WO2022134736A1 - 一种包覆型锂离子筛及其制备方法 - Google Patents

一种包覆型锂离子筛及其制备方法 Download PDF

Info

Publication number
WO2022134736A1
WO2022134736A1 PCT/CN2021/122753 CN2021122753W WO2022134736A1 WO 2022134736 A1 WO2022134736 A1 WO 2022134736A1 CN 2021122753 W CN2021122753 W CN 2021122753W WO 2022134736 A1 WO2022134736 A1 WO 2022134736A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
coated
ion sieve
lithium
preparation
Prior art date
Application number
PCT/CN2021/122753
Other languages
English (en)
French (fr)
Inventor
胡羽
张竞择
宝鲁日
汤卫平
Original Assignee
礼思(上海)材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 礼思(上海)材料科技有限公司 filed Critical 礼思(上海)材料科技有限公司
Priority to JP2022531507A priority Critical patent/JP2024502688A/ja
Priority to US17/777,012 priority patent/US20240165579A1/en
Publication of WO2022134736A1 publication Critical patent/WO2022134736A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of lithium ion sieves, in particular to a coated lithium ion sieve and a preparation method thereof.
  • lithium batteries for power and energy storage in new energy has prompted a continuous increase in global demand for lithium resources. It is widely used in emerging fields such as lubricants, ceramics, pharmaceuticals, batteries, and atomic energy. important strategic resource.
  • LiMn 2 O 4 Li 1.33 Mn 1.67 O 4
  • Li 1.6 Mn 1.6 O 4 Li 1.6 Mn 1.6 O 4
  • Li 1.6 Mn 1.6 O 4 is the most representative due to its high theoretical adsorption capacity and good stability after several cycles.
  • the dissolution of manganese not only reduces the adsorption capacity but also contaminates the desorption solution in practical applications. limited its industrial application. Doping modification is considered to be the most simple and effective method to improve the manganese dissolution loss of spinel-type adsorbents.
  • the main purpose of introducing dopant ions is to increase the average chemical valence of manganese in the lithium manganese oxide spinel, while reducing the content of Mn 3+ , suppressing the occurrence of the Jahn-Teller effect or enhancing the chemical bond of the octahedron.
  • Chitrakar et al. studied the effect of Li m Mg x Mn(III) y Mn(IV) z O 4 (0 ⁇ x ⁇ 0.5) on manganese dissolution during acid treatment, and the results showed that with the increase of Mg/Mn ratio, lithium The adsorption capacity is improved and the chemical stability of the adsorbent is also improved.
  • LiAl 0.5 Mn 1.5 O 4 exhibits higher Li + adsorption rate and lower dissolution loss rate of Mn and Al during acid treatment, while LiNi 0.5 Mn 1.5 O 4 and LiTi 0.5 Mn 1.5 O 4 sharply
  • the Li + adsorption performance of spar is relatively poor.
  • Qian et al. improved the manganese dissolution rate during pickling by doping Li 1.6 Mn 1.6 O 4 with different transition metal ions (Fe 3+ , Co 2+ ).
  • the adsorption results showed that compared with the undoped adsorbent (32.3 mg/g), the adsorption amounts of Fe 3+ and Co 2+ doped were 35.3 mg/g and 35.4 mg/g, respectively, and the manganese loss rate increased from 5.43 % decreased to 3.95% and 4.42%.
  • the ion doping process it is necessary to avoid doping metal ions occupying the 8a position and hindering the movement of lithium ions.
  • the purpose of the present invention is to provide a coated lithium ion sieve and a preparation method thereof, which have the advantages of high adsorption capacity, less manganese dissolution loss and high cycle stability.
  • a coated lithium ion sieve comprising an inner shell and a coating layer, the coating layer evenly covers the outside of the inner shell, and the inner shell is Li 1.6 Mn 1.6 O 4 , and the coating layer is any one of Li 2 O, Li 2 MnO 3 and MnO 2 .
  • the diameter of the coated lithium ion sieve is 45-55 nm; the thickness of the coating layer is 2-4 nm.
  • a method for preparing the above-mentioned coated lithium ion sieve comprising the steps:
