰ为中空的颗粒和/或带齿的颗粒。
6.根据前述或后述任一方面所述的催化剂级配方法,其特征在于,所述在每相邻的两个柱状反应单元中以柱状边缘相互接触的方式分别装填加氢催化剂Ⅰ和加氢催化剂Ⅱ,具体是两种催化剂以交替相邻的方式装填或***方式装填。
7.根据前述或后述任一方面所述的催化剂级配方法,其特征在于,所述交替相邻的方式装填是在物流方向上将同一种催化剂装填成一个柱状反应单元,从径向上看每相邻的两个柱状反应单元内分别装填的是上述两种不同的催化剂;每个柱状反应单元的横截面为任意图形。
8.根据前述或后述任一方面所述的催化剂级配方法,其特征在于,所述 ***方式装填是在物流方向上将加氢催化剂Ⅰ以相互分离的柱状装填,形成所述柱状反应单元,加氢催化剂Ⅱ则在剩余位置装填,形成连续或不连续的具有不规则截面形状的柱状反应单元,所述加氢催化剂Ⅰ形成的柱状反应单元应尽量均匀***于加氢催化剂Ⅱ的柱状反应单元内。
9.根据前述或后述任一方面所述的催化剂级配方法,其特征在于,在同一反应器内,级配装填段所使用的加氢催化剂Ⅰ和加氢催化剂Ⅱ并不仅限于只有一种空隙率的催化剂,但任一种加氢催化剂Ⅰ的空隙率应大于任一种加氢催化剂Ⅱ的空隙率。
10.根据前述或后述任一方面所述的催化剂级配方法,其特征在于,在同一径向截面上,加氢催化剂Ⅱ的柱状反应单元截面上任一点到与其相邻的加氢催化剂Ⅰ的柱状反应单元截面边缘的最短距离不超过500mm,优选为不超过300mm,更优选不超过200mm,最优选不超过100mm。
11.根据前述或后述任一方面所述的催化剂级配方法,其特征在于,加氢催化剂Ⅰ的柱状反应单元的横截面总面积为反应器横截面总面积的10%-60%。
12.根据前述或后述任一方面所述的催化剂级配方法,其特征在于,所述加氢催化剂Ⅰ的粒径尺寸为2.0-55.0毫米,加氢催化剂Ⅱ的粒径尺寸为0.5-4.0毫米。
13.根据前述或后述任一方面所述的催化剂级配方法,其特征在于,加氢催化剂Ⅰ中的加氢活性金属以氧化物计的质量含量,是与其级配使用的加氢催化剂Ⅱ的10%-90%。
14.根据前述或后述任一方面所述的催化剂级配方法,其特征在于,加氢催化剂Ⅰ、加氢催化剂Ⅱ和反应器其余部分装填的常规加氢催化剂中的加氢活性金属选自Fe、Co、Ni、Cu、Zn、Cr、Mo和W中的至少一种。
15.根据前述或后述任一方面所述的催化剂级配方法,其特征在于,所述加氢催化剂Ⅰ包括载体材料和加氢活性金属,加氢活性金属以氧化物计占该催化剂的重量比为5%-30%,载体材料选自活性炭、氧化铝、氧化硅、氧化镁、氧化锆、氧化钛和分子筛中的至少一种。
16.根据前述或后述任一方面所述的催化剂级配方法,其特征在于,所述加氢催化剂Ⅱ和常规加氢催化剂为能实现脱硫的催化剂,其选自负载型催 化剂和非负载型催化剂中的至少一种。
17.根据前述或后述任一方面所述的催化剂级配方法,其特征在于,所述负载型催化剂包括载体和加氢活性组分,及在此基础上进行改性的催化剂,以催化剂的总重量计,所述加氢活性组分以金属氧化物计的质量含量为15%-40%。
18.根据前述或后述任一方面所述的催化剂级配方法,其特征在于,所述非负载型催化剂至少包括必要的粘结剂和加氢活性组分,以催化剂的总重量计,所述加氢活性组分以金属氧化物计的质量含量为30%-80%。
19.一种油品加氢的方法,其特征在于,是将加氢催化剂Ⅰ和加氢催化剂Ⅱ以前述或后述任一方面所述的方法级配装填,在反应器剩余部分装填具有脱硫活性的常规加氢催化剂,装填完毕进行硫化,再通入油品进行加氢。
20.根据前述或后述任一方面所述的方法,其特征在于,所述油品选自乙烯裂解汽油、焦化石脑油、催化汽油、费托合成油、焦化柴油、催化柴油、高干点直馏柴油、蜡油、渣油、煤焦油和煤加氢生成油中的至少一种。
特别而言,本发明涉及以下方面的内容。
1.一段固体颗粒床(特别是轴向固体颗粒床),其特征在于,包含海区域和分布在所述海区域中的至少一个岛区域,并且具有上表面、下表面、轴向(也即长度方向或物料在该固体颗粒床中从所述上表面向所述下表面的流动方向)和径向(也即横截面方向或与所述轴向垂直的方向),其中所述岛区域(优选从所述上表面)沿着所述固体颗粒床的轴向延伸但不延伸至所述下表面,并且所述岛区域的空隙率是所述海区域的空隙率的110-300%(优选130-240%,进一步优选140-200%)。
2.根据前述或后述任一方面所述的固体颗粒床,其中所述海区域从所述上表面沿着所述固体颗粒床的轴向延伸至所述下表面,
和/或,
所述至少一个岛区域在所述海区域中的分布方式选自:
i)所述至少一个岛区域以离散方式分布在所述海区域中;
ii)所述至少一个岛区域设置成环状而包围所述海区域的一部分;
iii)i)和ii)两种分布方式的组合。
3.根据前述或后述任一方面所述的固体颗粒床,其中设任意一个所述岛 区域沿着所述固体颗粒床的轴向的延伸长度为Li,设所述海区域沿着所述固体颗粒床的轴向的延伸长度(也即所述固体颗粒床的轴向长度)为L0,则Li/L0<1(优选Li/L0≤0.95,更优选0.03≤Li/L0≤0.80,最优选0.04≤Li/L0≤0.50),和/或,全部所述岛区域沿着所述固体颗粒床的轴向的延伸长度基本上相同,和/或,在全部所述岛区域中,设沿着所述固体颗粒床的轴向的延伸长度的最大者为Lmax,则Lmax/L0<1(优选Lmax/L0=0.95-0.5,更优选Lmax/L0=0.8-0.5),和/或,至少一部分(优选全部)所述岛区域沿着所述固体颗粒床的轴向延伸成选自柱状和锥状中的至少一种形状(优选选自圆柱状、棱柱状、棱锥状和圆锥状中的至少一种形状)。
4.根据前述或后述任一方面所述的固体颗粒床,其中设所述岛区域的个数是n,则n为1-2000的整数(优选1-200的整数,更优选3-50的整数),和/或,在所述固体颗粒床的任意横截面上,每个所述岛区域彼此相同或不同,横截面各自独立地为任意图形(比如选自矩形、圆形、椭圆形、三角形、平行四边形、环形和非规则形状中的至少一种),和/或,以所述固体颗粒床的总体积计,全部所述岛区域所占的比例是0.3-57%(优选1-40%,更优选3-25%),所述海区域所占的比例是43-99.7%(优选60-99%,更优选75-97%)。
5.根据前述或后述任一方面所述的固体颗粒床,其中每个所述岛区域彼此相同或不同,各自独立地具有0.20-0.90(优选0.30-0.80,更优选0.33-0.70,更优选0.37-0.60)的空隙率,和/或,所述海区域的空隙率为0.10-0.80(优选0.15-0.65,更优选0.16-0.55)。
6.根据前述或后述任一方面所述的固体颗粒床,其中在所述固体颗粒床的任意横截面上,相邻两个所述岛区域的边缘的直线距离大于20mm(优选大于100mm),和/或,在所述固体颗粒床的任意横截面上,如存在所述岛区域,则所述海区域横截面上任一点到与其相邻的所述岛区域的横截面的边缘的最短距离不超过500mm(优选不超过300mm,更优选不超过200mm,最优选不超过100mm),和/或,在所述固体颗粒床的任意横截面上,每个所述岛区域彼此相同或不同,各自独立地具有不超过300000mm 2(优选不超过100000mm 2)的横截面积,和/或,所述固体颗粒床具有不超过3000000mm 2(优选不超过2000000mm 2)的横截面积,和/或,在所述固体颗粒床的任意横截面上,如存在所述岛区域,则全部所述岛区域的横截面积之和为所述固体颗粒床的横截 面积的10-60%(优选15-45%或18-30%)。
7.根据前述或后述任一方面所述的固体颗粒床,其中所述岛区域包含一种或多种加氢催化剂(称为加氢催化剂I),所述海区域包含一种或多种加氢催化剂(称为加氢催化剂II),和/或,所述加氢催化剂I是中空和/或带齿的颗粒,所述加氢催化剂II是多孔性颗粒,和/或,所述加氢催化剂I的粒径为2.0-55.0mm(优选3.0-30.0mm),所述加氢催化剂II的粒径为0.5-4.0mm(优选0.8-3.0mm),和/或,所述加氢催化剂I包括载体和加氢活性金属,所述加氢催化剂II选自负载型催化剂和非负载型催化剂中的至少一种,并且所述负载型催化剂包括载体和加氢活性组分,所述非负载型催化剂包括粘结剂和加氢活性组分,和/或,所述加氢催化剂I中所述加氢活性金属以金属氧化物计的质量含量(以所述加氢催化剂I的总重量计)是所述加氢催化剂II中所述加氢活性组分以金属氧化物计的质量含量(以所述加氢催化剂II的总重量计)的10-90%(优选15-60%或17-40%),和/或,每种所述加氢催化剂I彼此相同或不同,各自独立地具有相同或不同的空隙率,并且每种所述加氢催化剂II彼此相同或不同,各自独立地具有相同或不同的空隙率,前提是任意一种所述加氢催化剂I的空隙率大于任意一种所述加氢催化剂II的空隙率(优选任意一种所述加氢催化剂I的空隙率是任意一种所述加氢催化剂II的空隙率的110-300%,优选130-240%,进一步优选140-200%)。
8.根据前述或后述任一方面所述的固体颗粒床,其中在所述加氢催化剂I中,以所述加氢催化剂的总重量计,所述加氢活性金属以金属氧化物计的质量含量为5-30%(优选8-20%),和/或,所述载体选自活性炭、无机耐熔氧化物(特别是选自氧化铝、氧化硅、氧化镁、氧化锆和氧化钛中的至少一种)和分子筛中的至少一种(特别是选自氧化铝和氧化硅中的至少一种),和/或,所述加氢活性金属选自Fe、Co、Ni、Cu、Zn、Cr、Mo和W中的至少一种(优选选自Fe、Zn、Ni、Co和Cu中的至少一种,更优选选自Fe和Ni中的至少一种)。
9.根据前述或后述任一方面所述的固体颗粒床,其中在所述加氢催化剂II中,以所述负载型催化剂的总重量计,所述加氢活性组分以金属氧化物计的质量含量为15-40%(优选20-35%),和/或,以所述非负载型催化剂的总重量计,所述加氢活性组分以金属氧化物计的质量含量为30-80%(优选 40-65%),和/或,所述载体为无机耐熔氧化物(优选选自元素周期表第II族、第III族、第IV族和第IVB族元素的氧化物中的至少一种,更优选选自氧化铝和氧化硅中的至少一种),和/或,所述粘结剂为无机耐熔氧化物(优选选自元素周期表第II族、第III族、第IV族和第IVB族元素的氧化物中的至少一种,更优选选自氧化铝和氧化硅中的至少一种),和/或,所述加氢活性组分选自元素周期表第VIB族金属和第VIII族金属中的至少一种(优选的是,所述第VIB族金属为Mo和/或W,并且所述第VIII族金属为Co和/或Ni),和/或,以所述负载型催化剂的总重量计,所述第VIB族金属以金属氧化物计的质量含量为15-30%(优选18-27%),所述第VIII族金属以金属氧化物计的质量含量为2-10%(优选3-7%),和/或,以所述非负载型催化剂的总重量计,所述第VIB族金属以金属氧化物计的质量含量为15-30%(优选18-27%),所述第VIII族金属以金属氧化物计的质量含量为2-10%(优选3-7%)。
10.一种固定床,包括多段固体颗粒床,其中至少一段所述固体颗粒床是根据前述或后述任一方面所述的固体颗粒床(称为固体颗粒床A)。
11.根据前述或后述任一方面所述的固定床,其中所述固体颗粒床A的高度是所述固定床的高度的1-95%(优选3-60%,进一步优选4-50%)。
12.根据前述或后述任一方面所述的固定床,还包括位于所述固体颗粒床A上游的固体颗粒床B和/或位于所述固体颗粒床A下游的固体颗粒床C,其中所述固体颗粒床B的空隙率不小于所述固体颗粒床A中所述岛区域的空隙率,并且所述固体颗粒床C的空隙率不大于所述固体颗粒床A中所述海区域的空隙率。
13.根据前述或后述任一方面所述的固定床,其中所述固体颗粒床B包含一种或多种加氢催化剂B,所述固体颗粒床C包含一种或多种加氢催化剂C,其中所述加氢催化剂B和所述加氢催化剂C彼此相同或不同,各自独立地选自负载型催化剂和非负载型催化剂中的至少一种,并且所述负载型催化剂包括载体和加氢活性组分,所述非负载型催化剂包括粘结剂和加氢活性组分(优选所述加氢催化剂B和所述加氢催化剂C彼此相同或不同,各自独立地选自所述加氢催化剂II)。
14.一种油品加氢方法,包括使油品在加氢反应条件下流过根据前述或后述任一方面所述的固体颗粒床或根据前述或后述任一方面所述的固定床的 步骤(称为加氢步骤)。
15.根据前述或后述任一方面所述的方法,其中所述油品选自乙烯裂解汽油、焦化石脑油、催化汽油、费托合成油、焦化柴油、催化柴油、高干点直馏柴油、蜡油、渣油、煤焦油和煤加氢生成油中的至少一种,和/或,所述加氢反应条件包括:反应温度40-500℃(优选40-450℃),反应压力0.3-20MPaG(优选0.5-15MPaG),体积空速为1-10h -1(优选2-10h -1),氢油比10:1-2000:1(优选15:1-1000:1)。
16.根据前述或后述任一方面所述的方法,还包括在进行所述加氢步骤之前,对所述固体颗粒床或所述固定床进行硫化处理的步骤,和/或,将所述加氢催化剂预先在器外进行硫化处理,和/或,所述硫化处理的反应条件包括:干法硫化或湿法硫化,硫化剂为选自硫化氢、二硫化碳、二甲基二硫醚、甲基硫醚和正丁基硫醚中的至少一种,硫化压力为1.2-15MPaG(1.2-9.4MPaG),硫化温度为280-400℃,硫化时间为4-22h。
技术效果
根据本发明,含有易沉积物的油品在加氢过程中,其中的杂质优先沉积在具有较大空隙率的所述岛区域的末段,沉积量较多之后,油品主要经由所述岛区域的侧面进入具有较小空隙率的所述海区域,从而获得更大的沉积界面面积和沉积容量,减缓了压降上升过程,同时还可以维持良好的加氢脱硫效果。
根据本发明的固体颗粒床,通过组合大小空隙率装填区域,油品优先经由大空隙率装填区域的末段进入小空隙率装填区域,随着沉积量增加,再逐步转而经由其侧面进入小空隙率装填区域,由此增大易沉积物的吸附沉积容量,减缓了压降上升过程,同时还可以维持良好的加氢脱硫效果。
附图说明
图1是实施例7中催化剂D1和催化剂A1级配装填后的反应器截面示意图;
图2是实施例8中催化剂D2和催化剂A2级配装填后的反应器截面示意图;
图3是实施例9中催化剂D3和催化剂A3级配装填后的反应器截面示意图。
图4图示说明了固体颗粒床的Li与L0。
图5图示说明了在固体颗粒床的任意横截面上,相邻两个岛区域的边缘的直线距离La,以及海区域横截面上任一点到与其相邻的岛区域的横截面的边缘的最短距离Lb。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。除非另有定义,本说明书所用的所有技术和科学术语都具有本领域技术人员常规理解的含义。在有冲突的情况下,以本说明书的定义为准。
当本说明书以词头“本领域技术人员公知”、“现有技术”或其类似用语来导出材料、物质、方法、步骤、装置或部件等时,该词头导出的对象涵盖本申请提出时本领域常规使用的那些,但也包括目前还不常用,却将变成本领域公认为适用于类似目的的那些。
在没有明确指明的情况下,本说明书内所提到的所有百分数、份数、比率等都是以重量为基准的,而且压力是表压。
在本说明书的上下文中,空隙率的测量方法是电容成像法。
在本说明书的上下文中,在没有特别明确的情况下,粒径指的是体积平均粒径,其测量方法一般可以通过激光法进行。
在本说明书的上下文中,本发明的任何两个或多个实施方式都可以任意组合,由此而形成的技术方案属于本说明书原始公开内容的一部分,同时也落入本发明的保护范围。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视 为在本文中具体公开。
根据本发明的一个实施方式,涉及一段固体颗粒床,特别是一段轴向固体颗粒床。在此,所谓“一段”,指的是所述颗粒床构成反应器中所装填的颗粒床(一般是固定床)的至少一个区段,其中一个或多个固体颗粒床区段构成整个所述固定床。另外,所谓“轴向”,指的是物料(比如反应物料)在流过所述固体颗粒床时,其流动方向与所述固体颗粒床的横截面垂直,或者说所述固体颗粒床在反应器中沿着所述反应器的轴向延伸装填,从而使得所述固体颗粒床的轴向即为所述反应器的轴向,所述固体颗粒床的径向即为所述反应器的径向。
根据本发明的一个实施方式,所述固体颗粒床一般位于反应器的入口端,而反应器的剩余部分则根据情况装填具有脱硫活性的常规加氢催化剂。本领域技术人员应当理解的是,所述反应器的入口端是油品进入反应器的一端,具体的,顺流式反应器指反应器的顶部,上流式反应器指反应器的底部,中间进料式反应器和气液逆流式反应器指油品流动方向的入口端,其他反应器形式以此类推。
根据本发明的一个实施方式,所述一段固体颗粒床包含海区域和分布在所述海区域中的至少一个岛区域。在此,所谓“海区域”,通常指的是作为基本上连续的物质相而构成所述固体颗粒床的主体部分的区域,但也不排除所述海区域被所述岛区域切割为多个区域的情况(比如类似于潟湖的情况)。另外,所谓“岛区域”,通常指的是在所述海区域中作为离散的物质相而存在的一个或多个独立区域,这些独立区域之间彼此按照一定距离分隔而不连接或连通,并且每个所述独立区域与所述海区域均存在明确的分界线。
根据本发明的一个实施方式,所述固体颗粒床具有上表面、下表面、轴向和径向。在此,轴向也即长度方向或物料在该固体颗粒床中从所述上表面向所述下表面的流动方向,径向也即横截面方向或与所述轴向垂直的方向。另外,上表面指的是物料在即将进入所述固体颗粒床时所接触到的表面,而下表面则指的是物料即将离开所述固体颗粒床时的表面。
根据本发明的一个实施方式,从获得更大的沉积表面积和沉积容量的角度考虑,所述岛区域沿着所述固体颗粒床的轴向延伸但不延伸至所述下表面,优选所述岛区域从所述上表面沿着所述固体颗粒床的轴向延伸但不延伸至所 述下表面。根据该实施方式,所述岛区域优选从所述固体颗粒床的上表面暴露,但不从所述固体颗粒床的下表面暴露,其末端被包埋在所述海区域之中。根据该实施方式,本发明的“岛”在“海”中区域呈现为浮岛的形式。
根据本发明的一个实施方式,所述海区域从所述上表面沿着所述固体颗粒床的轴向延伸至所述下表面。换句话说,在所述固体颗粒床的上表面和下表面都可以看到所述海区域暴露。
根据本发明的一个实施方式,从获得更大的沉积表面积和沉积容量的角度考虑,设任意一个所述岛区域沿着所述固体颗粒床的轴向的延伸长度为Li,设所述海区域沿着所述固体颗粒床的轴向的延伸长度(也即所述固体颗粒床的轴向长度)为L0,则Li/L0<1,优选Li/L0≤0.95,更优选0.03≤Li/L0≤0.80,最优选0.04≤Li/L0≤0.50。
根据本发明的一个实施方式,从获得更大的沉积表面积和沉积容量的角度考虑,在全部所述岛区域中,设沿着所述固体颗粒床的轴向的延伸长度的最大者为Lmax,则Lmax/L0<1,优选Lmax/L0=0.95-0.5,更优选Lmax/L0=0.8-0.5。
根据本发明的一个实施方式,从固体颗粒装填容易度等角度考虑,全部所述岛区域沿着所述固体颗粒床的轴向的延伸长度基本上相同。
根据本发明的一个实施方式,至少一部分(优选全部)所述岛区域沿着所述固体颗粒床的轴向延伸成选自柱状和锥状中的至少一种形状。作为所述形状,并没有特别的限制,比如可以举出选自圆柱状、棱柱状、棱锥状和圆锥状中的至少一种形状。
根据本发明的一个实施方式,所述岛区域的空隙率是所述海区域的空隙率的110-300%,优选130-240%,进一步优选140-200%。基于空隙率的差异,所述岛区域与所述海区域之间形成了明确的分界线。在此,所述空隙率是指固体颗粒(一般是催化剂颗粒)装填至反应器后,固体颗粒间的空隙体积占固体颗粒床总体积的比例。
根据本发明的一个实施方式,对所述岛区域在所述海区域中的分布方式没有特别的限制,可以是本领域技术人员能够预期的任何方式。优选的是,所述岛区域在所述海区域中的分布方式可以选自以下:
i)所述至少一个岛区域以离散方式分布在所述海区域中;
ii)所述至少一个岛区域设置成环状而包围所述海区域的一部分;
iii)i)和ii)两种分布方式的组合。
根据本发明的一个实施方式,设所述岛区域的个数是n,则n为1-2000的整数,优选1-200的整数,更优选3-50的整数。
根据本发明的一个实施方式,在所述固体颗粒床的任意横截面上,每个所述岛区域彼此相同或不同,横截面各自独立地为任意图形,比如选自矩形、圆形、椭圆形、三角形、平行四边形、环形和非规则形状中的至少一种。
根据本发明的一个实施方式,以所述固体颗粒床的总体积计,全部所述岛区域所占的比例是0.3-57%,优选1-40%,更优选3-25%。另外,所述海区域所占的比例是43-99.7%,优选60-99%,更优选75-97%。
根据本发明的一个实施方式,每个所述岛区域彼此相同或不同,各自独立地具有0.20-0.90的空隙率,优选0.30-0.80,更优选0.33-0.70,更优选0.37-0.60。
根据本发明的一个实施方式,所述海区域的空隙率为0.10-0.80,优选0.15-0.65,更优选0.16-0.55。
根据本发明的一个实施方式,要取得更好的延缓压降效果,所述海区域要与其相邻的所述岛区域相匹配,使所述岛区域足以影响所述海区域。为此,为了减小装填工作难度并同时保证比现有技术更好的加氢效果,在所述固体颗粒床的任意横截面上,相邻两个所述岛区域的边缘的直线距离大于20mm,优选大于100mm。或者,在所述固体颗粒床的任意横截面上,如存在所述岛区域,则所述海区域横截面上任一点到与其相邻的所述岛区域的横截面的边缘的最短距离不超过500mm,优选不超过300mm,更优选不超过200mm,最优选不超过100mm。
根据本发明的一个实施方式,在所述固体颗粒床的任意横截面上,每个所述岛区域彼此相同或不同,各自独立地具有不超过300000mm 2的横截面积,其中优选不超过100000mm 2