  • the manganese salt is manganese carbonate;
  • the metal coating reagent is manganese nitrate or lithium nitrate.
  • the lithium salt is lithium hydroxide or lithium carbonate.
  • the acidification treatment is soaking treatment with hydrochloric acid or sulfuric acid, the concentration of the hydrochloric acid or sulfuric acid is 0.25-0.5mol/L, and the soaking time is 12-48h.
  • the solution after ultrasonication is placed in a muffle furnace and calcined at a temperature of 400-600° C., and the heating rate is controlled to be 5-10° C./min during calcination.
  • the reaction temperature in the autoclave is 110-150°C.
  • the calcination temperature is 350-450°C.
  • the invention has the following beneficial effects: 1.
  • the unit cell structure of the coated lithium ion sieve of the invention is more stable, which solves the problem that the traditional HMn 2 O 4 lithium ion sieve is easy to dissolve and lose, and can be used repeatedly for many times.
  • the coated lithium ion sieve of the present invention has excellent morphology, small average particle size, and large specific surface area. When used as a lithium ion adsorbent, its specific morphology is conducive to the full contact of the lithium-containing liquid, which is convenient for the absorption of lithium ions. Insertion and extraction, and help to maintain the cyclic stability of the material.
  • the preparation method of the present invention is simple, the conditions are moderate, the product consistency is good, the stability is good, and the industrialization is easy to be realized.
  • Fig. 1 is the XRD pattern of the coated lithium ion sieve prepared in Example 1 of the present invention
  • Fig. 2 is the SEM image of the coated lithium ion sieve prepared in Example 1 of the present invention
  • Example 3 is a TEM image of the coated lithium ion sieve prepared in Example 1 of the present invention.
  • the invention discloses a coated lithium ion sieve, which comprises an inner shell and a coating layer, the coating layer evenly covers the outside of the inner shell, the inner shell is Li 1.6 Mn 1.6 O 4 , and the coating layers are Li 2 O, Li Any of 2 MnO 3 and MnO 2 .
  • the diameter of the coated lithium ion sieve is 45-55 nm; the thickness of the coating layer is 2-4 nm.
  • the crystal form of the coated lithium ion sieve in the present invention is a spinel crystal form, and the lithium ion sieve is a polyhedral particle with an average particle diameter of about 50 nm, a coating layer of about 3 nm, and good crystallinity.
  • the manganese dissolution loss rate of the coated lithium ion sieve of the present invention is obviously reduced, and the spinel structure is still maintained after multiple adsorption cycles, indicating that the adsorbent has a more stable crystal structure. It is beneficial to solve the problems of manganese dissolution loss and stability in practical application of manganese-based adsorbents.
  • the coated lithium ion sieve particles of the present invention have a small average particle size, and the lithium ion sieve is not in direct contact with the solution, which is conducive to maintaining the cycle stability of the material.
  • a method for preparing a coated lithium ion sieve comprising the steps of:
  • the actual use amount of lithium salt is 1.00-1.05 times of its theoretical amount. This is because the desired precursor product can be obtained in one calcination, and the loss of lithium salt is small, so the amount of lithium salt can be used. The theoretical amount or a slight excess is used. When the amount of lithium salt is too much, the residual lithium salt will affect the performance of the product. In the present invention, the theoretical dosage and actual dosage of the lithium salt have been fully considered when setting the molar ratio of Mn 2 O 3 and Li/Mn in the lithium salt.