根据本发明的一个实施方式,所述固体颗粒床具有不超过3000000mm 2的横截面积,其中优选不超过2000000mm 2
根据本发明的一个实施方式,在所述固体颗粒床的任意横截面上,如存在所述岛区域,则全部所述岛区域的横截面积之和为所述固体颗粒床的横截 面积的10-60%,优选15-45%或18-30%。
根据本发明的一个实施方式,所述岛区域包含一种或多种加氢催化剂(称为加氢催化剂I)作为固体颗粒。优选的是,所述岛区域由所述加氢催化剂I装填而成。本发明对于所述加氢催化剂I没有特别的限制,但优选的是,所述加氢催化剂I包括载体和加氢活性金属。
根据本发明的一个实施方式,所述加氢催化剂Ⅰ可以采用本领域技术人员所熟知的负载型催化剂制备方法制得。更为具体的,是将载体材料挤压成型,干燥和焙烧后浸渍所述加氢活性金属,再进行干燥和焙烧得到。作为更具体的实施方式,所述挤压成型是用胶溶剂、助挤剂等调和吸附性多孔材料,混合均匀,在挤条机上或其他成型机器上挤压成型,形成载体中空的颗粒,包括但不限于五孔球形、六孔球形、七孔球形、拉西环形、内部三孔的圆柱条形、内部五孔的圆柱条形、内部七孔的圆饼形和内部九孔的圆饼形等;或形成带齿的颗粒,包括但不限于三齿球形、五齿球形、六齿球形、四齿条形、五齿条形等。所述浸渍优选为等体积浸渍,以所述加氢活性金属的稳定盐溶液等体积浸渍挤压成型的吸附性多孔材料;以上制备过程中的两次干燥均为在70-150℃干燥1-24小时,两次焙烧均为在300-600℃焙烧1-10小时。
根据本发明的一个实施方式,所述海区域包含一种或多种加氢催化剂(称为加氢催化剂II)作为固体颗粒。优选的是,所述海区域由所述加氢催化剂II装填而成。本发明对于所述加氢催化剂II没有特别的限制,为本领域技术人员所熟知的应用于油品加氢的能实现脱硫的催化剂,但优选的是,所述加氢催化剂II选自负载型催化剂和非负载型催化剂中的至少一种。在此,所述负载型催化剂包括载体和加氢活性组分,而所述非负载型催化剂包括粘结剂和加氢活性组分。
根据本发明的一个实施方式,所述加氢催化剂Ⅱ的获得对于本领域技术人员是容易的,作为具体的实施方式之一,所述负载型催化剂是将无机耐熔氧化物挤压成型,干燥和焙烧后浸渍所述加氢活性组分,再进行干燥和焙烧得到所述具有脱硫活性的加氢催化剂组分。作为更具体的实施方式,所述挤压成型是用胶溶剂、助挤剂等调和吸附性多孔材料,混合均匀,在挤条机上挤压成型,优选地,是圆形、椭圆形、三叶草形或四叶草形横截面的条状物,或以滚球、油柱成型等方式获得的球状颗粒;所述浸渍优选为等体积浸渍, 以所述加氢活性组分的稳定盐溶液等体积浸渍挤压成型的载体上;以上制备过程中的两次干燥均为在70-150℃干燥1-24小时,两次焙烧均为在300-600℃焙烧1-10小时。所述非负载型催化剂是将加氢活性组分与粘结剂组分以包括但不限于共沉淀法制备的均一催化剂。
根据本发明的一个实施方式,所述加氢催化剂I是中空和/或带齿的颗粒。作为举例,中空的颗粒包括但不限于五孔球形、六孔球形、七孔球形、拉西环形、内部三孔的圆柱条形、内部五孔的圆柱条形、内部七孔的圆饼形、内部九孔的圆饼形等。作为举例,带齿的颗粒包括但不限于三齿球形、五齿球形、六齿球形、四齿条形、五齿条形等。
根据本发明的一个实施方式,从减缓压降上升的角度考虑,所述加氢催化剂I的粒径一般为2.0-55.0mm,优选3.0-30.0mm。另外,从减缓压降上升的角度考虑,所述加氢催化剂II的粒径一般为0.5-4.0mm,优选0.8-3.0mm。
根据本发明的一个实施方式,所述加氢催化剂II是多孔性颗粒。
根据本发明的一个优选的实施方式,以柱状边缘相互接触的方式分别装填所述加氢催化剂Ⅰ和所述加氢催化剂Ⅱ,具体是两种催化剂以交替相邻的方式装填或***方式装填。优选的是,所述交替相邻的方式装填是在物流方向上将同一种催化剂装填成一个柱状反应单元,从径向上看每相邻的两个柱状反应单元内分别装填的是上述两种不同的催化剂。在此,每个柱状反应单元的横截面为任意图形,具体的,为矩形、圆形、三角形、平行四边形、环形或其近似形状,或为其他不规则形状均可。另外,在同一反应器内的柱状反应单元横截面可相同也可不同。
根据本发明的一个实施方式,每种所述加氢催化剂I彼此相同或不同,各自独立地具有相同或不同的空隙率,并且每种所述加氢催化剂II彼此相同或不同,各自独立地具有相同或不同的空隙率,前提是任意一种所述加氢催化剂I的空隙率大于任意一种所述加氢催化剂II的空隙率。优选的是,任意一种所述加氢催化剂I的空隙率是任意一种所述加氢催化剂II的空隙率的110-300%,优选130-240%,进一步优选140-200%。
根据本发明的一个实施方式,所述加氢催化剂I中所述加氢活性金属以金属氧化物计的质量含量(以所述加氢催化剂I的总重量计)与所述加氢催化剂II中所述加氢活性组分以金属氧化物计的质量含量(以所述加氢催化剂 II的总重量计)的10-90%,优选15-60%或17-40%。
根据本发明的一个实施方式,在所述加氢催化剂I中,以所述加氢催化剂的总重量计,所述加氢活性金属以金属氧化物计的质量含量为5-30%,优选8-20%。
根据本发明的一个实施方式,在所述加氢催化剂I中,所述载体选自活性炭、无机耐熔氧化物和分子筛中的至少一种。在此,作为所述无机耐熔氧化物,可以举出本领域常规使用的那些,特别是选自氧化铝、氧化硅、氧化镁、氧化锆和氧化钛中的至少一种,更特别是选自氧化铝和氧化硅中的至少一种。
根据本发明的一个实施方式,在所述加氢催化剂I中,所述加氢活性金属选自Fe、Co、Ni、Cu、Zn、Cr、Mo和W中的至少一种,优选选自Fe、Zn、Ni、Co和Cu中的至少一种,更优选选自Fe和Ni中的至少一种。
根据本发明的一个实施方式,在所述加氢催化剂II中,以所述负载型催化剂的总重量计,所述加氢活性组分以金属氧化物计的质量含量为15-40%,优选20-35%。
根据本发明的一个实施方式,在所述加氢催化剂II中,以所述非负载型催化剂的总重量计,所述加氢活性组分以金属氧化物计的质量含量为30-80%,优选40-65%。
根据本发明的一个实施方式,在所述加氢催化剂II中,所述载体为无机耐熔氧化物,优选选自元素周期表第II族、第III族、第IV族和第IVB族元素的氧化物中的至少一种,更优选选自氧化铝和氧化硅中的至少一种。
根据本发明的一个实施方式,在所述加氢催化剂II中,所述粘结剂为无机耐熔氧化物,优选选自元素周期表第II族、第III族、第IV族和第IVB族元素的氧化物中的至少一种,更优选选自氧化铝和氧化硅中的至少一种。
根据本发明的一个实施方式,在所述加氢催化剂II中,所述加氢活性组分选自元素周期表第VIB族金属和第VIII族金属中的至少一种,优选的是,所述第VIB族金属为Mo和/或W,并且所述第VIII族金属为Co和/或Ni。
根据本发明的一个实施方式,在所述加氢催化剂II中,以所述负载型催化剂的总重量计,所述第VIB族金属以金属氧化物计的质量含量为15-30%,优选18-27%,所述第VIII族金属以金属氧化物计的质量含量为2-10%,优选 3-7%。
根据本发明的一个实施方式,在所述加氢催化剂II中,以所述非负载型催化剂的总重量计,所述第VIB族金属以金属氧化物计的质量含量为15-30%,优选18-27%,所述第VIII族金属以金属氧化物计的质量含量为2-10%,优选3-7%。
根据本发明的一个实施方式,在所述加氢催化剂I或所述加氢催化剂II中,所述载体或粘结剂可以经过改性,比如以B、P、F等改性元素进行改性。在此,以改性后的所述载体或粘结剂重量为基准,所述改性元素重量百分含量一般为0.8-8wt%。
根据本发明的一个实施方式,对于固体颗粒床的制造方法(也即固体颗粒的装填方法)没有特别的限定,一般的,本领域技术人员均能寻求到装填方法以实现本发明的催化剂级配方案,具体地,本领域技术人员可采用以下任一具体实施方式实现,以下具体实施方式仅用于说明本发明技术方案的可实施性,但并不仅限于以下的方式。
具体的装填方法之一:根据预先设计的催化剂级配方案,在反应器外将固体颗粒预先装填成所设计的几何形状后再移入反应器中;其具体操作方式包括在一定几何形状的模具中将固体颗粒预先成型为所设计的几何形状。
具体的装填方法之二:先用网状物将反应器内部分隔为所设计的几何形状后装填,所使用的网状物不影响相邻固体颗粒的接触。
具体的装填方法之三:在反应器内直接装填,在装填所述海区域或所述岛区域时可短暂地局部利用隔板,将某一固体颗粒按设计的几何形状装填。
根据本发明的一个实施方式,还涉及一种固定床,其包括多段固体颗粒床(或者多个固体颗粒床区段),其中至少一段所述固体颗粒床是本发明所述的固体颗粒床(称为固体颗粒床A)。
根据本发明的一个实施方式,所述固体颗粒床A的高度是所述固定床的高度的1-95%,优选3-60%,进一步优选4-50%。
根据本发明的一个实施方式,所述固定床还包括位于所述固体颗粒床A上游的固体颗粒床B,其中所述固体颗粒床B的空隙率不小于所述固体颗粒床A中所述岛区域的空隙率。在此,所述固体颗粒床B包含一种或多种加氢催化剂B,或者由所述一种或多种加氢催化剂B装填而成。
根据本发明的一个实施方式,所述固定床还包括位于所述固体颗粒床A下游的固体颗粒床C,其中所述固体颗粒床C的空隙率不大于所述固体颗粒床A中所述海区域的空隙率。在此,所述固体颗粒床C包含一种或多种加氢催化剂C,或者由所述一种或多种加氢催化剂C装填而成。
根据本发明的一个实施方式,所述加氢催化剂B和所述加氢催化剂C彼此相同或不同,各自独立地选自负载型催化剂和非负载型催化剂中的至少一种。在此,所述负载型催化剂包括载体和加氢活性组分,所述非负载型催化剂包括粘结剂和加氢活性组分。优选的是,所述加氢催化剂B和所述加氢催化剂C彼此相同或不同,各自独立地选自所述加氢催化剂II。
根据本发明的一个实施方式,还涉及一种油品加氢方法,包括使油品在加氢反应条件下流过本发明所述的固体颗粒床或本发明所述的固定床的步骤(称为加氢步骤)。
本领域技术人员应当理解的是,本发明的油品加氢方法适用于处理任何油品原料,尤其适用于是含有易沉积物的油品。在此,所述原料包括但不限于乙烯裂解汽油、焦化石脑油、催化汽油、费托合成油、焦化柴油、催化柴油、高干点直馏柴油、蜡油、渣油、煤焦油、煤加氢生成油等。这些原料大都含有硫、氮、氧、烯、芳等杂质,通常需要加氢精制脱除其中的杂质才能使用。在这些原料的加氢精制过程中经常出现反应器压降增加并导致运转周期缩短的现象,压降的增加一定程度上来源于杂质的累积,例如:原料中本身含有的焦粉等固体物质沉积,原料中不饱和组分缩合脱氢结焦,上游管线和容器腐蚀产生金属离子的累积。这些杂质逐渐堵塞催化剂床层空隙导致空隙率下降,引起反应器压降增大影响运转寿命。
在不受任何理论限制的情况下,本发明的发明人认为,易沉积物容易穿过较大空隙率催化剂床层,当这些易沉积物到达较小空隙率催化剂部分则易被吸附沉积,并最终主要沉积在较小空隙率催化剂上。目前延缓压降的技术主要是单一采用较大空隙率催化剂装填在反应器入口段,易沉积物逐步沉积,其可沉积面积仅为反应器横截面面积。根据本发明,易沉积物主要经由具有较大空隙率的所述岛区域(比如由加氢催化剂Ⅰ装填而成的柱状反应单元),并首先沉积在岛区域的底部(此处底部是指物料流向的末端)。当沉积量增加到一定程度导致底部阻塞,易沉积物则由所述岛区域的侧面径向流向具有较 小空隙率的所述海区域(比如由加氢催化剂Ⅱ装填而成的柱状反应单元),从而增大了可沉积面积,延缓了压降上升的速度。
根据本发明的一个实施方式,所述加氢反应条件包括:反应温度40-500℃,优选40-450℃,反应压力0.3-20MPaG,优选0.5-15MPaG,体积空速为1-10h -1,优选2-10h -1,氢油比10:1-2000:1,优选15:1-1000:1。
根据本发明的一个实施方式,所述油品加氢方法还包括在进行所述加氢步骤之前,对所述固体颗粒床或所述固定床进行硫化处理的步骤。或者,还可以将所述加氢催化剂预先在器外进行硫化处理。在此,所述硫化处理的反应条件包括:干法硫化或湿法硫化,硫化剂为选自硫化氢、二硫化碳、二甲基二硫醚、甲基硫醚和正丁基硫醚中的至少一种,硫化压力为1.2-15MPaG(1.2-9.4MPaG),硫化温度为280-400℃,硫化时间为4-22h。
实施例
以下将通过实施例和比较例对本发明进行进一步的详细描述,但本发明不限于以下实施例。
在实施例1-17中制备了具有较高脱硫活性并具有相对较小空隙率的加氢催化剂ⅡD1-D17:
实施例1
加氢催化剂D1的制备:
取1000克大孔氢氧化铝,加入硝酸和水,获得HNO 3含量为1.5%,水含量为60%的膏状混合物,在挤条机上挤出上述混合物,获得直径1.5毫米,粒径为1.5毫米的三叶草形条,100℃干燥2小时,然后在560℃焙烧8小时获得载体,取七钼酸铵、硝酸镍配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化钼含量24%、氧化镍含量4%(按焙烧后干基计)的湿条,100℃干燥2小时,然后560℃焙烧2小时获得催化剂D1。
经测定,催化剂D1的床层空隙率为0.24。
实施例2
加氢催化剂D2的制备:
取1000克大孔无定型硅铝,加入硝酸和水,获得HNO 3含量为1.7%,水含量为63%的膏状混合物,在挤条机上挤出上述混合物,获得直径1.8毫米,粒径2.8毫米的三叶草形条,80℃干燥18小时,然后在540℃焙烧4小时获得载体,取七钼酸铵、硝酸镍配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化钼含量27%、氧化镍含量5%(按焙烧后干基计)的湿条,100℃干燥2小时,然后540℃焙烧4小时获得催化剂D2。
经测定,催化剂D2的床层空隙率为0.36。
实施例3
加氢催化剂D3的制备:
取1000克含氟0.9%的氢氧化铝,加入硝酸和水,获得HNO 3含量为1.5%,水含量为60%的膏状混合物,在挤条机上挤出上述混合物,获得直径1.5毫米,粒径为1.7毫米的三叶草柱形条,120℃干燥6小时,然后在550℃焙烧5小时获得载体,取七钼酸铵、硝酸钴配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化钼含量16%、氧化钴含量3%(按焙烧后干基计)的湿条,100℃干燥2小时,然后550℃焙烧3小时获得催化剂D3。
经测定,催化剂D3的床层空隙率为0.28。
实施例4
加氢催化剂D4的制备:
取1000克含氧化硅2%的大孔氧化铝,加入硝酸和水,获得HNO 3含量为1.3%,水含量为53%的膏状混合物,在挤条机上挤出上述混合物,获得直径1毫米,粒径为0.6的圆柱条,150℃干燥8小时,然后在600℃焙烧10小时获得载体,取硝酸铁、偏钨酸铵配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化铁含量5%、氧化钨含量18%(按焙烧后干基计)的湿条,130℃干燥2小时,然后600℃焙烧8小时获得催化剂D4。
经测定,催化剂D4的床层空隙率为0.13。
实施例5
加氢催化剂D5的制备:
取1000克大孔氢化铝,加入硝酸和水,获得HNO 3含量为2%,水含量为67%的膏状混合物,在挤条机上挤出上述混合物,获得直径2毫米,粒径3毫米的三叶草柱形条,100℃干燥4小时,然后在520℃焙烧3小时获得载体,取七钼酸铵、硝酸镍水配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化镍含量5%、氧化钼含量为20%(按焙烧后干基计)的湿条,100℃干燥2小时,然后520℃焙烧3小时获得催化剂D5。
经测定,催化剂D5的床层空隙率为0.41。
实施例6
加氢催化剂D6的制备:
与D1的制备方式一致,除了将浸渍金属改为硝酸铁,最终得到氧化铁含量为28%(按焙烧后干基计)的催化剂D6。催化剂D6的床层空隙率为0.24。
实施例7
加氢催化剂D7的制备:
取1000克含氟0.9%的氢氧化铝,加入硝酸和水,获得HNO 3含量为1.5%,水含量为56%的膏状混合物,经过成型获得直径2.0毫米的球形,120℃干燥6小时,然后在580℃焙烧10小时获得载体,取七钼酸铵、硝酸钴配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化钼含量16%、氧化钴含量3%(按焙烧后干基计)的湿条,100℃干燥2小时,然后580℃焙烧3小时获得催化剂D7。
经测定,催化剂D7的床层空隙率为0.22。
实施例8
加氢催化剂D8的制备:
取1000克含氟0.9%的氢氧化铝,加入硝酸和水,获得HNO 3含量为2.3%,水含量为70%的膏状混合物,在挤条机上挤出上述混合物,获得直径1.5毫米,粒径为3.5毫米的四叶草柱形条,100℃干燥6小时,然后在500℃焙烧5小时获得载体,取七钼酸铵、硝酸钴配制成水溶液,用上述载体等体积浸 渍30分钟,获得氧化钼含量16%、氧化钴含量3%(按焙烧后干基计)的湿条,100℃干燥2小时,然后500℃焙烧3小时获得催化剂D8。
经测定,催化剂D8的床层空隙率为0.46。
实施例9
加氢催化剂D9的制备:
取1000克含氟0.9%的氢氧化铝,加入硝酸和水,获得HNO 3含量为1.8%,水含量为60%的膏状混合物,在挤条机上挤出上述混合物,获得直径1.5毫米,粒径为2的三叶草柱形条,100℃干燥5小时,然后在550℃焙烧2小时获得载体,取七钼酸铵、硝酸钴配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化钼含量16%、氧化钴含量3%(按焙烧后干基计)的湿条,100℃干燥2小时,然后530℃焙烧3小时获得催化剂D9。
经测定,催化剂D9的床层空隙率为0.31。
实施例10
加氢催化剂D10的制备:
取1000克含氧化硅2%的大孔氧化铝,加入硝酸和水,获得HNO 3含量为1.5%,水含量为61%的膏状混合物,在挤条机上挤出上述混合物,获得直径1.5毫米,粒径为1.6毫米的四叶草柱形条,110℃干燥5小时,然后在550℃焙烧2小时获得载体,取七钼酸铵、硝酸钴配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化钼含量16%、氧化钴含量3%(按焙烧后干基计)的湿条,100℃干燥2小时,然后550℃焙烧3小时获得催化剂D10。
经测定,催化剂D10的床层空隙率为0.29。
实施例11
加氢催化剂D11的制备:
取1000克含氧化硅2%的大孔氧化铝,加入硝酸和水,获得HNO 3含量为1.8%,水含量为60%的膏状混合物,在挤条机上挤出上述混合物,获得直径1.5毫米,粒径为2.5毫米的四叶草柱形条,120℃干燥3小时,然后在550℃焙烧2小时获得载体,取七钼酸铵、硝酸钴配制成水溶液,用上述载体等体 积浸渍30分钟,获得氧化钼含量16%、氧化钴含量3%(按焙烧后干基计)的湿条,100℃干燥2小时,然后510℃焙烧3小时获得催化剂D11。
经测定,催化剂D11的床层空隙率为0.32。
实施例12
加氢催化剂D12的制备:
取1000克含氧化硅2%的大孔氧化铝,加入硝酸和水,获得HNO 3含量为1.9%,水含量为70%的膏状混合物,在挤条机上挤出上述混合物,获得直径1.5毫米,粒径为3.2毫米的四叶草柱形条,100℃干燥7小时,然后在530℃焙烧3小时获得载体,取七钼酸铵、硝酸钴配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化钼含量16%、氧化钴含量3%(按焙烧后干基计)的湿条,100℃干燥7小时,然后530℃焙烧3小时获得催化剂D12。
经测定,催化剂D12的床层空隙率为0.40。
实施例13
加氢催化剂D13的制备:
取1000克含氧化锆为5%的小孔氧化铝,加入硝酸和水,获得HNO 3含量为1.5%,水含量为73%的膏状混合物,在挤条机上挤出上述混合物,获得直径1.5毫米,粒径为4毫米的四叶草柱形条,130℃干燥6小时,然后在500℃焙烧8小时获得载体,取七钼酸铵、硝酸钴配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化钼含量16%、氧化钴含量3%(按焙烧后干基计)的湿条,100℃干燥2小时,然后480℃焙烧3小时获得催化剂D13。
经测定,催化剂D13的床层空隙率为0.40。
实施例14
加氢催化剂D14的制备:
取1000克大孔氧化铝,加入硝酸和水,获得HNO 3含量为1.5%,水含量为60%的膏状混合物,在挤条机上挤出上述混合物,获得直径1.5毫米,粒径为2.8毫米的圆柱条,120℃干燥6小时,然后在560℃焙烧3小时获得载体,取七钼酸铵、硝酸钴配制成水溶液,用上述载体等体积浸渍30分钟,获得氧 化钼含量16%、氧化钴含量3%(按焙烧后干基计)的湿条,100℃干燥2小时,然后560℃焙烧3小时获得催化剂D14。
经测定,催化剂D14的床层空隙率为0.27。
实施例15
加氢催化剂D15的制备:
取1000克含氧化硅2%的大孔氧化铝,加入硝酸和水,获得HNO 3含量为2.1%,水含量为70%的膏状混合物,在挤条机上挤出上述混合物,获得直径3毫米,粒径为3.6毫米的圆柱条,120℃干燥5小时,然后在510℃焙烧2小时获得载体,取七钼酸铵、硝酸钴配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化钼含量16%、氧化钴含量3%(按焙烧后干基计)的湿条,100℃干燥2小时,然后510℃焙烧3小时获得催化剂D15。