  • lithium and manganese are selected as the coating elements because they form Li 2 MnO 3 which is stable to an acidic environment during the reaction process, which is convenient to improve the overall stability of the lithium ion sieve and makes the crystal structure of the calcined material more stable. In the subsequent adsorption and desorption process of the lithium ion sieve, it is not easy to be dissolved and lost, and the service life of the material is improved.
  • the anion of the metal-coated reagent is preferably nitrate, because the corresponding oxide and nitrogen dioxide gas are easily formed under the heating condition of nitrate, and other magazine elements are not introduced.
  • Figure 2 is a SEM image of the coated lithium ion sieve prepared in Example 1;
  • Figure 3 is a TEM image of the coated lithium ion sieve prepared in Example 1, and the SEM image shows that the particle size is about 100 nm.
  • the small polyhedral particles agglomerate into spherical secondary particles. It can be seen from the figure that the uncoated precursor particles are larger and the particle surface is relatively smooth, while the uneven particles of the metal oxide-coated precursor particles become smaller.
  • the surface of the coated precursor was analyzed by high-resolution transmission electron microscopy (HRTEM ) . There is a rough coating layer on the surface of 4 with a thickness of about 3 nm, which once again proves that Li 1.6 Mn 1.6 O 4 successfully coats the metal oxide layer.
  • HRTEM high-resolution transmission electron microscopy
  • a method for preparing a coated lithium ion sieve comprising the steps of:
  • a method for preparing a coated lithium ion sieve comprising the steps of:
  • step S02 1 g of LiMnO 2 was added to deionized water and sonicated for 4 h.
  • the coated lithium ion sieve prepared by the method of the present invention is pickled after use, and the adsorption capacity of the coated lithium ion sieve for lithium ions after the pickling is maintained at 45% after 9 cycles.
  • the above shows that its performance is stable and can be recycled for a long time.
  • the manganese dissolution loss of the lithium ion sieves in Examples 1-3 and Comparative Examples was tested by the following method: Weigh 0.1 g of the Mg-doped modified lithium ion sieves in Examples 1-3 and Comparative Example 1 into 20 ml of Li-containing sieves. + 165mg/L salt lake brine, after adsorption at 25°C for 48h, pickle the lithium ion sieve, take the supernatant after the pickling process and use atomic absorption spectrometer or ICP to test the concentration of residual Mn 2+ ; the test results are as follows shown in Table 2.
  • the coated lithium ion sieve of the invention has a more stable unit cell structure, solves the problem that the traditional HMn 2 O 4 lithium ion sieve is easy to be dissolved and lost, and can be reused for many times; the coated lithium ion sieve of the invention has excellent morphology , the average particle size of the particles is small and the specific surface area is large.
  • the specific morphology is conducive to the full contact of the lithium-containing liquid, which is convenient for the insertion and extraction of lithium ions, and is conducive to maintaining the cycle stability of the material;
  • the preparation method of the invention is simple, the conditions are moderate, the product consistency is good, the stability is good, and the industrialization is easy to be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种制备包覆型锂离子筛的方法,包括如下步骤:S01:将锰盐在空气气氛下煅烧2-10h得到Mn2O3;S02:将Mn2O3和锂盐混合研磨,100-200℃高压反应釜中反应36-72h,得到产物LiMnO2;其中,Mn2O3和锂盐中Li/Mn的摩尔配比为1~10:1;S03:在金属包覆试剂中加入0.5-5gLiMnO2超声2-10h,干燥6-24h,后置于400-600℃温度下煅烧2-10h,得到氧化物包覆的Li1.6Mn1.6O4锂离子吸附剂;其中,所述金属包覆试剂与LiMnO2摩尔比为0.01-0.08:1;S04:将所述氧化物包覆的Li1.6Mn1.6O4锂离子吸附剂进行酸化处理,酸化处理产物经洗涤干燥后即得到包覆型锂离子筛。本发明的包覆型锂离子筛晶胞结构更加稳定,解决了传统HMn2O4锂离子筛易溶损的难题,可多次重复循环使用。