经测定,催化剂D15的床层空隙率为0.44。
实施例16
加氢催化剂D16的制备:
取1000克含氟1.0%的小孔氢氧化铝,加入硝酸和水,获得HNO 3含量为1.5%,水含量为73%的膏状混合物,经成型获得直径为2毫米,粒径为4毫米的四叶草条,130℃干燥5小时,然后在460℃焙烧7小时获得载体,取七钼酸铵、硝酸镍水配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化镍含量5%、氧化钼含量为20%(按焙烧后干基计)的湿条,100℃干燥2小时,然后380℃焙烧3小时获得催化剂D16。
经测定,催化剂D16的床层空隙率为0.56。
实施例17
加氢催化剂D17的制备:
取1000克大孔氢氧化铝,加入硝酸和水,获得HNO 3含量为1.5%,水含量为50%的膏状混合物,在挤条机上挤出上述混合物,获得直径1毫米,粒径为1毫米的圆柱条,150℃干燥2小时,然后在600℃焙烧6小时获得载体,取七钼酸铵、硝酸镍水配制成水溶液,用上述载体等体积浸渍30分钟,获得 氧化镍含量5%、氧化钼含量为20%(按焙烧后干基计)的湿条,100℃干燥2小时,然后550℃焙烧3小时获得催化剂D17。
经测定,催化剂D17的床层空隙率为0.19。
在实施例18-25中制备了具有相对较大空隙率的加氢催化剂ⅠA1-A8:
实施例18
加氢催化剂A1的制备:
取1000克小孔氢氧化铝,加入硝酸和水,获得HNO 3含量为2.8%,水含量为80%的膏状混合物,在挤条机上挤出上述混合物,获得直径6毫米,粒径9毫米的空心圆柱形条,空心部分直径3毫米,100℃干燥2小时,然后在500℃焙烧5小时获得载体。取硝酸镍配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化镍含量5%(按焙烧后干基计)的湿条,100℃干燥2小时,然后500℃焙烧2小时获得催化剂A1。
经测定,催化剂A1的床层空隙率为0.56,总金属氧化物含量为对应催化剂D1的17.9%。
实施例19
加氢催化剂A2的制备:
取1000克小孔无定型硅铝,加入硝酸和水,获得HNO 3含量为1.5%,水含量为65%的混合物,经成型获得直径5毫米的五齿球形,,70℃干燥20小时,然后在580℃焙烧9小时获得载体。取硝酸铁配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化铁含量4%(按焙烧后干基计)的湿条,100℃干燥2小时,然后580℃焙烧8小时获得催化剂A2。
经测定,催化剂A2的床层空隙率为0.46,总金属氧化物含量为对应催化剂D2的12.5%。
实施例20
加氢催化剂A3的制备:
取1000克含氧化硅3%的小孔氢氧化铝,加入硝酸和水,获得HNO 3含量 为2.5%,水含量为80%的膏状混合物,在压片机上压制上述混合物,获得直径12毫米,高为6毫米的九孔圆饼,内径为1.5毫米,130℃干燥6小时,然后在540℃焙烧7小时获得载体。取硝酸铁配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化铁含量6%(按焙烧后干基计)的湿条,100℃干燥2小时,然后540℃焙烧6小时获得催化剂A3。
经测定,催化剂A3的床层空隙率为0.63,总金属氧化物含量为对应催化剂D3的31.6%。
实施例21
加氢催化剂A4的制备:
取1000克含3%B的小孔氢氧化铝,加入硝酸和水,获得HNO 3含量为1.1%,水含量为53%的膏状混合物,在挤条机上挤出上述混合物,获得直径1毫米,粒径为2毫米的三齿条形,150℃干燥2小时,然后在600℃焙烧10小时获得载体。取硝酸钴配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化钴含量3%(按焙烧后干基计)的湿条,150℃干燥2小时,然后600℃焙烧3小时获得催化剂A4。
经测定,催化剂A4的床层空隙率为0.23,总金属氧化物含量为对应催化剂D4的13%。
实施例22
加氢催化剂A5的制备:
取1000克含小孔无定型硅铝,加入硝酸和水,获得HNO 3含量为1.7%,水含量为74%的混合物,在压片机上压制上述混合物,获得直径为8毫米,粒径为5毫米的七孔圆饼形,内径为1毫米,90℃干燥5小时,然后在560℃焙烧9小时获得载体。取硝酸镍配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化镍含量10%(按焙烧后干基计)的湿条,90℃干燥2小时,然后560℃焙烧8小时获得催化剂A5。
经测定,催化剂A5的床层空隙率为0.59,总金属氧化物含量为对应催化剂D5的40%。
实施例23
加氢催化剂A6的制备:
取1000克小孔氧化铝,加入硝酸和水,获得HNO 3含量为2.3%,水含量为76%的混合物,在挤条机上挤压上述混合物,获得直径为15毫米,粒径为20毫米的内含七孔的圆柱条,内径为2毫米,130℃干燥12小时,然后在520℃焙烧8小时获得载体。取硝酸铁配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化铁含量20%(按焙烧后干基计)的湿条,130℃干燥6小时,然后520℃焙烧6小时获得催化剂A6。
经测定,催化剂A6的床层空隙率为0.65,总金属氧化物含量为对应催化剂D1的71.4%。
实施例24
加氢催化剂A7的制备:
取1000克含氧化钛3%的小孔氢氧化铝,加入硝酸和水,获得HNO 3含量为2.6%,水含量为85%的膏状混合物,在挤条机上挤出上述混合物,挤出直径为20毫米蜂窝状条,粒径为46毫米,内部均布正方形网格32个,100℃干燥3小时,然后在450℃焙烧9小时获得载体。取硝酸锌配制成水溶液,用上述载体等体积浸渍30分钟,获得氧化锌含量16%(按焙烧后干基计)的湿条,120℃干燥3小时,然后380℃焙烧4小时获得催化剂A7。
经测定,催化剂A7的床层空隙率为0.8,总金属氧化物含量为对应催化剂D3的84.2%。
实施例25
加氢催化剂A8的制备:
与A6的制备方式一致,除了将浸渍金属改为硝酸镍和七钼酸铵,最终得到氧化钼含量为16%,氧化镍含量为4%(按焙烧后干基计)的催化剂A8。催化剂A8的床层空隙率为0.65,总金属氧化物含量为对应催化剂D6的71.4%。
实施例26
将催化剂D1和催化剂A1装填于圆筒状的加氢反应器:
反应器为顺流式反应器,待加氢的油品和氢气从反应器上部进入,反应后的物流从下部流出。装填时先在反应器下部均匀装填具有较高脱硫活性的催化剂D1,该催化剂床层占反应器高度的70%;然后在上部的级配装填段继续按本发明方案装填催化剂D1和催化剂A1。对于级配装填部分,从截面上看,反应器被交叉的横线和纵线分割成若干正方形、近似正方形和近似三角形的空间,在其中交叉装填催化剂D1和催化剂A1,如图1所示。
在该实施例中,岛区域的空隙率是海区域的空隙率的233.3%,Li/L0=0.3,岛区域的个数是30个,海区域横截面上任一点到与其相邻的岛区域的横截面的边缘的最短距离均不大于120mm,加氢催化剂I的粒径为9mm,加氢催化剂II的粒径为1.5mm。
实施例27
将催化剂D2和催化剂A2装填于圆筒状的加氢反应器:
反应器为上流式反应器,待加氢的油品和氢气从反应器下部进入,反应后的物流从上部流出。装填时先在反应器下部按本发明方案级配装填催化剂D2和催化剂A2,从截面上看,反应器被分成若干同心圆环,每两个相邻圆环空间内交叉装填催化剂D2和催化剂A2,如图2所示。每个同心圆环的厚度为20mm。级配装填段催化剂床层高度为反应器床层总高度的40%。然后在级配催化剂床层之上均匀装填催化剂D2。
在该实施例中,岛区域的空隙率是海区域的空隙率的127.3%,Li/L0=0.4,岛区域的个数是20个,海区域横截面上任一点到与其相邻的岛区域的横截面的边缘的最短距离均不大于10mm,加氢催化剂I的粒径为5mm,加氢催化剂II的粒径为2.8mm。
实施例28
将催化剂D3和催化剂A3装填于圆筒状加氢反应器:
反应器为上流式反应器,待加氢的油品和氢气从反应器下部进入,反应后的物流从上部流出。装填时先在反应器下部按本发明方案级配装填催化剂D3和催化剂A3,从截面上看,反应器中均布18个圆柱,每个圆柱直径30mm,其中装填A3催化剂,其余部分装填催化剂D3,如图3所示。级配装填段催 化剂床层高度为反应器床层总高度的60%。然后在级配催化剂床层之上均匀装填催化剂D3。
在该实施例中,岛区域的空隙率是海区域的空隙率的225.0%,Li/L0=0.6,岛区域的个数是18个,海区域横截面上任一点到与其相邻的岛区域的横截面的边缘的最短距离均不大于60mm,加氢催化剂I的粒径为6mm,加氢催化剂II的粒径为1.7mm。
实施例29
将催化剂D4和催化剂A4装填于圆筒状加氢反应器:
反应器为上流式反应器,待加氢的油品和氢气从反应器下部进入,反应后的物流从上部流出。装填时先在反应器下部按本发明方案级配装填催化剂D4和催化剂A4,从截面上看,反应器中均布55个圆柱,每个圆柱直径30mm,其中装填A4催化剂,其余部分装填催化剂D4,与图3类似。级配装填段催化剂床层高度为反应器床层总高度的75%。然后在级配催化剂床层之上均匀装填催化剂D4。
在该实施例中,岛区域的空隙率是海区域的空隙率的176.9%,Li/L0=0.75,岛区域的个数是55个,海区域横截面上任一点到与其相邻的岛区域的横截面的边缘的最短距离均不大于60mm,加氢催化剂I的粒径为2mm,加氢催化剂II的粒径为0.6mm。
实施例30
将催化剂D5和催化剂A5装填于圆筒状加氢反应器:
反应器为上流式反应器,待加氢的油品和氢气从反应器下部进入,反应后的物流从上部流出。装填时先在反应器下部按本发明方案级配装填催化剂D5和催化剂A5,从截面上看,反应器中均布45个圆柱,每个圆柱直径30mm,其中装填A5催化剂,其余部分装填催化剂D5,与图3类似。级配装填段催化剂床层高度为反应器床层总高度的50%。然后在级配催化剂床层之上均匀装填催化剂D5。
在该实施例中,岛区域的空隙率是海区域的空隙率的143.9%,Li/L0=0.5,岛区域的个数是45个,海区域横截面上任一点到与其相邻的岛区域的横截面 的边缘的最短距离均不大于95mm,加氢催化剂I的粒径为5mm,加氢催化剂II的粒径为3mm。
实施例31
将催化剂D1和催化剂A6装填于圆筒状加氢反应器:
反应器为上流式反应器,待加氢的油品和氢气从反应器下部进入,反应后的物流从上部流出。装填时先在反应器下部按本发明方案级配装填催化剂D1和催化剂A6,从截面上看,反应器中均布145个圆柱,每个圆柱直径50mm,其中装填A6催化剂,其余部分装填催化剂D1,与图3类似。级配装填段催化剂床层高度为反应器床层总高度的45%。然后在级配催化剂床层之上均匀装填催化剂D1。
在该实施例中,岛区域的空隙率是海区域的空隙率的270.8%,Li/L0=0.45,岛区域的个数是145个,海区域横截面上任一点到与其相邻的岛区域的横截面的边缘的最短距离均不大于60mm,加氢催化剂I的粒径为20mm,加氢催化剂II的粒径为1.5mm。
实施例32
将催化剂D3和催化剂A7装填于圆筒状加氢反应器:
反应器为上流式反应器,待加氢的油品和氢气从反应器下部进入,反应后的物流从上部流出。装填时先在反应器下部按本发明方案级配装填催化剂D3和催化剂A7,从截面上看,反应器中均布65个圆柱,每个圆柱直径140mm,其中装填A7催化剂,其余部分装填催化剂D3,与图3类似。级配装填段催化剂床层高度为反应器床层总高度的50%。然后在级配催化剂床层之上均匀装填催化剂D3。
在该实施例中,岛区域的空隙率是海区域的空隙率的285.7%,Li/L0=0.5,岛区域的个数是65个,海区域横截面上任一点到与其相邻的岛区域的横截面的边缘的最短距离均不大于100mm,加氢催化剂I的粒径为46mm,加氢催化剂II的粒径为1.7mm。
实施例33
将催化剂D7和催化剂A3装填于圆筒状加氢反应器:
反应器为上流式反应器,待加氢的油品和氢气从反应器下部进入,反应后的物流从上部流出。装填时先在反应器下部按本发明方案级配装填催化剂D7和催化剂A3,从截面上看,反应器中均布30个圆柱,每个圆柱直径30mm,其中装填A3催化剂,其余部分装填催化剂D7,与图3类似。级配装填段催化剂床层高度为反应器床层总高度的60%。然后在级配催化剂床层之上均匀装填催化剂D7。
在该实施例中,岛区域的空隙率是海区域的空隙率的280.1%,Li/L0=0.6,岛区域的个数是30个,海区域横截面上任一点到与其相邻的岛区域的横截面的边缘的最短距离均不大于85mm,加氢催化剂I的粒径为6mm,加氢催化剂II的粒径为2mm。
实施例34
将催化剂D8和催化剂A3装填于圆筒状加氢反应器:
反应器为上流式反应器,待加氢的油品和氢气从反应器下部进入,反应后的物流从上部流出。装填时先在反应器下部按本发明方案级配装填催化剂D8和催化剂A3,从截面上看,反应器中均布5个圆柱,每个圆柱直径150mm,其中装填A3催化剂,其余部分装填催化剂D8,与图3类似。级配装填段催化剂床层高度为反应器床层总高度的45%。然后在级配催化剂床层之上均匀装填催化剂D8。
在该实施例中,岛区域的空隙率是海区域的空隙率的135.6%,Li/L0=0.45,岛区域的个数是5个,海区域横截面上任一点到与其相邻的岛区域的横截面的边缘的最短距离均不大于100mm,加氢催化剂I的粒径为6mm,加氢催化剂II的粒径为3.5mm。
实施例35
将催化剂D9和催化剂A3装填于圆筒状加氢反应器:
反应器为上流式反应器,待加氢的油品和氢气从反应器下部进入,反应后的物流从上部流出。装填时先在反应器下部按本发明方案级配装填催化剂D9和催化剂A3,从截面上看,反应器中均布35个圆柱,每个圆柱直径30mm, 其中装填A3催化剂,其余部分装填催化剂D9,与图3类似。级配装填段催化剂床层高度为反应器床层总高度的15%。然后在级配催化剂床层之上均匀装填催化剂D9。
在该实施例中,岛区域的空隙率是海区域的空隙率的200.8%,Li/L0=0.15,岛区域的个数是35个,海区域横截面上任一点到与其相邻的岛区域的横截面的边缘的最短距离均不大于70mm,加氢催化剂I的粒径为6mm,加氢催化剂II的粒径为2mm。
实施例36
将催化剂D10和催化剂A3装填于圆筒状加氢反应器:
反应器为上流式反应器,待加氢的油品和氢气从反应器下部进入,反应后的物流从上部流出。装填时先在反应器下部按本发明方案级配装填催化剂D10和催化剂A3,从截面上看,反应器中均布18个圆柱,每个圆柱直径25mm,其中装填A3催化剂,其余部分装填催化剂D10,与图3类似。级配装填段催化剂床层高度为反应器床层总高度的60%。然后在级配催化剂床层之上均匀装填催化剂D10。
在该实施例中,岛区域的空隙率是海区域的空隙率的215.5%,Li/L0=0.6,岛区域的个数是18个,海区域横截面上任一点到与其相邻的岛区域的横截面的边缘的最短距离均不大于520mm,加氢催化剂I的粒径为6mm,加氢催化剂II的粒径为1.6mm。
实施例37
将催化剂D11和催化剂A3装填于圆筒状加氢反应器:
反应器为上流式反应器,待加氢的油品和氢气从反应器下部进入,反应后的物流从上部流出。装填时先在反应器下部按本发明方案级配装填催化剂D11和催化剂A3,从截面上看,反应器中均布18个圆柱,每个圆柱直径30mm,其中装填A3催化剂,其余部分装填催化剂D11,与图3类似。级配装填段催化剂床层高度为反应器床层总高度的60%。然后在级配催化剂床层之上均匀装填催化剂D11。
在该实施例中,岛区域的空隙率是海区域的空隙率的197%,Li/L0=0.6, 岛区域的个数是18个,海区域横截面上任一点到与其相邻的岛区域的横截面的边缘的最短距离均不大于310mm,加氢催化剂I的粒径为6mm,加氢催化剂II的粒径为2.5mm。
实施例38
将催化剂D12和催化剂A3装填于圆筒状加氢反应器:
反应器为上流式反应器,待加氢的油品和氢气从反应器下部进入,反应后的物流从上部流出。装填时先在反应器下部按本发明方案级配装填催化剂D12和催化剂A3,从截面上看,反应器中均布10个圆柱,每个圆柱直径100mm,其中装填A3催化剂,其余部分装填催化剂D12,与图3类似。级配装填段催化剂床层高度为反应器床层总高度的30%。然后在级配催化剂床层之上均匀装填催化剂D12。
在该实施例中,岛区域的空隙率是海区域的空隙率的157.4%,Li/L0=0.3,岛区域的个数是10个,海区域横截面上任一点到与其相邻的岛区域的横截面的边缘的最短距离均不大于157mm,加氢催化剂I的粒径为6mm,加氢催化剂II的粒径为3.2mm。
实施例39
将催化剂D13和催化剂A3装填于圆筒状加氢反应器:
反应器为上流式反应器,待加氢的油品和氢气从反应器下部进入,反应后的物流从上部流出。装填时先在反应器下部按本发明方案级配装填催化剂D13和催化剂A3,从截面上看,反应器中均布15个圆柱,每个圆柱直径50mm,其中装填A3催化剂,其余部分装填催化剂D13,与图3类似。级配装填段催化剂床层高度为反应器床层总高度的60%。然后在级配催化剂床层之上均匀装填催化剂D13。
在该实施例中,岛区域的空隙率是海区域的空隙率的124.9%,Li/L0=0.6,岛区域的个数是15个,海区域横截面上任一点到与其相邻的岛区域的横截面的边缘的最短距离均不大于60mm,加氢催化剂I的粒径为6mm,加氢催化剂II的粒径为4mm。
实施例40
将催化剂D14和催化剂A3装填于圆筒状加氢反应器:
反应器为上流式反应器,待加氢的油品和氢气从反应器下部进入,反应后的物流从上部流出。装填时先在反应器下部按本发明方案级配装填催化剂D14和催化剂A3,从截面上看,反应器中均布75个圆柱,每个圆柱直径40mm,其中装填A3催化剂,其余部分装填催化剂D14,与图3类似。级配装填段催化剂床层高度为反应器床层总高度的60%。然后在级配催化剂床层之上均匀装填催化剂D14。
在该实施例中,岛区域的空隙率是海区域的空隙率的230%,Li/L0=0.6,岛区域的个数是75个,海区域横截面上任一点到与其相邻的岛区域的横截面的边缘的最短距离均不大于400mm,加氢催化剂I的粒径为6mm,加氢催化剂II的粒径为2.8mm。
实施例41
将催化剂D15和催化剂A3装填于圆筒状加氢反应器:
反应器为上流式反应器,待加氢的油品和氢气从反应器下部进入,反应后的物流从上部流出。装填时先在反应器下部按本发明方案级配装填催化剂D15和催化剂A3,从截面上看,反应器中均布30个圆柱,每个圆柱直径30mm,其中装填A3催化剂,其余部分装填催化剂D15,与图3类似。级配装填段催化剂床层高度为反应器床层总高度的90%。然后在级配催化剂床层之上均匀装填催化剂D15。
在该实施例中,岛区域的空隙率是海区域的空隙率的143.0%,Li/L0=0.9,岛区域的个数是30个,海区域横截面上任一点到与其相邻的岛区域的横截面的边缘的最短距离均不大于110mm,加氢催化剂I的粒径为6mm,加氢催化剂II的粒径为3.6mm。
实施例42
与实施例31装填一致,除了将D1和A6分别替换为D6和A8,保持其他条件不变。
对比例1
在与实施例26相同的加氢反应器中只装填催化剂D1,其中催化剂D1的装填体积等于实施例26中两种催化剂的总体积。
对比例2
在与实施例27相同的加氢反应器中只装填催化剂A2,其中催化剂A2的装填体积等于实施例27中两种催化剂的总体积。
对比例3
在与实施例28相同的加氢反应器,催化剂A3部位替换为同样尺寸的4个不锈钢积垢篮筐,积垢篮筐约翰逊网焊接而成,中空不装填催化剂,顶部开口。反应器其余部位装填D3催化剂,装填体积与实施例28相同。
对比例4
在与实施例30相同的加氢反应器中,选用催化剂等体积的D16代替D5进行装填,保持其他条件不变。在该对比例中,岛区域的空隙率是海区域的空隙率的105.7%。
对比例5
在与实施例30相同的加氢反应器中,选用催化剂等体积的D17代替D5进行装填,保持其他条件不变。在该对比例中,岛区域的空隙率是海区域的空隙率的308%。
对比例6
在与实施例30相同的上流式加氢反应器中,在反应器整个高度内全部级配装填,从截面上看,反应器中均布45个圆柱,每个圆柱直径30mm,其中装填A5催化剂,其余部分装填催化剂D5,此时Li/L0=1,保持其他条件不变。在该对比例中,岛区域的空隙率是海区域的空隙率的143.9%。
对比例7
在与实施例28相同的上流式反应器中,先在反应器下部60%的高度装填催化剂A3和催化剂D3均匀混合后的混合催化剂,再在上部其余部分装填催化剂D3,两种催化剂用量同实施例28相同。
对比例8
在与实施例28相同的上流式反应器中,先在反应器下部装填催化剂A3,催化剂A3用量与实施例28中A3用量相同,再在反应器上部其余部分装填催化剂D3。
反应效果测定:
利用实施例26-42和对比例1-8中装填好催化剂的反应器按以下步骤进行反应:
(1)硫化:采用湿法硫化,反应器中引入原料柴油和氢气,升压到4.0MPa。升温到160℃后引入硫化剂二硫化碳,用量为催化剂总重量的10%。继续升温到330℃恒温硫化19小时,降温到室温等待下一步实验。
(2)加氢脱硫反应:反应温度410℃、反应压力12MPa、液时空速0.4h -1、氢油比1200:1,反应器流动形式见各实施例。原料油为中国石化某炼厂常压渣油,硫含量3.1%,金属(Ni+V)含量81ppm,残碳值13%。
生成油进行硫含量分析。结果见表1。
表1活性评价
Figure PCTCN2021138368-appb-000001