Description

一种包覆型锂离子筛及其制备方法
交叉引用
本申请要求2020年12月23日提交的申请号为CN202011537107.1的中国专利申请的优先权。上述申请的内容以引用方式被包含于此。
技术领域
本发明涉及锂离子筛领域,具体涉及一种包覆型锂离子筛及其制备方法。
技术背景
动力和储能锂电池在新能源的广泛应用促发了全球对锂资源的需求持续增加,它广泛应用于润滑剂、陶瓷、制药、电池、原子能等新兴领域,已成为国民经济和国防建设的重要战略资源。
目前尖晶石型锂锰氧化物(LMO)因具有高吸附量和Li +选择性引起了相当大的研究热点,包括LiMn 2O 4,Li 1.33Mn l.67O 4和Li 1.6Mn 1.6O 4。在所有LMO尖晶石材料中,Li 1.6Mn 1.6O 4最具有代表性,因其较高的理论吸附容量和经过几个循环后良好的稳定性。然而,锰的溶解不仅降低了吸附能力,而且在实际应用中污染了解吸液。限制了其工业化应用。掺杂改性被认为是改善尖晶石型吸附剂锰溶损的最简单有效的方法。引入掺杂离子的主要目的是提高锂锰氧化物尖晶石中锰的平均化学价,同时降低Mn 3+的含量,抑制Jahn-Teller效应的发生或者增强八面体的化学键。Chitrakar等研究了Li mMg xMn(III) yMn(IV) zO 4(0≤x≥0.5)对酸处理过程中锰溶解的影响,结果 表明,随着Mg/Mn比的增加,锂的吸附能力提高且吸附剂化学稳定性也随之提高。Xue等首次合成了掺杂Fe 3O 4的锂锰氧化物(LiMn 2O 4/Fe 3O 4)作为磁性离子筛前驱体,将Fe 3O 4掺杂到LMO中,使前驱体中Mn的平均价态从+3.48提高到+3.53,有利于提高其结构稳定性。Ma等制备了一系列LiM xMn 2-xO 4(M=Ni,Al,Ti;0≤x≥1)尖晶石型吸附剂并比较其在水溶液中的锂离子回收性能。结果表明,LiAl 0.5Mn 1.5O 4在酸处理过程中表现出较高的Li +吸附率和较低的Mn和Al的溶损率,而LiNi 0.5Mn 1.5O 4和LiTi 0.5Mn 1.5O 4尖晶石的Li +吸附性能相对较差。Qian等通过用不同的过渡金属离子(Fe 3+,Co 2+)掺杂Li 1.6Mn 1.6O 4来改善酸洗过程中的锰溶损率。吸附结果表明,与未掺杂的吸附剂(32.3mg/g)相比掺杂Fe 3+和Co 2+后的吸附量分别为35.3mg/g和35.4mg/g,且锰损率从5.43%降低为3.95%和4.42%。离子掺杂过程中要避免掺杂金属离子占据8a位置,阻碍锂离子的移动。
发明概要
本发明的目的是提供一种包覆型锂离子筛及其制备方法,具有吸附容量高、锰溶损少、循环稳定性高的优势。
为了实现上述目的,本发明采用如下技术方案:一种包覆型锂离子筛,包括内壳和包覆层,所述包覆层均匀覆盖在所述内壳外侧,所述内壳为Li 1.6Mn 1.6O 4,所述包覆层为Li 2O、Li 2MnO 3、MnO 2中的任一种。
进一步的,所述包覆型锂离子筛的直径为45-55nm;所述包覆层厚度为2-4nm。
一种制备上述的包覆型锂离子筛的方法,包括如下步骤:
S01:将锰盐在空气气氛下煅烧2-10h得到Mn 2O 3
S02:将Mn 2O 3和锂盐混合研磨,100-200℃高压反应釜中反应36-72h,得到产物LiMnO 2;其中,Mn 2O 3和锂盐中Li/Mn的摩尔配比为1~10:1;
S03:在金属包覆试剂中加入LiMnO 2超声2-10h,干燥6-24h,后置于400-600℃温度下煅烧2-10h,得到氧化物包覆的Li 1.6Mn 1.6O 4锂离子吸附剂;其中,所述金属包覆试剂与LiMnO 2摩尔比为0.01-0.08:1;
S04:将所述氧化物包覆的Li 1.6Mn 1.6O 4锂离子吸附剂进行酸化处理,酸化处理产物经洗涤干燥后即得到包覆型锂离子筛。
进一步的,所述锰盐为碳酸锰;所述金属包覆试剂为硝酸锰或硝酸锂。
进一步的,所述锂盐为为氢氧化锂或碳酸锂。
进一步的,所述酸化处理为采用盐酸或硫酸浸泡处理,所述盐酸或硫酸的浓度为0.25-0.5mol/L,浸泡时间为12-48h。
进一步的,所述步骤S02中超声后溶液置于马弗炉中于400-600℃温度下煅烧,且煅烧时控制升温速率为5-10℃/min。
进一步的,所述步骤S02中高压反应釜中反应温度为110-150℃。
进一步的,所述步骤S02中煅烧温度为350-450℃。
本发明具有如下有益效果:1、本发明的包覆型锂离子筛晶胞结构更加稳定,解决了传统HMn 2O 4锂离子筛易溶损的难题,可多次重复循环使用。