Claims (16)

  1. 一段固体颗粒床(特别是轴向固体颗粒床),其特征在于,包含海区域和分布在所述海区域中的至少一个岛区域,并且具有上表面、下表面、轴向(也即长度方向或物料在该固体颗粒床中从所述上表面向所述下表面的流动方向)和径向(也即横截面方向或与所述轴向垂直的方向),其中所述岛区域(优选从所述上表面)沿着所述固体颗粒床的轴向延伸但不延伸至所述下表面,并且所述岛区域的空隙率是所述海区域的空隙率的110-300%(优选130-240%,进一步优选140-200%)。
  2. 根据权利要求1所述的固体颗粒床,其中所述海区域从所述上表面沿着所述固体颗粒床的轴向延伸至所述下表面,
    和/或,
    所述至少一个岛区域在所述海区域中的分布方式选自:
    i)所述至少一个岛区域以离散方式分布在所述海区域中;
    ii)所述至少一个岛区域设置成环状而包围所述海区域的一部分;
    iii)i)和ii)两种分布方式的组合。
  3. 根据权利要求2所述的固体颗粒床,其中设任意一个所述岛区域沿着所述固体颗粒床的轴向的延伸长度为Li,设所述海区域沿着所述固体颗粒床的轴向的延伸长度(也即所述固体颗粒床的轴向长度)为L0,则Li/L0<1(优选Li/L0≤0.95,更优选0.03≤Li/L0≤0.80,最优选0.04≤Li/L0≤0.50),和/或,全部所述岛区域沿着所述固体颗粒床的轴向的延伸长度基本上相同,和/或,在全部所述岛区域中,设沿着所述固体颗粒床的轴向的延伸长度的最大者为Lmax,则Lmax/L0<1(优选Lmax/L0=0.95-0.5,更优选Lmax/L0=0.8-0.5),和/或,至少一部分(优选全部)所述岛区域沿着所述固体颗粒床的轴向延伸成选自柱状和锥状中的至少一种形状(优选选自圆柱状、棱柱状、棱锥状和圆锥状中的至少一种形状)。
  4. 根据权利要求1所述的固体颗粒床,其中设所述岛区域的个数是n,则n为1-2000的整数(优选1-200的整数,更优选3-50的整数),和/或,在所述固体颗粒床的任意横截面上,每个所述岛区域彼此相同或不同,横截 面各自独立地为任意图形(比如选自矩形、圆形、椭圆形、三角形、平行四边形、环形和非规则形状中的至少一种),和/或,以所述固体颗粒床的总体积计,全部所述岛区域所占的比例是0.3-57%(优选1-40%,更优选3-25%),所述海区域所占的比例是43-99.7%(优选60-99%,更优选75-97%)。
  5. 根据权利要求1所述的固体颗粒床,其中每个所述岛区域彼此相同或不同,各自独立地具有0.20-0.90(优选0.30-0.80,更优选0.33-0.70,更优选0.37-0.60)的空隙率,和/或,所述海区域的空隙率为0.10-0.80(优选0.15-0.65,更优选0.16-0.55)。
  6. 根据权利要求1所述的固体颗粒床,其中在所述固体颗粒床的任意横截面上,相邻两个所述岛区域的边缘的直线距离大于20mm(优选大于100mm),和/或,在所述固体颗粒床的任意横截面上,如存在所述岛区域,则所述海区域横截面上任一点到与其相邻的所述岛区域的横截面的边缘的最短距离不超过500mm(优选不超过300mm,更优选不超过200mm,最优选不超过100mm),和/或,在所述固体颗粒床的任意横截面上,每个所述岛区域彼此相同或不同,各自独立地具有不超过300000mm 2(优选不超过100000mm 2)的横截面积,和/或,所述固体颗粒床具有不超过3000000mm 2(优选不超过2000000mm 2)的横截面积,和/或,在所述固体颗粒床的任意横截面上,如存在所述岛区域,则全部所述岛区域的横截面积之和为所述固体颗粒床的横截面积的10-60%(优选15-45%或18-30%)。
  7. 根据权利要求1所述的固体颗粒床,其中所述岛区域包含一种或多种加氢催化剂(称为加氢催化剂I),所述海区域包含一种或多种加氢催化剂(称为加氢催化剂II),和/或,所述加氢催化剂I是中空和/或带齿的颗粒,所述加氢催化剂II是多孔性颗粒,和/或,所述加氢催化剂I的粒径为2.0-55.0mm(优选3.0-30.0mm),所述加氢催化剂II的粒径为0.5-4.0mm(优选0.8-3.0mm),和/或,所述加氢催化剂I包括载体和加氢活性金属,所述加氢催化剂II选自负载型催化剂和非负载型催化剂中的至少一种,并且所述负载型催化剂包括载体和加氢活性组分,所述非负载型催化剂包括粘结剂和加氢活性组分,和/或,所述加氢催化剂I中所述加氢活性金属以金属氧化物计的质量含量(以所述加氢催化剂I的总重量计)是所述加氢催化剂II中所述加氢活性组分以金属氧化物计的质量含量(以所述加氢催化剂II的总重量 计)的10-90%(优选15-60%或17-40%),和/或,每种所述加氢催化剂I彼此相同或不同,各自独立地具有相同或不同的空隙率,并且每种所述加氢催化剂II彼此相同或不同,各自独立地具有相同或不同的空隙率,前提是任意一种所述加氢催化剂I的空隙率大于任意一种所述加氢催化剂II的空隙率(优选任意一种所述加氢催化剂I的空隙率是任意一种所述加氢催化剂II的空隙率的110-300%,优选130-240%,进一步优选140-200%)。
  8. 根据权利要求1所述的固体颗粒床,其中在所述加氢催化剂I中,以所述加氢催化剂的总重量计,所述加氢活性金属以金属氧化物计的质量含量为5-30%(优选8-20%),和/或,所述载体选自活性炭、无机耐熔氧化物(特别是选自氧化铝、氧化硅、氧化镁、氧化锆和氧化钛中的至少一种)和分子筛中的至少一种(特别是选自氧化铝和氧化硅中的至少一种),和/或,所述加氢活性金属选自Fe、Co、Ni、Cu、Zn、Cr、Mo和W中的至少一种(优选选自Fe、Zn、Ni、Co和Cu中的至少一种,更优选选自Fe和Ni中的至少一种)。
  9. 根据权利要求1所述的固体颗粒床,其中在所述加氢催化剂II中,以所述负载型催化剂的总重量计,所述加氢活性组分以金属氧化物计的质量含量为15-40%(优选20-35%),和/或,以所述非负载型催化剂的总重量计,所述加氢活性组分以金属氧化物计的质量含量为30-80%(优选40-65%),和/或,所述载体为无机耐熔氧化物(优选选自元素周期表第II族、第III族、第IV族和第IVB族元素的氧化物中的至少一种,更优选选自氧化铝和氧化硅中的至少一种),和/或,所述粘结剂为无机耐熔氧化物(优选选自元素周期表第II族、第III族、第IV族和第IVB族元素的氧化物中的至少一种,更优选选自氧化铝和氧化硅中的至少一种),和/或,所述加氢活性组分选自元素周期表第VIB族金属和第VIII族金属中的至少一种(优选的是,所述第VIB族金属为Mo和/或W,并且所述第VIII族金属为Co和/或Ni),和/或,以所述负载型催化剂的总重量计,所述第VIB族金属以金属氧化物计的质量含量为15-30%(优选18-27%),所述第VIII族金属以金属氧化物计的质量含量为2-10%(优选3-7%),和/或,以所述非负载型催化剂的总重量计,所述第VIB族金属以金属氧化物计的质量含量为15-30%(优选18-27%),所述第VIII族金属以金属氧化物计的质量含量为2-10%(优选3-7%)。
  10. 一种固定床,包括多段固体颗粒床,其中至少一段所述固体颗粒床 是根据权利要求1所述的固体颗粒床(称为固体颗粒床A)。
  11. 根据权利要求10所述的固定床,其中所述固体颗粒床A的高度是所述固定床的高度的1-95%(优选3-60%,进一步优选4-50%)。
  12. 根据权利要求10所述的固定床,还包括位于所述固体颗粒床A上游的固体颗粒床B和/或位于所述固体颗粒床A下游的固体颗粒床C,其中所述固体颗粒床B的空隙率不小于所述固体颗粒床A中所述岛区域的空隙率,并且所述固体颗粒床C的空隙率不大于所述固体颗粒床A中所述海区域的空隙率。
  13. 根据权利要求12所述的固定床,其中所述固体颗粒床B包含一种或多种加氢催化剂B,所述固体颗粒床C包含一种或多种加氢催化剂C,其中所述加氢催化剂B和所述加氢催化剂C彼此相同或不同,各自独立地选自负载型催化剂和非负载型催化剂中的至少一种,并且所述负载型催化剂包括载体和加氢活性组分,所述非负载型催化剂包括粘结剂和加氢活性组分(优选所述加氢催化剂B和所述加氢催化剂C彼此相同或不同,各自独立地选自所述加氢催化剂II)。
  14. 一种油品加氢方法,包括使油品在加氢反应条件下流过根据权利要求1所述的固体颗粒床或根据权利要求10所述的固定床的步骤(称为加氢步骤)。
  15. 根据权利要求14所述的方法,其中所述油品选自乙烯裂解汽油、焦化石脑油、催化汽油、费托合成油、焦化柴油、催化柴油、高干点直馏柴油、蜡油、渣油、煤焦油和煤加氢生成油中的至少一种,和/或,所述加氢反应条件包括:反应温度40-500℃(优选40-450℃),反应压力0.3-20MPaG(优选0.5-15MPaG),体积空速为1-10h -1(优选2-10h -1),氢油比10:1-2000:1(优选15:1-1000:1)。
  16. 根据权利要求14所述的方法,还包括在进行所述加氢步骤之前,对所述固体颗粒床或所述固定床进行硫化处理的步骤,和/或,将所述加氢催化剂预先在器外进行硫化处理,和/或,所述硫化处理的反应条件包括:干法硫化或湿法硫化,硫化剂为选自硫化氢、二硫化碳、二甲基二硫醚、甲基硫醚和正丁基硫醚中的至少一种,硫化压力为1.2-15MPaG(1.2-9.4MPaG),硫化温度为280-400℃,硫化时间为4-22h。
PCT/CN2021/138368 2020-12-22 2021-12-15 固体颗粒床、固定床和油品加氢方法 WO2022135235A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/247,773 US20230348797A1 (en) 2020-12-22 2021-12-15 Solid particle bed, fixed bed, and oil hydrogenation method
EP21909231.9A EP4268948A1 (en) 2020-12-22 2021-12-15 Solid particle bed, fixed bed, and oil hydrogenation method
CA3201684A CA3201684A1 (en) 2020-12-22 2021-12-15 Solid particle bed, fixed bed, and oil hydrogenation method
CN202180072421.3A CN116601271A (zh) 2020-12-22 2021-12-15 固体颗粒床、固定床和油品加氢方法
KR1020237022232A KR20230124939A (ko) 2020-12-22 2021-12-15 고체 입자층, 고정층 및 오일 수소화 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011526433.2A CN114713239B (zh) 2020-12-22 2020-12-22 一种用于油品加氢的催化剂级配方法
CN202011526437.0 2020-12-22
CN202011526433.2 2020-12-22
CN202011526437.0A CN114713145B (zh) 2020-12-22 2020-12-22 一种级配催化剂的装填方法