2、本发明的包覆型锂离子筛形貌优异,颗粒平均粒径小,比表面积较大,作为锂离子吸附剂时,其特定形貌有利于含锂液的充分接触,便于锂离子的嵌入与脱出,并且有利于保持材料的循环稳定性能。
3、本发明的制备方法简单、条件温合、产品一致性好、稳定性好、易于实现工业化。
附图说明
图1为本发明实施例1制备的包覆型锂离子筛的XRD图;
图2为本发明实施例1制备的包覆型锂离子筛的SEM图;
图3为本发明实施例1制备的包覆型锂离子筛的TEM图。
发明内容
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式做进一步的详细说明。
本发明公开了一种包覆型锂离子筛,包括内壳和包覆层,包覆层均匀覆盖在内壳外侧,内壳为Li 1.6Mn 1.6O 4,包覆层为Li 2O、Li 2MnO 3、MnO 2中的任一种。其中,包覆型锂离子筛的直径为45-55nm;包覆层厚度为2-4nm。
优选地,本发明中包覆型锂离子筛的晶型为尖晶石晶型,锂离子筛为多面体颗粒,且其平均颗粒直径为50nm左右,包覆层约3nm左右,结晶性较好。本发明的包覆型锂离子筛的锰溶损率明显降低,通过多次吸附循环后仍然保持尖晶石结构,说明此吸附剂具有更加稳定的晶体结构。有利于解决锰系吸附剂在实际应用中的锰溶损及稳定性等难题。另外,本发明的包覆型锂离子筛颗粒平均粒径小,锂离子筛不直接与溶液接触,有利于保持材料的循环稳定性能。
实施例1
一种制备包覆型锂离子筛的方法,包括如下步骤:
S01:将MnCO 3在空气气氛下煅烧5h得到Mn 2O 3
S02:将Mn 2O 3和锂盐混合研磨,转移至100mL聚四氟乙烯内衬的不锈钢反应釜中,将反应釜放入烘箱中,在120℃的反应温度下进行水热反应,反应时间为48h;待反应结束后,将得到的产物放入烘箱中于60℃下干燥12h,得到产物LiMnO 2;其中,Mn 2O 3和锂盐中Li/Mn的摩尔配比为1:1;
值得说明的是,锂盐的实际使用量为其为其理论用量的1.00-1.05倍,这是因为由于一次煅烧即可得到所需前驱体产品,锂盐损失较小,故锂盐的用量可采用理论量或稍过量,锂盐用量过多时,残留锂盐会影响产品性能。本发明中设置Mn 2O 3和锂盐中Li/Mn的摩尔配比时已经充分考虑到锂盐的理论用量和实际用量。
S03:在4M硝酸锂溶液中加入1g LiMnO 2超声4h,60℃下干燥20h,干燥后的粉末在研磨中充分混合后,放入坩埚并置于马弗炉中,于空气中在5℃/min的升温速率下升温到450℃,高温固相反应4h,得到氧化物包覆的Li 1.6Mn 1.6O 4锂离子吸附剂;其中,金属包覆试剂与LiMnO 2摩尔比为0.04:1,若包覆量太低,达不到改性的目的;包覆量过高,阻碍锂离子脱嵌,使得锂离子筛的吸附容量下降。
本发明包覆元素选用锂、锰是考虑到其二者在反应过程中形成对酸性环境稳定的Li 2MnO 3,便于提高锂离子筛整体稳定性,使得煅烧后材料的晶型结构更稳定,在后续锂离子筛的吸附与解吸过程中不易溶损,提高材料的使用寿命。
金属包覆试剂的阴离子优选硝酸根,因为硝酸根加热条件下容易形成相应的氧化物和二氧化氮气体,不带入其他杂志元素。
S04:将氧化物包覆的Li 1.6Mn 1.6O 4锂离子吸附剂放入20mL浓度为 0.5mol/L的稀盐酸中,常温下震荡24h后完成脱锂,将得到的产物进行过滤、洗涤后放入烘箱中于60℃下干燥12h,得到的粉体材料即为本实施例中包覆型锂离子筛。其中,酸化浸泡时间过短则锂离子浸出不充分,浸出时间过长则会过度酸化,使得Mn溶损。
附图1为实施例1制备的包覆型锂离子筛的XRD图,结合XRD图谱可以看出表面包覆没有改变前驱体的物相组成,均得到了晶型良好、纯相Li 1.6Mn 1.6O 4。当包覆MnO 2时,XRD图显示为单一Li 1.6Mn 1.6O 4的特征衍射峰;当包覆Li 2O、Li 2MnO 3时,出现了Li 2MnO 3的特征峰。
图2为实施例1制备的包覆型锂离子筛的SEM图;图3为实施例1制备的包覆型锂离子筛的TEM图,SEM图显示颗粒尺寸在100nm左右。多面体小颗粒团聚成球形二次颗粒,由图可以看出未包覆的前驱体颗粒较大,颗粒表面比较光滑,而包覆金属氧化物的前驱体颗粒凹凸不平颗粒变小。为了检测金属氧化物在前驱体Li 1.6Mn 1.6O 4表面上的包覆厚度,用高分辨透射电镜HRTEM对包覆的前驱体表面进行分析,从图中看出,在基体Li 1.6Mn 1.6O 4表面上有一层粗糙的包覆层,厚度约3nm左右,再次证明Li 1.6Mn 1.6O 4成功包覆了金属氧化物层。
实施例2
一种制备包覆型锂离子筛的方法,包括如下步骤:
S01:将MnCO 3在空气气氛下煅烧2h得到Mn 2O 3