Publications (1)

Publication Number Publication Date
WO2022135235A1 true WO2022135235A1 (zh) 2022-06-30

Family

ID=82157352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138368 WO2022135235A1 (zh) 2020-12-22 2021-12-15 固体颗粒床、固定床和油品加氢方法

Country Status (7)

Country Link
US (1) US20230348797A1 (zh)
EP (1) EP4268948A1 (zh)
KR (1) KR20230124939A (zh)
CN (1) CN116601271A (zh)
CA (1) CA3201684A1 (zh)
TW (1) TW202235151A (zh)
WO (1) WO2022135235A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1104558A (zh) 1993-10-28 1995-07-05 赫多特普素化工设备公司 空隙度的级配
WO1999020384A1 (en) * 1997-10-21 1999-04-29 Mobil Oil Corporation Multiple catalyst bed radial flow reactor
US20020102192A1 (en) * 1999-09-29 2002-08-01 Ward Andrew M. Catalytic reactor
CN1410152A (zh) * 2001-09-26 2003-04-16 气体产品与化学公司 颗粒床的约束***
CN101928592A (zh) 2009-06-26 2010-12-29 中国石油天然气股份有限公司 一种加氢催化剂的级配组合
CN102211044A (zh) * 2010-04-02 2011-10-12 中国石油化工股份有限公司 一种催化剂颗粒及沸腾床反应器催化剂的装填方法
CN207951039U (zh) * 2018-01-26 2018-10-12 南京兆博环保科技有限公司 一种气体、固体颗粒均匀接触装置
CN110052093A (zh) * 2019-04-03 2019-07-26 北京科技大学 粒径自动分层与滤料分层置换的移动颗粒床粉尘过滤装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1104558A (zh) 1993-10-28 1995-07-05 赫多特普素化工设备公司 空隙度的级配
WO1999020384A1 (en) * 1997-10-21 1999-04-29 Mobil Oil Corporation Multiple catalyst bed radial flow reactor
US20020102192A1 (en) * 1999-09-29 2002-08-01 Ward Andrew M. Catalytic reactor
CN1410152A (zh) * 2001-09-26 2003-04-16 气体产品与化学公司 颗粒床的约束***
CN101928592A (zh) 2009-06-26 2010-12-29 中国石油天然气股份有限公司 一种加氢催化剂的级配组合
CN102211044A (zh) * 2010-04-02 2011-10-12 中国石油化工股份有限公司 一种催化剂颗粒及沸腾床反应器催化剂的装填方法
CN207951039U (zh) * 2018-01-26 2018-10-12 南京兆博环保科技有限公司 一种气体、固体颗粒均匀接触装置
CN110052093A (zh) * 2019-04-03 2019-07-26 北京科技大学 粒径自动分层与滤料分层置换的移动颗粒床粉尘过滤装置

Also Published As

Publication number Publication date
CA3201684A1 (en) 2022-06-30
EP4268948A1 (en) 2023-11-01
CN116601271A (zh) 2023-08-15
TW202235151A (zh) 2022-09-16
US20230348797A1 (en) 2023-11-02
KR20230124939A (ko) 2023-08-28

Similar Documents

Publication Publication Date Title
JP5684107B2 (ja) 触媒系および原油供給物をこのような触媒系で変換するための方法
CA2093410C (en) Improved hydroconversion process employing catalyst with specified pore size distribution
JP2631712B2 (ja) 重質炭化水素油の水素化処理触媒組成物ならびにそれを用いる水素化処理方法
US9675965B2 (en) Resid hydrotreating catalyst containing titania
Badoga et al. Effect of synthesis technique on the activity of CoNiMo tri-metallic catalyst for hydrotreating of heavy gas oil
US9404053B2 (en) Low-pressure process utilizing a stacked-bed system of specific catalysts for the hydrotreating of a gas oil feedstock
RU2691067C1 (ru) Способ гидрогенизационного облагораживания углеводородного сырья
US4118310A (en) Hydrodesulfurization process employing a guard reactor
SK17012000A3 (sk) Sférická katalyzátorová zmes, spôsob hydrogenačného spracovania surovín obsahujúcich kovy a sférický katalyzátorový nosič
WO2017166046A1 (zh) 基于氧化铝晶面调控的轻质烃类脱硫醇催化剂及其制法
US5100855A (en) Mixed catalyst system for hyproconversion system
TW201943457A (zh) 氫化精製催化劑、其製備方法及應用
US7186329B2 (en) High-macropore hydroprocessing catalyst and its use
WO2022135235A1 (zh) 固体颗粒床、固定床和油品加氢方法
EP1184077B1 (en) Hydrotreating catalyst particles
CN108003933B (zh) 一种由柴油馏分生产化工原料的加氢裂化方法
WO2018188532A1 (zh) 高氮原料油加氢精制催化剂及其制备方法和其载体的制备方法
JP2958234B2 (ja) 重質炭化水素油の水素化処理方法
US5009771A (en) Hydroconversion process using mixed catalyst system
WO2022089637A1 (zh) 一种吸附剂、液相加氢催化剂组合物、催化剂床及其用途
RU2737374C1 (ru) Способ использования катализатора гидродеметаллизации в процессе гидрогенизационной переработки нефтяного сырья
CN114713239B (zh) 一种用于油品加氢的催化剂级配方法
CN109705900B (zh) 一种由柴油馏分最大量生产航煤和化工原料的方法
JPH0295443A (ja) 残油の水素化処理触媒
JP2004250554A (ja) 軽油留分の水素化脱硫方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909231

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180072421.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 3201684

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20237022232

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021909231

Country of ref document: EP

Effective date: 20230724

WWE Wipo information: entry into national phase

Ref document number: 523441327

Country of ref document: SA