S02:将Mn 2O 3和锂盐混合研磨,转移至100mL聚四氟乙烯内衬的不锈钢反应釜中,将反应釜放入烘箱中,在120℃的反应温度下进行水热反应,反应时间为36h;待反应结束后,将得到的产物放入烘箱中于60℃下干燥 12h,得到产物LiMnO 2;其中,Mn 2O 3和锂盐中Li/Mn的摩尔配比为10:1;
S03:在4M硝酸锂溶液中加入1g LiMnO 2超声2h,60℃下干燥36h,干燥后的粉末在研磨中充分混合后,放入坩埚并置于马弗炉中,于空气中在7℃/min的升温速率下升温到400℃,高温固相反应2h,得到氧化物包覆的Li 1.6Mn 1.6O 4锂离子吸附剂;其中,金属包覆试剂与LiMnO 2摩尔比为0.01:1。
S04:将氧化物包覆的Li 1.6Mn 1.6O 4锂离子吸附剂放入浓度为0.4mol/L的稀盐酸中,常温下震荡24h后完成脱锂,将得到的产物进行过滤、洗涤后放入烘箱中于60℃下干燥12h,得到的粉体材料即为本实施例中包覆型锂离子筛。
实施例3
一种制备包覆型锂离子筛的方法,包括如下步骤:
S01:将MnCO 3在空气气氛下煅烧10h得到Mn 2O 3
S02:将Mn 2O 3和锂盐混合研磨,转移至100mL聚四氟乙烯内衬的不锈钢反应釜中,将反应釜放入烘箱中,在200℃的反应温度下进行水热反应,反应时间为72h;待反应结束后,将得到的产物放入烘箱中于60℃下干燥12h,得到产物LiMnO 2;其中,Mn 2O 3和锂盐中Li/Mn的摩尔配比为5:1;
S03:在4M硝酸锰溶液中加入1g LiMnO 2超声10h,60℃下干燥36h,干燥后的粉末在研磨中充分混合后,放入坩埚并置于马弗炉中,于空气中在10℃/min的升温速率下升温到600℃,高温固相反应10h,得到氧化物包覆的Li 1.6Mn 1.6O 4锂离子吸附剂;其中,金属包覆试剂与LiMnO 2摩尔比为0.08:1。
S04:将氧化物包覆的Li 1.6Mn 1.6O 4锂离子吸附剂放入浓度为0.4mol/L的稀硫酸中,常温下震荡24h后完成脱锂,将得到的产物进行过滤、洗涤后放入烘箱中于60℃下干燥12h,得到的粉体材料即为本实施例中包覆型锂离子筛。
对比例1
对比例1与实施例1的区别仅在于步骤S02中在去离子水中加入1g LiMnO 2超声4h。
实验例1
初始锂离子浓度为165mg/L的卤水20mL,溶液pH为12.0,分别加入实施例1-3以及对比例1中的包覆型锂离子筛0.1g,在25℃、反应时间24h的条件下,测得其吸附容量如表1中首次吸附容量所示;吸附锂离子之后的锂离子筛经无机酸酸洗后离子筛可以重复使用,本实验例对酸洗之后的锂离子筛继续进行第五次吸附容量和第十次吸附容量测试,测试方法与首次吸附容量的测试方法相同。
表1 不同实施例及对比例锂离子筛的吸附容量
Figure PCTCN2021122753-appb-000001
可以看出:(1)相比于对比例1中单纯的锂离子筛,本发明制备的包覆型锂离子筛对于锂离子的吸附容量大幅度增加;说明本申请制备的包覆型锂 离子筛吸附容量高,对锂离子的选择性高。
(2)采用本发明方法制备的包覆型锂离子筛在使用过后进行酸洗,酸洗之后的包覆型锂离子筛对于锂离子的吸附容量在循环9次后,吸附能力保持在45%以上,说明其性能稳定,可以长期循环使用。
实施例2
采用如下方法测试实施例1-3以及对比例中锂离子筛的锰溶解损失:称取0.1g实施例1-3以及对比例1中的Mg掺杂改性的锂离子筛放入20ml含Li +165mg/L的盐湖卤水中,25℃下吸附48h后,将锂离子筛进行酸洗,在酸洗过程后取上清液使用原子吸收光谱仪或者ICP测试残留Mn 2+的浓度;测试结果如表2所示。
表2 不同实施例及对比例锂离子筛的锰溶解损失量
Figure PCTCN2021122753-appb-000002
可以看出,本发明制备的Mg掺杂改性的锂离子筛的锰溶解损失量明显低于对比例1中单纯的锂离子筛的锰溶解损失量。
本发明的包覆型锂离子筛晶胞结构更加稳定,解决了传统HMn 2O 4锂离子筛易溶损的难题,可多次重复循环使用;本发明的包覆型锂离子筛形貌优异,颗粒平均粒径小,比表面积较大,作为锂离子吸附剂时,其特定形貌有利于含锂液的充分接触,便于锂离子的嵌入与脱出,并且有利于保持材料的 循环稳定性能;本发明的制备方法简单、条件温合、产品一致性好、稳定性好、易于实现工业化。
以上所述仅为本发明的优选实施例,所述实施例并非用于限制本发明的专利保护范围,因此凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明所附权利要求的保护范围内。

Claims (9)

  1. 一种包覆型锂离子筛,其特征在于,包括内壳和包覆层,所述包覆层均匀覆盖在所述内壳外侧,所述内壳为Li 1.6Mn 1.6O 4,所述包覆层为Li 2O、Li 2MnO 3、MnO 2中的任一种。
  2. 根据权利要求1所述的一种包覆型锂离子筛,其特征在于,所述包覆型锂离子筛的直径为45-55nm;所述包覆层厚度为2-4nm。
  3. 一种制备权利要求1所述的包覆型锂离子筛的方法,其特征在于,包括如下步骤:
    S01:将锰盐在空气气氛下煅烧2-10h得到Mn 2O 3
    S02:将Mn 2O 3和锂盐混合研磨,100-200℃高压反应釜中反应36-72h,得到产物LiMnO 2;其中,Mn 2O 3和锂盐中Li/Mn的摩尔配比为1~10:1;
    S03:在金属包覆试剂中加入LiMnO 2超声2-10h,干燥6-24h,后置于400-600℃温度下煅烧2-10h,得到氧化物包覆的Li 1.6Mn 1.6O 4锂离子吸附剂;其中,所述金属包覆试剂与LiMnO 2摩尔比为0.01-0.08:1;
    S04:将所述氧化物包覆的Li 1.6Mn 1.6O 4锂离子吸附剂进行酸化处理,酸化处理产物经洗涤干燥后即得到包覆型锂离子筛。
  4. 根据权利要求3所述的一种制备方法,其特征在于,所述锰盐为碳酸锰;所述金属包覆试剂为硝酸锰或硝酸锂。
  5. 根据权利要求3所述的一种制备方法,其特征在于,所述锂盐为为氢氧化锂或碳酸锂。
  6. 根据权利要求3所述的一种制备方法,其特征在于,所述酸化处理为采用盐酸或硫酸浸泡处理,所述盐酸或硫酸的浓度为0.25-0.5mol/L,浸泡时 间为12-48h。
  7. 根据权利要求3所述的一种制备方法,其特征在于,所述步骤S02中超声后溶液置于马弗炉中于400-600℃温度下煅烧,且煅烧时控制升温速率为5-10℃/min。
  8. 根据权利要求3所述的一种制备方法,其特征在于,所述步骤S02中高压反应釜中反应温度为110-150℃。
  9. 根据权利要求3所述的一种制备方法,其特征在于,所述步骤S02中煅烧温度为350-450℃。
PCT/CN2021/122753 2020-12-23 2021-10-09 一种包覆型锂离子筛及其制备方法 WO2022134736A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022531507A JP2024502688A (ja) 2020-12-23 2021-10-09 被覆型リチウムイオンふるい及びその製造方法
US17/777,012 US20240165579A1 (en) 2020-12-23 2021-10-09 Coated lithium-ion sieve and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011537107.1A CN112791691B (zh) 2020-12-23 2020-12-23 一种包覆型锂离子筛及其制备方法
CN202011537107.1 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022134736A1 true WO2022134736A1 (zh) 2022-06-30

Family

ID=75807340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122753 WO2022134736A1 (zh) 2020-12-23 2021-10-09 一种包覆型锂离子筛及其制备方法

Country Status (4)

Country Link
US (1) US20240165579A1 (zh)
JP (1) JP2024502688A (zh)
CN (1) CN112791691B (zh)
WO (1) WO2022134736A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115779851A (zh) * 2022-12-05 2023-03-14 南京大学 一种包覆结构的锰酸锂离子筛吸附剂的合成方法
CN116020397A (zh) * 2023-02-06 2023-04-28 湖南卓亚科技发展有限责任公司 一种锰钛复合锂离子筛吸附剂的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112791691B (zh) * 2020-12-23 2023-07-25 礼思(上海)材料科技有限公司 一种包覆型锂离子筛及其制备方法
CN114259976A (zh) * 2021-12-20 2022-04-01 礼思(上海)材料科技有限公司 一种改性锰基锂离子筛制备方法
CN114307942A (zh) * 2021-12-20 2022-04-12 礼思(上海)材料科技有限公司 一种复合锂离子筛的制备方法
CN116371387A (zh) * 2023-02-28 2023-07-04 华东理工大学 一种阳离子掺杂改性的锂离子筛的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168431A (ja) * 2001-11-30 2003-06-13 Toyota Central Res & Dev Lab Inc リチウム二次電池用正極活物質材料、その製造方法およびそれを用いたリチウム二次電池
CN107376827A (zh) * 2017-09-08 2017-11-24 中南大学 一种二氧化锆包覆锰系锂离子筛及其制备方法和应用
CN109999750A (zh) * 2018-01-05 2019-07-12 中南大学 一种锆酸锂包覆锰系锂离子筛及其制备和应用
CN112791691A (zh) * 2020-12-23 2021-05-14 礼思(上海)材料科技有限公司 一种包覆型锂离子筛及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4320808B2 (ja) * 1998-11-09 2009-08-26 東ソー株式会社 スピネル構造を有するリチウムマンガン系酸化物及びその製造方法並びにその用途
KR101141677B1 (ko) * 2011-06-30 2012-05-04 한국지질자원연구원 고상 반응에 의한 리튬 망간 산화물의 제조 방법
WO2018089932A1 (en) * 2016-11-14 2018-05-17 Lilac Solutions, Inc. Lithium extraction with coated ion exchange particles
CN108622942A (zh) * 2018-03-18 2018-10-09 启东祥瑞建设有限公司 一种包覆ZrO2锂离子筛的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168431A (ja) * 2001-11-30 2003-06-13 Toyota Central Res & Dev Lab Inc リチウム二次電池用正極活物質材料、その製造方法およびそれを用いたリチウム二次電池
CN107376827A (zh) * 2017-09-08 2017-11-24 中南大学 一种二氧化锆包覆锰系锂离子筛及其制备方法和应用
CN109999750A (zh) * 2018-01-05 2019-07-12 中南大学 一种锆酸锂包覆锰系锂离子筛及其制备和应用
CN112791691A (zh) * 2020-12-23 2021-05-14 礼思(上海)材料科技有限公司 一种包覆型锂离子筛及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115779851A (zh) * 2022-12-05 2023-03-14 南京大学 一种包覆结构的锰酸锂离子筛吸附剂的合成方法
CN115779851B (zh) * 2022-12-05 2024-03-19 南京大学 一种包覆结构的锰酸锂离子筛吸附剂的合成方法
CN116020397A (zh) * 2023-02-06 2023-04-28 湖南卓亚科技发展有限责任公司 一种锰钛复合锂离子筛吸附剂的制备方法
CN116020397B (zh) * 2023-02-06 2023-09-19 湖南卓亚科技发展有限责任公司 一种锰钛复合锂离子筛吸附剂的制备方法

Also Published As

Publication number Publication date
CN112791691A (zh) 2021-05-14
CN112791691B (zh) 2023-07-25
US20240165579A1 (en) 2024-05-23
JP2024502688A (ja) 2024-01-23

Similar Documents

Publication Publication Date Title
WO2022134736A1 (zh) 一种包覆型锂离子筛及其制备方法
CN109336193B (zh) 多元素原位共掺杂三元材料前驱体及其制备方法和应用
WO2016180288A1 (zh) 制备具有铝元素梯度分布的镍钴铝前驱材料和正极材料的方法
CN107732220B (zh) 氮掺杂介孔碳包覆的锂离子电池三元正极材料的制备方法
CN108557905B (zh) 一种富锂锰基材料前驱体及其制备方法、富锂锰基正极材料及其制备方法、锂电池
WO2019113870A1 (zh) 一种富锂锰基材料及其制备和应用
CN111943285B (zh) 一种纳米富锂锰基正极材料及其前驱体、基材以及制备方法
WO2022188480A1 (zh) 锂电池复合正极材料的前驱体及复合正极材料的制备方法
CN108579661B (zh) 一种掺杂改性锂离子筛及其制备方法、应用
JP2020528637A (ja) 電極活物質の製造方法
CN108807918B (zh) 一种表面包覆复合的富锂锰基正极材料及其制备方法
CN109148835B (zh) 氧化铝包覆镍钴锰酸锂正极材料的制备方法
CN107069013B (zh) 一种改性富锂锰基正极材料及其制备方法
CN111769286A (zh) 一种高电压镍锰酸锂正极材料及其制备方法
CN115676797B (zh) 一种磷酸锰铁锂材料、制备方法及其应用
WO2023184996A1 (zh) 一种改性高镍三元正极材料及其制备方法
CN104528799A (zh) 一种镁基稀土六铝酸盐超细粉体的制备方法
CN112374551A (zh) 含铁锰层状过渡金属氧化物前驱体材料及其制备方法和应用
CN114394632A (zh) 一种纳米级llzo包覆高镍正极材料的制备方法
CN113488620A (zh) 三元正极前驱体及其制备方法、三元正极材料及其制备方法、锂离子电池
CN109012564B (zh) 一种制备锂离子筛吸附剂的方法
CN116371387A (zh) 一种阳离子掺杂改性的锂离子筛的制备方法
JP2024513948A (ja) 高ニッケル三元コアシェル前駆体、正極材料及びその製造方法
CN112777643A (zh) 一种Mg掺杂改性的锂离子筛及其制备方法
CN115881942A (zh) 一种单晶型正极材料及其制备方法和应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022531507

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 17777012

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908737

Country of ref document: EP

Kind code of ref document: A1